1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the PowerPC-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // PPCGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "PPC.h" 17 #include "MCTargetDesc/PPCPredicates.h" 18 #include "PPCCallingConv.h" 19 #include "PPCISelLowering.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCSubtarget.h" 22 #include "PPCTargetMachine.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/GlobalAlias.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Target/TargetLowering.h" 39 #include "llvm/Target/TargetMachine.h" 40 41 //===----------------------------------------------------------------------===// 42 // 43 // TBD: 44 // fastLowerArguments: Handle simple cases. 45 // PPCMaterializeGV: Handle TLS. 46 // SelectCall: Handle function pointers. 47 // SelectCall: Handle multi-register return values. 48 // SelectCall: Optimize away nops for local calls. 49 // processCallArgs: Handle bit-converted arguments. 50 // finishCall: Handle multi-register return values. 51 // PPCComputeAddress: Handle parameter references as FrameIndex's. 52 // PPCEmitCmp: Handle immediate as operand 1. 53 // SelectCall: Handle small byval arguments. 54 // SelectIntrinsicCall: Implement. 55 // SelectSelect: Implement. 56 // Consider factoring isTypeLegal into the base class. 57 // Implement switches and jump tables. 58 // 59 //===----------------------------------------------------------------------===// 60 using namespace llvm; 61 62 #define DEBUG_TYPE "ppcfastisel" 63 64 namespace { 65 66 typedef struct Address { 67 enum { 68 RegBase, 69 FrameIndexBase 70 } BaseType; 71 72 union { 73 unsigned Reg; 74 int FI; 75 } Base; 76 77 long Offset; 78 79 // Innocuous defaults for our address. 80 Address() 81 : BaseType(RegBase), Offset(0) { 82 Base.Reg = 0; 83 } 84 } Address; 85 86 class PPCFastISel final : public FastISel { 87 88 const TargetMachine &TM; 89 const PPCSubtarget *PPCSubTarget; 90 PPCFunctionInfo *PPCFuncInfo; 91 const TargetInstrInfo &TII; 92 const TargetLowering &TLI; 93 LLVMContext *Context; 94 95 public: 96 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo, 97 const TargetLibraryInfo *LibInfo) 98 : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()), 99 PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()), 100 PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()), 101 TII(*PPCSubTarget->getInstrInfo()), 102 TLI(*PPCSubTarget->getTargetLowering()), 103 Context(&FuncInfo.Fn->getContext()) {} 104 105 // Backend specific FastISel code. 106 private: 107 bool fastSelectInstruction(const Instruction *I) override; 108 unsigned fastMaterializeConstant(const Constant *C) override; 109 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 110 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 111 const LoadInst *LI) override; 112 bool fastLowerArguments() override; 113 unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override; 114 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 115 const TargetRegisterClass *RC, 116 unsigned Op0, bool Op0IsKill, 117 uint64_t Imm); 118 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 119 const TargetRegisterClass *RC, 120 unsigned Op0, bool Op0IsKill); 121 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 122 const TargetRegisterClass *RC, 123 unsigned Op0, bool Op0IsKill, 124 unsigned Op1, bool Op1IsKill); 125 126 bool fastLowerCall(CallLoweringInfo &CLI) override; 127 128 // Instruction selection routines. 129 private: 130 bool SelectLoad(const Instruction *I); 131 bool SelectStore(const Instruction *I); 132 bool SelectBranch(const Instruction *I); 133 bool SelectIndirectBr(const Instruction *I); 134 bool SelectFPExt(const Instruction *I); 135 bool SelectFPTrunc(const Instruction *I); 136 bool SelectIToFP(const Instruction *I, bool IsSigned); 137 bool SelectFPToI(const Instruction *I, bool IsSigned); 138 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 139 bool SelectRet(const Instruction *I); 140 bool SelectTrunc(const Instruction *I); 141 bool SelectIntExt(const Instruction *I); 142 143 // Utility routines. 144 private: 145 bool isTypeLegal(Type *Ty, MVT &VT); 146 bool isLoadTypeLegal(Type *Ty, MVT &VT); 147 bool isValueAvailable(const Value *V) const; 148 bool isVSFRCRegister(unsigned Register) const { 149 return MRI.getRegClass(Register)->getID() == PPC::VSFRCRegClassID; 150 } 151 bool isVSSRCRegister(unsigned Register) const { 152 return MRI.getRegClass(Register)->getID() == PPC::VSSRCRegClassID; 153 } 154 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value, 155 bool isZExt, unsigned DestReg); 156 bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 157 const TargetRegisterClass *RC, bool IsZExt = true, 158 unsigned FP64LoadOpc = PPC::LFD); 159 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr); 160 bool PPCComputeAddress(const Value *Obj, Address &Addr); 161 void PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset, 162 unsigned &IndexReg); 163 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 164 unsigned DestReg, bool IsZExt); 165 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT); 166 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT); 167 unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT, 168 bool UseSExt = true); 169 unsigned PPCMaterialize32BitInt(int64_t Imm, 170 const TargetRegisterClass *RC); 171 unsigned PPCMaterialize64BitInt(int64_t Imm, 172 const TargetRegisterClass *RC); 173 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT, 174 unsigned SrcReg, bool IsSigned); 175 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned); 176 177 // Call handling routines. 178 private: 179 bool processCallArgs(SmallVectorImpl<Value*> &Args, 180 SmallVectorImpl<unsigned> &ArgRegs, 181 SmallVectorImpl<MVT> &ArgVTs, 182 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 183 SmallVectorImpl<unsigned> &RegArgs, 184 CallingConv::ID CC, 185 unsigned &NumBytes, 186 bool IsVarArg); 187 bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes); 188 CCAssignFn *usePPC32CCs(unsigned Flag); 189 190 private: 191 #include "PPCGenFastISel.inc" 192 193 }; 194 195 } // end anonymous namespace 196 197 #include "PPCGenCallingConv.inc" 198 199 // Function whose sole purpose is to kill compiler warnings 200 // stemming from unused functions included from PPCGenCallingConv.inc. 201 CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) { 202 if (Flag == 1) 203 return CC_PPC32_SVR4; 204 else if (Flag == 2) 205 return CC_PPC32_SVR4_ByVal; 206 else if (Flag == 3) 207 return CC_PPC32_SVR4_VarArg; 208 else 209 return RetCC_PPC; 210 } 211 212 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) { 213 switch (Pred) { 214 // These are not representable with any single compare. 215 case CmpInst::FCMP_FALSE: 216 case CmpInst::FCMP_UEQ: 217 case CmpInst::FCMP_UGT: 218 case CmpInst::FCMP_UGE: 219 case CmpInst::FCMP_ULT: 220 case CmpInst::FCMP_ULE: 221 case CmpInst::FCMP_UNE: 222 case CmpInst::FCMP_TRUE: 223 default: 224 return Optional<PPC::Predicate>(); 225 226 case CmpInst::FCMP_OEQ: 227 case CmpInst::ICMP_EQ: 228 return PPC::PRED_EQ; 229 230 case CmpInst::FCMP_OGT: 231 case CmpInst::ICMP_UGT: 232 case CmpInst::ICMP_SGT: 233 return PPC::PRED_GT; 234 235 case CmpInst::FCMP_OGE: 236 case CmpInst::ICMP_UGE: 237 case CmpInst::ICMP_SGE: 238 return PPC::PRED_GE; 239 240 case CmpInst::FCMP_OLT: 241 case CmpInst::ICMP_ULT: 242 case CmpInst::ICMP_SLT: 243 return PPC::PRED_LT; 244 245 case CmpInst::FCMP_OLE: 246 case CmpInst::ICMP_ULE: 247 case CmpInst::ICMP_SLE: 248 return PPC::PRED_LE; 249 250 case CmpInst::FCMP_ONE: 251 case CmpInst::ICMP_NE: 252 return PPC::PRED_NE; 253 254 case CmpInst::FCMP_ORD: 255 return PPC::PRED_NU; 256 257 case CmpInst::FCMP_UNO: 258 return PPC::PRED_UN; 259 } 260 } 261 262 // Determine whether the type Ty is simple enough to be handled by 263 // fast-isel, and return its equivalent machine type in VT. 264 // FIXME: Copied directly from ARM -- factor into base class? 265 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) { 266 EVT Evt = TLI.getValueType(DL, Ty, true); 267 268 // Only handle simple types. 269 if (Evt == MVT::Other || !Evt.isSimple()) return false; 270 VT = Evt.getSimpleVT(); 271 272 // Handle all legal types, i.e. a register that will directly hold this 273 // value. 274 return TLI.isTypeLegal(VT); 275 } 276 277 // Determine whether the type Ty is simple enough to be handled by 278 // fast-isel as a load target, and return its equivalent machine type in VT. 279 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 280 if (isTypeLegal(Ty, VT)) return true; 281 282 // If this is a type than can be sign or zero-extended to a basic operation 283 // go ahead and accept it now. 284 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) { 285 return true; 286 } 287 288 return false; 289 } 290 291 bool PPCFastISel::isValueAvailable(const Value *V) const { 292 if (!isa<Instruction>(V)) 293 return true; 294 295 const auto *I = cast<Instruction>(V); 296 if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) 297 return true; 298 299 return false; 300 } 301 302 // Given a value Obj, create an Address object Addr that represents its 303 // address. Return false if we can't handle it. 304 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) { 305 const User *U = nullptr; 306 unsigned Opcode = Instruction::UserOp1; 307 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 308 // Don't walk into other basic blocks unless the object is an alloca from 309 // another block, otherwise it may not have a virtual register assigned. 310 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 311 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 312 Opcode = I->getOpcode(); 313 U = I; 314 } 315 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 316 Opcode = C->getOpcode(); 317 U = C; 318 } 319 320 switch (Opcode) { 321 default: 322 break; 323 case Instruction::BitCast: 324 // Look through bitcasts. 325 return PPCComputeAddress(U->getOperand(0), Addr); 326 case Instruction::IntToPtr: 327 // Look past no-op inttoptrs. 328 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 329 TLI.getPointerTy(DL)) 330 return PPCComputeAddress(U->getOperand(0), Addr); 331 break; 332 case Instruction::PtrToInt: 333 // Look past no-op ptrtoints. 334 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 335 return PPCComputeAddress(U->getOperand(0), Addr); 336 break; 337 case Instruction::GetElementPtr: { 338 Address SavedAddr = Addr; 339 long TmpOffset = Addr.Offset; 340 341 // Iterate through the GEP folding the constants into offsets where 342 // we can. 343 gep_type_iterator GTI = gep_type_begin(U); 344 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end(); 345 II != IE; ++II, ++GTI) { 346 const Value *Op = *II; 347 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 348 const StructLayout *SL = DL.getStructLayout(STy); 349 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 350 TmpOffset += SL->getElementOffset(Idx); 351 } else { 352 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 353 for (;;) { 354 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 355 // Constant-offset addressing. 356 TmpOffset += CI->getSExtValue() * S; 357 break; 358 } 359 if (canFoldAddIntoGEP(U, Op)) { 360 // A compatible add with a constant operand. Fold the constant. 361 ConstantInt *CI = 362 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 363 TmpOffset += CI->getSExtValue() * S; 364 // Iterate on the other operand. 365 Op = cast<AddOperator>(Op)->getOperand(0); 366 continue; 367 } 368 // Unsupported 369 goto unsupported_gep; 370 } 371 } 372 } 373 374 // Try to grab the base operand now. 375 Addr.Offset = TmpOffset; 376 if (PPCComputeAddress(U->getOperand(0), Addr)) return true; 377 378 // We failed, restore everything and try the other options. 379 Addr = SavedAddr; 380 381 unsupported_gep: 382 break; 383 } 384 case Instruction::Alloca: { 385 const AllocaInst *AI = cast<AllocaInst>(Obj); 386 DenseMap<const AllocaInst*, int>::iterator SI = 387 FuncInfo.StaticAllocaMap.find(AI); 388 if (SI != FuncInfo.StaticAllocaMap.end()) { 389 Addr.BaseType = Address::FrameIndexBase; 390 Addr.Base.FI = SI->second; 391 return true; 392 } 393 break; 394 } 395 } 396 397 // FIXME: References to parameters fall through to the behavior 398 // below. They should be able to reference a frame index since 399 // they are stored to the stack, so we can get "ld rx, offset(r1)" 400 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will 401 // just contain the parameter. Try to handle this with a FI. 402 403 // Try to get this in a register if nothing else has worked. 404 if (Addr.Base.Reg == 0) 405 Addr.Base.Reg = getRegForValue(Obj); 406 407 // Prevent assignment of base register to X0, which is inappropriate 408 // for loads and stores alike. 409 if (Addr.Base.Reg != 0) 410 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass); 411 412 return Addr.Base.Reg != 0; 413 } 414 415 // Fix up some addresses that can't be used directly. For example, if 416 // an offset won't fit in an instruction field, we may need to move it 417 // into an index register. 418 void PPCFastISel::PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset, 419 unsigned &IndexReg) { 420 421 // Check whether the offset fits in the instruction field. 422 if (!isInt<16>(Addr.Offset)) 423 UseOffset = false; 424 425 // If this is a stack pointer and the offset needs to be simplified then 426 // put the alloca address into a register, set the base type back to 427 // register and continue. This should almost never happen. 428 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) { 429 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 430 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 431 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0); 432 Addr.Base.Reg = ResultReg; 433 Addr.BaseType = Address::RegBase; 434 } 435 436 if (!UseOffset) { 437 IntegerType *OffsetTy = ((VT == MVT::i32) ? Type::getInt32Ty(*Context) 438 : Type::getInt64Ty(*Context)); 439 const ConstantInt *Offset = 440 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset)); 441 IndexReg = PPCMaterializeInt(Offset, MVT::i64); 442 assert(IndexReg && "Unexpected error in PPCMaterializeInt!"); 443 } 444 } 445 446 // Emit a load instruction if possible, returning true if we succeeded, 447 // otherwise false. See commentary below for how the register class of 448 // the load is determined. 449 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 450 const TargetRegisterClass *RC, 451 bool IsZExt, unsigned FP64LoadOpc) { 452 unsigned Opc; 453 bool UseOffset = true; 454 455 // If ResultReg is given, it determines the register class of the load. 456 // Otherwise, RC is the register class to use. If the result of the 457 // load isn't anticipated in this block, both may be zero, in which 458 // case we must make a conservative guess. In particular, don't assign 459 // R0 or X0 to the result register, as the result may be used in a load, 460 // store, add-immediate, or isel that won't permit this. (Though 461 // perhaps the spill and reload of live-exit values would handle this?) 462 const TargetRegisterClass *UseRC = 463 (ResultReg ? MRI.getRegClass(ResultReg) : 464 (RC ? RC : 465 (VT == MVT::f64 ? &PPC::F8RCRegClass : 466 (VT == MVT::f32 ? &PPC::F4RCRegClass : 467 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 468 &PPC::GPRC_and_GPRC_NOR0RegClass))))); 469 470 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass); 471 472 switch (VT.SimpleTy) { 473 default: // e.g., vector types not handled 474 return false; 475 case MVT::i8: 476 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8; 477 break; 478 case MVT::i16: 479 Opc = (IsZExt ? 480 (Is32BitInt ? PPC::LHZ : PPC::LHZ8) : 481 (Is32BitInt ? PPC::LHA : PPC::LHA8)); 482 break; 483 case MVT::i32: 484 Opc = (IsZExt ? 485 (Is32BitInt ? PPC::LWZ : PPC::LWZ8) : 486 (Is32BitInt ? PPC::LWA_32 : PPC::LWA)); 487 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0)) 488 UseOffset = false; 489 break; 490 case MVT::i64: 491 Opc = PPC::LD; 492 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) && 493 "64-bit load with 32-bit target??"); 494 UseOffset = ((Addr.Offset & 3) == 0); 495 break; 496 case MVT::f32: 497 Opc = PPC::LFS; 498 break; 499 case MVT::f64: 500 Opc = FP64LoadOpc; 501 break; 502 } 503 504 // If necessary, materialize the offset into a register and use 505 // the indexed form. Also handle stack pointers with special needs. 506 unsigned IndexReg = 0; 507 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg); 508 509 // If this is a potential VSX load with an offset of 0, a VSX indexed load can 510 // be used. 511 bool IsVSSRC = (ResultReg != 0) && isVSSRCRegister(ResultReg); 512 bool IsVSFRC = (ResultReg != 0) && isVSFRCRegister(ResultReg); 513 bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS; 514 bool Is64VSXLoad = IsVSSRC && Opc == PPC::LFD; 515 if ((Is32VSXLoad || Is64VSXLoad) && 516 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 517 (Addr.Offset == 0)) { 518 UseOffset = false; 519 } 520 521 if (ResultReg == 0) 522 ResultReg = createResultReg(UseRC); 523 524 // Note: If we still have a frame index here, we know the offset is 525 // in range, as otherwise PPCSimplifyAddress would have converted it 526 // into a RegBase. 527 if (Addr.BaseType == Address::FrameIndexBase) { 528 // VSX only provides an indexed load. 529 if (Is32VSXLoad || Is64VSXLoad) return false; 530 531 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 532 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI, 533 Addr.Offset), 534 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI), 535 MFI.getObjectAlignment(Addr.Base.FI)); 536 537 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 538 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO); 539 540 // Base reg with offset in range. 541 } else if (UseOffset) { 542 // VSX only provides an indexed load. 543 if (Is32VSXLoad || Is64VSXLoad) return false; 544 545 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 546 .addImm(Addr.Offset).addReg(Addr.Base.Reg); 547 548 // Indexed form. 549 } else { 550 // Get the RR opcode corresponding to the RI one. FIXME: It would be 551 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 552 // is hard to get at. 553 switch (Opc) { 554 default: llvm_unreachable("Unexpected opcode!"); 555 case PPC::LBZ: Opc = PPC::LBZX; break; 556 case PPC::LBZ8: Opc = PPC::LBZX8; break; 557 case PPC::LHZ: Opc = PPC::LHZX; break; 558 case PPC::LHZ8: Opc = PPC::LHZX8; break; 559 case PPC::LHA: Opc = PPC::LHAX; break; 560 case PPC::LHA8: Opc = PPC::LHAX8; break; 561 case PPC::LWZ: Opc = PPC::LWZX; break; 562 case PPC::LWZ8: Opc = PPC::LWZX8; break; 563 case PPC::LWA: Opc = PPC::LWAX; break; 564 case PPC::LWA_32: Opc = PPC::LWAX_32; break; 565 case PPC::LD: Opc = PPC::LDX; break; 566 case PPC::LFS: Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break; 567 case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break; 568 } 569 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 570 .addReg(Addr.Base.Reg).addReg(IndexReg); 571 } 572 573 return true; 574 } 575 576 // Attempt to fast-select a load instruction. 577 bool PPCFastISel::SelectLoad(const Instruction *I) { 578 // FIXME: No atomic loads are supported. 579 if (cast<LoadInst>(I)->isAtomic()) 580 return false; 581 582 // Verify we have a legal type before going any further. 583 MVT VT; 584 if (!isLoadTypeLegal(I->getType(), VT)) 585 return false; 586 587 // See if we can handle this address. 588 Address Addr; 589 if (!PPCComputeAddress(I->getOperand(0), Addr)) 590 return false; 591 592 // Look at the currently assigned register for this instruction 593 // to determine the required register class. This is necessary 594 // to constrain RA from using R0/X0 when this is not legal. 595 unsigned AssignedReg = FuncInfo.ValueMap[I]; 596 const TargetRegisterClass *RC = 597 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 598 599 unsigned ResultReg = 0; 600 if (!PPCEmitLoad(VT, ResultReg, Addr, RC)) 601 return false; 602 updateValueMap(I, ResultReg); 603 return true; 604 } 605 606 // Emit a store instruction to store SrcReg at Addr. 607 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) { 608 assert(SrcReg && "Nothing to store!"); 609 unsigned Opc; 610 bool UseOffset = true; 611 612 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg); 613 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass); 614 615 switch (VT.SimpleTy) { 616 default: // e.g., vector types not handled 617 return false; 618 case MVT::i8: 619 Opc = Is32BitInt ? PPC::STB : PPC::STB8; 620 break; 621 case MVT::i16: 622 Opc = Is32BitInt ? PPC::STH : PPC::STH8; 623 break; 624 case MVT::i32: 625 assert(Is32BitInt && "Not GPRC for i32??"); 626 Opc = PPC::STW; 627 break; 628 case MVT::i64: 629 Opc = PPC::STD; 630 UseOffset = ((Addr.Offset & 3) == 0); 631 break; 632 case MVT::f32: 633 Opc = PPC::STFS; 634 break; 635 case MVT::f64: 636 Opc = PPC::STFD; 637 break; 638 } 639 640 // If necessary, materialize the offset into a register and use 641 // the indexed form. Also handle stack pointers with special needs. 642 unsigned IndexReg = 0; 643 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg); 644 645 // If this is a potential VSX store with an offset of 0, a VSX indexed store 646 // can be used. 647 bool IsVSSRC = isVSSRCRegister(SrcReg); 648 bool IsVSFRC = isVSFRCRegister(SrcReg); 649 bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS; 650 bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD; 651 if ((Is32VSXStore || Is64VSXStore) && 652 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 653 (Addr.Offset == 0)) { 654 UseOffset = false; 655 } 656 657 // Note: If we still have a frame index here, we know the offset is 658 // in range, as otherwise PPCSimplifyAddress would have converted it 659 // into a RegBase. 660 if (Addr.BaseType == Address::FrameIndexBase) { 661 // VSX only provides an indexed store. 662 if (Is32VSXStore || Is64VSXStore) return false; 663 664 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 665 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI, 666 Addr.Offset), 667 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI), 668 MFI.getObjectAlignment(Addr.Base.FI)); 669 670 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 671 .addReg(SrcReg) 672 .addImm(Addr.Offset) 673 .addFrameIndex(Addr.Base.FI) 674 .addMemOperand(MMO); 675 676 // Base reg with offset in range. 677 } else if (UseOffset) { 678 // VSX only provides an indexed store. 679 if (Is32VSXStore || Is64VSXStore) return false; 680 681 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 682 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg); 683 684 // Indexed form. 685 } else { 686 // Get the RR opcode corresponding to the RI one. FIXME: It would be 687 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 688 // is hard to get at. 689 switch (Opc) { 690 default: llvm_unreachable("Unexpected opcode!"); 691 case PPC::STB: Opc = PPC::STBX; break; 692 case PPC::STH : Opc = PPC::STHX; break; 693 case PPC::STW : Opc = PPC::STWX; break; 694 case PPC::STB8: Opc = PPC::STBX8; break; 695 case PPC::STH8: Opc = PPC::STHX8; break; 696 case PPC::STW8: Opc = PPC::STWX8; break; 697 case PPC::STD: Opc = PPC::STDX; break; 698 case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break; 699 case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break; 700 } 701 702 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 703 .addReg(SrcReg); 704 705 // If we have an index register defined we use it in the store inst, 706 // otherwise we use X0 as base as it makes the vector instructions to 707 // use zero in the computation of the effective address regardless the 708 // content of the register. 709 if (IndexReg) 710 MIB.addReg(Addr.Base.Reg).addReg(IndexReg); 711 else 712 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg); 713 } 714 715 return true; 716 } 717 718 // Attempt to fast-select a store instruction. 719 bool PPCFastISel::SelectStore(const Instruction *I) { 720 Value *Op0 = I->getOperand(0); 721 unsigned SrcReg = 0; 722 723 // FIXME: No atomics loads are supported. 724 if (cast<StoreInst>(I)->isAtomic()) 725 return false; 726 727 // Verify we have a legal type before going any further. 728 MVT VT; 729 if (!isLoadTypeLegal(Op0->getType(), VT)) 730 return false; 731 732 // Get the value to be stored into a register. 733 SrcReg = getRegForValue(Op0); 734 if (SrcReg == 0) 735 return false; 736 737 // See if we can handle this address. 738 Address Addr; 739 if (!PPCComputeAddress(I->getOperand(1), Addr)) 740 return false; 741 742 if (!PPCEmitStore(VT, SrcReg, Addr)) 743 return false; 744 745 return true; 746 } 747 748 // Attempt to fast-select a branch instruction. 749 bool PPCFastISel::SelectBranch(const Instruction *I) { 750 const BranchInst *BI = cast<BranchInst>(I); 751 MachineBasicBlock *BrBB = FuncInfo.MBB; 752 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 753 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 754 755 // For now, just try the simplest case where it's fed by a compare. 756 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 757 if (isValueAvailable(CI)) { 758 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate()); 759 if (!OptPPCPred) 760 return false; 761 762 PPC::Predicate PPCPred = OptPPCPred.getValue(); 763 764 // Take advantage of fall-through opportunities. 765 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 766 std::swap(TBB, FBB); 767 PPCPred = PPC::InvertPredicate(PPCPred); 768 } 769 770 unsigned CondReg = createResultReg(&PPC::CRRCRegClass); 771 772 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(), 773 CondReg)) 774 return false; 775 776 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC)) 777 .addImm(PPCPred).addReg(CondReg).addMBB(TBB); 778 finishCondBranch(BI->getParent(), TBB, FBB); 779 return true; 780 } 781 } else if (const ConstantInt *CI = 782 dyn_cast<ConstantInt>(BI->getCondition())) { 783 uint64_t Imm = CI->getZExtValue(); 784 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 785 fastEmitBranch(Target, DbgLoc); 786 return true; 787 } 788 789 // FIXME: ARM looks for a case where the block containing the compare 790 // has been split from the block containing the branch. If this happens, 791 // there is a vreg available containing the result of the compare. I'm 792 // not sure we can do much, as we've lost the predicate information with 793 // the compare instruction -- we have a 4-bit CR but don't know which bit 794 // to test here. 795 return false; 796 } 797 798 // Attempt to emit a compare of the two source values. Signed and unsigned 799 // comparisons are supported. Return false if we can't handle it. 800 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2, 801 bool IsZExt, unsigned DestReg) { 802 Type *Ty = SrcValue1->getType(); 803 EVT SrcEVT = TLI.getValueType(DL, Ty, true); 804 if (!SrcEVT.isSimple()) 805 return false; 806 MVT SrcVT = SrcEVT.getSimpleVT(); 807 808 if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits()) 809 return false; 810 811 // See if operand 2 is an immediate encodeable in the compare. 812 // FIXME: Operands are not in canonical order at -O0, so an immediate 813 // operand in position 1 is a lost opportunity for now. We are 814 // similar to ARM in this regard. 815 long Imm = 0; 816 bool UseImm = false; 817 818 // Only 16-bit integer constants can be represented in compares for 819 // PowerPC. Others will be materialized into a register. 820 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) { 821 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 || 822 SrcVT == MVT::i8 || SrcVT == MVT::i1) { 823 const APInt &CIVal = ConstInt->getValue(); 824 Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue(); 825 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm))) 826 UseImm = true; 827 } 828 } 829 830 unsigned CmpOpc; 831 bool NeedsExt = false; 832 switch (SrcVT.SimpleTy) { 833 default: return false; 834 case MVT::f32: 835 CmpOpc = PPC::FCMPUS; 836 break; 837 case MVT::f64: 838 CmpOpc = PPC::FCMPUD; 839 break; 840 case MVT::i1: 841 case MVT::i8: 842 case MVT::i16: 843 NeedsExt = true; 844 // Intentional fall-through. 845 case MVT::i32: 846 if (!UseImm) 847 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW; 848 else 849 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI; 850 break; 851 case MVT::i64: 852 if (!UseImm) 853 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD; 854 else 855 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI; 856 break; 857 } 858 859 unsigned SrcReg1 = getRegForValue(SrcValue1); 860 if (SrcReg1 == 0) 861 return false; 862 863 unsigned SrcReg2 = 0; 864 if (!UseImm) { 865 SrcReg2 = getRegForValue(SrcValue2); 866 if (SrcReg2 == 0) 867 return false; 868 } 869 870 if (NeedsExt) { 871 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 872 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt)) 873 return false; 874 SrcReg1 = ExtReg; 875 876 if (!UseImm) { 877 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 878 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt)) 879 return false; 880 SrcReg2 = ExtReg; 881 } 882 } 883 884 if (!UseImm) 885 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 886 .addReg(SrcReg1).addReg(SrcReg2); 887 else 888 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 889 .addReg(SrcReg1).addImm(Imm); 890 891 return true; 892 } 893 894 // Attempt to fast-select a floating-point extend instruction. 895 bool PPCFastISel::SelectFPExt(const Instruction *I) { 896 Value *Src = I->getOperand(0); 897 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 898 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 899 900 if (SrcVT != MVT::f32 || DestVT != MVT::f64) 901 return false; 902 903 unsigned SrcReg = getRegForValue(Src); 904 if (!SrcReg) 905 return false; 906 907 // No code is generated for a FP extend. 908 updateValueMap(I, SrcReg); 909 return true; 910 } 911 912 // Attempt to fast-select a floating-point truncate instruction. 913 bool PPCFastISel::SelectFPTrunc(const Instruction *I) { 914 Value *Src = I->getOperand(0); 915 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 916 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 917 918 if (SrcVT != MVT::f64 || DestVT != MVT::f32) 919 return false; 920 921 unsigned SrcReg = getRegForValue(Src); 922 if (!SrcReg) 923 return false; 924 925 // Round the result to single precision. 926 unsigned DestReg = createResultReg(&PPC::F4RCRegClass); 927 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), DestReg) 928 .addReg(SrcReg); 929 930 updateValueMap(I, DestReg); 931 return true; 932 } 933 934 // Move an i32 or i64 value in a GPR to an f64 value in an FPR. 935 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 936 // those should be used instead of moving via a stack slot when the 937 // subtarget permits. 938 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte 939 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte 940 // case to 8 bytes which produces tighter code but wastes stack space. 941 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg, 942 bool IsSigned) { 943 944 // If necessary, extend 32-bit int to 64-bit. 945 if (SrcVT == MVT::i32) { 946 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 947 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned)) 948 return 0; 949 SrcReg = TmpReg; 950 } 951 952 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 953 Address Addr; 954 Addr.BaseType = Address::FrameIndexBase; 955 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 956 957 // Store the value from the GPR. 958 if (!PPCEmitStore(MVT::i64, SrcReg, Addr)) 959 return 0; 960 961 // Load the integer value into an FPR. The kind of load used depends 962 // on a number of conditions. 963 unsigned LoadOpc = PPC::LFD; 964 965 if (SrcVT == MVT::i32) { 966 if (!IsSigned) { 967 LoadOpc = PPC::LFIWZX; 968 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 969 } else if (PPCSubTarget->hasLFIWAX()) { 970 LoadOpc = PPC::LFIWAX; 971 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 972 } 973 } 974 975 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 976 unsigned ResultReg = 0; 977 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc)) 978 return 0; 979 980 return ResultReg; 981 } 982 983 // Attempt to fast-select an integer-to-floating-point conversion. 984 // FIXME: Once fast-isel has better support for VSX, conversions using 985 // direct moves should be implemented. 986 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) { 987 MVT DstVT; 988 Type *DstTy = I->getType(); 989 if (!isTypeLegal(DstTy, DstVT)) 990 return false; 991 992 if (DstVT != MVT::f32 && DstVT != MVT::f64) 993 return false; 994 995 Value *Src = I->getOperand(0); 996 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); 997 if (!SrcEVT.isSimple()) 998 return false; 999 1000 MVT SrcVT = SrcEVT.getSimpleVT(); 1001 1002 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && 1003 SrcVT != MVT::i32 && SrcVT != MVT::i64) 1004 return false; 1005 1006 unsigned SrcReg = getRegForValue(Src); 1007 if (SrcReg == 0) 1008 return false; 1009 1010 // We can only lower an unsigned convert if we have the newer 1011 // floating-point conversion operations. 1012 if (!IsSigned && !PPCSubTarget->hasFPCVT()) 1013 return false; 1014 1015 // FIXME: For now we require the newer floating-point conversion operations 1016 // (which are present only on P7 and A2 server models) when converting 1017 // to single-precision float. Otherwise we have to generate a lot of 1018 // fiddly code to avoid double rounding. If necessary, the fiddly code 1019 // can be found in PPCTargetLowering::LowerINT_TO_FP(). 1020 if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT()) 1021 return false; 1022 1023 // Extend the input if necessary. 1024 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) { 1025 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 1026 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned)) 1027 return false; 1028 SrcVT = MVT::i64; 1029 SrcReg = TmpReg; 1030 } 1031 1032 // Move the integer value to an FPR. 1033 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned); 1034 if (FPReg == 0) 1035 return false; 1036 1037 // Determine the opcode for the conversion. 1038 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 1039 unsigned DestReg = createResultReg(RC); 1040 unsigned Opc; 1041 1042 if (DstVT == MVT::f32) 1043 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS; 1044 else 1045 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU; 1046 1047 // Generate the convert. 1048 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1049 .addReg(FPReg); 1050 1051 updateValueMap(I, DestReg); 1052 return true; 1053 } 1054 1055 // Move the floating-point value in SrcReg into an integer destination 1056 // register, and return the register (or zero if we can't handle it). 1057 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 1058 // those should be used instead of moving via a stack slot when the 1059 // subtarget permits. 1060 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT, 1061 unsigned SrcReg, bool IsSigned) { 1062 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 1063 // Note that if have STFIWX available, we could use a 4-byte stack 1064 // slot for i32, but this being fast-isel we'll just go with the 1065 // easiest code gen possible. 1066 Address Addr; 1067 Addr.BaseType = Address::FrameIndexBase; 1068 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 1069 1070 // Store the value from the FPR. 1071 if (!PPCEmitStore(MVT::f64, SrcReg, Addr)) 1072 return 0; 1073 1074 // Reload it into a GPR. If we want an i32, modify the address 1075 // to have a 4-byte offset so we load from the right place. 1076 if (VT == MVT::i32) 1077 Addr.Offset = 4; 1078 1079 // Look at the currently assigned register for this instruction 1080 // to determine the required register class. 1081 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1082 const TargetRegisterClass *RC = 1083 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 1084 1085 unsigned ResultReg = 0; 1086 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned)) 1087 return 0; 1088 1089 return ResultReg; 1090 } 1091 1092 // Attempt to fast-select a floating-point-to-integer conversion. 1093 // FIXME: Once fast-isel has better support for VSX, conversions using 1094 // direct moves should be implemented. 1095 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) { 1096 MVT DstVT, SrcVT; 1097 Type *DstTy = I->getType(); 1098 if (!isTypeLegal(DstTy, DstVT)) 1099 return false; 1100 1101 if (DstVT != MVT::i32 && DstVT != MVT::i64) 1102 return false; 1103 1104 // If we don't have FCTIDUZ and we need it, punt to SelectionDAG. 1105 if (DstVT == MVT::i64 && !IsSigned && !PPCSubTarget->hasFPCVT()) 1106 return false; 1107 1108 Value *Src = I->getOperand(0); 1109 Type *SrcTy = Src->getType(); 1110 if (!isTypeLegal(SrcTy, SrcVT)) 1111 return false; 1112 1113 if (SrcVT != MVT::f32 && SrcVT != MVT::f64) 1114 return false; 1115 1116 unsigned SrcReg = getRegForValue(Src); 1117 if (SrcReg == 0) 1118 return false; 1119 1120 // Convert f32 to f64 if necessary. This is just a meaningless copy 1121 // to get the register class right. COPY_TO_REGCLASS is needed since 1122 // a COPY from F4RC to F8RC is converted to a F4RC-F4RC copy downstream. 1123 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg); 1124 if (InRC == &PPC::F4RCRegClass) { 1125 unsigned TmpReg = createResultReg(&PPC::F8RCRegClass); 1126 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1127 TII.get(TargetOpcode::COPY_TO_REGCLASS), TmpReg) 1128 .addReg(SrcReg).addImm(PPC::F8RCRegClassID); 1129 SrcReg = TmpReg; 1130 } 1131 1132 // Determine the opcode for the conversion, which takes place 1133 // entirely within FPRs. 1134 unsigned DestReg = createResultReg(&PPC::F8RCRegClass); 1135 unsigned Opc; 1136 1137 if (DstVT == MVT::i32) 1138 if (IsSigned) 1139 Opc = PPC::FCTIWZ; 1140 else 1141 Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ; 1142 else 1143 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ; 1144 1145 // Generate the convert. 1146 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1147 .addReg(SrcReg); 1148 1149 // Now move the integer value from a float register to an integer register. 1150 unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned); 1151 if (IntReg == 0) 1152 return false; 1153 1154 updateValueMap(I, IntReg); 1155 return true; 1156 } 1157 1158 // Attempt to fast-select a binary integer operation that isn't already 1159 // handled automatically. 1160 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1161 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1162 1163 // We can get here in the case when we have a binary operation on a non-legal 1164 // type and the target independent selector doesn't know how to handle it. 1165 if (DestVT != MVT::i16 && DestVT != MVT::i8) 1166 return false; 1167 1168 // Look at the currently assigned register for this instruction 1169 // to determine the required register class. If there is no register, 1170 // make a conservative choice (don't assign R0). 1171 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1172 const TargetRegisterClass *RC = 1173 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1174 &PPC::GPRC_and_GPRC_NOR0RegClass); 1175 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1176 1177 unsigned Opc; 1178 switch (ISDOpcode) { 1179 default: return false; 1180 case ISD::ADD: 1181 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8; 1182 break; 1183 case ISD::OR: 1184 Opc = IsGPRC ? PPC::OR : PPC::OR8; 1185 break; 1186 case ISD::SUB: 1187 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8; 1188 break; 1189 } 1190 1191 unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass); 1192 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1193 if (SrcReg1 == 0) return false; 1194 1195 // Handle case of small immediate operand. 1196 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) { 1197 const APInt &CIVal = ConstInt->getValue(); 1198 int Imm = (int)CIVal.getSExtValue(); 1199 bool UseImm = true; 1200 if (isInt<16>(Imm)) { 1201 switch (Opc) { 1202 default: 1203 llvm_unreachable("Missing case!"); 1204 case PPC::ADD4: 1205 Opc = PPC::ADDI; 1206 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1207 break; 1208 case PPC::ADD8: 1209 Opc = PPC::ADDI8; 1210 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1211 break; 1212 case PPC::OR: 1213 Opc = PPC::ORI; 1214 break; 1215 case PPC::OR8: 1216 Opc = PPC::ORI8; 1217 break; 1218 case PPC::SUBF: 1219 if (Imm == -32768) 1220 UseImm = false; 1221 else { 1222 Opc = PPC::ADDI; 1223 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1224 Imm = -Imm; 1225 } 1226 break; 1227 case PPC::SUBF8: 1228 if (Imm == -32768) 1229 UseImm = false; 1230 else { 1231 Opc = PPC::ADDI8; 1232 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1233 Imm = -Imm; 1234 } 1235 break; 1236 } 1237 1238 if (UseImm) { 1239 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 1240 ResultReg) 1241 .addReg(SrcReg1) 1242 .addImm(Imm); 1243 updateValueMap(I, ResultReg); 1244 return true; 1245 } 1246 } 1247 } 1248 1249 // Reg-reg case. 1250 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1251 if (SrcReg2 == 0) return false; 1252 1253 // Reverse operands for subtract-from. 1254 if (ISDOpcode == ISD::SUB) 1255 std::swap(SrcReg1, SrcReg2); 1256 1257 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 1258 .addReg(SrcReg1).addReg(SrcReg2); 1259 updateValueMap(I, ResultReg); 1260 return true; 1261 } 1262 1263 // Handle arguments to a call that we're attempting to fast-select. 1264 // Return false if the arguments are too complex for us at the moment. 1265 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args, 1266 SmallVectorImpl<unsigned> &ArgRegs, 1267 SmallVectorImpl<MVT> &ArgVTs, 1268 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1269 SmallVectorImpl<unsigned> &RegArgs, 1270 CallingConv::ID CC, 1271 unsigned &NumBytes, 1272 bool IsVarArg) { 1273 SmallVector<CCValAssign, 16> ArgLocs; 1274 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context); 1275 1276 // Reserve space for the linkage area on the stack. 1277 unsigned LinkageSize = PPCSubTarget->getFrameLowering()->getLinkageSize(); 1278 CCInfo.AllocateStack(LinkageSize, 8); 1279 1280 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS); 1281 1282 // Bail out if we can't handle any of the arguments. 1283 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1284 CCValAssign &VA = ArgLocs[I]; 1285 MVT ArgVT = ArgVTs[VA.getValNo()]; 1286 1287 // Skip vector arguments for now, as well as long double and 1288 // uint128_t, and anything that isn't passed in a register. 1289 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 || 1290 !VA.isRegLoc() || VA.needsCustom()) 1291 return false; 1292 1293 // Skip bit-converted arguments for now. 1294 if (VA.getLocInfo() == CCValAssign::BCvt) 1295 return false; 1296 } 1297 1298 // Get a count of how many bytes are to be pushed onto the stack. 1299 NumBytes = CCInfo.getNextStackOffset(); 1300 1301 // The prolog code of the callee may store up to 8 GPR argument registers to 1302 // the stack, allowing va_start to index over them in memory if its varargs. 1303 // Because we cannot tell if this is needed on the caller side, we have to 1304 // conservatively assume that it is needed. As such, make sure we have at 1305 // least enough stack space for the caller to store the 8 GPRs. 1306 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 1307 NumBytes = std::max(NumBytes, LinkageSize + 64); 1308 1309 // Issue CALLSEQ_START. 1310 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1311 TII.get(TII.getCallFrameSetupOpcode())) 1312 .addImm(NumBytes); 1313 1314 // Prepare to assign register arguments. Every argument uses up a 1315 // GPR protocol register even if it's passed in a floating-point 1316 // register (unless we're using the fast calling convention). 1317 unsigned NextGPR = PPC::X3; 1318 unsigned NextFPR = PPC::F1; 1319 1320 // Process arguments. 1321 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1322 CCValAssign &VA = ArgLocs[I]; 1323 unsigned Arg = ArgRegs[VA.getValNo()]; 1324 MVT ArgVT = ArgVTs[VA.getValNo()]; 1325 1326 // Handle argument promotion and bitcasts. 1327 switch (VA.getLocInfo()) { 1328 default: 1329 llvm_unreachable("Unknown loc info!"); 1330 case CCValAssign::Full: 1331 break; 1332 case CCValAssign::SExt: { 1333 MVT DestVT = VA.getLocVT(); 1334 const TargetRegisterClass *RC = 1335 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1336 unsigned TmpReg = createResultReg(RC); 1337 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false)) 1338 llvm_unreachable("Failed to emit a sext!"); 1339 ArgVT = DestVT; 1340 Arg = TmpReg; 1341 break; 1342 } 1343 case CCValAssign::AExt: 1344 case CCValAssign::ZExt: { 1345 MVT DestVT = VA.getLocVT(); 1346 const TargetRegisterClass *RC = 1347 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1348 unsigned TmpReg = createResultReg(RC); 1349 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true)) 1350 llvm_unreachable("Failed to emit a zext!"); 1351 ArgVT = DestVT; 1352 Arg = TmpReg; 1353 break; 1354 } 1355 case CCValAssign::BCvt: { 1356 // FIXME: Not yet handled. 1357 llvm_unreachable("Should have bailed before getting here!"); 1358 break; 1359 } 1360 } 1361 1362 // Copy this argument to the appropriate register. 1363 unsigned ArgReg; 1364 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) { 1365 ArgReg = NextFPR++; 1366 if (CC != CallingConv::Fast) 1367 ++NextGPR; 1368 } else 1369 ArgReg = NextGPR++; 1370 1371 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1372 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg); 1373 RegArgs.push_back(ArgReg); 1374 } 1375 1376 return true; 1377 } 1378 1379 // For a call that we've determined we can fast-select, finish the 1380 // call sequence and generate a copy to obtain the return value (if any). 1381 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) { 1382 CallingConv::ID CC = CLI.CallConv; 1383 1384 // Issue CallSEQ_END. 1385 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1386 TII.get(TII.getCallFrameDestroyOpcode())) 1387 .addImm(NumBytes).addImm(0); 1388 1389 // Next, generate a copy to obtain the return value. 1390 // FIXME: No multi-register return values yet, though I don't foresee 1391 // any real difficulties there. 1392 if (RetVT != MVT::isVoid) { 1393 SmallVector<CCValAssign, 16> RVLocs; 1394 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 1395 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1396 CCValAssign &VA = RVLocs[0]; 1397 assert(RVLocs.size() == 1 && "No support for multi-reg return values!"); 1398 assert(VA.isRegLoc() && "Can only return in registers!"); 1399 1400 MVT DestVT = VA.getValVT(); 1401 MVT CopyVT = DestVT; 1402 1403 // Ints smaller than a register still arrive in a full 64-bit 1404 // register, so make sure we recognize this. 1405 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) 1406 CopyVT = MVT::i64; 1407 1408 unsigned SourcePhysReg = VA.getLocReg(); 1409 unsigned ResultReg = 0; 1410 1411 if (RetVT == CopyVT) { 1412 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT); 1413 ResultReg = createResultReg(CpyRC); 1414 1415 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1416 TII.get(TargetOpcode::COPY), ResultReg) 1417 .addReg(SourcePhysReg); 1418 1419 // If necessary, round the floating result to single precision. 1420 } else if (CopyVT == MVT::f64) { 1421 ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1422 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), 1423 ResultReg).addReg(SourcePhysReg); 1424 1425 // If only the low half of a general register is needed, generate 1426 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be 1427 // used along the fast-isel path (not lowered), and downstream logic 1428 // also doesn't like a direct subreg copy on a physical reg.) 1429 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) { 1430 ResultReg = createResultReg(&PPC::GPRCRegClass); 1431 // Convert physical register from G8RC to GPRC. 1432 SourcePhysReg -= PPC::X0 - PPC::R0; 1433 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1434 TII.get(TargetOpcode::COPY), ResultReg) 1435 .addReg(SourcePhysReg); 1436 } 1437 1438 assert(ResultReg && "ResultReg unset!"); 1439 CLI.InRegs.push_back(SourcePhysReg); 1440 CLI.ResultReg = ResultReg; 1441 CLI.NumResultRegs = 1; 1442 } 1443 1444 return true; 1445 } 1446 1447 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) { 1448 CallingConv::ID CC = CLI.CallConv; 1449 bool IsTailCall = CLI.IsTailCall; 1450 bool IsVarArg = CLI.IsVarArg; 1451 const Value *Callee = CLI.Callee; 1452 const MCSymbol *Symbol = CLI.Symbol; 1453 1454 if (!Callee && !Symbol) 1455 return false; 1456 1457 // Allow SelectionDAG isel to handle tail calls. 1458 if (IsTailCall) 1459 return false; 1460 1461 // Let SDISel handle vararg functions. 1462 if (IsVarArg) 1463 return false; 1464 1465 // Handle simple calls for now, with legal return types and 1466 // those that can be extended. 1467 Type *RetTy = CLI.RetTy; 1468 MVT RetVT; 1469 if (RetTy->isVoidTy()) 1470 RetVT = MVT::isVoid; 1471 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 1472 RetVT != MVT::i8) 1473 return false; 1474 else if (RetVT == MVT::i1 && PPCSubTarget->useCRBits()) 1475 // We can't handle boolean returns when CR bits are in use. 1476 return false; 1477 1478 // FIXME: No multi-register return values yet. 1479 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 && 1480 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 && 1481 RetVT != MVT::f64) { 1482 SmallVector<CCValAssign, 16> RVLocs; 1483 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context); 1484 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1485 if (RVLocs.size() > 1) 1486 return false; 1487 } 1488 1489 // Bail early if more than 8 arguments, as we only currently 1490 // handle arguments passed in registers. 1491 unsigned NumArgs = CLI.OutVals.size(); 1492 if (NumArgs > 8) 1493 return false; 1494 1495 // Set up the argument vectors. 1496 SmallVector<Value*, 8> Args; 1497 SmallVector<unsigned, 8> ArgRegs; 1498 SmallVector<MVT, 8> ArgVTs; 1499 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 1500 1501 Args.reserve(NumArgs); 1502 ArgRegs.reserve(NumArgs); 1503 ArgVTs.reserve(NumArgs); 1504 ArgFlags.reserve(NumArgs); 1505 1506 for (unsigned i = 0, ie = NumArgs; i != ie; ++i) { 1507 // Only handle easy calls for now. It would be reasonably easy 1508 // to handle <= 8-byte structures passed ByVal in registers, but we 1509 // have to ensure they are right-justified in the register. 1510 ISD::ArgFlagsTy Flags = CLI.OutFlags[i]; 1511 if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal()) 1512 return false; 1513 1514 Value *ArgValue = CLI.OutVals[i]; 1515 Type *ArgTy = ArgValue->getType(); 1516 MVT ArgVT; 1517 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8) 1518 return false; 1519 1520 if (ArgVT.isVector()) 1521 return false; 1522 1523 unsigned Arg = getRegForValue(ArgValue); 1524 if (Arg == 0) 1525 return false; 1526 1527 Args.push_back(ArgValue); 1528 ArgRegs.push_back(Arg); 1529 ArgVTs.push_back(ArgVT); 1530 ArgFlags.push_back(Flags); 1531 } 1532 1533 // Process the arguments. 1534 SmallVector<unsigned, 8> RegArgs; 1535 unsigned NumBytes; 1536 1537 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 1538 RegArgs, CC, NumBytes, IsVarArg)) 1539 return false; 1540 1541 MachineInstrBuilder MIB; 1542 // FIXME: No handling for function pointers yet. This requires 1543 // implementing the function descriptor (OPD) setup. 1544 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 1545 if (!GV) { 1546 // patchpoints are a special case; they always dispatch to a pointer value. 1547 // However, we don't actually want to generate the indirect call sequence 1548 // here (that will be generated, as necessary, during asm printing), and 1549 // the call we generate here will be erased by FastISel::selectPatchpoint, 1550 // so don't try very hard... 1551 if (CLI.IsPatchPoint) 1552 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP)); 1553 else 1554 return false; 1555 } else { 1556 // Build direct call with NOP for TOC restore. 1557 // FIXME: We can and should optimize away the NOP for local calls. 1558 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1559 TII.get(PPC::BL8_NOP)); 1560 // Add callee. 1561 MIB.addGlobalAddress(GV); 1562 } 1563 1564 // Add implicit physical register uses to the call. 1565 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II) 1566 MIB.addReg(RegArgs[II], RegState::Implicit); 1567 1568 // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live 1569 // into the call. 1570 PPCFuncInfo->setUsesTOCBasePtr(); 1571 MIB.addReg(PPC::X2, RegState::Implicit); 1572 1573 // Add a register mask with the call-preserved registers. Proper 1574 // defs for return values will be added by setPhysRegsDeadExcept(). 1575 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 1576 1577 CLI.Call = MIB; 1578 1579 // Finish off the call including any return values. 1580 return finishCall(RetVT, CLI, NumBytes); 1581 } 1582 1583 // Attempt to fast-select a return instruction. 1584 bool PPCFastISel::SelectRet(const Instruction *I) { 1585 1586 if (!FuncInfo.CanLowerReturn) 1587 return false; 1588 1589 const ReturnInst *Ret = cast<ReturnInst>(I); 1590 const Function &F = *I->getParent()->getParent(); 1591 1592 // Build a list of return value registers. 1593 SmallVector<unsigned, 4> RetRegs; 1594 CallingConv::ID CC = F.getCallingConv(); 1595 1596 if (Ret->getNumOperands() > 0) { 1597 SmallVector<ISD::OutputArg, 4> Outs; 1598 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 1599 1600 // Analyze operands of the call, assigning locations to each operand. 1601 SmallVector<CCValAssign, 16> ValLocs; 1602 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context); 1603 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS); 1604 const Value *RV = Ret->getOperand(0); 1605 1606 // FIXME: Only one output register for now. 1607 if (ValLocs.size() > 1) 1608 return false; 1609 1610 // Special case for returning a constant integer of any size - materialize 1611 // the constant as an i64 and copy it to the return register. 1612 if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) { 1613 CCValAssign &VA = ValLocs[0]; 1614 1615 unsigned RetReg = VA.getLocReg(); 1616 // We still need to worry about properly extending the sign. For example, 1617 // we could have only a single bit or a constant that needs zero 1618 // extension rather than sign extension. Make sure we pass the return 1619 // value extension property to integer materialization. 1620 unsigned SrcReg = 1621 PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() == CCValAssign::SExt); 1622 1623 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1624 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg); 1625 1626 RetRegs.push_back(RetReg); 1627 1628 } else { 1629 unsigned Reg = getRegForValue(RV); 1630 1631 if (Reg == 0) 1632 return false; 1633 1634 // Copy the result values into the output registers. 1635 for (unsigned i = 0; i < ValLocs.size(); ++i) { 1636 1637 CCValAssign &VA = ValLocs[i]; 1638 assert(VA.isRegLoc() && "Can only return in registers!"); 1639 RetRegs.push_back(VA.getLocReg()); 1640 unsigned SrcReg = Reg + VA.getValNo(); 1641 1642 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 1643 if (!RVEVT.isSimple()) 1644 return false; 1645 MVT RVVT = RVEVT.getSimpleVT(); 1646 MVT DestVT = VA.getLocVT(); 1647 1648 if (RVVT != DestVT && RVVT != MVT::i8 && 1649 RVVT != MVT::i16 && RVVT != MVT::i32) 1650 return false; 1651 1652 if (RVVT != DestVT) { 1653 switch (VA.getLocInfo()) { 1654 default: 1655 llvm_unreachable("Unknown loc info!"); 1656 case CCValAssign::Full: 1657 llvm_unreachable("Full value assign but types don't match?"); 1658 case CCValAssign::AExt: 1659 case CCValAssign::ZExt: { 1660 const TargetRegisterClass *RC = 1661 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1662 unsigned TmpReg = createResultReg(RC); 1663 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true)) 1664 return false; 1665 SrcReg = TmpReg; 1666 break; 1667 } 1668 case CCValAssign::SExt: { 1669 const TargetRegisterClass *RC = 1670 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1671 unsigned TmpReg = createResultReg(RC); 1672 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false)) 1673 return false; 1674 SrcReg = TmpReg; 1675 break; 1676 } 1677 } 1678 } 1679 1680 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1681 TII.get(TargetOpcode::COPY), RetRegs[i]) 1682 .addReg(SrcReg); 1683 } 1684 } 1685 } 1686 1687 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1688 TII.get(PPC::BLR8)); 1689 1690 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1691 MIB.addReg(RetRegs[i], RegState::Implicit); 1692 1693 return true; 1694 } 1695 1696 // Attempt to emit an integer extend of SrcReg into DestReg. Both 1697 // signed and zero extensions are supported. Return false if we 1698 // can't handle it. 1699 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1700 unsigned DestReg, bool IsZExt) { 1701 if (DestVT != MVT::i32 && DestVT != MVT::i64) 1702 return false; 1703 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32) 1704 return false; 1705 1706 // Signed extensions use EXTSB, EXTSH, EXTSW. 1707 if (!IsZExt) { 1708 unsigned Opc; 1709 if (SrcVT == MVT::i8) 1710 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64; 1711 else if (SrcVT == MVT::i16) 1712 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64; 1713 else { 1714 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??"); 1715 Opc = PPC::EXTSW_32_64; 1716 } 1717 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1718 .addReg(SrcReg); 1719 1720 // Unsigned 32-bit extensions use RLWINM. 1721 } else if (DestVT == MVT::i32) { 1722 unsigned MB; 1723 if (SrcVT == MVT::i8) 1724 MB = 24; 1725 else { 1726 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??"); 1727 MB = 16; 1728 } 1729 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM), 1730 DestReg) 1731 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31); 1732 1733 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source). 1734 } else { 1735 unsigned MB; 1736 if (SrcVT == MVT::i8) 1737 MB = 56; 1738 else if (SrcVT == MVT::i16) 1739 MB = 48; 1740 else 1741 MB = 32; 1742 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1743 TII.get(PPC::RLDICL_32_64), DestReg) 1744 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB); 1745 } 1746 1747 return true; 1748 } 1749 1750 // Attempt to fast-select an indirect branch instruction. 1751 bool PPCFastISel::SelectIndirectBr(const Instruction *I) { 1752 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1753 if (AddrReg == 0) 1754 return false; 1755 1756 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8)) 1757 .addReg(AddrReg); 1758 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8)); 1759 1760 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1761 for (const BasicBlock *SuccBB : IB->successors()) 1762 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]); 1763 1764 return true; 1765 } 1766 1767 // Attempt to fast-select an integer truncate instruction. 1768 bool PPCFastISel::SelectTrunc(const Instruction *I) { 1769 Value *Src = I->getOperand(0); 1770 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 1771 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1772 1773 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16) 1774 return false; 1775 1776 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 1777 return false; 1778 1779 unsigned SrcReg = getRegForValue(Src); 1780 if (!SrcReg) 1781 return false; 1782 1783 // The only interesting case is when we need to switch register classes. 1784 if (SrcVT == MVT::i64) { 1785 unsigned ResultReg = createResultReg(&PPC::GPRCRegClass); 1786 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1787 TII.get(TargetOpcode::COPY), 1788 ResultReg).addReg(SrcReg, 0, PPC::sub_32); 1789 SrcReg = ResultReg; 1790 } 1791 1792 updateValueMap(I, SrcReg); 1793 return true; 1794 } 1795 1796 // Attempt to fast-select an integer extend instruction. 1797 bool PPCFastISel::SelectIntExt(const Instruction *I) { 1798 Type *DestTy = I->getType(); 1799 Value *Src = I->getOperand(0); 1800 Type *SrcTy = Src->getType(); 1801 1802 bool IsZExt = isa<ZExtInst>(I); 1803 unsigned SrcReg = getRegForValue(Src); 1804 if (!SrcReg) return false; 1805 1806 EVT SrcEVT, DestEVT; 1807 SrcEVT = TLI.getValueType(DL, SrcTy, true); 1808 DestEVT = TLI.getValueType(DL, DestTy, true); 1809 if (!SrcEVT.isSimple()) 1810 return false; 1811 if (!DestEVT.isSimple()) 1812 return false; 1813 1814 MVT SrcVT = SrcEVT.getSimpleVT(); 1815 MVT DestVT = DestEVT.getSimpleVT(); 1816 1817 // If we know the register class needed for the result of this 1818 // instruction, use it. Otherwise pick the register class of the 1819 // correct size that does not contain X0/R0, since we don't know 1820 // whether downstream uses permit that assignment. 1821 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1822 const TargetRegisterClass *RC = 1823 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1824 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 1825 &PPC::GPRC_and_GPRC_NOR0RegClass)); 1826 unsigned ResultReg = createResultReg(RC); 1827 1828 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt)) 1829 return false; 1830 1831 updateValueMap(I, ResultReg); 1832 return true; 1833 } 1834 1835 // Attempt to fast-select an instruction that wasn't handled by 1836 // the table-generated machinery. 1837 bool PPCFastISel::fastSelectInstruction(const Instruction *I) { 1838 1839 switch (I->getOpcode()) { 1840 case Instruction::Load: 1841 return SelectLoad(I); 1842 case Instruction::Store: 1843 return SelectStore(I); 1844 case Instruction::Br: 1845 return SelectBranch(I); 1846 case Instruction::IndirectBr: 1847 return SelectIndirectBr(I); 1848 case Instruction::FPExt: 1849 return SelectFPExt(I); 1850 case Instruction::FPTrunc: 1851 return SelectFPTrunc(I); 1852 case Instruction::SIToFP: 1853 return SelectIToFP(I, /*IsSigned*/ true); 1854 case Instruction::UIToFP: 1855 return SelectIToFP(I, /*IsSigned*/ false); 1856 case Instruction::FPToSI: 1857 return SelectFPToI(I, /*IsSigned*/ true); 1858 case Instruction::FPToUI: 1859 return SelectFPToI(I, /*IsSigned*/ false); 1860 case Instruction::Add: 1861 return SelectBinaryIntOp(I, ISD::ADD); 1862 case Instruction::Or: 1863 return SelectBinaryIntOp(I, ISD::OR); 1864 case Instruction::Sub: 1865 return SelectBinaryIntOp(I, ISD::SUB); 1866 case Instruction::Call: 1867 return selectCall(I); 1868 case Instruction::Ret: 1869 return SelectRet(I); 1870 case Instruction::Trunc: 1871 return SelectTrunc(I); 1872 case Instruction::ZExt: 1873 case Instruction::SExt: 1874 return SelectIntExt(I); 1875 // Here add other flavors of Instruction::XXX that automated 1876 // cases don't catch. For example, switches are terminators 1877 // that aren't yet handled. 1878 default: 1879 break; 1880 } 1881 return false; 1882 } 1883 1884 // Materialize a floating-point constant into a register, and return 1885 // the register number (or zero if we failed to handle it). 1886 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) { 1887 // No plans to handle long double here. 1888 if (VT != MVT::f32 && VT != MVT::f64) 1889 return 0; 1890 1891 // All FP constants are loaded from the constant pool. 1892 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 1893 assert(Align > 0 && "Unexpectedly missing alignment information!"); 1894 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 1895 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 1896 CodeModel::Model CModel = TM.getCodeModel(); 1897 1898 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 1899 MachinePointerInfo::getConstantPool(*FuncInfo.MF), 1900 MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Align); 1901 1902 unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD; 1903 unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1904 1905 PPCFuncInfo->setUsesTOCBasePtr(); 1906 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)). 1907 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) { 1908 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT), 1909 TmpReg) 1910 .addConstantPoolIndex(Idx).addReg(PPC::X2); 1911 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1912 .addImm(0).addReg(TmpReg).addMemOperand(MMO); 1913 } else { 1914 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)). 1915 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 1916 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx); 1917 // But for large code model, we must generate a LDtocL followed 1918 // by the LF[SD]. 1919 if (CModel == CodeModel::Large) { 1920 unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1921 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 1922 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg); 1923 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1924 .addImm(0).addReg(TmpReg2); 1925 } else 1926 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1927 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO) 1928 .addReg(TmpReg) 1929 .addMemOperand(MMO); 1930 } 1931 1932 return DestReg; 1933 } 1934 1935 // Materialize the address of a global value into a register, and return 1936 // the register number (or zero if we failed to handle it). 1937 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) { 1938 assert(VT == MVT::i64 && "Non-address!"); 1939 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass; 1940 unsigned DestReg = createResultReg(RC); 1941 1942 // Global values may be plain old object addresses, TLS object 1943 // addresses, constant pool entries, or jump tables. How we generate 1944 // code for these may depend on small, medium, or large code model. 1945 CodeModel::Model CModel = TM.getCodeModel(); 1946 1947 // FIXME: Jump tables are not yet required because fast-isel doesn't 1948 // handle switches; if that changes, we need them as well. For now, 1949 // what follows assumes everything's a generic (or TLS) global address. 1950 1951 // FIXME: We don't yet handle the complexity of TLS. 1952 if (GV->isThreadLocal()) 1953 return 0; 1954 1955 PPCFuncInfo->setUsesTOCBasePtr(); 1956 // For small code model, generate a simple TOC load. 1957 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) 1958 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc), 1959 DestReg) 1960 .addGlobalAddress(GV) 1961 .addReg(PPC::X2); 1962 else { 1963 // If the address is an externally defined symbol, a symbol with common 1964 // or externally available linkage, a non-local function address, or a 1965 // jump table address (not yet needed), or if we are generating code 1966 // for large code model, we generate: 1967 // LDtocL(GV, ADDIStocHA(%X2, GV)) 1968 // Otherwise we generate: 1969 // ADDItocL(ADDIStocHA(%X2, GV), GV) 1970 // Either way, start with the ADDIStocHA: 1971 unsigned HighPartReg = createResultReg(RC); 1972 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 1973 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV); 1974 1975 unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV); 1976 if (GVFlags & PPCII::MO_NLP_FLAG) { 1977 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 1978 DestReg).addGlobalAddress(GV).addReg(HighPartReg); 1979 } else { 1980 // Otherwise generate the ADDItocL. 1981 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL), 1982 DestReg).addReg(HighPartReg).addGlobalAddress(GV); 1983 } 1984 } 1985 1986 return DestReg; 1987 } 1988 1989 // Materialize a 32-bit integer constant into a register, and return 1990 // the register number (or zero if we failed to handle it). 1991 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm, 1992 const TargetRegisterClass *RC) { 1993 unsigned Lo = Imm & 0xFFFF; 1994 unsigned Hi = (Imm >> 16) & 0xFFFF; 1995 1996 unsigned ResultReg = createResultReg(RC); 1997 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1998 1999 if (isInt<16>(Imm)) 2000 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2001 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg) 2002 .addImm(Imm); 2003 else if (Lo) { 2004 // Both Lo and Hi have nonzero bits. 2005 unsigned TmpReg = createResultReg(RC); 2006 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2007 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg) 2008 .addImm(Hi); 2009 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2010 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg) 2011 .addReg(TmpReg).addImm(Lo); 2012 } else 2013 // Just Hi bits. 2014 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2015 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg) 2016 .addImm(Hi); 2017 2018 return ResultReg; 2019 } 2020 2021 // Materialize a 64-bit integer constant into a register, and return 2022 // the register number (or zero if we failed to handle it). 2023 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm, 2024 const TargetRegisterClass *RC) { 2025 unsigned Remainder = 0; 2026 unsigned Shift = 0; 2027 2028 // If the value doesn't fit in 32 bits, see if we can shift it 2029 // so that it fits in 32 bits. 2030 if (!isInt<32>(Imm)) { 2031 Shift = countTrailingZeros<uint64_t>(Imm); 2032 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 2033 2034 if (isInt<32>(ImmSh)) 2035 Imm = ImmSh; 2036 else { 2037 Remainder = Imm; 2038 Shift = 32; 2039 Imm >>= 32; 2040 } 2041 } 2042 2043 // Handle the high-order 32 bits (if shifted) or the whole 32 bits 2044 // (if not shifted). 2045 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC); 2046 if (!Shift) 2047 return TmpReg1; 2048 2049 // If upper 32 bits were not zero, we've built them and need to shift 2050 // them into place. 2051 unsigned TmpReg2; 2052 if (Imm) { 2053 TmpReg2 = createResultReg(RC); 2054 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR), 2055 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift); 2056 } else 2057 TmpReg2 = TmpReg1; 2058 2059 unsigned TmpReg3, Hi, Lo; 2060 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 2061 TmpReg3 = createResultReg(RC); 2062 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8), 2063 TmpReg3).addReg(TmpReg2).addImm(Hi); 2064 } else 2065 TmpReg3 = TmpReg2; 2066 2067 if ((Lo = Remainder & 0xFFFF)) { 2068 unsigned ResultReg = createResultReg(RC); 2069 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8), 2070 ResultReg).addReg(TmpReg3).addImm(Lo); 2071 return ResultReg; 2072 } 2073 2074 return TmpReg3; 2075 } 2076 2077 2078 // Materialize an integer constant into a register, and return 2079 // the register number (or zero if we failed to handle it). 2080 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT, 2081 bool UseSExt) { 2082 // If we're using CR bit registers for i1 values, handle that as a special 2083 // case first. 2084 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2085 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2086 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2087 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2088 return ImmReg; 2089 } 2090 2091 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && 2092 VT != MVT::i8 && VT != MVT::i1) 2093 return 0; 2094 2095 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2096 &PPC::GPRCRegClass); 2097 2098 // If the constant is in range, use a load-immediate. 2099 if (UseSExt && isInt<16>(CI->getSExtValue())) { 2100 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI; 2101 unsigned ImmReg = createResultReg(RC); 2102 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg) 2103 .addImm(CI->getSExtValue()); 2104 return ImmReg; 2105 } else if (!UseSExt && isUInt<16>(CI->getZExtValue())) { 2106 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI; 2107 unsigned ImmReg = createResultReg(RC); 2108 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg) 2109 .addImm(CI->getZExtValue()); 2110 return ImmReg; 2111 } 2112 2113 // Construct the constant piecewise. 2114 int64_t Imm = CI->getZExtValue(); 2115 2116 if (VT == MVT::i64) 2117 return PPCMaterialize64BitInt(Imm, RC); 2118 else if (VT == MVT::i32) 2119 return PPCMaterialize32BitInt(Imm, RC); 2120 2121 return 0; 2122 } 2123 2124 // Materialize a constant into a register, and return the register 2125 // number (or zero if we failed to handle it). 2126 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) { 2127 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 2128 2129 // Only handle simple types. 2130 if (!CEVT.isSimple()) return 0; 2131 MVT VT = CEVT.getSimpleVT(); 2132 2133 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 2134 return PPCMaterializeFP(CFP, VT); 2135 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 2136 return PPCMaterializeGV(GV, VT); 2137 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 2138 return PPCMaterializeInt(CI, VT, VT != MVT::i1); 2139 2140 return 0; 2141 } 2142 2143 // Materialize the address created by an alloca into a register, and 2144 // return the register number (or zero if we failed to handle it). 2145 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 2146 // Don't handle dynamic allocas. 2147 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 2148 2149 MVT VT; 2150 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 2151 2152 DenseMap<const AllocaInst*, int>::iterator SI = 2153 FuncInfo.StaticAllocaMap.find(AI); 2154 2155 if (SI != FuncInfo.StaticAllocaMap.end()) { 2156 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2157 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 2158 ResultReg).addFrameIndex(SI->second).addImm(0); 2159 return ResultReg; 2160 } 2161 2162 return 0; 2163 } 2164 2165 // Fold loads into extends when possible. 2166 // FIXME: We can have multiple redundant extend/trunc instructions 2167 // following a load. The folding only picks up one. Extend this 2168 // to check subsequent instructions for the same pattern and remove 2169 // them. Thus ResultReg should be the def reg for the last redundant 2170 // instruction in a chain, and all intervening instructions can be 2171 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll 2172 // to add ELF64-NOT: rldicl to the appropriate tests when this works. 2173 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2174 const LoadInst *LI) { 2175 // Verify we have a legal type before going any further. 2176 MVT VT; 2177 if (!isLoadTypeLegal(LI->getType(), VT)) 2178 return false; 2179 2180 // Combine load followed by zero- or sign-extend. 2181 bool IsZExt = false; 2182 switch(MI->getOpcode()) { 2183 default: 2184 return false; 2185 2186 case PPC::RLDICL: 2187 case PPC::RLDICL_32_64: { 2188 IsZExt = true; 2189 unsigned MB = MI->getOperand(3).getImm(); 2190 if ((VT == MVT::i8 && MB <= 56) || 2191 (VT == MVT::i16 && MB <= 48) || 2192 (VT == MVT::i32 && MB <= 32)) 2193 break; 2194 return false; 2195 } 2196 2197 case PPC::RLWINM: 2198 case PPC::RLWINM8: { 2199 IsZExt = true; 2200 unsigned MB = MI->getOperand(3).getImm(); 2201 if ((VT == MVT::i8 && MB <= 24) || 2202 (VT == MVT::i16 && MB <= 16)) 2203 break; 2204 return false; 2205 } 2206 2207 case PPC::EXTSB: 2208 case PPC::EXTSB8: 2209 case PPC::EXTSB8_32_64: 2210 /* There is no sign-extending load-byte instruction. */ 2211 return false; 2212 2213 case PPC::EXTSH: 2214 case PPC::EXTSH8: 2215 case PPC::EXTSH8_32_64: { 2216 if (VT != MVT::i16 && VT != MVT::i8) 2217 return false; 2218 break; 2219 } 2220 2221 case PPC::EXTSW: 2222 case PPC::EXTSW_32_64: { 2223 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8) 2224 return false; 2225 break; 2226 } 2227 } 2228 2229 // See if we can handle this address. 2230 Address Addr; 2231 if (!PPCComputeAddress(LI->getOperand(0), Addr)) 2232 return false; 2233 2234 unsigned ResultReg = MI->getOperand(0).getReg(); 2235 2236 if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt)) 2237 return false; 2238 2239 MI->eraseFromParent(); 2240 return true; 2241 } 2242 2243 // Attempt to lower call arguments in a faster way than done by 2244 // the selection DAG code. 2245 bool PPCFastISel::fastLowerArguments() { 2246 // Defer to normal argument lowering for now. It's reasonably 2247 // efficient. Consider doing something like ARM to handle the 2248 // case where all args fit in registers, no varargs, no float 2249 // or vector args. 2250 return false; 2251 } 2252 2253 // Handle materializing integer constants into a register. This is not 2254 // automatically generated for PowerPC, so must be explicitly created here. 2255 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) { 2256 2257 if (Opc != ISD::Constant) 2258 return 0; 2259 2260 // If we're using CR bit registers for i1 values, handle that as a special 2261 // case first. 2262 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2263 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2264 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2265 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2266 return ImmReg; 2267 } 2268 2269 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && 2270 VT != MVT::i8 && VT != MVT::i1) 2271 return 0; 2272 2273 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2274 &PPC::GPRCRegClass); 2275 if (VT == MVT::i64) 2276 return PPCMaterialize64BitInt(Imm, RC); 2277 else 2278 return PPCMaterialize32BitInt(Imm, RC); 2279 } 2280 2281 // Override for ADDI and ADDI8 to set the correct register class 2282 // on RHS operand 0. The automatic infrastructure naively assumes 2283 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost 2284 // for these cases. At the moment, none of the other automatically 2285 // generated RI instructions require special treatment. However, once 2286 // SelectSelect is implemented, "isel" requires similar handling. 2287 // 2288 // Also be conservative about the output register class. Avoid 2289 // assigning R0 or X0 to the output register for GPRC and G8RC 2290 // register classes, as any such result could be used in ADDI, etc., 2291 // where those regs have another meaning. 2292 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2293 const TargetRegisterClass *RC, 2294 unsigned Op0, bool Op0IsKill, 2295 uint64_t Imm) { 2296 if (MachineInstOpcode == PPC::ADDI) 2297 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass); 2298 else if (MachineInstOpcode == PPC::ADDI8) 2299 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass); 2300 2301 const TargetRegisterClass *UseRC = 2302 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2303 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2304 2305 return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC, 2306 Op0, Op0IsKill, Imm); 2307 } 2308 2309 // Override for instructions with one register operand to avoid use of 2310 // R0/X0. The automatic infrastructure isn't aware of the context so 2311 // we must be conservative. 2312 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 2313 const TargetRegisterClass* RC, 2314 unsigned Op0, bool Op0IsKill) { 2315 const TargetRegisterClass *UseRC = 2316 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2317 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2318 2319 return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill); 2320 } 2321 2322 // Override for instructions with two register operands to avoid use 2323 // of R0/X0. The automatic infrastructure isn't aware of the context 2324 // so we must be conservative. 2325 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2326 const TargetRegisterClass* RC, 2327 unsigned Op0, bool Op0IsKill, 2328 unsigned Op1, bool Op1IsKill) { 2329 const TargetRegisterClass *UseRC = 2330 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2331 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2332 2333 return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill, 2334 Op1, Op1IsKill); 2335 } 2336 2337 namespace llvm { 2338 // Create the fast instruction selector for PowerPC64 ELF. 2339 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo, 2340 const TargetLibraryInfo *LibInfo) { 2341 // Only available on 64-bit ELF for now. 2342 const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>(); 2343 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) 2344 return new PPCFastISel(FuncInfo, LibInfo); 2345 return nullptr; 2346 } 2347 } 2348