1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "heap.h" 18 19 #include <limits> 20 #include <memory> 21 #include <unwind.h> // For GC verification. 22 #include <vector> 23 24 #include "art_field-inl.h" 25 #include "base/allocator.h" 26 #include "base/arena_allocator.h" 27 #include "base/dumpable.h" 28 #include "base/histogram-inl.h" 29 #include "base/stl_util.h" 30 #include "base/systrace.h" 31 #include "base/time_utils.h" 32 #include "common_throws.h" 33 #include "cutils/sched_policy.h" 34 #include "debugger.h" 35 #include "dex_file-inl.h" 36 #include "gc/accounting/atomic_stack.h" 37 #include "gc/accounting/card_table-inl.h" 38 #include "gc/accounting/heap_bitmap-inl.h" 39 #include "gc/accounting/mod_union_table-inl.h" 40 #include "gc/accounting/remembered_set.h" 41 #include "gc/accounting/space_bitmap-inl.h" 42 #include "gc/collector/concurrent_copying.h" 43 #include "gc/collector/mark_compact.h" 44 #include "gc/collector/mark_sweep.h" 45 #include "gc/collector/partial_mark_sweep.h" 46 #include "gc/collector/semi_space.h" 47 #include "gc/collector/sticky_mark_sweep.h" 48 #include "gc/reference_processor.h" 49 #include "gc/space/bump_pointer_space.h" 50 #include "gc/space/dlmalloc_space-inl.h" 51 #include "gc/space/image_space.h" 52 #include "gc/space/large_object_space.h" 53 #include "gc/space/region_space.h" 54 #include "gc/space/rosalloc_space-inl.h" 55 #include "gc/space/space-inl.h" 56 #include "gc/space/zygote_space.h" 57 #include "gc/task_processor.h" 58 #include "entrypoints/quick/quick_alloc_entrypoints.h" 59 #include "heap-inl.h" 60 #include "image.h" 61 #include "intern_table.h" 62 #include "jit/jit.h" 63 #include "jit/jit_code_cache.h" 64 #include "mirror/class-inl.h" 65 #include "mirror/object-inl.h" 66 #include "mirror/object_array-inl.h" 67 #include "mirror/reference-inl.h" 68 #include "os.h" 69 #include "reflection.h" 70 #include "runtime.h" 71 #include "ScopedLocalRef.h" 72 #include "scoped_thread_state_change.h" 73 #include "handle_scope-inl.h" 74 #include "thread_list.h" 75 #include "well_known_classes.h" 76 77 namespace art { 78 79 namespace gc { 80 81 static constexpr size_t kCollectorTransitionStressIterations = 0; 82 static constexpr size_t kCollectorTransitionStressWait = 10 * 1000; // Microseconds 83 // Minimum amount of remaining bytes before a concurrent GC is triggered. 84 static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB; 85 static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB; 86 // Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more 87 // relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator 88 // threads (lower pauses, use less memory bandwidth). 89 static constexpr double kStickyGcThroughputAdjustment = 1.0; 90 // Whether or not we compact the zygote in PreZygoteFork. 91 static constexpr bool kCompactZygote = kMovingCollector; 92 // How many reserve entries are at the end of the allocation stack, these are only needed if the 93 // allocation stack overflows. 94 static constexpr size_t kAllocationStackReserveSize = 1024; 95 // Default mark stack size in bytes. 96 static const size_t kDefaultMarkStackSize = 64 * KB; 97 // Define space name. 98 static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"}; 99 static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"}; 100 static const char* kMemMapSpaceName[2] = {"main space", "main space 1"}; 101 static const char* kNonMovingSpaceName = "non moving space"; 102 static const char* kZygoteSpaceName = "zygote space"; 103 static constexpr size_t kGSSBumpPointerSpaceCapacity = 32 * MB; 104 static constexpr bool kGCALotMode = false; 105 // GC alot mode uses a small allocation stack to stress test a lot of GC. 106 static constexpr size_t kGcAlotAllocationStackSize = 4 * KB / 107 sizeof(mirror::HeapReference<mirror::Object>); 108 // Verify objet has a small allocation stack size since searching the allocation stack is slow. 109 static constexpr size_t kVerifyObjectAllocationStackSize = 16 * KB / 110 sizeof(mirror::HeapReference<mirror::Object>); 111 static constexpr size_t kDefaultAllocationStackSize = 8 * MB / 112 sizeof(mirror::HeapReference<mirror::Object>); 113 // System.runFinalization can deadlock with native allocations, to deal with this, we have a 114 // timeout on how long we wait for finalizers to run. b/21544853 115 static constexpr uint64_t kNativeAllocationFinalizeTimeout = MsToNs(250u); 116 117 // For deterministic compilation, we need the heap to be at a well-known address. 118 static constexpr uint32_t kAllocSpaceBeginForDeterministicAoT = 0x40000000; 119 // Dump the rosalloc stats on SIGQUIT. 120 static constexpr bool kDumpRosAllocStatsOnSigQuit = false; 121 122 static constexpr size_t kNativeAllocationHistogramBuckets = 16; 123 124 static inline bool CareAboutPauseTimes() { 125 return Runtime::Current()->InJankPerceptibleProcessState(); 126 } 127 128 Heap::Heap(size_t initial_size, 129 size_t growth_limit, 130 size_t min_free, 131 size_t max_free, 132 double target_utilization, 133 double foreground_heap_growth_multiplier, 134 size_t capacity, 135 size_t non_moving_space_capacity, 136 const std::string& image_file_name, 137 const InstructionSet image_instruction_set, 138 CollectorType foreground_collector_type, 139 CollectorType background_collector_type, 140 space::LargeObjectSpaceType large_object_space_type, 141 size_t large_object_threshold, 142 size_t parallel_gc_threads, 143 size_t conc_gc_threads, 144 bool low_memory_mode, 145 size_t long_pause_log_threshold, 146 size_t long_gc_log_threshold, 147 bool ignore_max_footprint, 148 bool use_tlab, 149 bool verify_pre_gc_heap, 150 bool verify_pre_sweeping_heap, 151 bool verify_post_gc_heap, 152 bool verify_pre_gc_rosalloc, 153 bool verify_pre_sweeping_rosalloc, 154 bool verify_post_gc_rosalloc, 155 bool gc_stress_mode, 156 bool use_homogeneous_space_compaction_for_oom, 157 uint64_t min_interval_homogeneous_space_compaction_by_oom) 158 : non_moving_space_(nullptr), 159 rosalloc_space_(nullptr), 160 dlmalloc_space_(nullptr), 161 main_space_(nullptr), 162 collector_type_(kCollectorTypeNone), 163 foreground_collector_type_(foreground_collector_type), 164 background_collector_type_(background_collector_type), 165 desired_collector_type_(foreground_collector_type_), 166 pending_task_lock_(nullptr), 167 parallel_gc_threads_(parallel_gc_threads), 168 conc_gc_threads_(conc_gc_threads), 169 low_memory_mode_(low_memory_mode), 170 long_pause_log_threshold_(long_pause_log_threshold), 171 long_gc_log_threshold_(long_gc_log_threshold), 172 ignore_max_footprint_(ignore_max_footprint), 173 zygote_creation_lock_("zygote creation lock", kZygoteCreationLock), 174 zygote_space_(nullptr), 175 large_object_threshold_(large_object_threshold), 176 disable_thread_flip_count_(0), 177 thread_flip_running_(false), 178 collector_type_running_(kCollectorTypeNone), 179 last_gc_type_(collector::kGcTypeNone), 180 next_gc_type_(collector::kGcTypePartial), 181 capacity_(capacity), 182 growth_limit_(growth_limit), 183 max_allowed_footprint_(initial_size), 184 native_footprint_gc_watermark_(initial_size), 185 native_need_to_run_finalization_(false), 186 concurrent_start_bytes_(std::numeric_limits<size_t>::max()), 187 total_bytes_freed_ever_(0), 188 total_objects_freed_ever_(0), 189 num_bytes_allocated_(0), 190 native_bytes_allocated_(0), 191 native_histogram_lock_("Native allocation lock"), 192 native_allocation_histogram_("Native allocation sizes", 193 1U, 194 kNativeAllocationHistogramBuckets), 195 native_free_histogram_("Native free sizes", 1U, kNativeAllocationHistogramBuckets), 196 num_bytes_freed_revoke_(0), 197 verify_missing_card_marks_(false), 198 verify_system_weaks_(false), 199 verify_pre_gc_heap_(verify_pre_gc_heap), 200 verify_pre_sweeping_heap_(verify_pre_sweeping_heap), 201 verify_post_gc_heap_(verify_post_gc_heap), 202 verify_mod_union_table_(false), 203 verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc), 204 verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc), 205 verify_post_gc_rosalloc_(verify_post_gc_rosalloc), 206 gc_stress_mode_(gc_stress_mode), 207 /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This 208 * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap 209 * verification is enabled, we limit the size of allocation stacks to speed up their 210 * searching. 211 */ 212 max_allocation_stack_size_(kGCALotMode ? kGcAlotAllocationStackSize 213 : (kVerifyObjectSupport > kVerifyObjectModeFast) ? kVerifyObjectAllocationStackSize : 214 kDefaultAllocationStackSize), 215 current_allocator_(kAllocatorTypeDlMalloc), 216 current_non_moving_allocator_(kAllocatorTypeNonMoving), 217 bump_pointer_space_(nullptr), 218 temp_space_(nullptr), 219 region_space_(nullptr), 220 min_free_(min_free), 221 max_free_(max_free), 222 target_utilization_(target_utilization), 223 foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier), 224 total_wait_time_(0), 225 verify_object_mode_(kVerifyObjectModeDisabled), 226 disable_moving_gc_count_(0), 227 is_running_on_memory_tool_(Runtime::Current()->IsRunningOnMemoryTool()), 228 use_tlab_(use_tlab), 229 main_space_backup_(nullptr), 230 min_interval_homogeneous_space_compaction_by_oom_( 231 min_interval_homogeneous_space_compaction_by_oom), 232 last_time_homogeneous_space_compaction_by_oom_(NanoTime()), 233 pending_collector_transition_(nullptr), 234 pending_heap_trim_(nullptr), 235 use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom), 236 running_collection_is_blocking_(false), 237 blocking_gc_count_(0U), 238 blocking_gc_time_(0U), 239 last_update_time_gc_count_rate_histograms_( // Round down by the window duration. 240 (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration), 241 gc_count_last_window_(0U), 242 blocking_gc_count_last_window_(0U), 243 gc_count_rate_histogram_("gc count rate histogram", 1U, kGcCountRateMaxBucketCount), 244 blocking_gc_count_rate_histogram_("blocking gc count rate histogram", 1U, 245 kGcCountRateMaxBucketCount), 246 alloc_tracking_enabled_(false), 247 backtrace_lock_(nullptr), 248 seen_backtrace_count_(0u), 249 unique_backtrace_count_(0u), 250 gc_disabled_for_shutdown_(false) { 251 if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) { 252 LOG(INFO) << "Heap() entering"; 253 } 254 ScopedTrace trace(__FUNCTION__); 255 Runtime* const runtime = Runtime::Current(); 256 // If we aren't the zygote, switch to the default non zygote allocator. This may update the 257 // entrypoints. 258 const bool is_zygote = runtime->IsZygote(); 259 if (!is_zygote) { 260 // Background compaction is currently not supported for command line runs. 261 if (background_collector_type_ != foreground_collector_type_) { 262 VLOG(heap) << "Disabling background compaction for non zygote"; 263 background_collector_type_ = foreground_collector_type_; 264 } 265 } 266 ChangeCollector(desired_collector_type_); 267 live_bitmap_.reset(new accounting::HeapBitmap(this)); 268 mark_bitmap_.reset(new accounting::HeapBitmap(this)); 269 // Requested begin for the alloc space, to follow the mapped image and oat files 270 uint8_t* requested_alloc_space_begin = nullptr; 271 if (foreground_collector_type_ == kCollectorTypeCC) { 272 // Need to use a low address so that we can allocate a contiguous 273 // 2 * Xmx space when there's no image (dex2oat for target). 274 CHECK_GE(300 * MB, non_moving_space_capacity); 275 requested_alloc_space_begin = reinterpret_cast<uint8_t*>(300 * MB) - non_moving_space_capacity; 276 } 277 278 // Load image space(s). 279 if (!image_file_name.empty()) { 280 // For code reuse, handle this like a work queue. 281 std::vector<std::string> image_file_names; 282 image_file_names.push_back(image_file_name); 283 // The loaded spaces. Secondary images may fail to load, in which case we need to remove 284 // already added spaces. 285 std::vector<space::Space*> added_image_spaces; 286 uint8_t* const original_requested_alloc_space_begin = requested_alloc_space_begin; 287 for (size_t index = 0; index < image_file_names.size(); ++index) { 288 std::string& image_name = image_file_names[index]; 289 std::string error_msg; 290 space::ImageSpace* boot_image_space = space::ImageSpace::CreateBootImage( 291 image_name.c_str(), 292 image_instruction_set, 293 index > 0, 294 &error_msg); 295 if (boot_image_space != nullptr) { 296 AddSpace(boot_image_space); 297 added_image_spaces.push_back(boot_image_space); 298 // Oat files referenced by image files immediately follow them in memory, ensure alloc space 299 // isn't going to get in the middle 300 uint8_t* oat_file_end_addr = boot_image_space->GetImageHeader().GetOatFileEnd(); 301 CHECK_GT(oat_file_end_addr, boot_image_space->End()); 302 requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize); 303 boot_image_spaces_.push_back(boot_image_space); 304 305 if (index == 0) { 306 // If this was the first space, check whether there are more images to load. 307 const OatFile* boot_oat_file = boot_image_space->GetOatFile(); 308 if (boot_oat_file == nullptr) { 309 continue; 310 } 311 312 const OatHeader& boot_oat_header = boot_oat_file->GetOatHeader(); 313 const char* boot_classpath = 314 boot_oat_header.GetStoreValueByKey(OatHeader::kBootClassPathKey); 315 if (boot_classpath == nullptr) { 316 continue; 317 } 318 319 space::ImageSpace::CreateMultiImageLocations(image_file_name, 320 boot_classpath, 321 &image_file_names); 322 } 323 } else { 324 LOG(ERROR) << "Could not create image space with image file '" << image_file_name << "'. " 325 << "Attempting to fall back to imageless running. Error was: " << error_msg 326 << "\nAttempted image: " << image_name; 327 // Remove already loaded spaces. 328 for (space::Space* loaded_space : added_image_spaces) { 329 RemoveSpace(loaded_space); 330 delete loaded_space; 331 } 332 boot_image_spaces_.clear(); 333 requested_alloc_space_begin = original_requested_alloc_space_begin; 334 break; 335 } 336 } 337 } 338 /* 339 requested_alloc_space_begin -> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- 340 +- nonmoving space (non_moving_space_capacity)+- 341 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- 342 +-????????????????????????????????????????????+- 343 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- 344 +-main alloc space / bump space 1 (capacity_) +- 345 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- 346 +-????????????????????????????????????????????+- 347 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- 348 +-main alloc space2 / bump space 2 (capacity_)+- 349 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- 350 */ 351 // We don't have hspace compaction enabled with GSS or CC. 352 if (foreground_collector_type_ == kCollectorTypeGSS || 353 foreground_collector_type_ == kCollectorTypeCC) { 354 use_homogeneous_space_compaction_for_oom_ = false; 355 } 356 bool support_homogeneous_space_compaction = 357 background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact || 358 use_homogeneous_space_compaction_for_oom_; 359 // We may use the same space the main space for the non moving space if we don't need to compact 360 // from the main space. 361 // This is not the case if we support homogeneous compaction or have a moving background 362 // collector type. 363 bool separate_non_moving_space = is_zygote || 364 support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) || 365 IsMovingGc(background_collector_type_); 366 if (foreground_collector_type_ == kCollectorTypeGSS) { 367 separate_non_moving_space = false; 368 } 369 std::unique_ptr<MemMap> main_mem_map_1; 370 std::unique_ptr<MemMap> main_mem_map_2; 371 372 // Gross hack to make dex2oat deterministic. 373 if (foreground_collector_type_ == kCollectorTypeMS && 374 requested_alloc_space_begin == nullptr && 375 Runtime::Current()->IsAotCompiler()) { 376 // Currently only enabled for MS collector since that is what the deterministic dex2oat uses. 377 // b/26849108 378 requested_alloc_space_begin = reinterpret_cast<uint8_t*>(kAllocSpaceBeginForDeterministicAoT); 379 } 380 uint8_t* request_begin = requested_alloc_space_begin; 381 if (request_begin != nullptr && separate_non_moving_space) { 382 request_begin += non_moving_space_capacity; 383 } 384 std::string error_str; 385 std::unique_ptr<MemMap> non_moving_space_mem_map; 386 if (separate_non_moving_space) { 387 ScopedTrace trace2("Create separate non moving space"); 388 // If we are the zygote, the non moving space becomes the zygote space when we run 389 // PreZygoteFork the first time. In this case, call the map "zygote space" since we can't 390 // rename the mem map later. 391 const char* space_name = is_zygote ? kZygoteSpaceName: kNonMovingSpaceName; 392 // Reserve the non moving mem map before the other two since it needs to be at a specific 393 // address. 394 non_moving_space_mem_map.reset( 395 MemMap::MapAnonymous(space_name, requested_alloc_space_begin, 396 non_moving_space_capacity, PROT_READ | PROT_WRITE, true, false, 397 &error_str)); 398 CHECK(non_moving_space_mem_map != nullptr) << error_str; 399 // Try to reserve virtual memory at a lower address if we have a separate non moving space. 400 request_begin = reinterpret_cast<uint8_t*>(300 * MB); 401 } 402 // Attempt to create 2 mem maps at or after the requested begin. 403 if (foreground_collector_type_ != kCollectorTypeCC) { 404 ScopedTrace trace2("Create main mem map"); 405 if (separate_non_moving_space || !is_zygote) { 406 main_mem_map_1.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[0], 407 request_begin, 408 capacity_, 409 &error_str)); 410 } else { 411 // If no separate non-moving space and we are the zygote, the main space must come right 412 // after the image space to avoid a gap. This is required since we want the zygote space to 413 // be adjacent to the image space. 414 main_mem_map_1.reset(MemMap::MapAnonymous(kMemMapSpaceName[0], request_begin, capacity_, 415 PROT_READ | PROT_WRITE, true, false, 416 &error_str)); 417 } 418 CHECK(main_mem_map_1.get() != nullptr) << error_str; 419 } 420 if (support_homogeneous_space_compaction || 421 background_collector_type_ == kCollectorTypeSS || 422 foreground_collector_type_ == kCollectorTypeSS) { 423 ScopedTrace trace2("Create main mem map 2"); 424 main_mem_map_2.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[1], main_mem_map_1->End(), 425 capacity_, &error_str)); 426 CHECK(main_mem_map_2.get() != nullptr) << error_str; 427 } 428 429 // Create the non moving space first so that bitmaps don't take up the address range. 430 if (separate_non_moving_space) { 431 ScopedTrace trace2("Add non moving space"); 432 // Non moving space is always dlmalloc since we currently don't have support for multiple 433 // active rosalloc spaces. 434 const size_t size = non_moving_space_mem_map->Size(); 435 non_moving_space_ = space::DlMallocSpace::CreateFromMemMap( 436 non_moving_space_mem_map.release(), "zygote / non moving space", kDefaultStartingSize, 437 initial_size, size, size, false); 438 non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity()); 439 CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space " 440 << requested_alloc_space_begin; 441 AddSpace(non_moving_space_); 442 } 443 // Create other spaces based on whether or not we have a moving GC. 444 if (foreground_collector_type_ == kCollectorTypeCC) { 445 region_space_ = space::RegionSpace::Create("Region space", capacity_ * 2, request_begin); 446 AddSpace(region_space_); 447 } else if (IsMovingGc(foreground_collector_type_) && 448 foreground_collector_type_ != kCollectorTypeGSS) { 449 // Create bump pointer spaces. 450 // We only to create the bump pointer if the foreground collector is a compacting GC. 451 // TODO: Place bump-pointer spaces somewhere to minimize size of card table. 452 bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1", 453 main_mem_map_1.release()); 454 CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space"; 455 AddSpace(bump_pointer_space_); 456 temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2", 457 main_mem_map_2.release()); 458 CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space"; 459 AddSpace(temp_space_); 460 CHECK(separate_non_moving_space); 461 } else { 462 CreateMainMallocSpace(main_mem_map_1.release(), initial_size, growth_limit_, capacity_); 463 CHECK(main_space_ != nullptr); 464 AddSpace(main_space_); 465 if (!separate_non_moving_space) { 466 non_moving_space_ = main_space_; 467 CHECK(!non_moving_space_->CanMoveObjects()); 468 } 469 if (foreground_collector_type_ == kCollectorTypeGSS) { 470 CHECK_EQ(foreground_collector_type_, background_collector_type_); 471 // Create bump pointer spaces instead of a backup space. 472 main_mem_map_2.release(); 473 bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space 1", 474 kGSSBumpPointerSpaceCapacity, nullptr); 475 CHECK(bump_pointer_space_ != nullptr); 476 AddSpace(bump_pointer_space_); 477 temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2", 478 kGSSBumpPointerSpaceCapacity, nullptr); 479 CHECK(temp_space_ != nullptr); 480 AddSpace(temp_space_); 481 } else if (main_mem_map_2.get() != nullptr) { 482 const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1]; 483 main_space_backup_.reset(CreateMallocSpaceFromMemMap(main_mem_map_2.release(), initial_size, 484 growth_limit_, capacity_, name, true)); 485 CHECK(main_space_backup_.get() != nullptr); 486 // Add the space so its accounted for in the heap_begin and heap_end. 487 AddSpace(main_space_backup_.get()); 488 } 489 } 490 CHECK(non_moving_space_ != nullptr); 491 CHECK(!non_moving_space_->CanMoveObjects()); 492 // Allocate the large object space. 493 if (large_object_space_type == space::LargeObjectSpaceType::kFreeList) { 494 large_object_space_ = space::FreeListSpace::Create("free list large object space", nullptr, 495 capacity_); 496 CHECK(large_object_space_ != nullptr) << "Failed to create large object space"; 497 } else if (large_object_space_type == space::LargeObjectSpaceType::kMap) { 498 large_object_space_ = space::LargeObjectMapSpace::Create("mem map large object space"); 499 CHECK(large_object_space_ != nullptr) << "Failed to create large object space"; 500 } else { 501 // Disable the large object space by making the cutoff excessively large. 502 large_object_threshold_ = std::numeric_limits<size_t>::max(); 503 large_object_space_ = nullptr; 504 } 505 if (large_object_space_ != nullptr) { 506 AddSpace(large_object_space_); 507 } 508 // Compute heap capacity. Continuous spaces are sorted in order of Begin(). 509 CHECK(!continuous_spaces_.empty()); 510 // Relies on the spaces being sorted. 511 uint8_t* heap_begin = continuous_spaces_.front()->Begin(); 512 uint8_t* heap_end = continuous_spaces_.back()->Limit(); 513 size_t heap_capacity = heap_end - heap_begin; 514 // Remove the main backup space since it slows down the GC to have unused extra spaces. 515 // TODO: Avoid needing to do this. 516 if (main_space_backup_.get() != nullptr) { 517 RemoveSpace(main_space_backup_.get()); 518 } 519 // Allocate the card table. 520 // We currently don't support dynamically resizing the card table. 521 // Since we don't know where in the low_4gb the app image will be located, make the card table 522 // cover the whole low_4gb. TODO: Extend the card table in AddSpace. 523 UNUSED(heap_capacity); 524 // Start at 64 KB, we can be sure there are no spaces mapped this low since the address range is 525 // reserved by the kernel. 526 static constexpr size_t kMinHeapAddress = 4 * KB; 527 card_table_.reset(accounting::CardTable::Create(reinterpret_cast<uint8_t*>(kMinHeapAddress), 528 4 * GB - kMinHeapAddress)); 529 CHECK(card_table_.get() != nullptr) << "Failed to create card table"; 530 if (foreground_collector_type_ == kCollectorTypeCC && kUseTableLookupReadBarrier) { 531 rb_table_.reset(new accounting::ReadBarrierTable()); 532 DCHECK(rb_table_->IsAllCleared()); 533 } 534 if (HasBootImageSpace()) { 535 // Don't add the image mod union table if we are running without an image, this can crash if 536 // we use the CardCache implementation. 537 for (space::ImageSpace* image_space : GetBootImageSpaces()) { 538 accounting::ModUnionTable* mod_union_table = new accounting::ModUnionTableToZygoteAllocspace( 539 "Image mod-union table", this, image_space); 540 CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table"; 541 AddModUnionTable(mod_union_table); 542 } 543 } 544 if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) { 545 accounting::RememberedSet* non_moving_space_rem_set = 546 new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_); 547 CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set"; 548 AddRememberedSet(non_moving_space_rem_set); 549 } 550 // TODO: Count objects in the image space here? 551 num_bytes_allocated_.StoreRelaxed(0); 552 mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize, 553 kDefaultMarkStackSize)); 554 const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize; 555 allocation_stack_.reset(accounting::ObjectStack::Create( 556 "allocation stack", max_allocation_stack_size_, alloc_stack_capacity)); 557 live_stack_.reset(accounting::ObjectStack::Create( 558 "live stack", max_allocation_stack_size_, alloc_stack_capacity)); 559 // It's still too early to take a lock because there are no threads yet, but we can create locks 560 // now. We don't create it earlier to make it clear that you can't use locks during heap 561 // initialization. 562 gc_complete_lock_ = new Mutex("GC complete lock"); 563 gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable", 564 *gc_complete_lock_)); 565 thread_flip_lock_ = new Mutex("GC thread flip lock"); 566 thread_flip_cond_.reset(new ConditionVariable("GC thread flip condition variable", 567 *thread_flip_lock_)); 568 task_processor_.reset(new TaskProcessor()); 569 reference_processor_.reset(new ReferenceProcessor()); 570 pending_task_lock_ = new Mutex("Pending task lock"); 571 if (ignore_max_footprint_) { 572 SetIdealFootprint(std::numeric_limits<size_t>::max()); 573 concurrent_start_bytes_ = std::numeric_limits<size_t>::max(); 574 } 575 CHECK_NE(max_allowed_footprint_, 0U); 576 // Create our garbage collectors. 577 for (size_t i = 0; i < 2; ++i) { 578 const bool concurrent = i != 0; 579 if ((MayUseCollector(kCollectorTypeCMS) && concurrent) || 580 (MayUseCollector(kCollectorTypeMS) && !concurrent)) { 581 garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent)); 582 garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent)); 583 garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent)); 584 } 585 } 586 if (kMovingCollector) { 587 if (MayUseCollector(kCollectorTypeSS) || MayUseCollector(kCollectorTypeGSS) || 588 MayUseCollector(kCollectorTypeHomogeneousSpaceCompact) || 589 use_homogeneous_space_compaction_for_oom_) { 590 // TODO: Clean this up. 591 const bool generational = foreground_collector_type_ == kCollectorTypeGSS; 592 semi_space_collector_ = new collector::SemiSpace(this, generational, 593 generational ? "generational" : ""); 594 garbage_collectors_.push_back(semi_space_collector_); 595 } 596 if (MayUseCollector(kCollectorTypeCC)) { 597 concurrent_copying_collector_ = new collector::ConcurrentCopying(this); 598 garbage_collectors_.push_back(concurrent_copying_collector_); 599 } 600 if (MayUseCollector(kCollectorTypeMC)) { 601 mark_compact_collector_ = new collector::MarkCompact(this); 602 garbage_collectors_.push_back(mark_compact_collector_); 603 } 604 } 605 if (!GetBootImageSpaces().empty() && non_moving_space_ != nullptr && 606 (is_zygote || separate_non_moving_space || foreground_collector_type_ == kCollectorTypeGSS)) { 607 // Check that there's no gap between the image space and the non moving space so that the 608 // immune region won't break (eg. due to a large object allocated in the gap). This is only 609 // required when we're the zygote or using GSS. 610 // Space with smallest Begin(). 611 space::ImageSpace* first_space = nullptr; 612 for (space::ImageSpace* space : boot_image_spaces_) { 613 if (first_space == nullptr || space->Begin() < first_space->Begin()) { 614 first_space = space; 615 } 616 } 617 bool no_gap = MemMap::CheckNoGaps(first_space->GetMemMap(), non_moving_space_->GetMemMap()); 618 if (!no_gap) { 619 PrintFileToLog("/proc/self/maps", LogSeverity::ERROR); 620 MemMap::DumpMaps(LOG(ERROR), true); 621 LOG(FATAL) << "There's a gap between the image space and the non-moving space"; 622 } 623 } 624 instrumentation::Instrumentation* const instrumentation = runtime->GetInstrumentation(); 625 if (gc_stress_mode_) { 626 backtrace_lock_ = new Mutex("GC complete lock"); 627 } 628 if (is_running_on_memory_tool_ || gc_stress_mode_) { 629 instrumentation->InstrumentQuickAllocEntryPoints(); 630 } 631 if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) { 632 LOG(INFO) << "Heap() exiting"; 633 } 634 } 635 636 MemMap* Heap::MapAnonymousPreferredAddress(const char* name, 637 uint8_t* request_begin, 638 size_t capacity, 639 std::string* out_error_str) { 640 while (true) { 641 MemMap* map = MemMap::MapAnonymous(name, request_begin, capacity, 642 PROT_READ | PROT_WRITE, true, false, out_error_str); 643 if (map != nullptr || request_begin == nullptr) { 644 return map; 645 } 646 // Retry a second time with no specified request begin. 647 request_begin = nullptr; 648 } 649 } 650 651 bool Heap::MayUseCollector(CollectorType type) const { 652 return foreground_collector_type_ == type || background_collector_type_ == type; 653 } 654 655 space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap* mem_map, 656 size_t initial_size, 657 size_t growth_limit, 658 size_t capacity, 659 const char* name, 660 bool can_move_objects) { 661 space::MallocSpace* malloc_space = nullptr; 662 if (kUseRosAlloc) { 663 // Create rosalloc space. 664 malloc_space = space::RosAllocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize, 665 initial_size, growth_limit, capacity, 666 low_memory_mode_, can_move_objects); 667 } else { 668 malloc_space = space::DlMallocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize, 669 initial_size, growth_limit, capacity, 670 can_move_objects); 671 } 672 if (collector::SemiSpace::kUseRememberedSet) { 673 accounting::RememberedSet* rem_set = 674 new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space); 675 CHECK(rem_set != nullptr) << "Failed to create main space remembered set"; 676 AddRememberedSet(rem_set); 677 } 678 CHECK(malloc_space != nullptr) << "Failed to create " << name; 679 malloc_space->SetFootprintLimit(malloc_space->Capacity()); 680 return malloc_space; 681 } 682 683 void Heap::CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit, 684 size_t capacity) { 685 // Is background compaction is enabled? 686 bool can_move_objects = IsMovingGc(background_collector_type_) != 687 IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_; 688 // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will 689 // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact 690 // from the main space to the zygote space. If background compaction is enabled, always pass in 691 // that we can move objets. 692 if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) { 693 // After the zygote we want this to be false if we don't have background compaction enabled so 694 // that getting primitive array elements is faster. 695 // We never have homogeneous compaction with GSS and don't need a space with movable objects. 696 can_move_objects = !HasZygoteSpace() && foreground_collector_type_ != kCollectorTypeGSS; 697 } 698 if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) { 699 RemoveRememberedSet(main_space_); 700 } 701 const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0]; 702 main_space_ = CreateMallocSpaceFromMemMap(mem_map, initial_size, growth_limit, capacity, name, 703 can_move_objects); 704 SetSpaceAsDefault(main_space_); 705 VLOG(heap) << "Created main space " << main_space_; 706 } 707 708 void Heap::ChangeAllocator(AllocatorType allocator) { 709 if (current_allocator_ != allocator) { 710 // These two allocators are only used internally and don't have any entrypoints. 711 CHECK_NE(allocator, kAllocatorTypeLOS); 712 CHECK_NE(allocator, kAllocatorTypeNonMoving); 713 current_allocator_ = allocator; 714 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_); 715 SetQuickAllocEntryPointsAllocator(current_allocator_); 716 Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints(); 717 } 718 } 719 720 void Heap::DisableMovingGc() { 721 if (IsMovingGc(foreground_collector_type_)) { 722 foreground_collector_type_ = kCollectorTypeCMS; 723 } 724 if (IsMovingGc(background_collector_type_)) { 725 background_collector_type_ = foreground_collector_type_; 726 } 727 TransitionCollector(foreground_collector_type_); 728 Thread* const self = Thread::Current(); 729 ScopedThreadStateChange tsc(self, kSuspended); 730 ScopedSuspendAll ssa(__FUNCTION__); 731 // Something may have caused the transition to fail. 732 if (!IsMovingGc(collector_type_) && non_moving_space_ != main_space_) { 733 CHECK(main_space_ != nullptr); 734 // The allocation stack may have non movable objects in it. We need to flush it since the GC 735 // can't only handle marking allocation stack objects of one non moving space and one main 736 // space. 737 { 738 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 739 FlushAllocStack(); 740 } 741 main_space_->DisableMovingObjects(); 742 non_moving_space_ = main_space_; 743 CHECK(!non_moving_space_->CanMoveObjects()); 744 } 745 } 746 747 std::string Heap::SafeGetClassDescriptor(mirror::Class* klass) { 748 if (!IsValidContinuousSpaceObjectAddress(klass)) { 749 return StringPrintf("<non heap address klass %p>", klass); 750 } 751 mirror::Class* component_type = klass->GetComponentType<kVerifyNone>(); 752 if (IsValidContinuousSpaceObjectAddress(component_type) && klass->IsArrayClass<kVerifyNone>()) { 753 std::string result("["); 754 result += SafeGetClassDescriptor(component_type); 755 return result; 756 } else if (UNLIKELY(klass->IsPrimitive<kVerifyNone>())) { 757 return Primitive::Descriptor(klass->GetPrimitiveType<kVerifyNone>()); 758 } else if (UNLIKELY(klass->IsProxyClass<kVerifyNone>())) { 759 return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(klass); 760 } else { 761 mirror::DexCache* dex_cache = klass->GetDexCache<kVerifyNone>(); 762 if (!IsValidContinuousSpaceObjectAddress(dex_cache)) { 763 return StringPrintf("<non heap address dex_cache %p>", dex_cache); 764 } 765 const DexFile* dex_file = dex_cache->GetDexFile(); 766 uint16_t class_def_idx = klass->GetDexClassDefIndex(); 767 if (class_def_idx == DexFile::kDexNoIndex16) { 768 return "<class def not found>"; 769 } 770 const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx); 771 const DexFile::TypeId& type_id = dex_file->GetTypeId(class_def.class_idx_); 772 return dex_file->GetTypeDescriptor(type_id); 773 } 774 } 775 776 std::string Heap::SafePrettyTypeOf(mirror::Object* obj) { 777 if (obj == nullptr) { 778 return "null"; 779 } 780 mirror::Class* klass = obj->GetClass<kVerifyNone>(); 781 if (klass == nullptr) { 782 return "(class=null)"; 783 } 784 std::string result(SafeGetClassDescriptor(klass)); 785 if (obj->IsClass()) { 786 result += "<" + SafeGetClassDescriptor(obj->AsClass<kVerifyNone>()) + ">"; 787 } 788 return result; 789 } 790 791 void Heap::DumpObject(std::ostream& stream, mirror::Object* obj) { 792 if (obj == nullptr) { 793 stream << "(obj=null)"; 794 return; 795 } 796 if (IsAligned<kObjectAlignment>(obj)) { 797 space::Space* space = nullptr; 798 // Don't use find space since it only finds spaces which actually contain objects instead of 799 // spaces which may contain objects (e.g. cleared bump pointer spaces). 800 for (const auto& cur_space : continuous_spaces_) { 801 if (cur_space->HasAddress(obj)) { 802 space = cur_space; 803 break; 804 } 805 } 806 // Unprotect all the spaces. 807 for (const auto& con_space : continuous_spaces_) { 808 mprotect(con_space->Begin(), con_space->Capacity(), PROT_READ | PROT_WRITE); 809 } 810 stream << "Object " << obj; 811 if (space != nullptr) { 812 stream << " in space " << *space; 813 } 814 mirror::Class* klass = obj->GetClass<kVerifyNone>(); 815 stream << "\nclass=" << klass; 816 if (klass != nullptr) { 817 stream << " type= " << SafePrettyTypeOf(obj); 818 } 819 // Re-protect the address we faulted on. 820 mprotect(AlignDown(obj, kPageSize), kPageSize, PROT_NONE); 821 } 822 } 823 824 bool Heap::IsCompilingBoot() const { 825 if (!Runtime::Current()->IsAotCompiler()) { 826 return false; 827 } 828 ScopedObjectAccess soa(Thread::Current()); 829 for (const auto& space : continuous_spaces_) { 830 if (space->IsImageSpace() || space->IsZygoteSpace()) { 831 return false; 832 } 833 } 834 return true; 835 } 836 837 void Heap::IncrementDisableMovingGC(Thread* self) { 838 // Need to do this holding the lock to prevent races where the GC is about to run / running when 839 // we attempt to disable it. 840 ScopedThreadStateChange tsc(self, kWaitingForGcToComplete); 841 MutexLock mu(self, *gc_complete_lock_); 842 ++disable_moving_gc_count_; 843 if (IsMovingGc(collector_type_running_)) { 844 WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self); 845 } 846 } 847 848 void Heap::DecrementDisableMovingGC(Thread* self) { 849 MutexLock mu(self, *gc_complete_lock_); 850 CHECK_GT(disable_moving_gc_count_, 0U); 851 --disable_moving_gc_count_; 852 } 853 854 void Heap::IncrementDisableThreadFlip(Thread* self) { 855 // Supposed to be called by mutators. If thread_flip_running_ is true, block. Otherwise, go ahead. 856 CHECK(kUseReadBarrier); 857 bool is_nested = self->GetDisableThreadFlipCount() > 0; 858 self->IncrementDisableThreadFlipCount(); 859 if (is_nested) { 860 // If this is a nested JNI critical section enter, we don't need to wait or increment the global 861 // counter. The global counter is incremented only once for a thread for the outermost enter. 862 return; 863 } 864 ScopedThreadStateChange tsc(self, kWaitingForGcThreadFlip); 865 MutexLock mu(self, *thread_flip_lock_); 866 bool has_waited = false; 867 uint64_t wait_start = NanoTime(); 868 while (thread_flip_running_) { 869 has_waited = true; 870 thread_flip_cond_->Wait(self); 871 } 872 ++disable_thread_flip_count_; 873 if (has_waited) { 874 uint64_t wait_time = NanoTime() - wait_start; 875 total_wait_time_ += wait_time; 876 if (wait_time > long_pause_log_threshold_) { 877 LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time); 878 } 879 } 880 } 881 882 void Heap::DecrementDisableThreadFlip(Thread* self) { 883 // Supposed to be called by mutators. Decrement disable_thread_flip_count_ and potentially wake up 884 // the GC waiting before doing a thread flip. 885 CHECK(kUseReadBarrier); 886 self->DecrementDisableThreadFlipCount(); 887 bool is_outermost = self->GetDisableThreadFlipCount() == 0; 888 if (!is_outermost) { 889 // If this is not an outermost JNI critical exit, we don't need to decrement the global counter. 890 // The global counter is decremented only once for a thread for the outermost exit. 891 return; 892 } 893 MutexLock mu(self, *thread_flip_lock_); 894 CHECK_GT(disable_thread_flip_count_, 0U); 895 --disable_thread_flip_count_; 896 if (disable_thread_flip_count_ == 0) { 897 // Potentially notify the GC thread blocking to begin a thread flip. 898 thread_flip_cond_->Broadcast(self); 899 } 900 } 901 902 void Heap::ThreadFlipBegin(Thread* self) { 903 // Supposed to be called by GC. Set thread_flip_running_ to be true. If disable_thread_flip_count_ 904 // > 0, block. Otherwise, go ahead. 905 CHECK(kUseReadBarrier); 906 ScopedThreadStateChange tsc(self, kWaitingForGcThreadFlip); 907 MutexLock mu(self, *thread_flip_lock_); 908 bool has_waited = false; 909 uint64_t wait_start = NanoTime(); 910 CHECK(!thread_flip_running_); 911 // Set this to true before waiting so that frequent JNI critical enter/exits won't starve 912 // GC. This like a writer preference of a reader-writer lock. 913 thread_flip_running_ = true; 914 while (disable_thread_flip_count_ > 0) { 915 has_waited = true; 916 thread_flip_cond_->Wait(self); 917 } 918 if (has_waited) { 919 uint64_t wait_time = NanoTime() - wait_start; 920 total_wait_time_ += wait_time; 921 if (wait_time > long_pause_log_threshold_) { 922 LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time); 923 } 924 } 925 } 926 927 void Heap::ThreadFlipEnd(Thread* self) { 928 // Supposed to be called by GC. Set thread_flip_running_ to false and potentially wake up mutators 929 // waiting before doing a JNI critical. 930 CHECK(kUseReadBarrier); 931 MutexLock mu(self, *thread_flip_lock_); 932 CHECK(thread_flip_running_); 933 thread_flip_running_ = false; 934 // Potentially notify mutator threads blocking to enter a JNI critical section. 935 thread_flip_cond_->Broadcast(self); 936 } 937 938 void Heap::UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state) { 939 if (old_process_state != new_process_state) { 940 const bool jank_perceptible = new_process_state == kProcessStateJankPerceptible; 941 for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) { 942 // Start at index 1 to avoid "is always false" warning. 943 // Have iteration 1 always transition the collector. 944 TransitionCollector((((i & 1) == 1) == jank_perceptible) 945 ? foreground_collector_type_ 946 : background_collector_type_); 947 usleep(kCollectorTransitionStressWait); 948 } 949 if (jank_perceptible) { 950 // Transition back to foreground right away to prevent jank. 951 RequestCollectorTransition(foreground_collector_type_, 0); 952 } else { 953 // Don't delay for debug builds since we may want to stress test the GC. 954 // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have 955 // special handling which does a homogenous space compaction once but then doesn't transition 956 // the collector. 957 RequestCollectorTransition(background_collector_type_, 958 kIsDebugBuild ? 0 : kCollectorTransitionWait); 959 } 960 } 961 } 962 963 void Heap::CreateThreadPool() { 964 const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_); 965 if (num_threads != 0) { 966 thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads)); 967 } 968 } 969 970 // Visit objects when threads aren't suspended. If concurrent moving 971 // GC, disable moving GC and suspend threads and then visit objects. 972 void Heap::VisitObjects(ObjectCallback callback, void* arg) { 973 Thread* self = Thread::Current(); 974 Locks::mutator_lock_->AssertSharedHeld(self); 975 DCHECK(!Locks::mutator_lock_->IsExclusiveHeld(self)) << "Call VisitObjectsPaused() instead"; 976 if (IsGcConcurrentAndMoving()) { 977 // Concurrent moving GC. Just suspending threads isn't sufficient 978 // because a collection isn't one big pause and we could suspend 979 // threads in the middle (between phases) of a concurrent moving 980 // collection where it's not easily known which objects are alive 981 // (both the region space and the non-moving space) or which 982 // copies of objects to visit, and the to-space invariant could be 983 // easily broken. Visit objects while GC isn't running by using 984 // IncrementDisableMovingGC() and threads are suspended. 985 IncrementDisableMovingGC(self); 986 { 987 ScopedThreadSuspension sts(self, kWaitingForVisitObjects); 988 ScopedSuspendAll ssa(__FUNCTION__); 989 VisitObjectsInternalRegionSpace(callback, arg); 990 VisitObjectsInternal(callback, arg); 991 } 992 DecrementDisableMovingGC(self); 993 } else { 994 // GCs can move objects, so don't allow this. 995 ScopedAssertNoThreadSuspension ants(self, "Visiting objects"); 996 DCHECK(region_space_ == nullptr); 997 VisitObjectsInternal(callback, arg); 998 } 999 } 1000 1001 // Visit objects when threads are already suspended. 1002 void Heap::VisitObjectsPaused(ObjectCallback callback, void* arg) { 1003 Thread* self = Thread::Current(); 1004 Locks::mutator_lock_->AssertExclusiveHeld(self); 1005 VisitObjectsInternalRegionSpace(callback, arg); 1006 VisitObjectsInternal(callback, arg); 1007 } 1008 1009 // Visit objects in the region spaces. 1010 void Heap::VisitObjectsInternalRegionSpace(ObjectCallback callback, void* arg) { 1011 Thread* self = Thread::Current(); 1012 Locks::mutator_lock_->AssertExclusiveHeld(self); 1013 if (region_space_ != nullptr) { 1014 DCHECK(IsGcConcurrentAndMoving()); 1015 if (!zygote_creation_lock_.IsExclusiveHeld(self)) { 1016 // Exclude the pre-zygote fork time where the semi-space collector 1017 // calls VerifyHeapReferences() as part of the zygote compaction 1018 // which then would call here without the moving GC disabled, 1019 // which is fine. 1020 DCHECK(IsMovingGCDisabled(self)); 1021 } 1022 region_space_->Walk(callback, arg); 1023 } 1024 } 1025 1026 // Visit objects in the other spaces. 1027 void Heap::VisitObjectsInternal(ObjectCallback callback, void* arg) { 1028 if (bump_pointer_space_ != nullptr) { 1029 // Visit objects in bump pointer space. 1030 bump_pointer_space_->Walk(callback, arg); 1031 } 1032 // TODO: Switch to standard begin and end to use ranged a based loop. 1033 for (auto* it = allocation_stack_->Begin(), *end = allocation_stack_->End(); it < end; ++it) { 1034 mirror::Object* const obj = it->AsMirrorPtr(); 1035 if (obj != nullptr && obj->GetClass() != nullptr) { 1036 // Avoid the race condition caused by the object not yet being written into the allocation 1037 // stack or the class not yet being written in the object. Or, if 1038 // kUseThreadLocalAllocationStack, there can be nulls on the allocation stack. 1039 callback(obj, arg); 1040 } 1041 } 1042 { 1043 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 1044 GetLiveBitmap()->Walk(callback, arg); 1045 } 1046 } 1047 1048 void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) { 1049 space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_; 1050 space::ContinuousSpace* space2 = non_moving_space_; 1051 // TODO: Generalize this to n bitmaps? 1052 CHECK(space1 != nullptr); 1053 CHECK(space2 != nullptr); 1054 MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(), 1055 (large_object_space_ != nullptr ? large_object_space_->GetLiveBitmap() : nullptr), 1056 stack); 1057 } 1058 1059 void Heap::DeleteThreadPool() { 1060 thread_pool_.reset(nullptr); 1061 } 1062 1063 void Heap::AddSpace(space::Space* space) { 1064 CHECK(space != nullptr); 1065 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 1066 if (space->IsContinuousSpace()) { 1067 DCHECK(!space->IsDiscontinuousSpace()); 1068 space::ContinuousSpace* continuous_space = space->AsContinuousSpace(); 1069 // Continuous spaces don't necessarily have bitmaps. 1070 accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap(); 1071 accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap(); 1072 if (live_bitmap != nullptr) { 1073 CHECK(mark_bitmap != nullptr); 1074 live_bitmap_->AddContinuousSpaceBitmap(live_bitmap); 1075 mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap); 1076 } 1077 continuous_spaces_.push_back(continuous_space); 1078 // Ensure that spaces remain sorted in increasing order of start address. 1079 std::sort(continuous_spaces_.begin(), continuous_spaces_.end(), 1080 [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) { 1081 return a->Begin() < b->Begin(); 1082 }); 1083 } else { 1084 CHECK(space->IsDiscontinuousSpace()); 1085 space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace(); 1086 live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap()); 1087 mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap()); 1088 discontinuous_spaces_.push_back(discontinuous_space); 1089 } 1090 if (space->IsAllocSpace()) { 1091 alloc_spaces_.push_back(space->AsAllocSpace()); 1092 } 1093 } 1094 1095 void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) { 1096 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 1097 if (continuous_space->IsDlMallocSpace()) { 1098 dlmalloc_space_ = continuous_space->AsDlMallocSpace(); 1099 } else if (continuous_space->IsRosAllocSpace()) { 1100 rosalloc_space_ = continuous_space->AsRosAllocSpace(); 1101 } 1102 } 1103 1104 void Heap::RemoveSpace(space::Space* space) { 1105 DCHECK(space != nullptr); 1106 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 1107 if (space->IsContinuousSpace()) { 1108 DCHECK(!space->IsDiscontinuousSpace()); 1109 space::ContinuousSpace* continuous_space = space->AsContinuousSpace(); 1110 // Continuous spaces don't necessarily have bitmaps. 1111 accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap(); 1112 accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap(); 1113 if (live_bitmap != nullptr) { 1114 DCHECK(mark_bitmap != nullptr); 1115 live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap); 1116 mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap); 1117 } 1118 auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space); 1119 DCHECK(it != continuous_spaces_.end()); 1120 continuous_spaces_.erase(it); 1121 } else { 1122 DCHECK(space->IsDiscontinuousSpace()); 1123 space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace(); 1124 live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap()); 1125 mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap()); 1126 auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(), 1127 discontinuous_space); 1128 DCHECK(it != discontinuous_spaces_.end()); 1129 discontinuous_spaces_.erase(it); 1130 } 1131 if (space->IsAllocSpace()) { 1132 auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace()); 1133 DCHECK(it != alloc_spaces_.end()); 1134 alloc_spaces_.erase(it); 1135 } 1136 } 1137 1138 void Heap::DumpGcPerformanceInfo(std::ostream& os) { 1139 // Dump cumulative timings. 1140 os << "Dumping cumulative Gc timings\n"; 1141 uint64_t total_duration = 0; 1142 // Dump cumulative loggers for each GC type. 1143 uint64_t total_paused_time = 0; 1144 for (auto& collector : garbage_collectors_) { 1145 total_duration += collector->GetCumulativeTimings().GetTotalNs(); 1146 total_paused_time += collector->GetTotalPausedTimeNs(); 1147 collector->DumpPerformanceInfo(os); 1148 } 1149 if (total_duration != 0) { 1150 const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0; 1151 os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n"; 1152 os << "Mean GC size throughput: " 1153 << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n"; 1154 os << "Mean GC object throughput: " 1155 << (GetObjectsFreedEver() / total_seconds) << " objects/s\n"; 1156 } 1157 uint64_t total_objects_allocated = GetObjectsAllocatedEver(); 1158 os << "Total number of allocations " << total_objects_allocated << "\n"; 1159 os << "Total bytes allocated " << PrettySize(GetBytesAllocatedEver()) << "\n"; 1160 os << "Total bytes freed " << PrettySize(GetBytesFreedEver()) << "\n"; 1161 os << "Free memory " << PrettySize(GetFreeMemory()) << "\n"; 1162 os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n"; 1163 os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n"; 1164 os << "Total memory " << PrettySize(GetTotalMemory()) << "\n"; 1165 os << "Max memory " << PrettySize(GetMaxMemory()) << "\n"; 1166 if (HasZygoteSpace()) { 1167 os << "Zygote space size " << PrettySize(zygote_space_->Size()) << "\n"; 1168 } 1169 os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n"; 1170 os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n"; 1171 os << "Total GC count: " << GetGcCount() << "\n"; 1172 os << "Total GC time: " << PrettyDuration(GetGcTime()) << "\n"; 1173 os << "Total blocking GC count: " << GetBlockingGcCount() << "\n"; 1174 os << "Total blocking GC time: " << PrettyDuration(GetBlockingGcTime()) << "\n"; 1175 1176 { 1177 MutexLock mu(Thread::Current(), *gc_complete_lock_); 1178 if (gc_count_rate_histogram_.SampleSize() > 0U) { 1179 os << "Histogram of GC count per " << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: "; 1180 gc_count_rate_histogram_.DumpBins(os); 1181 os << "\n"; 1182 } 1183 if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) { 1184 os << "Histogram of blocking GC count per " 1185 << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: "; 1186 blocking_gc_count_rate_histogram_.DumpBins(os); 1187 os << "\n"; 1188 } 1189 } 1190 1191 if (kDumpRosAllocStatsOnSigQuit && rosalloc_space_ != nullptr) { 1192 rosalloc_space_->DumpStats(os); 1193 } 1194 1195 { 1196 MutexLock mu(Thread::Current(), native_histogram_lock_); 1197 if (native_allocation_histogram_.SampleSize() > 0u) { 1198 os << "Histogram of native allocation "; 1199 native_allocation_histogram_.DumpBins(os); 1200 os << " bucket size " << native_allocation_histogram_.BucketWidth() << "\n"; 1201 } 1202 if (native_free_histogram_.SampleSize() > 0u) { 1203 os << "Histogram of native free "; 1204 native_free_histogram_.DumpBins(os); 1205 os << " bucket size " << native_free_histogram_.BucketWidth() << "\n"; 1206 } 1207 } 1208 1209 BaseMutex::DumpAll(os); 1210 } 1211 1212 void Heap::ResetGcPerformanceInfo() { 1213 for (auto& collector : garbage_collectors_) { 1214 collector->ResetMeasurements(); 1215 } 1216 total_bytes_freed_ever_ = 0; 1217 total_objects_freed_ever_ = 0; 1218 total_wait_time_ = 0; 1219 blocking_gc_count_ = 0; 1220 blocking_gc_time_ = 0; 1221 gc_count_last_window_ = 0; 1222 blocking_gc_count_last_window_ = 0; 1223 last_update_time_gc_count_rate_histograms_ = // Round down by the window duration. 1224 (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration; 1225 { 1226 MutexLock mu(Thread::Current(), *gc_complete_lock_); 1227 gc_count_rate_histogram_.Reset(); 1228 blocking_gc_count_rate_histogram_.Reset(); 1229 } 1230 } 1231 1232 uint64_t Heap::GetGcCount() const { 1233 uint64_t gc_count = 0U; 1234 for (auto& collector : garbage_collectors_) { 1235 gc_count += collector->GetCumulativeTimings().GetIterations(); 1236 } 1237 return gc_count; 1238 } 1239 1240 uint64_t Heap::GetGcTime() const { 1241 uint64_t gc_time = 0U; 1242 for (auto& collector : garbage_collectors_) { 1243 gc_time += collector->GetCumulativeTimings().GetTotalNs(); 1244 } 1245 return gc_time; 1246 } 1247 1248 uint64_t Heap::GetBlockingGcCount() const { 1249 return blocking_gc_count_; 1250 } 1251 1252 uint64_t Heap::GetBlockingGcTime() const { 1253 return blocking_gc_time_; 1254 } 1255 1256 void Heap::DumpGcCountRateHistogram(std::ostream& os) const { 1257 MutexLock mu(Thread::Current(), *gc_complete_lock_); 1258 if (gc_count_rate_histogram_.SampleSize() > 0U) { 1259 gc_count_rate_histogram_.DumpBins(os); 1260 } 1261 } 1262 1263 void Heap::DumpBlockingGcCountRateHistogram(std::ostream& os) const { 1264 MutexLock mu(Thread::Current(), *gc_complete_lock_); 1265 if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) { 1266 blocking_gc_count_rate_histogram_.DumpBins(os); 1267 } 1268 } 1269 1270 Heap::~Heap() { 1271 VLOG(heap) << "Starting ~Heap()"; 1272 STLDeleteElements(&garbage_collectors_); 1273 // If we don't reset then the mark stack complains in its destructor. 1274 allocation_stack_->Reset(); 1275 allocation_records_.reset(); 1276 live_stack_->Reset(); 1277 STLDeleteValues(&mod_union_tables_); 1278 STLDeleteValues(&remembered_sets_); 1279 STLDeleteElements(&continuous_spaces_); 1280 STLDeleteElements(&discontinuous_spaces_); 1281 delete gc_complete_lock_; 1282 delete thread_flip_lock_; 1283 delete pending_task_lock_; 1284 delete backtrace_lock_; 1285 if (unique_backtrace_count_.LoadRelaxed() != 0 || seen_backtrace_count_.LoadRelaxed() != 0) { 1286 LOG(INFO) << "gc stress unique=" << unique_backtrace_count_.LoadRelaxed() 1287 << " total=" << seen_backtrace_count_.LoadRelaxed() + 1288 unique_backtrace_count_.LoadRelaxed(); 1289 } 1290 VLOG(heap) << "Finished ~Heap()"; 1291 } 1292 1293 space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj, 1294 bool fail_ok) const { 1295 for (const auto& space : continuous_spaces_) { 1296 if (space->Contains(obj)) { 1297 return space; 1298 } 1299 } 1300 if (!fail_ok) { 1301 LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!"; 1302 } 1303 return nullptr; 1304 } 1305 1306 space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj, 1307 bool fail_ok) const { 1308 for (const auto& space : discontinuous_spaces_) { 1309 if (space->Contains(obj)) { 1310 return space; 1311 } 1312 } 1313 if (!fail_ok) { 1314 LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!"; 1315 } 1316 return nullptr; 1317 } 1318 1319 space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const { 1320 space::Space* result = FindContinuousSpaceFromObject(obj, true); 1321 if (result != nullptr) { 1322 return result; 1323 } 1324 return FindDiscontinuousSpaceFromObject(obj, fail_ok); 1325 } 1326 1327 void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) { 1328 // If we're in a stack overflow, do not create a new exception. It would require running the 1329 // constructor, which will of course still be in a stack overflow. 1330 if (self->IsHandlingStackOverflow()) { 1331 self->SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError()); 1332 return; 1333 } 1334 1335 std::ostringstream oss; 1336 size_t total_bytes_free = GetFreeMemory(); 1337 oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free 1338 << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM"; 1339 // If the allocation failed due to fragmentation, print out the largest continuous allocation. 1340 if (total_bytes_free >= byte_count) { 1341 space::AllocSpace* space = nullptr; 1342 if (allocator_type == kAllocatorTypeNonMoving) { 1343 space = non_moving_space_; 1344 } else if (allocator_type == kAllocatorTypeRosAlloc || 1345 allocator_type == kAllocatorTypeDlMalloc) { 1346 space = main_space_; 1347 } else if (allocator_type == kAllocatorTypeBumpPointer || 1348 allocator_type == kAllocatorTypeTLAB) { 1349 space = bump_pointer_space_; 1350 } else if (allocator_type == kAllocatorTypeRegion || 1351 allocator_type == kAllocatorTypeRegionTLAB) { 1352 space = region_space_; 1353 } 1354 if (space != nullptr) { 1355 space->LogFragmentationAllocFailure(oss, byte_count); 1356 } 1357 } 1358 self->ThrowOutOfMemoryError(oss.str().c_str()); 1359 } 1360 1361 void Heap::DoPendingCollectorTransition() { 1362 CollectorType desired_collector_type = desired_collector_type_; 1363 // Launch homogeneous space compaction if it is desired. 1364 if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) { 1365 if (!CareAboutPauseTimes()) { 1366 PerformHomogeneousSpaceCompact(); 1367 } else { 1368 VLOG(gc) << "Homogeneous compaction ignored due to jank perceptible process state"; 1369 } 1370 } else { 1371 TransitionCollector(desired_collector_type); 1372 } 1373 } 1374 1375 void Heap::Trim(Thread* self) { 1376 Runtime* const runtime = Runtime::Current(); 1377 if (!CareAboutPauseTimes()) { 1378 // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care 1379 // about pauses. 1380 ScopedTrace trace("Deflating monitors"); 1381 ScopedSuspendAll ssa(__FUNCTION__); 1382 uint64_t start_time = NanoTime(); 1383 size_t count = runtime->GetMonitorList()->DeflateMonitors(); 1384 VLOG(heap) << "Deflating " << count << " monitors took " 1385 << PrettyDuration(NanoTime() - start_time); 1386 } 1387 TrimIndirectReferenceTables(self); 1388 TrimSpaces(self); 1389 // Trim arenas that may have been used by JIT or verifier. 1390 runtime->GetArenaPool()->TrimMaps(); 1391 } 1392 1393 class TrimIndirectReferenceTableClosure : public Closure { 1394 public: 1395 explicit TrimIndirectReferenceTableClosure(Barrier* barrier) : barrier_(barrier) { 1396 } 1397 virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS { 1398 thread->GetJniEnv()->locals.Trim(); 1399 // If thread is a running mutator, then act on behalf of the trim thread. 1400 // See the code in ThreadList::RunCheckpoint. 1401 barrier_->Pass(Thread::Current()); 1402 } 1403 1404 private: 1405 Barrier* const barrier_; 1406 }; 1407 1408 void Heap::TrimIndirectReferenceTables(Thread* self) { 1409 ScopedObjectAccess soa(self); 1410 ScopedTrace trace(__PRETTY_FUNCTION__); 1411 JavaVMExt* vm = soa.Vm(); 1412 // Trim globals indirect reference table. 1413 vm->TrimGlobals(); 1414 // Trim locals indirect reference tables. 1415 Barrier barrier(0); 1416 TrimIndirectReferenceTableClosure closure(&barrier); 1417 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun); 1418 size_t barrier_count = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure); 1419 if (barrier_count != 0) { 1420 barrier.Increment(self, barrier_count); 1421 } 1422 } 1423 1424 void Heap::StartGC(Thread* self, GcCause cause, CollectorType collector_type) { 1425 MutexLock mu(self, *gc_complete_lock_); 1426 // Ensure there is only one GC at a time. 1427 WaitForGcToCompleteLocked(cause, self); 1428 collector_type_running_ = collector_type; 1429 } 1430 1431 void Heap::TrimSpaces(Thread* self) { 1432 { 1433 // Need to do this before acquiring the locks since we don't want to get suspended while 1434 // holding any locks. 1435 ScopedThreadStateChange tsc(self, kWaitingForGcToComplete); 1436 // Pretend we are doing a GC to prevent background compaction from deleting the space we are 1437 // trimming. 1438 StartGC(self, kGcCauseTrim, kCollectorTypeHeapTrim); 1439 } 1440 ScopedTrace trace(__PRETTY_FUNCTION__); 1441 const uint64_t start_ns = NanoTime(); 1442 // Trim the managed spaces. 1443 uint64_t total_alloc_space_allocated = 0; 1444 uint64_t total_alloc_space_size = 0; 1445 uint64_t managed_reclaimed = 0; 1446 { 1447 ScopedObjectAccess soa(self); 1448 for (const auto& space : continuous_spaces_) { 1449 if (space->IsMallocSpace()) { 1450 gc::space::MallocSpace* malloc_space = space->AsMallocSpace(); 1451 if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) { 1452 // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock 1453 // for a long period of time. 1454 managed_reclaimed += malloc_space->Trim(); 1455 } 1456 total_alloc_space_size += malloc_space->Size(); 1457 } 1458 } 1459 } 1460 total_alloc_space_allocated = GetBytesAllocated(); 1461 if (large_object_space_ != nullptr) { 1462 total_alloc_space_allocated -= large_object_space_->GetBytesAllocated(); 1463 } 1464 if (bump_pointer_space_ != nullptr) { 1465 total_alloc_space_allocated -= bump_pointer_space_->Size(); 1466 } 1467 if (region_space_ != nullptr) { 1468 total_alloc_space_allocated -= region_space_->GetBytesAllocated(); 1469 } 1470 const float managed_utilization = static_cast<float>(total_alloc_space_allocated) / 1471 static_cast<float>(total_alloc_space_size); 1472 uint64_t gc_heap_end_ns = NanoTime(); 1473 // We never move things in the native heap, so we can finish the GC at this point. 1474 FinishGC(self, collector::kGcTypeNone); 1475 1476 VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns) 1477 << ", advised=" << PrettySize(managed_reclaimed) << ") heap. Managed heap utilization of " 1478 << static_cast<int>(100 * managed_utilization) << "%."; 1479 } 1480 1481 bool Heap::IsValidObjectAddress(const mirror::Object* obj) const { 1482 // Note: we deliberately don't take the lock here, and mustn't test anything that would require 1483 // taking the lock. 1484 if (obj == nullptr) { 1485 return true; 1486 } 1487 return IsAligned<kObjectAlignment>(obj) && FindSpaceFromObject(obj, true) != nullptr; 1488 } 1489 1490 bool Heap::IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const { 1491 return FindContinuousSpaceFromObject(obj, true) != nullptr; 1492 } 1493 1494 bool Heap::IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const { 1495 if (obj == nullptr || !IsAligned<kObjectAlignment>(obj)) { 1496 return false; 1497 } 1498 for (const auto& space : continuous_spaces_) { 1499 if (space->HasAddress(obj)) { 1500 return true; 1501 } 1502 } 1503 return false; 1504 } 1505 1506 bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack, 1507 bool search_live_stack, bool sorted) { 1508 if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) { 1509 return false; 1510 } 1511 if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) { 1512 mirror::Class* klass = obj->GetClass<kVerifyNone>(); 1513 if (obj == klass) { 1514 // This case happens for java.lang.Class. 1515 return true; 1516 } 1517 return VerifyClassClass(klass) && IsLiveObjectLocked(klass); 1518 } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) { 1519 // If we are in the allocated region of the temp space, then we are probably live (e.g. during 1520 // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained. 1521 return temp_space_->Contains(obj); 1522 } 1523 if (region_space_ != nullptr && region_space_->HasAddress(obj)) { 1524 return true; 1525 } 1526 space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true); 1527 space::DiscontinuousSpace* d_space = nullptr; 1528 if (c_space != nullptr) { 1529 if (c_space->GetLiveBitmap()->Test(obj)) { 1530 return true; 1531 } 1532 } else { 1533 d_space = FindDiscontinuousSpaceFromObject(obj, true); 1534 if (d_space != nullptr) { 1535 if (d_space->GetLiveBitmap()->Test(obj)) { 1536 return true; 1537 } 1538 } 1539 } 1540 // This is covering the allocation/live stack swapping that is done without mutators suspended. 1541 for (size_t i = 0; i < (sorted ? 1 : 5); ++i) { 1542 if (i > 0) { 1543 NanoSleep(MsToNs(10)); 1544 } 1545 if (search_allocation_stack) { 1546 if (sorted) { 1547 if (allocation_stack_->ContainsSorted(obj)) { 1548 return true; 1549 } 1550 } else if (allocation_stack_->Contains(obj)) { 1551 return true; 1552 } 1553 } 1554 1555 if (search_live_stack) { 1556 if (sorted) { 1557 if (live_stack_->ContainsSorted(obj)) { 1558 return true; 1559 } 1560 } else if (live_stack_->Contains(obj)) { 1561 return true; 1562 } 1563 } 1564 } 1565 // We need to check the bitmaps again since there is a race where we mark something as live and 1566 // then clear the stack containing it. 1567 if (c_space != nullptr) { 1568 if (c_space->GetLiveBitmap()->Test(obj)) { 1569 return true; 1570 } 1571 } else { 1572 d_space = FindDiscontinuousSpaceFromObject(obj, true); 1573 if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj)) { 1574 return true; 1575 } 1576 } 1577 return false; 1578 } 1579 1580 std::string Heap::DumpSpaces() const { 1581 std::ostringstream oss; 1582 DumpSpaces(oss); 1583 return oss.str(); 1584 } 1585 1586 void Heap::DumpSpaces(std::ostream& stream) const { 1587 for (const auto& space : continuous_spaces_) { 1588 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap(); 1589 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap(); 1590 stream << space << " " << *space << "\n"; 1591 if (live_bitmap != nullptr) { 1592 stream << live_bitmap << " " << *live_bitmap << "\n"; 1593 } 1594 if (mark_bitmap != nullptr) { 1595 stream << mark_bitmap << " " << *mark_bitmap << "\n"; 1596 } 1597 } 1598 for (const auto& space : discontinuous_spaces_) { 1599 stream << space << " " << *space << "\n"; 1600 } 1601 } 1602 1603 void Heap::VerifyObjectBody(mirror::Object* obj) { 1604 if (verify_object_mode_ == kVerifyObjectModeDisabled) { 1605 return; 1606 } 1607 1608 // Ignore early dawn of the universe verifications. 1609 if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.LoadRelaxed()) < 10 * KB)) { 1610 return; 1611 } 1612 CHECK_ALIGNED(obj, kObjectAlignment) << "Object isn't aligned"; 1613 mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset()); 1614 CHECK(c != nullptr) << "Null class in object " << obj; 1615 CHECK_ALIGNED(c, kObjectAlignment) << "Class " << c << " not aligned in object " << obj; 1616 CHECK(VerifyClassClass(c)); 1617 1618 if (verify_object_mode_ > kVerifyObjectModeFast) { 1619 // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock. 1620 CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces(); 1621 } 1622 } 1623 1624 void Heap::VerificationCallback(mirror::Object* obj, void* arg) { 1625 reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj); 1626 } 1627 1628 void Heap::VerifyHeap() { 1629 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 1630 GetLiveBitmap()->Walk(Heap::VerificationCallback, this); 1631 } 1632 1633 void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) { 1634 // Use signed comparison since freed bytes can be negative when background compaction foreground 1635 // transitions occurs. This is caused by the moving objects from a bump pointer space to a 1636 // free list backed space typically increasing memory footprint due to padding and binning. 1637 DCHECK_LE(freed_bytes, static_cast<int64_t>(num_bytes_allocated_.LoadRelaxed())); 1638 // Note: This relies on 2s complement for handling negative freed_bytes. 1639 num_bytes_allocated_.FetchAndSubSequentiallyConsistent(static_cast<ssize_t>(freed_bytes)); 1640 if (Runtime::Current()->HasStatsEnabled()) { 1641 RuntimeStats* thread_stats = Thread::Current()->GetStats(); 1642 thread_stats->freed_objects += freed_objects; 1643 thread_stats->freed_bytes += freed_bytes; 1644 // TODO: Do this concurrently. 1645 RuntimeStats* global_stats = Runtime::Current()->GetStats(); 1646 global_stats->freed_objects += freed_objects; 1647 global_stats->freed_bytes += freed_bytes; 1648 } 1649 } 1650 1651 void Heap::RecordFreeRevoke() { 1652 // Subtract num_bytes_freed_revoke_ from num_bytes_allocated_ to cancel out the 1653 // the ahead-of-time, bulk counting of bytes allocated in rosalloc thread-local buffers. 1654 // If there's a concurrent revoke, ok to not necessarily reset num_bytes_freed_revoke_ 1655 // all the way to zero exactly as the remainder will be subtracted at the next GC. 1656 size_t bytes_freed = num_bytes_freed_revoke_.LoadSequentiallyConsistent(); 1657 CHECK_GE(num_bytes_freed_revoke_.FetchAndSubSequentiallyConsistent(bytes_freed), 1658 bytes_freed) << "num_bytes_freed_revoke_ underflow"; 1659 CHECK_GE(num_bytes_allocated_.FetchAndSubSequentiallyConsistent(bytes_freed), 1660 bytes_freed) << "num_bytes_allocated_ underflow"; 1661 GetCurrentGcIteration()->SetFreedRevoke(bytes_freed); 1662 } 1663 1664 space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const { 1665 if (rosalloc_space_ != nullptr && rosalloc_space_->GetRosAlloc() == rosalloc) { 1666 return rosalloc_space_; 1667 } 1668 for (const auto& space : continuous_spaces_) { 1669 if (space->AsContinuousSpace()->IsRosAllocSpace()) { 1670 if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) { 1671 return space->AsContinuousSpace()->AsRosAllocSpace(); 1672 } 1673 } 1674 } 1675 return nullptr; 1676 } 1677 1678 static inline bool EntrypointsInstrumented() SHARED_REQUIRES(Locks::mutator_lock_) { 1679 instrumentation::Instrumentation* const instrumentation = 1680 Runtime::Current()->GetInstrumentation(); 1681 return instrumentation != nullptr && instrumentation->AllocEntrypointsInstrumented(); 1682 } 1683 1684 mirror::Object* Heap::AllocateInternalWithGc(Thread* self, 1685 AllocatorType allocator, 1686 bool instrumented, 1687 size_t alloc_size, 1688 size_t* bytes_allocated, 1689 size_t* usable_size, 1690 size_t* bytes_tl_bulk_allocated, 1691 mirror::Class** klass) { 1692 bool was_default_allocator = allocator == GetCurrentAllocator(); 1693 // Make sure there is no pending exception since we may need to throw an OOME. 1694 self->AssertNoPendingException(); 1695 DCHECK(klass != nullptr); 1696 StackHandleScope<1> hs(self); 1697 HandleWrapper<mirror::Class> h(hs.NewHandleWrapper(klass)); 1698 klass = nullptr; // Invalidate for safety. 1699 // The allocation failed. If the GC is running, block until it completes, and then retry the 1700 // allocation. 1701 collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self); 1702 // If we were the default allocator but the allocator changed while we were suspended, 1703 // abort the allocation. 1704 if ((was_default_allocator && allocator != GetCurrentAllocator()) || 1705 (!instrumented && EntrypointsInstrumented())) { 1706 return nullptr; 1707 } 1708 if (last_gc != collector::kGcTypeNone) { 1709 // A GC was in progress and we blocked, retry allocation now that memory has been freed. 1710 mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated, 1711 usable_size, bytes_tl_bulk_allocated); 1712 if (ptr != nullptr) { 1713 return ptr; 1714 } 1715 } 1716 1717 collector::GcType tried_type = next_gc_type_; 1718 const bool gc_ran = 1719 CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone; 1720 if ((was_default_allocator && allocator != GetCurrentAllocator()) || 1721 (!instrumented && EntrypointsInstrumented())) { 1722 return nullptr; 1723 } 1724 if (gc_ran) { 1725 mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated, 1726 usable_size, bytes_tl_bulk_allocated); 1727 if (ptr != nullptr) { 1728 return ptr; 1729 } 1730 } 1731 1732 // Loop through our different Gc types and try to Gc until we get enough free memory. 1733 for (collector::GcType gc_type : gc_plan_) { 1734 if (gc_type == tried_type) { 1735 continue; 1736 } 1737 // Attempt to run the collector, if we succeed, re-try the allocation. 1738 const bool plan_gc_ran = 1739 CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone; 1740 if ((was_default_allocator && allocator != GetCurrentAllocator()) || 1741 (!instrumented && EntrypointsInstrumented())) { 1742 return nullptr; 1743 } 1744 if (plan_gc_ran) { 1745 // Did we free sufficient memory for the allocation to succeed? 1746 mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated, 1747 usable_size, bytes_tl_bulk_allocated); 1748 if (ptr != nullptr) { 1749 return ptr; 1750 } 1751 } 1752 } 1753 // Allocations have failed after GCs; this is an exceptional state. 1754 // Try harder, growing the heap if necessary. 1755 mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, 1756 usable_size, bytes_tl_bulk_allocated); 1757 if (ptr != nullptr) { 1758 return ptr; 1759 } 1760 // Most allocations should have succeeded by now, so the heap is really full, really fragmented, 1761 // or the requested size is really big. Do another GC, collecting SoftReferences this time. The 1762 // VM spec requires that all SoftReferences have been collected and cleared before throwing 1763 // OOME. 1764 VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size) 1765 << " allocation"; 1766 // TODO: Run finalization, but this may cause more allocations to occur. 1767 // We don't need a WaitForGcToComplete here either. 1768 DCHECK(!gc_plan_.empty()); 1769 CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true); 1770 if ((was_default_allocator && allocator != GetCurrentAllocator()) || 1771 (!instrumented && EntrypointsInstrumented())) { 1772 return nullptr; 1773 } 1774 ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size, 1775 bytes_tl_bulk_allocated); 1776 if (ptr == nullptr) { 1777 const uint64_t current_time = NanoTime(); 1778 switch (allocator) { 1779 case kAllocatorTypeRosAlloc: 1780 // Fall-through. 1781 case kAllocatorTypeDlMalloc: { 1782 if (use_homogeneous_space_compaction_for_oom_ && 1783 current_time - last_time_homogeneous_space_compaction_by_oom_ > 1784 min_interval_homogeneous_space_compaction_by_oom_) { 1785 last_time_homogeneous_space_compaction_by_oom_ = current_time; 1786 HomogeneousSpaceCompactResult result = PerformHomogeneousSpaceCompact(); 1787 // Thread suspension could have occurred. 1788 if ((was_default_allocator && allocator != GetCurrentAllocator()) || 1789 (!instrumented && EntrypointsInstrumented())) { 1790 return nullptr; 1791 } 1792 switch (result) { 1793 case HomogeneousSpaceCompactResult::kSuccess: 1794 // If the allocation succeeded, we delayed an oom. 1795 ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, 1796 usable_size, bytes_tl_bulk_allocated); 1797 if (ptr != nullptr) { 1798 count_delayed_oom_++; 1799 } 1800 break; 1801 case HomogeneousSpaceCompactResult::kErrorReject: 1802 // Reject due to disabled moving GC. 1803 break; 1804 case HomogeneousSpaceCompactResult::kErrorVMShuttingDown: 1805 // Throw OOM by default. 1806 break; 1807 default: { 1808 UNIMPLEMENTED(FATAL) << "homogeneous space compaction result: " 1809 << static_cast<size_t>(result); 1810 UNREACHABLE(); 1811 } 1812 } 1813 // Always print that we ran homogeneous space compation since this can cause jank. 1814 VLOG(heap) << "Ran heap homogeneous space compaction, " 1815 << " requested defragmentation " 1816 << count_requested_homogeneous_space_compaction_.LoadSequentiallyConsistent() 1817 << " performed defragmentation " 1818 << count_performed_homogeneous_space_compaction_.LoadSequentiallyConsistent() 1819 << " ignored homogeneous space compaction " 1820 << count_ignored_homogeneous_space_compaction_.LoadSequentiallyConsistent() 1821 << " delayed count = " 1822 << count_delayed_oom_.LoadSequentiallyConsistent(); 1823 } 1824 break; 1825 } 1826 case kAllocatorTypeNonMoving: { 1827 // Try to transition the heap if the allocation failure was due to the space being full. 1828 if (!IsOutOfMemoryOnAllocation<false>(allocator, alloc_size)) { 1829 // If we aren't out of memory then the OOM was probably from the non moving space being 1830 // full. Attempt to disable compaction and turn the main space into a non moving space. 1831 DisableMovingGc(); 1832 // Thread suspension could have occurred. 1833 if ((was_default_allocator && allocator != GetCurrentAllocator()) || 1834 (!instrumented && EntrypointsInstrumented())) { 1835 return nullptr; 1836 } 1837 // If we are still a moving GC then something must have caused the transition to fail. 1838 if (IsMovingGc(collector_type_)) { 1839 MutexLock mu(self, *gc_complete_lock_); 1840 // If we couldn't disable moving GC, just throw OOME and return null. 1841 LOG(WARNING) << "Couldn't disable moving GC with disable GC count " 1842 << disable_moving_gc_count_; 1843 } else { 1844 LOG(WARNING) << "Disabled moving GC due to the non moving space being full"; 1845 ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, 1846 usable_size, bytes_tl_bulk_allocated); 1847 } 1848 } 1849 break; 1850 } 1851 default: { 1852 // Do nothing for others allocators. 1853 } 1854 } 1855 } 1856 // If the allocation hasn't succeeded by this point, throw an OOM error. 1857 if (ptr == nullptr) { 1858 ThrowOutOfMemoryError(self, alloc_size, allocator); 1859 } 1860 return ptr; 1861 } 1862 1863 void Heap::SetTargetHeapUtilization(float target) { 1864 DCHECK_GT(target, 0.0f); // asserted in Java code 1865 DCHECK_LT(target, 1.0f); 1866 target_utilization_ = target; 1867 } 1868 1869 size_t Heap::GetObjectsAllocated() const { 1870 Thread* const self = Thread::Current(); 1871 ScopedThreadStateChange tsc(self, kWaitingForGetObjectsAllocated); 1872 // Need SuspendAll here to prevent lock violation if RosAlloc does it during InspectAll. 1873 ScopedSuspendAll ssa(__FUNCTION__); 1874 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); 1875 size_t total = 0; 1876 for (space::AllocSpace* space : alloc_spaces_) { 1877 total += space->GetObjectsAllocated(); 1878 } 1879 return total; 1880 } 1881 1882 uint64_t Heap::GetObjectsAllocatedEver() const { 1883 uint64_t total = GetObjectsFreedEver(); 1884 // If we are detached, we can't use GetObjectsAllocated since we can't change thread states. 1885 if (Thread::Current() != nullptr) { 1886 total += GetObjectsAllocated(); 1887 } 1888 return total; 1889 } 1890 1891 uint64_t Heap::GetBytesAllocatedEver() const { 1892 return GetBytesFreedEver() + GetBytesAllocated(); 1893 } 1894 1895 class InstanceCounter { 1896 public: 1897 InstanceCounter(const std::vector<mirror::Class*>& classes, 1898 bool use_is_assignable_from, 1899 uint64_t* counts) 1900 SHARED_REQUIRES(Locks::mutator_lock_) 1901 : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {} 1902 1903 static void Callback(mirror::Object* obj, void* arg) 1904 SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { 1905 InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg); 1906 mirror::Class* instance_class = obj->GetClass(); 1907 CHECK(instance_class != nullptr); 1908 for (size_t i = 0; i < instance_counter->classes_.size(); ++i) { 1909 mirror::Class* klass = instance_counter->classes_[i]; 1910 if (instance_counter->use_is_assignable_from_) { 1911 if (klass != nullptr && klass->IsAssignableFrom(instance_class)) { 1912 ++instance_counter->counts_[i]; 1913 } 1914 } else if (instance_class == klass) { 1915 ++instance_counter->counts_[i]; 1916 } 1917 } 1918 } 1919 1920 private: 1921 const std::vector<mirror::Class*>& classes_; 1922 bool use_is_assignable_from_; 1923 uint64_t* const counts_; 1924 DISALLOW_COPY_AND_ASSIGN(InstanceCounter); 1925 }; 1926 1927 void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, 1928 uint64_t* counts) { 1929 InstanceCounter counter(classes, use_is_assignable_from, counts); 1930 VisitObjects(InstanceCounter::Callback, &counter); 1931 } 1932 1933 class InstanceCollector { 1934 public: 1935 InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances) 1936 SHARED_REQUIRES(Locks::mutator_lock_) 1937 : class_(c), max_count_(max_count), instances_(instances) { 1938 } 1939 static void Callback(mirror::Object* obj, void* arg) 1940 SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { 1941 DCHECK(arg != nullptr); 1942 InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg); 1943 if (obj->GetClass() == instance_collector->class_) { 1944 if (instance_collector->max_count_ == 0 || 1945 instance_collector->instances_.size() < instance_collector->max_count_) { 1946 instance_collector->instances_.push_back(obj); 1947 } 1948 } 1949 } 1950 1951 private: 1952 const mirror::Class* const class_; 1953 const uint32_t max_count_; 1954 std::vector<mirror::Object*>& instances_; 1955 DISALLOW_COPY_AND_ASSIGN(InstanceCollector); 1956 }; 1957 1958 void Heap::GetInstances(mirror::Class* c, 1959 int32_t max_count, 1960 std::vector<mirror::Object*>& instances) { 1961 InstanceCollector collector(c, max_count, instances); 1962 VisitObjects(&InstanceCollector::Callback, &collector); 1963 } 1964 1965 class ReferringObjectsFinder { 1966 public: 1967 ReferringObjectsFinder(mirror::Object* object, 1968 int32_t max_count, 1969 std::vector<mirror::Object*>& referring_objects) 1970 SHARED_REQUIRES(Locks::mutator_lock_) 1971 : object_(object), max_count_(max_count), referring_objects_(referring_objects) { 1972 } 1973 1974 static void Callback(mirror::Object* obj, void* arg) 1975 SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { 1976 reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj); 1977 } 1978 1979 // For bitmap Visit. 1980 // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for 1981 // annotalysis on visitors. 1982 void operator()(mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS { 1983 o->VisitReferences(*this, VoidFunctor()); 1984 } 1985 1986 // For Object::VisitReferences. 1987 void operator()(mirror::Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const 1988 SHARED_REQUIRES(Locks::mutator_lock_) { 1989 mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset); 1990 if (ref == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) { 1991 referring_objects_.push_back(obj); 1992 } 1993 } 1994 1995 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) 1996 const {} 1997 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {} 1998 1999 private: 2000 const mirror::Object* const object_; 2001 const uint32_t max_count_; 2002 std::vector<mirror::Object*>& referring_objects_; 2003 DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder); 2004 }; 2005 2006 void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count, 2007 std::vector<mirror::Object*>& referring_objects) { 2008 ReferringObjectsFinder finder(o, max_count, referring_objects); 2009 VisitObjects(&ReferringObjectsFinder::Callback, &finder); 2010 } 2011 2012 void Heap::CollectGarbage(bool clear_soft_references) { 2013 // Even if we waited for a GC we still need to do another GC since weaks allocated during the 2014 // last GC will not have necessarily been cleared. 2015 CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references); 2016 } 2017 2018 bool Heap::SupportHomogeneousSpaceCompactAndCollectorTransitions() const { 2019 return main_space_backup_.get() != nullptr && main_space_ != nullptr && 2020 foreground_collector_type_ == kCollectorTypeCMS; 2021 } 2022 2023 HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() { 2024 Thread* self = Thread::Current(); 2025 // Inc requested homogeneous space compaction. 2026 count_requested_homogeneous_space_compaction_++; 2027 // Store performed homogeneous space compaction at a new request arrival. 2028 ScopedThreadStateChange tsc(self, kWaitingPerformingGc); 2029 Locks::mutator_lock_->AssertNotHeld(self); 2030 { 2031 ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete); 2032 MutexLock mu(self, *gc_complete_lock_); 2033 // Ensure there is only one GC at a time. 2034 WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self); 2035 // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable count 2036 // is non zero. 2037 // If the collector type changed to something which doesn't benefit from homogeneous space compaction, 2038 // exit. 2039 if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) || 2040 !main_space_->CanMoveObjects()) { 2041 return kErrorReject; 2042 } 2043 if (!SupportHomogeneousSpaceCompactAndCollectorTransitions()) { 2044 return kErrorUnsupported; 2045 } 2046 collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact; 2047 } 2048 if (Runtime::Current()->IsShuttingDown(self)) { 2049 // Don't allow heap transitions to happen if the runtime is shutting down since these can 2050 // cause objects to get finalized. 2051 FinishGC(self, collector::kGcTypeNone); 2052 return HomogeneousSpaceCompactResult::kErrorVMShuttingDown; 2053 } 2054 collector::GarbageCollector* collector; 2055 { 2056 ScopedSuspendAll ssa(__FUNCTION__); 2057 uint64_t start_time = NanoTime(); 2058 // Launch compaction. 2059 space::MallocSpace* to_space = main_space_backup_.release(); 2060 space::MallocSpace* from_space = main_space_; 2061 to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE); 2062 const uint64_t space_size_before_compaction = from_space->Size(); 2063 AddSpace(to_space); 2064 // Make sure that we will have enough room to copy. 2065 CHECK_GE(to_space->GetFootprintLimit(), from_space->GetFootprintLimit()); 2066 collector = Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact); 2067 const uint64_t space_size_after_compaction = to_space->Size(); 2068 main_space_ = to_space; 2069 main_space_backup_.reset(from_space); 2070 RemoveSpace(from_space); 2071 SetSpaceAsDefault(main_space_); // Set as default to reset the proper dlmalloc space. 2072 // Update performed homogeneous space compaction count. 2073 count_performed_homogeneous_space_compaction_++; 2074 // Print statics log and resume all threads. 2075 uint64_t duration = NanoTime() - start_time; 2076 VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: " 2077 << PrettySize(space_size_before_compaction) << " -> " 2078 << PrettySize(space_size_after_compaction) << " compact-ratio: " 2079 << std::fixed << static_cast<double>(space_size_after_compaction) / 2080 static_cast<double>(space_size_before_compaction); 2081 } 2082 // Finish GC. 2083 reference_processor_->EnqueueClearedReferences(self); 2084 GrowForUtilization(semi_space_collector_); 2085 LogGC(kGcCauseHomogeneousSpaceCompact, collector); 2086 FinishGC(self, collector::kGcTypeFull); 2087 { 2088 ScopedObjectAccess soa(self); 2089 soa.Vm()->UnloadNativeLibraries(); 2090 } 2091 return HomogeneousSpaceCompactResult::kSuccess; 2092 } 2093 2094 void Heap::TransitionCollector(CollectorType collector_type) { 2095 if (collector_type == collector_type_) { 2096 return; 2097 } 2098 VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_) 2099 << " -> " << static_cast<int>(collector_type); 2100 uint64_t start_time = NanoTime(); 2101 uint32_t before_allocated = num_bytes_allocated_.LoadSequentiallyConsistent(); 2102 Runtime* const runtime = Runtime::Current(); 2103 Thread* const self = Thread::Current(); 2104 ScopedThreadStateChange tsc(self, kWaitingPerformingGc); 2105 Locks::mutator_lock_->AssertNotHeld(self); 2106 // Busy wait until we can GC (StartGC can fail if we have a non-zero 2107 // compacting_gc_disable_count_, this should rarely occurs). 2108 for (;;) { 2109 { 2110 ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete); 2111 MutexLock mu(self, *gc_complete_lock_); 2112 // Ensure there is only one GC at a time. 2113 WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self); 2114 // Currently we only need a heap transition if we switch from a moving collector to a 2115 // non-moving one, or visa versa. 2116 const bool copying_transition = IsMovingGc(collector_type_) != IsMovingGc(collector_type); 2117 // If someone else beat us to it and changed the collector before we could, exit. 2118 // This is safe to do before the suspend all since we set the collector_type_running_ before 2119 // we exit the loop. If another thread attempts to do the heap transition before we exit, 2120 // then it would get blocked on WaitForGcToCompleteLocked. 2121 if (collector_type == collector_type_) { 2122 return; 2123 } 2124 // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released. 2125 if (!copying_transition || disable_moving_gc_count_ == 0) { 2126 // TODO: Not hard code in semi-space collector? 2127 collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type; 2128 break; 2129 } 2130 } 2131 usleep(1000); 2132 } 2133 if (runtime->IsShuttingDown(self)) { 2134 // Don't allow heap transitions to happen if the runtime is shutting down since these can 2135 // cause objects to get finalized. 2136 FinishGC(self, collector::kGcTypeNone); 2137 return; 2138 } 2139 collector::GarbageCollector* collector = nullptr; 2140 { 2141 ScopedSuspendAll ssa(__FUNCTION__); 2142 switch (collector_type) { 2143 case kCollectorTypeSS: { 2144 if (!IsMovingGc(collector_type_)) { 2145 // Create the bump pointer space from the backup space. 2146 CHECK(main_space_backup_ != nullptr); 2147 std::unique_ptr<MemMap> mem_map(main_space_backup_->ReleaseMemMap()); 2148 // We are transitioning from non moving GC -> moving GC, since we copied from the bump 2149 // pointer space last transition it will be protected. 2150 CHECK(mem_map != nullptr); 2151 mem_map->Protect(PROT_READ | PROT_WRITE); 2152 bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space", 2153 mem_map.release()); 2154 AddSpace(bump_pointer_space_); 2155 collector = Compact(bump_pointer_space_, main_space_, kGcCauseCollectorTransition); 2156 // Use the now empty main space mem map for the bump pointer temp space. 2157 mem_map.reset(main_space_->ReleaseMemMap()); 2158 // Unset the pointers just in case. 2159 if (dlmalloc_space_ == main_space_) { 2160 dlmalloc_space_ = nullptr; 2161 } else if (rosalloc_space_ == main_space_) { 2162 rosalloc_space_ = nullptr; 2163 } 2164 // Remove the main space so that we don't try to trim it, this doens't work for debug 2165 // builds since RosAlloc attempts to read the magic number from a protected page. 2166 RemoveSpace(main_space_); 2167 RemoveRememberedSet(main_space_); 2168 delete main_space_; // Delete the space since it has been removed. 2169 main_space_ = nullptr; 2170 RemoveRememberedSet(main_space_backup_.get()); 2171 main_space_backup_.reset(nullptr); // Deletes the space. 2172 temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2", 2173 mem_map.release()); 2174 AddSpace(temp_space_); 2175 } 2176 break; 2177 } 2178 case kCollectorTypeMS: 2179 // Fall through. 2180 case kCollectorTypeCMS: { 2181 if (IsMovingGc(collector_type_)) { 2182 CHECK(temp_space_ != nullptr); 2183 std::unique_ptr<MemMap> mem_map(temp_space_->ReleaseMemMap()); 2184 RemoveSpace(temp_space_); 2185 temp_space_ = nullptr; 2186 mem_map->Protect(PROT_READ | PROT_WRITE); 2187 CreateMainMallocSpace(mem_map.get(), 2188 kDefaultInitialSize, 2189 std::min(mem_map->Size(), growth_limit_), 2190 mem_map->Size()); 2191 mem_map.release(); 2192 // Compact to the main space from the bump pointer space, don't need to swap semispaces. 2193 AddSpace(main_space_); 2194 collector = Compact(main_space_, bump_pointer_space_, kGcCauseCollectorTransition); 2195 mem_map.reset(bump_pointer_space_->ReleaseMemMap()); 2196 RemoveSpace(bump_pointer_space_); 2197 bump_pointer_space_ = nullptr; 2198 const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1]; 2199 // Temporarily unprotect the backup mem map so rosalloc can write the debug magic number. 2200 if (kIsDebugBuild && kUseRosAlloc) { 2201 mem_map->Protect(PROT_READ | PROT_WRITE); 2202 } 2203 main_space_backup_.reset(CreateMallocSpaceFromMemMap( 2204 mem_map.get(), 2205 kDefaultInitialSize, 2206 std::min(mem_map->Size(), growth_limit_), 2207 mem_map->Size(), 2208 name, 2209 true)); 2210 if (kIsDebugBuild && kUseRosAlloc) { 2211 mem_map->Protect(PROT_NONE); 2212 } 2213 mem_map.release(); 2214 } 2215 break; 2216 } 2217 default: { 2218 LOG(FATAL) << "Attempted to transition to invalid collector type " 2219 << static_cast<size_t>(collector_type); 2220 break; 2221 } 2222 } 2223 ChangeCollector(collector_type); 2224 } 2225 // Can't call into java code with all threads suspended. 2226 reference_processor_->EnqueueClearedReferences(self); 2227 uint64_t duration = NanoTime() - start_time; 2228 GrowForUtilization(semi_space_collector_); 2229 DCHECK(collector != nullptr); 2230 LogGC(kGcCauseCollectorTransition, collector); 2231 FinishGC(self, collector::kGcTypeFull); 2232 { 2233 ScopedObjectAccess soa(self); 2234 soa.Vm()->UnloadNativeLibraries(); 2235 } 2236 int32_t after_allocated = num_bytes_allocated_.LoadSequentiallyConsistent(); 2237 int32_t delta_allocated = before_allocated - after_allocated; 2238 std::string saved_str; 2239 if (delta_allocated >= 0) { 2240 saved_str = " saved at least " + PrettySize(delta_allocated); 2241 } else { 2242 saved_str = " expanded " + PrettySize(-delta_allocated); 2243 } 2244 VLOG(heap) << "Collector transition to " << collector_type << " took " 2245 << PrettyDuration(duration) << saved_str; 2246 } 2247 2248 void Heap::ChangeCollector(CollectorType collector_type) { 2249 // TODO: Only do this with all mutators suspended to avoid races. 2250 if (collector_type != collector_type_) { 2251 if (collector_type == kCollectorTypeMC) { 2252 // Don't allow mark compact unless support is compiled in. 2253 CHECK(kMarkCompactSupport); 2254 } 2255 collector_type_ = collector_type; 2256 gc_plan_.clear(); 2257 switch (collector_type_) { 2258 case kCollectorTypeCC: { 2259 gc_plan_.push_back(collector::kGcTypeFull); 2260 if (use_tlab_) { 2261 ChangeAllocator(kAllocatorTypeRegionTLAB); 2262 } else { 2263 ChangeAllocator(kAllocatorTypeRegion); 2264 } 2265 break; 2266 } 2267 case kCollectorTypeMC: // Fall-through. 2268 case kCollectorTypeSS: // Fall-through. 2269 case kCollectorTypeGSS: { 2270 gc_plan_.push_back(collector::kGcTypeFull); 2271 if (use_tlab_) { 2272 ChangeAllocator(kAllocatorTypeTLAB); 2273 } else { 2274 ChangeAllocator(kAllocatorTypeBumpPointer); 2275 } 2276 break; 2277 } 2278 case kCollectorTypeMS: { 2279 gc_plan_.push_back(collector::kGcTypeSticky); 2280 gc_plan_.push_back(collector::kGcTypePartial); 2281 gc_plan_.push_back(collector::kGcTypeFull); 2282 ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc); 2283 break; 2284 } 2285 case kCollectorTypeCMS: { 2286 gc_plan_.push_back(collector::kGcTypeSticky); 2287 gc_plan_.push_back(collector::kGcTypePartial); 2288 gc_plan_.push_back(collector::kGcTypeFull); 2289 ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc); 2290 break; 2291 } 2292 default: { 2293 UNIMPLEMENTED(FATAL); 2294 UNREACHABLE(); 2295 } 2296 } 2297 if (IsGcConcurrent()) { 2298 concurrent_start_bytes_ = 2299 std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes; 2300 } else { 2301 concurrent_start_bytes_ = std::numeric_limits<size_t>::max(); 2302 } 2303 } 2304 } 2305 2306 // Special compacting collector which uses sub-optimal bin packing to reduce zygote space size. 2307 class ZygoteCompactingCollector FINAL : public collector::SemiSpace { 2308 public: 2309 ZygoteCompactingCollector(gc::Heap* heap, bool is_running_on_memory_tool) 2310 : SemiSpace(heap, false, "zygote collector"), 2311 bin_live_bitmap_(nullptr), 2312 bin_mark_bitmap_(nullptr), 2313 is_running_on_memory_tool_(is_running_on_memory_tool) {} 2314 2315 void BuildBins(space::ContinuousSpace* space) { 2316 bin_live_bitmap_ = space->GetLiveBitmap(); 2317 bin_mark_bitmap_ = space->GetMarkBitmap(); 2318 BinContext context; 2319 context.prev_ = reinterpret_cast<uintptr_t>(space->Begin()); 2320 context.collector_ = this; 2321 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 2322 // Note: This requires traversing the space in increasing order of object addresses. 2323 bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context)); 2324 // Add the last bin which spans after the last object to the end of the space. 2325 AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_); 2326 } 2327 2328 private: 2329 struct BinContext { 2330 uintptr_t prev_; // The end of the previous object. 2331 ZygoteCompactingCollector* collector_; 2332 }; 2333 // Maps from bin sizes to locations. 2334 std::multimap<size_t, uintptr_t> bins_; 2335 // Live bitmap of the space which contains the bins. 2336 accounting::ContinuousSpaceBitmap* bin_live_bitmap_; 2337 // Mark bitmap of the space which contains the bins. 2338 accounting::ContinuousSpaceBitmap* bin_mark_bitmap_; 2339 const bool is_running_on_memory_tool_; 2340 2341 static void Callback(mirror::Object* obj, void* arg) 2342 SHARED_REQUIRES(Locks::mutator_lock_) { 2343 DCHECK(arg != nullptr); 2344 BinContext* context = reinterpret_cast<BinContext*>(arg); 2345 ZygoteCompactingCollector* collector = context->collector_; 2346 uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj); 2347 size_t bin_size = object_addr - context->prev_; 2348 // Add the bin consisting of the end of the previous object to the start of the current object. 2349 collector->AddBin(bin_size, context->prev_); 2350 context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment); 2351 } 2352 2353 void AddBin(size_t size, uintptr_t position) { 2354 if (is_running_on_memory_tool_) { 2355 MEMORY_TOOL_MAKE_DEFINED(reinterpret_cast<void*>(position), size); 2356 } 2357 if (size != 0) { 2358 bins_.insert(std::make_pair(size, position)); 2359 } 2360 } 2361 2362 virtual bool ShouldSweepSpace(space::ContinuousSpace* space ATTRIBUTE_UNUSED) const { 2363 // Don't sweep any spaces since we probably blasted the internal accounting of the free list 2364 // allocator. 2365 return false; 2366 } 2367 2368 virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj) 2369 REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_) { 2370 size_t obj_size = obj->SizeOf(); 2371 size_t alloc_size = RoundUp(obj_size, kObjectAlignment); 2372 mirror::Object* forward_address; 2373 // Find the smallest bin which we can move obj in. 2374 auto it = bins_.lower_bound(alloc_size); 2375 if (it == bins_.end()) { 2376 // No available space in the bins, place it in the target space instead (grows the zygote 2377 // space). 2378 size_t bytes_allocated, dummy; 2379 forward_address = to_space_->Alloc(self_, alloc_size, &bytes_allocated, nullptr, &dummy); 2380 if (to_space_live_bitmap_ != nullptr) { 2381 to_space_live_bitmap_->Set(forward_address); 2382 } else { 2383 GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address); 2384 GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address); 2385 } 2386 } else { 2387 size_t size = it->first; 2388 uintptr_t pos = it->second; 2389 bins_.erase(it); // Erase the old bin which we replace with the new smaller bin. 2390 forward_address = reinterpret_cast<mirror::Object*>(pos); 2391 // Set the live and mark bits so that sweeping system weaks works properly. 2392 bin_live_bitmap_->Set(forward_address); 2393 bin_mark_bitmap_->Set(forward_address); 2394 DCHECK_GE(size, alloc_size); 2395 // Add a new bin with the remaining space. 2396 AddBin(size - alloc_size, pos + alloc_size); 2397 } 2398 // Copy the object over to its new location. Don't use alloc_size to avoid valgrind error. 2399 memcpy(reinterpret_cast<void*>(forward_address), obj, obj_size); 2400 if (kUseBakerOrBrooksReadBarrier) { 2401 obj->AssertReadBarrierPointer(); 2402 if (kUseBrooksReadBarrier) { 2403 DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj); 2404 forward_address->SetReadBarrierPointer(forward_address); 2405 } 2406 forward_address->AssertReadBarrierPointer(); 2407 } 2408 return forward_address; 2409 } 2410 }; 2411 2412 void Heap::UnBindBitmaps() { 2413 TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings()); 2414 for (const auto& space : GetContinuousSpaces()) { 2415 if (space->IsContinuousMemMapAllocSpace()) { 2416 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace(); 2417 if (alloc_space->HasBoundBitmaps()) { 2418 alloc_space->UnBindBitmaps(); 2419 } 2420 } 2421 } 2422 } 2423 2424 void Heap::PreZygoteFork() { 2425 if (!HasZygoteSpace()) { 2426 // We still want to GC in case there is some unreachable non moving objects that could cause a 2427 // suboptimal bin packing when we compact the zygote space. 2428 CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false); 2429 // Trim the pages at the end of the non moving space. Trim while not holding zygote lock since 2430 // the trim process may require locking the mutator lock. 2431 non_moving_space_->Trim(); 2432 } 2433 Thread* self = Thread::Current(); 2434 MutexLock mu(self, zygote_creation_lock_); 2435 // Try to see if we have any Zygote spaces. 2436 if (HasZygoteSpace()) { 2437 return; 2438 } 2439 Runtime::Current()->GetInternTable()->AddNewTable(); 2440 Runtime::Current()->GetClassLinker()->MoveClassTableToPreZygote(); 2441 VLOG(heap) << "Starting PreZygoteFork"; 2442 // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote 2443 // there. 2444 non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE); 2445 const bool same_space = non_moving_space_ == main_space_; 2446 if (kCompactZygote) { 2447 // Temporarily disable rosalloc verification because the zygote 2448 // compaction will mess up the rosalloc internal metadata. 2449 ScopedDisableRosAllocVerification disable_rosalloc_verif(this); 2450 ZygoteCompactingCollector zygote_collector(this, is_running_on_memory_tool_); 2451 zygote_collector.BuildBins(non_moving_space_); 2452 // Create a new bump pointer space which we will compact into. 2453 space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(), 2454 non_moving_space_->Limit()); 2455 // Compact the bump pointer space to a new zygote bump pointer space. 2456 bool reset_main_space = false; 2457 if (IsMovingGc(collector_type_)) { 2458 if (collector_type_ == kCollectorTypeCC) { 2459 zygote_collector.SetFromSpace(region_space_); 2460 } else { 2461 zygote_collector.SetFromSpace(bump_pointer_space_); 2462 } 2463 } else { 2464 CHECK(main_space_ != nullptr); 2465 CHECK_NE(main_space_, non_moving_space_) 2466 << "Does not make sense to compact within the same space"; 2467 // Copy from the main space. 2468 zygote_collector.SetFromSpace(main_space_); 2469 reset_main_space = true; 2470 } 2471 zygote_collector.SetToSpace(&target_space); 2472 zygote_collector.SetSwapSemiSpaces(false); 2473 zygote_collector.Run(kGcCauseCollectorTransition, false); 2474 if (reset_main_space) { 2475 main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE); 2476 madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED); 2477 MemMap* mem_map = main_space_->ReleaseMemMap(); 2478 RemoveSpace(main_space_); 2479 space::Space* old_main_space = main_space_; 2480 CreateMainMallocSpace(mem_map, kDefaultInitialSize, std::min(mem_map->Size(), growth_limit_), 2481 mem_map->Size()); 2482 delete old_main_space; 2483 AddSpace(main_space_); 2484 } else { 2485 if (collector_type_ == kCollectorTypeCC) { 2486 region_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE); 2487 } else { 2488 bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE); 2489 } 2490 } 2491 if (temp_space_ != nullptr) { 2492 CHECK(temp_space_->IsEmpty()); 2493 } 2494 total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects(); 2495 total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes(); 2496 // Update the end and write out image. 2497 non_moving_space_->SetEnd(target_space.End()); 2498 non_moving_space_->SetLimit(target_space.Limit()); 2499 VLOG(heap) << "Create zygote space with size=" << non_moving_space_->Size() << " bytes"; 2500 } 2501 // Change the collector to the post zygote one. 2502 ChangeCollector(foreground_collector_type_); 2503 // Save the old space so that we can remove it after we complete creating the zygote space. 2504 space::MallocSpace* old_alloc_space = non_moving_space_; 2505 // Turn the current alloc space into a zygote space and obtain the new alloc space composed of 2506 // the remaining available space. 2507 // Remove the old space before creating the zygote space since creating the zygote space sets 2508 // the old alloc space's bitmaps to null. 2509 RemoveSpace(old_alloc_space); 2510 if (collector::SemiSpace::kUseRememberedSet) { 2511 // Sanity bound check. 2512 FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace(); 2513 // Remove the remembered set for the now zygote space (the old 2514 // non-moving space). Note now that we have compacted objects into 2515 // the zygote space, the data in the remembered set is no longer 2516 // needed. The zygote space will instead have a mod-union table 2517 // from this point on. 2518 RemoveRememberedSet(old_alloc_space); 2519 } 2520 // Remaining space becomes the new non moving space. 2521 zygote_space_ = old_alloc_space->CreateZygoteSpace(kNonMovingSpaceName, low_memory_mode_, 2522 &non_moving_space_); 2523 CHECK(!non_moving_space_->CanMoveObjects()); 2524 if (same_space) { 2525 main_space_ = non_moving_space_; 2526 SetSpaceAsDefault(main_space_); 2527 } 2528 delete old_alloc_space; 2529 CHECK(HasZygoteSpace()) << "Failed creating zygote space"; 2530 AddSpace(zygote_space_); 2531 non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity()); 2532 AddSpace(non_moving_space_); 2533 // Create the zygote space mod union table. 2534 accounting::ModUnionTable* mod_union_table = 2535 new accounting::ModUnionTableCardCache("zygote space mod-union table", this, 2536 zygote_space_); 2537 CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table"; 2538 // Set all the cards in the mod-union table since we don't know which objects contain references 2539 // to large objects. 2540 mod_union_table->SetCards(); 2541 AddModUnionTable(mod_union_table); 2542 large_object_space_->SetAllLargeObjectsAsZygoteObjects(self); 2543 if (collector::SemiSpace::kUseRememberedSet) { 2544 // Add a new remembered set for the post-zygote non-moving space. 2545 accounting::RememberedSet* post_zygote_non_moving_space_rem_set = 2546 new accounting::RememberedSet("Post-zygote non-moving space remembered set", this, 2547 non_moving_space_); 2548 CHECK(post_zygote_non_moving_space_rem_set != nullptr) 2549 << "Failed to create post-zygote non-moving space remembered set"; 2550 AddRememberedSet(post_zygote_non_moving_space_rem_set); 2551 } 2552 } 2553 2554 void Heap::FlushAllocStack() { 2555 MarkAllocStackAsLive(allocation_stack_.get()); 2556 allocation_stack_->Reset(); 2557 } 2558 2559 void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1, 2560 accounting::ContinuousSpaceBitmap* bitmap2, 2561 accounting::LargeObjectBitmap* large_objects, 2562 accounting::ObjectStack* stack) { 2563 DCHECK(bitmap1 != nullptr); 2564 DCHECK(bitmap2 != nullptr); 2565 const auto* limit = stack->End(); 2566 for (auto* it = stack->Begin(); it != limit; ++it) { 2567 const mirror::Object* obj = it->AsMirrorPtr(); 2568 if (!kUseThreadLocalAllocationStack || obj != nullptr) { 2569 if (bitmap1->HasAddress(obj)) { 2570 bitmap1->Set(obj); 2571 } else if (bitmap2->HasAddress(obj)) { 2572 bitmap2->Set(obj); 2573 } else { 2574 DCHECK(large_objects != nullptr); 2575 large_objects->Set(obj); 2576 } 2577 } 2578 } 2579 } 2580 2581 void Heap::SwapSemiSpaces() { 2582 CHECK(bump_pointer_space_ != nullptr); 2583 CHECK(temp_space_ != nullptr); 2584 std::swap(bump_pointer_space_, temp_space_); 2585 } 2586 2587 collector::GarbageCollector* Heap::Compact(space::ContinuousMemMapAllocSpace* target_space, 2588 space::ContinuousMemMapAllocSpace* source_space, 2589 GcCause gc_cause) { 2590 CHECK(kMovingCollector); 2591 if (target_space != source_space) { 2592 // Don't swap spaces since this isn't a typical semi space collection. 2593 semi_space_collector_->SetSwapSemiSpaces(false); 2594 semi_space_collector_->SetFromSpace(source_space); 2595 semi_space_collector_->SetToSpace(target_space); 2596 semi_space_collector_->Run(gc_cause, false); 2597 return semi_space_collector_; 2598 } else { 2599 CHECK(target_space->IsBumpPointerSpace()) 2600 << "In-place compaction is only supported for bump pointer spaces"; 2601 mark_compact_collector_->SetSpace(target_space->AsBumpPointerSpace()); 2602 mark_compact_collector_->Run(kGcCauseCollectorTransition, false); 2603 return mark_compact_collector_; 2604 } 2605 } 2606 2607 collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, 2608 GcCause gc_cause, 2609 bool clear_soft_references) { 2610 Thread* self = Thread::Current(); 2611 Runtime* runtime = Runtime::Current(); 2612 // If the heap can't run the GC, silently fail and return that no GC was run. 2613 switch (gc_type) { 2614 case collector::kGcTypePartial: { 2615 if (!HasZygoteSpace()) { 2616 return collector::kGcTypeNone; 2617 } 2618 break; 2619 } 2620 default: { 2621 // Other GC types don't have any special cases which makes them not runnable. The main case 2622 // here is full GC. 2623 } 2624 } 2625 ScopedThreadStateChange tsc(self, kWaitingPerformingGc); 2626 Locks::mutator_lock_->AssertNotHeld(self); 2627 if (self->IsHandlingStackOverflow()) { 2628 // If we are throwing a stack overflow error we probably don't have enough remaining stack 2629 // space to run the GC. 2630 return collector::kGcTypeNone; 2631 } 2632 bool compacting_gc; 2633 { 2634 gc_complete_lock_->AssertNotHeld(self); 2635 ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete); 2636 MutexLock mu(self, *gc_complete_lock_); 2637 // Ensure there is only one GC at a time. 2638 WaitForGcToCompleteLocked(gc_cause, self); 2639 compacting_gc = IsMovingGc(collector_type_); 2640 // GC can be disabled if someone has a used GetPrimitiveArrayCritical. 2641 if (compacting_gc && disable_moving_gc_count_ != 0) { 2642 LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_; 2643 return collector::kGcTypeNone; 2644 } 2645 if (gc_disabled_for_shutdown_) { 2646 return collector::kGcTypeNone; 2647 } 2648 collector_type_running_ = collector_type_; 2649 } 2650 if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) { 2651 ++runtime->GetStats()->gc_for_alloc_count; 2652 ++self->GetStats()->gc_for_alloc_count; 2653 } 2654 const uint64_t bytes_allocated_before_gc = GetBytesAllocated(); 2655 // Approximate heap size. 2656 ATRACE_INT("Heap size (KB)", bytes_allocated_before_gc / KB); 2657 2658 DCHECK_LT(gc_type, collector::kGcTypeMax); 2659 DCHECK_NE(gc_type, collector::kGcTypeNone); 2660 2661 collector::GarbageCollector* collector = nullptr; 2662 // TODO: Clean this up. 2663 if (compacting_gc) { 2664 DCHECK(current_allocator_ == kAllocatorTypeBumpPointer || 2665 current_allocator_ == kAllocatorTypeTLAB || 2666 current_allocator_ == kAllocatorTypeRegion || 2667 current_allocator_ == kAllocatorTypeRegionTLAB); 2668 switch (collector_type_) { 2669 case kCollectorTypeSS: 2670 // Fall-through. 2671 case kCollectorTypeGSS: 2672 semi_space_collector_->SetFromSpace(bump_pointer_space_); 2673 semi_space_collector_->SetToSpace(temp_space_); 2674 semi_space_collector_->SetSwapSemiSpaces(true); 2675 collector = semi_space_collector_; 2676 break; 2677 case kCollectorTypeCC: 2678 concurrent_copying_collector_->SetRegionSpace(region_space_); 2679 collector = concurrent_copying_collector_; 2680 break; 2681 case kCollectorTypeMC: 2682 mark_compact_collector_->SetSpace(bump_pointer_space_); 2683 collector = mark_compact_collector_; 2684 break; 2685 default: 2686 LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_); 2687 } 2688 if (collector != mark_compact_collector_ && collector != concurrent_copying_collector_) { 2689 temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE); 2690 if (kIsDebugBuild) { 2691 // Try to read each page of the memory map in case mprotect didn't work properly b/19894268. 2692 temp_space_->GetMemMap()->TryReadable(); 2693 } 2694 CHECK(temp_space_->IsEmpty()); 2695 } 2696 gc_type = collector::kGcTypeFull; // TODO: Not hard code this in. 2697 } else if (current_allocator_ == kAllocatorTypeRosAlloc || 2698 current_allocator_ == kAllocatorTypeDlMalloc) { 2699 collector = FindCollectorByGcType(gc_type); 2700 } else { 2701 LOG(FATAL) << "Invalid current allocator " << current_allocator_; 2702 } 2703 if (IsGcConcurrent()) { 2704 // Disable concurrent GC check so that we don't have spammy JNI requests. 2705 // This gets recalculated in GrowForUtilization. It is important that it is disabled / 2706 // calculated in the same thread so that there aren't any races that can cause it to become 2707 // permanantly disabled. b/17942071 2708 concurrent_start_bytes_ = std::numeric_limits<size_t>::max(); 2709 } 2710 2711 // It's time to clear all inline caches, in case some classes can be unloaded. 2712 if (((gc_type == collector::kGcTypeFull) || (gc_type == collector::kGcTypePartial)) && 2713 (runtime->GetJit() != nullptr)) { 2714 runtime->GetJit()->GetCodeCache()->ClearGcRootsInInlineCaches(self); 2715 } 2716 2717 CHECK(collector != nullptr) 2718 << "Could not find garbage collector with collector_type=" 2719 << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type; 2720 collector->Run(gc_cause, clear_soft_references || runtime->IsZygote()); 2721 total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects(); 2722 total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes(); 2723 RequestTrim(self); 2724 // Enqueue cleared references. 2725 reference_processor_->EnqueueClearedReferences(self); 2726 // Grow the heap so that we know when to perform the next GC. 2727 GrowForUtilization(collector, bytes_allocated_before_gc); 2728 LogGC(gc_cause, collector); 2729 FinishGC(self, gc_type); 2730 // Inform DDMS that a GC completed. 2731 Dbg::GcDidFinish(); 2732 // Unload native libraries for class unloading. We do this after calling FinishGC to prevent 2733 // deadlocks in case the JNI_OnUnload function does allocations. 2734 { 2735 ScopedObjectAccess soa(self); 2736 soa.Vm()->UnloadNativeLibraries(); 2737 } 2738 return gc_type; 2739 } 2740 2741 void Heap::LogGC(GcCause gc_cause, collector::GarbageCollector* collector) { 2742 const size_t duration = GetCurrentGcIteration()->GetDurationNs(); 2743 const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes(); 2744 // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC 2745 // (mutator time blocked >= long_pause_log_threshold_). 2746 bool log_gc = gc_cause == kGcCauseExplicit; 2747 if (!log_gc && CareAboutPauseTimes()) { 2748 // GC for alloc pauses the allocating thread, so consider it as a pause. 2749 log_gc = duration > long_gc_log_threshold_ || 2750 (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_); 2751 for (uint64_t pause : pause_times) { 2752 log_gc = log_gc || pause >= long_pause_log_threshold_; 2753 } 2754 } 2755 if (log_gc) { 2756 const size_t percent_free = GetPercentFree(); 2757 const size_t current_heap_size = GetBytesAllocated(); 2758 const size_t total_memory = GetTotalMemory(); 2759 std::ostringstream pause_string; 2760 for (size_t i = 0; i < pause_times.size(); ++i) { 2761 pause_string << PrettyDuration((pause_times[i] / 1000) * 1000) 2762 << ((i != pause_times.size() - 1) ? "," : ""); 2763 } 2764 LOG(INFO) << gc_cause << " " << collector->GetName() 2765 << " GC freed " << current_gc_iteration_.GetFreedObjects() << "(" 2766 << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, " 2767 << current_gc_iteration_.GetFreedLargeObjects() << "(" 2768 << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, " 2769 << percent_free << "% free, " << PrettySize(current_heap_size) << "/" 2770 << PrettySize(total_memory) << ", " << "paused " << pause_string.str() 2771 << " total " << PrettyDuration((duration / 1000) * 1000); 2772 VLOG(heap) << Dumpable<TimingLogger>(*current_gc_iteration_.GetTimings()); 2773 } 2774 } 2775 2776 void Heap::FinishGC(Thread* self, collector::GcType gc_type) { 2777 MutexLock mu(self, *gc_complete_lock_); 2778 collector_type_running_ = kCollectorTypeNone; 2779 if (gc_type != collector::kGcTypeNone) { 2780 last_gc_type_ = gc_type; 2781 2782 // Update stats. 2783 ++gc_count_last_window_; 2784 if (running_collection_is_blocking_) { 2785 // If the currently running collection was a blocking one, 2786 // increment the counters and reset the flag. 2787 ++blocking_gc_count_; 2788 blocking_gc_time_ += GetCurrentGcIteration()->GetDurationNs(); 2789 ++blocking_gc_count_last_window_; 2790 } 2791 // Update the gc count rate histograms if due. 2792 UpdateGcCountRateHistograms(); 2793 } 2794 // Reset. 2795 running_collection_is_blocking_ = false; 2796 // Wake anyone who may have been waiting for the GC to complete. 2797 gc_complete_cond_->Broadcast(self); 2798 } 2799 2800 void Heap::UpdateGcCountRateHistograms() { 2801 // Invariant: if the time since the last update includes more than 2802 // one windows, all the GC runs (if > 0) must have happened in first 2803 // window because otherwise the update must have already taken place 2804 // at an earlier GC run. So, we report the non-first windows with 2805 // zero counts to the histograms. 2806 DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U); 2807 uint64_t now = NanoTime(); 2808 DCHECK_GE(now, last_update_time_gc_count_rate_histograms_); 2809 uint64_t time_since_last_update = now - last_update_time_gc_count_rate_histograms_; 2810 uint64_t num_of_windows = time_since_last_update / kGcCountRateHistogramWindowDuration; 2811 if (time_since_last_update >= kGcCountRateHistogramWindowDuration) { 2812 // Record the first window. 2813 gc_count_rate_histogram_.AddValue(gc_count_last_window_ - 1); // Exclude the current run. 2814 blocking_gc_count_rate_histogram_.AddValue(running_collection_is_blocking_ ? 2815 blocking_gc_count_last_window_ - 1 : blocking_gc_count_last_window_); 2816 // Record the other windows (with zero counts). 2817 for (uint64_t i = 0; i < num_of_windows - 1; ++i) { 2818 gc_count_rate_histogram_.AddValue(0); 2819 blocking_gc_count_rate_histogram_.AddValue(0); 2820 } 2821 // Update the last update time and reset the counters. 2822 last_update_time_gc_count_rate_histograms_ = 2823 (now / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration; 2824 gc_count_last_window_ = 1; // Include the current run. 2825 blocking_gc_count_last_window_ = running_collection_is_blocking_ ? 1 : 0; 2826 } 2827 DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U); 2828 } 2829 2830 class RootMatchesObjectVisitor : public SingleRootVisitor { 2831 public: 2832 explicit RootMatchesObjectVisitor(const mirror::Object* obj) : obj_(obj) { } 2833 2834 void VisitRoot(mirror::Object* root, const RootInfo& info) 2835 OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { 2836 if (root == obj_) { 2837 LOG(INFO) << "Object " << obj_ << " is a root " << info.ToString(); 2838 } 2839 } 2840 2841 private: 2842 const mirror::Object* const obj_; 2843 }; 2844 2845 2846 class ScanVisitor { 2847 public: 2848 void operator()(const mirror::Object* obj) const { 2849 LOG(ERROR) << "Would have rescanned object " << obj; 2850 } 2851 }; 2852 2853 // Verify a reference from an object. 2854 class VerifyReferenceVisitor : public SingleRootVisitor { 2855 public: 2856 VerifyReferenceVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent) 2857 SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) 2858 : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {} 2859 2860 size_t GetFailureCount() const { 2861 return fail_count_->LoadSequentiallyConsistent(); 2862 } 2863 2864 void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, mirror::Reference* ref) const 2865 SHARED_REQUIRES(Locks::mutator_lock_) { 2866 if (verify_referent_) { 2867 VerifyReference(ref, ref->GetReferent(), mirror::Reference::ReferentOffset()); 2868 } 2869 } 2870 2871 void operator()(mirror::Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const 2872 SHARED_REQUIRES(Locks::mutator_lock_) { 2873 VerifyReference(obj, obj->GetFieldObject<mirror::Object>(offset), offset); 2874 } 2875 2876 bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS { 2877 return heap_->IsLiveObjectLocked(obj, true, false, true); 2878 } 2879 2880 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const 2881 SHARED_REQUIRES(Locks::mutator_lock_) { 2882 if (!root->IsNull()) { 2883 VisitRoot(root); 2884 } 2885 } 2886 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const 2887 SHARED_REQUIRES(Locks::mutator_lock_) { 2888 const_cast<VerifyReferenceVisitor*>(this)->VisitRoot( 2889 root->AsMirrorPtr(), RootInfo(kRootVMInternal)); 2890 } 2891 2892 virtual void VisitRoot(mirror::Object* root, const RootInfo& root_info) OVERRIDE 2893 SHARED_REQUIRES(Locks::mutator_lock_) { 2894 if (root == nullptr) { 2895 LOG(ERROR) << "Root is null with info " << root_info.GetType(); 2896 } else if (!VerifyReference(nullptr, root, MemberOffset(0))) { 2897 LOG(ERROR) << "Root " << root << " is dead with type " << PrettyTypeOf(root) 2898 << " thread_id= " << root_info.GetThreadId() << " root_type= " << root_info.GetType(); 2899 } 2900 } 2901 2902 private: 2903 // TODO: Fix the no thread safety analysis. 2904 // Returns false on failure. 2905 bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const 2906 NO_THREAD_SAFETY_ANALYSIS { 2907 if (ref == nullptr || IsLive(ref)) { 2908 // Verify that the reference is live. 2909 return true; 2910 } 2911 if (fail_count_->FetchAndAddSequentiallyConsistent(1) == 0) { 2912 // Print message on only on first failure to prevent spam. 2913 LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!"; 2914 } 2915 if (obj != nullptr) { 2916 // Only do this part for non roots. 2917 accounting::CardTable* card_table = heap_->GetCardTable(); 2918 accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get(); 2919 accounting::ObjectStack* live_stack = heap_->live_stack_.get(); 2920 uint8_t* card_addr = card_table->CardFromAddr(obj); 2921 LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset " 2922 << offset << "\n card value = " << static_cast<int>(*card_addr); 2923 if (heap_->IsValidObjectAddress(obj->GetClass())) { 2924 LOG(ERROR) << "Obj type " << PrettyTypeOf(obj); 2925 } else { 2926 LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address"; 2927 } 2928 2929 // Attempt to find the class inside of the recently freed objects. 2930 space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true); 2931 if (ref_space != nullptr && ref_space->IsMallocSpace()) { 2932 space::MallocSpace* space = ref_space->AsMallocSpace(); 2933 mirror::Class* ref_class = space->FindRecentFreedObject(ref); 2934 if (ref_class != nullptr) { 2935 LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class " 2936 << PrettyClass(ref_class); 2937 } else { 2938 LOG(ERROR) << "Reference " << ref << " not found as a recently freed object"; 2939 } 2940 } 2941 2942 if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) && 2943 ref->GetClass()->IsClass()) { 2944 LOG(ERROR) << "Ref type " << PrettyTypeOf(ref); 2945 } else { 2946 LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass() 2947 << ") is not a valid heap address"; 2948 } 2949 2950 card_table->CheckAddrIsInCardTable(reinterpret_cast<const uint8_t*>(obj)); 2951 void* cover_begin = card_table->AddrFromCard(card_addr); 2952 void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) + 2953 accounting::CardTable::kCardSize); 2954 LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin 2955 << "-" << cover_end; 2956 accounting::ContinuousSpaceBitmap* bitmap = 2957 heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj); 2958 2959 if (bitmap == nullptr) { 2960 LOG(ERROR) << "Object " << obj << " has no bitmap"; 2961 if (!VerifyClassClass(obj->GetClass())) { 2962 LOG(ERROR) << "Object " << obj << " failed class verification!"; 2963 } 2964 } else { 2965 // Print out how the object is live. 2966 if (bitmap->Test(obj)) { 2967 LOG(ERROR) << "Object " << obj << " found in live bitmap"; 2968 } 2969 if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) { 2970 LOG(ERROR) << "Object " << obj << " found in allocation stack"; 2971 } 2972 if (live_stack->Contains(const_cast<mirror::Object*>(obj))) { 2973 LOG(ERROR) << "Object " << obj << " found in live stack"; 2974 } 2975 if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) { 2976 LOG(ERROR) << "Ref " << ref << " found in allocation stack"; 2977 } 2978 if (live_stack->Contains(const_cast<mirror::Object*>(ref))) { 2979 LOG(ERROR) << "Ref " << ref << " found in live stack"; 2980 } 2981 // Attempt to see if the card table missed the reference. 2982 ScanVisitor scan_visitor; 2983 uint8_t* byte_cover_begin = reinterpret_cast<uint8_t*>(card_table->AddrFromCard(card_addr)); 2984 card_table->Scan<false>(bitmap, byte_cover_begin, 2985 byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor); 2986 } 2987 2988 // Search to see if any of the roots reference our object. 2989 RootMatchesObjectVisitor visitor1(obj); 2990 Runtime::Current()->VisitRoots(&visitor1); 2991 // Search to see if any of the roots reference our reference. 2992 RootMatchesObjectVisitor visitor2(ref); 2993 Runtime::Current()->VisitRoots(&visitor2); 2994 } 2995 return false; 2996 } 2997 2998 Heap* const heap_; 2999 Atomic<size_t>* const fail_count_; 3000 const bool verify_referent_; 3001 }; 3002 3003 // Verify all references within an object, for use with HeapBitmap::Visit. 3004 class VerifyObjectVisitor { 3005 public: 3006 VerifyObjectVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent) 3007 : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {} 3008 3009 void operator()(mirror::Object* obj) 3010 SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { 3011 // Note: we are verifying the references in obj but not obj itself, this is because obj must 3012 // be live or else how did we find it in the live bitmap? 3013 VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_); 3014 // The class doesn't count as a reference but we should verify it anyways. 3015 obj->VisitReferences(visitor, visitor); 3016 } 3017 3018 static void VisitCallback(mirror::Object* obj, void* arg) 3019 SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { 3020 VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg); 3021 visitor->operator()(obj); 3022 } 3023 3024 void VerifyRoots() SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(!Locks::heap_bitmap_lock_) { 3025 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 3026 VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_); 3027 Runtime::Current()->VisitRoots(&visitor); 3028 } 3029 3030 size_t GetFailureCount() const { 3031 return fail_count_->LoadSequentiallyConsistent(); 3032 } 3033 3034 private: 3035 Heap* const heap_; 3036 Atomic<size_t>* const fail_count_; 3037 const bool verify_referent_; 3038 }; 3039 3040 void Heap::PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) { 3041 // Slow path, the allocation stack push back must have already failed. 3042 DCHECK(!allocation_stack_->AtomicPushBack(*obj)); 3043 do { 3044 // TODO: Add handle VerifyObject. 3045 StackHandleScope<1> hs(self); 3046 HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj)); 3047 // Push our object into the reserve region of the allocaiton stack. This is only required due 3048 // to heap verification requiring that roots are live (either in the live bitmap or in the 3049 // allocation stack). 3050 CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj)); 3051 CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false); 3052 } while (!allocation_stack_->AtomicPushBack(*obj)); 3053 } 3054 3055 void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) { 3056 // Slow path, the allocation stack push back must have already failed. 3057 DCHECK(!self->PushOnThreadLocalAllocationStack(*obj)); 3058 StackReference<mirror::Object>* start_address; 3059 StackReference<mirror::Object>* end_address; 3060 while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address, 3061 &end_address)) { 3062 // TODO: Add handle VerifyObject. 3063 StackHandleScope<1> hs(self); 3064 HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj)); 3065 // Push our object into the reserve region of the allocaiton stack. This is only required due 3066 // to heap verification requiring that roots are live (either in the live bitmap or in the 3067 // allocation stack). 3068 CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj)); 3069 // Push into the reserve allocation stack. 3070 CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false); 3071 } 3072 self->SetThreadLocalAllocationStack(start_address, end_address); 3073 // Retry on the new thread-local allocation stack. 3074 CHECK(self->PushOnThreadLocalAllocationStack(*obj)); // Must succeed. 3075 } 3076 3077 // Must do this with mutators suspended since we are directly accessing the allocation stacks. 3078 size_t Heap::VerifyHeapReferences(bool verify_referents) { 3079 Thread* self = Thread::Current(); 3080 Locks::mutator_lock_->AssertExclusiveHeld(self); 3081 // Lets sort our allocation stacks so that we can efficiently binary search them. 3082 allocation_stack_->Sort(); 3083 live_stack_->Sort(); 3084 // Since we sorted the allocation stack content, need to revoke all 3085 // thread-local allocation stacks. 3086 RevokeAllThreadLocalAllocationStacks(self); 3087 Atomic<size_t> fail_count_(0); 3088 VerifyObjectVisitor visitor(this, &fail_count_, verify_referents); 3089 // Verify objects in the allocation stack since these will be objects which were: 3090 // 1. Allocated prior to the GC (pre GC verification). 3091 // 2. Allocated during the GC (pre sweep GC verification). 3092 // We don't want to verify the objects in the live stack since they themselves may be 3093 // pointing to dead objects if they are not reachable. 3094 VisitObjectsPaused(VerifyObjectVisitor::VisitCallback, &visitor); 3095 // Verify the roots: 3096 visitor.VerifyRoots(); 3097 if (visitor.GetFailureCount() > 0) { 3098 // Dump mod-union tables. 3099 for (const auto& table_pair : mod_union_tables_) { 3100 accounting::ModUnionTable* mod_union_table = table_pair.second; 3101 mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": "); 3102 } 3103 // Dump remembered sets. 3104 for (const auto& table_pair : remembered_sets_) { 3105 accounting::RememberedSet* remembered_set = table_pair.second; 3106 remembered_set->Dump(LOG(ERROR) << remembered_set->GetName() << ": "); 3107 } 3108 DumpSpaces(LOG(ERROR)); 3109 } 3110 return visitor.GetFailureCount(); 3111 } 3112 3113 class VerifyReferenceCardVisitor { 3114 public: 3115 VerifyReferenceCardVisitor(Heap* heap, bool* failed) 3116 SHARED_REQUIRES(Locks::mutator_lock_, 3117 Locks::heap_bitmap_lock_) 3118 : heap_(heap), failed_(failed) { 3119 } 3120 3121 // There is no card marks for native roots on a class. 3122 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) 3123 const {} 3124 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {} 3125 3126 // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for 3127 // annotalysis on visitors. 3128 void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const 3129 NO_THREAD_SAFETY_ANALYSIS { 3130 mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset); 3131 // Filter out class references since changing an object's class does not mark the card as dirty. 3132 // Also handles large objects, since the only reference they hold is a class reference. 3133 if (ref != nullptr && !ref->IsClass()) { 3134 accounting::CardTable* card_table = heap_->GetCardTable(); 3135 // If the object is not dirty and it is referencing something in the live stack other than 3136 // class, then it must be on a dirty card. 3137 if (!card_table->AddrIsInCardTable(obj)) { 3138 LOG(ERROR) << "Object " << obj << " is not in the address range of the card table"; 3139 *failed_ = true; 3140 } else if (!card_table->IsDirty(obj)) { 3141 // TODO: Check mod-union tables. 3142 // Card should be either kCardDirty if it got re-dirtied after we aged it, or 3143 // kCardDirty - 1 if it didnt get touched since we aged it. 3144 accounting::ObjectStack* live_stack = heap_->live_stack_.get(); 3145 if (live_stack->ContainsSorted(ref)) { 3146 if (live_stack->ContainsSorted(obj)) { 3147 LOG(ERROR) << "Object " << obj << " found in live stack"; 3148 } 3149 if (heap_->GetLiveBitmap()->Test(obj)) { 3150 LOG(ERROR) << "Object " << obj << " found in live bitmap"; 3151 } 3152 LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj) 3153 << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack"; 3154 3155 // Print which field of the object is dead. 3156 if (!obj->IsObjectArray()) { 3157 mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass(); 3158 CHECK(klass != nullptr); 3159 for (ArtField& field : (is_static ? klass->GetSFields() : klass->GetIFields())) { 3160 if (field.GetOffset().Int32Value() == offset.Int32Value()) { 3161 LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is " 3162 << PrettyField(&field); 3163 break; 3164 } 3165 } 3166 } else { 3167 mirror::ObjectArray<mirror::Object>* object_array = 3168 obj->AsObjectArray<mirror::Object>(); 3169 for (int32_t i = 0; i < object_array->GetLength(); ++i) { 3170 if (object_array->Get(i) == ref) { 3171 LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref"; 3172 } 3173 } 3174 } 3175 3176 *failed_ = true; 3177 } 3178 } 3179 } 3180 } 3181 3182 private: 3183 Heap* const heap_; 3184 bool* const failed_; 3185 }; 3186 3187 class VerifyLiveStackReferences { 3188 public: 3189 explicit VerifyLiveStackReferences(Heap* heap) 3190 : heap_(heap), 3191 failed_(false) {} 3192 3193 void operator()(mirror::Object* obj) const 3194 SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { 3195 VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_)); 3196 obj->VisitReferences(visitor, VoidFunctor()); 3197 } 3198 3199 bool Failed() const { 3200 return failed_; 3201 } 3202 3203 private: 3204 Heap* const heap_; 3205 bool failed_; 3206 }; 3207 3208 bool Heap::VerifyMissingCardMarks() { 3209 Thread* self = Thread::Current(); 3210 Locks::mutator_lock_->AssertExclusiveHeld(self); 3211 // We need to sort the live stack since we binary search it. 3212 live_stack_->Sort(); 3213 // Since we sorted the allocation stack content, need to revoke all 3214 // thread-local allocation stacks. 3215 RevokeAllThreadLocalAllocationStacks(self); 3216 VerifyLiveStackReferences visitor(this); 3217 GetLiveBitmap()->Visit(visitor); 3218 // We can verify objects in the live stack since none of these should reference dead objects. 3219 for (auto* it = live_stack_->Begin(); it != live_stack_->End(); ++it) { 3220 if (!kUseThreadLocalAllocationStack || it->AsMirrorPtr() != nullptr) { 3221 visitor(it->AsMirrorPtr()); 3222 } 3223 } 3224 return !visitor.Failed(); 3225 } 3226 3227 void Heap::SwapStacks() { 3228 if (kUseThreadLocalAllocationStack) { 3229 live_stack_->AssertAllZero(); 3230 } 3231 allocation_stack_.swap(live_stack_); 3232 } 3233 3234 void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) { 3235 // This must be called only during the pause. 3236 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self)); 3237 MutexLock mu(self, *Locks::runtime_shutdown_lock_); 3238 MutexLock mu2(self, *Locks::thread_list_lock_); 3239 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList(); 3240 for (Thread* t : thread_list) { 3241 t->RevokeThreadLocalAllocationStack(); 3242 } 3243 } 3244 3245 void Heap::AssertThreadLocalBuffersAreRevoked(Thread* thread) { 3246 if (kIsDebugBuild) { 3247 if (rosalloc_space_ != nullptr) { 3248 rosalloc_space_->AssertThreadLocalBuffersAreRevoked(thread); 3249 } 3250 if (bump_pointer_space_ != nullptr) { 3251 bump_pointer_space_->AssertThreadLocalBuffersAreRevoked(thread); 3252 } 3253 } 3254 } 3255 3256 void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() { 3257 if (kIsDebugBuild) { 3258 if (bump_pointer_space_ != nullptr) { 3259 bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked(); 3260 } 3261 } 3262 } 3263 3264 accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) { 3265 auto it = mod_union_tables_.find(space); 3266 if (it == mod_union_tables_.end()) { 3267 return nullptr; 3268 } 3269 return it->second; 3270 } 3271 3272 accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) { 3273 auto it = remembered_sets_.find(space); 3274 if (it == remembered_sets_.end()) { 3275 return nullptr; 3276 } 3277 return it->second; 3278 } 3279 3280 void Heap::ProcessCards(TimingLogger* timings, 3281 bool use_rem_sets, 3282 bool process_alloc_space_cards, 3283 bool clear_alloc_space_cards) { 3284 TimingLogger::ScopedTiming t(__FUNCTION__, timings); 3285 // Clear cards and keep track of cards cleared in the mod-union table. 3286 for (const auto& space : continuous_spaces_) { 3287 accounting::ModUnionTable* table = FindModUnionTableFromSpace(space); 3288 accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space); 3289 if (table != nullptr) { 3290 const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" : 3291 "ImageModUnionClearCards"; 3292 TimingLogger::ScopedTiming t2(name, timings); 3293 table->ClearCards(); 3294 } else if (use_rem_sets && rem_set != nullptr) { 3295 DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS) 3296 << static_cast<int>(collector_type_); 3297 TimingLogger::ScopedTiming t2("AllocSpaceRemSetClearCards", timings); 3298 rem_set->ClearCards(); 3299 } else if (process_alloc_space_cards) { 3300 TimingLogger::ScopedTiming t2("AllocSpaceClearCards", timings); 3301 if (clear_alloc_space_cards) { 3302 uint8_t* end = space->End(); 3303 if (space->IsImageSpace()) { 3304 // Image space end is the end of the mirror objects, it is not necessarily page or card 3305 // aligned. Align up so that the check in ClearCardRange does not fail. 3306 end = AlignUp(end, accounting::CardTable::kCardSize); 3307 } 3308 card_table_->ClearCardRange(space->Begin(), end); 3309 } else { 3310 // No mod union table for the AllocSpace. Age the cards so that the GC knows that these 3311 // cards were dirty before the GC started. 3312 // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread) 3313 // -> clean(cleaning thread). 3314 // The races are we either end up with: Aged card, unaged card. Since we have the 3315 // checkpoint roots and then we scan / update mod union tables after. We will always 3316 // scan either card. If we end up with the non aged card, we scan it it in the pause. 3317 card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(), 3318 VoidFunctor()); 3319 } 3320 } 3321 } 3322 } 3323 3324 struct IdentityMarkHeapReferenceVisitor : public MarkObjectVisitor { 3325 virtual mirror::Object* MarkObject(mirror::Object* obj) OVERRIDE { 3326 return obj; 3327 } 3328 virtual void MarkHeapReference(mirror::HeapReference<mirror::Object>*) OVERRIDE { 3329 } 3330 }; 3331 3332 void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) { 3333 Thread* const self = Thread::Current(); 3334 TimingLogger* const timings = current_gc_iteration_.GetTimings(); 3335 TimingLogger::ScopedTiming t(__FUNCTION__, timings); 3336 if (verify_pre_gc_heap_) { 3337 TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyHeapReferences", timings); 3338 size_t failures = VerifyHeapReferences(); 3339 if (failures > 0) { 3340 LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures 3341 << " failures"; 3342 } 3343 } 3344 // Check that all objects which reference things in the live stack are on dirty cards. 3345 if (verify_missing_card_marks_) { 3346 TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyMissingCardMarks", timings); 3347 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); 3348 SwapStacks(); 3349 // Sort the live stack so that we can quickly binary search it later. 3350 CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName() 3351 << " missing card mark verification failed\n" << DumpSpaces(); 3352 SwapStacks(); 3353 } 3354 if (verify_mod_union_table_) { 3355 TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyModUnionTables", timings); 3356 ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_); 3357 for (const auto& table_pair : mod_union_tables_) { 3358 accounting::ModUnionTable* mod_union_table = table_pair.second; 3359 IdentityMarkHeapReferenceVisitor visitor; 3360 mod_union_table->UpdateAndMarkReferences(&visitor); 3361 mod_union_table->Verify(); 3362 } 3363 } 3364 } 3365 3366 void Heap::PreGcVerification(collector::GarbageCollector* gc) { 3367 if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) { 3368 collector::GarbageCollector::ScopedPause pause(gc); 3369 PreGcVerificationPaused(gc); 3370 } 3371 } 3372 3373 void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc ATTRIBUTE_UNUSED) { 3374 // TODO: Add a new runtime option for this? 3375 if (verify_pre_gc_rosalloc_) { 3376 RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification"); 3377 } 3378 } 3379 3380 void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) { 3381 Thread* const self = Thread::Current(); 3382 TimingLogger* const timings = current_gc_iteration_.GetTimings(); 3383 TimingLogger::ScopedTiming t(__FUNCTION__, timings); 3384 // Called before sweeping occurs since we want to make sure we are not going so reclaim any 3385 // reachable objects. 3386 if (verify_pre_sweeping_heap_) { 3387 TimingLogger::ScopedTiming t2("(Paused)PostSweepingVerifyHeapReferences", timings); 3388 CHECK_NE(self->GetState(), kRunnable); 3389 { 3390 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 3391 // Swapping bound bitmaps does nothing. 3392 gc->SwapBitmaps(); 3393 } 3394 // Pass in false since concurrent reference processing can mean that the reference referents 3395 // may point to dead objects at the point which PreSweepingGcVerification is called. 3396 size_t failures = VerifyHeapReferences(false); 3397 if (failures > 0) { 3398 LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures 3399 << " failures"; 3400 } 3401 { 3402 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 3403 gc->SwapBitmaps(); 3404 } 3405 } 3406 if (verify_pre_sweeping_rosalloc_) { 3407 RosAllocVerification(timings, "PreSweepingRosAllocVerification"); 3408 } 3409 } 3410 3411 void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) { 3412 // Only pause if we have to do some verification. 3413 Thread* const self = Thread::Current(); 3414 TimingLogger* const timings = GetCurrentGcIteration()->GetTimings(); 3415 TimingLogger::ScopedTiming t(__FUNCTION__, timings); 3416 if (verify_system_weaks_) { 3417 ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_); 3418 collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc); 3419 mark_sweep->VerifySystemWeaks(); 3420 } 3421 if (verify_post_gc_rosalloc_) { 3422 RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification"); 3423 } 3424 if (verify_post_gc_heap_) { 3425 TimingLogger::ScopedTiming t2("(Paused)PostGcVerifyHeapReferences", timings); 3426 size_t failures = VerifyHeapReferences(); 3427 if (failures > 0) { 3428 LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures 3429 << " failures"; 3430 } 3431 } 3432 } 3433 3434 void Heap::PostGcVerification(collector::GarbageCollector* gc) { 3435 if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) { 3436 collector::GarbageCollector::ScopedPause pause(gc); 3437 PostGcVerificationPaused(gc); 3438 } 3439 } 3440 3441 void Heap::RosAllocVerification(TimingLogger* timings, const char* name) { 3442 TimingLogger::ScopedTiming t(name, timings); 3443 for (const auto& space : continuous_spaces_) { 3444 if (space->IsRosAllocSpace()) { 3445 VLOG(heap) << name << " : " << space->GetName(); 3446 space->AsRosAllocSpace()->Verify(); 3447 } 3448 } 3449 } 3450 3451 collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) { 3452 ScopedThreadStateChange tsc(self, kWaitingForGcToComplete); 3453 MutexLock mu(self, *gc_complete_lock_); 3454 return WaitForGcToCompleteLocked(cause, self); 3455 } 3456 3457 collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) { 3458 collector::GcType last_gc_type = collector::kGcTypeNone; 3459 uint64_t wait_start = NanoTime(); 3460 while (collector_type_running_ != kCollectorTypeNone) { 3461 if (self != task_processor_->GetRunningThread()) { 3462 // The current thread is about to wait for a currently running 3463 // collection to finish. If the waiting thread is not the heap 3464 // task daemon thread, the currently running collection is 3465 // considered as a blocking GC. 3466 running_collection_is_blocking_ = true; 3467 VLOG(gc) << "Waiting for a blocking GC " << cause; 3468 } 3469 ScopedTrace trace("GC: Wait For Completion"); 3470 // We must wait, change thread state then sleep on gc_complete_cond_; 3471 gc_complete_cond_->Wait(self); 3472 last_gc_type = last_gc_type_; 3473 } 3474 uint64_t wait_time = NanoTime() - wait_start; 3475 total_wait_time_ += wait_time; 3476 if (wait_time > long_pause_log_threshold_) { 3477 LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time) 3478 << " for cause " << cause; 3479 } 3480 if (self != task_processor_->GetRunningThread()) { 3481 // The current thread is about to run a collection. If the thread 3482 // is not the heap task daemon thread, it's considered as a 3483 // blocking GC (i.e., blocking itself). 3484 running_collection_is_blocking_ = true; 3485 VLOG(gc) << "Starting a blocking GC " << cause; 3486 } 3487 return last_gc_type; 3488 } 3489 3490 void Heap::DumpForSigQuit(std::ostream& os) { 3491 os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/" 3492 << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n"; 3493 DumpGcPerformanceInfo(os); 3494 } 3495 3496 size_t Heap::GetPercentFree() { 3497 return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / max_allowed_footprint_); 3498 } 3499 3500 void Heap::SetIdealFootprint(size_t max_allowed_footprint) { 3501 if (max_allowed_footprint > GetMaxMemory()) { 3502 VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to " 3503 << PrettySize(GetMaxMemory()); 3504 max_allowed_footprint = GetMaxMemory(); 3505 } 3506 max_allowed_footprint_ = max_allowed_footprint; 3507 } 3508 3509 bool Heap::IsMovableObject(const mirror::Object* obj) const { 3510 if (kMovingCollector) { 3511 space::Space* space = FindContinuousSpaceFromObject(obj, true); 3512 if (space != nullptr) { 3513 // TODO: Check large object? 3514 return space->CanMoveObjects(); 3515 } 3516 } 3517 return false; 3518 } 3519 3520 void Heap::UpdateMaxNativeFootprint() { 3521 size_t native_size = native_bytes_allocated_.LoadRelaxed(); 3522 // TODO: Tune the native heap utilization to be a value other than the java heap utilization. 3523 size_t target_size = native_size / GetTargetHeapUtilization(); 3524 if (target_size > native_size + max_free_) { 3525 target_size = native_size + max_free_; 3526 } else if (target_size < native_size + min_free_) { 3527 target_size = native_size + min_free_; 3528 } 3529 native_footprint_gc_watermark_ = std::min(growth_limit_, target_size); 3530 } 3531 3532 collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) { 3533 for (const auto& collector : garbage_collectors_) { 3534 if (collector->GetCollectorType() == collector_type_ && 3535 collector->GetGcType() == gc_type) { 3536 return collector; 3537 } 3538 } 3539 return nullptr; 3540 } 3541 3542 double Heap::HeapGrowthMultiplier() const { 3543 // If we don't care about pause times we are background, so return 1.0. 3544 if (!CareAboutPauseTimes() || IsLowMemoryMode()) { 3545 return 1.0; 3546 } 3547 return foreground_heap_growth_multiplier_; 3548 } 3549 3550 void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran, 3551 uint64_t bytes_allocated_before_gc) { 3552 // We know what our utilization is at this moment. 3553 // This doesn't actually resize any memory. It just lets the heap grow more when necessary. 3554 const uint64_t bytes_allocated = GetBytesAllocated(); 3555 uint64_t target_size; 3556 collector::GcType gc_type = collector_ran->GetGcType(); 3557 const double multiplier = HeapGrowthMultiplier(); // Use the multiplier to grow more for 3558 // foreground. 3559 const uint64_t adjusted_min_free = static_cast<uint64_t>(min_free_ * multiplier); 3560 const uint64_t adjusted_max_free = static_cast<uint64_t>(max_free_ * multiplier); 3561 if (gc_type != collector::kGcTypeSticky) { 3562 // Grow the heap for non sticky GC. 3563 ssize_t delta = bytes_allocated / GetTargetHeapUtilization() - bytes_allocated; 3564 CHECK_GE(delta, 0); 3565 target_size = bytes_allocated + delta * multiplier; 3566 target_size = std::min(target_size, bytes_allocated + adjusted_max_free); 3567 target_size = std::max(target_size, bytes_allocated + adjusted_min_free); 3568 native_need_to_run_finalization_ = true; 3569 next_gc_type_ = collector::kGcTypeSticky; 3570 } else { 3571 collector::GcType non_sticky_gc_type = 3572 HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull; 3573 // Find what the next non sticky collector will be. 3574 collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type); 3575 // If the throughput of the current sticky GC >= throughput of the non sticky collector, then 3576 // do another sticky collection next. 3577 // We also check that the bytes allocated aren't over the footprint limit in order to prevent a 3578 // pathological case where dead objects which aren't reclaimed by sticky could get accumulated 3579 // if the sticky GC throughput always remained >= the full/partial throughput. 3580 if (current_gc_iteration_.GetEstimatedThroughput() * kStickyGcThroughputAdjustment >= 3581 non_sticky_collector->GetEstimatedMeanThroughput() && 3582 non_sticky_collector->NumberOfIterations() > 0 && 3583 bytes_allocated <= max_allowed_footprint_) { 3584 next_gc_type_ = collector::kGcTypeSticky; 3585 } else { 3586 next_gc_type_ = non_sticky_gc_type; 3587 } 3588 // If we have freed enough memory, shrink the heap back down. 3589 if (bytes_allocated + adjusted_max_free < max_allowed_footprint_) { 3590 target_size = bytes_allocated + adjusted_max_free; 3591 } else { 3592 target_size = std::max(bytes_allocated, static_cast<uint64_t>(max_allowed_footprint_)); 3593 } 3594 } 3595 if (!ignore_max_footprint_) { 3596 SetIdealFootprint(target_size); 3597 if (IsGcConcurrent()) { 3598 const uint64_t freed_bytes = current_gc_iteration_.GetFreedBytes() + 3599 current_gc_iteration_.GetFreedLargeObjectBytes() + 3600 current_gc_iteration_.GetFreedRevokeBytes(); 3601 // Bytes allocated will shrink by freed_bytes after the GC runs, so if we want to figure out 3602 // how many bytes were allocated during the GC we need to add freed_bytes back on. 3603 CHECK_GE(bytes_allocated + freed_bytes, bytes_allocated_before_gc); 3604 const uint64_t bytes_allocated_during_gc = bytes_allocated + freed_bytes - 3605 bytes_allocated_before_gc; 3606 // Calculate when to perform the next ConcurrentGC. 3607 // Calculate the estimated GC duration. 3608 const double gc_duration_seconds = NsToMs(current_gc_iteration_.GetDurationNs()) / 1000.0; 3609 // Estimate how many remaining bytes we will have when we need to start the next GC. 3610 size_t remaining_bytes = bytes_allocated_during_gc * gc_duration_seconds; 3611 remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes); 3612 remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes); 3613 if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) { 3614 // A never going to happen situation that from the estimated allocation rate we will exceed 3615 // the applications entire footprint with the given estimated allocation rate. Schedule 3616 // another GC nearly straight away. 3617 remaining_bytes = kMinConcurrentRemainingBytes; 3618 } 3619 DCHECK_LE(remaining_bytes, max_allowed_footprint_); 3620 DCHECK_LE(max_allowed_footprint_, GetMaxMemory()); 3621 // Start a concurrent GC when we get close to the estimated remaining bytes. When the 3622 // allocation rate is very high, remaining_bytes could tell us that we should start a GC 3623 // right away. 3624 concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes, 3625 static_cast<size_t>(bytes_allocated)); 3626 } 3627 } 3628 } 3629 3630 void Heap::ClampGrowthLimit() { 3631 // Use heap bitmap lock to guard against races with BindLiveToMarkBitmap. 3632 ScopedObjectAccess soa(Thread::Current()); 3633 WriterMutexLock mu(soa.Self(), *Locks::heap_bitmap_lock_); 3634 capacity_ = growth_limit_; 3635 for (const auto& space : continuous_spaces_) { 3636 if (space->IsMallocSpace()) { 3637 gc::space::MallocSpace* malloc_space = space->AsMallocSpace(); 3638 malloc_space->ClampGrowthLimit(); 3639 } 3640 } 3641 // This space isn't added for performance reasons. 3642 if (main_space_backup_.get() != nullptr) { 3643 main_space_backup_->ClampGrowthLimit(); 3644 } 3645 } 3646 3647 void Heap::ClearGrowthLimit() { 3648 growth_limit_ = capacity_; 3649 ScopedObjectAccess soa(Thread::Current()); 3650 for (const auto& space : continuous_spaces_) { 3651 if (space->IsMallocSpace()) { 3652 gc::space::MallocSpace* malloc_space = space->AsMallocSpace(); 3653 malloc_space->ClearGrowthLimit(); 3654 malloc_space->SetFootprintLimit(malloc_space->Capacity()); 3655 } 3656 } 3657 // This space isn't added for performance reasons. 3658 if (main_space_backup_.get() != nullptr) { 3659 main_space_backup_->ClearGrowthLimit(); 3660 main_space_backup_->SetFootprintLimit(main_space_backup_->Capacity()); 3661 } 3662 } 3663 3664 void Heap::AddFinalizerReference(Thread* self, mirror::Object** object) { 3665 ScopedObjectAccess soa(self); 3666 ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object)); 3667 jvalue args[1]; 3668 args[0].l = arg.get(); 3669 InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args); 3670 // Restore object in case it gets moved. 3671 *object = soa.Decode<mirror::Object*>(arg.get()); 3672 } 3673 3674 void Heap::RequestConcurrentGCAndSaveObject(Thread* self, bool force_full, mirror::Object** obj) { 3675 StackHandleScope<1> hs(self); 3676 HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj)); 3677 RequestConcurrentGC(self, force_full); 3678 } 3679 3680 class Heap::ConcurrentGCTask : public HeapTask { 3681 public: 3682 ConcurrentGCTask(uint64_t target_time, bool force_full) 3683 : HeapTask(target_time), force_full_(force_full) { } 3684 virtual void Run(Thread* self) OVERRIDE { 3685 gc::Heap* heap = Runtime::Current()->GetHeap(); 3686 heap->ConcurrentGC(self, force_full_); 3687 heap->ClearConcurrentGCRequest(); 3688 } 3689 3690 private: 3691 const bool force_full_; // If true, force full (or partial) collection. 3692 }; 3693 3694 static bool CanAddHeapTask(Thread* self) REQUIRES(!Locks::runtime_shutdown_lock_) { 3695 Runtime* runtime = Runtime::Current(); 3696 return runtime != nullptr && runtime->IsFinishedStarting() && !runtime->IsShuttingDown(self) && 3697 !self->IsHandlingStackOverflow(); 3698 } 3699 3700 void Heap::ClearConcurrentGCRequest() { 3701 concurrent_gc_pending_.StoreRelaxed(false); 3702 } 3703 3704 void Heap::RequestConcurrentGC(Thread* self, bool force_full) { 3705 if (CanAddHeapTask(self) && 3706 concurrent_gc_pending_.CompareExchangeStrongSequentiallyConsistent(false, true)) { 3707 task_processor_->AddTask(self, new ConcurrentGCTask(NanoTime(), // Start straight away. 3708 force_full)); 3709 } 3710 } 3711 3712 void Heap::ConcurrentGC(Thread* self, bool force_full) { 3713 if (!Runtime::Current()->IsShuttingDown(self)) { 3714 // Wait for any GCs currently running to finish. 3715 if (WaitForGcToComplete(kGcCauseBackground, self) == collector::kGcTypeNone) { 3716 // If the we can't run the GC type we wanted to run, find the next appropriate one and try that 3717 // instead. E.g. can't do partial, so do full instead. 3718 collector::GcType next_gc_type = next_gc_type_; 3719 // If forcing full and next gc type is sticky, override with a non-sticky type. 3720 if (force_full && next_gc_type == collector::kGcTypeSticky) { 3721 next_gc_type = HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull; 3722 } 3723 if (CollectGarbageInternal(next_gc_type, kGcCauseBackground, false) == 3724 collector::kGcTypeNone) { 3725 for (collector::GcType gc_type : gc_plan_) { 3726 // Attempt to run the collector, if we succeed, we are done. 3727 if (gc_type > next_gc_type && 3728 CollectGarbageInternal(gc_type, kGcCauseBackground, false) != 3729 collector::kGcTypeNone) { 3730 break; 3731 } 3732 } 3733 } 3734 } 3735 } 3736 } 3737 3738 class Heap::CollectorTransitionTask : public HeapTask { 3739 public: 3740 explicit CollectorTransitionTask(uint64_t target_time) : HeapTask(target_time) {} 3741 3742 virtual void Run(Thread* self) OVERRIDE { 3743 gc::Heap* heap = Runtime::Current()->GetHeap(); 3744 heap->DoPendingCollectorTransition(); 3745 heap->ClearPendingCollectorTransition(self); 3746 } 3747 }; 3748 3749 void Heap::ClearPendingCollectorTransition(Thread* self) { 3750 MutexLock mu(self, *pending_task_lock_); 3751 pending_collector_transition_ = nullptr; 3752 } 3753 3754 void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) { 3755 Thread* self = Thread::Current(); 3756 desired_collector_type_ = desired_collector_type; 3757 if (desired_collector_type_ == collector_type_ || !CanAddHeapTask(self)) { 3758 return; 3759 } 3760 CollectorTransitionTask* added_task = nullptr; 3761 const uint64_t target_time = NanoTime() + delta_time; 3762 { 3763 MutexLock mu(self, *pending_task_lock_); 3764 // If we have an existing collector transition, update the targe time to be the new target. 3765 if (pending_collector_transition_ != nullptr) { 3766 task_processor_->UpdateTargetRunTime(self, pending_collector_transition_, target_time); 3767 return; 3768 } 3769 added_task = new CollectorTransitionTask(target_time); 3770 pending_collector_transition_ = added_task; 3771 } 3772 task_processor_->AddTask(self, added_task); 3773 } 3774 3775 class Heap::HeapTrimTask : public HeapTask { 3776 public: 3777 explicit HeapTrimTask(uint64_t delta_time) : HeapTask(NanoTime() + delta_time) { } 3778 virtual void Run(Thread* self) OVERRIDE { 3779 gc::Heap* heap = Runtime::Current()->GetHeap(); 3780 heap->Trim(self); 3781 heap->ClearPendingTrim(self); 3782 } 3783 }; 3784 3785 void Heap::ClearPendingTrim(Thread* self) { 3786 MutexLock mu(self, *pending_task_lock_); 3787 pending_heap_trim_ = nullptr; 3788 } 3789 3790 void Heap::RequestTrim(Thread* self) { 3791 if (!CanAddHeapTask(self)) { 3792 return; 3793 } 3794 // GC completed and now we must decide whether to request a heap trim (advising pages back to the 3795 // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans 3796 // a space it will hold its lock and can become a cause of jank. 3797 // Note, the large object space self trims and the Zygote space was trimmed and unchanging since 3798 // forking. 3799 3800 // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap 3801 // because that only marks object heads, so a large array looks like lots of empty space. We 3802 // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional 3803 // to utilization (which is probably inversely proportional to how much benefit we can expect). 3804 // We could try mincore(2) but that's only a measure of how many pages we haven't given away, 3805 // not how much use we're making of those pages. 3806 HeapTrimTask* added_task = nullptr; 3807 { 3808 MutexLock mu(self, *pending_task_lock_); 3809 if (pending_heap_trim_ != nullptr) { 3810 // Already have a heap trim request in task processor, ignore this request. 3811 return; 3812 } 3813 added_task = new HeapTrimTask(kHeapTrimWait); 3814 pending_heap_trim_ = added_task; 3815 } 3816 task_processor_->AddTask(self, added_task); 3817 } 3818 3819 void Heap::RevokeThreadLocalBuffers(Thread* thread) { 3820 if (rosalloc_space_ != nullptr) { 3821 size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread); 3822 if (freed_bytes_revoke > 0U) { 3823 num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke); 3824 CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed()); 3825 } 3826 } 3827 if (bump_pointer_space_ != nullptr) { 3828 CHECK_EQ(bump_pointer_space_->RevokeThreadLocalBuffers(thread), 0U); 3829 } 3830 if (region_space_ != nullptr) { 3831 CHECK_EQ(region_space_->RevokeThreadLocalBuffers(thread), 0U); 3832 } 3833 } 3834 3835 void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) { 3836 if (rosalloc_space_ != nullptr) { 3837 size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread); 3838 if (freed_bytes_revoke > 0U) { 3839 num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke); 3840 CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed()); 3841 } 3842 } 3843 } 3844 3845 void Heap::RevokeAllThreadLocalBuffers() { 3846 if (rosalloc_space_ != nullptr) { 3847 size_t freed_bytes_revoke = rosalloc_space_->RevokeAllThreadLocalBuffers(); 3848 if (freed_bytes_revoke > 0U) { 3849 num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke); 3850 CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed()); 3851 } 3852 } 3853 if (bump_pointer_space_ != nullptr) { 3854 CHECK_EQ(bump_pointer_space_->RevokeAllThreadLocalBuffers(), 0U); 3855 } 3856 if (region_space_ != nullptr) { 3857 CHECK_EQ(region_space_->RevokeAllThreadLocalBuffers(), 0U); 3858 } 3859 } 3860 3861 bool Heap::IsGCRequestPending() const { 3862 return concurrent_gc_pending_.LoadRelaxed(); 3863 } 3864 3865 void Heap::RunFinalization(JNIEnv* env, uint64_t timeout) { 3866 env->CallStaticVoidMethod(WellKnownClasses::dalvik_system_VMRuntime, 3867 WellKnownClasses::dalvik_system_VMRuntime_runFinalization, 3868 static_cast<jlong>(timeout)); 3869 } 3870 3871 void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) { 3872 Thread* self = ThreadForEnv(env); 3873 { 3874 MutexLock mu(self, native_histogram_lock_); 3875 native_allocation_histogram_.AddValue(bytes); 3876 } 3877 if (native_need_to_run_finalization_) { 3878 RunFinalization(env, kNativeAllocationFinalizeTimeout); 3879 UpdateMaxNativeFootprint(); 3880 native_need_to_run_finalization_ = false; 3881 } 3882 // Total number of native bytes allocated. 3883 size_t new_native_bytes_allocated = native_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes); 3884 new_native_bytes_allocated += bytes; 3885 if (new_native_bytes_allocated > native_footprint_gc_watermark_) { 3886 collector::GcType gc_type = HasZygoteSpace() ? collector::kGcTypePartial : 3887 collector::kGcTypeFull; 3888 3889 // The second watermark is higher than the gc watermark. If you hit this it means you are 3890 // allocating native objects faster than the GC can keep up with. 3891 if (new_native_bytes_allocated > growth_limit_) { 3892 if (WaitForGcToComplete(kGcCauseForNativeAlloc, self) != collector::kGcTypeNone) { 3893 // Just finished a GC, attempt to run finalizers. 3894 RunFinalization(env, kNativeAllocationFinalizeTimeout); 3895 CHECK(!env->ExceptionCheck()); 3896 // Native bytes allocated may be updated by finalization, refresh it. 3897 new_native_bytes_allocated = native_bytes_allocated_.LoadRelaxed(); 3898 } 3899 // If we still are over the watermark, attempt a GC for alloc and run finalizers. 3900 if (new_native_bytes_allocated > growth_limit_) { 3901 CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false); 3902 RunFinalization(env, kNativeAllocationFinalizeTimeout); 3903 native_need_to_run_finalization_ = false; 3904 CHECK(!env->ExceptionCheck()); 3905 } 3906 // We have just run finalizers, update the native watermark since it is very likely that 3907 // finalizers released native managed allocations. 3908 UpdateMaxNativeFootprint(); 3909 } else if (!IsGCRequestPending()) { 3910 if (IsGcConcurrent()) { 3911 RequestConcurrentGC(self, true); // Request non-sticky type. 3912 } else { 3913 CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false); 3914 } 3915 } 3916 } 3917 } 3918 3919 void Heap::RegisterNativeFree(JNIEnv* env, size_t bytes) { 3920 size_t expected_size; 3921 { 3922 MutexLock mu(Thread::Current(), native_histogram_lock_); 3923 native_free_histogram_.AddValue(bytes); 3924 } 3925 do { 3926 expected_size = native_bytes_allocated_.LoadRelaxed(); 3927 if (UNLIKELY(bytes > expected_size)) { 3928 ScopedObjectAccess soa(env); 3929 env->ThrowNew(WellKnownClasses::java_lang_RuntimeException, 3930 StringPrintf("Attempted to free %zd native bytes with only %zd native bytes " 3931 "registered as allocated", bytes, expected_size).c_str()); 3932 break; 3933 } 3934 } while (!native_bytes_allocated_.CompareExchangeWeakRelaxed(expected_size, 3935 expected_size - bytes)); 3936 } 3937 3938 size_t Heap::GetTotalMemory() const { 3939 return std::max(max_allowed_footprint_, GetBytesAllocated()); 3940 } 3941 3942 void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) { 3943 DCHECK(mod_union_table != nullptr); 3944 mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table); 3945 } 3946 3947 void Heap::CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) { 3948 CHECK(c == nullptr || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) || 3949 (c->IsVariableSize() || c->GetObjectSize() == byte_count)) << c->GetClassFlags(); 3950 CHECK_GE(byte_count, sizeof(mirror::Object)); 3951 } 3952 3953 void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) { 3954 CHECK(remembered_set != nullptr); 3955 space::Space* space = remembered_set->GetSpace(); 3956 CHECK(space != nullptr); 3957 CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space; 3958 remembered_sets_.Put(space, remembered_set); 3959 CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space; 3960 } 3961 3962 void Heap::RemoveRememberedSet(space::Space* space) { 3963 CHECK(space != nullptr); 3964 auto it = remembered_sets_.find(space); 3965 CHECK(it != remembered_sets_.end()); 3966 delete it->second; 3967 remembered_sets_.erase(it); 3968 CHECK(remembered_sets_.find(space) == remembered_sets_.end()); 3969 } 3970 3971 void Heap::ClearMarkedObjects() { 3972 // Clear all of the spaces' mark bitmaps. 3973 for (const auto& space : GetContinuousSpaces()) { 3974 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap(); 3975 if (space->GetLiveBitmap() != mark_bitmap) { 3976 mark_bitmap->Clear(); 3977 } 3978 } 3979 // Clear the marked objects in the discontinous space object sets. 3980 for (const auto& space : GetDiscontinuousSpaces()) { 3981 space->GetMarkBitmap()->Clear(); 3982 } 3983 } 3984 3985 void Heap::SetAllocationRecords(AllocRecordObjectMap* records) { 3986 allocation_records_.reset(records); 3987 } 3988 3989 void Heap::VisitAllocationRecords(RootVisitor* visitor) const { 3990 if (IsAllocTrackingEnabled()) { 3991 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_); 3992 if (IsAllocTrackingEnabled()) { 3993 GetAllocationRecords()->VisitRoots(visitor); 3994 } 3995 } 3996 } 3997 3998 void Heap::SweepAllocationRecords(IsMarkedVisitor* visitor) const { 3999 if (IsAllocTrackingEnabled()) { 4000 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_); 4001 if (IsAllocTrackingEnabled()) { 4002 GetAllocationRecords()->SweepAllocationRecords(visitor); 4003 } 4004 } 4005 } 4006 4007 void Heap::AllowNewAllocationRecords() const { 4008 CHECK(!kUseReadBarrier); 4009 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_); 4010 AllocRecordObjectMap* allocation_records = GetAllocationRecords(); 4011 if (allocation_records != nullptr) { 4012 allocation_records->AllowNewAllocationRecords(); 4013 } 4014 } 4015 4016 void Heap::DisallowNewAllocationRecords() const { 4017 CHECK(!kUseReadBarrier); 4018 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_); 4019 AllocRecordObjectMap* allocation_records = GetAllocationRecords(); 4020 if (allocation_records != nullptr) { 4021 allocation_records->DisallowNewAllocationRecords(); 4022 } 4023 } 4024 4025 void Heap::BroadcastForNewAllocationRecords() const { 4026 CHECK(kUseReadBarrier); 4027 // Always broadcast without checking IsAllocTrackingEnabled() because IsAllocTrackingEnabled() may 4028 // be set to false while some threads are waiting for system weak access in 4029 // AllocRecordObjectMap::RecordAllocation() and we may fail to wake them up. b/27467554. 4030 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_); 4031 AllocRecordObjectMap* allocation_records = GetAllocationRecords(); 4032 if (allocation_records != nullptr) { 4033 allocation_records->BroadcastForNewAllocationRecords(); 4034 } 4035 } 4036 4037 // Based on debug malloc logic from libc/bionic/debug_stacktrace.cpp. 4038 class StackCrawlState { 4039 public: 4040 StackCrawlState(uintptr_t* frames, size_t max_depth, size_t skip_count) 4041 : frames_(frames), frame_count_(0), max_depth_(max_depth), skip_count_(skip_count) { 4042 } 4043 size_t GetFrameCount() const { 4044 return frame_count_; 4045 } 4046 static _Unwind_Reason_Code Callback(_Unwind_Context* context, void* arg) { 4047 auto* const state = reinterpret_cast<StackCrawlState*>(arg); 4048 const uintptr_t ip = _Unwind_GetIP(context); 4049 // The first stack frame is get_backtrace itself. Skip it. 4050 if (ip != 0 && state->skip_count_ > 0) { 4051 --state->skip_count_; 4052 return _URC_NO_REASON; 4053 } 4054 // ip may be off for ARM but it shouldn't matter since we only use it for hashing. 4055 state->frames_[state->frame_count_] = ip; 4056 state->frame_count_++; 4057 return state->frame_count_ >= state->max_depth_ ? _URC_END_OF_STACK : _URC_NO_REASON; 4058 } 4059 4060 private: 4061 uintptr_t* const frames_; 4062 size_t frame_count_; 4063 const size_t max_depth_; 4064 size_t skip_count_; 4065 }; 4066 4067 static size_t get_backtrace(uintptr_t* frames, size_t max_depth) { 4068 StackCrawlState state(frames, max_depth, 0u); 4069 _Unwind_Backtrace(&StackCrawlState::Callback, &state); 4070 return state.GetFrameCount(); 4071 } 4072 4073 void Heap::CheckGcStressMode(Thread* self, mirror::Object** obj) { 4074 auto* const runtime = Runtime::Current(); 4075 if (gc_stress_mode_ && runtime->GetClassLinker()->IsInitialized() && 4076 !runtime->IsActiveTransaction() && mirror::Class::HasJavaLangClass()) { 4077 // Check if we should GC. 4078 bool new_backtrace = false; 4079 { 4080 static constexpr size_t kMaxFrames = 16u; 4081 uintptr_t backtrace[kMaxFrames]; 4082 const size_t frames = get_backtrace(backtrace, kMaxFrames); 4083 uint64_t hash = 0; 4084 for (size_t i = 0; i < frames; ++i) { 4085 hash = hash * 2654435761 + backtrace[i]; 4086 hash += (hash >> 13) ^ (hash << 6); 4087 } 4088 MutexLock mu(self, *backtrace_lock_); 4089 new_backtrace = seen_backtraces_.find(hash) == seen_backtraces_.end(); 4090 if (new_backtrace) { 4091 seen_backtraces_.insert(hash); 4092 } 4093 } 4094 if (new_backtrace) { 4095 StackHandleScope<1> hs(self); 4096 auto h = hs.NewHandleWrapper(obj); 4097 CollectGarbage(false); 4098 unique_backtrace_count_.FetchAndAddSequentiallyConsistent(1); 4099 } else { 4100 seen_backtrace_count_.FetchAndAddSequentiallyConsistent(1); 4101 } 4102 } 4103 } 4104 4105 void Heap::DisableGCForShutdown() { 4106 Thread* const self = Thread::Current(); 4107 CHECK(Runtime::Current()->IsShuttingDown(self)); 4108 MutexLock mu(self, *gc_complete_lock_); 4109 gc_disabled_for_shutdown_ = true; 4110 } 4111 4112 bool Heap::ObjectIsInBootImageSpace(mirror::Object* obj) const { 4113 for (gc::space::ImageSpace* space : boot_image_spaces_) { 4114 if (space->HasAddress(obj)) { 4115 return true; 4116 } 4117 } 4118 return false; 4119 } 4120 4121 bool Heap::IsInBootImageOatFile(const void* p) const { 4122 for (gc::space::ImageSpace* space : boot_image_spaces_) { 4123 if (space->GetOatFile()->Contains(p)) { 4124 return true; 4125 } 4126 } 4127 return false; 4128 } 4129 4130 void Heap::GetBootImagesSize(uint32_t* boot_image_begin, 4131 uint32_t* boot_image_end, 4132 uint32_t* boot_oat_begin, 4133 uint32_t* boot_oat_end) { 4134 DCHECK(boot_image_begin != nullptr); 4135 DCHECK(boot_image_end != nullptr); 4136 DCHECK(boot_oat_begin != nullptr); 4137 DCHECK(boot_oat_end != nullptr); 4138 *boot_image_begin = 0u; 4139 *boot_image_end = 0u; 4140 *boot_oat_begin = 0u; 4141 *boot_oat_end = 0u; 4142 for (gc::space::ImageSpace* space_ : GetBootImageSpaces()) { 4143 const uint32_t image_begin = PointerToLowMemUInt32(space_->Begin()); 4144 const uint32_t image_size = space_->GetImageHeader().GetImageSize(); 4145 if (*boot_image_begin == 0 || image_begin < *boot_image_begin) { 4146 *boot_image_begin = image_begin; 4147 } 4148 *boot_image_end = std::max(*boot_image_end, image_begin + image_size); 4149 const OatFile* boot_oat_file = space_->GetOatFile(); 4150 const uint32_t oat_begin = PointerToLowMemUInt32(boot_oat_file->Begin()); 4151 const uint32_t oat_size = boot_oat_file->Size(); 4152 if (*boot_oat_begin == 0 || oat_begin < *boot_oat_begin) { 4153 *boot_oat_begin = oat_begin; 4154 } 4155 *boot_oat_end = std::max(*boot_oat_end, oat_begin + oat_size); 4156 } 4157 } 4158 4159 } // namespace gc 4160 } // namespace art 4161