Home | History | Annotate | Download | only in CodeGen
      1 //===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass moves instructions into successor blocks when possible, so that
     11 // they aren't executed on paths where their results aren't needed.
     12 //
     13 // This pass is not intended to be a replacement or a complete alternative
     14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
     15 // constructs that are not exposed before lowering and instruction selection.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #include "llvm/CodeGen/Passes.h"
     20 #include "llvm/ADT/SetVector.h"
     21 #include "llvm/ADT/SmallSet.h"
     22 #include "llvm/ADT/SparseBitVector.h"
     23 #include "llvm/ADT/Statistic.h"
     24 #include "llvm/Analysis/AliasAnalysis.h"
     25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
     26 #include "llvm/CodeGen/MachineDominators.h"
     27 #include "llvm/CodeGen/MachineLoopInfo.h"
     28 #include "llvm/CodeGen/MachinePostDominators.h"
     29 #include "llvm/CodeGen/MachineRegisterInfo.h"
     30 #include "llvm/Support/CommandLine.h"
     31 #include "llvm/Support/Debug.h"
     32 #include "llvm/Support/raw_ostream.h"
     33 #include "llvm/Target/TargetInstrInfo.h"
     34 #include "llvm/Target/TargetRegisterInfo.h"
     35 #include "llvm/Target/TargetSubtargetInfo.h"
     36 using namespace llvm;
     37 
     38 #define DEBUG_TYPE "machine-sink"
     39 
     40 static cl::opt<bool>
     41 SplitEdges("machine-sink-split",
     42            cl::desc("Split critical edges during machine sinking"),
     43            cl::init(true), cl::Hidden);
     44 
     45 static cl::opt<bool>
     46 UseBlockFreqInfo("machine-sink-bfi",
     47            cl::desc("Use block frequency info to find successors to sink"),
     48            cl::init(true), cl::Hidden);
     49 
     50 
     51 STATISTIC(NumSunk,      "Number of machine instructions sunk");
     52 STATISTIC(NumSplit,     "Number of critical edges split");
     53 STATISTIC(NumCoalesces, "Number of copies coalesced");
     54 
     55 namespace {
     56   class MachineSinking : public MachineFunctionPass {
     57     const TargetInstrInfo *TII;
     58     const TargetRegisterInfo *TRI;
     59     MachineRegisterInfo  *MRI;     // Machine register information
     60     MachineDominatorTree *DT;      // Machine dominator tree
     61     MachinePostDominatorTree *PDT; // Machine post dominator tree
     62     MachineLoopInfo *LI;
     63     const MachineBlockFrequencyInfo *MBFI;
     64     AliasAnalysis *AA;
     65 
     66     // Remember which edges have been considered for breaking.
     67     SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8>
     68     CEBCandidates;
     69     // Remember which edges we are about to split.
     70     // This is different from CEBCandidates since those edges
     71     // will be split.
     72     SetVector<std::pair<MachineBasicBlock*,MachineBasicBlock*> > ToSplit;
     73 
     74     SparseBitVector<> RegsToClearKillFlags;
     75 
     76     typedef std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>
     77         AllSuccsCache;
     78 
     79   public:
     80     static char ID; // Pass identification
     81     MachineSinking() : MachineFunctionPass(ID) {
     82       initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
     83     }
     84 
     85     bool runOnMachineFunction(MachineFunction &MF) override;
     86 
     87     void getAnalysisUsage(AnalysisUsage &AU) const override {
     88       AU.setPreservesCFG();
     89       MachineFunctionPass::getAnalysisUsage(AU);
     90       AU.addRequired<AAResultsWrapperPass>();
     91       AU.addRequired<MachineDominatorTree>();
     92       AU.addRequired<MachinePostDominatorTree>();
     93       AU.addRequired<MachineLoopInfo>();
     94       AU.addPreserved<MachineDominatorTree>();
     95       AU.addPreserved<MachinePostDominatorTree>();
     96       AU.addPreserved<MachineLoopInfo>();
     97       if (UseBlockFreqInfo)
     98         AU.addRequired<MachineBlockFrequencyInfo>();
     99     }
    100 
    101     void releaseMemory() override {
    102       CEBCandidates.clear();
    103     }
    104 
    105   private:
    106     bool ProcessBlock(MachineBasicBlock &MBB);
    107     bool isWorthBreakingCriticalEdge(MachineInstr *MI,
    108                                      MachineBasicBlock *From,
    109                                      MachineBasicBlock *To);
    110     /// \brief Postpone the splitting of the given critical
    111     /// edge (\p From, \p To).
    112     ///
    113     /// We do not split the edges on the fly. Indeed, this invalidates
    114     /// the dominance information and thus triggers a lot of updates
    115     /// of that information underneath.
    116     /// Instead, we postpone all the splits after each iteration of
    117     /// the main loop. That way, the information is at least valid
    118     /// for the lifetime of an iteration.
    119     ///
    120     /// \return True if the edge is marked as toSplit, false otherwise.
    121     /// False can be returned if, for instance, this is not profitable.
    122     bool PostponeSplitCriticalEdge(MachineInstr *MI,
    123                                    MachineBasicBlock *From,
    124                                    MachineBasicBlock *To,
    125                                    bool BreakPHIEdge);
    126     bool SinkInstruction(MachineInstr *MI, bool &SawStore,
    127                          AllSuccsCache &AllSuccessors);
    128     bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
    129                                  MachineBasicBlock *DefMBB,
    130                                  bool &BreakPHIEdge, bool &LocalUse) const;
    131     MachineBasicBlock *FindSuccToSinkTo(MachineInstr *MI, MachineBasicBlock *MBB,
    132                bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
    133     bool isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
    134                               MachineBasicBlock *MBB,
    135                               MachineBasicBlock *SuccToSinkTo,
    136                               AllSuccsCache &AllSuccessors);
    137 
    138     bool PerformTrivialForwardCoalescing(MachineInstr *MI,
    139                                          MachineBasicBlock *MBB);
    140 
    141     SmallVector<MachineBasicBlock *, 4> &
    142     GetAllSortedSuccessors(MachineInstr *MI, MachineBasicBlock *MBB,
    143                            AllSuccsCache &AllSuccessors) const;
    144   };
    145 } // end anonymous namespace
    146 
    147 char MachineSinking::ID = 0;
    148 char &llvm::MachineSinkingID = MachineSinking::ID;
    149 INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink",
    150                 "Machine code sinking", false, false)
    151 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    152 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
    153 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
    154 INITIALIZE_PASS_END(MachineSinking, "machine-sink",
    155                 "Machine code sinking", false, false)
    156 
    157 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI,
    158                                                      MachineBasicBlock *MBB) {
    159   if (!MI->isCopy())
    160     return false;
    161 
    162   unsigned SrcReg = MI->getOperand(1).getReg();
    163   unsigned DstReg = MI->getOperand(0).getReg();
    164   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
    165       !TargetRegisterInfo::isVirtualRegister(DstReg) ||
    166       !MRI->hasOneNonDBGUse(SrcReg))
    167     return false;
    168 
    169   const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
    170   const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
    171   if (SRC != DRC)
    172     return false;
    173 
    174   MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
    175   if (DefMI->isCopyLike())
    176     return false;
    177   DEBUG(dbgs() << "Coalescing: " << *DefMI);
    178   DEBUG(dbgs() << "*** to: " << *MI);
    179   MRI->replaceRegWith(DstReg, SrcReg);
    180   MI->eraseFromParent();
    181 
    182   // Conservatively, clear any kill flags, since it's possible that they are no
    183   // longer correct.
    184   MRI->clearKillFlags(SrcReg);
    185 
    186   ++NumCoalesces;
    187   return true;
    188 }
    189 
    190 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
    191 /// occur in blocks dominated by the specified block. If any use is in the
    192 /// definition block, then return false since it is never legal to move def
    193 /// after uses.
    194 bool
    195 MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
    196                                         MachineBasicBlock *MBB,
    197                                         MachineBasicBlock *DefMBB,
    198                                         bool &BreakPHIEdge,
    199                                         bool &LocalUse) const {
    200   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
    201          "Only makes sense for vregs");
    202 
    203   // Ignore debug uses because debug info doesn't affect the code.
    204   if (MRI->use_nodbg_empty(Reg))
    205     return true;
    206 
    207   // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
    208   // into and they are all PHI nodes. In this case, machine-sink must break
    209   // the critical edge first. e.g.
    210   //
    211   // BB#1: derived from LLVM BB %bb4.preheader
    212   //   Predecessors according to CFG: BB#0
    213   //     ...
    214   //     %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead>
    215   //     ...
    216   //     JE_4 <BB#37>, %EFLAGS<imp-use>
    217   //   Successors according to CFG: BB#37 BB#2
    218   //
    219   // BB#2: derived from LLVM BB %bb.nph
    220   //   Predecessors according to CFG: BB#0 BB#1
    221   //     %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1>
    222   BreakPHIEdge = true;
    223   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
    224     MachineInstr *UseInst = MO.getParent();
    225     unsigned OpNo = &MO - &UseInst->getOperand(0);
    226     MachineBasicBlock *UseBlock = UseInst->getParent();
    227     if (!(UseBlock == MBB && UseInst->isPHI() &&
    228           UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
    229       BreakPHIEdge = false;
    230       break;
    231     }
    232   }
    233   if (BreakPHIEdge)
    234     return true;
    235 
    236   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
    237     // Determine the block of the use.
    238     MachineInstr *UseInst = MO.getParent();
    239     unsigned OpNo = &MO - &UseInst->getOperand(0);
    240     MachineBasicBlock *UseBlock = UseInst->getParent();
    241     if (UseInst->isPHI()) {
    242       // PHI nodes use the operand in the predecessor block, not the block with
    243       // the PHI.
    244       UseBlock = UseInst->getOperand(OpNo+1).getMBB();
    245     } else if (UseBlock == DefMBB) {
    246       LocalUse = true;
    247       return false;
    248     }
    249 
    250     // Check that it dominates.
    251     if (!DT->dominates(MBB, UseBlock))
    252       return false;
    253   }
    254 
    255   return true;
    256 }
    257 
    258 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
    259   if (skipOptnoneFunction(*MF.getFunction()))
    260     return false;
    261 
    262   DEBUG(dbgs() << "******** Machine Sinking ********\n");
    263 
    264   TII = MF.getSubtarget().getInstrInfo();
    265   TRI = MF.getSubtarget().getRegisterInfo();
    266   MRI = &MF.getRegInfo();
    267   DT = &getAnalysis<MachineDominatorTree>();
    268   PDT = &getAnalysis<MachinePostDominatorTree>();
    269   LI = &getAnalysis<MachineLoopInfo>();
    270   MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
    271   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
    272 
    273   bool EverMadeChange = false;
    274 
    275   while (1) {
    276     bool MadeChange = false;
    277 
    278     // Process all basic blocks.
    279     CEBCandidates.clear();
    280     ToSplit.clear();
    281     for (auto &MBB: MF)
    282       MadeChange |= ProcessBlock(MBB);
    283 
    284     // If we have anything we marked as toSplit, split it now.
    285     for (auto &Pair : ToSplit) {
    286       auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, this);
    287       if (NewSucc != nullptr) {
    288         DEBUG(dbgs() << " *** Splitting critical edge:"
    289               " BB#" << Pair.first->getNumber()
    290               << " -- BB#" << NewSucc->getNumber()
    291               << " -- BB#" << Pair.second->getNumber() << '\n');
    292         MadeChange = true;
    293         ++NumSplit;
    294       } else
    295         DEBUG(dbgs() << " *** Not legal to break critical edge\n");
    296     }
    297     // If this iteration over the code changed anything, keep iterating.
    298     if (!MadeChange) break;
    299     EverMadeChange = true;
    300   }
    301 
    302   // Now clear any kill flags for recorded registers.
    303   for (auto I : RegsToClearKillFlags)
    304     MRI->clearKillFlags(I);
    305   RegsToClearKillFlags.clear();
    306 
    307   return EverMadeChange;
    308 }
    309 
    310 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
    311   // Can't sink anything out of a block that has less than two successors.
    312   if (MBB.succ_size() <= 1 || MBB.empty()) return false;
    313 
    314   // Don't bother sinking code out of unreachable blocks. In addition to being
    315   // unprofitable, it can also lead to infinite looping, because in an
    316   // unreachable loop there may be nowhere to stop.
    317   if (!DT->isReachableFromEntry(&MBB)) return false;
    318 
    319   bool MadeChange = false;
    320 
    321   // Cache all successors, sorted by frequency info and loop depth.
    322   AllSuccsCache AllSuccessors;
    323 
    324   // Walk the basic block bottom-up.  Remember if we saw a store.
    325   MachineBasicBlock::iterator I = MBB.end();
    326   --I;
    327   bool ProcessedBegin, SawStore = false;
    328   do {
    329     MachineInstr *MI = I;  // The instruction to sink.
    330 
    331     // Predecrement I (if it's not begin) so that it isn't invalidated by
    332     // sinking.
    333     ProcessedBegin = I == MBB.begin();
    334     if (!ProcessedBegin)
    335       --I;
    336 
    337     if (MI->isDebugValue())
    338       continue;
    339 
    340     bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
    341     if (Joined) {
    342       MadeChange = true;
    343       continue;
    344     }
    345 
    346     if (SinkInstruction(MI, SawStore, AllSuccessors))
    347       ++NumSunk, MadeChange = true;
    348 
    349     // If we just processed the first instruction in the block, we're done.
    350   } while (!ProcessedBegin);
    351 
    352   return MadeChange;
    353 }
    354 
    355 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI,
    356                                                  MachineBasicBlock *From,
    357                                                  MachineBasicBlock *To) {
    358   // FIXME: Need much better heuristics.
    359 
    360   // If the pass has already considered breaking this edge (during this pass
    361   // through the function), then let's go ahead and break it. This means
    362   // sinking multiple "cheap" instructions into the same block.
    363   if (!CEBCandidates.insert(std::make_pair(From, To)).second)
    364     return true;
    365 
    366   if (!MI->isCopy() && !TII->isAsCheapAsAMove(MI))
    367     return true;
    368 
    369   // MI is cheap, we probably don't want to break the critical edge for it.
    370   // However, if this would allow some definitions of its source operands
    371   // to be sunk then it's probably worth it.
    372   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    373     const MachineOperand &MO = MI->getOperand(i);
    374     if (!MO.isReg() || !MO.isUse())
    375       continue;
    376     unsigned Reg = MO.getReg();
    377     if (Reg == 0)
    378       continue;
    379 
    380     // We don't move live definitions of physical registers,
    381     // so sinking their uses won't enable any opportunities.
    382     if (TargetRegisterInfo::isPhysicalRegister(Reg))
    383       continue;
    384 
    385     // If this instruction is the only user of a virtual register,
    386     // check if breaking the edge will enable sinking
    387     // both this instruction and the defining instruction.
    388     if (MRI->hasOneNonDBGUse(Reg)) {
    389       // If the definition resides in same MBB,
    390       // claim it's likely we can sink these together.
    391       // If definition resides elsewhere, we aren't
    392       // blocking it from being sunk so don't break the edge.
    393       MachineInstr *DefMI = MRI->getVRegDef(Reg);
    394       if (DefMI->getParent() == MI->getParent())
    395         return true;
    396     }
    397   }
    398 
    399   return false;
    400 }
    401 
    402 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr *MI,
    403                                                MachineBasicBlock *FromBB,
    404                                                MachineBasicBlock *ToBB,
    405                                                bool BreakPHIEdge) {
    406   if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
    407     return false;
    408 
    409   // Avoid breaking back edge. From == To means backedge for single BB loop.
    410   if (!SplitEdges || FromBB == ToBB)
    411     return false;
    412 
    413   // Check for backedges of more "complex" loops.
    414   if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
    415       LI->isLoopHeader(ToBB))
    416     return false;
    417 
    418   // It's not always legal to break critical edges and sink the computation
    419   // to the edge.
    420   //
    421   // BB#1:
    422   // v1024
    423   // Beq BB#3
    424   // <fallthrough>
    425   // BB#2:
    426   // ... no uses of v1024
    427   // <fallthrough>
    428   // BB#3:
    429   // ...
    430   //       = v1024
    431   //
    432   // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted:
    433   //
    434   // BB#1:
    435   // ...
    436   // Bne BB#2
    437   // BB#4:
    438   // v1024 =
    439   // B BB#3
    440   // BB#2:
    441   // ... no uses of v1024
    442   // <fallthrough>
    443   // BB#3:
    444   // ...
    445   //       = v1024
    446   //
    447   // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3
    448   // flow. We need to ensure the new basic block where the computation is
    449   // sunk to dominates all the uses.
    450   // It's only legal to break critical edge and sink the computation to the
    451   // new block if all the predecessors of "To", except for "From", are
    452   // not dominated by "From". Given SSA property, this means these
    453   // predecessors are dominated by "To".
    454   //
    455   // There is no need to do this check if all the uses are PHI nodes. PHI
    456   // sources are only defined on the specific predecessor edges.
    457   if (!BreakPHIEdge) {
    458     for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
    459            E = ToBB->pred_end(); PI != E; ++PI) {
    460       if (*PI == FromBB)
    461         continue;
    462       if (!DT->dominates(ToBB, *PI))
    463         return false;
    464     }
    465   }
    466 
    467   ToSplit.insert(std::make_pair(FromBB, ToBB));
    468 
    469   return true;
    470 }
    471 
    472 static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) {
    473   return MI->isInsertSubreg() || MI->isSubregToReg() || MI->isRegSequence();
    474 }
    475 
    476 /// collectDebgValues - Scan instructions following MI and collect any
    477 /// matching DBG_VALUEs.
    478 static void collectDebugValues(MachineInstr *MI,
    479                                SmallVectorImpl<MachineInstr *> &DbgValues) {
    480   DbgValues.clear();
    481   if (!MI->getOperand(0).isReg())
    482     return;
    483 
    484   MachineBasicBlock::iterator DI = MI; ++DI;
    485   for (MachineBasicBlock::iterator DE = MI->getParent()->end();
    486        DI != DE; ++DI) {
    487     if (!DI->isDebugValue())
    488       return;
    489     if (DI->getOperand(0).isReg() &&
    490         DI->getOperand(0).getReg() == MI->getOperand(0).getReg())
    491       DbgValues.push_back(DI);
    492   }
    493 }
    494 
    495 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
    496 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
    497                                           MachineBasicBlock *MBB,
    498                                           MachineBasicBlock *SuccToSinkTo,
    499                                           AllSuccsCache &AllSuccessors) {
    500   assert (MI && "Invalid MachineInstr!");
    501   assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
    502 
    503   if (MBB == SuccToSinkTo)
    504     return false;
    505 
    506   // It is profitable if SuccToSinkTo does not post dominate current block.
    507   if (!PDT->dominates(SuccToSinkTo, MBB))
    508     return true;
    509 
    510   // It is profitable to sink an instruction from a deeper loop to a shallower
    511   // loop, even if the latter post-dominates the former (PR21115).
    512   if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
    513     return true;
    514 
    515   // Check if only use in post dominated block is PHI instruction.
    516   bool NonPHIUse = false;
    517   for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
    518     MachineBasicBlock *UseBlock = UseInst.getParent();
    519     if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
    520       NonPHIUse = true;
    521   }
    522   if (!NonPHIUse)
    523     return true;
    524 
    525   // If SuccToSinkTo post dominates then also it may be profitable if MI
    526   // can further profitably sinked into another block in next round.
    527   bool BreakPHIEdge = false;
    528   // FIXME - If finding successor is compile time expensive then cache results.
    529   if (MachineBasicBlock *MBB2 =
    530           FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
    531     return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
    532 
    533   // If SuccToSinkTo is final destination and it is a post dominator of current
    534   // block then it is not profitable to sink MI into SuccToSinkTo block.
    535   return false;
    536 }
    537 
    538 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
    539 /// computing it if it was not already cached.
    540 SmallVector<MachineBasicBlock *, 4> &
    541 MachineSinking::GetAllSortedSuccessors(MachineInstr *MI, MachineBasicBlock *MBB,
    542                                        AllSuccsCache &AllSuccessors) const {
    543 
    544   // Do we have the sorted successors in cache ?
    545   auto Succs = AllSuccessors.find(MBB);
    546   if (Succs != AllSuccessors.end())
    547     return Succs->second;
    548 
    549   SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
    550                                                MBB->succ_end());
    551 
    552   // Handle cases where sinking can happen but where the sink point isn't a
    553   // successor. For example:
    554   //
    555   //   x = computation
    556   //   if () {} else {}
    557   //   use x
    558   //
    559   const std::vector<MachineDomTreeNode *> &Children =
    560     DT->getNode(MBB)->getChildren();
    561   for (const auto &DTChild : Children)
    562     // DomTree children of MBB that have MBB as immediate dominator are added.
    563     if (DTChild->getIDom()->getBlock() == MI->getParent() &&
    564         // Skip MBBs already added to the AllSuccs vector above.
    565         !MBB->isSuccessor(DTChild->getBlock()))
    566       AllSuccs.push_back(DTChild->getBlock());
    567 
    568   // Sort Successors according to their loop depth or block frequency info.
    569   std::stable_sort(
    570       AllSuccs.begin(), AllSuccs.end(),
    571       [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
    572         uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
    573         uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
    574         bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
    575         return HasBlockFreq ? LHSFreq < RHSFreq
    576                             : LI->getLoopDepth(L) < LI->getLoopDepth(R);
    577       });
    578 
    579   auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
    580 
    581   return it.first->second;
    582 }
    583 
    584 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
    585 MachineBasicBlock *MachineSinking::FindSuccToSinkTo(MachineInstr *MI,
    586                                    MachineBasicBlock *MBB,
    587                                    bool &BreakPHIEdge,
    588                                    AllSuccsCache &AllSuccessors) {
    589 
    590   assert (MI && "Invalid MachineInstr!");
    591   assert (MBB && "Invalid MachineBasicBlock!");
    592 
    593   // Loop over all the operands of the specified instruction.  If there is
    594   // anything we can't handle, bail out.
    595 
    596   // SuccToSinkTo - This is the successor to sink this instruction to, once we
    597   // decide.
    598   MachineBasicBlock *SuccToSinkTo = nullptr;
    599   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    600     const MachineOperand &MO = MI->getOperand(i);
    601     if (!MO.isReg()) continue;  // Ignore non-register operands.
    602 
    603     unsigned Reg = MO.getReg();
    604     if (Reg == 0) continue;
    605 
    606     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
    607       if (MO.isUse()) {
    608         // If the physreg has no defs anywhere, it's just an ambient register
    609         // and we can freely move its uses. Alternatively, if it's allocatable,
    610         // it could get allocated to something with a def during allocation.
    611         if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
    612           return nullptr;
    613       } else if (!MO.isDead()) {
    614         // A def that isn't dead. We can't move it.
    615         return nullptr;
    616       }
    617     } else {
    618       // Virtual register uses are always safe to sink.
    619       if (MO.isUse()) continue;
    620 
    621       // If it's not safe to move defs of the register class, then abort.
    622       if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
    623         return nullptr;
    624 
    625       // Virtual register defs can only be sunk if all their uses are in blocks
    626       // dominated by one of the successors.
    627       if (SuccToSinkTo) {
    628         // If a previous operand picked a block to sink to, then this operand
    629         // must be sinkable to the same block.
    630         bool LocalUse = false;
    631         if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
    632                                      BreakPHIEdge, LocalUse))
    633           return nullptr;
    634 
    635         continue;
    636       }
    637 
    638       // Otherwise, we should look at all the successors and decide which one
    639       // we should sink to. If we have reliable block frequency information
    640       // (frequency != 0) available, give successors with smaller frequencies
    641       // higher priority, otherwise prioritize smaller loop depths.
    642       for (MachineBasicBlock *SuccBlock :
    643            GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
    644         bool LocalUse = false;
    645         if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
    646                                     BreakPHIEdge, LocalUse)) {
    647           SuccToSinkTo = SuccBlock;
    648           break;
    649         }
    650         if (LocalUse)
    651           // Def is used locally, it's never safe to move this def.
    652           return nullptr;
    653       }
    654 
    655       // If we couldn't find a block to sink to, ignore this instruction.
    656       if (!SuccToSinkTo)
    657         return nullptr;
    658       if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
    659         return nullptr;
    660     }
    661   }
    662 
    663   // It is not possible to sink an instruction into its own block.  This can
    664   // happen with loops.
    665   if (MBB == SuccToSinkTo)
    666     return nullptr;
    667 
    668   // It's not safe to sink instructions to EH landing pad. Control flow into
    669   // landing pad is implicitly defined.
    670   if (SuccToSinkTo && SuccToSinkTo->isEHPad())
    671     return nullptr;
    672 
    673   return SuccToSinkTo;
    674 }
    675 
    676 /// SinkInstruction - Determine whether it is safe to sink the specified machine
    677 /// instruction out of its current block into a successor.
    678 bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore,
    679                                      AllSuccsCache &AllSuccessors) {
    680   // Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to
    681   // be close to the source to make it easier to coalesce.
    682   if (AvoidsSinking(MI, MRI))
    683     return false;
    684 
    685   // Check if it's safe to move the instruction.
    686   if (!MI->isSafeToMove(AA, SawStore))
    687     return false;
    688 
    689   // Convergent operations may not be made control-dependent on additional
    690   // values.
    691   if (MI->isConvergent())
    692     return false;
    693 
    694   // FIXME: This should include support for sinking instructions within the
    695   // block they are currently in to shorten the live ranges.  We often get
    696   // instructions sunk into the top of a large block, but it would be better to
    697   // also sink them down before their first use in the block.  This xform has to
    698   // be careful not to *increase* register pressure though, e.g. sinking
    699   // "x = y + z" down if it kills y and z would increase the live ranges of y
    700   // and z and only shrink the live range of x.
    701 
    702   bool BreakPHIEdge = false;
    703   MachineBasicBlock *ParentBlock = MI->getParent();
    704   MachineBasicBlock *SuccToSinkTo =
    705       FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
    706 
    707   // If there are no outputs, it must have side-effects.
    708   if (!SuccToSinkTo)
    709     return false;
    710 
    711 
    712   // If the instruction to move defines a dead physical register which is live
    713   // when leaving the basic block, don't move it because it could turn into a
    714   // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
    715   for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
    716     const MachineOperand &MO = MI->getOperand(I);
    717     if (!MO.isReg()) continue;
    718     unsigned Reg = MO.getReg();
    719     if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
    720     if (SuccToSinkTo->isLiveIn(Reg))
    721       return false;
    722   }
    723 
    724   DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo);
    725 
    726   // If the block has multiple predecessors, this is a critical edge.
    727   // Decide if we can sink along it or need to break the edge.
    728   if (SuccToSinkTo->pred_size() > 1) {
    729     // We cannot sink a load across a critical edge - there may be stores in
    730     // other code paths.
    731     bool TryBreak = false;
    732     bool store = true;
    733     if (!MI->isSafeToMove(AA, store)) {
    734       DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
    735       TryBreak = true;
    736     }
    737 
    738     // We don't want to sink across a critical edge if we don't dominate the
    739     // successor. We could be introducing calculations to new code paths.
    740     if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
    741       DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
    742       TryBreak = true;
    743     }
    744 
    745     // Don't sink instructions into a loop.
    746     if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
    747       DEBUG(dbgs() << " *** NOTE: Loop header found\n");
    748       TryBreak = true;
    749     }
    750 
    751     // Otherwise we are OK with sinking along a critical edge.
    752     if (!TryBreak)
    753       DEBUG(dbgs() << "Sinking along critical edge.\n");
    754     else {
    755       // Mark this edge as to be split.
    756       // If the edge can actually be split, the next iteration of the main loop
    757       // will sink MI in the newly created block.
    758       bool Status =
    759         PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
    760       if (!Status)
    761         DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
    762               "break critical edge\n");
    763       // The instruction will not be sunk this time.
    764       return false;
    765     }
    766   }
    767 
    768   if (BreakPHIEdge) {
    769     // BreakPHIEdge is true if all the uses are in the successor MBB being
    770     // sunken into and they are all PHI nodes. In this case, machine-sink must
    771     // break the critical edge first.
    772     bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
    773                                             SuccToSinkTo, BreakPHIEdge);
    774     if (!Status)
    775       DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
    776             "break critical edge\n");
    777     // The instruction will not be sunk this time.
    778     return false;
    779   }
    780 
    781   // Determine where to insert into. Skip phi nodes.
    782   MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
    783   while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
    784     ++InsertPos;
    785 
    786   // collect matching debug values.
    787   SmallVector<MachineInstr *, 2> DbgValuesToSink;
    788   collectDebugValues(MI, DbgValuesToSink);
    789 
    790   // Move the instruction.
    791   SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
    792                        ++MachineBasicBlock::iterator(MI));
    793 
    794   // Move debug values.
    795   for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
    796          DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) {
    797     MachineInstr *DbgMI = *DBI;
    798     SuccToSinkTo->splice(InsertPos, ParentBlock,  DbgMI,
    799                          ++MachineBasicBlock::iterator(DbgMI));
    800   }
    801 
    802   // Conservatively, clear any kill flags, since it's possible that they are no
    803   // longer correct.
    804   // Note that we have to clear the kill flags for any register this instruction
    805   // uses as we may sink over another instruction which currently kills the
    806   // used registers.
    807   for (MachineOperand &MO : MI->operands()) {
    808     if (MO.isReg() && MO.isUse())
    809       RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
    810   }
    811 
    812   return true;
    813 }
    814