1 //===-- PeepholeOptimizer.cpp - Peephole Optimizations --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Perform peephole optimizations on the machine code: 11 // 12 // - Optimize Extensions 13 // 14 // Optimization of sign / zero extension instructions. It may be extended to 15 // handle other instructions with similar properties. 16 // 17 // On some targets, some instructions, e.g. X86 sign / zero extension, may 18 // leave the source value in the lower part of the result. This optimization 19 // will replace some uses of the pre-extension value with uses of the 20 // sub-register of the results. 21 // 22 // - Optimize Comparisons 23 // 24 // Optimization of comparison instructions. For instance, in this code: 25 // 26 // sub r1, 1 27 // cmp r1, 0 28 // bz L1 29 // 30 // If the "sub" instruction all ready sets (or could be modified to set) the 31 // same flag that the "cmp" instruction sets and that "bz" uses, then we can 32 // eliminate the "cmp" instruction. 33 // 34 // Another instance, in this code: 35 // 36 // sub r1, r3 | sub r1, imm 37 // cmp r3, r1 or cmp r1, r3 | cmp r1, imm 38 // bge L1 39 // 40 // If the branch instruction can use flag from "sub", then we can replace 41 // "sub" with "subs" and eliminate the "cmp" instruction. 42 // 43 // - Optimize Loads: 44 // 45 // Loads that can be folded into a later instruction. A load is foldable 46 // if it loads to virtual registers and the virtual register defined has 47 // a single use. 48 // 49 // - Optimize Copies and Bitcast (more generally, target specific copies): 50 // 51 // Rewrite copies and bitcasts to avoid cross register bank copies 52 // when possible. 53 // E.g., Consider the following example, where capital and lower 54 // letters denote different register file: 55 // b = copy A <-- cross-bank copy 56 // C = copy b <-- cross-bank copy 57 // => 58 // b = copy A <-- cross-bank copy 59 // C = copy A <-- same-bank copy 60 // 61 // E.g., for bitcast: 62 // b = bitcast A <-- cross-bank copy 63 // C = bitcast b <-- cross-bank copy 64 // => 65 // b = bitcast A <-- cross-bank copy 66 // C = copy A <-- same-bank copy 67 //===----------------------------------------------------------------------===// 68 69 #include "llvm/CodeGen/Passes.h" 70 #include "llvm/ADT/DenseMap.h" 71 #include "llvm/ADT/SmallPtrSet.h" 72 #include "llvm/ADT/SmallSet.h" 73 #include "llvm/ADT/Statistic.h" 74 #include "llvm/CodeGen/MachineDominators.h" 75 #include "llvm/CodeGen/MachineInstrBuilder.h" 76 #include "llvm/CodeGen/MachineRegisterInfo.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Target/TargetInstrInfo.h" 81 #include "llvm/Target/TargetRegisterInfo.h" 82 #include "llvm/Target/TargetSubtargetInfo.h" 83 #include <utility> 84 using namespace llvm; 85 86 #define DEBUG_TYPE "peephole-opt" 87 88 // Optimize Extensions 89 static cl::opt<bool> 90 Aggressive("aggressive-ext-opt", cl::Hidden, 91 cl::desc("Aggressive extension optimization")); 92 93 static cl::opt<bool> 94 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false), 95 cl::desc("Disable the peephole optimizer")); 96 97 static cl::opt<bool> 98 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false), 99 cl::desc("Disable advanced copy optimization")); 100 101 static cl::opt<bool> DisableNAPhysCopyOpt( 102 "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false), 103 cl::desc("Disable non-allocatable physical register copy optimization")); 104 105 // Limit the number of PHI instructions to process 106 // in PeepholeOptimizer::getNextSource. 107 static cl::opt<unsigned> RewritePHILimit( 108 "rewrite-phi-limit", cl::Hidden, cl::init(10), 109 cl::desc("Limit the length of PHI chains to lookup")); 110 111 STATISTIC(NumReuse, "Number of extension results reused"); 112 STATISTIC(NumCmps, "Number of compares eliminated"); 113 STATISTIC(NumImmFold, "Number of move immediate folded"); 114 STATISTIC(NumLoadFold, "Number of loads folded"); 115 STATISTIC(NumSelects, "Number of selects optimized"); 116 STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized"); 117 STATISTIC(NumRewrittenCopies, "Number of copies rewritten"); 118 STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed"); 119 120 namespace { 121 class ValueTrackerResult; 122 123 class PeepholeOptimizer : public MachineFunctionPass { 124 const TargetInstrInfo *TII; 125 const TargetRegisterInfo *TRI; 126 MachineRegisterInfo *MRI; 127 MachineDominatorTree *DT; // Machine dominator tree 128 129 public: 130 static char ID; // Pass identification 131 PeepholeOptimizer() : MachineFunctionPass(ID) { 132 initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry()); 133 } 134 135 bool runOnMachineFunction(MachineFunction &MF) override; 136 137 void getAnalysisUsage(AnalysisUsage &AU) const override { 138 AU.setPreservesCFG(); 139 MachineFunctionPass::getAnalysisUsage(AU); 140 if (Aggressive) { 141 AU.addRequired<MachineDominatorTree>(); 142 AU.addPreserved<MachineDominatorTree>(); 143 } 144 } 145 146 /// \brief Track Def -> Use info used for rewriting copies. 147 typedef SmallDenseMap<TargetInstrInfo::RegSubRegPair, ValueTrackerResult> 148 RewriteMapTy; 149 150 private: 151 bool optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB); 152 bool optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB, 153 SmallPtrSetImpl<MachineInstr*> &LocalMIs); 154 bool optimizeSelect(MachineInstr *MI, 155 SmallPtrSetImpl<MachineInstr *> &LocalMIs); 156 bool optimizeCondBranch(MachineInstr *MI); 157 bool optimizeCoalescableCopy(MachineInstr *MI); 158 bool optimizeUncoalescableCopy(MachineInstr *MI, 159 SmallPtrSetImpl<MachineInstr *> &LocalMIs); 160 bool findNextSource(unsigned Reg, unsigned SubReg, 161 RewriteMapTy &RewriteMap); 162 bool isMoveImmediate(MachineInstr *MI, 163 SmallSet<unsigned, 4> &ImmDefRegs, 164 DenseMap<unsigned, MachineInstr*> &ImmDefMIs); 165 bool foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB, 166 SmallSet<unsigned, 4> &ImmDefRegs, 167 DenseMap<unsigned, MachineInstr*> &ImmDefMIs); 168 169 /// \brief If copy instruction \p MI is a virtual register copy, track it in 170 /// the set \p CopySrcRegs and \p CopyMIs. If this virtual register was 171 /// previously seen as a copy, replace the uses of this copy with the 172 /// previously seen copy's destination register. 173 bool foldRedundantCopy(MachineInstr *MI, 174 SmallSet<unsigned, 4> &CopySrcRegs, 175 DenseMap<unsigned, MachineInstr *> &CopyMIs); 176 177 /// \brief Is the register \p Reg a non-allocatable physical register? 178 bool isNAPhysCopy(unsigned Reg); 179 180 /// \brief If copy instruction \p MI is a non-allocatable virtual<->physical 181 /// register copy, track it in the \p NAPhysToVirtMIs map. If this 182 /// non-allocatable physical register was previously copied to a virtual 183 /// registered and hasn't been clobbered, the virt->phys copy can be 184 /// deleted. 185 bool foldRedundantNAPhysCopy( 186 MachineInstr *MI, 187 DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs); 188 189 bool isLoadFoldable(MachineInstr *MI, 190 SmallSet<unsigned, 16> &FoldAsLoadDefCandidates); 191 192 /// \brief Check whether \p MI is understood by the register coalescer 193 /// but may require some rewriting. 194 bool isCoalescableCopy(const MachineInstr &MI) { 195 // SubregToRegs are not interesting, because they are already register 196 // coalescer friendly. 197 return MI.isCopy() || (!DisableAdvCopyOpt && 198 (MI.isRegSequence() || MI.isInsertSubreg() || 199 MI.isExtractSubreg())); 200 } 201 202 /// \brief Check whether \p MI is a copy like instruction that is 203 /// not recognized by the register coalescer. 204 bool isUncoalescableCopy(const MachineInstr &MI) { 205 return MI.isBitcast() || 206 (!DisableAdvCopyOpt && 207 (MI.isRegSequenceLike() || MI.isInsertSubregLike() || 208 MI.isExtractSubregLike())); 209 } 210 }; 211 212 /// \brief Helper class to hold a reply for ValueTracker queries. Contains the 213 /// returned sources for a given search and the instructions where the sources 214 /// were tracked from. 215 class ValueTrackerResult { 216 private: 217 /// Track all sources found by one ValueTracker query. 218 SmallVector<TargetInstrInfo::RegSubRegPair, 2> RegSrcs; 219 220 /// Instruction using the sources in 'RegSrcs'. 221 const MachineInstr *Inst; 222 223 public: 224 ValueTrackerResult() : Inst(nullptr) {} 225 ValueTrackerResult(unsigned Reg, unsigned SubReg) : Inst(nullptr) { 226 addSource(Reg, SubReg); 227 } 228 229 bool isValid() const { return getNumSources() > 0; } 230 231 void setInst(const MachineInstr *I) { Inst = I; } 232 const MachineInstr *getInst() const { return Inst; } 233 234 void clear() { 235 RegSrcs.clear(); 236 Inst = nullptr; 237 } 238 239 void addSource(unsigned SrcReg, unsigned SrcSubReg) { 240 RegSrcs.push_back(TargetInstrInfo::RegSubRegPair(SrcReg, SrcSubReg)); 241 } 242 243 void setSource(int Idx, unsigned SrcReg, unsigned SrcSubReg) { 244 assert(Idx < getNumSources() && "Reg pair source out of index"); 245 RegSrcs[Idx] = TargetInstrInfo::RegSubRegPair(SrcReg, SrcSubReg); 246 } 247 248 int getNumSources() const { return RegSrcs.size(); } 249 250 unsigned getSrcReg(int Idx) const { 251 assert(Idx < getNumSources() && "Reg source out of index"); 252 return RegSrcs[Idx].Reg; 253 } 254 255 unsigned getSrcSubReg(int Idx) const { 256 assert(Idx < getNumSources() && "SubReg source out of index"); 257 return RegSrcs[Idx].SubReg; 258 } 259 260 bool operator==(const ValueTrackerResult &Other) { 261 if (Other.getInst() != getInst()) 262 return false; 263 264 if (Other.getNumSources() != getNumSources()) 265 return false; 266 267 for (int i = 0, e = Other.getNumSources(); i != e; ++i) 268 if (Other.getSrcReg(i) != getSrcReg(i) || 269 Other.getSrcSubReg(i) != getSrcSubReg(i)) 270 return false; 271 return true; 272 } 273 }; 274 275 /// \brief Helper class to track the possible sources of a value defined by 276 /// a (chain of) copy related instructions. 277 /// Given a definition (instruction and definition index), this class 278 /// follows the use-def chain to find successive suitable sources. 279 /// The given source can be used to rewrite the definition into 280 /// def = COPY src. 281 /// 282 /// For instance, let us consider the following snippet: 283 /// v0 = 284 /// v2 = INSERT_SUBREG v1, v0, sub0 285 /// def = COPY v2.sub0 286 /// 287 /// Using a ValueTracker for def = COPY v2.sub0 will give the following 288 /// suitable sources: 289 /// v2.sub0 and v0. 290 /// Then, def can be rewritten into def = COPY v0. 291 class ValueTracker { 292 private: 293 /// The current point into the use-def chain. 294 const MachineInstr *Def; 295 /// The index of the definition in Def. 296 unsigned DefIdx; 297 /// The sub register index of the definition. 298 unsigned DefSubReg; 299 /// The register where the value can be found. 300 unsigned Reg; 301 /// Specifiy whether or not the value tracking looks through 302 /// complex instructions. When this is false, the value tracker 303 /// bails on everything that is not a copy or a bitcast. 304 /// 305 /// Note: This could have been implemented as a specialized version of 306 /// the ValueTracker class but that would have complicated the code of 307 /// the users of this class. 308 bool UseAdvancedTracking; 309 /// MachineRegisterInfo used to perform tracking. 310 const MachineRegisterInfo &MRI; 311 /// Optional TargetInstrInfo used to perform some complex 312 /// tracking. 313 const TargetInstrInfo *TII; 314 315 /// \brief Dispatcher to the right underlying implementation of 316 /// getNextSource. 317 ValueTrackerResult getNextSourceImpl(); 318 /// \brief Specialized version of getNextSource for Copy instructions. 319 ValueTrackerResult getNextSourceFromCopy(); 320 /// \brief Specialized version of getNextSource for Bitcast instructions. 321 ValueTrackerResult getNextSourceFromBitcast(); 322 /// \brief Specialized version of getNextSource for RegSequence 323 /// instructions. 324 ValueTrackerResult getNextSourceFromRegSequence(); 325 /// \brief Specialized version of getNextSource for InsertSubreg 326 /// instructions. 327 ValueTrackerResult getNextSourceFromInsertSubreg(); 328 /// \brief Specialized version of getNextSource for ExtractSubreg 329 /// instructions. 330 ValueTrackerResult getNextSourceFromExtractSubreg(); 331 /// \brief Specialized version of getNextSource for SubregToReg 332 /// instructions. 333 ValueTrackerResult getNextSourceFromSubregToReg(); 334 /// \brief Specialized version of getNextSource for PHI instructions. 335 ValueTrackerResult getNextSourceFromPHI(); 336 337 public: 338 /// \brief Create a ValueTracker instance for the value defined by \p Reg. 339 /// \p DefSubReg represents the sub register index the value tracker will 340 /// track. It does not need to match the sub register index used in the 341 /// definition of \p Reg. 342 /// \p UseAdvancedTracking specifies whether or not the value tracker looks 343 /// through complex instructions. By default (false), it handles only copy 344 /// and bitcast instructions. 345 /// If \p Reg is a physical register, a value tracker constructed with 346 /// this constructor will not find any alternative source. 347 /// Indeed, when \p Reg is a physical register that constructor does not 348 /// know which definition of \p Reg it should track. 349 /// Use the next constructor to track a physical register. 350 ValueTracker(unsigned Reg, unsigned DefSubReg, 351 const MachineRegisterInfo &MRI, 352 bool UseAdvancedTracking = false, 353 const TargetInstrInfo *TII = nullptr) 354 : Def(nullptr), DefIdx(0), DefSubReg(DefSubReg), Reg(Reg), 355 UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) { 356 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) { 357 Def = MRI.getVRegDef(Reg); 358 DefIdx = MRI.def_begin(Reg).getOperandNo(); 359 } 360 } 361 362 /// \brief Create a ValueTracker instance for the value defined by 363 /// the pair \p MI, \p DefIdx. 364 /// Unlike the other constructor, the value tracker produced by this one 365 /// may be able to find a new source when the definition is a physical 366 /// register. 367 /// This could be useful to rewrite target specific instructions into 368 /// generic copy instructions. 369 ValueTracker(const MachineInstr &MI, unsigned DefIdx, unsigned DefSubReg, 370 const MachineRegisterInfo &MRI, 371 bool UseAdvancedTracking = false, 372 const TargetInstrInfo *TII = nullptr) 373 : Def(&MI), DefIdx(DefIdx), DefSubReg(DefSubReg), 374 UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) { 375 assert(DefIdx < Def->getDesc().getNumDefs() && 376 Def->getOperand(DefIdx).isReg() && "Invalid definition"); 377 Reg = Def->getOperand(DefIdx).getReg(); 378 } 379 380 /// \brief Following the use-def chain, get the next available source 381 /// for the tracked value. 382 /// \return A ValueTrackerResult containing a set of registers 383 /// and sub registers with tracked values. A ValueTrackerResult with 384 /// an empty set of registers means no source was found. 385 ValueTrackerResult getNextSource(); 386 387 /// \brief Get the last register where the initial value can be found. 388 /// Initially this is the register of the definition. 389 /// Then, after each successful call to getNextSource, this is the 390 /// register of the last source. 391 unsigned getReg() const { return Reg; } 392 }; 393 } 394 395 char PeepholeOptimizer::ID = 0; 396 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID; 397 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, "peephole-opts", 398 "Peephole Optimizations", false, false) 399 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 400 INITIALIZE_PASS_END(PeepholeOptimizer, "peephole-opts", 401 "Peephole Optimizations", false, false) 402 403 /// optimizeExtInstr - If instruction is a copy-like instruction, i.e. it reads 404 /// a single register and writes a single register and it does not modify the 405 /// source, and if the source value is preserved as a sub-register of the 406 /// result, then replace all reachable uses of the source with the subreg of the 407 /// result. 408 /// 409 /// Do not generate an EXTRACT that is used only in a debug use, as this changes 410 /// the code. Since this code does not currently share EXTRACTs, just ignore all 411 /// debug uses. 412 bool PeepholeOptimizer:: 413 optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB, 414 SmallPtrSetImpl<MachineInstr*> &LocalMIs) { 415 unsigned SrcReg, DstReg, SubIdx; 416 if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx)) 417 return false; 418 419 if (TargetRegisterInfo::isPhysicalRegister(DstReg) || 420 TargetRegisterInfo::isPhysicalRegister(SrcReg)) 421 return false; 422 423 if (MRI->hasOneNonDBGUse(SrcReg)) 424 // No other uses. 425 return false; 426 427 // Ensure DstReg can get a register class that actually supports 428 // sub-registers. Don't change the class until we commit. 429 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 430 DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx); 431 if (!DstRC) 432 return false; 433 434 // The ext instr may be operating on a sub-register of SrcReg as well. 435 // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit 436 // register. 437 // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of 438 // SrcReg:SubIdx should be replaced. 439 bool UseSrcSubIdx = 440 TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr; 441 442 // The source has other uses. See if we can replace the other uses with use of 443 // the result of the extension. 444 SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs; 445 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) 446 ReachedBBs.insert(UI.getParent()); 447 448 // Uses that are in the same BB of uses of the result of the instruction. 449 SmallVector<MachineOperand*, 8> Uses; 450 451 // Uses that the result of the instruction can reach. 452 SmallVector<MachineOperand*, 8> ExtendedUses; 453 454 bool ExtendLife = true; 455 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { 456 MachineInstr *UseMI = UseMO.getParent(); 457 if (UseMI == MI) 458 continue; 459 460 if (UseMI->isPHI()) { 461 ExtendLife = false; 462 continue; 463 } 464 465 // Only accept uses of SrcReg:SubIdx. 466 if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx) 467 continue; 468 469 // It's an error to translate this: 470 // 471 // %reg1025 = <sext> %reg1024 472 // ... 473 // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4 474 // 475 // into this: 476 // 477 // %reg1025 = <sext> %reg1024 478 // ... 479 // %reg1027 = COPY %reg1025:4 480 // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4 481 // 482 // The problem here is that SUBREG_TO_REG is there to assert that an 483 // implicit zext occurs. It doesn't insert a zext instruction. If we allow 484 // the COPY here, it will give us the value after the <sext>, not the 485 // original value of %reg1024 before <sext>. 486 if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG) 487 continue; 488 489 MachineBasicBlock *UseMBB = UseMI->getParent(); 490 if (UseMBB == MBB) { 491 // Local uses that come after the extension. 492 if (!LocalMIs.count(UseMI)) 493 Uses.push_back(&UseMO); 494 } else if (ReachedBBs.count(UseMBB)) { 495 // Non-local uses where the result of the extension is used. Always 496 // replace these unless it's a PHI. 497 Uses.push_back(&UseMO); 498 } else if (Aggressive && DT->dominates(MBB, UseMBB)) { 499 // We may want to extend the live range of the extension result in order 500 // to replace these uses. 501 ExtendedUses.push_back(&UseMO); 502 } else { 503 // Both will be live out of the def MBB anyway. Don't extend live range of 504 // the extension result. 505 ExtendLife = false; 506 break; 507 } 508 } 509 510 if (ExtendLife && !ExtendedUses.empty()) 511 // Extend the liveness of the extension result. 512 Uses.append(ExtendedUses.begin(), ExtendedUses.end()); 513 514 // Now replace all uses. 515 bool Changed = false; 516 if (!Uses.empty()) { 517 SmallPtrSet<MachineBasicBlock*, 4> PHIBBs; 518 519 // Look for PHI uses of the extended result, we don't want to extend the 520 // liveness of a PHI input. It breaks all kinds of assumptions down 521 // stream. A PHI use is expected to be the kill of its source values. 522 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) 523 if (UI.isPHI()) 524 PHIBBs.insert(UI.getParent()); 525 526 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 527 for (unsigned i = 0, e = Uses.size(); i != e; ++i) { 528 MachineOperand *UseMO = Uses[i]; 529 MachineInstr *UseMI = UseMO->getParent(); 530 MachineBasicBlock *UseMBB = UseMI->getParent(); 531 if (PHIBBs.count(UseMBB)) 532 continue; 533 534 // About to add uses of DstReg, clear DstReg's kill flags. 535 if (!Changed) { 536 MRI->clearKillFlags(DstReg); 537 MRI->constrainRegClass(DstReg, DstRC); 538 } 539 540 unsigned NewVR = MRI->createVirtualRegister(RC); 541 MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(), 542 TII->get(TargetOpcode::COPY), NewVR) 543 .addReg(DstReg, 0, SubIdx); 544 // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set. 545 if (UseSrcSubIdx) { 546 Copy->getOperand(0).setSubReg(SubIdx); 547 Copy->getOperand(0).setIsUndef(); 548 } 549 UseMO->setReg(NewVR); 550 ++NumReuse; 551 Changed = true; 552 } 553 } 554 555 return Changed; 556 } 557 558 /// optimizeCmpInstr - If the instruction is a compare and the previous 559 /// instruction it's comparing against all ready sets (or could be modified to 560 /// set) the same flag as the compare, then we can remove the comparison and use 561 /// the flag from the previous instruction. 562 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr *MI, 563 MachineBasicBlock *MBB) { 564 // If this instruction is a comparison against zero and isn't comparing a 565 // physical register, we can try to optimize it. 566 unsigned SrcReg, SrcReg2; 567 int CmpMask, CmpValue; 568 if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) || 569 TargetRegisterInfo::isPhysicalRegister(SrcReg) || 570 (SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2))) 571 return false; 572 573 // Attempt to optimize the comparison instruction. 574 if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) { 575 ++NumCmps; 576 return true; 577 } 578 579 return false; 580 } 581 582 /// Optimize a select instruction. 583 bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI, 584 SmallPtrSetImpl<MachineInstr *> &LocalMIs) { 585 unsigned TrueOp = 0; 586 unsigned FalseOp = 0; 587 bool Optimizable = false; 588 SmallVector<MachineOperand, 4> Cond; 589 if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable)) 590 return false; 591 if (!Optimizable) 592 return false; 593 if (!TII->optimizeSelect(MI, LocalMIs)) 594 return false; 595 MI->eraseFromParent(); 596 ++NumSelects; 597 return true; 598 } 599 600 /// \brief Check if a simpler conditional branch can be 601 // generated 602 bool PeepholeOptimizer::optimizeCondBranch(MachineInstr *MI) { 603 return TII->optimizeCondBranch(MI); 604 } 605 606 /// \brief Try to find the next source that share the same register file 607 /// for the value defined by \p Reg and \p SubReg. 608 /// When true is returned, the \p RewriteMap can be used by the client to 609 /// retrieve all Def -> Use along the way up to the next source. Any found 610 /// Use that is not itself a key for another entry, is the next source to 611 /// use. During the search for the next source, multiple sources can be found 612 /// given multiple incoming sources of a PHI instruction. In this case, we 613 /// look in each PHI source for the next source; all found next sources must 614 /// share the same register file as \p Reg and \p SubReg. The client should 615 /// then be capable to rewrite all intermediate PHIs to get the next source. 616 /// \return False if no alternative sources are available. True otherwise. 617 bool PeepholeOptimizer::findNextSource(unsigned Reg, unsigned SubReg, 618 RewriteMapTy &RewriteMap) { 619 // Do not try to find a new source for a physical register. 620 // So far we do not have any motivating example for doing that. 621 // Thus, instead of maintaining untested code, we will revisit that if 622 // that changes at some point. 623 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 624 return false; 625 const TargetRegisterClass *DefRC = MRI->getRegClass(Reg); 626 627 SmallVector<TargetInstrInfo::RegSubRegPair, 4> SrcToLook; 628 TargetInstrInfo::RegSubRegPair CurSrcPair(Reg, SubReg); 629 SrcToLook.push_back(CurSrcPair); 630 631 unsigned PHICount = 0; 632 while (!SrcToLook.empty() && PHICount < RewritePHILimit) { 633 TargetInstrInfo::RegSubRegPair Pair = SrcToLook.pop_back_val(); 634 // As explained above, do not handle physical registers 635 if (TargetRegisterInfo::isPhysicalRegister(Pair.Reg)) 636 return false; 637 638 CurSrcPair = Pair; 639 ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, 640 !DisableAdvCopyOpt, TII); 641 ValueTrackerResult Res; 642 bool ShouldRewrite = false; 643 644 do { 645 // Follow the chain of copies until we reach the top of the use-def chain 646 // or find a more suitable source. 647 Res = ValTracker.getNextSource(); 648 if (!Res.isValid()) 649 break; 650 651 // Insert the Def -> Use entry for the recently found source. 652 ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair); 653 if (CurSrcRes.isValid()) { 654 assert(CurSrcRes == Res && "ValueTrackerResult found must match"); 655 // An existent entry with multiple sources is a PHI cycle we must avoid. 656 // Otherwise it's an entry with a valid next source we already found. 657 if (CurSrcRes.getNumSources() > 1) { 658 DEBUG(dbgs() << "findNextSource: found PHI cycle, aborting...\n"); 659 return false; 660 } 661 break; 662 } 663 RewriteMap.insert(std::make_pair(CurSrcPair, Res)); 664 665 // ValueTrackerResult usually have one source unless it's the result from 666 // a PHI instruction. Add the found PHI edges to be looked up further. 667 unsigned NumSrcs = Res.getNumSources(); 668 if (NumSrcs > 1) { 669 PHICount++; 670 for (unsigned i = 0; i < NumSrcs; ++i) 671 SrcToLook.push_back(TargetInstrInfo::RegSubRegPair( 672 Res.getSrcReg(i), Res.getSrcSubReg(i))); 673 break; 674 } 675 676 CurSrcPair.Reg = Res.getSrcReg(0); 677 CurSrcPair.SubReg = Res.getSrcSubReg(0); 678 // Do not extend the live-ranges of physical registers as they add 679 // constraints to the register allocator. Moreover, if we want to extend 680 // the live-range of a physical register, unlike SSA virtual register, 681 // we will have to check that they aren't redefine before the related use. 682 if (TargetRegisterInfo::isPhysicalRegister(CurSrcPair.Reg)) 683 return false; 684 685 const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg); 686 ShouldRewrite = TRI->shouldRewriteCopySrc(DefRC, SubReg, SrcRC, 687 CurSrcPair.SubReg); 688 } while (!ShouldRewrite); 689 690 // Continue looking for new sources... 691 if (Res.isValid()) 692 continue; 693 694 // Do not continue searching for a new source if the there's at least 695 // one use-def which cannot be rewritten. 696 if (!ShouldRewrite) 697 return false; 698 } 699 700 if (PHICount >= RewritePHILimit) { 701 DEBUG(dbgs() << "findNextSource: PHI limit reached\n"); 702 return false; 703 } 704 705 // If we did not find a more suitable source, there is nothing to optimize. 706 return CurSrcPair.Reg != Reg; 707 } 708 709 /// \brief Insert a PHI instruction with incoming edges \p SrcRegs that are 710 /// guaranteed to have the same register class. This is necessary whenever we 711 /// successfully traverse a PHI instruction and find suitable sources coming 712 /// from its edges. By inserting a new PHI, we provide a rewritten PHI def 713 /// suitable to be used in a new COPY instruction. 714 static MachineInstr * 715 insertPHI(MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 716 const SmallVectorImpl<TargetInstrInfo::RegSubRegPair> &SrcRegs, 717 MachineInstr *OrigPHI) { 718 assert(!SrcRegs.empty() && "No sources to create a PHI instruction?"); 719 720 const TargetRegisterClass *NewRC = MRI->getRegClass(SrcRegs[0].Reg); 721 unsigned NewVR = MRI->createVirtualRegister(NewRC); 722 MachineBasicBlock *MBB = OrigPHI->getParent(); 723 MachineInstrBuilder MIB = BuildMI(*MBB, OrigPHI, OrigPHI->getDebugLoc(), 724 TII->get(TargetOpcode::PHI), NewVR); 725 726 unsigned MBBOpIdx = 2; 727 for (auto RegPair : SrcRegs) { 728 MIB.addReg(RegPair.Reg, 0, RegPair.SubReg); 729 MIB.addMBB(OrigPHI->getOperand(MBBOpIdx).getMBB()); 730 // Since we're extended the lifetime of RegPair.Reg, clear the 731 // kill flags to account for that and make RegPair.Reg reaches 732 // the new PHI. 733 MRI->clearKillFlags(RegPair.Reg); 734 MBBOpIdx += 2; 735 } 736 737 return MIB; 738 } 739 740 namespace { 741 /// \brief Helper class to rewrite the arguments of a copy-like instruction. 742 class CopyRewriter { 743 protected: 744 /// The copy-like instruction. 745 MachineInstr &CopyLike; 746 /// The index of the source being rewritten. 747 unsigned CurrentSrcIdx; 748 749 public: 750 CopyRewriter(MachineInstr &MI) : CopyLike(MI), CurrentSrcIdx(0) {} 751 752 virtual ~CopyRewriter() {} 753 754 /// \brief Get the next rewritable source (SrcReg, SrcSubReg) and 755 /// the related value that it affects (TrackReg, TrackSubReg). 756 /// A source is considered rewritable if its register class and the 757 /// register class of the related TrackReg may not be register 758 /// coalescer friendly. In other words, given a copy-like instruction 759 /// not all the arguments may be returned at rewritable source, since 760 /// some arguments are none to be register coalescer friendly. 761 /// 762 /// Each call of this method moves the current source to the next 763 /// rewritable source. 764 /// For instance, let CopyLike be the instruction to rewrite. 765 /// CopyLike has one definition and one source: 766 /// dst.dstSubIdx = CopyLike src.srcSubIdx. 767 /// 768 /// The first call will give the first rewritable source, i.e., 769 /// the only source this instruction has: 770 /// (SrcReg, SrcSubReg) = (src, srcSubIdx). 771 /// This source defines the whole definition, i.e., 772 /// (TrackReg, TrackSubReg) = (dst, dstSubIdx). 773 /// 774 /// The second and subsequent calls will return false, as there is only one 775 /// rewritable source. 776 /// 777 /// \return True if a rewritable source has been found, false otherwise. 778 /// The output arguments are valid if and only if true is returned. 779 virtual bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 780 unsigned &TrackReg, 781 unsigned &TrackSubReg) { 782 // If CurrentSrcIdx == 1, this means this function has already been called 783 // once. CopyLike has one definition and one argument, thus, there is 784 // nothing else to rewrite. 785 if (!CopyLike.isCopy() || CurrentSrcIdx == 1) 786 return false; 787 // This is the first call to getNextRewritableSource. 788 // Move the CurrentSrcIdx to remember that we made that call. 789 CurrentSrcIdx = 1; 790 // The rewritable source is the argument. 791 const MachineOperand &MOSrc = CopyLike.getOperand(1); 792 SrcReg = MOSrc.getReg(); 793 SrcSubReg = MOSrc.getSubReg(); 794 // What we track are the alternative sources of the definition. 795 const MachineOperand &MODef = CopyLike.getOperand(0); 796 TrackReg = MODef.getReg(); 797 TrackSubReg = MODef.getSubReg(); 798 return true; 799 } 800 801 /// \brief Rewrite the current source with \p NewReg and \p NewSubReg 802 /// if possible. 803 /// \return True if the rewriting was possible, false otherwise. 804 virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) { 805 if (!CopyLike.isCopy() || CurrentSrcIdx != 1) 806 return false; 807 MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx); 808 MOSrc.setReg(NewReg); 809 MOSrc.setSubReg(NewSubReg); 810 return true; 811 } 812 813 /// \brief Given a \p Def.Reg and Def.SubReg pair, use \p RewriteMap to find 814 /// the new source to use for rewrite. If \p HandleMultipleSources is true and 815 /// multiple sources for a given \p Def are found along the way, we found a 816 /// PHI instructions that needs to be rewritten. 817 /// TODO: HandleMultipleSources should be removed once we test PHI handling 818 /// with coalescable copies. 819 TargetInstrInfo::RegSubRegPair 820 getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 821 TargetInstrInfo::RegSubRegPair Def, 822 PeepholeOptimizer::RewriteMapTy &RewriteMap, 823 bool HandleMultipleSources = true) { 824 825 TargetInstrInfo::RegSubRegPair LookupSrc(Def.Reg, Def.SubReg); 826 do { 827 ValueTrackerResult Res = RewriteMap.lookup(LookupSrc); 828 // If there are no entries on the map, LookupSrc is the new source. 829 if (!Res.isValid()) 830 return LookupSrc; 831 832 // There's only one source for this definition, keep searching... 833 unsigned NumSrcs = Res.getNumSources(); 834 if (NumSrcs == 1) { 835 LookupSrc.Reg = Res.getSrcReg(0); 836 LookupSrc.SubReg = Res.getSrcSubReg(0); 837 continue; 838 } 839 840 // TODO: Remove once multiple srcs w/ coalescable copies are supported. 841 if (!HandleMultipleSources) 842 break; 843 844 // Multiple sources, recurse into each source to find a new source 845 // for it. Then, rewrite the PHI accordingly to its new edges. 846 SmallVector<TargetInstrInfo::RegSubRegPair, 4> NewPHISrcs; 847 for (unsigned i = 0; i < NumSrcs; ++i) { 848 TargetInstrInfo::RegSubRegPair PHISrc(Res.getSrcReg(i), 849 Res.getSrcSubReg(i)); 850 NewPHISrcs.push_back( 851 getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources)); 852 } 853 854 // Build the new PHI node and return its def register as the new source. 855 MachineInstr *OrigPHI = const_cast<MachineInstr *>(Res.getInst()); 856 MachineInstr *NewPHI = insertPHI(MRI, TII, NewPHISrcs, OrigPHI); 857 DEBUG(dbgs() << "-- getNewSource\n"); 858 DEBUG(dbgs() << " Replacing: " << *OrigPHI); 859 DEBUG(dbgs() << " With: " << *NewPHI); 860 const MachineOperand &MODef = NewPHI->getOperand(0); 861 return TargetInstrInfo::RegSubRegPair(MODef.getReg(), MODef.getSubReg()); 862 863 } while (1); 864 865 return TargetInstrInfo::RegSubRegPair(0, 0); 866 } 867 868 /// \brief Rewrite the source found through \p Def, by using the \p RewriteMap 869 /// and create a new COPY instruction. More info about RewriteMap in 870 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle 871 /// Uncoalescable copies, since they are copy like instructions that aren't 872 /// recognized by the register allocator. 873 virtual MachineInstr * 874 RewriteSource(TargetInstrInfo::RegSubRegPair Def, 875 PeepholeOptimizer::RewriteMapTy &RewriteMap) { 876 return nullptr; 877 } 878 }; 879 880 /// \brief Helper class to rewrite uncoalescable copy like instructions 881 /// into new COPY (coalescable friendly) instructions. 882 class UncoalescableRewriter : public CopyRewriter { 883 protected: 884 const TargetInstrInfo &TII; 885 MachineRegisterInfo &MRI; 886 /// The number of defs in the bitcast 887 unsigned NumDefs; 888 889 public: 890 UncoalescableRewriter(MachineInstr &MI, const TargetInstrInfo &TII, 891 MachineRegisterInfo &MRI) 892 : CopyRewriter(MI), TII(TII), MRI(MRI) { 893 NumDefs = MI.getDesc().getNumDefs(); 894 } 895 896 /// \brief Get the next rewritable def source (TrackReg, TrackSubReg) 897 /// All such sources need to be considered rewritable in order to 898 /// rewrite a uncoalescable copy-like instruction. This method return 899 /// each definition that must be checked if rewritable. 900 /// 901 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 902 unsigned &TrackReg, 903 unsigned &TrackSubReg) override { 904 // Find the next non-dead definition and continue from there. 905 if (CurrentSrcIdx == NumDefs) 906 return false; 907 908 while (CopyLike.getOperand(CurrentSrcIdx).isDead()) { 909 ++CurrentSrcIdx; 910 if (CurrentSrcIdx == NumDefs) 911 return false; 912 } 913 914 // What we track are the alternative sources of the definition. 915 const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx); 916 TrackReg = MODef.getReg(); 917 TrackSubReg = MODef.getSubReg(); 918 919 CurrentSrcIdx++; 920 return true; 921 } 922 923 /// \brief Rewrite the source found through \p Def, by using the \p RewriteMap 924 /// and create a new COPY instruction. More info about RewriteMap in 925 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle 926 /// Uncoalescable copies, since they are copy like instructions that aren't 927 /// recognized by the register allocator. 928 MachineInstr * 929 RewriteSource(TargetInstrInfo::RegSubRegPair Def, 930 PeepholeOptimizer::RewriteMapTy &RewriteMap) override { 931 assert(!TargetRegisterInfo::isPhysicalRegister(Def.Reg) && 932 "We do not rewrite physical registers"); 933 934 // Find the new source to use in the COPY rewrite. 935 TargetInstrInfo::RegSubRegPair NewSrc = 936 getNewSource(&MRI, &TII, Def, RewriteMap); 937 938 // Insert the COPY. 939 const TargetRegisterClass *DefRC = MRI.getRegClass(Def.Reg); 940 unsigned NewVR = MRI.createVirtualRegister(DefRC); 941 942 MachineInstr *NewCopy = 943 BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(), 944 TII.get(TargetOpcode::COPY), NewVR) 945 .addReg(NewSrc.Reg, 0, NewSrc.SubReg); 946 947 NewCopy->getOperand(0).setSubReg(Def.SubReg); 948 if (Def.SubReg) 949 NewCopy->getOperand(0).setIsUndef(); 950 951 DEBUG(dbgs() << "-- RewriteSource\n"); 952 DEBUG(dbgs() << " Replacing: " << CopyLike); 953 DEBUG(dbgs() << " With: " << *NewCopy); 954 MRI.replaceRegWith(Def.Reg, NewVR); 955 MRI.clearKillFlags(NewVR); 956 957 // We extended the lifetime of NewSrc.Reg, clear the kill flags to 958 // account for that. 959 MRI.clearKillFlags(NewSrc.Reg); 960 961 return NewCopy; 962 } 963 }; 964 965 /// \brief Specialized rewriter for INSERT_SUBREG instruction. 966 class InsertSubregRewriter : public CopyRewriter { 967 public: 968 InsertSubregRewriter(MachineInstr &MI) : CopyRewriter(MI) { 969 assert(MI.isInsertSubreg() && "Invalid instruction"); 970 } 971 972 /// \brief See CopyRewriter::getNextRewritableSource. 973 /// Here CopyLike has the following form: 974 /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx. 975 /// Src1 has the same register class has dst, hence, there is 976 /// nothing to rewrite. 977 /// Src2.src2SubIdx, may not be register coalescer friendly. 978 /// Therefore, the first call to this method returns: 979 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). 980 /// (TrackReg, TrackSubReg) = (dst, subIdx). 981 /// 982 /// Subsequence calls will return false. 983 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 984 unsigned &TrackReg, 985 unsigned &TrackSubReg) override { 986 // If we already get the only source we can rewrite, return false. 987 if (CurrentSrcIdx == 2) 988 return false; 989 // We are looking at v2 = INSERT_SUBREG v0, v1, sub0. 990 CurrentSrcIdx = 2; 991 const MachineOperand &MOInsertedReg = CopyLike.getOperand(2); 992 SrcReg = MOInsertedReg.getReg(); 993 SrcSubReg = MOInsertedReg.getSubReg(); 994 const MachineOperand &MODef = CopyLike.getOperand(0); 995 996 // We want to track something that is compatible with the 997 // partial definition. 998 TrackReg = MODef.getReg(); 999 if (MODef.getSubReg()) 1000 // Bail if we have to compose sub-register indices. 1001 return false; 1002 TrackSubReg = (unsigned)CopyLike.getOperand(3).getImm(); 1003 return true; 1004 } 1005 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { 1006 if (CurrentSrcIdx != 2) 1007 return false; 1008 // We are rewriting the inserted reg. 1009 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); 1010 MO.setReg(NewReg); 1011 MO.setSubReg(NewSubReg); 1012 return true; 1013 } 1014 }; 1015 1016 /// \brief Specialized rewriter for EXTRACT_SUBREG instruction. 1017 class ExtractSubregRewriter : public CopyRewriter { 1018 const TargetInstrInfo &TII; 1019 1020 public: 1021 ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII) 1022 : CopyRewriter(MI), TII(TII) { 1023 assert(MI.isExtractSubreg() && "Invalid instruction"); 1024 } 1025 1026 /// \brief See CopyRewriter::getNextRewritableSource. 1027 /// Here CopyLike has the following form: 1028 /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx. 1029 /// There is only one rewritable source: Src.subIdx, 1030 /// which defines dst.dstSubIdx. 1031 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 1032 unsigned &TrackReg, 1033 unsigned &TrackSubReg) override { 1034 // If we already get the only source we can rewrite, return false. 1035 if (CurrentSrcIdx == 1) 1036 return false; 1037 // We are looking at v1 = EXTRACT_SUBREG v0, sub0. 1038 CurrentSrcIdx = 1; 1039 const MachineOperand &MOExtractedReg = CopyLike.getOperand(1); 1040 SrcReg = MOExtractedReg.getReg(); 1041 // If we have to compose sub-register indices, bail out. 1042 if (MOExtractedReg.getSubReg()) 1043 return false; 1044 1045 SrcSubReg = CopyLike.getOperand(2).getImm(); 1046 1047 // We want to track something that is compatible with the definition. 1048 const MachineOperand &MODef = CopyLike.getOperand(0); 1049 TrackReg = MODef.getReg(); 1050 TrackSubReg = MODef.getSubReg(); 1051 return true; 1052 } 1053 1054 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { 1055 // The only source we can rewrite is the input register. 1056 if (CurrentSrcIdx != 1) 1057 return false; 1058 1059 CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg); 1060 1061 // If we find a source that does not require to extract something, 1062 // rewrite the operation with a copy. 1063 if (!NewSubReg) { 1064 // Move the current index to an invalid position. 1065 // We do not want another call to this method to be able 1066 // to do any change. 1067 CurrentSrcIdx = -1; 1068 // Rewrite the operation as a COPY. 1069 // Get rid of the sub-register index. 1070 CopyLike.RemoveOperand(2); 1071 // Morph the operation into a COPY. 1072 CopyLike.setDesc(TII.get(TargetOpcode::COPY)); 1073 return true; 1074 } 1075 CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg); 1076 return true; 1077 } 1078 }; 1079 1080 /// \brief Specialized rewriter for REG_SEQUENCE instruction. 1081 class RegSequenceRewriter : public CopyRewriter { 1082 public: 1083 RegSequenceRewriter(MachineInstr &MI) : CopyRewriter(MI) { 1084 assert(MI.isRegSequence() && "Invalid instruction"); 1085 } 1086 1087 /// \brief See CopyRewriter::getNextRewritableSource. 1088 /// Here CopyLike has the following form: 1089 /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2. 1090 /// Each call will return a different source, walking all the available 1091 /// source. 1092 /// 1093 /// The first call returns: 1094 /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx). 1095 /// (TrackReg, TrackSubReg) = (dst, subIdx1). 1096 /// 1097 /// The second call returns: 1098 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). 1099 /// (TrackReg, TrackSubReg) = (dst, subIdx2). 1100 /// 1101 /// And so on, until all the sources have been traversed, then 1102 /// it returns false. 1103 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 1104 unsigned &TrackReg, 1105 unsigned &TrackSubReg) override { 1106 // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc. 1107 1108 // If this is the first call, move to the first argument. 1109 if (CurrentSrcIdx == 0) { 1110 CurrentSrcIdx = 1; 1111 } else { 1112 // Otherwise, move to the next argument and check that it is valid. 1113 CurrentSrcIdx += 2; 1114 if (CurrentSrcIdx >= CopyLike.getNumOperands()) 1115 return false; 1116 } 1117 const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx); 1118 SrcReg = MOInsertedReg.getReg(); 1119 // If we have to compose sub-register indices, bail out. 1120 if ((SrcSubReg = MOInsertedReg.getSubReg())) 1121 return false; 1122 1123 // We want to track something that is compatible with the related 1124 // partial definition. 1125 TrackSubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm(); 1126 1127 const MachineOperand &MODef = CopyLike.getOperand(0); 1128 TrackReg = MODef.getReg(); 1129 // If we have to compose sub-registers, bail. 1130 return MODef.getSubReg() == 0; 1131 } 1132 1133 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { 1134 // We cannot rewrite out of bound operands. 1135 // Moreover, rewritable sources are at odd positions. 1136 if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands()) 1137 return false; 1138 1139 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); 1140 MO.setReg(NewReg); 1141 MO.setSubReg(NewSubReg); 1142 return true; 1143 } 1144 }; 1145 } // End namespace. 1146 1147 /// \brief Get the appropriated CopyRewriter for \p MI. 1148 /// \return A pointer to a dynamically allocated CopyRewriter or nullptr 1149 /// if no rewriter works for \p MI. 1150 static CopyRewriter *getCopyRewriter(MachineInstr &MI, 1151 const TargetInstrInfo &TII, 1152 MachineRegisterInfo &MRI) { 1153 // Handle uncoalescable copy-like instructions. 1154 if (MI.isBitcast() || (MI.isRegSequenceLike() || MI.isInsertSubregLike() || 1155 MI.isExtractSubregLike())) 1156 return new UncoalescableRewriter(MI, TII, MRI); 1157 1158 switch (MI.getOpcode()) { 1159 default: 1160 return nullptr; 1161 case TargetOpcode::COPY: 1162 return new CopyRewriter(MI); 1163 case TargetOpcode::INSERT_SUBREG: 1164 return new InsertSubregRewriter(MI); 1165 case TargetOpcode::EXTRACT_SUBREG: 1166 return new ExtractSubregRewriter(MI, TII); 1167 case TargetOpcode::REG_SEQUENCE: 1168 return new RegSequenceRewriter(MI); 1169 } 1170 llvm_unreachable(nullptr); 1171 } 1172 1173 /// \brief Optimize generic copy instructions to avoid cross 1174 /// register bank copy. The optimization looks through a chain of 1175 /// copies and tries to find a source that has a compatible register 1176 /// class. 1177 /// Two register classes are considered to be compatible if they share 1178 /// the same register bank. 1179 /// New copies issued by this optimization are register allocator 1180 /// friendly. This optimization does not remove any copy as it may 1181 /// overconstrain the register allocator, but replaces some operands 1182 /// when possible. 1183 /// \pre isCoalescableCopy(*MI) is true. 1184 /// \return True, when \p MI has been rewritten. False otherwise. 1185 bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr *MI) { 1186 assert(MI && isCoalescableCopy(*MI) && "Invalid argument"); 1187 assert(MI->getDesc().getNumDefs() == 1 && 1188 "Coalescer can understand multiple defs?!"); 1189 const MachineOperand &MODef = MI->getOperand(0); 1190 // Do not rewrite physical definitions. 1191 if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg())) 1192 return false; 1193 1194 bool Changed = false; 1195 // Get the right rewriter for the current copy. 1196 std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII, *MRI)); 1197 // If none exists, bail out. 1198 if (!CpyRewriter) 1199 return false; 1200 // Rewrite each rewritable source. 1201 unsigned SrcReg, SrcSubReg, TrackReg, TrackSubReg; 1202 while (CpyRewriter->getNextRewritableSource(SrcReg, SrcSubReg, TrackReg, 1203 TrackSubReg)) { 1204 // Keep track of PHI nodes and its incoming edges when looking for sources. 1205 RewriteMapTy RewriteMap; 1206 // Try to find a more suitable source. If we failed to do so, or get the 1207 // actual source, move to the next source. 1208 if (!findNextSource(TrackReg, TrackSubReg, RewriteMap)) 1209 continue; 1210 1211 // Get the new source to rewrite. TODO: Only enable handling of multiple 1212 // sources (PHIs) once we have a motivating example and testcases for it. 1213 TargetInstrInfo::RegSubRegPair TrackPair(TrackReg, TrackSubReg); 1214 TargetInstrInfo::RegSubRegPair NewSrc = CpyRewriter->getNewSource( 1215 MRI, TII, TrackPair, RewriteMap, false /* multiple sources */); 1216 if (SrcReg == NewSrc.Reg || NewSrc.Reg == 0) 1217 continue; 1218 1219 // Rewrite source. 1220 if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) { 1221 // We may have extended the live-range of NewSrc, account for that. 1222 MRI->clearKillFlags(NewSrc.Reg); 1223 Changed = true; 1224 } 1225 } 1226 // TODO: We could have a clean-up method to tidy the instruction. 1227 // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0 1228 // => v0 = COPY v1 1229 // Currently we haven't seen motivating example for that and we 1230 // want to avoid untested code. 1231 NumRewrittenCopies += Changed; 1232 return Changed; 1233 } 1234 1235 /// \brief Optimize copy-like instructions to create 1236 /// register coalescer friendly instruction. 1237 /// The optimization tries to kill-off the \p MI by looking 1238 /// through a chain of copies to find a source that has a compatible 1239 /// register class. 1240 /// If such a source is found, it replace \p MI by a generic COPY 1241 /// operation. 1242 /// \pre isUncoalescableCopy(*MI) is true. 1243 /// \return True, when \p MI has been optimized. In that case, \p MI has 1244 /// been removed from its parent. 1245 /// All COPY instructions created, are inserted in \p LocalMIs. 1246 bool PeepholeOptimizer::optimizeUncoalescableCopy( 1247 MachineInstr *MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) { 1248 assert(MI && isUncoalescableCopy(*MI) && "Invalid argument"); 1249 1250 // Check if we can rewrite all the values defined by this instruction. 1251 SmallVector<TargetInstrInfo::RegSubRegPair, 4> RewritePairs; 1252 // Get the right rewriter for the current copy. 1253 std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII, *MRI)); 1254 // If none exists, bail out. 1255 if (!CpyRewriter) 1256 return false; 1257 1258 // Rewrite each rewritable source by generating new COPYs. This works 1259 // differently from optimizeCoalescableCopy since it first makes sure that all 1260 // definitions can be rewritten. 1261 RewriteMapTy RewriteMap; 1262 unsigned Reg, SubReg, CopyDefReg, CopyDefSubReg; 1263 while (CpyRewriter->getNextRewritableSource(Reg, SubReg, CopyDefReg, 1264 CopyDefSubReg)) { 1265 // If a physical register is here, this is probably for a good reason. 1266 // Do not rewrite that. 1267 if (TargetRegisterInfo::isPhysicalRegister(CopyDefReg)) 1268 return false; 1269 1270 // If we do not know how to rewrite this definition, there is no point 1271 // in trying to kill this instruction. 1272 TargetInstrInfo::RegSubRegPair Def(CopyDefReg, CopyDefSubReg); 1273 if (!findNextSource(Def.Reg, Def.SubReg, RewriteMap)) 1274 return false; 1275 1276 RewritePairs.push_back(Def); 1277 } 1278 1279 // The change is possible for all defs, do it. 1280 for (const auto &Def : RewritePairs) { 1281 // Rewrite the "copy" in a way the register coalescer understands. 1282 MachineInstr *NewCopy = CpyRewriter->RewriteSource(Def, RewriteMap); 1283 assert(NewCopy && "Should be able to always generate a new copy"); 1284 LocalMIs.insert(NewCopy); 1285 } 1286 1287 // MI is now dead. 1288 MI->eraseFromParent(); 1289 ++NumUncoalescableCopies; 1290 return true; 1291 } 1292 1293 /// isLoadFoldable - Check whether MI is a candidate for folding into a later 1294 /// instruction. We only fold loads to virtual registers and the virtual 1295 /// register defined has a single use. 1296 bool PeepholeOptimizer::isLoadFoldable( 1297 MachineInstr *MI, 1298 SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) { 1299 if (!MI->canFoldAsLoad() || !MI->mayLoad()) 1300 return false; 1301 const MCInstrDesc &MCID = MI->getDesc(); 1302 if (MCID.getNumDefs() != 1) 1303 return false; 1304 1305 unsigned Reg = MI->getOperand(0).getReg(); 1306 // To reduce compilation time, we check MRI->hasOneNonDBGUse when inserting 1307 // loads. It should be checked when processing uses of the load, since 1308 // uses can be removed during peephole. 1309 if (!MI->getOperand(0).getSubReg() && 1310 TargetRegisterInfo::isVirtualRegister(Reg) && 1311 MRI->hasOneNonDBGUse(Reg)) { 1312 FoldAsLoadDefCandidates.insert(Reg); 1313 return true; 1314 } 1315 return false; 1316 } 1317 1318 bool PeepholeOptimizer::isMoveImmediate(MachineInstr *MI, 1319 SmallSet<unsigned, 4> &ImmDefRegs, 1320 DenseMap<unsigned, MachineInstr*> &ImmDefMIs) { 1321 const MCInstrDesc &MCID = MI->getDesc(); 1322 if (!MI->isMoveImmediate()) 1323 return false; 1324 if (MCID.getNumDefs() != 1) 1325 return false; 1326 unsigned Reg = MI->getOperand(0).getReg(); 1327 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1328 ImmDefMIs.insert(std::make_pair(Reg, MI)); 1329 ImmDefRegs.insert(Reg); 1330 return true; 1331 } 1332 1333 return false; 1334 } 1335 1336 /// foldImmediate - Try folding register operands that are defined by move 1337 /// immediate instructions, i.e. a trivial constant folding optimization, if 1338 /// and only if the def and use are in the same BB. 1339 bool PeepholeOptimizer::foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB, 1340 SmallSet<unsigned, 4> &ImmDefRegs, 1341 DenseMap<unsigned, MachineInstr*> &ImmDefMIs) { 1342 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 1343 MachineOperand &MO = MI->getOperand(i); 1344 if (!MO.isReg() || MO.isDef()) 1345 continue; 1346 // Ignore dead implicit defs. 1347 if (MO.isImplicit() && MO.isDead()) 1348 continue; 1349 unsigned Reg = MO.getReg(); 1350 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1351 continue; 1352 if (ImmDefRegs.count(Reg) == 0) 1353 continue; 1354 DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg); 1355 assert(II != ImmDefMIs.end() && "couldn't find immediate definition"); 1356 if (TII->FoldImmediate(MI, II->second, Reg, MRI)) { 1357 ++NumImmFold; 1358 return true; 1359 } 1360 } 1361 return false; 1362 } 1363 1364 // FIXME: This is very simple and misses some cases which should be handled when 1365 // motivating examples are found. 1366 // 1367 // The copy rewriting logic should look at uses as well as defs and be able to 1368 // eliminate copies across blocks. 1369 // 1370 // Later copies that are subregister extracts will also not be eliminated since 1371 // only the first copy is considered. 1372 // 1373 // e.g. 1374 // %vreg1 = COPY %vreg0 1375 // %vreg2 = COPY %vreg0:sub1 1376 // 1377 // Should replace %vreg2 uses with %vreg1:sub1 1378 bool PeepholeOptimizer::foldRedundantCopy( 1379 MachineInstr *MI, 1380 SmallSet<unsigned, 4> &CopySrcRegs, 1381 DenseMap<unsigned, MachineInstr *> &CopyMIs) { 1382 assert(MI->isCopy() && "expected a COPY machine instruction"); 1383 1384 unsigned SrcReg = MI->getOperand(1).getReg(); 1385 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 1386 return false; 1387 1388 unsigned DstReg = MI->getOperand(0).getReg(); 1389 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 1390 return false; 1391 1392 if (CopySrcRegs.insert(SrcReg).second) { 1393 // First copy of this reg seen. 1394 CopyMIs.insert(std::make_pair(SrcReg, MI)); 1395 return false; 1396 } 1397 1398 MachineInstr *PrevCopy = CopyMIs.find(SrcReg)->second; 1399 1400 unsigned SrcSubReg = MI->getOperand(1).getSubReg(); 1401 unsigned PrevSrcSubReg = PrevCopy->getOperand(1).getSubReg(); 1402 1403 // Can't replace different subregister extracts. 1404 if (SrcSubReg != PrevSrcSubReg) 1405 return false; 1406 1407 unsigned PrevDstReg = PrevCopy->getOperand(0).getReg(); 1408 1409 // Only replace if the copy register class is the same. 1410 // 1411 // TODO: If we have multiple copies to different register classes, we may want 1412 // to track multiple copies of the same source register. 1413 if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg)) 1414 return false; 1415 1416 MRI->replaceRegWith(DstReg, PrevDstReg); 1417 1418 // Lifetime of the previous copy has been extended. 1419 MRI->clearKillFlags(PrevDstReg); 1420 return true; 1421 } 1422 1423 bool PeepholeOptimizer::isNAPhysCopy(unsigned Reg) { 1424 return TargetRegisterInfo::isPhysicalRegister(Reg) && 1425 !MRI->isAllocatable(Reg); 1426 } 1427 1428 bool PeepholeOptimizer::foldRedundantNAPhysCopy( 1429 MachineInstr *MI, DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs) { 1430 assert(MI->isCopy() && "expected a COPY machine instruction"); 1431 1432 if (DisableNAPhysCopyOpt) 1433 return false; 1434 1435 unsigned DstReg = MI->getOperand(0).getReg(); 1436 unsigned SrcReg = MI->getOperand(1).getReg(); 1437 if (isNAPhysCopy(SrcReg) && TargetRegisterInfo::isVirtualRegister(DstReg)) { 1438 // %vreg = COPY %PHYSREG 1439 // Avoid using a datastructure which can track multiple live non-allocatable 1440 // phys->virt copies since LLVM doesn't seem to do this. 1441 NAPhysToVirtMIs.insert({SrcReg, MI}); 1442 return false; 1443 } 1444 1445 if (!(TargetRegisterInfo::isVirtualRegister(SrcReg) && isNAPhysCopy(DstReg))) 1446 return false; 1447 1448 // %PHYSREG = COPY %vreg 1449 auto PrevCopy = NAPhysToVirtMIs.find(DstReg); 1450 if (PrevCopy == NAPhysToVirtMIs.end()) { 1451 // We can't remove the copy: there was an intervening clobber of the 1452 // non-allocatable physical register after the copy to virtual. 1453 DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing " << *MI 1454 << '\n'); 1455 return false; 1456 } 1457 1458 unsigned PrevDstReg = PrevCopy->second->getOperand(0).getReg(); 1459 if (PrevDstReg == SrcReg) { 1460 // Remove the virt->phys copy: we saw the virtual register definition, and 1461 // the non-allocatable physical register's state hasn't changed since then. 1462 DEBUG(dbgs() << "NAPhysCopy: erasing " << *MI << '\n'); 1463 ++NumNAPhysCopies; 1464 return true; 1465 } 1466 1467 // Potential missed optimization opportunity: we saw a different virtual 1468 // register get a copy of the non-allocatable physical register, and we only 1469 // track one such copy. Avoid getting confused by this new non-allocatable 1470 // physical register definition, and remove it from the tracked copies. 1471 DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << *MI << '\n'); 1472 NAPhysToVirtMIs.erase(PrevCopy); 1473 return false; 1474 } 1475 1476 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) { 1477 if (skipOptnoneFunction(*MF.getFunction())) 1478 return false; 1479 1480 DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n"); 1481 DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n'); 1482 1483 if (DisablePeephole) 1484 return false; 1485 1486 TII = MF.getSubtarget().getInstrInfo(); 1487 TRI = MF.getSubtarget().getRegisterInfo(); 1488 MRI = &MF.getRegInfo(); 1489 DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr; 1490 1491 bool Changed = false; 1492 1493 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) { 1494 MachineBasicBlock *MBB = &*I; 1495 1496 bool SeenMoveImm = false; 1497 1498 // During this forward scan, at some point it needs to answer the question 1499 // "given a pointer to an MI in the current BB, is it located before or 1500 // after the current instruction". 1501 // To perform this, the following set keeps track of the MIs already seen 1502 // during the scan, if a MI is not in the set, it is assumed to be located 1503 // after. Newly created MIs have to be inserted in the set as well. 1504 SmallPtrSet<MachineInstr*, 16> LocalMIs; 1505 SmallSet<unsigned, 4> ImmDefRegs; 1506 DenseMap<unsigned, MachineInstr*> ImmDefMIs; 1507 SmallSet<unsigned, 16> FoldAsLoadDefCandidates; 1508 1509 // Track when a non-allocatable physical register is copied to a virtual 1510 // register so that useless moves can be removed. 1511 // 1512 // %PHYSREG is the map index; MI is the last valid `%vreg = COPY %PHYSREG` 1513 // without any intervening re-definition of %PHYSREG. 1514 DenseMap<unsigned, MachineInstr *> NAPhysToVirtMIs; 1515 1516 // Set of virtual registers that are copied from. 1517 SmallSet<unsigned, 4> CopySrcRegs; 1518 DenseMap<unsigned, MachineInstr *> CopySrcMIs; 1519 1520 for (MachineBasicBlock::iterator 1521 MII = I->begin(), MIE = I->end(); MII != MIE; ) { 1522 MachineInstr *MI = &*MII; 1523 // We may be erasing MI below, increment MII now. 1524 ++MII; 1525 LocalMIs.insert(MI); 1526 1527 // Skip debug values. They should not affect this peephole optimization. 1528 if (MI->isDebugValue()) 1529 continue; 1530 1531 // If we run into an instruction we can't fold across, discard 1532 // the load candidates. 1533 if (MI->isLoadFoldBarrier()) 1534 FoldAsLoadDefCandidates.clear(); 1535 1536 if (MI->isPosition() || MI->isPHI()) 1537 continue; 1538 1539 if (!MI->isCopy()) { 1540 for (const auto &Op : MI->operands()) { 1541 // Visit all operands: definitions can be implicit or explicit. 1542 if (Op.isReg()) { 1543 unsigned Reg = Op.getReg(); 1544 if (Op.isDef() && isNAPhysCopy(Reg)) { 1545 const auto &Def = NAPhysToVirtMIs.find(Reg); 1546 if (Def != NAPhysToVirtMIs.end()) { 1547 // A new definition of the non-allocatable physical register 1548 // invalidates previous copies. 1549 DEBUG(dbgs() << "NAPhysCopy: invalidating because of " << *MI 1550 << '\n'); 1551 NAPhysToVirtMIs.erase(Def); 1552 } 1553 } 1554 } else if (Op.isRegMask()) { 1555 const uint32_t *RegMask = Op.getRegMask(); 1556 for (auto &RegMI : NAPhysToVirtMIs) { 1557 unsigned Def = RegMI.first; 1558 if (MachineOperand::clobbersPhysReg(RegMask, Def)) { 1559 DEBUG(dbgs() << "NAPhysCopy: invalidating because of " << *MI 1560 << '\n'); 1561 NAPhysToVirtMIs.erase(Def); 1562 } 1563 } 1564 } 1565 } 1566 } 1567 1568 if (MI->isImplicitDef() || MI->isKill()) 1569 continue; 1570 1571 if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) { 1572 // Blow away all non-allocatable physical registers knowledge since we 1573 // don't know what's correct anymore. 1574 // 1575 // FIXME: handle explicit asm clobbers. 1576 DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to " << *MI 1577 << '\n'); 1578 NAPhysToVirtMIs.clear(); 1579 continue; 1580 } 1581 1582 if ((isUncoalescableCopy(*MI) && 1583 optimizeUncoalescableCopy(MI, LocalMIs)) || 1584 (MI->isCompare() && optimizeCmpInstr(MI, MBB)) || 1585 (MI->isSelect() && optimizeSelect(MI, LocalMIs))) { 1586 // MI is deleted. 1587 LocalMIs.erase(MI); 1588 Changed = true; 1589 continue; 1590 } 1591 1592 if (MI->isConditionalBranch() && optimizeCondBranch(MI)) { 1593 Changed = true; 1594 continue; 1595 } 1596 1597 if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(MI)) { 1598 // MI is just rewritten. 1599 Changed = true; 1600 continue; 1601 } 1602 1603 if (MI->isCopy() && 1604 (foldRedundantCopy(MI, CopySrcRegs, CopySrcMIs) || 1605 foldRedundantNAPhysCopy(MI, NAPhysToVirtMIs))) { 1606 LocalMIs.erase(MI); 1607 MI->eraseFromParent(); 1608 Changed = true; 1609 continue; 1610 } 1611 1612 if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) { 1613 SeenMoveImm = true; 1614 } else { 1615 Changed |= optimizeExtInstr(MI, MBB, LocalMIs); 1616 // optimizeExtInstr might have created new instructions after MI 1617 // and before the already incremented MII. Adjust MII so that the 1618 // next iteration sees the new instructions. 1619 MII = MI; 1620 ++MII; 1621 if (SeenMoveImm) 1622 Changed |= foldImmediate(MI, MBB, ImmDefRegs, ImmDefMIs); 1623 } 1624 1625 // Check whether MI is a load candidate for folding into a later 1626 // instruction. If MI is not a candidate, check whether we can fold an 1627 // earlier load into MI. 1628 if (!isLoadFoldable(MI, FoldAsLoadDefCandidates) && 1629 !FoldAsLoadDefCandidates.empty()) { 1630 const MCInstrDesc &MIDesc = MI->getDesc(); 1631 for (unsigned i = MIDesc.getNumDefs(); i != MIDesc.getNumOperands(); 1632 ++i) { 1633 const MachineOperand &MOp = MI->getOperand(i); 1634 if (!MOp.isReg()) 1635 continue; 1636 unsigned FoldAsLoadDefReg = MOp.getReg(); 1637 if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) { 1638 // We need to fold load after optimizeCmpInstr, since 1639 // optimizeCmpInstr can enable folding by converting SUB to CMP. 1640 // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and 1641 // we need it for markUsesInDebugValueAsUndef(). 1642 unsigned FoldedReg = FoldAsLoadDefReg; 1643 MachineInstr *DefMI = nullptr; 1644 MachineInstr *FoldMI = TII->optimizeLoadInstr(MI, MRI, 1645 FoldAsLoadDefReg, 1646 DefMI); 1647 if (FoldMI) { 1648 // Update LocalMIs since we replaced MI with FoldMI and deleted 1649 // DefMI. 1650 DEBUG(dbgs() << "Replacing: " << *MI); 1651 DEBUG(dbgs() << " With: " << *FoldMI); 1652 LocalMIs.erase(MI); 1653 LocalMIs.erase(DefMI); 1654 LocalMIs.insert(FoldMI); 1655 MI->eraseFromParent(); 1656 DefMI->eraseFromParent(); 1657 MRI->markUsesInDebugValueAsUndef(FoldedReg); 1658 FoldAsLoadDefCandidates.erase(FoldedReg); 1659 ++NumLoadFold; 1660 // MI is replaced with FoldMI. 1661 Changed = true; 1662 break; 1663 } 1664 } 1665 } 1666 } 1667 } 1668 } 1669 1670 return Changed; 1671 } 1672 1673 ValueTrackerResult ValueTracker::getNextSourceFromCopy() { 1674 assert(Def->isCopy() && "Invalid definition"); 1675 // Copy instruction are supposed to be: Def = Src. 1676 // If someone breaks this assumption, bad things will happen everywhere. 1677 assert(Def->getNumOperands() == 2 && "Invalid number of operands"); 1678 1679 if (Def->getOperand(DefIdx).getSubReg() != DefSubReg) 1680 // If we look for a different subreg, it means we want a subreg of src. 1681 // Bails as we do not support composing subregs yet. 1682 return ValueTrackerResult(); 1683 // Otherwise, we want the whole source. 1684 const MachineOperand &Src = Def->getOperand(1); 1685 return ValueTrackerResult(Src.getReg(), Src.getSubReg()); 1686 } 1687 1688 ValueTrackerResult ValueTracker::getNextSourceFromBitcast() { 1689 assert(Def->isBitcast() && "Invalid definition"); 1690 1691 // Bail if there are effects that a plain copy will not expose. 1692 if (Def->hasUnmodeledSideEffects()) 1693 return ValueTrackerResult(); 1694 1695 // Bitcasts with more than one def are not supported. 1696 if (Def->getDesc().getNumDefs() != 1) 1697 return ValueTrackerResult(); 1698 if (Def->getOperand(DefIdx).getSubReg() != DefSubReg) 1699 // If we look for a different subreg, it means we want a subreg of the src. 1700 // Bails as we do not support composing subregs yet. 1701 return ValueTrackerResult(); 1702 1703 unsigned SrcIdx = Def->getNumOperands(); 1704 for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx; 1705 ++OpIdx) { 1706 const MachineOperand &MO = Def->getOperand(OpIdx); 1707 if (!MO.isReg() || !MO.getReg()) 1708 continue; 1709 // Ignore dead implicit defs. 1710 if (MO.isImplicit() && MO.isDead()) 1711 continue; 1712 assert(!MO.isDef() && "We should have skipped all the definitions by now"); 1713 if (SrcIdx != EndOpIdx) 1714 // Multiple sources? 1715 return ValueTrackerResult(); 1716 SrcIdx = OpIdx; 1717 } 1718 const MachineOperand &Src = Def->getOperand(SrcIdx); 1719 return ValueTrackerResult(Src.getReg(), Src.getSubReg()); 1720 } 1721 1722 ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() { 1723 assert((Def->isRegSequence() || Def->isRegSequenceLike()) && 1724 "Invalid definition"); 1725 1726 if (Def->getOperand(DefIdx).getSubReg()) 1727 // If we are composing subregs, bail out. 1728 // The case we are checking is Def.<subreg> = REG_SEQUENCE. 1729 // This should almost never happen as the SSA property is tracked at 1730 // the register level (as opposed to the subreg level). 1731 // I.e., 1732 // Def.sub0 = 1733 // Def.sub1 = 1734 // is a valid SSA representation for Def.sub0 and Def.sub1, but not for 1735 // Def. Thus, it must not be generated. 1736 // However, some code could theoretically generates a single 1737 // Def.sub0 (i.e, not defining the other subregs) and we would 1738 // have this case. 1739 // If we can ascertain (or force) that this never happens, we could 1740 // turn that into an assertion. 1741 return ValueTrackerResult(); 1742 1743 if (!TII) 1744 // We could handle the REG_SEQUENCE here, but we do not want to 1745 // duplicate the code from the generic TII. 1746 return ValueTrackerResult(); 1747 1748 SmallVector<TargetInstrInfo::RegSubRegPairAndIdx, 8> RegSeqInputRegs; 1749 if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs)) 1750 return ValueTrackerResult(); 1751 1752 // We are looking at: 1753 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... 1754 // Check if one of the operand defines the subreg we are interested in. 1755 for (auto &RegSeqInput : RegSeqInputRegs) { 1756 if (RegSeqInput.SubIdx == DefSubReg) { 1757 if (RegSeqInput.SubReg) 1758 // Bail if we have to compose sub registers. 1759 return ValueTrackerResult(); 1760 1761 return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg); 1762 } 1763 } 1764 1765 // If the subreg we are tracking is super-defined by another subreg, 1766 // we could follow this value. However, this would require to compose 1767 // the subreg and we do not do that for now. 1768 return ValueTrackerResult(); 1769 } 1770 1771 ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() { 1772 assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) && 1773 "Invalid definition"); 1774 1775 if (Def->getOperand(DefIdx).getSubReg()) 1776 // If we are composing subreg, bail out. 1777 // Same remark as getNextSourceFromRegSequence. 1778 // I.e., this may be turned into an assert. 1779 return ValueTrackerResult(); 1780 1781 if (!TII) 1782 // We could handle the REG_SEQUENCE here, but we do not want to 1783 // duplicate the code from the generic TII. 1784 return ValueTrackerResult(); 1785 1786 TargetInstrInfo::RegSubRegPair BaseReg; 1787 TargetInstrInfo::RegSubRegPairAndIdx InsertedReg; 1788 if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg)) 1789 return ValueTrackerResult(); 1790 1791 // We are looking at: 1792 // Def = INSERT_SUBREG v0, v1, sub1 1793 // There are two cases: 1794 // 1. DefSubReg == sub1, get v1. 1795 // 2. DefSubReg != sub1, the value may be available through v0. 1796 1797 // #1 Check if the inserted register matches the required sub index. 1798 if (InsertedReg.SubIdx == DefSubReg) { 1799 return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg); 1800 } 1801 // #2 Otherwise, if the sub register we are looking for is not partial 1802 // defined by the inserted element, we can look through the main 1803 // register (v0). 1804 const MachineOperand &MODef = Def->getOperand(DefIdx); 1805 // If the result register (Def) and the base register (v0) do not 1806 // have the same register class or if we have to compose 1807 // subregisters, bail out. 1808 if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) || 1809 BaseReg.SubReg) 1810 return ValueTrackerResult(); 1811 1812 // Get the TRI and check if the inserted sub-register overlaps with the 1813 // sub-register we are tracking. 1814 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); 1815 if (!TRI || 1816 (TRI->getSubRegIndexLaneMask(DefSubReg) & 1817 TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)) != 0) 1818 return ValueTrackerResult(); 1819 // At this point, the value is available in v0 via the same subreg 1820 // we used for Def. 1821 return ValueTrackerResult(BaseReg.Reg, DefSubReg); 1822 } 1823 1824 ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() { 1825 assert((Def->isExtractSubreg() || 1826 Def->isExtractSubregLike()) && "Invalid definition"); 1827 // We are looking at: 1828 // Def = EXTRACT_SUBREG v0, sub0 1829 1830 // Bail if we have to compose sub registers. 1831 // Indeed, if DefSubReg != 0, we would have to compose it with sub0. 1832 if (DefSubReg) 1833 return ValueTrackerResult(); 1834 1835 if (!TII) 1836 // We could handle the EXTRACT_SUBREG here, but we do not want to 1837 // duplicate the code from the generic TII. 1838 return ValueTrackerResult(); 1839 1840 TargetInstrInfo::RegSubRegPairAndIdx ExtractSubregInputReg; 1841 if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg)) 1842 return ValueTrackerResult(); 1843 1844 // Bail if we have to compose sub registers. 1845 // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0. 1846 if (ExtractSubregInputReg.SubReg) 1847 return ValueTrackerResult(); 1848 // Otherwise, the value is available in the v0.sub0. 1849 return ValueTrackerResult(ExtractSubregInputReg.Reg, ExtractSubregInputReg.SubIdx); 1850 } 1851 1852 ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() { 1853 assert(Def->isSubregToReg() && "Invalid definition"); 1854 // We are looking at: 1855 // Def = SUBREG_TO_REG Imm, v0, sub0 1856 1857 // Bail if we have to compose sub registers. 1858 // If DefSubReg != sub0, we would have to check that all the bits 1859 // we track are included in sub0 and if yes, we would have to 1860 // determine the right subreg in v0. 1861 if (DefSubReg != Def->getOperand(3).getImm()) 1862 return ValueTrackerResult(); 1863 // Bail if we have to compose sub registers. 1864 // Likewise, if v0.subreg != 0, we would have to compose it with sub0. 1865 if (Def->getOperand(2).getSubReg()) 1866 return ValueTrackerResult(); 1867 1868 return ValueTrackerResult(Def->getOperand(2).getReg(), 1869 Def->getOperand(3).getImm()); 1870 } 1871 1872 /// \brief Explore each PHI incoming operand and return its sources 1873 ValueTrackerResult ValueTracker::getNextSourceFromPHI() { 1874 assert(Def->isPHI() && "Invalid definition"); 1875 ValueTrackerResult Res; 1876 1877 // If we look for a different subreg, bail as we do not support composing 1878 // subregs yet. 1879 if (Def->getOperand(0).getSubReg() != DefSubReg) 1880 return ValueTrackerResult(); 1881 1882 // Return all register sources for PHI instructions. 1883 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) { 1884 auto &MO = Def->getOperand(i); 1885 assert(MO.isReg() && "Invalid PHI instruction"); 1886 Res.addSource(MO.getReg(), MO.getSubReg()); 1887 } 1888 1889 return Res; 1890 } 1891 1892 ValueTrackerResult ValueTracker::getNextSourceImpl() { 1893 assert(Def && "This method needs a valid definition"); 1894 1895 assert( 1896 (DefIdx < Def->getDesc().getNumDefs() || Def->getDesc().isVariadic()) && 1897 Def->getOperand(DefIdx).isDef() && "Invalid DefIdx"); 1898 if (Def->isCopy()) 1899 return getNextSourceFromCopy(); 1900 if (Def->isBitcast()) 1901 return getNextSourceFromBitcast(); 1902 // All the remaining cases involve "complex" instructions. 1903 // Bail if we did not ask for the advanced tracking. 1904 if (!UseAdvancedTracking) 1905 return ValueTrackerResult(); 1906 if (Def->isRegSequence() || Def->isRegSequenceLike()) 1907 return getNextSourceFromRegSequence(); 1908 if (Def->isInsertSubreg() || Def->isInsertSubregLike()) 1909 return getNextSourceFromInsertSubreg(); 1910 if (Def->isExtractSubreg() || Def->isExtractSubregLike()) 1911 return getNextSourceFromExtractSubreg(); 1912 if (Def->isSubregToReg()) 1913 return getNextSourceFromSubregToReg(); 1914 if (Def->isPHI()) 1915 return getNextSourceFromPHI(); 1916 return ValueTrackerResult(); 1917 } 1918 1919 ValueTrackerResult ValueTracker::getNextSource() { 1920 // If we reach a point where we cannot move up in the use-def chain, 1921 // there is nothing we can get. 1922 if (!Def) 1923 return ValueTrackerResult(); 1924 1925 ValueTrackerResult Res = getNextSourceImpl(); 1926 if (Res.isValid()) { 1927 // Update definition, definition index, and subregister for the 1928 // next call of getNextSource. 1929 // Update the current register. 1930 bool OneRegSrc = Res.getNumSources() == 1; 1931 if (OneRegSrc) 1932 Reg = Res.getSrcReg(0); 1933 // Update the result before moving up in the use-def chain 1934 // with the instruction containing the last found sources. 1935 Res.setInst(Def); 1936 1937 // If we can still move up in the use-def chain, move to the next 1938 // definition. 1939 if (!TargetRegisterInfo::isPhysicalRegister(Reg) && OneRegSrc) { 1940 Def = MRI.getVRegDef(Reg); 1941 DefIdx = MRI.def_begin(Reg).getOperandNo(); 1942 DefSubReg = Res.getSrcSubReg(0); 1943 return Res; 1944 } 1945 } 1946 // If we end up here, this means we will not be able to find another source 1947 // for the next iteration. Make sure any new call to getNextSource bails out 1948 // early by cutting the use-def chain. 1949 Def = nullptr; 1950 return Res; 1951 } 1952