1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines several CodeGen-specific LLVM IR analysis utilities. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/Analysis.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/CodeGen/MachineModuleInfo.h" 18 #include "llvm/CodeGen/SelectionDAG.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Target/TargetLowering.h" 29 #include "llvm/Target/TargetInstrInfo.h" 30 #include "llvm/Target/TargetSubtargetInfo.h" 31 #include "llvm/Transforms/Utils/GlobalStatus.h" 32 33 using namespace llvm; 34 35 /// Compute the linearized index of a member in a nested aggregate/struct/array 36 /// by recursing and accumulating CurIndex as long as there are indices in the 37 /// index list. 38 unsigned llvm::ComputeLinearIndex(Type *Ty, 39 const unsigned *Indices, 40 const unsigned *IndicesEnd, 41 unsigned CurIndex) { 42 // Base case: We're done. 43 if (Indices && Indices == IndicesEnd) 44 return CurIndex; 45 46 // Given a struct type, recursively traverse the elements. 47 if (StructType *STy = dyn_cast<StructType>(Ty)) { 48 for (StructType::element_iterator EB = STy->element_begin(), 49 EI = EB, 50 EE = STy->element_end(); 51 EI != EE; ++EI) { 52 if (Indices && *Indices == unsigned(EI - EB)) 53 return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); 54 CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex); 55 } 56 assert(!Indices && "Unexpected out of bound"); 57 return CurIndex; 58 } 59 // Given an array type, recursively traverse the elements. 60 else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 61 Type *EltTy = ATy->getElementType(); 62 unsigned NumElts = ATy->getNumElements(); 63 // Compute the Linear offset when jumping one element of the array 64 unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0); 65 if (Indices) { 66 assert(*Indices < NumElts && "Unexpected out of bound"); 67 // If the indice is inside the array, compute the index to the requested 68 // elt and recurse inside the element with the end of the indices list 69 CurIndex += EltLinearOffset* *Indices; 70 return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); 71 } 72 CurIndex += EltLinearOffset*NumElts; 73 return CurIndex; 74 } 75 // We haven't found the type we're looking for, so keep searching. 76 return CurIndex + 1; 77 } 78 79 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of 80 /// EVTs that represent all the individual underlying 81 /// non-aggregate types that comprise it. 82 /// 83 /// If Offsets is non-null, it points to a vector to be filled in 84 /// with the in-memory offsets of each of the individual values. 85 /// 86 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 87 Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 88 SmallVectorImpl<uint64_t> *Offsets, 89 uint64_t StartingOffset) { 90 // Given a struct type, recursively traverse the elements. 91 if (StructType *STy = dyn_cast<StructType>(Ty)) { 92 const StructLayout *SL = DL.getStructLayout(STy); 93 for (StructType::element_iterator EB = STy->element_begin(), 94 EI = EB, 95 EE = STy->element_end(); 96 EI != EE; ++EI) 97 ComputeValueVTs(TLI, DL, *EI, ValueVTs, Offsets, 98 StartingOffset + SL->getElementOffset(EI - EB)); 99 return; 100 } 101 // Given an array type, recursively traverse the elements. 102 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 103 Type *EltTy = ATy->getElementType(); 104 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 105 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 106 ComputeValueVTs(TLI, DL, EltTy, ValueVTs, Offsets, 107 StartingOffset + i * EltSize); 108 return; 109 } 110 // Interpret void as zero return values. 111 if (Ty->isVoidTy()) 112 return; 113 // Base case: we can get an EVT for this LLVM IR type. 114 ValueVTs.push_back(TLI.getValueType(DL, Ty)); 115 if (Offsets) 116 Offsets->push_back(StartingOffset); 117 } 118 119 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. 120 GlobalValue *llvm::ExtractTypeInfo(Value *V) { 121 V = V->stripPointerCasts(); 122 GlobalValue *GV = dyn_cast<GlobalValue>(V); 123 GlobalVariable *Var = dyn_cast<GlobalVariable>(V); 124 125 if (Var && Var->getName() == "llvm.eh.catch.all.value") { 126 assert(Var->hasInitializer() && 127 "The EH catch-all value must have an initializer"); 128 Value *Init = Var->getInitializer(); 129 GV = dyn_cast<GlobalValue>(Init); 130 if (!GV) V = cast<ConstantPointerNull>(Init); 131 } 132 133 assert((GV || isa<ConstantPointerNull>(V)) && 134 "TypeInfo must be a global variable or NULL"); 135 return GV; 136 } 137 138 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being 139 /// processed uses a memory 'm' constraint. 140 bool 141 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos, 142 const TargetLowering &TLI) { 143 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { 144 InlineAsm::ConstraintInfo &CI = CInfos[i]; 145 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { 146 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); 147 if (CType == TargetLowering::C_Memory) 148 return true; 149 } 150 151 // Indirect operand accesses access memory. 152 if (CI.isIndirect) 153 return true; 154 } 155 156 return false; 157 } 158 159 /// getFCmpCondCode - Return the ISD condition code corresponding to 160 /// the given LLVM IR floating-point condition code. This includes 161 /// consideration of global floating-point math flags. 162 /// 163 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { 164 switch (Pred) { 165 case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; 166 case FCmpInst::FCMP_OEQ: return ISD::SETOEQ; 167 case FCmpInst::FCMP_OGT: return ISD::SETOGT; 168 case FCmpInst::FCMP_OGE: return ISD::SETOGE; 169 case FCmpInst::FCMP_OLT: return ISD::SETOLT; 170 case FCmpInst::FCMP_OLE: return ISD::SETOLE; 171 case FCmpInst::FCMP_ONE: return ISD::SETONE; 172 case FCmpInst::FCMP_ORD: return ISD::SETO; 173 case FCmpInst::FCMP_UNO: return ISD::SETUO; 174 case FCmpInst::FCMP_UEQ: return ISD::SETUEQ; 175 case FCmpInst::FCMP_UGT: return ISD::SETUGT; 176 case FCmpInst::FCMP_UGE: return ISD::SETUGE; 177 case FCmpInst::FCMP_ULT: return ISD::SETULT; 178 case FCmpInst::FCMP_ULE: return ISD::SETULE; 179 case FCmpInst::FCMP_UNE: return ISD::SETUNE; 180 case FCmpInst::FCMP_TRUE: return ISD::SETTRUE; 181 default: llvm_unreachable("Invalid FCmp predicate opcode!"); 182 } 183 } 184 185 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { 186 switch (CC) { 187 case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; 188 case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; 189 case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; 190 case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; 191 case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; 192 case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; 193 default: return CC; 194 } 195 } 196 197 /// getICmpCondCode - Return the ISD condition code corresponding to 198 /// the given LLVM IR integer condition code. 199 /// 200 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { 201 switch (Pred) { 202 case ICmpInst::ICMP_EQ: return ISD::SETEQ; 203 case ICmpInst::ICMP_NE: return ISD::SETNE; 204 case ICmpInst::ICMP_SLE: return ISD::SETLE; 205 case ICmpInst::ICMP_ULE: return ISD::SETULE; 206 case ICmpInst::ICMP_SGE: return ISD::SETGE; 207 case ICmpInst::ICMP_UGE: return ISD::SETUGE; 208 case ICmpInst::ICMP_SLT: return ISD::SETLT; 209 case ICmpInst::ICMP_ULT: return ISD::SETULT; 210 case ICmpInst::ICMP_SGT: return ISD::SETGT; 211 case ICmpInst::ICMP_UGT: return ISD::SETUGT; 212 default: 213 llvm_unreachable("Invalid ICmp predicate opcode!"); 214 } 215 } 216 217 static bool isNoopBitcast(Type *T1, Type *T2, 218 const TargetLoweringBase& TLI) { 219 return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) || 220 (isa<VectorType>(T1) && isa<VectorType>(T2) && 221 TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2))); 222 } 223 224 /// Look through operations that will be free to find the earliest source of 225 /// this value. 226 /// 227 /// @param ValLoc If V has aggegate type, we will be interested in a particular 228 /// scalar component. This records its address; the reverse of this list gives a 229 /// sequence of indices appropriate for an extractvalue to locate the important 230 /// value. This value is updated during the function and on exit will indicate 231 /// similar information for the Value returned. 232 /// 233 /// @param DataBits If this function looks through truncate instructions, this 234 /// will record the smallest size attained. 235 static const Value *getNoopInput(const Value *V, 236 SmallVectorImpl<unsigned> &ValLoc, 237 unsigned &DataBits, 238 const TargetLoweringBase &TLI, 239 const DataLayout &DL) { 240 while (true) { 241 // Try to look through V1; if V1 is not an instruction, it can't be looked 242 // through. 243 const Instruction *I = dyn_cast<Instruction>(V); 244 if (!I || I->getNumOperands() == 0) return V; 245 const Value *NoopInput = nullptr; 246 247 Value *Op = I->getOperand(0); 248 if (isa<BitCastInst>(I)) { 249 // Look through truly no-op bitcasts. 250 if (isNoopBitcast(Op->getType(), I->getType(), TLI)) 251 NoopInput = Op; 252 } else if (isa<GetElementPtrInst>(I)) { 253 // Look through getelementptr 254 if (cast<GetElementPtrInst>(I)->hasAllZeroIndices()) 255 NoopInput = Op; 256 } else if (isa<IntToPtrInst>(I)) { 257 // Look through inttoptr. 258 // Make sure this isn't a truncating or extending cast. We could 259 // support this eventually, but don't bother for now. 260 if (!isa<VectorType>(I->getType()) && 261 DL.getPointerSizeInBits() == 262 cast<IntegerType>(Op->getType())->getBitWidth()) 263 NoopInput = Op; 264 } else if (isa<PtrToIntInst>(I)) { 265 // Look through ptrtoint. 266 // Make sure this isn't a truncating or extending cast. We could 267 // support this eventually, but don't bother for now. 268 if (!isa<VectorType>(I->getType()) && 269 DL.getPointerSizeInBits() == 270 cast<IntegerType>(I->getType())->getBitWidth()) 271 NoopInput = Op; 272 } else if (isa<TruncInst>(I) && 273 TLI.allowTruncateForTailCall(Op->getType(), I->getType())) { 274 DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits()); 275 NoopInput = Op; 276 } else if (isa<CallInst>(I)) { 277 // Look through call (skipping callee) 278 for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 1; 279 i != e; ++i) { 280 unsigned attrInd = i - I->op_begin() + 1; 281 if (cast<CallInst>(I)->paramHasAttr(attrInd, Attribute::Returned) && 282 isNoopBitcast((*i)->getType(), I->getType(), TLI)) { 283 NoopInput = *i; 284 break; 285 } 286 } 287 } else if (isa<InvokeInst>(I)) { 288 // Look through invoke (skipping BB, BB, Callee) 289 for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 3; 290 i != e; ++i) { 291 unsigned attrInd = i - I->op_begin() + 1; 292 if (cast<InvokeInst>(I)->paramHasAttr(attrInd, Attribute::Returned) && 293 isNoopBitcast((*i)->getType(), I->getType(), TLI)) { 294 NoopInput = *i; 295 break; 296 } 297 } 298 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) { 299 // Value may come from either the aggregate or the scalar 300 ArrayRef<unsigned> InsertLoc = IVI->getIndices(); 301 if (ValLoc.size() >= InsertLoc.size() && 302 std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) { 303 // The type being inserted is a nested sub-type of the aggregate; we 304 // have to remove those initial indices to get the location we're 305 // interested in for the operand. 306 ValLoc.resize(ValLoc.size() - InsertLoc.size()); 307 NoopInput = IVI->getInsertedValueOperand(); 308 } else { 309 // The struct we're inserting into has the value we're interested in, no 310 // change of address. 311 NoopInput = Op; 312 } 313 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 314 // The part we're interested in will inevitably be some sub-section of the 315 // previous aggregate. Combine the two paths to obtain the true address of 316 // our element. 317 ArrayRef<unsigned> ExtractLoc = EVI->getIndices(); 318 ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend()); 319 NoopInput = Op; 320 } 321 // Terminate if we couldn't find anything to look through. 322 if (!NoopInput) 323 return V; 324 325 V = NoopInput; 326 } 327 } 328 329 /// Return true if this scalar return value only has bits discarded on its path 330 /// from the "tail call" to the "ret". This includes the obvious noop 331 /// instructions handled by getNoopInput above as well as free truncations (or 332 /// extensions prior to the call). 333 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal, 334 SmallVectorImpl<unsigned> &RetIndices, 335 SmallVectorImpl<unsigned> &CallIndices, 336 bool AllowDifferingSizes, 337 const TargetLoweringBase &TLI, 338 const DataLayout &DL) { 339 340 // Trace the sub-value needed by the return value as far back up the graph as 341 // possible, in the hope that it will intersect with the value produced by the 342 // call. In the simple case with no "returned" attribute, the hope is actually 343 // that we end up back at the tail call instruction itself. 344 unsigned BitsRequired = UINT_MAX; 345 RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL); 346 347 // If this slot in the value returned is undef, it doesn't matter what the 348 // call puts there, it'll be fine. 349 if (isa<UndefValue>(RetVal)) 350 return true; 351 352 // Now do a similar search up through the graph to find where the value 353 // actually returned by the "tail call" comes from. In the simple case without 354 // a "returned" attribute, the search will be blocked immediately and the loop 355 // a Noop. 356 unsigned BitsProvided = UINT_MAX; 357 CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL); 358 359 // There's no hope if we can't actually trace them to (the same part of!) the 360 // same value. 361 if (CallVal != RetVal || CallIndices != RetIndices) 362 return false; 363 364 // However, intervening truncates may have made the call non-tail. Make sure 365 // all the bits that are needed by the "ret" have been provided by the "tail 366 // call". FIXME: with sufficiently cunning bit-tracking, we could look through 367 // extensions too. 368 if (BitsProvided < BitsRequired || 369 (!AllowDifferingSizes && BitsProvided != BitsRequired)) 370 return false; 371 372 return true; 373 } 374 375 /// For an aggregate type, determine whether a given index is within bounds or 376 /// not. 377 static bool indexReallyValid(CompositeType *T, unsigned Idx) { 378 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 379 return Idx < AT->getNumElements(); 380 381 return Idx < cast<StructType>(T)->getNumElements(); 382 } 383 384 /// Move the given iterators to the next leaf type in depth first traversal. 385 /// 386 /// Performs a depth-first traversal of the type as specified by its arguments, 387 /// stopping at the next leaf node (which may be a legitimate scalar type or an 388 /// empty struct or array). 389 /// 390 /// @param SubTypes List of the partial components making up the type from 391 /// outermost to innermost non-empty aggregate. The element currently 392 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1). 393 /// 394 /// @param Path Set of extractvalue indices leading from the outermost type 395 /// (SubTypes[0]) to the leaf node currently represented. 396 /// 397 /// @returns true if a new type was found, false otherwise. Calling this 398 /// function again on a finished iterator will repeatedly return 399 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty 400 /// aggregate or a non-aggregate 401 static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes, 402 SmallVectorImpl<unsigned> &Path) { 403 // First march back up the tree until we can successfully increment one of the 404 // coordinates in Path. 405 while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) { 406 Path.pop_back(); 407 SubTypes.pop_back(); 408 } 409 410 // If we reached the top, then the iterator is done. 411 if (Path.empty()) 412 return false; 413 414 // We know there's *some* valid leaf now, so march back down the tree picking 415 // out the left-most element at each node. 416 ++Path.back(); 417 Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back()); 418 while (DeeperType->isAggregateType()) { 419 CompositeType *CT = cast<CompositeType>(DeeperType); 420 if (!indexReallyValid(CT, 0)) 421 return true; 422 423 SubTypes.push_back(CT); 424 Path.push_back(0); 425 426 DeeperType = CT->getTypeAtIndex(0U); 427 } 428 429 return true; 430 } 431 432 /// Find the first non-empty, scalar-like type in Next and setup the iterator 433 /// components. 434 /// 435 /// Assuming Next is an aggregate of some kind, this function will traverse the 436 /// tree from left to right (i.e. depth-first) looking for the first 437 /// non-aggregate type which will play a role in function return. 438 /// 439 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup 440 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first 441 /// i32 in that type. 442 static bool firstRealType(Type *Next, 443 SmallVectorImpl<CompositeType *> &SubTypes, 444 SmallVectorImpl<unsigned> &Path) { 445 // First initialise the iterator components to the first "leaf" node 446 // (i.e. node with no valid sub-type at any index, so {} does count as a leaf 447 // despite nominally being an aggregate). 448 while (Next->isAggregateType() && 449 indexReallyValid(cast<CompositeType>(Next), 0)) { 450 SubTypes.push_back(cast<CompositeType>(Next)); 451 Path.push_back(0); 452 Next = cast<CompositeType>(Next)->getTypeAtIndex(0U); 453 } 454 455 // If there's no Path now, Next was originally scalar already (or empty 456 // leaf). We're done. 457 if (Path.empty()) 458 return true; 459 460 // Otherwise, use normal iteration to keep looking through the tree until we 461 // find a non-aggregate type. 462 while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) { 463 if (!advanceToNextLeafType(SubTypes, Path)) 464 return false; 465 } 466 467 return true; 468 } 469 470 /// Set the iterator data-structures to the next non-empty, non-aggregate 471 /// subtype. 472 static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes, 473 SmallVectorImpl<unsigned> &Path) { 474 do { 475 if (!advanceToNextLeafType(SubTypes, Path)) 476 return false; 477 478 assert(!Path.empty() && "found a leaf but didn't set the path?"); 479 } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()); 480 481 return true; 482 } 483 484 485 /// Test if the given instruction is in a position to be optimized 486 /// with a tail-call. This roughly means that it's in a block with 487 /// a return and there's nothing that needs to be scheduled 488 /// between it and the return. 489 /// 490 /// This function only tests target-independent requirements. 491 bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) { 492 const Instruction *I = CS.getInstruction(); 493 const BasicBlock *ExitBB = I->getParent(); 494 const TerminatorInst *Term = ExitBB->getTerminator(); 495 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 496 497 // The block must end in a return statement or unreachable. 498 // 499 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in 500 // an unreachable, for now. The way tailcall optimization is currently 501 // implemented means it will add an epilogue followed by a jump. That is 502 // not profitable. Also, if the callee is a special function (e.g. 503 // longjmp on x86), it can end up causing miscompilation that has not 504 // been fully understood. 505 if (!Ret && 506 (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) 507 return false; 508 509 // If I will have a chain, make sure no other instruction that will have a 510 // chain interposes between I and the return. 511 if (I->mayHaveSideEffects() || I->mayReadFromMemory() || 512 !isSafeToSpeculativelyExecute(I)) 513 for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) { 514 if (&*BBI == I) 515 break; 516 // Debug info intrinsics do not get in the way of tail call optimization. 517 if (isa<DbgInfoIntrinsic>(BBI)) 518 continue; 519 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 520 !isSafeToSpeculativelyExecute(&*BBI)) 521 return false; 522 } 523 524 const Function *F = ExitBB->getParent(); 525 return returnTypeIsEligibleForTailCall( 526 F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering()); 527 } 528 529 bool llvm::returnTypeIsEligibleForTailCall(const Function *F, 530 const Instruction *I, 531 const ReturnInst *Ret, 532 const TargetLoweringBase &TLI) { 533 // If the block ends with a void return or unreachable, it doesn't matter 534 // what the call's return type is. 535 if (!Ret || Ret->getNumOperands() == 0) return true; 536 537 // If the return value is undef, it doesn't matter what the call's 538 // return type is. 539 if (isa<UndefValue>(Ret->getOperand(0))) return true; 540 541 // Make sure the attributes attached to each return are compatible. 542 AttrBuilder CallerAttrs(F->getAttributes(), 543 AttributeSet::ReturnIndex); 544 AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(), 545 AttributeSet::ReturnIndex); 546 547 // Noalias is completely benign as far as calling convention goes, it 548 // shouldn't affect whether the call is a tail call. 549 CallerAttrs = CallerAttrs.removeAttribute(Attribute::NoAlias); 550 CalleeAttrs = CalleeAttrs.removeAttribute(Attribute::NoAlias); 551 552 bool AllowDifferingSizes = true; 553 if (CallerAttrs.contains(Attribute::ZExt)) { 554 if (!CalleeAttrs.contains(Attribute::ZExt)) 555 return false; 556 557 AllowDifferingSizes = false; 558 CallerAttrs.removeAttribute(Attribute::ZExt); 559 CalleeAttrs.removeAttribute(Attribute::ZExt); 560 } else if (CallerAttrs.contains(Attribute::SExt)) { 561 if (!CalleeAttrs.contains(Attribute::SExt)) 562 return false; 563 564 AllowDifferingSizes = false; 565 CallerAttrs.removeAttribute(Attribute::SExt); 566 CalleeAttrs.removeAttribute(Attribute::SExt); 567 } 568 569 // If they're still different, there's some facet we don't understand 570 // (currently only "inreg", but in future who knows). It may be OK but the 571 // only safe option is to reject the tail call. 572 if (CallerAttrs != CalleeAttrs) 573 return false; 574 575 const Value *RetVal = Ret->getOperand(0), *CallVal = I; 576 SmallVector<unsigned, 4> RetPath, CallPath; 577 SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes; 578 579 bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath); 580 bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath); 581 582 // Nothing's actually returned, it doesn't matter what the callee put there 583 // it's a valid tail call. 584 if (RetEmpty) 585 return true; 586 587 // Iterate pairwise through each of the value types making up the tail call 588 // and the corresponding return. For each one we want to know whether it's 589 // essentially going directly from the tail call to the ret, via operations 590 // that end up not generating any code. 591 // 592 // We allow a certain amount of covariance here. For example it's permitted 593 // for the tail call to define more bits than the ret actually cares about 594 // (e.g. via a truncate). 595 do { 596 if (CallEmpty) { 597 // We've exhausted the values produced by the tail call instruction, the 598 // rest are essentially undef. The type doesn't really matter, but we need 599 // *something*. 600 Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back()); 601 CallVal = UndefValue::get(SlotType); 602 } 603 604 // The manipulations performed when we're looking through an insertvalue or 605 // an extractvalue would happen at the front of the RetPath list, so since 606 // we have to copy it anyway it's more efficient to create a reversed copy. 607 SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend()); 608 SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend()); 609 610 // Finally, we can check whether the value produced by the tail call at this 611 // index is compatible with the value we return. 612 if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath, 613 AllowDifferingSizes, TLI, 614 F->getParent()->getDataLayout())) 615 return false; 616 617 CallEmpty = !nextRealType(CallSubTypes, CallPath); 618 } while(nextRealType(RetSubTypes, RetPath)); 619 620 return true; 621 } 622 623 bool llvm::canBeOmittedFromSymbolTable(const GlobalValue *GV) { 624 if (!GV->hasLinkOnceODRLinkage()) 625 return false; 626 627 if (GV->hasUnnamedAddr()) 628 return true; 629 630 // If it is a non constant variable, it needs to be uniqued across shared 631 // objects. 632 if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) { 633 if (!Var->isConstant()) 634 return false; 635 } 636 637 // An alias can point to a variable. We could try to resolve the alias to 638 // decide, but for now just don't hide them. 639 if (isa<GlobalAlias>(GV)) 640 return false; 641 642 GlobalStatus GS; 643 if (GlobalStatus::analyzeGlobal(GV, GS)) 644 return false; 645 646 return !GS.IsCompared; 647 } 648 649 static void collectFuncletMembers( 650 DenseMap<const MachineBasicBlock *, int> &FuncletMembership, int Funclet, 651 const MachineBasicBlock *MBB) { 652 // Add this MBB to our funclet. 653 auto P = FuncletMembership.insert(std::make_pair(MBB, Funclet)); 654 655 // Don't revisit blocks. 656 if (!P.second) { 657 assert(P.first->second == Funclet && "MBB is part of two funclets!"); 658 return; 659 } 660 661 bool IsReturn = false; 662 int NumTerminators = 0; 663 for (const MachineInstr &MI : MBB->terminators()) { 664 IsReturn |= MI.isReturn(); 665 ++NumTerminators; 666 } 667 assert((!IsReturn || NumTerminators == 1) && 668 "Expected only one terminator when a return is present!"); 669 670 // Returns are boundaries where funclet transfer can occur, don't follow 671 // successors. 672 if (IsReturn) 673 return; 674 675 for (const MachineBasicBlock *SMBB : MBB->successors()) 676 if (!SMBB->isEHPad()) 677 collectFuncletMembers(FuncletMembership, Funclet, SMBB); 678 } 679 680 DenseMap<const MachineBasicBlock *, int> 681 llvm::getFuncletMembership(const MachineFunction &MF) { 682 DenseMap<const MachineBasicBlock *, int> FuncletMembership; 683 684 // We don't have anything to do if there aren't any EH pads. 685 if (!MF.getMMI().hasEHFunclets()) 686 return FuncletMembership; 687 688 int EntryBBNumber = MF.front().getNumber(); 689 bool IsSEH = isAsynchronousEHPersonality( 690 classifyEHPersonality(MF.getFunction()->getPersonalityFn())); 691 692 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 693 SmallVector<const MachineBasicBlock *, 16> FuncletBlocks; 694 SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks; 695 SmallVector<const MachineBasicBlock *, 16> SEHCatchPads; 696 SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors; 697 for (const MachineBasicBlock &MBB : MF) { 698 if (MBB.isEHFuncletEntry()) { 699 FuncletBlocks.push_back(&MBB); 700 } else if (IsSEH && MBB.isEHPad()) { 701 SEHCatchPads.push_back(&MBB); 702 } else if (MBB.pred_empty()) { 703 UnreachableBlocks.push_back(&MBB); 704 } 705 706 MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator(); 707 // CatchPads are not funclets for SEH so do not consider CatchRet to 708 // transfer control to another funclet. 709 if (MBBI->getOpcode() != TII->getCatchReturnOpcode()) 710 continue; 711 712 // FIXME: SEH CatchPads are not necessarily in the parent function: 713 // they could be inside a finally block. 714 const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB(); 715 const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB(); 716 CatchRetSuccessors.push_back( 717 {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()}); 718 } 719 720 // We don't have anything to do if there aren't any EH pads. 721 if (FuncletBlocks.empty()) 722 return FuncletMembership; 723 724 // Identify all the basic blocks reachable from the function entry. 725 collectFuncletMembers(FuncletMembership, EntryBBNumber, &MF.front()); 726 // All blocks not part of a funclet are in the parent function. 727 for (const MachineBasicBlock *MBB : UnreachableBlocks) 728 collectFuncletMembers(FuncletMembership, EntryBBNumber, MBB); 729 // Next, identify all the blocks inside the funclets. 730 for (const MachineBasicBlock *MBB : FuncletBlocks) 731 collectFuncletMembers(FuncletMembership, MBB->getNumber(), MBB); 732 // SEH CatchPads aren't really funclets, handle them separately. 733 for (const MachineBasicBlock *MBB : SEHCatchPads) 734 collectFuncletMembers(FuncletMembership, EntryBBNumber, MBB); 735 // Finally, identify all the targets of a catchret. 736 for (std::pair<const MachineBasicBlock *, int> CatchRetPair : 737 CatchRetSuccessors) 738 collectFuncletMembers(FuncletMembership, CatchRetPair.second, 739 CatchRetPair.first); 740 return FuncletMembership; 741 } 742