Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineAndOrXor.cpp --------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitAnd, visitOr, and visitXor functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombineInternal.h"
     15 #include "llvm/Analysis/InstructionSimplify.h"
     16 #include "llvm/IR/ConstantRange.h"
     17 #include "llvm/IR/Intrinsics.h"
     18 #include "llvm/IR/PatternMatch.h"
     19 #include "llvm/Transforms/Utils/CmpInstAnalysis.h"
     20 using namespace llvm;
     21 using namespace PatternMatch;
     22 
     23 #define DEBUG_TYPE "instcombine"
     24 
     25 static inline Value *dyn_castNotVal(Value *V) {
     26   // If this is not(not(x)) don't return that this is a not: we want the two
     27   // not's to be folded first.
     28   if (BinaryOperator::isNot(V)) {
     29     Value *Operand = BinaryOperator::getNotArgument(V);
     30     if (!IsFreeToInvert(Operand, Operand->hasOneUse()))
     31       return Operand;
     32   }
     33 
     34   // Constants can be considered to be not'ed values...
     35   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
     36     return ConstantInt::get(C->getType(), ~C->getValue());
     37   return nullptr;
     38 }
     39 
     40 /// Similar to getICmpCode but for FCmpInst. This encodes a fcmp predicate into
     41 /// a three bit mask. It also returns whether it is an ordered predicate by
     42 /// reference.
     43 static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
     44   isOrdered = false;
     45   switch (CC) {
     46   case FCmpInst::FCMP_ORD: isOrdered = true; return 0;  // 000
     47   case FCmpInst::FCMP_UNO:                   return 0;  // 000
     48   case FCmpInst::FCMP_OGT: isOrdered = true; return 1;  // 001
     49   case FCmpInst::FCMP_UGT:                   return 1;  // 001
     50   case FCmpInst::FCMP_OEQ: isOrdered = true; return 2;  // 010
     51   case FCmpInst::FCMP_UEQ:                   return 2;  // 010
     52   case FCmpInst::FCMP_OGE: isOrdered = true; return 3;  // 011
     53   case FCmpInst::FCMP_UGE:                   return 3;  // 011
     54   case FCmpInst::FCMP_OLT: isOrdered = true; return 4;  // 100
     55   case FCmpInst::FCMP_ULT:                   return 4;  // 100
     56   case FCmpInst::FCMP_ONE: isOrdered = true; return 5;  // 101
     57   case FCmpInst::FCMP_UNE:                   return 5;  // 101
     58   case FCmpInst::FCMP_OLE: isOrdered = true; return 6;  // 110
     59   case FCmpInst::FCMP_ULE:                   return 6;  // 110
     60     // True -> 7
     61   default:
     62     // Not expecting FCMP_FALSE and FCMP_TRUE;
     63     llvm_unreachable("Unexpected FCmp predicate!");
     64   }
     65 }
     66 
     67 /// This is the complement of getICmpCode, which turns an opcode and two
     68 /// operands into either a constant true or false, or a brand new ICmp
     69 /// instruction. The sign is passed in to determine which kind of predicate to
     70 /// use in the new icmp instruction.
     71 static Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
     72                               InstCombiner::BuilderTy *Builder) {
     73   ICmpInst::Predicate NewPred;
     74   if (Value *NewConstant = getICmpValue(Sign, Code, LHS, RHS, NewPred))
     75     return NewConstant;
     76   return Builder->CreateICmp(NewPred, LHS, RHS);
     77 }
     78 
     79 /// This is the complement of getFCmpCode, which turns an opcode and two
     80 /// operands into either a FCmp instruction. isordered is passed in to determine
     81 /// which kind of predicate to use in the new fcmp instruction.
     82 static Value *getFCmpValue(bool isordered, unsigned code,
     83                            Value *LHS, Value *RHS,
     84                            InstCombiner::BuilderTy *Builder) {
     85   CmpInst::Predicate Pred;
     86   switch (code) {
     87   default: llvm_unreachable("Illegal FCmp code!");
     88   case 0: Pred = isordered ? FCmpInst::FCMP_ORD : FCmpInst::FCMP_UNO; break;
     89   case 1: Pred = isordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; break;
     90   case 2: Pred = isordered ? FCmpInst::FCMP_OEQ : FCmpInst::FCMP_UEQ; break;
     91   case 3: Pred = isordered ? FCmpInst::FCMP_OGE : FCmpInst::FCMP_UGE; break;
     92   case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break;
     93   case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break;
     94   case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break;
     95   case 7:
     96     if (!isordered)
     97       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
     98     Pred = FCmpInst::FCMP_ORD; break;
     99   }
    100   return Builder->CreateFCmp(Pred, LHS, RHS);
    101 }
    102 
    103 /// \brief Transform BITWISE_OP(BSWAP(A),BSWAP(B)) to BSWAP(BITWISE_OP(A, B))
    104 /// \param I Binary operator to transform.
    105 /// \return Pointer to node that must replace the original binary operator, or
    106 ///         null pointer if no transformation was made.
    107 Value *InstCombiner::SimplifyBSwap(BinaryOperator &I) {
    108   IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
    109 
    110   // Can't do vectors.
    111   if (I.getType()->isVectorTy()) return nullptr;
    112 
    113   // Can only do bitwise ops.
    114   unsigned Op = I.getOpcode();
    115   if (Op != Instruction::And && Op != Instruction::Or &&
    116       Op != Instruction::Xor)
    117     return nullptr;
    118 
    119   Value *OldLHS = I.getOperand(0);
    120   Value *OldRHS = I.getOperand(1);
    121   ConstantInt *ConstLHS = dyn_cast<ConstantInt>(OldLHS);
    122   ConstantInt *ConstRHS = dyn_cast<ConstantInt>(OldRHS);
    123   IntrinsicInst *IntrLHS = dyn_cast<IntrinsicInst>(OldLHS);
    124   IntrinsicInst *IntrRHS = dyn_cast<IntrinsicInst>(OldRHS);
    125   bool IsBswapLHS = (IntrLHS && IntrLHS->getIntrinsicID() == Intrinsic::bswap);
    126   bool IsBswapRHS = (IntrRHS && IntrRHS->getIntrinsicID() == Intrinsic::bswap);
    127 
    128   if (!IsBswapLHS && !IsBswapRHS)
    129     return nullptr;
    130 
    131   if (!IsBswapLHS && !ConstLHS)
    132     return nullptr;
    133 
    134   if (!IsBswapRHS && !ConstRHS)
    135     return nullptr;
    136 
    137   /// OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
    138   /// OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
    139   Value *NewLHS = IsBswapLHS ? IntrLHS->getOperand(0) :
    140                   Builder->getInt(ConstLHS->getValue().byteSwap());
    141 
    142   Value *NewRHS = IsBswapRHS ? IntrRHS->getOperand(0) :
    143                   Builder->getInt(ConstRHS->getValue().byteSwap());
    144 
    145   Value *BinOp = nullptr;
    146   if (Op == Instruction::And)
    147     BinOp = Builder->CreateAnd(NewLHS, NewRHS);
    148   else if (Op == Instruction::Or)
    149     BinOp = Builder->CreateOr(NewLHS, NewRHS);
    150   else //if (Op == Instruction::Xor)
    151     BinOp = Builder->CreateXor(NewLHS, NewRHS);
    152 
    153   Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap, ITy);
    154   return Builder->CreateCall(F, BinOp);
    155 }
    156 
    157 /// This handles expressions of the form ((val OP C1) & C2).  Where
    158 /// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is
    159 /// guaranteed to be a binary operator.
    160 Instruction *InstCombiner::OptAndOp(Instruction *Op,
    161                                     ConstantInt *OpRHS,
    162                                     ConstantInt *AndRHS,
    163                                     BinaryOperator &TheAnd) {
    164   Value *X = Op->getOperand(0);
    165   Constant *Together = nullptr;
    166   if (!Op->isShift())
    167     Together = ConstantExpr::getAnd(AndRHS, OpRHS);
    168 
    169   switch (Op->getOpcode()) {
    170   case Instruction::Xor:
    171     if (Op->hasOneUse()) {
    172       // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
    173       Value *And = Builder->CreateAnd(X, AndRHS);
    174       And->takeName(Op);
    175       return BinaryOperator::CreateXor(And, Together);
    176     }
    177     break;
    178   case Instruction::Or:
    179     if (Op->hasOneUse()){
    180       if (Together != OpRHS) {
    181         // (X | C1) & C2 --> (X | (C1&C2)) & C2
    182         Value *Or = Builder->CreateOr(X, Together);
    183         Or->takeName(Op);
    184         return BinaryOperator::CreateAnd(Or, AndRHS);
    185       }
    186 
    187       ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together);
    188       if (TogetherCI && !TogetherCI->isZero()){
    189         // (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
    190         // NOTE: This reduces the number of bits set in the & mask, which
    191         // can expose opportunities for store narrowing.
    192         Together = ConstantExpr::getXor(AndRHS, Together);
    193         Value *And = Builder->CreateAnd(X, Together);
    194         And->takeName(Op);
    195         return BinaryOperator::CreateOr(And, OpRHS);
    196       }
    197     }
    198 
    199     break;
    200   case Instruction::Add:
    201     if (Op->hasOneUse()) {
    202       // Adding a one to a single bit bit-field should be turned into an XOR
    203       // of the bit.  First thing to check is to see if this AND is with a
    204       // single bit constant.
    205       const APInt &AndRHSV = AndRHS->getValue();
    206 
    207       // If there is only one bit set.
    208       if (AndRHSV.isPowerOf2()) {
    209         // Ok, at this point, we know that we are masking the result of the
    210         // ADD down to exactly one bit.  If the constant we are adding has
    211         // no bits set below this bit, then we can eliminate the ADD.
    212         const APInt& AddRHS = OpRHS->getValue();
    213 
    214         // Check to see if any bits below the one bit set in AndRHSV are set.
    215         if ((AddRHS & (AndRHSV-1)) == 0) {
    216           // If not, the only thing that can effect the output of the AND is
    217           // the bit specified by AndRHSV.  If that bit is set, the effect of
    218           // the XOR is to toggle the bit.  If it is clear, then the ADD has
    219           // no effect.
    220           if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
    221             TheAnd.setOperand(0, X);
    222             return &TheAnd;
    223           } else {
    224             // Pull the XOR out of the AND.
    225             Value *NewAnd = Builder->CreateAnd(X, AndRHS);
    226             NewAnd->takeName(Op);
    227             return BinaryOperator::CreateXor(NewAnd, AndRHS);
    228           }
    229         }
    230       }
    231     }
    232     break;
    233 
    234   case Instruction::Shl: {
    235     // We know that the AND will not produce any of the bits shifted in, so if
    236     // the anded constant includes them, clear them now!
    237     //
    238     uint32_t BitWidth = AndRHS->getType()->getBitWidth();
    239     uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
    240     APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
    241     ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShlMask);
    242 
    243     if (CI->getValue() == ShlMask)
    244       // Masking out bits that the shift already masks.
    245       return ReplaceInstUsesWith(TheAnd, Op);   // No need for the and.
    246 
    247     if (CI != AndRHS) {                  // Reducing bits set in and.
    248       TheAnd.setOperand(1, CI);
    249       return &TheAnd;
    250     }
    251     break;
    252   }
    253   case Instruction::LShr: {
    254     // We know that the AND will not produce any of the bits shifted in, so if
    255     // the anded constant includes them, clear them now!  This only applies to
    256     // unsigned shifts, because a signed shr may bring in set bits!
    257     //
    258     uint32_t BitWidth = AndRHS->getType()->getBitWidth();
    259     uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
    260     APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
    261     ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShrMask);
    262 
    263     if (CI->getValue() == ShrMask)
    264       // Masking out bits that the shift already masks.
    265       return ReplaceInstUsesWith(TheAnd, Op);
    266 
    267     if (CI != AndRHS) {
    268       TheAnd.setOperand(1, CI);  // Reduce bits set in and cst.
    269       return &TheAnd;
    270     }
    271     break;
    272   }
    273   case Instruction::AShr:
    274     // Signed shr.
    275     // See if this is shifting in some sign extension, then masking it out
    276     // with an and.
    277     if (Op->hasOneUse()) {
    278       uint32_t BitWidth = AndRHS->getType()->getBitWidth();
    279       uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
    280       APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
    281       Constant *C = Builder->getInt(AndRHS->getValue() & ShrMask);
    282       if (C == AndRHS) {          // Masking out bits shifted in.
    283         // (Val ashr C1) & C2 -> (Val lshr C1) & C2
    284         // Make the argument unsigned.
    285         Value *ShVal = Op->getOperand(0);
    286         ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
    287         return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
    288       }
    289     }
    290     break;
    291   }
    292   return nullptr;
    293 }
    294 
    295 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
    296 /// (V < Lo || V >= Hi).  In practice, we emit the more efficient
    297 /// (V-Lo) \<u Hi-Lo.  This method expects that Lo <= Hi. isSigned indicates
    298 /// whether to treat the V, Lo and HI as signed or not. IB is the location to
    299 /// insert new instructions.
    300 Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
    301                                      bool isSigned, bool Inside) {
    302   assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
    303             ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
    304          "Lo is not <= Hi in range emission code!");
    305 
    306   if (Inside) {
    307     if (Lo == Hi)  // Trivially false.
    308       return Builder->getFalse();
    309 
    310     // V >= Min && V < Hi --> V < Hi
    311     if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
    312       ICmpInst::Predicate pred = (isSigned ?
    313         ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
    314       return Builder->CreateICmp(pred, V, Hi);
    315     }
    316 
    317     // Emit V-Lo <u Hi-Lo
    318     Constant *NegLo = ConstantExpr::getNeg(Lo);
    319     Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
    320     Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
    321     return Builder->CreateICmpULT(Add, UpperBound);
    322   }
    323 
    324   if (Lo == Hi)  // Trivially true.
    325     return Builder->getTrue();
    326 
    327   // V < Min || V >= Hi -> V > Hi-1
    328   Hi = SubOne(cast<ConstantInt>(Hi));
    329   if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
    330     ICmpInst::Predicate pred = (isSigned ?
    331         ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
    332     return Builder->CreateICmp(pred, V, Hi);
    333   }
    334 
    335   // Emit V-Lo >u Hi-1-Lo
    336   // Note that Hi has already had one subtracted from it, above.
    337   ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
    338   Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
    339   Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
    340   return Builder->CreateICmpUGT(Add, LowerBound);
    341 }
    342 
    343 /// Returns true iff Val consists of one contiguous run of 1s with any number
    344 /// of 0s on either side.  The 1s are allowed to wrap from LSB to MSB,
    345 /// so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
    346 /// not, since all 1s are not contiguous.
    347 static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
    348   const APInt& V = Val->getValue();
    349   uint32_t BitWidth = Val->getType()->getBitWidth();
    350   if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
    351 
    352   // look for the first zero bit after the run of ones
    353   MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
    354   // look for the first non-zero bit
    355   ME = V.getActiveBits();
    356   return true;
    357 }
    358 
    359 /// This is part of an expression (LHS +/- RHS) & Mask, where isSub determines
    360 /// whether the operator is a sub. If we can fold one of the following xforms:
    361 ///
    362 /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
    363 /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
    364 /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
    365 ///
    366 /// return (A +/- B).
    367 ///
    368 Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
    369                                         ConstantInt *Mask, bool isSub,
    370                                         Instruction &I) {
    371   Instruction *LHSI = dyn_cast<Instruction>(LHS);
    372   if (!LHSI || LHSI->getNumOperands() != 2 ||
    373       !isa<ConstantInt>(LHSI->getOperand(1))) return nullptr;
    374 
    375   ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
    376 
    377   switch (LHSI->getOpcode()) {
    378   default: return nullptr;
    379   case Instruction::And:
    380     if (ConstantExpr::getAnd(N, Mask) == Mask) {
    381       // If the AndRHS is a power of two minus one (0+1+), this is simple.
    382       if ((Mask->getValue().countLeadingZeros() +
    383            Mask->getValue().countPopulation()) ==
    384           Mask->getValue().getBitWidth())
    385         break;
    386 
    387       // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
    388       // part, we don't need any explicit masks to take them out of A.  If that
    389       // is all N is, ignore it.
    390       uint32_t MB = 0, ME = 0;
    391       if (isRunOfOnes(Mask, MB, ME)) {  // begin/end bit of run, inclusive
    392         uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
    393         APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
    394         if (MaskedValueIsZero(RHS, Mask, 0, &I))
    395           break;
    396       }
    397     }
    398     return nullptr;
    399   case Instruction::Or:
    400   case Instruction::Xor:
    401     // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
    402     if ((Mask->getValue().countLeadingZeros() +
    403          Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
    404         && ConstantExpr::getAnd(N, Mask)->isNullValue())
    405       break;
    406     return nullptr;
    407   }
    408 
    409   if (isSub)
    410     return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
    411   return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
    412 }
    413 
    414 /// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
    415 /// One of A and B is considered the mask, the other the value. This is
    416 /// described as the "AMask" or "BMask" part of the enum. If the enum
    417 /// contains only "Mask", then both A and B can be considered masks.
    418 /// If A is the mask, then it was proven, that (A & C) == C. This
    419 /// is trivial if C == A, or C == 0. If both A and C are constants, this
    420 /// proof is also easy.
    421 /// For the following explanations we assume that A is the mask.
    422 /// The part "AllOnes" declares, that the comparison is true only
    423 /// if (A & B) == A, or all bits of A are set in B.
    424 ///   Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
    425 /// The part "AllZeroes" declares, that the comparison is true only
    426 /// if (A & B) == 0, or all bits of A are cleared in B.
    427 ///   Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
    428 /// The part "Mixed" declares, that (A & B) == C and C might or might not
    429 /// contain any number of one bits and zero bits.
    430 ///   Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
    431 /// The Part "Not" means, that in above descriptions "==" should be replaced
    432 /// by "!=".
    433 ///   Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes
    434 /// If the mask A contains a single bit, then the following is equivalent:
    435 ///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
    436 ///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
    437 enum MaskedICmpType {
    438   FoldMskICmp_AMask_AllOnes           =     1,
    439   FoldMskICmp_AMask_NotAllOnes        =     2,
    440   FoldMskICmp_BMask_AllOnes           =     4,
    441   FoldMskICmp_BMask_NotAllOnes        =     8,
    442   FoldMskICmp_Mask_AllZeroes          =    16,
    443   FoldMskICmp_Mask_NotAllZeroes       =    32,
    444   FoldMskICmp_AMask_Mixed             =    64,
    445   FoldMskICmp_AMask_NotMixed          =   128,
    446   FoldMskICmp_BMask_Mixed             =   256,
    447   FoldMskICmp_BMask_NotMixed          =   512
    448 };
    449 
    450 /// Return the set of pattern classes (from MaskedICmpType)
    451 /// that (icmp SCC (A & B), C) satisfies.
    452 static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
    453                                     ICmpInst::Predicate SCC)
    454 {
    455   ConstantInt *ACst = dyn_cast<ConstantInt>(A);
    456   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
    457   ConstantInt *CCst = dyn_cast<ConstantInt>(C);
    458   bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
    459   bool icmp_abit = (ACst && !ACst->isZero() &&
    460                     ACst->getValue().isPowerOf2());
    461   bool icmp_bbit = (BCst && !BCst->isZero() &&
    462                     BCst->getValue().isPowerOf2());
    463   unsigned result = 0;
    464   if (CCst && CCst->isZero()) {
    465     // if C is zero, then both A and B qualify as mask
    466     result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes |
    467                           FoldMskICmp_Mask_AllZeroes |
    468                           FoldMskICmp_AMask_Mixed |
    469                           FoldMskICmp_BMask_Mixed)
    470                        : (FoldMskICmp_Mask_NotAllZeroes |
    471                           FoldMskICmp_Mask_NotAllZeroes |
    472                           FoldMskICmp_AMask_NotMixed |
    473                           FoldMskICmp_BMask_NotMixed));
    474     if (icmp_abit)
    475       result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
    476                             FoldMskICmp_AMask_NotMixed)
    477                          : (FoldMskICmp_AMask_AllOnes |
    478                             FoldMskICmp_AMask_Mixed));
    479     if (icmp_bbit)
    480       result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
    481                             FoldMskICmp_BMask_NotMixed)
    482                          : (FoldMskICmp_BMask_AllOnes |
    483                             FoldMskICmp_BMask_Mixed));
    484     return result;
    485   }
    486   if (A == C) {
    487     result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes |
    488                           FoldMskICmp_AMask_Mixed)
    489                        : (FoldMskICmp_AMask_NotAllOnes |
    490                           FoldMskICmp_AMask_NotMixed));
    491     if (icmp_abit)
    492       result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
    493                             FoldMskICmp_AMask_NotMixed)
    494                          : (FoldMskICmp_Mask_AllZeroes |
    495                             FoldMskICmp_AMask_Mixed));
    496   } else if (ACst && CCst &&
    497              ConstantExpr::getAnd(ACst, CCst) == CCst) {
    498     result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
    499                        : FoldMskICmp_AMask_NotMixed);
    500   }
    501   if (B == C) {
    502     result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
    503                           FoldMskICmp_BMask_Mixed)
    504                        : (FoldMskICmp_BMask_NotAllOnes |
    505                           FoldMskICmp_BMask_NotMixed));
    506     if (icmp_bbit)
    507       result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
    508                             FoldMskICmp_BMask_NotMixed)
    509                          : (FoldMskICmp_Mask_AllZeroes |
    510                             FoldMskICmp_BMask_Mixed));
    511   } else if (BCst && CCst &&
    512              ConstantExpr::getAnd(BCst, CCst) == CCst) {
    513     result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
    514                        : FoldMskICmp_BMask_NotMixed);
    515   }
    516   return result;
    517 }
    518 
    519 /// Convert an analysis of a masked ICmp into its equivalent if all boolean
    520 /// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
    521 /// is adjacent to the corresponding normal flag (recording ==), this just
    522 /// involves swapping those bits over.
    523 static unsigned conjugateICmpMask(unsigned Mask) {
    524   unsigned NewMask;
    525   NewMask = (Mask & (FoldMskICmp_AMask_AllOnes | FoldMskICmp_BMask_AllOnes |
    526                      FoldMskICmp_Mask_AllZeroes | FoldMskICmp_AMask_Mixed |
    527                      FoldMskICmp_BMask_Mixed))
    528             << 1;
    529 
    530   NewMask |=
    531       (Mask & (FoldMskICmp_AMask_NotAllOnes | FoldMskICmp_BMask_NotAllOnes |
    532                FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_AMask_NotMixed |
    533                FoldMskICmp_BMask_NotMixed))
    534       >> 1;
    535 
    536   return NewMask;
    537 }
    538 
    539 /// Decompose an icmp into the form ((X & Y) pred Z) if possible.
    540 /// The returned predicate is either == or !=. Returns false if
    541 /// decomposition fails.
    542 static bool decomposeBitTestICmp(const ICmpInst *I, ICmpInst::Predicate &Pred,
    543                                  Value *&X, Value *&Y, Value *&Z) {
    544   ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1));
    545   if (!C)
    546     return false;
    547 
    548   switch (I->getPredicate()) {
    549   default:
    550     return false;
    551   case ICmpInst::ICMP_SLT:
    552     // X < 0 is equivalent to (X & SignBit) != 0.
    553     if (!C->isZero())
    554       return false;
    555     Y = ConstantInt::get(I->getContext(), APInt::getSignBit(C->getBitWidth()));
    556     Pred = ICmpInst::ICMP_NE;
    557     break;
    558   case ICmpInst::ICMP_SGT:
    559     // X > -1 is equivalent to (X & SignBit) == 0.
    560     if (!C->isAllOnesValue())
    561       return false;
    562     Y = ConstantInt::get(I->getContext(), APInt::getSignBit(C->getBitWidth()));
    563     Pred = ICmpInst::ICMP_EQ;
    564     break;
    565   case ICmpInst::ICMP_ULT:
    566     // X <u 2^n is equivalent to (X & ~(2^n-1)) == 0.
    567     if (!C->getValue().isPowerOf2())
    568       return false;
    569     Y = ConstantInt::get(I->getContext(), -C->getValue());
    570     Pred = ICmpInst::ICMP_EQ;
    571     break;
    572   case ICmpInst::ICMP_UGT:
    573     // X >u 2^n-1 is equivalent to (X & ~(2^n-1)) != 0.
    574     if (!(C->getValue() + 1).isPowerOf2())
    575       return false;
    576     Y = ConstantInt::get(I->getContext(), ~C->getValue());
    577     Pred = ICmpInst::ICMP_NE;
    578     break;
    579   }
    580 
    581   X = I->getOperand(0);
    582   Z = ConstantInt::getNullValue(C->getType());
    583   return true;
    584 }
    585 
    586 /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
    587 /// Return the set of pattern classes (from MaskedICmpType)
    588 /// that both LHS and RHS satisfy.
    589 static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
    590                                              Value*& B, Value*& C,
    591                                              Value*& D, Value*& E,
    592                                              ICmpInst *LHS, ICmpInst *RHS,
    593                                              ICmpInst::Predicate &LHSCC,
    594                                              ICmpInst::Predicate &RHSCC) {
    595   if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0;
    596   // vectors are not (yet?) supported
    597   if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
    598 
    599   // Here comes the tricky part:
    600   // LHS might be of the form L11 & L12 == X, X == L21 & L22,
    601   // and L11 & L12 == L21 & L22. The same goes for RHS.
    602   // Now we must find those components L** and R**, that are equal, so
    603   // that we can extract the parameters A, B, C, D, and E for the canonical
    604   // above.
    605   Value *L1 = LHS->getOperand(0);
    606   Value *L2 = LHS->getOperand(1);
    607   Value *L11,*L12,*L21,*L22;
    608   // Check whether the icmp can be decomposed into a bit test.
    609   if (decomposeBitTestICmp(LHS, LHSCC, L11, L12, L2)) {
    610     L21 = L22 = L1 = nullptr;
    611   } else {
    612     // Look for ANDs in the LHS icmp.
    613     if (!L1->getType()->isIntegerTy()) {
    614       // You can icmp pointers, for example. They really aren't masks.
    615       L11 = L12 = nullptr;
    616     } else if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
    617       // Any icmp can be viewed as being trivially masked; if it allows us to
    618       // remove one, it's worth it.
    619       L11 = L1;
    620       L12 = Constant::getAllOnesValue(L1->getType());
    621     }
    622 
    623     if (!L2->getType()->isIntegerTy()) {
    624       // You can icmp pointers, for example. They really aren't masks.
    625       L21 = L22 = nullptr;
    626     } else if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
    627       L21 = L2;
    628       L22 = Constant::getAllOnesValue(L2->getType());
    629     }
    630   }
    631 
    632   // Bail if LHS was a icmp that can't be decomposed into an equality.
    633   if (!ICmpInst::isEquality(LHSCC))
    634     return 0;
    635 
    636   Value *R1 = RHS->getOperand(0);
    637   Value *R2 = RHS->getOperand(1);
    638   Value *R11,*R12;
    639   bool ok = false;
    640   if (decomposeBitTestICmp(RHS, RHSCC, R11, R12, R2)) {
    641     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
    642       A = R11; D = R12;
    643     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
    644       A = R12; D = R11;
    645     } else {
    646       return 0;
    647     }
    648     E = R2; R1 = nullptr; ok = true;
    649   } else if (R1->getType()->isIntegerTy()) {
    650     if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
    651       // As before, model no mask as a trivial mask if it'll let us do an
    652       // optimization.
    653       R11 = R1;
    654       R12 = Constant::getAllOnesValue(R1->getType());
    655     }
    656 
    657     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
    658       A = R11; D = R12; E = R2; ok = true;
    659     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
    660       A = R12; D = R11; E = R2; ok = true;
    661     }
    662   }
    663 
    664   // Bail if RHS was a icmp that can't be decomposed into an equality.
    665   if (!ICmpInst::isEquality(RHSCC))
    666     return 0;
    667 
    668   // Look for ANDs in on the right side of the RHS icmp.
    669   if (!ok && R2->getType()->isIntegerTy()) {
    670     if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
    671       R11 = R2;
    672       R12 = Constant::getAllOnesValue(R2->getType());
    673     }
    674 
    675     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
    676       A = R11; D = R12; E = R1; ok = true;
    677     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
    678       A = R12; D = R11; E = R1; ok = true;
    679     } else {
    680       return 0;
    681     }
    682   }
    683   if (!ok)
    684     return 0;
    685 
    686   if (L11 == A) {
    687     B = L12; C = L2;
    688   } else if (L12 == A) {
    689     B = L11; C = L2;
    690   } else if (L21 == A) {
    691     B = L22; C = L1;
    692   } else if (L22 == A) {
    693     B = L21; C = L1;
    694   }
    695 
    696   unsigned left_type = getTypeOfMaskedICmp(A, B, C, LHSCC);
    697   unsigned right_type = getTypeOfMaskedICmp(A, D, E, RHSCC);
    698   return left_type & right_type;
    699 }
    700 
    701 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
    702 /// into a single (icmp(A & X) ==/!= Y).
    703 static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
    704                                      llvm::InstCombiner::BuilderTy *Builder) {
    705   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
    706   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
    707   unsigned mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS,
    708                                                LHSCC, RHSCC);
    709   if (mask == 0) return nullptr;
    710   assert(ICmpInst::isEquality(LHSCC) && ICmpInst::isEquality(RHSCC) &&
    711          "foldLogOpOfMaskedICmpsHelper must return an equality predicate.");
    712 
    713   // In full generality:
    714   //     (icmp (A & B) Op C) | (icmp (A & D) Op E)
    715   // ==  ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
    716   //
    717   // If the latter can be converted into (icmp (A & X) Op Y) then the former is
    718   // equivalent to (icmp (A & X) !Op Y).
    719   //
    720   // Therefore, we can pretend for the rest of this function that we're dealing
    721   // with the conjunction, provided we flip the sense of any comparisons (both
    722   // input and output).
    723 
    724   // In most cases we're going to produce an EQ for the "&&" case.
    725   ICmpInst::Predicate NEWCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
    726   if (!IsAnd) {
    727     // Convert the masking analysis into its equivalent with negated
    728     // comparisons.
    729     mask = conjugateICmpMask(mask);
    730   }
    731 
    732   if (mask & FoldMskICmp_Mask_AllZeroes) {
    733     // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
    734     // -> (icmp eq (A & (B|D)), 0)
    735     Value *newOr = Builder->CreateOr(B, D);
    736     Value *newAnd = Builder->CreateAnd(A, newOr);
    737     // we can't use C as zero, because we might actually handle
    738     //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
    739     // with B and D, having a single bit set
    740     Value *zero = Constant::getNullValue(A->getType());
    741     return Builder->CreateICmp(NEWCC, newAnd, zero);
    742   }
    743   if (mask & FoldMskICmp_BMask_AllOnes) {
    744     // (icmp eq (A & B), B) & (icmp eq (A & D), D)
    745     // -> (icmp eq (A & (B|D)), (B|D))
    746     Value *newOr = Builder->CreateOr(B, D);
    747     Value *newAnd = Builder->CreateAnd(A, newOr);
    748     return Builder->CreateICmp(NEWCC, newAnd, newOr);
    749   }
    750   if (mask & FoldMskICmp_AMask_AllOnes) {
    751     // (icmp eq (A & B), A) & (icmp eq (A & D), A)
    752     // -> (icmp eq (A & (B&D)), A)
    753     Value *newAnd1 = Builder->CreateAnd(B, D);
    754     Value *newAnd = Builder->CreateAnd(A, newAnd1);
    755     return Builder->CreateICmp(NEWCC, newAnd, A);
    756   }
    757 
    758   // Remaining cases assume at least that B and D are constant, and depend on
    759   // their actual values. This isn't strictly, necessary, just a "handle the
    760   // easy cases for now" decision.
    761   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
    762   if (!BCst) return nullptr;
    763   ConstantInt *DCst = dyn_cast<ConstantInt>(D);
    764   if (!DCst) return nullptr;
    765 
    766   if (mask & (FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_BMask_NotAllOnes)) {
    767     // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
    768     // (icmp ne (A & B), B) & (icmp ne (A & D), D)
    769     //     -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
    770     // Only valid if one of the masks is a superset of the other (check "B&D" is
    771     // the same as either B or D).
    772     APInt NewMask = BCst->getValue() & DCst->getValue();
    773 
    774     if (NewMask == BCst->getValue())
    775       return LHS;
    776     else if (NewMask == DCst->getValue())
    777       return RHS;
    778   }
    779   if (mask & FoldMskICmp_AMask_NotAllOnes) {
    780     // (icmp ne (A & B), B) & (icmp ne (A & D), D)
    781     //     -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
    782     // Only valid if one of the masks is a superset of the other (check "B|D" is
    783     // the same as either B or D).
    784     APInt NewMask = BCst->getValue() | DCst->getValue();
    785 
    786     if (NewMask == BCst->getValue())
    787       return LHS;
    788     else if (NewMask == DCst->getValue())
    789       return RHS;
    790   }
    791   if (mask & FoldMskICmp_BMask_Mixed) {
    792     // (icmp eq (A & B), C) & (icmp eq (A & D), E)
    793     // We already know that B & C == C && D & E == E.
    794     // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
    795     // C and E, which are shared by both the mask B and the mask D, don't
    796     // contradict, then we can transform to
    797     // -> (icmp eq (A & (B|D)), (C|E))
    798     // Currently, we only handle the case of B, C, D, and E being constant.
    799     // we can't simply use C and E, because we might actually handle
    800     //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
    801     // with B and D, having a single bit set
    802     ConstantInt *CCst = dyn_cast<ConstantInt>(C);
    803     if (!CCst) return nullptr;
    804     ConstantInt *ECst = dyn_cast<ConstantInt>(E);
    805     if (!ECst) return nullptr;
    806     if (LHSCC != NEWCC)
    807       CCst = cast<ConstantInt>(ConstantExpr::getXor(BCst, CCst));
    808     if (RHSCC != NEWCC)
    809       ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
    810     // if there is a conflict we should actually return a false for the
    811     // whole construct
    812     if (((BCst->getValue() & DCst->getValue()) &
    813          (CCst->getValue() ^ ECst->getValue())) != 0)
    814       return ConstantInt::get(LHS->getType(), !IsAnd);
    815     Value *newOr1 = Builder->CreateOr(B, D);
    816     Value *newOr2 = ConstantExpr::getOr(CCst, ECst);
    817     Value *newAnd = Builder->CreateAnd(A, newOr1);
    818     return Builder->CreateICmp(NEWCC, newAnd, newOr2);
    819   }
    820   return nullptr;
    821 }
    822 
    823 /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
    824 /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
    825 /// If \p Inverted is true then the check is for the inverted range, e.g.
    826 /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
    827 Value *InstCombiner::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
    828                                         bool Inverted) {
    829   // Check the lower range comparison, e.g. x >= 0
    830   // InstCombine already ensured that if there is a constant it's on the RHS.
    831   ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
    832   if (!RangeStart)
    833     return nullptr;
    834 
    835   ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
    836                                Cmp0->getPredicate());
    837 
    838   // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
    839   if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
    840         (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
    841     return nullptr;
    842 
    843   ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
    844                                Cmp1->getPredicate());
    845 
    846   Value *Input = Cmp0->getOperand(0);
    847   Value *RangeEnd;
    848   if (Cmp1->getOperand(0) == Input) {
    849     // For the upper range compare we have: icmp x, n
    850     RangeEnd = Cmp1->getOperand(1);
    851   } else if (Cmp1->getOperand(1) == Input) {
    852     // For the upper range compare we have: icmp n, x
    853     RangeEnd = Cmp1->getOperand(0);
    854     Pred1 = ICmpInst::getSwappedPredicate(Pred1);
    855   } else {
    856     return nullptr;
    857   }
    858 
    859   // Check the upper range comparison, e.g. x < n
    860   ICmpInst::Predicate NewPred;
    861   switch (Pred1) {
    862     case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
    863     case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
    864     default: return nullptr;
    865   }
    866 
    867   // This simplification is only valid if the upper range is not negative.
    868   bool IsNegative, IsNotNegative;
    869   ComputeSignBit(RangeEnd, IsNotNegative, IsNegative, /*Depth=*/0, Cmp1);
    870   if (!IsNotNegative)
    871     return nullptr;
    872 
    873   if (Inverted)
    874     NewPred = ICmpInst::getInversePredicate(NewPred);
    875 
    876   return Builder->CreateICmp(NewPred, Input, RangeEnd);
    877 }
    878 
    879 /// Fold (icmp)&(icmp) if possible.
    880 Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
    881   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
    882 
    883   // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
    884   if (PredicatesFoldable(LHSCC, RHSCC)) {
    885     if (LHS->getOperand(0) == RHS->getOperand(1) &&
    886         LHS->getOperand(1) == RHS->getOperand(0))
    887       LHS->swapOperands();
    888     if (LHS->getOperand(0) == RHS->getOperand(0) &&
    889         LHS->getOperand(1) == RHS->getOperand(1)) {
    890       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
    891       unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
    892       bool isSigned = LHS->isSigned() || RHS->isSigned();
    893       return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
    894     }
    895   }
    896 
    897   // handle (roughly):  (icmp eq (A & B), C) & (icmp eq (A & D), E)
    898   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder))
    899     return V;
    900 
    901   // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
    902   if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/false))
    903     return V;
    904 
    905   // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
    906   if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false))
    907     return V;
    908 
    909   // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
    910   Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
    911   ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
    912   ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
    913   if (!LHSCst || !RHSCst) return nullptr;
    914 
    915   if (LHSCst == RHSCst && LHSCC == RHSCC) {
    916     // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
    917     // where C is a power of 2
    918     if (LHSCC == ICmpInst::ICMP_ULT &&
    919         LHSCst->getValue().isPowerOf2()) {
    920       Value *NewOr = Builder->CreateOr(Val, Val2);
    921       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
    922     }
    923 
    924     // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
    925     if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
    926       Value *NewOr = Builder->CreateOr(Val, Val2);
    927       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
    928     }
    929   }
    930 
    931   // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
    932   // where CMAX is the all ones value for the truncated type,
    933   // iff the lower bits of C2 and CA are zero.
    934   if (LHSCC == ICmpInst::ICMP_EQ && LHSCC == RHSCC &&
    935       LHS->hasOneUse() && RHS->hasOneUse()) {
    936     Value *V;
    937     ConstantInt *AndCst, *SmallCst = nullptr, *BigCst = nullptr;
    938 
    939     // (trunc x) == C1 & (and x, CA) == C2
    940     // (and x, CA) == C2 & (trunc x) == C1
    941     if (match(Val2, m_Trunc(m_Value(V))) &&
    942         match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
    943       SmallCst = RHSCst;
    944       BigCst = LHSCst;
    945     } else if (match(Val, m_Trunc(m_Value(V))) &&
    946                match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
    947       SmallCst = LHSCst;
    948       BigCst = RHSCst;
    949     }
    950 
    951     if (SmallCst && BigCst) {
    952       unsigned BigBitSize = BigCst->getType()->getBitWidth();
    953       unsigned SmallBitSize = SmallCst->getType()->getBitWidth();
    954 
    955       // Check that the low bits are zero.
    956       APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
    957       if ((Low & AndCst->getValue()) == 0 && (Low & BigCst->getValue()) == 0) {
    958         Value *NewAnd = Builder->CreateAnd(V, Low | AndCst->getValue());
    959         APInt N = SmallCst->getValue().zext(BigBitSize) | BigCst->getValue();
    960         Value *NewVal = ConstantInt::get(AndCst->getType()->getContext(), N);
    961         return Builder->CreateICmp(LHSCC, NewAnd, NewVal);
    962       }
    963     }
    964   }
    965 
    966   // From here on, we only handle:
    967   //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
    968   if (Val != Val2) return nullptr;
    969 
    970   // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
    971   if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
    972       RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
    973       LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
    974       RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
    975     return nullptr;
    976 
    977   // Make a constant range that's the intersection of the two icmp ranges.
    978   // If the intersection is empty, we know that the result is false.
    979   ConstantRange LHSRange =
    980       ConstantRange::makeAllowedICmpRegion(LHSCC, LHSCst->getValue());
    981   ConstantRange RHSRange =
    982       ConstantRange::makeAllowedICmpRegion(RHSCC, RHSCst->getValue());
    983 
    984   if (LHSRange.intersectWith(RHSRange).isEmptySet())
    985     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
    986 
    987   // We can't fold (ugt x, C) & (sgt x, C2).
    988   if (!PredicatesFoldable(LHSCC, RHSCC))
    989     return nullptr;
    990 
    991   // Ensure that the larger constant is on the RHS.
    992   bool ShouldSwap;
    993   if (CmpInst::isSigned(LHSCC) ||
    994       (ICmpInst::isEquality(LHSCC) &&
    995        CmpInst::isSigned(RHSCC)))
    996     ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
    997   else
    998     ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
    999 
   1000   if (ShouldSwap) {
   1001     std::swap(LHS, RHS);
   1002     std::swap(LHSCst, RHSCst);
   1003     std::swap(LHSCC, RHSCC);
   1004   }
   1005 
   1006   // At this point, we know we have two icmp instructions
   1007   // comparing a value against two constants and and'ing the result
   1008   // together.  Because of the above check, we know that we only have
   1009   // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
   1010   // (from the icmp folding check above), that the two constants
   1011   // are not equal and that the larger constant is on the RHS
   1012   assert(LHSCst != RHSCst && "Compares not folded above?");
   1013 
   1014   switch (LHSCC) {
   1015   default: llvm_unreachable("Unknown integer condition code!");
   1016   case ICmpInst::ICMP_EQ:
   1017     switch (RHSCC) {
   1018     default: llvm_unreachable("Unknown integer condition code!");
   1019     case ICmpInst::ICMP_NE:         // (X == 13 & X != 15) -> X == 13
   1020     case ICmpInst::ICMP_ULT:        // (X == 13 & X <  15) -> X == 13
   1021     case ICmpInst::ICMP_SLT:        // (X == 13 & X <  15) -> X == 13
   1022       return LHS;
   1023     }
   1024   case ICmpInst::ICMP_NE:
   1025     switch (RHSCC) {
   1026     default: llvm_unreachable("Unknown integer condition code!");
   1027     case ICmpInst::ICMP_ULT:
   1028       if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
   1029         return Builder->CreateICmpULT(Val, LHSCst);
   1030       if (LHSCst->isNullValue())    // (X !=  0 & X u< 14) -> X-1 u< 13
   1031         return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
   1032       break;                        // (X != 13 & X u< 15) -> no change
   1033     case ICmpInst::ICMP_SLT:
   1034       if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
   1035         return Builder->CreateICmpSLT(Val, LHSCst);
   1036       break;                        // (X != 13 & X s< 15) -> no change
   1037     case ICmpInst::ICMP_EQ:         // (X != 13 & X == 15) -> X == 15
   1038     case ICmpInst::ICMP_UGT:        // (X != 13 & X u> 15) -> X u> 15
   1039     case ICmpInst::ICMP_SGT:        // (X != 13 & X s> 15) -> X s> 15
   1040       return RHS;
   1041     case ICmpInst::ICMP_NE:
   1042       // Special case to get the ordering right when the values wrap around
   1043       // zero.
   1044       if (LHSCst->getValue() == 0 && RHSCst->getValue().isAllOnesValue())
   1045         std::swap(LHSCst, RHSCst);
   1046       if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
   1047         Constant *AddCST = ConstantExpr::getNeg(LHSCst);
   1048         Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
   1049         return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1),
   1050                                       Val->getName()+".cmp");
   1051       }
   1052       break;                        // (X != 13 & X != 15) -> no change
   1053     }
   1054     break;
   1055   case ICmpInst::ICMP_ULT:
   1056     switch (RHSCC) {
   1057     default: llvm_unreachable("Unknown integer condition code!");
   1058     case ICmpInst::ICMP_EQ:         // (X u< 13 & X == 15) -> false
   1059     case ICmpInst::ICMP_UGT:        // (X u< 13 & X u> 15) -> false
   1060       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
   1061     case ICmpInst::ICMP_SGT:        // (X u< 13 & X s> 15) -> no change
   1062       break;
   1063     case ICmpInst::ICMP_NE:         // (X u< 13 & X != 15) -> X u< 13
   1064     case ICmpInst::ICMP_ULT:        // (X u< 13 & X u< 15) -> X u< 13
   1065       return LHS;
   1066     case ICmpInst::ICMP_SLT:        // (X u< 13 & X s< 15) -> no change
   1067       break;
   1068     }
   1069     break;
   1070   case ICmpInst::ICMP_SLT:
   1071     switch (RHSCC) {
   1072     default: llvm_unreachable("Unknown integer condition code!");
   1073     case ICmpInst::ICMP_UGT:        // (X s< 13 & X u> 15) -> no change
   1074       break;
   1075     case ICmpInst::ICMP_NE:         // (X s< 13 & X != 15) -> X < 13
   1076     case ICmpInst::ICMP_SLT:        // (X s< 13 & X s< 15) -> X < 13
   1077       return LHS;
   1078     case ICmpInst::ICMP_ULT:        // (X s< 13 & X u< 15) -> no change
   1079       break;
   1080     }
   1081     break;
   1082   case ICmpInst::ICMP_UGT:
   1083     switch (RHSCC) {
   1084     default: llvm_unreachable("Unknown integer condition code!");
   1085     case ICmpInst::ICMP_EQ:         // (X u> 13 & X == 15) -> X == 15
   1086     case ICmpInst::ICMP_UGT:        // (X u> 13 & X u> 15) -> X u> 15
   1087       return RHS;
   1088     case ICmpInst::ICMP_SGT:        // (X u> 13 & X s> 15) -> no change
   1089       break;
   1090     case ICmpInst::ICMP_NE:
   1091       if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
   1092         return Builder->CreateICmp(LHSCC, Val, RHSCst);
   1093       break;                        // (X u> 13 & X != 15) -> no change
   1094     case ICmpInst::ICMP_ULT:        // (X u> 13 & X u< 15) -> (X-14) <u 1
   1095       return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
   1096     case ICmpInst::ICMP_SLT:        // (X u> 13 & X s< 15) -> no change
   1097       break;
   1098     }
   1099     break;
   1100   case ICmpInst::ICMP_SGT:
   1101     switch (RHSCC) {
   1102     default: llvm_unreachable("Unknown integer condition code!");
   1103     case ICmpInst::ICMP_EQ:         // (X s> 13 & X == 15) -> X == 15
   1104     case ICmpInst::ICMP_SGT:        // (X s> 13 & X s> 15) -> X s> 15
   1105       return RHS;
   1106     case ICmpInst::ICMP_UGT:        // (X s> 13 & X u> 15) -> no change
   1107       break;
   1108     case ICmpInst::ICMP_NE:
   1109       if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
   1110         return Builder->CreateICmp(LHSCC, Val, RHSCst);
   1111       break;                        // (X s> 13 & X != 15) -> no change
   1112     case ICmpInst::ICMP_SLT:        // (X s> 13 & X s< 15) -> (X-14) s< 1
   1113       return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true);
   1114     case ICmpInst::ICMP_ULT:        // (X s> 13 & X u< 15) -> no change
   1115       break;
   1116     }
   1117     break;
   1118   }
   1119 
   1120   return nullptr;
   1121 }
   1122 
   1123 /// Optimize (fcmp)&(fcmp).  NOTE: Unlike the rest of instcombine, this returns
   1124 /// a Value which should already be inserted into the function.
   1125 Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
   1126   if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
   1127       RHS->getPredicate() == FCmpInst::FCMP_ORD) {
   1128     if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType())
   1129       return nullptr;
   1130 
   1131     // (fcmp ord x, c) & (fcmp ord y, c)  -> (fcmp ord x, y)
   1132     if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
   1133       if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
   1134         // If either of the constants are nans, then the whole thing returns
   1135         // false.
   1136         if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
   1137           return Builder->getFalse();
   1138         return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
   1139       }
   1140 
   1141     // Handle vector zeros.  This occurs because the canonical form of
   1142     // "fcmp ord x,x" is "fcmp ord x, 0".
   1143     if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
   1144         isa<ConstantAggregateZero>(RHS->getOperand(1)))
   1145       return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
   1146     return nullptr;
   1147   }
   1148 
   1149   Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
   1150   Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
   1151   FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
   1152 
   1153 
   1154   if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
   1155     // Swap RHS operands to match LHS.
   1156     Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
   1157     std::swap(Op1LHS, Op1RHS);
   1158   }
   1159 
   1160   if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
   1161     // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
   1162     if (Op0CC == Op1CC)
   1163       return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
   1164     if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
   1165       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
   1166     if (Op0CC == FCmpInst::FCMP_TRUE)
   1167       return RHS;
   1168     if (Op1CC == FCmpInst::FCMP_TRUE)
   1169       return LHS;
   1170 
   1171     bool Op0Ordered;
   1172     bool Op1Ordered;
   1173     unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
   1174     unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
   1175     // uno && ord -> false
   1176     if (Op0Pred == 0 && Op1Pred == 0 && Op0Ordered != Op1Ordered)
   1177         return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
   1178     if (Op1Pred == 0) {
   1179       std::swap(LHS, RHS);
   1180       std::swap(Op0Pred, Op1Pred);
   1181       std::swap(Op0Ordered, Op1Ordered);
   1182     }
   1183     if (Op0Pred == 0) {
   1184       // uno && ueq -> uno && (uno || eq) -> uno
   1185       // ord && olt -> ord && (ord && lt) -> olt
   1186       if (!Op0Ordered && (Op0Ordered == Op1Ordered))
   1187         return LHS;
   1188       if (Op0Ordered && (Op0Ordered == Op1Ordered))
   1189         return RHS;
   1190 
   1191       // uno && oeq -> uno && (ord && eq) -> false
   1192       if (!Op0Ordered)
   1193         return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
   1194       // ord && ueq -> ord && (uno || eq) -> oeq
   1195       return getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS, Builder);
   1196     }
   1197   }
   1198 
   1199   return nullptr;
   1200 }
   1201 
   1202 /// Match De Morgan's Laws:
   1203 /// (~A & ~B) == (~(A | B))
   1204 /// (~A | ~B) == (~(A & B))
   1205 static Instruction *matchDeMorgansLaws(BinaryOperator &I,
   1206                                        InstCombiner::BuilderTy *Builder) {
   1207   auto Opcode = I.getOpcode();
   1208   assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
   1209          "Trying to match De Morgan's Laws with something other than and/or");
   1210   // Flip the logic operation.
   1211   if (Opcode == Instruction::And)
   1212     Opcode = Instruction::Or;
   1213   else
   1214     Opcode = Instruction::And;
   1215 
   1216   Value *Op0 = I.getOperand(0);
   1217   Value *Op1 = I.getOperand(1);
   1218   // TODO: Use pattern matchers instead of dyn_cast.
   1219   if (Value *Op0NotVal = dyn_castNotVal(Op0))
   1220     if (Value *Op1NotVal = dyn_castNotVal(Op1))
   1221       if (Op0->hasOneUse() && Op1->hasOneUse()) {
   1222         Value *LogicOp = Builder->CreateBinOp(Opcode, Op0NotVal, Op1NotVal,
   1223                                               I.getName() + ".demorgan");
   1224         return BinaryOperator::CreateNot(LogicOp);
   1225       }
   1226 
   1227   // De Morgan's Law in disguise:
   1228   // (zext(bool A) ^ 1) & (zext(bool B) ^ 1) -> zext(~(A | B))
   1229   // (zext(bool A) ^ 1) | (zext(bool B) ^ 1) -> zext(~(A & B))
   1230   Value *A = nullptr;
   1231   Value *B = nullptr;
   1232   ConstantInt *C1 = nullptr;
   1233   if (match(Op0, m_OneUse(m_Xor(m_ZExt(m_Value(A)), m_ConstantInt(C1)))) &&
   1234       match(Op1, m_OneUse(m_Xor(m_ZExt(m_Value(B)), m_Specific(C1))))) {
   1235     // TODO: This check could be loosened to handle different type sizes.
   1236     // Alternatively, we could fix the definition of m_Not to recognize a not
   1237     // operation hidden by a zext?
   1238     if (A->getType()->isIntegerTy(1) && B->getType()->isIntegerTy(1) &&
   1239         C1->isOne()) {
   1240       Value *LogicOp = Builder->CreateBinOp(Opcode, A, B,
   1241                                             I.getName() + ".demorgan");
   1242       Value *Not = Builder->CreateNot(LogicOp);
   1243       return CastInst::CreateZExtOrBitCast(Not, I.getType());
   1244     }
   1245   }
   1246 
   1247   return nullptr;
   1248 }
   1249 
   1250 Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
   1251   bool Changed = SimplifyAssociativeOrCommutative(I);
   1252   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1253 
   1254   if (Value *V = SimplifyVectorOp(I))
   1255     return ReplaceInstUsesWith(I, V);
   1256 
   1257   if (Value *V = SimplifyAndInst(Op0, Op1, DL, TLI, DT, AC))
   1258     return ReplaceInstUsesWith(I, V);
   1259 
   1260   // (A|B)&(A|C) -> A|(B&C) etc
   1261   if (Value *V = SimplifyUsingDistributiveLaws(I))
   1262     return ReplaceInstUsesWith(I, V);
   1263 
   1264   // See if we can simplify any instructions used by the instruction whose sole
   1265   // purpose is to compute bits we don't care about.
   1266   if (SimplifyDemandedInstructionBits(I))
   1267     return &I;
   1268 
   1269   if (Value *V = SimplifyBSwap(I))
   1270     return ReplaceInstUsesWith(I, V);
   1271 
   1272   if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
   1273     const APInt &AndRHSMask = AndRHS->getValue();
   1274 
   1275     // Optimize a variety of ((val OP C1) & C2) combinations...
   1276     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
   1277       Value *Op0LHS = Op0I->getOperand(0);
   1278       Value *Op0RHS = Op0I->getOperand(1);
   1279       switch (Op0I->getOpcode()) {
   1280       default: break;
   1281       case Instruction::Xor:
   1282       case Instruction::Or: {
   1283         // If the mask is only needed on one incoming arm, push it up.
   1284         if (!Op0I->hasOneUse()) break;
   1285 
   1286         APInt NotAndRHS(~AndRHSMask);
   1287         if (MaskedValueIsZero(Op0LHS, NotAndRHS, 0, &I)) {
   1288           // Not masking anything out for the LHS, move to RHS.
   1289           Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
   1290                                              Op0RHS->getName()+".masked");
   1291           return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
   1292         }
   1293         if (!isa<Constant>(Op0RHS) &&
   1294             MaskedValueIsZero(Op0RHS, NotAndRHS, 0, &I)) {
   1295           // Not masking anything out for the RHS, move to LHS.
   1296           Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
   1297                                              Op0LHS->getName()+".masked");
   1298           return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
   1299         }
   1300 
   1301         break;
   1302       }
   1303       case Instruction::Add:
   1304         // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
   1305         // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
   1306         // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
   1307         if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
   1308           return BinaryOperator::CreateAnd(V, AndRHS);
   1309         if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
   1310           return BinaryOperator::CreateAnd(V, AndRHS);  // Add commutes
   1311         break;
   1312 
   1313       case Instruction::Sub:
   1314         // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
   1315         // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
   1316         // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
   1317         if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
   1318           return BinaryOperator::CreateAnd(V, AndRHS);
   1319 
   1320         // -x & 1 -> x & 1
   1321         if (AndRHSMask == 1 && match(Op0LHS, m_Zero()))
   1322           return BinaryOperator::CreateAnd(Op0RHS, AndRHS);
   1323 
   1324         // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
   1325         // has 1's for all bits that the subtraction with A might affect.
   1326         if (Op0I->hasOneUse() && !match(Op0LHS, m_Zero())) {
   1327           uint32_t BitWidth = AndRHSMask.getBitWidth();
   1328           uint32_t Zeros = AndRHSMask.countLeadingZeros();
   1329           APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
   1330 
   1331           if (MaskedValueIsZero(Op0LHS, Mask, 0, &I)) {
   1332             Value *NewNeg = Builder->CreateNeg(Op0RHS);
   1333             return BinaryOperator::CreateAnd(NewNeg, AndRHS);
   1334           }
   1335         }
   1336         break;
   1337 
   1338       case Instruction::Shl:
   1339       case Instruction::LShr:
   1340         // (1 << x) & 1 --> zext(x == 0)
   1341         // (1 >> x) & 1 --> zext(x == 0)
   1342         if (AndRHSMask == 1 && Op0LHS == AndRHS) {
   1343           Value *NewICmp =
   1344             Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
   1345           return new ZExtInst(NewICmp, I.getType());
   1346         }
   1347         break;
   1348       }
   1349 
   1350       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
   1351         if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
   1352           return Res;
   1353     }
   1354 
   1355     // If this is an integer truncation, and if the source is an 'and' with
   1356     // immediate, transform it.  This frequently occurs for bitfield accesses.
   1357     {
   1358       Value *X = nullptr; ConstantInt *YC = nullptr;
   1359       if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
   1360         // Change: and (trunc (and X, YC) to T), C2
   1361         // into  : and (trunc X to T), trunc(YC) & C2
   1362         // This will fold the two constants together, which may allow
   1363         // other simplifications.
   1364         Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk");
   1365         Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
   1366         C3 = ConstantExpr::getAnd(C3, AndRHS);
   1367         return BinaryOperator::CreateAnd(NewCast, C3);
   1368       }
   1369     }
   1370 
   1371     // Try to fold constant and into select arguments.
   1372     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
   1373       if (Instruction *R = FoldOpIntoSelect(I, SI))
   1374         return R;
   1375     if (isa<PHINode>(Op0))
   1376       if (Instruction *NV = FoldOpIntoPhi(I))
   1377         return NV;
   1378   }
   1379 
   1380   if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
   1381     return DeMorgan;
   1382 
   1383   {
   1384     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
   1385     // (A|B) & ~(A&B) -> A^B
   1386     if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
   1387         match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
   1388         ((A == C && B == D) || (A == D && B == C)))
   1389       return BinaryOperator::CreateXor(A, B);
   1390 
   1391     // ~(A&B) & (A|B) -> A^B
   1392     if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
   1393         match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
   1394         ((A == C && B == D) || (A == D && B == C)))
   1395       return BinaryOperator::CreateXor(A, B);
   1396 
   1397     // A&(A^B) => A & ~B
   1398     {
   1399       Value *tmpOp0 = Op0;
   1400       Value *tmpOp1 = Op1;
   1401       if (Op0->hasOneUse() &&
   1402           match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
   1403         if (A == Op1 || B == Op1 ) {
   1404           tmpOp1 = Op0;
   1405           tmpOp0 = Op1;
   1406           // Simplify below
   1407         }
   1408       }
   1409 
   1410       if (tmpOp1->hasOneUse() &&
   1411           match(tmpOp1, m_Xor(m_Value(A), m_Value(B)))) {
   1412         if (B == tmpOp0) {
   1413           std::swap(A, B);
   1414         }
   1415         // Notice that the patten (A&(~B)) is actually (A&(-1^B)), so if
   1416         // A is originally -1 (or a vector of -1 and undefs), then we enter
   1417         // an endless loop. By checking that A is non-constant we ensure that
   1418         // we will never get to the loop.
   1419         if (A == tmpOp0 && !isa<Constant>(A)) // A&(A^B) -> A & ~B
   1420           return BinaryOperator::CreateAnd(A, Builder->CreateNot(B));
   1421       }
   1422     }
   1423 
   1424     // (A&((~A)|B)) -> A&B
   1425     if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
   1426         match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
   1427       return BinaryOperator::CreateAnd(A, Op1);
   1428     if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
   1429         match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
   1430       return BinaryOperator::CreateAnd(A, Op0);
   1431 
   1432     // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
   1433     if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
   1434       if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
   1435         if (Op1->hasOneUse() || cast<BinaryOperator>(Op1)->hasOneUse())
   1436           return BinaryOperator::CreateAnd(Op0, Builder->CreateNot(C));
   1437 
   1438     // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
   1439     if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
   1440       if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
   1441         if (Op0->hasOneUse() || cast<BinaryOperator>(Op0)->hasOneUse())
   1442           return BinaryOperator::CreateAnd(Op1, Builder->CreateNot(C));
   1443 
   1444     // (A | B) & ((~A) ^ B) -> (A & B)
   1445     if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
   1446         match(Op1, m_Xor(m_Not(m_Specific(A)), m_Specific(B))))
   1447       return BinaryOperator::CreateAnd(A, B);
   1448 
   1449     // ((~A) ^ B) & (A | B) -> (A & B)
   1450     if (match(Op0, m_Xor(m_Not(m_Value(A)), m_Value(B))) &&
   1451         match(Op1, m_Or(m_Specific(A), m_Specific(B))))
   1452       return BinaryOperator::CreateAnd(A, B);
   1453   }
   1454 
   1455   {
   1456     ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
   1457     ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
   1458     if (LHS && RHS)
   1459       if (Value *Res = FoldAndOfICmps(LHS, RHS))
   1460         return ReplaceInstUsesWith(I, Res);
   1461 
   1462     // TODO: Make this recursive; it's a little tricky because an arbitrary
   1463     // number of 'and' instructions might have to be created.
   1464     Value *X, *Y;
   1465     if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
   1466       if (auto *Cmp = dyn_cast<ICmpInst>(X))
   1467         if (Value *Res = FoldAndOfICmps(LHS, Cmp))
   1468           return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, Y));
   1469       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
   1470         if (Value *Res = FoldAndOfICmps(LHS, Cmp))
   1471           return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, X));
   1472     }
   1473     if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
   1474       if (auto *Cmp = dyn_cast<ICmpInst>(X))
   1475         if (Value *Res = FoldAndOfICmps(Cmp, RHS))
   1476           return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, Y));
   1477       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
   1478         if (Value *Res = FoldAndOfICmps(Cmp, RHS))
   1479           return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, X));
   1480     }
   1481   }
   1482 
   1483   // If and'ing two fcmp, try combine them into one.
   1484   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
   1485     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
   1486       if (Value *Res = FoldAndOfFCmps(LHS, RHS))
   1487         return ReplaceInstUsesWith(I, Res);
   1488 
   1489 
   1490   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
   1491     Value *Op0COp = Op0C->getOperand(0);
   1492     Type *SrcTy = Op0COp->getType();
   1493     // fold (and (cast A), (cast B)) -> (cast (and A, B))
   1494     if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) {
   1495       if (Op0C->getOpcode() == Op1C->getOpcode() && // same cast kind ?
   1496           SrcTy == Op1C->getOperand(0)->getType() &&
   1497           SrcTy->isIntOrIntVectorTy()) {
   1498         Value *Op1COp = Op1C->getOperand(0);
   1499 
   1500         // Only do this if the casts both really cause code to be generated.
   1501         if (ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
   1502             ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
   1503           Value *NewOp = Builder->CreateAnd(Op0COp, Op1COp, I.getName());
   1504           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
   1505         }
   1506 
   1507         // If this is and(cast(icmp), cast(icmp)), try to fold this even if the
   1508         // cast is otherwise not optimizable.  This happens for vector sexts.
   1509         if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
   1510           if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
   1511             if (Value *Res = FoldAndOfICmps(LHS, RHS))
   1512               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   1513 
   1514         // If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the
   1515         // cast is otherwise not optimizable.  This happens for vector sexts.
   1516         if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
   1517           if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
   1518             if (Value *Res = FoldAndOfFCmps(LHS, RHS))
   1519               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   1520       }
   1521     }
   1522 
   1523     // If we are masking off the sign bit of a floating-point value, convert
   1524     // this to the canonical fabs intrinsic call and cast back to integer.
   1525     // The backend should know how to optimize fabs().
   1526     // TODO: This transform should also apply to vectors.
   1527     ConstantInt *CI;
   1528     if (isa<BitCastInst>(Op0C) && SrcTy->isFloatingPointTy() &&
   1529         match(Op1, m_ConstantInt(CI)) && CI->isMaxValue(true)) {
   1530       Module *M = I.getModule();
   1531       Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, SrcTy);
   1532       Value *Call = Builder->CreateCall(Fabs, Op0COp, "fabs");
   1533       return CastInst::CreateBitOrPointerCast(Call, I.getType());
   1534     }
   1535   }
   1536 
   1537   {
   1538     Value *X = nullptr;
   1539     bool OpsSwapped = false;
   1540     // Canonicalize SExt or Not to the LHS
   1541     if (match(Op1, m_SExt(m_Value())) ||
   1542         match(Op1, m_Not(m_Value()))) {
   1543       std::swap(Op0, Op1);
   1544       OpsSwapped = true;
   1545     }
   1546 
   1547     // Fold (and (sext bool to A), B) --> (select bool, B, 0)
   1548     if (match(Op0, m_SExt(m_Value(X))) &&
   1549         X->getType()->getScalarType()->isIntegerTy(1)) {
   1550       Value *Zero = Constant::getNullValue(Op1->getType());
   1551       return SelectInst::Create(X, Op1, Zero);
   1552     }
   1553 
   1554     // Fold (and ~(sext bool to A), B) --> (select bool, 0, B)
   1555     if (match(Op0, m_Not(m_SExt(m_Value(X)))) &&
   1556         X->getType()->getScalarType()->isIntegerTy(1)) {
   1557       Value *Zero = Constant::getNullValue(Op0->getType());
   1558       return SelectInst::Create(X, Zero, Op1);
   1559     }
   1560 
   1561     if (OpsSwapped)
   1562       std::swap(Op0, Op1);
   1563   }
   1564 
   1565   return Changed ? &I : nullptr;
   1566 }
   1567 
   1568 
   1569 /// Analyze the specified subexpression and see if it is capable of providing
   1570 /// pieces of a bswap or bitreverse. The subexpression provides a potential
   1571 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
   1572 /// the output of the expression came from a corresponding bit in some other
   1573 /// value. This function is recursive, and the end result is a mapping of
   1574 /// (value, bitnumber) to bitnumber. It is the caller's responsibility to
   1575 /// validate that all `value`s are identical and that the bitnumber to bitnumber
   1576 /// mapping is correct for a bswap or bitreverse.
   1577 ///
   1578 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
   1579 /// that the expression deposits the low byte of %X into the high byte of the
   1580 /// result and that all other bits are zero. This expression is accepted,
   1581 /// BitValues[24-31] are set to %X and BitProvenance[24-31] are set to [0-7].
   1582 ///
   1583 /// This function returns true if the match was unsuccessful and false if so.
   1584 /// On entry to the function the "OverallLeftShift" is a signed integer value
   1585 /// indicating the number of bits that the subexpression is later shifted.  For
   1586 /// example, if the expression is later right shifted by 16 bits, the
   1587 /// OverallLeftShift value would be -16 on entry.  This is used to specify which
   1588 /// bits of BitValues are actually being set.
   1589 ///
   1590 /// Similarly, BitMask is a bitmask where a bit is clear if its corresponding
   1591 /// bit is masked to zero by a user.  For example, in (X & 255), X will be
   1592 /// processed with a bytemask of 255. BitMask is always in the local
   1593 /// (OverallLeftShift) coordinate space.
   1594 ///
   1595 static bool CollectBitParts(Value *V, int OverallLeftShift, APInt BitMask,
   1596                             SmallVectorImpl<Value *> &BitValues,
   1597                             SmallVectorImpl<int> &BitProvenance) {
   1598   if (Instruction *I = dyn_cast<Instruction>(V)) {
   1599     // If this is an or instruction, it may be an inner node of the bswap.
   1600     if (I->getOpcode() == Instruction::Or)
   1601       return CollectBitParts(I->getOperand(0), OverallLeftShift, BitMask,
   1602                              BitValues, BitProvenance) ||
   1603              CollectBitParts(I->getOperand(1), OverallLeftShift, BitMask,
   1604                              BitValues, BitProvenance);
   1605 
   1606     // If this is a logical shift by a constant, recurse with OverallLeftShift
   1607     // and BitMask adjusted.
   1608     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
   1609       unsigned ShAmt =
   1610           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
   1611       // Ensure the shift amount is defined.
   1612       if (ShAmt > BitValues.size())
   1613         return true;
   1614 
   1615       unsigned BitShift = ShAmt;
   1616       if (I->getOpcode() == Instruction::Shl) {
   1617         // X << C -> collect(X, +C)
   1618         OverallLeftShift += BitShift;
   1619         BitMask = BitMask.lshr(BitShift);
   1620       } else {
   1621         // X >>u C -> collect(X, -C)
   1622         OverallLeftShift -= BitShift;
   1623         BitMask = BitMask.shl(BitShift);
   1624       }
   1625 
   1626       if (OverallLeftShift >= (int)BitValues.size())
   1627         return true;
   1628       if (OverallLeftShift <= -(int)BitValues.size())
   1629         return true;
   1630 
   1631       return CollectBitParts(I->getOperand(0), OverallLeftShift, BitMask,
   1632                              BitValues, BitProvenance);
   1633     }
   1634 
   1635     // If this is a logical 'and' with a mask that clears bits, clear the
   1636     // corresponding bits in BitMask.
   1637     if (I->getOpcode() == Instruction::And &&
   1638         isa<ConstantInt>(I->getOperand(1))) {
   1639       unsigned NumBits = BitValues.size();
   1640       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
   1641       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
   1642 
   1643       for (unsigned i = 0; i != NumBits; ++i, Bit <<= 1) {
   1644         // If this bit is masked out by a later operation, we don't care what
   1645         // the and mask is.
   1646         if (BitMask[i] == 0)
   1647           continue;
   1648 
   1649         // If the AndMask is zero for this bit, clear the bit.
   1650         APInt MaskB = AndMask & Bit;
   1651         if (MaskB == 0) {
   1652           BitMask.clearBit(i);
   1653           continue;
   1654         }
   1655 
   1656         // Otherwise, this bit is kept.
   1657       }
   1658 
   1659       return CollectBitParts(I->getOperand(0), OverallLeftShift, BitMask,
   1660                              BitValues, BitProvenance);
   1661     }
   1662   }
   1663 
   1664   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
   1665   // the input value to the bswap/bitreverse. To be part of a bswap or
   1666   // bitreverse we must be demanding a contiguous range of bits from it.
   1667   unsigned InputBitLen = BitMask.countPopulation();
   1668   unsigned InputBitNo = BitMask.countTrailingZeros();
   1669   if (BitMask.getBitWidth() - BitMask.countLeadingZeros() - InputBitNo !=
   1670       InputBitLen)
   1671     // Not a contiguous set range of bits!
   1672     return true;
   1673 
   1674   // We know we're moving a contiguous range of bits from the input to the
   1675   // output. Record which bits in the output came from which bits in the input.
   1676   unsigned DestBitNo = InputBitNo + OverallLeftShift;
   1677   for (unsigned I = 0; I < InputBitLen; ++I)
   1678     BitProvenance[DestBitNo + I] = InputBitNo + I;
   1679 
   1680   // If the destination bit value is already defined, the values are or'd
   1681   // together, which isn't a bswap/bitreverse (unless it's an or of the same
   1682   // bits).
   1683   if (BitValues[DestBitNo] && BitValues[DestBitNo] != V)
   1684     return true;
   1685   for (unsigned I = 0; I < InputBitLen; ++I)
   1686     BitValues[DestBitNo + I] = V;
   1687 
   1688   return false;
   1689 }
   1690 
   1691 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
   1692                                           unsigned BitWidth) {
   1693   if (From % 8 != To % 8)
   1694     return false;
   1695   // Convert from bit indices to byte indices and check for a byte reversal.
   1696   From >>= 3;
   1697   To >>= 3;
   1698   BitWidth >>= 3;
   1699   return From == BitWidth - To - 1;
   1700 }
   1701 
   1702 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
   1703                                                unsigned BitWidth) {
   1704   return From == BitWidth - To - 1;
   1705 }
   1706 
   1707 /// Given an OR instruction, check to see if this is a bswap or bitreverse
   1708 /// idiom. If so, insert the new intrinsic and return it.
   1709 Instruction *InstCombiner::MatchBSwapOrBitReverse(BinaryOperator &I) {
   1710   IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
   1711   if (!ITy)
   1712     return nullptr;   // Can't do vectors.
   1713   unsigned BW = ITy->getBitWidth();
   1714 
   1715   /// We keep track of which bit (BitProvenance) inside which value (BitValues)
   1716   /// defines each bit in the result.
   1717   SmallVector<Value *, 8> BitValues(BW, nullptr);
   1718   SmallVector<int, 8> BitProvenance(BW, -1);
   1719 
   1720   // Try to find all the pieces corresponding to the bswap.
   1721   APInt BitMask = APInt::getAllOnesValue(BitValues.size());
   1722   if (CollectBitParts(&I, 0, BitMask, BitValues, BitProvenance))
   1723     return nullptr;
   1724 
   1725   // Check to see if all of the bits come from the same value.
   1726   Value *V = BitValues[0];
   1727   if (!V) return nullptr;  // Didn't find a bit?  Must be zero.
   1728 
   1729   if (!std::all_of(BitValues.begin(), BitValues.end(),
   1730                    [&](const Value *X) { return X == V; }))
   1731     return nullptr;
   1732 
   1733   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
   1734   // only byteswap values with an even number of bytes.
   1735   bool OKForBSwap = BW % 16 == 0, OKForBitReverse = true;;
   1736   for (unsigned i = 0, e = BitValues.size(); i != e; ++i) {
   1737     OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[i], i, BW);
   1738     OKForBitReverse &=
   1739         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, BW);
   1740   }
   1741 
   1742   Intrinsic::ID Intrin;
   1743   if (OKForBSwap)
   1744     Intrin = Intrinsic::bswap;
   1745   else if (OKForBitReverse)
   1746     Intrin = Intrinsic::bitreverse;
   1747   else
   1748     return nullptr;
   1749 
   1750   Function *F = Intrinsic::getDeclaration(I.getModule(), Intrin, ITy);
   1751   return CallInst::Create(F, V);
   1752 }
   1753 
   1754 /// We have an expression of the form (A&C)|(B&D).  Check if A is (cond?-1:0)
   1755 /// and either B or D is ~(cond?-1,0) or (cond?0,-1), then we can simplify this
   1756 /// expression to "cond ? C : D or B".
   1757 static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
   1758                                          Value *C, Value *D) {
   1759   // If A is not a select of -1/0, this cannot match.
   1760   Value *Cond = nullptr;
   1761   if (!match(A, m_SExt(m_Value(Cond))) ||
   1762       !Cond->getType()->isIntegerTy(1))
   1763     return nullptr;
   1764 
   1765   // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
   1766   if (match(D, m_Not(m_SExt(m_Specific(Cond)))))
   1767     return SelectInst::Create(Cond, C, B);
   1768   if (match(D, m_SExt(m_Not(m_Specific(Cond)))))
   1769     return SelectInst::Create(Cond, C, B);
   1770 
   1771   // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
   1772   if (match(B, m_Not(m_SExt(m_Specific(Cond)))))
   1773     return SelectInst::Create(Cond, C, D);
   1774   if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
   1775     return SelectInst::Create(Cond, C, D);
   1776   return nullptr;
   1777 }
   1778 
   1779 /// Fold (icmp)|(icmp) if possible.
   1780 Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
   1781                                    Instruction *CxtI) {
   1782   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
   1783 
   1784   // Fold (iszero(A & K1) | iszero(A & K2)) ->  (A & (K1 | K2)) != (K1 | K2)
   1785   // if K1 and K2 are a one-bit mask.
   1786   ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
   1787   ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
   1788 
   1789   if (LHS->getPredicate() == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero() &&
   1790       RHS->getPredicate() == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
   1791 
   1792     BinaryOperator *LAnd = dyn_cast<BinaryOperator>(LHS->getOperand(0));
   1793     BinaryOperator *RAnd = dyn_cast<BinaryOperator>(RHS->getOperand(0));
   1794     if (LAnd && RAnd && LAnd->hasOneUse() && RHS->hasOneUse() &&
   1795         LAnd->getOpcode() == Instruction::And &&
   1796         RAnd->getOpcode() == Instruction::And) {
   1797 
   1798       Value *Mask = nullptr;
   1799       Value *Masked = nullptr;
   1800       if (LAnd->getOperand(0) == RAnd->getOperand(0) &&
   1801           isKnownToBeAPowerOfTwo(LAnd->getOperand(1), DL, false, 0, AC, CxtI,
   1802                                  DT) &&
   1803           isKnownToBeAPowerOfTwo(RAnd->getOperand(1), DL, false, 0, AC, CxtI,
   1804                                  DT)) {
   1805         Mask = Builder->CreateOr(LAnd->getOperand(1), RAnd->getOperand(1));
   1806         Masked = Builder->CreateAnd(LAnd->getOperand(0), Mask);
   1807       } else if (LAnd->getOperand(1) == RAnd->getOperand(1) &&
   1808                  isKnownToBeAPowerOfTwo(LAnd->getOperand(0), DL, false, 0, AC,
   1809                                         CxtI, DT) &&
   1810                  isKnownToBeAPowerOfTwo(RAnd->getOperand(0), DL, false, 0, AC,
   1811                                         CxtI, DT)) {
   1812         Mask = Builder->CreateOr(LAnd->getOperand(0), RAnd->getOperand(0));
   1813         Masked = Builder->CreateAnd(LAnd->getOperand(1), Mask);
   1814       }
   1815 
   1816       if (Masked)
   1817         return Builder->CreateICmp(ICmpInst::ICMP_NE, Masked, Mask);
   1818     }
   1819   }
   1820 
   1821   // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3)
   1822   //                   -->  (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3)
   1823   // The original condition actually refers to the following two ranges:
   1824   // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3]
   1825   // We can fold these two ranges if:
   1826   // 1) C1 and C2 is unsigned greater than C3.
   1827   // 2) The two ranges are separated.
   1828   // 3) C1 ^ C2 is one-bit mask.
   1829   // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask.
   1830   // This implies all values in the two ranges differ by exactly one bit.
   1831 
   1832   if ((LHSCC == ICmpInst::ICMP_ULT || LHSCC == ICmpInst::ICMP_ULE) &&
   1833       LHSCC == RHSCC && LHSCst && RHSCst && LHS->hasOneUse() &&
   1834       RHS->hasOneUse() && LHSCst->getType() == RHSCst->getType() &&
   1835       LHSCst->getValue() == (RHSCst->getValue())) {
   1836 
   1837     Value *LAdd = LHS->getOperand(0);
   1838     Value *RAdd = RHS->getOperand(0);
   1839 
   1840     Value *LAddOpnd, *RAddOpnd;
   1841     ConstantInt *LAddCst, *RAddCst;
   1842     if (match(LAdd, m_Add(m_Value(LAddOpnd), m_ConstantInt(LAddCst))) &&
   1843         match(RAdd, m_Add(m_Value(RAddOpnd), m_ConstantInt(RAddCst))) &&
   1844         LAddCst->getValue().ugt(LHSCst->getValue()) &&
   1845         RAddCst->getValue().ugt(LHSCst->getValue())) {
   1846 
   1847       APInt DiffCst = LAddCst->getValue() ^ RAddCst->getValue();
   1848       if (LAddOpnd == RAddOpnd && DiffCst.isPowerOf2()) {
   1849         ConstantInt *MaxAddCst = nullptr;
   1850         if (LAddCst->getValue().ult(RAddCst->getValue()))
   1851           MaxAddCst = RAddCst;
   1852         else
   1853           MaxAddCst = LAddCst;
   1854 
   1855         APInt RRangeLow = -RAddCst->getValue();
   1856         APInt RRangeHigh = RRangeLow + LHSCst->getValue();
   1857         APInt LRangeLow = -LAddCst->getValue();
   1858         APInt LRangeHigh = LRangeLow + LHSCst->getValue();
   1859         APInt LowRangeDiff = RRangeLow ^ LRangeLow;
   1860         APInt HighRangeDiff = RRangeHigh ^ LRangeHigh;
   1861         APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow
   1862                                                    : RRangeLow - LRangeLow;
   1863 
   1864         if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff &&
   1865             RangeDiff.ugt(LHSCst->getValue())) {
   1866           Value *MaskCst = ConstantInt::get(LAddCst->getType(), ~DiffCst);
   1867 
   1868           Value *NewAnd = Builder->CreateAnd(LAddOpnd, MaskCst);
   1869           Value *NewAdd = Builder->CreateAdd(NewAnd, MaxAddCst);
   1870           return (Builder->CreateICmp(LHS->getPredicate(), NewAdd, LHSCst));
   1871         }
   1872       }
   1873     }
   1874   }
   1875 
   1876   // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
   1877   if (PredicatesFoldable(LHSCC, RHSCC)) {
   1878     if (LHS->getOperand(0) == RHS->getOperand(1) &&
   1879         LHS->getOperand(1) == RHS->getOperand(0))
   1880       LHS->swapOperands();
   1881     if (LHS->getOperand(0) == RHS->getOperand(0) &&
   1882         LHS->getOperand(1) == RHS->getOperand(1)) {
   1883       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
   1884       unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
   1885       bool isSigned = LHS->isSigned() || RHS->isSigned();
   1886       return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
   1887     }
   1888   }
   1889 
   1890   // handle (roughly):
   1891   // (icmp ne (A & B), C) | (icmp ne (A & D), E)
   1892   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder))
   1893     return V;
   1894 
   1895   Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
   1896   if (LHS->hasOneUse() || RHS->hasOneUse()) {
   1897     // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
   1898     // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
   1899     Value *A = nullptr, *B = nullptr;
   1900     if (LHSCC == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero()) {
   1901       B = Val;
   1902       if (RHSCC == ICmpInst::ICMP_ULT && Val == RHS->getOperand(1))
   1903         A = Val2;
   1904       else if (RHSCC == ICmpInst::ICMP_UGT && Val == Val2)
   1905         A = RHS->getOperand(1);
   1906     }
   1907     // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
   1908     // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
   1909     else if (RHSCC == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
   1910       B = Val2;
   1911       if (LHSCC == ICmpInst::ICMP_ULT && Val2 == LHS->getOperand(1))
   1912         A = Val;
   1913       else if (LHSCC == ICmpInst::ICMP_UGT && Val2 == Val)
   1914         A = LHS->getOperand(1);
   1915     }
   1916     if (A && B)
   1917       return Builder->CreateICmp(
   1918           ICmpInst::ICMP_UGE,
   1919           Builder->CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A);
   1920   }
   1921 
   1922   // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
   1923   if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/true))
   1924     return V;
   1925 
   1926   // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
   1927   if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true))
   1928     return V;
   1929 
   1930   // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
   1931   if (!LHSCst || !RHSCst) return nullptr;
   1932 
   1933   if (LHSCst == RHSCst && LHSCC == RHSCC) {
   1934     // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
   1935     if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
   1936       Value *NewOr = Builder->CreateOr(Val, Val2);
   1937       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
   1938     }
   1939   }
   1940 
   1941   // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
   1942   //   iff C2 + CA == C1.
   1943   if (LHSCC == ICmpInst::ICMP_ULT && RHSCC == ICmpInst::ICMP_EQ) {
   1944     ConstantInt *AddCst;
   1945     if (match(Val, m_Add(m_Specific(Val2), m_ConstantInt(AddCst))))
   1946       if (RHSCst->getValue() + AddCst->getValue() == LHSCst->getValue())
   1947         return Builder->CreateICmpULE(Val, LHSCst);
   1948   }
   1949 
   1950   // From here on, we only handle:
   1951   //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
   1952   if (Val != Val2) return nullptr;
   1953 
   1954   // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
   1955   if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
   1956       RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
   1957       LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
   1958       RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
   1959     return nullptr;
   1960 
   1961   // We can't fold (ugt x, C) | (sgt x, C2).
   1962   if (!PredicatesFoldable(LHSCC, RHSCC))
   1963     return nullptr;
   1964 
   1965   // Ensure that the larger constant is on the RHS.
   1966   bool ShouldSwap;
   1967   if (CmpInst::isSigned(LHSCC) ||
   1968       (ICmpInst::isEquality(LHSCC) &&
   1969        CmpInst::isSigned(RHSCC)))
   1970     ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
   1971   else
   1972     ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
   1973 
   1974   if (ShouldSwap) {
   1975     std::swap(LHS, RHS);
   1976     std::swap(LHSCst, RHSCst);
   1977     std::swap(LHSCC, RHSCC);
   1978   }
   1979 
   1980   // At this point, we know we have two icmp instructions
   1981   // comparing a value against two constants and or'ing the result
   1982   // together.  Because of the above check, we know that we only have
   1983   // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
   1984   // icmp folding check above), that the two constants are not
   1985   // equal.
   1986   assert(LHSCst != RHSCst && "Compares not folded above?");
   1987 
   1988   switch (LHSCC) {
   1989   default: llvm_unreachable("Unknown integer condition code!");
   1990   case ICmpInst::ICMP_EQ:
   1991     switch (RHSCC) {
   1992     default: llvm_unreachable("Unknown integer condition code!");
   1993     case ICmpInst::ICMP_EQ:
   1994       if (LHS->getOperand(0) == RHS->getOperand(0)) {
   1995         // if LHSCst and RHSCst differ only by one bit:
   1996         // (A == C1 || A == C2) -> (A | (C1 ^ C2)) == C2
   1997         assert(LHSCst->getValue().ule(LHSCst->getValue()));
   1998 
   1999         APInt Xor = LHSCst->getValue() ^ RHSCst->getValue();
   2000         if (Xor.isPowerOf2()) {
   2001           Value *Cst = Builder->getInt(Xor);
   2002           Value *Or = Builder->CreateOr(LHS->getOperand(0), Cst);
   2003           return Builder->CreateICmp(ICmpInst::ICMP_EQ, Or, RHSCst);
   2004         }
   2005       }
   2006 
   2007       if (LHSCst == SubOne(RHSCst)) {
   2008         // (X == 13 | X == 14) -> X-13 <u 2
   2009         Constant *AddCST = ConstantExpr::getNeg(LHSCst);
   2010         Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
   2011         AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
   2012         return Builder->CreateICmpULT(Add, AddCST);
   2013       }
   2014 
   2015       break;                         // (X == 13 | X == 15) -> no change
   2016     case ICmpInst::ICMP_UGT:         // (X == 13 | X u> 14) -> no change
   2017     case ICmpInst::ICMP_SGT:         // (X == 13 | X s> 14) -> no change
   2018       break;
   2019     case ICmpInst::ICMP_NE:          // (X == 13 | X != 15) -> X != 15
   2020     case ICmpInst::ICMP_ULT:         // (X == 13 | X u< 15) -> X u< 15
   2021     case ICmpInst::ICMP_SLT:         // (X == 13 | X s< 15) -> X s< 15
   2022       return RHS;
   2023     }
   2024     break;
   2025   case ICmpInst::ICMP_NE:
   2026     switch (RHSCC) {
   2027     default: llvm_unreachable("Unknown integer condition code!");
   2028     case ICmpInst::ICMP_EQ:          // (X != 13 | X == 15) -> X != 13
   2029     case ICmpInst::ICMP_UGT:         // (X != 13 | X u> 15) -> X != 13
   2030     case ICmpInst::ICMP_SGT:         // (X != 13 | X s> 15) -> X != 13
   2031       return LHS;
   2032     case ICmpInst::ICMP_NE:          // (X != 13 | X != 15) -> true
   2033     case ICmpInst::ICMP_ULT:         // (X != 13 | X u< 15) -> true
   2034     case ICmpInst::ICMP_SLT:         // (X != 13 | X s< 15) -> true
   2035       return Builder->getTrue();
   2036     }
   2037   case ICmpInst::ICMP_ULT:
   2038     switch (RHSCC) {
   2039     default: llvm_unreachable("Unknown integer condition code!");
   2040     case ICmpInst::ICMP_EQ:         // (X u< 13 | X == 14) -> no change
   2041       break;
   2042     case ICmpInst::ICMP_UGT:        // (X u< 13 | X u> 15) -> (X-13) u> 2
   2043       // If RHSCst is [us]MAXINT, it is always false.  Not handling
   2044       // this can cause overflow.
   2045       if (RHSCst->isMaxValue(false))
   2046         return LHS;
   2047       return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false);
   2048     case ICmpInst::ICMP_SGT:        // (X u< 13 | X s> 15) -> no change
   2049       break;
   2050     case ICmpInst::ICMP_NE:         // (X u< 13 | X != 15) -> X != 15
   2051     case ICmpInst::ICMP_ULT:        // (X u< 13 | X u< 15) -> X u< 15
   2052       return RHS;
   2053     case ICmpInst::ICMP_SLT:        // (X u< 13 | X s< 15) -> no change
   2054       break;
   2055     }
   2056     break;
   2057   case ICmpInst::ICMP_SLT:
   2058     switch (RHSCC) {
   2059     default: llvm_unreachable("Unknown integer condition code!");
   2060     case ICmpInst::ICMP_EQ:         // (X s< 13 | X == 14) -> no change
   2061       break;
   2062     case ICmpInst::ICMP_SGT:        // (X s< 13 | X s> 15) -> (X-13) s> 2
   2063       // If RHSCst is [us]MAXINT, it is always false.  Not handling
   2064       // this can cause overflow.
   2065       if (RHSCst->isMaxValue(true))
   2066         return LHS;
   2067       return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false);
   2068     case ICmpInst::ICMP_UGT:        // (X s< 13 | X u> 15) -> no change
   2069       break;
   2070     case ICmpInst::ICMP_NE:         // (X s< 13 | X != 15) -> X != 15
   2071     case ICmpInst::ICMP_SLT:        // (X s< 13 | X s< 15) -> X s< 15
   2072       return RHS;
   2073     case ICmpInst::ICMP_ULT:        // (X s< 13 | X u< 15) -> no change
   2074       break;
   2075     }
   2076     break;
   2077   case ICmpInst::ICMP_UGT:
   2078     switch (RHSCC) {
   2079     default: llvm_unreachable("Unknown integer condition code!");
   2080     case ICmpInst::ICMP_EQ:         // (X u> 13 | X == 15) -> X u> 13
   2081     case ICmpInst::ICMP_UGT:        // (X u> 13 | X u> 15) -> X u> 13
   2082       return LHS;
   2083     case ICmpInst::ICMP_SGT:        // (X u> 13 | X s> 15) -> no change
   2084       break;
   2085     case ICmpInst::ICMP_NE:         // (X u> 13 | X != 15) -> true
   2086     case ICmpInst::ICMP_ULT:        // (X u> 13 | X u< 15) -> true
   2087       return Builder->getTrue();
   2088     case ICmpInst::ICMP_SLT:        // (X u> 13 | X s< 15) -> no change
   2089       break;
   2090     }
   2091     break;
   2092   case ICmpInst::ICMP_SGT:
   2093     switch (RHSCC) {
   2094     default: llvm_unreachable("Unknown integer condition code!");
   2095     case ICmpInst::ICMP_EQ:         // (X s> 13 | X == 15) -> X > 13
   2096     case ICmpInst::ICMP_SGT:        // (X s> 13 | X s> 15) -> X > 13
   2097       return LHS;
   2098     case ICmpInst::ICMP_UGT:        // (X s> 13 | X u> 15) -> no change
   2099       break;
   2100     case ICmpInst::ICMP_NE:         // (X s> 13 | X != 15) -> true
   2101     case ICmpInst::ICMP_SLT:        // (X s> 13 | X s< 15) -> true
   2102       return Builder->getTrue();
   2103     case ICmpInst::ICMP_ULT:        // (X s> 13 | X u< 15) -> no change
   2104       break;
   2105     }
   2106     break;
   2107   }
   2108   return nullptr;
   2109 }
   2110 
   2111 /// Optimize (fcmp)|(fcmp).  NOTE: Unlike the rest of instcombine, this returns
   2112 /// a Value which should already be inserted into the function.
   2113 Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
   2114   if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
   2115       RHS->getPredicate() == FCmpInst::FCMP_UNO &&
   2116       LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
   2117     if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
   2118       if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
   2119         // If either of the constants are nans, then the whole thing returns
   2120         // true.
   2121         if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
   2122           return Builder->getTrue();
   2123 
   2124         // Otherwise, no need to compare the two constants, compare the
   2125         // rest.
   2126         return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
   2127       }
   2128 
   2129     // Handle vector zeros.  This occurs because the canonical form of
   2130     // "fcmp uno x,x" is "fcmp uno x, 0".
   2131     if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
   2132         isa<ConstantAggregateZero>(RHS->getOperand(1)))
   2133       return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
   2134 
   2135     return nullptr;
   2136   }
   2137 
   2138   Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
   2139   Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
   2140   FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
   2141 
   2142   if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
   2143     // Swap RHS operands to match LHS.
   2144     Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
   2145     std::swap(Op1LHS, Op1RHS);
   2146   }
   2147   if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
   2148     // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
   2149     if (Op0CC == Op1CC)
   2150       return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
   2151     if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
   2152       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
   2153     if (Op0CC == FCmpInst::FCMP_FALSE)
   2154       return RHS;
   2155     if (Op1CC == FCmpInst::FCMP_FALSE)
   2156       return LHS;
   2157     bool Op0Ordered;
   2158     bool Op1Ordered;
   2159     unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
   2160     unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
   2161     if (Op0Ordered == Op1Ordered) {
   2162       // If both are ordered or unordered, return a new fcmp with
   2163       // or'ed predicates.
   2164       return getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS, Builder);
   2165     }
   2166   }
   2167   return nullptr;
   2168 }
   2169 
   2170 /// This helper function folds:
   2171 ///
   2172 ///     ((A | B) & C1) | (B & C2)
   2173 ///
   2174 /// into:
   2175 ///
   2176 ///     (A & C1) | B
   2177 ///
   2178 /// when the XOR of the two constants is "all ones" (-1).
   2179 Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
   2180                                                Value *A, Value *B, Value *C) {
   2181   ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
   2182   if (!CI1) return nullptr;
   2183 
   2184   Value *V1 = nullptr;
   2185   ConstantInt *CI2 = nullptr;
   2186   if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return nullptr;
   2187 
   2188   APInt Xor = CI1->getValue() ^ CI2->getValue();
   2189   if (!Xor.isAllOnesValue()) return nullptr;
   2190 
   2191   if (V1 == A || V1 == B) {
   2192     Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
   2193     return BinaryOperator::CreateOr(NewOp, V1);
   2194   }
   2195 
   2196   return nullptr;
   2197 }
   2198 
   2199 /// \brief This helper function folds:
   2200 ///
   2201 ///     ((A | B) & C1) ^ (B & C2)
   2202 ///
   2203 /// into:
   2204 ///
   2205 ///     (A & C1) ^ B
   2206 ///
   2207 /// when the XOR of the two constants is "all ones" (-1).
   2208 Instruction *InstCombiner::FoldXorWithConstants(BinaryOperator &I, Value *Op,
   2209                                                 Value *A, Value *B, Value *C) {
   2210   ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
   2211   if (!CI1)
   2212     return nullptr;
   2213 
   2214   Value *V1 = nullptr;
   2215   ConstantInt *CI2 = nullptr;
   2216   if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2))))
   2217     return nullptr;
   2218 
   2219   APInt Xor = CI1->getValue() ^ CI2->getValue();
   2220   if (!Xor.isAllOnesValue())
   2221     return nullptr;
   2222 
   2223   if (V1 == A || V1 == B) {
   2224     Value *NewOp = Builder->CreateAnd(V1 == A ? B : A, CI1);
   2225     return BinaryOperator::CreateXor(NewOp, V1);
   2226   }
   2227 
   2228   return nullptr;
   2229 }
   2230 
   2231 Instruction *InstCombiner::visitOr(BinaryOperator &I) {
   2232   bool Changed = SimplifyAssociativeOrCommutative(I);
   2233   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   2234 
   2235   if (Value *V = SimplifyVectorOp(I))
   2236     return ReplaceInstUsesWith(I, V);
   2237 
   2238   if (Value *V = SimplifyOrInst(Op0, Op1, DL, TLI, DT, AC))
   2239     return ReplaceInstUsesWith(I, V);
   2240 
   2241   // (A&B)|(A&C) -> A&(B|C) etc
   2242   if (Value *V = SimplifyUsingDistributiveLaws(I))
   2243     return ReplaceInstUsesWith(I, V);
   2244 
   2245   // See if we can simplify any instructions used by the instruction whose sole
   2246   // purpose is to compute bits we don't care about.
   2247   if (SimplifyDemandedInstructionBits(I))
   2248     return &I;
   2249 
   2250   if (Value *V = SimplifyBSwap(I))
   2251     return ReplaceInstUsesWith(I, V);
   2252 
   2253   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
   2254     ConstantInt *C1 = nullptr; Value *X = nullptr;
   2255     // (X & C1) | C2 --> (X | C2) & (C1|C2)
   2256     // iff (C1 & C2) == 0.
   2257     if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
   2258         (RHS->getValue() & C1->getValue()) != 0 &&
   2259         Op0->hasOneUse()) {
   2260       Value *Or = Builder->CreateOr(X, RHS);
   2261       Or->takeName(Op0);
   2262       return BinaryOperator::CreateAnd(Or,
   2263                              Builder->getInt(RHS->getValue() | C1->getValue()));
   2264     }
   2265 
   2266     // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
   2267     if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
   2268         Op0->hasOneUse()) {
   2269       Value *Or = Builder->CreateOr(X, RHS);
   2270       Or->takeName(Op0);
   2271       return BinaryOperator::CreateXor(Or,
   2272                             Builder->getInt(C1->getValue() & ~RHS->getValue()));
   2273     }
   2274 
   2275     // Try to fold constant and into select arguments.
   2276     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
   2277       if (Instruction *R = FoldOpIntoSelect(I, SI))
   2278         return R;
   2279 
   2280     if (isa<PHINode>(Op0))
   2281       if (Instruction *NV = FoldOpIntoPhi(I))
   2282         return NV;
   2283   }
   2284 
   2285   Value *A = nullptr, *B = nullptr;
   2286   ConstantInt *C1 = nullptr, *C2 = nullptr;
   2287 
   2288   // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
   2289   bool OrOfOrs = match(Op0, m_Or(m_Value(), m_Value())) ||
   2290                  match(Op1, m_Or(m_Value(), m_Value()));
   2291   // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
   2292   bool OrOfShifts = match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
   2293                     match(Op1, m_LogicalShift(m_Value(), m_Value()));
   2294   // (A & B) | (C & D)                              -> bswap if possible.
   2295   bool OrOfAnds = match(Op0, m_And(m_Value(), m_Value())) &&
   2296                   match(Op1, m_And(m_Value(), m_Value()));
   2297 
   2298   if (OrOfOrs || OrOfShifts || OrOfAnds)
   2299     if (Instruction *BSwap = MatchBSwapOrBitReverse(I))
   2300       return BSwap;
   2301 
   2302   // (X^C)|Y -> (X|Y)^C iff Y&C == 0
   2303   if (Op0->hasOneUse() &&
   2304       match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
   2305       MaskedValueIsZero(Op1, C1->getValue(), 0, &I)) {
   2306     Value *NOr = Builder->CreateOr(A, Op1);
   2307     NOr->takeName(Op0);
   2308     return BinaryOperator::CreateXor(NOr, C1);
   2309   }
   2310 
   2311   // Y|(X^C) -> (X|Y)^C iff Y&C == 0
   2312   if (Op1->hasOneUse() &&
   2313       match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
   2314       MaskedValueIsZero(Op0, C1->getValue(), 0, &I)) {
   2315     Value *NOr = Builder->CreateOr(A, Op0);
   2316     NOr->takeName(Op0);
   2317     return BinaryOperator::CreateXor(NOr, C1);
   2318   }
   2319 
   2320   // ((~A & B) | A) -> (A | B)
   2321   if (match(Op0, m_And(m_Not(m_Value(A)), m_Value(B))) &&
   2322       match(Op1, m_Specific(A)))
   2323     return BinaryOperator::CreateOr(A, B);
   2324 
   2325   // ((A & B) | ~A) -> (~A | B)
   2326   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
   2327       match(Op1, m_Not(m_Specific(A))))
   2328     return BinaryOperator::CreateOr(Builder->CreateNot(A), B);
   2329 
   2330   // (A & (~B)) | (A ^ B) -> (A ^ B)
   2331   if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
   2332       match(Op1, m_Xor(m_Specific(A), m_Specific(B))))
   2333     return BinaryOperator::CreateXor(A, B);
   2334 
   2335   // (A ^ B) | ( A & (~B)) -> (A ^ B)
   2336   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
   2337       match(Op1, m_And(m_Specific(A), m_Not(m_Specific(B)))))
   2338     return BinaryOperator::CreateXor(A, B);
   2339 
   2340   // (A & C)|(B & D)
   2341   Value *C = nullptr, *D = nullptr;
   2342   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
   2343       match(Op1, m_And(m_Value(B), m_Value(D)))) {
   2344     Value *V1 = nullptr, *V2 = nullptr;
   2345     C1 = dyn_cast<ConstantInt>(C);
   2346     C2 = dyn_cast<ConstantInt>(D);
   2347     if (C1 && C2) {  // (A & C1)|(B & C2)
   2348       if ((C1->getValue() & C2->getValue()) == 0) {
   2349         // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
   2350         // iff (C1&C2) == 0 and (N&~C1) == 0
   2351         if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
   2352             ((V1 == B &&
   2353               MaskedValueIsZero(V2, ~C1->getValue(), 0, &I)) || // (V|N)
   2354              (V2 == B &&
   2355               MaskedValueIsZero(V1, ~C1->getValue(), 0, &I))))  // (N|V)
   2356           return BinaryOperator::CreateAnd(A,
   2357                                 Builder->getInt(C1->getValue()|C2->getValue()));
   2358         // Or commutes, try both ways.
   2359         if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
   2360             ((V1 == A &&
   2361               MaskedValueIsZero(V2, ~C2->getValue(), 0, &I)) || // (V|N)
   2362              (V2 == A &&
   2363               MaskedValueIsZero(V1, ~C2->getValue(), 0, &I))))  // (N|V)
   2364           return BinaryOperator::CreateAnd(B,
   2365                                 Builder->getInt(C1->getValue()|C2->getValue()));
   2366 
   2367         // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
   2368         // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
   2369         ConstantInt *C3 = nullptr, *C4 = nullptr;
   2370         if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
   2371             (C3->getValue() & ~C1->getValue()) == 0 &&
   2372             match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
   2373             (C4->getValue() & ~C2->getValue()) == 0) {
   2374           V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
   2375           return BinaryOperator::CreateAnd(V2,
   2376                                 Builder->getInt(C1->getValue()|C2->getValue()));
   2377         }
   2378       }
   2379     }
   2380 
   2381     // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) ->  C0 ? A : B, and commuted variants.
   2382     // Don't do this for vector select idioms, the code generator doesn't handle
   2383     // them well yet.
   2384     if (!I.getType()->isVectorTy()) {
   2385       if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
   2386         return Match;
   2387       if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
   2388         return Match;
   2389       if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
   2390         return Match;
   2391       if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
   2392         return Match;
   2393     }
   2394 
   2395     // ((A&~B)|(~A&B)) -> A^B
   2396     if ((match(C, m_Not(m_Specific(D))) &&
   2397          match(B, m_Not(m_Specific(A)))))
   2398       return BinaryOperator::CreateXor(A, D);
   2399     // ((~B&A)|(~A&B)) -> A^B
   2400     if ((match(A, m_Not(m_Specific(D))) &&
   2401          match(B, m_Not(m_Specific(C)))))
   2402       return BinaryOperator::CreateXor(C, D);
   2403     // ((A&~B)|(B&~A)) -> A^B
   2404     if ((match(C, m_Not(m_Specific(B))) &&
   2405          match(D, m_Not(m_Specific(A)))))
   2406       return BinaryOperator::CreateXor(A, B);
   2407     // ((~B&A)|(B&~A)) -> A^B
   2408     if ((match(A, m_Not(m_Specific(B))) &&
   2409          match(D, m_Not(m_Specific(C)))))
   2410       return BinaryOperator::CreateXor(C, B);
   2411 
   2412     // ((A|B)&1)|(B&-2) -> (A&1) | B
   2413     if (match(A, m_Or(m_Value(V1), m_Specific(B))) ||
   2414         match(A, m_Or(m_Specific(B), m_Value(V1)))) {
   2415       Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C);
   2416       if (Ret) return Ret;
   2417     }
   2418     // (B&-2)|((A|B)&1) -> (A&1) | B
   2419     if (match(B, m_Or(m_Specific(A), m_Value(V1))) ||
   2420         match(B, m_Or(m_Value(V1), m_Specific(A)))) {
   2421       Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D);
   2422       if (Ret) return Ret;
   2423     }
   2424     // ((A^B)&1)|(B&-2) -> (A&1) ^ B
   2425     if (match(A, m_Xor(m_Value(V1), m_Specific(B))) ||
   2426         match(A, m_Xor(m_Specific(B), m_Value(V1)))) {
   2427       Instruction *Ret = FoldXorWithConstants(I, Op1, V1, B, C);
   2428       if (Ret) return Ret;
   2429     }
   2430     // (B&-2)|((A^B)&1) -> (A&1) ^ B
   2431     if (match(B, m_Xor(m_Specific(A), m_Value(V1))) ||
   2432         match(B, m_Xor(m_Value(V1), m_Specific(A)))) {
   2433       Instruction *Ret = FoldXorWithConstants(I, Op0, A, V1, D);
   2434       if (Ret) return Ret;
   2435     }
   2436   }
   2437 
   2438   // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
   2439   if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
   2440     if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
   2441       if (Op1->hasOneUse() || cast<BinaryOperator>(Op1)->hasOneUse())
   2442         return BinaryOperator::CreateOr(Op0, C);
   2443 
   2444   // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
   2445   if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
   2446     if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
   2447       if (Op0->hasOneUse() || cast<BinaryOperator>(Op0)->hasOneUse())
   2448         return BinaryOperator::CreateOr(Op1, C);
   2449 
   2450   // ((B | C) & A) | B -> B | (A & C)
   2451   if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
   2452     return BinaryOperator::CreateOr(Op1, Builder->CreateAnd(A, C));
   2453 
   2454   if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
   2455     return DeMorgan;
   2456 
   2457   // Canonicalize xor to the RHS.
   2458   bool SwappedForXor = false;
   2459   if (match(Op0, m_Xor(m_Value(), m_Value()))) {
   2460     std::swap(Op0, Op1);
   2461     SwappedForXor = true;
   2462   }
   2463 
   2464   // A | ( A ^ B) -> A |  B
   2465   // A | (~A ^ B) -> A | ~B
   2466   // (A & B) | (A ^ B)
   2467   if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
   2468     if (Op0 == A || Op0 == B)
   2469       return BinaryOperator::CreateOr(A, B);
   2470 
   2471     if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
   2472         match(Op0, m_And(m_Specific(B), m_Specific(A))))
   2473       return BinaryOperator::CreateOr(A, B);
   2474 
   2475     if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
   2476       Value *Not = Builder->CreateNot(B, B->getName()+".not");
   2477       return BinaryOperator::CreateOr(Not, Op0);
   2478     }
   2479     if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
   2480       Value *Not = Builder->CreateNot(A, A->getName()+".not");
   2481       return BinaryOperator::CreateOr(Not, Op0);
   2482     }
   2483   }
   2484 
   2485   // A | ~(A | B) -> A | ~B
   2486   // A | ~(A ^ B) -> A | ~B
   2487   if (match(Op1, m_Not(m_Value(A))))
   2488     if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
   2489       if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
   2490           Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
   2491                                B->getOpcode() == Instruction::Xor)) {
   2492         Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
   2493                                                  B->getOperand(0);
   2494         Value *Not = Builder->CreateNot(NotOp, NotOp->getName()+".not");
   2495         return BinaryOperator::CreateOr(Not, Op0);
   2496       }
   2497 
   2498   // (A & B) | ((~A) ^ B) -> (~A ^ B)
   2499   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
   2500       match(Op1, m_Xor(m_Not(m_Specific(A)), m_Specific(B))))
   2501     return BinaryOperator::CreateXor(Builder->CreateNot(A), B);
   2502 
   2503   // ((~A) ^ B) | (A & B) -> (~A ^ B)
   2504   if (match(Op0, m_Xor(m_Not(m_Value(A)), m_Value(B))) &&
   2505       match(Op1, m_And(m_Specific(A), m_Specific(B))))
   2506     return BinaryOperator::CreateXor(Builder->CreateNot(A), B);
   2507 
   2508   if (SwappedForXor)
   2509     std::swap(Op0, Op1);
   2510 
   2511   {
   2512     ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
   2513     ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
   2514     if (LHS && RHS)
   2515       if (Value *Res = FoldOrOfICmps(LHS, RHS, &I))
   2516         return ReplaceInstUsesWith(I, Res);
   2517 
   2518     // TODO: Make this recursive; it's a little tricky because an arbitrary
   2519     // number of 'or' instructions might have to be created.
   2520     Value *X, *Y;
   2521     if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
   2522       if (auto *Cmp = dyn_cast<ICmpInst>(X))
   2523         if (Value *Res = FoldOrOfICmps(LHS, Cmp, &I))
   2524           return ReplaceInstUsesWith(I, Builder->CreateOr(Res, Y));
   2525       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
   2526         if (Value *Res = FoldOrOfICmps(LHS, Cmp, &I))
   2527           return ReplaceInstUsesWith(I, Builder->CreateOr(Res, X));
   2528     }
   2529     if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
   2530       if (auto *Cmp = dyn_cast<ICmpInst>(X))
   2531         if (Value *Res = FoldOrOfICmps(Cmp, RHS, &I))
   2532           return ReplaceInstUsesWith(I, Builder->CreateOr(Res, Y));
   2533       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
   2534         if (Value *Res = FoldOrOfICmps(Cmp, RHS, &I))
   2535           return ReplaceInstUsesWith(I, Builder->CreateOr(Res, X));
   2536     }
   2537   }
   2538 
   2539   // (fcmp uno x, c) | (fcmp uno y, c)  -> (fcmp uno x, y)
   2540   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
   2541     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
   2542       if (Value *Res = FoldOrOfFCmps(LHS, RHS))
   2543         return ReplaceInstUsesWith(I, Res);
   2544 
   2545   // fold (or (cast A), (cast B)) -> (cast (or A, B))
   2546   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
   2547     CastInst *Op1C = dyn_cast<CastInst>(Op1);
   2548     if (Op1C && Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
   2549       Type *SrcTy = Op0C->getOperand(0)->getType();
   2550       if (SrcTy == Op1C->getOperand(0)->getType() &&
   2551           SrcTy->isIntOrIntVectorTy()) {
   2552         Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
   2553 
   2554         if ((!isa<ICmpInst>(Op0COp) || !isa<ICmpInst>(Op1COp)) &&
   2555             // Only do this if the casts both really cause code to be
   2556             // generated.
   2557             ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
   2558             ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
   2559           Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName());
   2560           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
   2561         }
   2562 
   2563         // If this is or(cast(icmp), cast(icmp)), try to fold this even if the
   2564         // cast is otherwise not optimizable.  This happens for vector sexts.
   2565         if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
   2566           if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
   2567             if (Value *Res = FoldOrOfICmps(LHS, RHS, &I))
   2568               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   2569 
   2570         // If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
   2571         // cast is otherwise not optimizable.  This happens for vector sexts.
   2572         if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
   2573           if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
   2574             if (Value *Res = FoldOrOfFCmps(LHS, RHS))
   2575               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   2576       }
   2577     }
   2578   }
   2579 
   2580   // or(sext(A), B) -> A ? -1 : B where A is an i1
   2581   // or(A, sext(B)) -> B ? -1 : A where B is an i1
   2582   if (match(Op0, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
   2583     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
   2584   if (match(Op1, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
   2585     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
   2586 
   2587   // Note: If we've gotten to the point of visiting the outer OR, then the
   2588   // inner one couldn't be simplified.  If it was a constant, then it won't
   2589   // be simplified by a later pass either, so we try swapping the inner/outer
   2590   // ORs in the hopes that we'll be able to simplify it this way.
   2591   // (X|C) | V --> (X|V) | C
   2592   if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
   2593       match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) {
   2594     Value *Inner = Builder->CreateOr(A, Op1);
   2595     Inner->takeName(Op0);
   2596     return BinaryOperator::CreateOr(Inner, C1);
   2597   }
   2598 
   2599   // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
   2600   // Since this OR statement hasn't been optimized further yet, we hope
   2601   // that this transformation will allow the new ORs to be optimized.
   2602   {
   2603     Value *X = nullptr, *Y = nullptr;
   2604     if (Op0->hasOneUse() && Op1->hasOneUse() &&
   2605         match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
   2606         match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
   2607       Value *orTrue = Builder->CreateOr(A, C);
   2608       Value *orFalse = Builder->CreateOr(B, D);
   2609       return SelectInst::Create(X, orTrue, orFalse);
   2610     }
   2611   }
   2612 
   2613   return Changed ? &I : nullptr;
   2614 }
   2615 
   2616 Instruction *InstCombiner::visitXor(BinaryOperator &I) {
   2617   bool Changed = SimplifyAssociativeOrCommutative(I);
   2618   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   2619 
   2620   if (Value *V = SimplifyVectorOp(I))
   2621     return ReplaceInstUsesWith(I, V);
   2622 
   2623   if (Value *V = SimplifyXorInst(Op0, Op1, DL, TLI, DT, AC))
   2624     return ReplaceInstUsesWith(I, V);
   2625 
   2626   // (A&B)^(A&C) -> A&(B^C) etc
   2627   if (Value *V = SimplifyUsingDistributiveLaws(I))
   2628     return ReplaceInstUsesWith(I, V);
   2629 
   2630   // See if we can simplify any instructions used by the instruction whose sole
   2631   // purpose is to compute bits we don't care about.
   2632   if (SimplifyDemandedInstructionBits(I))
   2633     return &I;
   2634 
   2635   if (Value *V = SimplifyBSwap(I))
   2636     return ReplaceInstUsesWith(I, V);
   2637 
   2638   // Is this a ~ operation?
   2639   if (Value *NotOp = dyn_castNotVal(&I)) {
   2640     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
   2641       if (Op0I->getOpcode() == Instruction::And ||
   2642           Op0I->getOpcode() == Instruction::Or) {
   2643         // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
   2644         // ~(~X | Y) === (X & ~Y) - De Morgan's Law
   2645         if (dyn_castNotVal(Op0I->getOperand(1)))
   2646           Op0I->swapOperands();
   2647         if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
   2648           Value *NotY =
   2649             Builder->CreateNot(Op0I->getOperand(1),
   2650                                Op0I->getOperand(1)->getName()+".not");
   2651           if (Op0I->getOpcode() == Instruction::And)
   2652             return BinaryOperator::CreateOr(Op0NotVal, NotY);
   2653           return BinaryOperator::CreateAnd(Op0NotVal, NotY);
   2654         }
   2655 
   2656         // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
   2657         // ~(X | Y) === (~X & ~Y) - De Morgan's Law
   2658         if (IsFreeToInvert(Op0I->getOperand(0),
   2659                            Op0I->getOperand(0)->hasOneUse()) &&
   2660             IsFreeToInvert(Op0I->getOperand(1),
   2661                            Op0I->getOperand(1)->hasOneUse())) {
   2662           Value *NotX =
   2663             Builder->CreateNot(Op0I->getOperand(0), "notlhs");
   2664           Value *NotY =
   2665             Builder->CreateNot(Op0I->getOperand(1), "notrhs");
   2666           if (Op0I->getOpcode() == Instruction::And)
   2667             return BinaryOperator::CreateOr(NotX, NotY);
   2668           return BinaryOperator::CreateAnd(NotX, NotY);
   2669         }
   2670 
   2671       } else if (Op0I->getOpcode() == Instruction::AShr) {
   2672         // ~(~X >>s Y) --> (X >>s Y)
   2673         if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0)))
   2674           return BinaryOperator::CreateAShr(Op0NotVal, Op0I->getOperand(1));
   2675       }
   2676     }
   2677   }
   2678 
   2679   if (Constant *RHS = dyn_cast<Constant>(Op1)) {
   2680     if (RHS->isAllOnesValue() && Op0->hasOneUse())
   2681       // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
   2682       if (CmpInst *CI = dyn_cast<CmpInst>(Op0))
   2683         return CmpInst::Create(CI->getOpcode(),
   2684                                CI->getInversePredicate(),
   2685                                CI->getOperand(0), CI->getOperand(1));
   2686   }
   2687 
   2688   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
   2689     // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
   2690     if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
   2691       if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
   2692         if (CI->hasOneUse() && Op0C->hasOneUse()) {
   2693           Instruction::CastOps Opcode = Op0C->getOpcode();
   2694           if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
   2695               (RHS == ConstantExpr::getCast(Opcode, Builder->getTrue(),
   2696                                             Op0C->getDestTy()))) {
   2697             CI->setPredicate(CI->getInversePredicate());
   2698             return CastInst::Create(Opcode, CI, Op0C->getType());
   2699           }
   2700         }
   2701       }
   2702     }
   2703 
   2704     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
   2705       // ~(c-X) == X-c-1 == X+(-c-1)
   2706       if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
   2707         if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
   2708           Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
   2709           Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
   2710                                       ConstantInt::get(I.getType(), 1));
   2711           return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
   2712         }
   2713 
   2714       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
   2715         if (Op0I->getOpcode() == Instruction::Add) {
   2716           // ~(X-c) --> (-c-1)-X
   2717           if (RHS->isAllOnesValue()) {
   2718             Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
   2719             return BinaryOperator::CreateSub(
   2720                            ConstantExpr::getSub(NegOp0CI,
   2721                                       ConstantInt::get(I.getType(), 1)),
   2722                                       Op0I->getOperand(0));
   2723           } else if (RHS->getValue().isSignBit()) {
   2724             // (X + C) ^ signbit -> (X + C + signbit)
   2725             Constant *C = Builder->getInt(RHS->getValue() + Op0CI->getValue());
   2726             return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
   2727 
   2728           }
   2729         } else if (Op0I->getOpcode() == Instruction::Or) {
   2730           // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
   2731           if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue(),
   2732                                 0, &I)) {
   2733             Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
   2734             // Anything in both C1 and C2 is known to be zero, remove it from
   2735             // NewRHS.
   2736             Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
   2737             NewRHS = ConstantExpr::getAnd(NewRHS,
   2738                                        ConstantExpr::getNot(CommonBits));
   2739             Worklist.Add(Op0I);
   2740             I.setOperand(0, Op0I->getOperand(0));
   2741             I.setOperand(1, NewRHS);
   2742             return &I;
   2743           }
   2744         } else if (Op0I->getOpcode() == Instruction::LShr) {
   2745           // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
   2746           // E1 = "X ^ C1"
   2747           BinaryOperator *E1;
   2748           ConstantInt *C1;
   2749           if (Op0I->hasOneUse() &&
   2750               (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) &&
   2751               E1->getOpcode() == Instruction::Xor &&
   2752               (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) {
   2753             // fold (C1 >> C2) ^ C3
   2754             ConstantInt *C2 = Op0CI, *C3 = RHS;
   2755             APInt FoldConst = C1->getValue().lshr(C2->getValue());
   2756             FoldConst ^= C3->getValue();
   2757             // Prepare the two operands.
   2758             Value *Opnd0 = Builder->CreateLShr(E1->getOperand(0), C2);
   2759             Opnd0->takeName(Op0I);
   2760             cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc());
   2761             Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst);
   2762 
   2763             return BinaryOperator::CreateXor(Opnd0, FoldVal);
   2764           }
   2765         }
   2766       }
   2767     }
   2768 
   2769     // Try to fold constant and into select arguments.
   2770     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
   2771       if (Instruction *R = FoldOpIntoSelect(I, SI))
   2772         return R;
   2773     if (isa<PHINode>(Op0))
   2774       if (Instruction *NV = FoldOpIntoPhi(I))
   2775         return NV;
   2776   }
   2777 
   2778   BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
   2779   if (Op1I) {
   2780     Value *A, *B;
   2781     if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
   2782       if (A == Op0) {              // B^(B|A) == (A|B)^B
   2783         Op1I->swapOperands();
   2784         I.swapOperands();
   2785         std::swap(Op0, Op1);
   2786       } else if (B == Op0) {       // B^(A|B) == (A|B)^B
   2787         I.swapOperands();     // Simplified below.
   2788         std::swap(Op0, Op1);
   2789       }
   2790     } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
   2791                Op1I->hasOneUse()){
   2792       if (A == Op0) {                                      // A^(A&B) -> A^(B&A)
   2793         Op1I->swapOperands();
   2794         std::swap(A, B);
   2795       }
   2796       if (B == Op0) {                                      // A^(B&A) -> (B&A)^A
   2797         I.swapOperands();     // Simplified below.
   2798         std::swap(Op0, Op1);
   2799       }
   2800     }
   2801   }
   2802 
   2803   BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
   2804   if (Op0I) {
   2805     Value *A, *B;
   2806     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
   2807         Op0I->hasOneUse()) {
   2808       if (A == Op1)                                  // (B|A)^B == (A|B)^B
   2809         std::swap(A, B);
   2810       if (B == Op1)                                  // (A|B)^B == A & ~B
   2811         return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1));
   2812     } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
   2813                Op0I->hasOneUse()){
   2814       if (A == Op1)                                        // (A&B)^A -> (B&A)^A
   2815         std::swap(A, B);
   2816       if (B == Op1 &&                                      // (B&A)^A == ~B & A
   2817           !isa<ConstantInt>(Op1)) {  // Canonical form is (B&C)^C
   2818         return BinaryOperator::CreateAnd(Builder->CreateNot(A), Op1);
   2819       }
   2820     }
   2821   }
   2822 
   2823   if (Op0I && Op1I) {
   2824     Value *A, *B, *C, *D;
   2825     // (A & B)^(A | B) -> A ^ B
   2826     if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
   2827         match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
   2828       if ((A == C && B == D) || (A == D && B == C))
   2829         return BinaryOperator::CreateXor(A, B);
   2830     }
   2831     // (A | B)^(A & B) -> A ^ B
   2832     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
   2833         match(Op1I, m_And(m_Value(C), m_Value(D)))) {
   2834       if ((A == C && B == D) || (A == D && B == C))
   2835         return BinaryOperator::CreateXor(A, B);
   2836     }
   2837     // (A | ~B) ^ (~A | B) -> A ^ B
   2838     if (match(Op0I, m_Or(m_Value(A), m_Not(m_Value(B)))) &&
   2839         match(Op1I, m_Or(m_Not(m_Specific(A)), m_Specific(B)))) {
   2840       return BinaryOperator::CreateXor(A, B);
   2841     }
   2842     // (~A | B) ^ (A | ~B) -> A ^ B
   2843     if (match(Op0I, m_Or(m_Not(m_Value(A)), m_Value(B))) &&
   2844         match(Op1I, m_Or(m_Specific(A), m_Not(m_Specific(B))))) {
   2845       return BinaryOperator::CreateXor(A, B);
   2846     }
   2847     // (A & ~B) ^ (~A & B) -> A ^ B
   2848     if (match(Op0I, m_And(m_Value(A), m_Not(m_Value(B)))) &&
   2849         match(Op1I, m_And(m_Not(m_Specific(A)), m_Specific(B)))) {
   2850       return BinaryOperator::CreateXor(A, B);
   2851     }
   2852     // (~A & B) ^ (A & ~B) -> A ^ B
   2853     if (match(Op0I, m_And(m_Not(m_Value(A)), m_Value(B))) &&
   2854         match(Op1I, m_And(m_Specific(A), m_Not(m_Specific(B))))) {
   2855       return BinaryOperator::CreateXor(A, B);
   2856     }
   2857     // (A ^ C)^(A | B) -> ((~A) & B) ^ C
   2858     if (match(Op0I, m_Xor(m_Value(D), m_Value(C))) &&
   2859         match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
   2860       if (D == A)
   2861         return BinaryOperator::CreateXor(
   2862             Builder->CreateAnd(Builder->CreateNot(A), B), C);
   2863       if (D == B)
   2864         return BinaryOperator::CreateXor(
   2865             Builder->CreateAnd(Builder->CreateNot(B), A), C);
   2866     }
   2867     // (A | B)^(A ^ C) -> ((~A) & B) ^ C
   2868     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
   2869         match(Op1I, m_Xor(m_Value(D), m_Value(C)))) {
   2870       if (D == A)
   2871         return BinaryOperator::CreateXor(
   2872             Builder->CreateAnd(Builder->CreateNot(A), B), C);
   2873       if (D == B)
   2874         return BinaryOperator::CreateXor(
   2875             Builder->CreateAnd(Builder->CreateNot(B), A), C);
   2876     }
   2877     // (A & B) ^ (A ^ B) -> (A | B)
   2878     if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
   2879         match(Op1I, m_Xor(m_Specific(A), m_Specific(B))))
   2880       return BinaryOperator::CreateOr(A, B);
   2881     // (A ^ B) ^ (A & B) -> (A | B)
   2882     if (match(Op0I, m_Xor(m_Value(A), m_Value(B))) &&
   2883         match(Op1I, m_And(m_Specific(A), m_Specific(B))))
   2884       return BinaryOperator::CreateOr(A, B);
   2885   }
   2886 
   2887   Value *A = nullptr, *B = nullptr;
   2888   // (A & ~B) ^ (~A) -> ~(A & B)
   2889   if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
   2890       match(Op1, m_Not(m_Specific(A))))
   2891     return BinaryOperator::CreateNot(Builder->CreateAnd(A, B));
   2892 
   2893   // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
   2894   if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
   2895     if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
   2896       if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
   2897         if (LHS->getOperand(0) == RHS->getOperand(1) &&
   2898             LHS->getOperand(1) == RHS->getOperand(0))
   2899           LHS->swapOperands();
   2900         if (LHS->getOperand(0) == RHS->getOperand(0) &&
   2901             LHS->getOperand(1) == RHS->getOperand(1)) {
   2902           Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
   2903           unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
   2904           bool isSigned = LHS->isSigned() || RHS->isSigned();
   2905           return ReplaceInstUsesWith(I,
   2906                                getNewICmpValue(isSigned, Code, Op0, Op1,
   2907                                                Builder));
   2908         }
   2909       }
   2910 
   2911   // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
   2912   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
   2913     if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
   2914       if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
   2915         Type *SrcTy = Op0C->getOperand(0)->getType();
   2916         if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegerTy() &&
   2917             // Only do this if the casts both really cause code to be generated.
   2918             ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
   2919                                I.getType()) &&
   2920             ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0),
   2921                                I.getType())) {
   2922           Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
   2923                                             Op1C->getOperand(0), I.getName());
   2924           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
   2925         }
   2926       }
   2927   }
   2928 
   2929   return Changed ? &I : nullptr;
   2930 }
   2931