1 //===- InstCombineAndOrXor.cpp --------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visitAnd, visitOr, and visitXor functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/InstructionSimplify.h" 16 #include "llvm/IR/ConstantRange.h" 17 #include "llvm/IR/Intrinsics.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Transforms/Utils/CmpInstAnalysis.h" 20 using namespace llvm; 21 using namespace PatternMatch; 22 23 #define DEBUG_TYPE "instcombine" 24 25 static inline Value *dyn_castNotVal(Value *V) { 26 // If this is not(not(x)) don't return that this is a not: we want the two 27 // not's to be folded first. 28 if (BinaryOperator::isNot(V)) { 29 Value *Operand = BinaryOperator::getNotArgument(V); 30 if (!IsFreeToInvert(Operand, Operand->hasOneUse())) 31 return Operand; 32 } 33 34 // Constants can be considered to be not'ed values... 35 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 36 return ConstantInt::get(C->getType(), ~C->getValue()); 37 return nullptr; 38 } 39 40 /// Similar to getICmpCode but for FCmpInst. This encodes a fcmp predicate into 41 /// a three bit mask. It also returns whether it is an ordered predicate by 42 /// reference. 43 static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) { 44 isOrdered = false; 45 switch (CC) { 46 case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000 47 case FCmpInst::FCMP_UNO: return 0; // 000 48 case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001 49 case FCmpInst::FCMP_UGT: return 1; // 001 50 case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010 51 case FCmpInst::FCMP_UEQ: return 2; // 010 52 case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011 53 case FCmpInst::FCMP_UGE: return 3; // 011 54 case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100 55 case FCmpInst::FCMP_ULT: return 4; // 100 56 case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101 57 case FCmpInst::FCMP_UNE: return 5; // 101 58 case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110 59 case FCmpInst::FCMP_ULE: return 6; // 110 60 // True -> 7 61 default: 62 // Not expecting FCMP_FALSE and FCMP_TRUE; 63 llvm_unreachable("Unexpected FCmp predicate!"); 64 } 65 } 66 67 /// This is the complement of getICmpCode, which turns an opcode and two 68 /// operands into either a constant true or false, or a brand new ICmp 69 /// instruction. The sign is passed in to determine which kind of predicate to 70 /// use in the new icmp instruction. 71 static Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS, 72 InstCombiner::BuilderTy *Builder) { 73 ICmpInst::Predicate NewPred; 74 if (Value *NewConstant = getICmpValue(Sign, Code, LHS, RHS, NewPred)) 75 return NewConstant; 76 return Builder->CreateICmp(NewPred, LHS, RHS); 77 } 78 79 /// This is the complement of getFCmpCode, which turns an opcode and two 80 /// operands into either a FCmp instruction. isordered is passed in to determine 81 /// which kind of predicate to use in the new fcmp instruction. 82 static Value *getFCmpValue(bool isordered, unsigned code, 83 Value *LHS, Value *RHS, 84 InstCombiner::BuilderTy *Builder) { 85 CmpInst::Predicate Pred; 86 switch (code) { 87 default: llvm_unreachable("Illegal FCmp code!"); 88 case 0: Pred = isordered ? FCmpInst::FCMP_ORD : FCmpInst::FCMP_UNO; break; 89 case 1: Pred = isordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; break; 90 case 2: Pred = isordered ? FCmpInst::FCMP_OEQ : FCmpInst::FCMP_UEQ; break; 91 case 3: Pred = isordered ? FCmpInst::FCMP_OGE : FCmpInst::FCMP_UGE; break; 92 case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break; 93 case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break; 94 case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break; 95 case 7: 96 if (!isordered) 97 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1); 98 Pred = FCmpInst::FCMP_ORD; break; 99 } 100 return Builder->CreateFCmp(Pred, LHS, RHS); 101 } 102 103 /// \brief Transform BITWISE_OP(BSWAP(A),BSWAP(B)) to BSWAP(BITWISE_OP(A, B)) 104 /// \param I Binary operator to transform. 105 /// \return Pointer to node that must replace the original binary operator, or 106 /// null pointer if no transformation was made. 107 Value *InstCombiner::SimplifyBSwap(BinaryOperator &I) { 108 IntegerType *ITy = dyn_cast<IntegerType>(I.getType()); 109 110 // Can't do vectors. 111 if (I.getType()->isVectorTy()) return nullptr; 112 113 // Can only do bitwise ops. 114 unsigned Op = I.getOpcode(); 115 if (Op != Instruction::And && Op != Instruction::Or && 116 Op != Instruction::Xor) 117 return nullptr; 118 119 Value *OldLHS = I.getOperand(0); 120 Value *OldRHS = I.getOperand(1); 121 ConstantInt *ConstLHS = dyn_cast<ConstantInt>(OldLHS); 122 ConstantInt *ConstRHS = dyn_cast<ConstantInt>(OldRHS); 123 IntrinsicInst *IntrLHS = dyn_cast<IntrinsicInst>(OldLHS); 124 IntrinsicInst *IntrRHS = dyn_cast<IntrinsicInst>(OldRHS); 125 bool IsBswapLHS = (IntrLHS && IntrLHS->getIntrinsicID() == Intrinsic::bswap); 126 bool IsBswapRHS = (IntrRHS && IntrRHS->getIntrinsicID() == Intrinsic::bswap); 127 128 if (!IsBswapLHS && !IsBswapRHS) 129 return nullptr; 130 131 if (!IsBswapLHS && !ConstLHS) 132 return nullptr; 133 134 if (!IsBswapRHS && !ConstRHS) 135 return nullptr; 136 137 /// OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) ) 138 /// OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) ) 139 Value *NewLHS = IsBswapLHS ? IntrLHS->getOperand(0) : 140 Builder->getInt(ConstLHS->getValue().byteSwap()); 141 142 Value *NewRHS = IsBswapRHS ? IntrRHS->getOperand(0) : 143 Builder->getInt(ConstRHS->getValue().byteSwap()); 144 145 Value *BinOp = nullptr; 146 if (Op == Instruction::And) 147 BinOp = Builder->CreateAnd(NewLHS, NewRHS); 148 else if (Op == Instruction::Or) 149 BinOp = Builder->CreateOr(NewLHS, NewRHS); 150 else //if (Op == Instruction::Xor) 151 BinOp = Builder->CreateXor(NewLHS, NewRHS); 152 153 Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap, ITy); 154 return Builder->CreateCall(F, BinOp); 155 } 156 157 /// This handles expressions of the form ((val OP C1) & C2). Where 158 /// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is 159 /// guaranteed to be a binary operator. 160 Instruction *InstCombiner::OptAndOp(Instruction *Op, 161 ConstantInt *OpRHS, 162 ConstantInt *AndRHS, 163 BinaryOperator &TheAnd) { 164 Value *X = Op->getOperand(0); 165 Constant *Together = nullptr; 166 if (!Op->isShift()) 167 Together = ConstantExpr::getAnd(AndRHS, OpRHS); 168 169 switch (Op->getOpcode()) { 170 case Instruction::Xor: 171 if (Op->hasOneUse()) { 172 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2) 173 Value *And = Builder->CreateAnd(X, AndRHS); 174 And->takeName(Op); 175 return BinaryOperator::CreateXor(And, Together); 176 } 177 break; 178 case Instruction::Or: 179 if (Op->hasOneUse()){ 180 if (Together != OpRHS) { 181 // (X | C1) & C2 --> (X | (C1&C2)) & C2 182 Value *Or = Builder->CreateOr(X, Together); 183 Or->takeName(Op); 184 return BinaryOperator::CreateAnd(Or, AndRHS); 185 } 186 187 ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together); 188 if (TogetherCI && !TogetherCI->isZero()){ 189 // (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1 190 // NOTE: This reduces the number of bits set in the & mask, which 191 // can expose opportunities for store narrowing. 192 Together = ConstantExpr::getXor(AndRHS, Together); 193 Value *And = Builder->CreateAnd(X, Together); 194 And->takeName(Op); 195 return BinaryOperator::CreateOr(And, OpRHS); 196 } 197 } 198 199 break; 200 case Instruction::Add: 201 if (Op->hasOneUse()) { 202 // Adding a one to a single bit bit-field should be turned into an XOR 203 // of the bit. First thing to check is to see if this AND is with a 204 // single bit constant. 205 const APInt &AndRHSV = AndRHS->getValue(); 206 207 // If there is only one bit set. 208 if (AndRHSV.isPowerOf2()) { 209 // Ok, at this point, we know that we are masking the result of the 210 // ADD down to exactly one bit. If the constant we are adding has 211 // no bits set below this bit, then we can eliminate the ADD. 212 const APInt& AddRHS = OpRHS->getValue(); 213 214 // Check to see if any bits below the one bit set in AndRHSV are set. 215 if ((AddRHS & (AndRHSV-1)) == 0) { 216 // If not, the only thing that can effect the output of the AND is 217 // the bit specified by AndRHSV. If that bit is set, the effect of 218 // the XOR is to toggle the bit. If it is clear, then the ADD has 219 // no effect. 220 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop 221 TheAnd.setOperand(0, X); 222 return &TheAnd; 223 } else { 224 // Pull the XOR out of the AND. 225 Value *NewAnd = Builder->CreateAnd(X, AndRHS); 226 NewAnd->takeName(Op); 227 return BinaryOperator::CreateXor(NewAnd, AndRHS); 228 } 229 } 230 } 231 } 232 break; 233 234 case Instruction::Shl: { 235 // We know that the AND will not produce any of the bits shifted in, so if 236 // the anded constant includes them, clear them now! 237 // 238 uint32_t BitWidth = AndRHS->getType()->getBitWidth(); 239 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); 240 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal)); 241 ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShlMask); 242 243 if (CI->getValue() == ShlMask) 244 // Masking out bits that the shift already masks. 245 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and. 246 247 if (CI != AndRHS) { // Reducing bits set in and. 248 TheAnd.setOperand(1, CI); 249 return &TheAnd; 250 } 251 break; 252 } 253 case Instruction::LShr: { 254 // We know that the AND will not produce any of the bits shifted in, so if 255 // the anded constant includes them, clear them now! This only applies to 256 // unsigned shifts, because a signed shr may bring in set bits! 257 // 258 uint32_t BitWidth = AndRHS->getType()->getBitWidth(); 259 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); 260 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal)); 261 ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShrMask); 262 263 if (CI->getValue() == ShrMask) 264 // Masking out bits that the shift already masks. 265 return ReplaceInstUsesWith(TheAnd, Op); 266 267 if (CI != AndRHS) { 268 TheAnd.setOperand(1, CI); // Reduce bits set in and cst. 269 return &TheAnd; 270 } 271 break; 272 } 273 case Instruction::AShr: 274 // Signed shr. 275 // See if this is shifting in some sign extension, then masking it out 276 // with an and. 277 if (Op->hasOneUse()) { 278 uint32_t BitWidth = AndRHS->getType()->getBitWidth(); 279 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); 280 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal)); 281 Constant *C = Builder->getInt(AndRHS->getValue() & ShrMask); 282 if (C == AndRHS) { // Masking out bits shifted in. 283 // (Val ashr C1) & C2 -> (Val lshr C1) & C2 284 // Make the argument unsigned. 285 Value *ShVal = Op->getOperand(0); 286 ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName()); 287 return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName()); 288 } 289 } 290 break; 291 } 292 return nullptr; 293 } 294 295 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise 296 /// (V < Lo || V >= Hi). In practice, we emit the more efficient 297 /// (V-Lo) \<u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates 298 /// whether to treat the V, Lo and HI as signed or not. IB is the location to 299 /// insert new instructions. 300 Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, 301 bool isSigned, bool Inside) { 302 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ? 303 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() && 304 "Lo is not <= Hi in range emission code!"); 305 306 if (Inside) { 307 if (Lo == Hi) // Trivially false. 308 return Builder->getFalse(); 309 310 // V >= Min && V < Hi --> V < Hi 311 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) { 312 ICmpInst::Predicate pred = (isSigned ? 313 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT); 314 return Builder->CreateICmp(pred, V, Hi); 315 } 316 317 // Emit V-Lo <u Hi-Lo 318 Constant *NegLo = ConstantExpr::getNeg(Lo); 319 Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off"); 320 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi); 321 return Builder->CreateICmpULT(Add, UpperBound); 322 } 323 324 if (Lo == Hi) // Trivially true. 325 return Builder->getTrue(); 326 327 // V < Min || V >= Hi -> V > Hi-1 328 Hi = SubOne(cast<ConstantInt>(Hi)); 329 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) { 330 ICmpInst::Predicate pred = (isSigned ? 331 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT); 332 return Builder->CreateICmp(pred, V, Hi); 333 } 334 335 // Emit V-Lo >u Hi-1-Lo 336 // Note that Hi has already had one subtracted from it, above. 337 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo)); 338 Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off"); 339 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi); 340 return Builder->CreateICmpUGT(Add, LowerBound); 341 } 342 343 /// Returns true iff Val consists of one contiguous run of 1s with any number 344 /// of 0s on either side. The 1s are allowed to wrap from LSB to MSB, 345 /// so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is 346 /// not, since all 1s are not contiguous. 347 static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) { 348 const APInt& V = Val->getValue(); 349 uint32_t BitWidth = Val->getType()->getBitWidth(); 350 if (!APIntOps::isShiftedMask(BitWidth, V)) return false; 351 352 // look for the first zero bit after the run of ones 353 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros(); 354 // look for the first non-zero bit 355 ME = V.getActiveBits(); 356 return true; 357 } 358 359 /// This is part of an expression (LHS +/- RHS) & Mask, where isSub determines 360 /// whether the operator is a sub. If we can fold one of the following xforms: 361 /// 362 /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask 363 /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0 364 /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0 365 /// 366 /// return (A +/- B). 367 /// 368 Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS, 369 ConstantInt *Mask, bool isSub, 370 Instruction &I) { 371 Instruction *LHSI = dyn_cast<Instruction>(LHS); 372 if (!LHSI || LHSI->getNumOperands() != 2 || 373 !isa<ConstantInt>(LHSI->getOperand(1))) return nullptr; 374 375 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1)); 376 377 switch (LHSI->getOpcode()) { 378 default: return nullptr; 379 case Instruction::And: 380 if (ConstantExpr::getAnd(N, Mask) == Mask) { 381 // If the AndRHS is a power of two minus one (0+1+), this is simple. 382 if ((Mask->getValue().countLeadingZeros() + 383 Mask->getValue().countPopulation()) == 384 Mask->getValue().getBitWidth()) 385 break; 386 387 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+ 388 // part, we don't need any explicit masks to take them out of A. If that 389 // is all N is, ignore it. 390 uint32_t MB = 0, ME = 0; 391 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive 392 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth(); 393 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1)); 394 if (MaskedValueIsZero(RHS, Mask, 0, &I)) 395 break; 396 } 397 } 398 return nullptr; 399 case Instruction::Or: 400 case Instruction::Xor: 401 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0 402 if ((Mask->getValue().countLeadingZeros() + 403 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth() 404 && ConstantExpr::getAnd(N, Mask)->isNullValue()) 405 break; 406 return nullptr; 407 } 408 409 if (isSub) 410 return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold"); 411 return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold"); 412 } 413 414 /// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C) 415 /// One of A and B is considered the mask, the other the value. This is 416 /// described as the "AMask" or "BMask" part of the enum. If the enum 417 /// contains only "Mask", then both A and B can be considered masks. 418 /// If A is the mask, then it was proven, that (A & C) == C. This 419 /// is trivial if C == A, or C == 0. If both A and C are constants, this 420 /// proof is also easy. 421 /// For the following explanations we assume that A is the mask. 422 /// The part "AllOnes" declares, that the comparison is true only 423 /// if (A & B) == A, or all bits of A are set in B. 424 /// Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes 425 /// The part "AllZeroes" declares, that the comparison is true only 426 /// if (A & B) == 0, or all bits of A are cleared in B. 427 /// Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes 428 /// The part "Mixed" declares, that (A & B) == C and C might or might not 429 /// contain any number of one bits and zero bits. 430 /// Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed 431 /// The Part "Not" means, that in above descriptions "==" should be replaced 432 /// by "!=". 433 /// Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes 434 /// If the mask A contains a single bit, then the following is equivalent: 435 /// (icmp eq (A & B), A) equals (icmp ne (A & B), 0) 436 /// (icmp ne (A & B), A) equals (icmp eq (A & B), 0) 437 enum MaskedICmpType { 438 FoldMskICmp_AMask_AllOnes = 1, 439 FoldMskICmp_AMask_NotAllOnes = 2, 440 FoldMskICmp_BMask_AllOnes = 4, 441 FoldMskICmp_BMask_NotAllOnes = 8, 442 FoldMskICmp_Mask_AllZeroes = 16, 443 FoldMskICmp_Mask_NotAllZeroes = 32, 444 FoldMskICmp_AMask_Mixed = 64, 445 FoldMskICmp_AMask_NotMixed = 128, 446 FoldMskICmp_BMask_Mixed = 256, 447 FoldMskICmp_BMask_NotMixed = 512 448 }; 449 450 /// Return the set of pattern classes (from MaskedICmpType) 451 /// that (icmp SCC (A & B), C) satisfies. 452 static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C, 453 ICmpInst::Predicate SCC) 454 { 455 ConstantInt *ACst = dyn_cast<ConstantInt>(A); 456 ConstantInt *BCst = dyn_cast<ConstantInt>(B); 457 ConstantInt *CCst = dyn_cast<ConstantInt>(C); 458 bool icmp_eq = (SCC == ICmpInst::ICMP_EQ); 459 bool icmp_abit = (ACst && !ACst->isZero() && 460 ACst->getValue().isPowerOf2()); 461 bool icmp_bbit = (BCst && !BCst->isZero() && 462 BCst->getValue().isPowerOf2()); 463 unsigned result = 0; 464 if (CCst && CCst->isZero()) { 465 // if C is zero, then both A and B qualify as mask 466 result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes | 467 FoldMskICmp_Mask_AllZeroes | 468 FoldMskICmp_AMask_Mixed | 469 FoldMskICmp_BMask_Mixed) 470 : (FoldMskICmp_Mask_NotAllZeroes | 471 FoldMskICmp_Mask_NotAllZeroes | 472 FoldMskICmp_AMask_NotMixed | 473 FoldMskICmp_BMask_NotMixed)); 474 if (icmp_abit) 475 result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes | 476 FoldMskICmp_AMask_NotMixed) 477 : (FoldMskICmp_AMask_AllOnes | 478 FoldMskICmp_AMask_Mixed)); 479 if (icmp_bbit) 480 result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes | 481 FoldMskICmp_BMask_NotMixed) 482 : (FoldMskICmp_BMask_AllOnes | 483 FoldMskICmp_BMask_Mixed)); 484 return result; 485 } 486 if (A == C) { 487 result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes | 488 FoldMskICmp_AMask_Mixed) 489 : (FoldMskICmp_AMask_NotAllOnes | 490 FoldMskICmp_AMask_NotMixed)); 491 if (icmp_abit) 492 result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes | 493 FoldMskICmp_AMask_NotMixed) 494 : (FoldMskICmp_Mask_AllZeroes | 495 FoldMskICmp_AMask_Mixed)); 496 } else if (ACst && CCst && 497 ConstantExpr::getAnd(ACst, CCst) == CCst) { 498 result |= (icmp_eq ? FoldMskICmp_AMask_Mixed 499 : FoldMskICmp_AMask_NotMixed); 500 } 501 if (B == C) { 502 result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes | 503 FoldMskICmp_BMask_Mixed) 504 : (FoldMskICmp_BMask_NotAllOnes | 505 FoldMskICmp_BMask_NotMixed)); 506 if (icmp_bbit) 507 result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes | 508 FoldMskICmp_BMask_NotMixed) 509 : (FoldMskICmp_Mask_AllZeroes | 510 FoldMskICmp_BMask_Mixed)); 511 } else if (BCst && CCst && 512 ConstantExpr::getAnd(BCst, CCst) == CCst) { 513 result |= (icmp_eq ? FoldMskICmp_BMask_Mixed 514 : FoldMskICmp_BMask_NotMixed); 515 } 516 return result; 517 } 518 519 /// Convert an analysis of a masked ICmp into its equivalent if all boolean 520 /// operations had the opposite sense. Since each "NotXXX" flag (recording !=) 521 /// is adjacent to the corresponding normal flag (recording ==), this just 522 /// involves swapping those bits over. 523 static unsigned conjugateICmpMask(unsigned Mask) { 524 unsigned NewMask; 525 NewMask = (Mask & (FoldMskICmp_AMask_AllOnes | FoldMskICmp_BMask_AllOnes | 526 FoldMskICmp_Mask_AllZeroes | FoldMskICmp_AMask_Mixed | 527 FoldMskICmp_BMask_Mixed)) 528 << 1; 529 530 NewMask |= 531 (Mask & (FoldMskICmp_AMask_NotAllOnes | FoldMskICmp_BMask_NotAllOnes | 532 FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_AMask_NotMixed | 533 FoldMskICmp_BMask_NotMixed)) 534 >> 1; 535 536 return NewMask; 537 } 538 539 /// Decompose an icmp into the form ((X & Y) pred Z) if possible. 540 /// The returned predicate is either == or !=. Returns false if 541 /// decomposition fails. 542 static bool decomposeBitTestICmp(const ICmpInst *I, ICmpInst::Predicate &Pred, 543 Value *&X, Value *&Y, Value *&Z) { 544 ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1)); 545 if (!C) 546 return false; 547 548 switch (I->getPredicate()) { 549 default: 550 return false; 551 case ICmpInst::ICMP_SLT: 552 // X < 0 is equivalent to (X & SignBit) != 0. 553 if (!C->isZero()) 554 return false; 555 Y = ConstantInt::get(I->getContext(), APInt::getSignBit(C->getBitWidth())); 556 Pred = ICmpInst::ICMP_NE; 557 break; 558 case ICmpInst::ICMP_SGT: 559 // X > -1 is equivalent to (X & SignBit) == 0. 560 if (!C->isAllOnesValue()) 561 return false; 562 Y = ConstantInt::get(I->getContext(), APInt::getSignBit(C->getBitWidth())); 563 Pred = ICmpInst::ICMP_EQ; 564 break; 565 case ICmpInst::ICMP_ULT: 566 // X <u 2^n is equivalent to (X & ~(2^n-1)) == 0. 567 if (!C->getValue().isPowerOf2()) 568 return false; 569 Y = ConstantInt::get(I->getContext(), -C->getValue()); 570 Pred = ICmpInst::ICMP_EQ; 571 break; 572 case ICmpInst::ICMP_UGT: 573 // X >u 2^n-1 is equivalent to (X & ~(2^n-1)) != 0. 574 if (!(C->getValue() + 1).isPowerOf2()) 575 return false; 576 Y = ConstantInt::get(I->getContext(), ~C->getValue()); 577 Pred = ICmpInst::ICMP_NE; 578 break; 579 } 580 581 X = I->getOperand(0); 582 Z = ConstantInt::getNullValue(C->getType()); 583 return true; 584 } 585 586 /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) 587 /// Return the set of pattern classes (from MaskedICmpType) 588 /// that both LHS and RHS satisfy. 589 static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A, 590 Value*& B, Value*& C, 591 Value*& D, Value*& E, 592 ICmpInst *LHS, ICmpInst *RHS, 593 ICmpInst::Predicate &LHSCC, 594 ICmpInst::Predicate &RHSCC) { 595 if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0; 596 // vectors are not (yet?) supported 597 if (LHS->getOperand(0)->getType()->isVectorTy()) return 0; 598 599 // Here comes the tricky part: 600 // LHS might be of the form L11 & L12 == X, X == L21 & L22, 601 // and L11 & L12 == L21 & L22. The same goes for RHS. 602 // Now we must find those components L** and R**, that are equal, so 603 // that we can extract the parameters A, B, C, D, and E for the canonical 604 // above. 605 Value *L1 = LHS->getOperand(0); 606 Value *L2 = LHS->getOperand(1); 607 Value *L11,*L12,*L21,*L22; 608 // Check whether the icmp can be decomposed into a bit test. 609 if (decomposeBitTestICmp(LHS, LHSCC, L11, L12, L2)) { 610 L21 = L22 = L1 = nullptr; 611 } else { 612 // Look for ANDs in the LHS icmp. 613 if (!L1->getType()->isIntegerTy()) { 614 // You can icmp pointers, for example. They really aren't masks. 615 L11 = L12 = nullptr; 616 } else if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) { 617 // Any icmp can be viewed as being trivially masked; if it allows us to 618 // remove one, it's worth it. 619 L11 = L1; 620 L12 = Constant::getAllOnesValue(L1->getType()); 621 } 622 623 if (!L2->getType()->isIntegerTy()) { 624 // You can icmp pointers, for example. They really aren't masks. 625 L21 = L22 = nullptr; 626 } else if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) { 627 L21 = L2; 628 L22 = Constant::getAllOnesValue(L2->getType()); 629 } 630 } 631 632 // Bail if LHS was a icmp that can't be decomposed into an equality. 633 if (!ICmpInst::isEquality(LHSCC)) 634 return 0; 635 636 Value *R1 = RHS->getOperand(0); 637 Value *R2 = RHS->getOperand(1); 638 Value *R11,*R12; 639 bool ok = false; 640 if (decomposeBitTestICmp(RHS, RHSCC, R11, R12, R2)) { 641 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { 642 A = R11; D = R12; 643 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { 644 A = R12; D = R11; 645 } else { 646 return 0; 647 } 648 E = R2; R1 = nullptr; ok = true; 649 } else if (R1->getType()->isIntegerTy()) { 650 if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) { 651 // As before, model no mask as a trivial mask if it'll let us do an 652 // optimization. 653 R11 = R1; 654 R12 = Constant::getAllOnesValue(R1->getType()); 655 } 656 657 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { 658 A = R11; D = R12; E = R2; ok = true; 659 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { 660 A = R12; D = R11; E = R2; ok = true; 661 } 662 } 663 664 // Bail if RHS was a icmp that can't be decomposed into an equality. 665 if (!ICmpInst::isEquality(RHSCC)) 666 return 0; 667 668 // Look for ANDs in on the right side of the RHS icmp. 669 if (!ok && R2->getType()->isIntegerTy()) { 670 if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) { 671 R11 = R2; 672 R12 = Constant::getAllOnesValue(R2->getType()); 673 } 674 675 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { 676 A = R11; D = R12; E = R1; ok = true; 677 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { 678 A = R12; D = R11; E = R1; ok = true; 679 } else { 680 return 0; 681 } 682 } 683 if (!ok) 684 return 0; 685 686 if (L11 == A) { 687 B = L12; C = L2; 688 } else if (L12 == A) { 689 B = L11; C = L2; 690 } else if (L21 == A) { 691 B = L22; C = L1; 692 } else if (L22 == A) { 693 B = L21; C = L1; 694 } 695 696 unsigned left_type = getTypeOfMaskedICmp(A, B, C, LHSCC); 697 unsigned right_type = getTypeOfMaskedICmp(A, D, E, RHSCC); 698 return left_type & right_type; 699 } 700 701 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) 702 /// into a single (icmp(A & X) ==/!= Y). 703 static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, 704 llvm::InstCombiner::BuilderTy *Builder) { 705 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr; 706 ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate(); 707 unsigned mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS, 708 LHSCC, RHSCC); 709 if (mask == 0) return nullptr; 710 assert(ICmpInst::isEquality(LHSCC) && ICmpInst::isEquality(RHSCC) && 711 "foldLogOpOfMaskedICmpsHelper must return an equality predicate."); 712 713 // In full generality: 714 // (icmp (A & B) Op C) | (icmp (A & D) Op E) 715 // == ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ] 716 // 717 // If the latter can be converted into (icmp (A & X) Op Y) then the former is 718 // equivalent to (icmp (A & X) !Op Y). 719 // 720 // Therefore, we can pretend for the rest of this function that we're dealing 721 // with the conjunction, provided we flip the sense of any comparisons (both 722 // input and output). 723 724 // In most cases we're going to produce an EQ for the "&&" case. 725 ICmpInst::Predicate NEWCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 726 if (!IsAnd) { 727 // Convert the masking analysis into its equivalent with negated 728 // comparisons. 729 mask = conjugateICmpMask(mask); 730 } 731 732 if (mask & FoldMskICmp_Mask_AllZeroes) { 733 // (icmp eq (A & B), 0) & (icmp eq (A & D), 0) 734 // -> (icmp eq (A & (B|D)), 0) 735 Value *newOr = Builder->CreateOr(B, D); 736 Value *newAnd = Builder->CreateAnd(A, newOr); 737 // we can't use C as zero, because we might actually handle 738 // (icmp ne (A & B), B) & (icmp ne (A & D), D) 739 // with B and D, having a single bit set 740 Value *zero = Constant::getNullValue(A->getType()); 741 return Builder->CreateICmp(NEWCC, newAnd, zero); 742 } 743 if (mask & FoldMskICmp_BMask_AllOnes) { 744 // (icmp eq (A & B), B) & (icmp eq (A & D), D) 745 // -> (icmp eq (A & (B|D)), (B|D)) 746 Value *newOr = Builder->CreateOr(B, D); 747 Value *newAnd = Builder->CreateAnd(A, newOr); 748 return Builder->CreateICmp(NEWCC, newAnd, newOr); 749 } 750 if (mask & FoldMskICmp_AMask_AllOnes) { 751 // (icmp eq (A & B), A) & (icmp eq (A & D), A) 752 // -> (icmp eq (A & (B&D)), A) 753 Value *newAnd1 = Builder->CreateAnd(B, D); 754 Value *newAnd = Builder->CreateAnd(A, newAnd1); 755 return Builder->CreateICmp(NEWCC, newAnd, A); 756 } 757 758 // Remaining cases assume at least that B and D are constant, and depend on 759 // their actual values. This isn't strictly, necessary, just a "handle the 760 // easy cases for now" decision. 761 ConstantInt *BCst = dyn_cast<ConstantInt>(B); 762 if (!BCst) return nullptr; 763 ConstantInt *DCst = dyn_cast<ConstantInt>(D); 764 if (!DCst) return nullptr; 765 766 if (mask & (FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_BMask_NotAllOnes)) { 767 // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and 768 // (icmp ne (A & B), B) & (icmp ne (A & D), D) 769 // -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0) 770 // Only valid if one of the masks is a superset of the other (check "B&D" is 771 // the same as either B or D). 772 APInt NewMask = BCst->getValue() & DCst->getValue(); 773 774 if (NewMask == BCst->getValue()) 775 return LHS; 776 else if (NewMask == DCst->getValue()) 777 return RHS; 778 } 779 if (mask & FoldMskICmp_AMask_NotAllOnes) { 780 // (icmp ne (A & B), B) & (icmp ne (A & D), D) 781 // -> (icmp ne (A & B), A) or (icmp ne (A & D), A) 782 // Only valid if one of the masks is a superset of the other (check "B|D" is 783 // the same as either B or D). 784 APInt NewMask = BCst->getValue() | DCst->getValue(); 785 786 if (NewMask == BCst->getValue()) 787 return LHS; 788 else if (NewMask == DCst->getValue()) 789 return RHS; 790 } 791 if (mask & FoldMskICmp_BMask_Mixed) { 792 // (icmp eq (A & B), C) & (icmp eq (A & D), E) 793 // We already know that B & C == C && D & E == E. 794 // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of 795 // C and E, which are shared by both the mask B and the mask D, don't 796 // contradict, then we can transform to 797 // -> (icmp eq (A & (B|D)), (C|E)) 798 // Currently, we only handle the case of B, C, D, and E being constant. 799 // we can't simply use C and E, because we might actually handle 800 // (icmp ne (A & B), B) & (icmp eq (A & D), D) 801 // with B and D, having a single bit set 802 ConstantInt *CCst = dyn_cast<ConstantInt>(C); 803 if (!CCst) return nullptr; 804 ConstantInt *ECst = dyn_cast<ConstantInt>(E); 805 if (!ECst) return nullptr; 806 if (LHSCC != NEWCC) 807 CCst = cast<ConstantInt>(ConstantExpr::getXor(BCst, CCst)); 808 if (RHSCC != NEWCC) 809 ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst)); 810 // if there is a conflict we should actually return a false for the 811 // whole construct 812 if (((BCst->getValue() & DCst->getValue()) & 813 (CCst->getValue() ^ ECst->getValue())) != 0) 814 return ConstantInt::get(LHS->getType(), !IsAnd); 815 Value *newOr1 = Builder->CreateOr(B, D); 816 Value *newOr2 = ConstantExpr::getOr(CCst, ECst); 817 Value *newAnd = Builder->CreateAnd(A, newOr1); 818 return Builder->CreateICmp(NEWCC, newAnd, newOr2); 819 } 820 return nullptr; 821 } 822 823 /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp. 824 /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n 825 /// If \p Inverted is true then the check is for the inverted range, e.g. 826 /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n 827 Value *InstCombiner::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, 828 bool Inverted) { 829 // Check the lower range comparison, e.g. x >= 0 830 // InstCombine already ensured that if there is a constant it's on the RHS. 831 ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1)); 832 if (!RangeStart) 833 return nullptr; 834 835 ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() : 836 Cmp0->getPredicate()); 837 838 // Accept x > -1 or x >= 0 (after potentially inverting the predicate). 839 if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) || 840 (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero()))) 841 return nullptr; 842 843 ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() : 844 Cmp1->getPredicate()); 845 846 Value *Input = Cmp0->getOperand(0); 847 Value *RangeEnd; 848 if (Cmp1->getOperand(0) == Input) { 849 // For the upper range compare we have: icmp x, n 850 RangeEnd = Cmp1->getOperand(1); 851 } else if (Cmp1->getOperand(1) == Input) { 852 // For the upper range compare we have: icmp n, x 853 RangeEnd = Cmp1->getOperand(0); 854 Pred1 = ICmpInst::getSwappedPredicate(Pred1); 855 } else { 856 return nullptr; 857 } 858 859 // Check the upper range comparison, e.g. x < n 860 ICmpInst::Predicate NewPred; 861 switch (Pred1) { 862 case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break; 863 case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break; 864 default: return nullptr; 865 } 866 867 // This simplification is only valid if the upper range is not negative. 868 bool IsNegative, IsNotNegative; 869 ComputeSignBit(RangeEnd, IsNotNegative, IsNegative, /*Depth=*/0, Cmp1); 870 if (!IsNotNegative) 871 return nullptr; 872 873 if (Inverted) 874 NewPred = ICmpInst::getInversePredicate(NewPred); 875 876 return Builder->CreateICmp(NewPred, Input, RangeEnd); 877 } 878 879 /// Fold (icmp)&(icmp) if possible. 880 Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) { 881 ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate(); 882 883 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B) 884 if (PredicatesFoldable(LHSCC, RHSCC)) { 885 if (LHS->getOperand(0) == RHS->getOperand(1) && 886 LHS->getOperand(1) == RHS->getOperand(0)) 887 LHS->swapOperands(); 888 if (LHS->getOperand(0) == RHS->getOperand(0) && 889 LHS->getOperand(1) == RHS->getOperand(1)) { 890 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1); 891 unsigned Code = getICmpCode(LHS) & getICmpCode(RHS); 892 bool isSigned = LHS->isSigned() || RHS->isSigned(); 893 return getNewICmpValue(isSigned, Code, Op0, Op1, Builder); 894 } 895 } 896 897 // handle (roughly): (icmp eq (A & B), C) & (icmp eq (A & D), E) 898 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder)) 899 return V; 900 901 // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n 902 if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/false)) 903 return V; 904 905 // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n 906 if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false)) 907 return V; 908 909 // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2). 910 Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0); 911 ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1)); 912 ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1)); 913 if (!LHSCst || !RHSCst) return nullptr; 914 915 if (LHSCst == RHSCst && LHSCC == RHSCC) { 916 // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C) 917 // where C is a power of 2 918 if (LHSCC == ICmpInst::ICMP_ULT && 919 LHSCst->getValue().isPowerOf2()) { 920 Value *NewOr = Builder->CreateOr(Val, Val2); 921 return Builder->CreateICmp(LHSCC, NewOr, LHSCst); 922 } 923 924 // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0) 925 if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) { 926 Value *NewOr = Builder->CreateOr(Val, Val2); 927 return Builder->CreateICmp(LHSCC, NewOr, LHSCst); 928 } 929 } 930 931 // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2 932 // where CMAX is the all ones value for the truncated type, 933 // iff the lower bits of C2 and CA are zero. 934 if (LHSCC == ICmpInst::ICMP_EQ && LHSCC == RHSCC && 935 LHS->hasOneUse() && RHS->hasOneUse()) { 936 Value *V; 937 ConstantInt *AndCst, *SmallCst = nullptr, *BigCst = nullptr; 938 939 // (trunc x) == C1 & (and x, CA) == C2 940 // (and x, CA) == C2 & (trunc x) == C1 941 if (match(Val2, m_Trunc(m_Value(V))) && 942 match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) { 943 SmallCst = RHSCst; 944 BigCst = LHSCst; 945 } else if (match(Val, m_Trunc(m_Value(V))) && 946 match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) { 947 SmallCst = LHSCst; 948 BigCst = RHSCst; 949 } 950 951 if (SmallCst && BigCst) { 952 unsigned BigBitSize = BigCst->getType()->getBitWidth(); 953 unsigned SmallBitSize = SmallCst->getType()->getBitWidth(); 954 955 // Check that the low bits are zero. 956 APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize); 957 if ((Low & AndCst->getValue()) == 0 && (Low & BigCst->getValue()) == 0) { 958 Value *NewAnd = Builder->CreateAnd(V, Low | AndCst->getValue()); 959 APInt N = SmallCst->getValue().zext(BigBitSize) | BigCst->getValue(); 960 Value *NewVal = ConstantInt::get(AndCst->getType()->getContext(), N); 961 return Builder->CreateICmp(LHSCC, NewAnd, NewVal); 962 } 963 } 964 } 965 966 // From here on, we only handle: 967 // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler. 968 if (Val != Val2) return nullptr; 969 970 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere. 971 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE || 972 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE || 973 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE || 974 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE) 975 return nullptr; 976 977 // Make a constant range that's the intersection of the two icmp ranges. 978 // If the intersection is empty, we know that the result is false. 979 ConstantRange LHSRange = 980 ConstantRange::makeAllowedICmpRegion(LHSCC, LHSCst->getValue()); 981 ConstantRange RHSRange = 982 ConstantRange::makeAllowedICmpRegion(RHSCC, RHSCst->getValue()); 983 984 if (LHSRange.intersectWith(RHSRange).isEmptySet()) 985 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0); 986 987 // We can't fold (ugt x, C) & (sgt x, C2). 988 if (!PredicatesFoldable(LHSCC, RHSCC)) 989 return nullptr; 990 991 // Ensure that the larger constant is on the RHS. 992 bool ShouldSwap; 993 if (CmpInst::isSigned(LHSCC) || 994 (ICmpInst::isEquality(LHSCC) && 995 CmpInst::isSigned(RHSCC))) 996 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue()); 997 else 998 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue()); 999 1000 if (ShouldSwap) { 1001 std::swap(LHS, RHS); 1002 std::swap(LHSCst, RHSCst); 1003 std::swap(LHSCC, RHSCC); 1004 } 1005 1006 // At this point, we know we have two icmp instructions 1007 // comparing a value against two constants and and'ing the result 1008 // together. Because of the above check, we know that we only have 1009 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know 1010 // (from the icmp folding check above), that the two constants 1011 // are not equal and that the larger constant is on the RHS 1012 assert(LHSCst != RHSCst && "Compares not folded above?"); 1013 1014 switch (LHSCC) { 1015 default: llvm_unreachable("Unknown integer condition code!"); 1016 case ICmpInst::ICMP_EQ: 1017 switch (RHSCC) { 1018 default: llvm_unreachable("Unknown integer condition code!"); 1019 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13 1020 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13 1021 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13 1022 return LHS; 1023 } 1024 case ICmpInst::ICMP_NE: 1025 switch (RHSCC) { 1026 default: llvm_unreachable("Unknown integer condition code!"); 1027 case ICmpInst::ICMP_ULT: 1028 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13 1029 return Builder->CreateICmpULT(Val, LHSCst); 1030 if (LHSCst->isNullValue()) // (X != 0 & X u< 14) -> X-1 u< 13 1031 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true); 1032 break; // (X != 13 & X u< 15) -> no change 1033 case ICmpInst::ICMP_SLT: 1034 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13 1035 return Builder->CreateICmpSLT(Val, LHSCst); 1036 break; // (X != 13 & X s< 15) -> no change 1037 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15 1038 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15 1039 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15 1040 return RHS; 1041 case ICmpInst::ICMP_NE: 1042 // Special case to get the ordering right when the values wrap around 1043 // zero. 1044 if (LHSCst->getValue() == 0 && RHSCst->getValue().isAllOnesValue()) 1045 std::swap(LHSCst, RHSCst); 1046 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1 1047 Constant *AddCST = ConstantExpr::getNeg(LHSCst); 1048 Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off"); 1049 return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1), 1050 Val->getName()+".cmp"); 1051 } 1052 break; // (X != 13 & X != 15) -> no change 1053 } 1054 break; 1055 case ICmpInst::ICMP_ULT: 1056 switch (RHSCC) { 1057 default: llvm_unreachable("Unknown integer condition code!"); 1058 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false 1059 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false 1060 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0); 1061 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change 1062 break; 1063 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13 1064 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13 1065 return LHS; 1066 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change 1067 break; 1068 } 1069 break; 1070 case ICmpInst::ICMP_SLT: 1071 switch (RHSCC) { 1072 default: llvm_unreachable("Unknown integer condition code!"); 1073 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change 1074 break; 1075 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13 1076 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13 1077 return LHS; 1078 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change 1079 break; 1080 } 1081 break; 1082 case ICmpInst::ICMP_UGT: 1083 switch (RHSCC) { 1084 default: llvm_unreachable("Unknown integer condition code!"); 1085 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15 1086 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15 1087 return RHS; 1088 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change 1089 break; 1090 case ICmpInst::ICMP_NE: 1091 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14 1092 return Builder->CreateICmp(LHSCC, Val, RHSCst); 1093 break; // (X u> 13 & X != 15) -> no change 1094 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1 1095 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true); 1096 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change 1097 break; 1098 } 1099 break; 1100 case ICmpInst::ICMP_SGT: 1101 switch (RHSCC) { 1102 default: llvm_unreachable("Unknown integer condition code!"); 1103 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15 1104 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15 1105 return RHS; 1106 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change 1107 break; 1108 case ICmpInst::ICMP_NE: 1109 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14 1110 return Builder->CreateICmp(LHSCC, Val, RHSCst); 1111 break; // (X s> 13 & X != 15) -> no change 1112 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1 1113 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true); 1114 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change 1115 break; 1116 } 1117 break; 1118 } 1119 1120 return nullptr; 1121 } 1122 1123 /// Optimize (fcmp)&(fcmp). NOTE: Unlike the rest of instcombine, this returns 1124 /// a Value which should already be inserted into the function. 1125 Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) { 1126 if (LHS->getPredicate() == FCmpInst::FCMP_ORD && 1127 RHS->getPredicate() == FCmpInst::FCMP_ORD) { 1128 if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) 1129 return nullptr; 1130 1131 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y) 1132 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1))) 1133 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) { 1134 // If either of the constants are nans, then the whole thing returns 1135 // false. 1136 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN()) 1137 return Builder->getFalse(); 1138 return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0)); 1139 } 1140 1141 // Handle vector zeros. This occurs because the canonical form of 1142 // "fcmp ord x,x" is "fcmp ord x, 0". 1143 if (isa<ConstantAggregateZero>(LHS->getOperand(1)) && 1144 isa<ConstantAggregateZero>(RHS->getOperand(1))) 1145 return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0)); 1146 return nullptr; 1147 } 1148 1149 Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1); 1150 Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1); 1151 FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate(); 1152 1153 1154 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) { 1155 // Swap RHS operands to match LHS. 1156 Op1CC = FCmpInst::getSwappedPredicate(Op1CC); 1157 std::swap(Op1LHS, Op1RHS); 1158 } 1159 1160 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) { 1161 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y). 1162 if (Op0CC == Op1CC) 1163 return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS); 1164 if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE) 1165 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0); 1166 if (Op0CC == FCmpInst::FCMP_TRUE) 1167 return RHS; 1168 if (Op1CC == FCmpInst::FCMP_TRUE) 1169 return LHS; 1170 1171 bool Op0Ordered; 1172 bool Op1Ordered; 1173 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered); 1174 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered); 1175 // uno && ord -> false 1176 if (Op0Pred == 0 && Op1Pred == 0 && Op0Ordered != Op1Ordered) 1177 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0); 1178 if (Op1Pred == 0) { 1179 std::swap(LHS, RHS); 1180 std::swap(Op0Pred, Op1Pred); 1181 std::swap(Op0Ordered, Op1Ordered); 1182 } 1183 if (Op0Pred == 0) { 1184 // uno && ueq -> uno && (uno || eq) -> uno 1185 // ord && olt -> ord && (ord && lt) -> olt 1186 if (!Op0Ordered && (Op0Ordered == Op1Ordered)) 1187 return LHS; 1188 if (Op0Ordered && (Op0Ordered == Op1Ordered)) 1189 return RHS; 1190 1191 // uno && oeq -> uno && (ord && eq) -> false 1192 if (!Op0Ordered) 1193 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0); 1194 // ord && ueq -> ord && (uno || eq) -> oeq 1195 return getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS, Builder); 1196 } 1197 } 1198 1199 return nullptr; 1200 } 1201 1202 /// Match De Morgan's Laws: 1203 /// (~A & ~B) == (~(A | B)) 1204 /// (~A | ~B) == (~(A & B)) 1205 static Instruction *matchDeMorgansLaws(BinaryOperator &I, 1206 InstCombiner::BuilderTy *Builder) { 1207 auto Opcode = I.getOpcode(); 1208 assert((Opcode == Instruction::And || Opcode == Instruction::Or) && 1209 "Trying to match De Morgan's Laws with something other than and/or"); 1210 // Flip the logic operation. 1211 if (Opcode == Instruction::And) 1212 Opcode = Instruction::Or; 1213 else 1214 Opcode = Instruction::And; 1215 1216 Value *Op0 = I.getOperand(0); 1217 Value *Op1 = I.getOperand(1); 1218 // TODO: Use pattern matchers instead of dyn_cast. 1219 if (Value *Op0NotVal = dyn_castNotVal(Op0)) 1220 if (Value *Op1NotVal = dyn_castNotVal(Op1)) 1221 if (Op0->hasOneUse() && Op1->hasOneUse()) { 1222 Value *LogicOp = Builder->CreateBinOp(Opcode, Op0NotVal, Op1NotVal, 1223 I.getName() + ".demorgan"); 1224 return BinaryOperator::CreateNot(LogicOp); 1225 } 1226 1227 // De Morgan's Law in disguise: 1228 // (zext(bool A) ^ 1) & (zext(bool B) ^ 1) -> zext(~(A | B)) 1229 // (zext(bool A) ^ 1) | (zext(bool B) ^ 1) -> zext(~(A & B)) 1230 Value *A = nullptr; 1231 Value *B = nullptr; 1232 ConstantInt *C1 = nullptr; 1233 if (match(Op0, m_OneUse(m_Xor(m_ZExt(m_Value(A)), m_ConstantInt(C1)))) && 1234 match(Op1, m_OneUse(m_Xor(m_ZExt(m_Value(B)), m_Specific(C1))))) { 1235 // TODO: This check could be loosened to handle different type sizes. 1236 // Alternatively, we could fix the definition of m_Not to recognize a not 1237 // operation hidden by a zext? 1238 if (A->getType()->isIntegerTy(1) && B->getType()->isIntegerTy(1) && 1239 C1->isOne()) { 1240 Value *LogicOp = Builder->CreateBinOp(Opcode, A, B, 1241 I.getName() + ".demorgan"); 1242 Value *Not = Builder->CreateNot(LogicOp); 1243 return CastInst::CreateZExtOrBitCast(Not, I.getType()); 1244 } 1245 } 1246 1247 return nullptr; 1248 } 1249 1250 Instruction *InstCombiner::visitAnd(BinaryOperator &I) { 1251 bool Changed = SimplifyAssociativeOrCommutative(I); 1252 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1253 1254 if (Value *V = SimplifyVectorOp(I)) 1255 return ReplaceInstUsesWith(I, V); 1256 1257 if (Value *V = SimplifyAndInst(Op0, Op1, DL, TLI, DT, AC)) 1258 return ReplaceInstUsesWith(I, V); 1259 1260 // (A|B)&(A|C) -> A|(B&C) etc 1261 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1262 return ReplaceInstUsesWith(I, V); 1263 1264 // See if we can simplify any instructions used by the instruction whose sole 1265 // purpose is to compute bits we don't care about. 1266 if (SimplifyDemandedInstructionBits(I)) 1267 return &I; 1268 1269 if (Value *V = SimplifyBSwap(I)) 1270 return ReplaceInstUsesWith(I, V); 1271 1272 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) { 1273 const APInt &AndRHSMask = AndRHS->getValue(); 1274 1275 // Optimize a variety of ((val OP C1) & C2) combinations... 1276 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) { 1277 Value *Op0LHS = Op0I->getOperand(0); 1278 Value *Op0RHS = Op0I->getOperand(1); 1279 switch (Op0I->getOpcode()) { 1280 default: break; 1281 case Instruction::Xor: 1282 case Instruction::Or: { 1283 // If the mask is only needed on one incoming arm, push it up. 1284 if (!Op0I->hasOneUse()) break; 1285 1286 APInt NotAndRHS(~AndRHSMask); 1287 if (MaskedValueIsZero(Op0LHS, NotAndRHS, 0, &I)) { 1288 // Not masking anything out for the LHS, move to RHS. 1289 Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS, 1290 Op0RHS->getName()+".masked"); 1291 return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS); 1292 } 1293 if (!isa<Constant>(Op0RHS) && 1294 MaskedValueIsZero(Op0RHS, NotAndRHS, 0, &I)) { 1295 // Not masking anything out for the RHS, move to LHS. 1296 Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS, 1297 Op0LHS->getName()+".masked"); 1298 return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS); 1299 } 1300 1301 break; 1302 } 1303 case Instruction::Add: 1304 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS. 1305 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0 1306 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0 1307 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I)) 1308 return BinaryOperator::CreateAnd(V, AndRHS); 1309 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I)) 1310 return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes 1311 break; 1312 1313 case Instruction::Sub: 1314 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS. 1315 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0 1316 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0 1317 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I)) 1318 return BinaryOperator::CreateAnd(V, AndRHS); 1319 1320 // -x & 1 -> x & 1 1321 if (AndRHSMask == 1 && match(Op0LHS, m_Zero())) 1322 return BinaryOperator::CreateAnd(Op0RHS, AndRHS); 1323 1324 // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS 1325 // has 1's for all bits that the subtraction with A might affect. 1326 if (Op0I->hasOneUse() && !match(Op0LHS, m_Zero())) { 1327 uint32_t BitWidth = AndRHSMask.getBitWidth(); 1328 uint32_t Zeros = AndRHSMask.countLeadingZeros(); 1329 APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros); 1330 1331 if (MaskedValueIsZero(Op0LHS, Mask, 0, &I)) { 1332 Value *NewNeg = Builder->CreateNeg(Op0RHS); 1333 return BinaryOperator::CreateAnd(NewNeg, AndRHS); 1334 } 1335 } 1336 break; 1337 1338 case Instruction::Shl: 1339 case Instruction::LShr: 1340 // (1 << x) & 1 --> zext(x == 0) 1341 // (1 >> x) & 1 --> zext(x == 0) 1342 if (AndRHSMask == 1 && Op0LHS == AndRHS) { 1343 Value *NewICmp = 1344 Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType())); 1345 return new ZExtInst(NewICmp, I.getType()); 1346 } 1347 break; 1348 } 1349 1350 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) 1351 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I)) 1352 return Res; 1353 } 1354 1355 // If this is an integer truncation, and if the source is an 'and' with 1356 // immediate, transform it. This frequently occurs for bitfield accesses. 1357 { 1358 Value *X = nullptr; ConstantInt *YC = nullptr; 1359 if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) { 1360 // Change: and (trunc (and X, YC) to T), C2 1361 // into : and (trunc X to T), trunc(YC) & C2 1362 // This will fold the two constants together, which may allow 1363 // other simplifications. 1364 Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk"); 1365 Constant *C3 = ConstantExpr::getTrunc(YC, I.getType()); 1366 C3 = ConstantExpr::getAnd(C3, AndRHS); 1367 return BinaryOperator::CreateAnd(NewCast, C3); 1368 } 1369 } 1370 1371 // Try to fold constant and into select arguments. 1372 if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) 1373 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1374 return R; 1375 if (isa<PHINode>(Op0)) 1376 if (Instruction *NV = FoldOpIntoPhi(I)) 1377 return NV; 1378 } 1379 1380 if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder)) 1381 return DeMorgan; 1382 1383 { 1384 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 1385 // (A|B) & ~(A&B) -> A^B 1386 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 1387 match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) && 1388 ((A == C && B == D) || (A == D && B == C))) 1389 return BinaryOperator::CreateXor(A, B); 1390 1391 // ~(A&B) & (A|B) -> A^B 1392 if (match(Op1, m_Or(m_Value(A), m_Value(B))) && 1393 match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) && 1394 ((A == C && B == D) || (A == D && B == C))) 1395 return BinaryOperator::CreateXor(A, B); 1396 1397 // A&(A^B) => A & ~B 1398 { 1399 Value *tmpOp0 = Op0; 1400 Value *tmpOp1 = Op1; 1401 if (Op0->hasOneUse() && 1402 match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 1403 if (A == Op1 || B == Op1 ) { 1404 tmpOp1 = Op0; 1405 tmpOp0 = Op1; 1406 // Simplify below 1407 } 1408 } 1409 1410 if (tmpOp1->hasOneUse() && 1411 match(tmpOp1, m_Xor(m_Value(A), m_Value(B)))) { 1412 if (B == tmpOp0) { 1413 std::swap(A, B); 1414 } 1415 // Notice that the patten (A&(~B)) is actually (A&(-1^B)), so if 1416 // A is originally -1 (or a vector of -1 and undefs), then we enter 1417 // an endless loop. By checking that A is non-constant we ensure that 1418 // we will never get to the loop. 1419 if (A == tmpOp0 && !isa<Constant>(A)) // A&(A^B) -> A & ~B 1420 return BinaryOperator::CreateAnd(A, Builder->CreateNot(B)); 1421 } 1422 } 1423 1424 // (A&((~A)|B)) -> A&B 1425 if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) || 1426 match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1))))) 1427 return BinaryOperator::CreateAnd(A, Op1); 1428 if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) || 1429 match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0))))) 1430 return BinaryOperator::CreateAnd(A, Op0); 1431 1432 // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C 1433 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) 1434 if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A)))) 1435 if (Op1->hasOneUse() || cast<BinaryOperator>(Op1)->hasOneUse()) 1436 return BinaryOperator::CreateAnd(Op0, Builder->CreateNot(C)); 1437 1438 // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C 1439 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B)))) 1440 if (match(Op1, m_Xor(m_Specific(B), m_Specific(A)))) 1441 if (Op0->hasOneUse() || cast<BinaryOperator>(Op0)->hasOneUse()) 1442 return BinaryOperator::CreateAnd(Op1, Builder->CreateNot(C)); 1443 1444 // (A | B) & ((~A) ^ B) -> (A & B) 1445 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 1446 match(Op1, m_Xor(m_Not(m_Specific(A)), m_Specific(B)))) 1447 return BinaryOperator::CreateAnd(A, B); 1448 1449 // ((~A) ^ B) & (A | B) -> (A & B) 1450 if (match(Op0, m_Xor(m_Not(m_Value(A)), m_Value(B))) && 1451 match(Op1, m_Or(m_Specific(A), m_Specific(B)))) 1452 return BinaryOperator::CreateAnd(A, B); 1453 } 1454 1455 { 1456 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0); 1457 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1); 1458 if (LHS && RHS) 1459 if (Value *Res = FoldAndOfICmps(LHS, RHS)) 1460 return ReplaceInstUsesWith(I, Res); 1461 1462 // TODO: Make this recursive; it's a little tricky because an arbitrary 1463 // number of 'and' instructions might have to be created. 1464 Value *X, *Y; 1465 if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) { 1466 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 1467 if (Value *Res = FoldAndOfICmps(LHS, Cmp)) 1468 return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, Y)); 1469 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 1470 if (Value *Res = FoldAndOfICmps(LHS, Cmp)) 1471 return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, X)); 1472 } 1473 if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) { 1474 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 1475 if (Value *Res = FoldAndOfICmps(Cmp, RHS)) 1476 return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, Y)); 1477 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 1478 if (Value *Res = FoldAndOfICmps(Cmp, RHS)) 1479 return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, X)); 1480 } 1481 } 1482 1483 // If and'ing two fcmp, try combine them into one. 1484 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) 1485 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) 1486 if (Value *Res = FoldAndOfFCmps(LHS, RHS)) 1487 return ReplaceInstUsesWith(I, Res); 1488 1489 1490 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) { 1491 Value *Op0COp = Op0C->getOperand(0); 1492 Type *SrcTy = Op0COp->getType(); 1493 // fold (and (cast A), (cast B)) -> (cast (and A, B)) 1494 if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) { 1495 if (Op0C->getOpcode() == Op1C->getOpcode() && // same cast kind ? 1496 SrcTy == Op1C->getOperand(0)->getType() && 1497 SrcTy->isIntOrIntVectorTy()) { 1498 Value *Op1COp = Op1C->getOperand(0); 1499 1500 // Only do this if the casts both really cause code to be generated. 1501 if (ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) && 1502 ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) { 1503 Value *NewOp = Builder->CreateAnd(Op0COp, Op1COp, I.getName()); 1504 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType()); 1505 } 1506 1507 // If this is and(cast(icmp), cast(icmp)), try to fold this even if the 1508 // cast is otherwise not optimizable. This happens for vector sexts. 1509 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp)) 1510 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp)) 1511 if (Value *Res = FoldAndOfICmps(LHS, RHS)) 1512 return CastInst::Create(Op0C->getOpcode(), Res, I.getType()); 1513 1514 // If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the 1515 // cast is otherwise not optimizable. This happens for vector sexts. 1516 if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp)) 1517 if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp)) 1518 if (Value *Res = FoldAndOfFCmps(LHS, RHS)) 1519 return CastInst::Create(Op0C->getOpcode(), Res, I.getType()); 1520 } 1521 } 1522 1523 // If we are masking off the sign bit of a floating-point value, convert 1524 // this to the canonical fabs intrinsic call and cast back to integer. 1525 // The backend should know how to optimize fabs(). 1526 // TODO: This transform should also apply to vectors. 1527 ConstantInt *CI; 1528 if (isa<BitCastInst>(Op0C) && SrcTy->isFloatingPointTy() && 1529 match(Op1, m_ConstantInt(CI)) && CI->isMaxValue(true)) { 1530 Module *M = I.getModule(); 1531 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, SrcTy); 1532 Value *Call = Builder->CreateCall(Fabs, Op0COp, "fabs"); 1533 return CastInst::CreateBitOrPointerCast(Call, I.getType()); 1534 } 1535 } 1536 1537 { 1538 Value *X = nullptr; 1539 bool OpsSwapped = false; 1540 // Canonicalize SExt or Not to the LHS 1541 if (match(Op1, m_SExt(m_Value())) || 1542 match(Op1, m_Not(m_Value()))) { 1543 std::swap(Op0, Op1); 1544 OpsSwapped = true; 1545 } 1546 1547 // Fold (and (sext bool to A), B) --> (select bool, B, 0) 1548 if (match(Op0, m_SExt(m_Value(X))) && 1549 X->getType()->getScalarType()->isIntegerTy(1)) { 1550 Value *Zero = Constant::getNullValue(Op1->getType()); 1551 return SelectInst::Create(X, Op1, Zero); 1552 } 1553 1554 // Fold (and ~(sext bool to A), B) --> (select bool, 0, B) 1555 if (match(Op0, m_Not(m_SExt(m_Value(X)))) && 1556 X->getType()->getScalarType()->isIntegerTy(1)) { 1557 Value *Zero = Constant::getNullValue(Op0->getType()); 1558 return SelectInst::Create(X, Zero, Op1); 1559 } 1560 1561 if (OpsSwapped) 1562 std::swap(Op0, Op1); 1563 } 1564 1565 return Changed ? &I : nullptr; 1566 } 1567 1568 1569 /// Analyze the specified subexpression and see if it is capable of providing 1570 /// pieces of a bswap or bitreverse. The subexpression provides a potential 1571 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 1572 /// the output of the expression came from a corresponding bit in some other 1573 /// value. This function is recursive, and the end result is a mapping of 1574 /// (value, bitnumber) to bitnumber. It is the caller's responsibility to 1575 /// validate that all `value`s are identical and that the bitnumber to bitnumber 1576 /// mapping is correct for a bswap or bitreverse. 1577 /// 1578 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 1579 /// that the expression deposits the low byte of %X into the high byte of the 1580 /// result and that all other bits are zero. This expression is accepted, 1581 /// BitValues[24-31] are set to %X and BitProvenance[24-31] are set to [0-7]. 1582 /// 1583 /// This function returns true if the match was unsuccessful and false if so. 1584 /// On entry to the function the "OverallLeftShift" is a signed integer value 1585 /// indicating the number of bits that the subexpression is later shifted. For 1586 /// example, if the expression is later right shifted by 16 bits, the 1587 /// OverallLeftShift value would be -16 on entry. This is used to specify which 1588 /// bits of BitValues are actually being set. 1589 /// 1590 /// Similarly, BitMask is a bitmask where a bit is clear if its corresponding 1591 /// bit is masked to zero by a user. For example, in (X & 255), X will be 1592 /// processed with a bytemask of 255. BitMask is always in the local 1593 /// (OverallLeftShift) coordinate space. 1594 /// 1595 static bool CollectBitParts(Value *V, int OverallLeftShift, APInt BitMask, 1596 SmallVectorImpl<Value *> &BitValues, 1597 SmallVectorImpl<int> &BitProvenance) { 1598 if (Instruction *I = dyn_cast<Instruction>(V)) { 1599 // If this is an or instruction, it may be an inner node of the bswap. 1600 if (I->getOpcode() == Instruction::Or) 1601 return CollectBitParts(I->getOperand(0), OverallLeftShift, BitMask, 1602 BitValues, BitProvenance) || 1603 CollectBitParts(I->getOperand(1), OverallLeftShift, BitMask, 1604 BitValues, BitProvenance); 1605 1606 // If this is a logical shift by a constant, recurse with OverallLeftShift 1607 // and BitMask adjusted. 1608 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 1609 unsigned ShAmt = 1610 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 1611 // Ensure the shift amount is defined. 1612 if (ShAmt > BitValues.size()) 1613 return true; 1614 1615 unsigned BitShift = ShAmt; 1616 if (I->getOpcode() == Instruction::Shl) { 1617 // X << C -> collect(X, +C) 1618 OverallLeftShift += BitShift; 1619 BitMask = BitMask.lshr(BitShift); 1620 } else { 1621 // X >>u C -> collect(X, -C) 1622 OverallLeftShift -= BitShift; 1623 BitMask = BitMask.shl(BitShift); 1624 } 1625 1626 if (OverallLeftShift >= (int)BitValues.size()) 1627 return true; 1628 if (OverallLeftShift <= -(int)BitValues.size()) 1629 return true; 1630 1631 return CollectBitParts(I->getOperand(0), OverallLeftShift, BitMask, 1632 BitValues, BitProvenance); 1633 } 1634 1635 // If this is a logical 'and' with a mask that clears bits, clear the 1636 // corresponding bits in BitMask. 1637 if (I->getOpcode() == Instruction::And && 1638 isa<ConstantInt>(I->getOperand(1))) { 1639 unsigned NumBits = BitValues.size(); 1640 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 1641 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 1642 1643 for (unsigned i = 0; i != NumBits; ++i, Bit <<= 1) { 1644 // If this bit is masked out by a later operation, we don't care what 1645 // the and mask is. 1646 if (BitMask[i] == 0) 1647 continue; 1648 1649 // If the AndMask is zero for this bit, clear the bit. 1650 APInt MaskB = AndMask & Bit; 1651 if (MaskB == 0) { 1652 BitMask.clearBit(i); 1653 continue; 1654 } 1655 1656 // Otherwise, this bit is kept. 1657 } 1658 1659 return CollectBitParts(I->getOperand(0), OverallLeftShift, BitMask, 1660 BitValues, BitProvenance); 1661 } 1662 } 1663 1664 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 1665 // the input value to the bswap/bitreverse. To be part of a bswap or 1666 // bitreverse we must be demanding a contiguous range of bits from it. 1667 unsigned InputBitLen = BitMask.countPopulation(); 1668 unsigned InputBitNo = BitMask.countTrailingZeros(); 1669 if (BitMask.getBitWidth() - BitMask.countLeadingZeros() - InputBitNo != 1670 InputBitLen) 1671 // Not a contiguous set range of bits! 1672 return true; 1673 1674 // We know we're moving a contiguous range of bits from the input to the 1675 // output. Record which bits in the output came from which bits in the input. 1676 unsigned DestBitNo = InputBitNo + OverallLeftShift; 1677 for (unsigned I = 0; I < InputBitLen; ++I) 1678 BitProvenance[DestBitNo + I] = InputBitNo + I; 1679 1680 // If the destination bit value is already defined, the values are or'd 1681 // together, which isn't a bswap/bitreverse (unless it's an or of the same 1682 // bits). 1683 if (BitValues[DestBitNo] && BitValues[DestBitNo] != V) 1684 return true; 1685 for (unsigned I = 0; I < InputBitLen; ++I) 1686 BitValues[DestBitNo + I] = V; 1687 1688 return false; 1689 } 1690 1691 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 1692 unsigned BitWidth) { 1693 if (From % 8 != To % 8) 1694 return false; 1695 // Convert from bit indices to byte indices and check for a byte reversal. 1696 From >>= 3; 1697 To >>= 3; 1698 BitWidth >>= 3; 1699 return From == BitWidth - To - 1; 1700 } 1701 1702 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 1703 unsigned BitWidth) { 1704 return From == BitWidth - To - 1; 1705 } 1706 1707 /// Given an OR instruction, check to see if this is a bswap or bitreverse 1708 /// idiom. If so, insert the new intrinsic and return it. 1709 Instruction *InstCombiner::MatchBSwapOrBitReverse(BinaryOperator &I) { 1710 IntegerType *ITy = dyn_cast<IntegerType>(I.getType()); 1711 if (!ITy) 1712 return nullptr; // Can't do vectors. 1713 unsigned BW = ITy->getBitWidth(); 1714 1715 /// We keep track of which bit (BitProvenance) inside which value (BitValues) 1716 /// defines each bit in the result. 1717 SmallVector<Value *, 8> BitValues(BW, nullptr); 1718 SmallVector<int, 8> BitProvenance(BW, -1); 1719 1720 // Try to find all the pieces corresponding to the bswap. 1721 APInt BitMask = APInt::getAllOnesValue(BitValues.size()); 1722 if (CollectBitParts(&I, 0, BitMask, BitValues, BitProvenance)) 1723 return nullptr; 1724 1725 // Check to see if all of the bits come from the same value. 1726 Value *V = BitValues[0]; 1727 if (!V) return nullptr; // Didn't find a bit? Must be zero. 1728 1729 if (!std::all_of(BitValues.begin(), BitValues.end(), 1730 [&](const Value *X) { return X == V; })) 1731 return nullptr; 1732 1733 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 1734 // only byteswap values with an even number of bytes. 1735 bool OKForBSwap = BW % 16 == 0, OKForBitReverse = true;; 1736 for (unsigned i = 0, e = BitValues.size(); i != e; ++i) { 1737 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[i], i, BW); 1738 OKForBitReverse &= 1739 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, BW); 1740 } 1741 1742 Intrinsic::ID Intrin; 1743 if (OKForBSwap) 1744 Intrin = Intrinsic::bswap; 1745 else if (OKForBitReverse) 1746 Intrin = Intrinsic::bitreverse; 1747 else 1748 return nullptr; 1749 1750 Function *F = Intrinsic::getDeclaration(I.getModule(), Intrin, ITy); 1751 return CallInst::Create(F, V); 1752 } 1753 1754 /// We have an expression of the form (A&C)|(B&D). Check if A is (cond?-1:0) 1755 /// and either B or D is ~(cond?-1,0) or (cond?0,-1), then we can simplify this 1756 /// expression to "cond ? C : D or B". 1757 static Instruction *MatchSelectFromAndOr(Value *A, Value *B, 1758 Value *C, Value *D) { 1759 // If A is not a select of -1/0, this cannot match. 1760 Value *Cond = nullptr; 1761 if (!match(A, m_SExt(m_Value(Cond))) || 1762 !Cond->getType()->isIntegerTy(1)) 1763 return nullptr; 1764 1765 // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B. 1766 if (match(D, m_Not(m_SExt(m_Specific(Cond))))) 1767 return SelectInst::Create(Cond, C, B); 1768 if (match(D, m_SExt(m_Not(m_Specific(Cond))))) 1769 return SelectInst::Create(Cond, C, B); 1770 1771 // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D. 1772 if (match(B, m_Not(m_SExt(m_Specific(Cond))))) 1773 return SelectInst::Create(Cond, C, D); 1774 if (match(B, m_SExt(m_Not(m_Specific(Cond))))) 1775 return SelectInst::Create(Cond, C, D); 1776 return nullptr; 1777 } 1778 1779 /// Fold (icmp)|(icmp) if possible. 1780 Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, 1781 Instruction *CxtI) { 1782 ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate(); 1783 1784 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2) 1785 // if K1 and K2 are a one-bit mask. 1786 ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1)); 1787 ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1)); 1788 1789 if (LHS->getPredicate() == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero() && 1790 RHS->getPredicate() == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) { 1791 1792 BinaryOperator *LAnd = dyn_cast<BinaryOperator>(LHS->getOperand(0)); 1793 BinaryOperator *RAnd = dyn_cast<BinaryOperator>(RHS->getOperand(0)); 1794 if (LAnd && RAnd && LAnd->hasOneUse() && RHS->hasOneUse() && 1795 LAnd->getOpcode() == Instruction::And && 1796 RAnd->getOpcode() == Instruction::And) { 1797 1798 Value *Mask = nullptr; 1799 Value *Masked = nullptr; 1800 if (LAnd->getOperand(0) == RAnd->getOperand(0) && 1801 isKnownToBeAPowerOfTwo(LAnd->getOperand(1), DL, false, 0, AC, CxtI, 1802 DT) && 1803 isKnownToBeAPowerOfTwo(RAnd->getOperand(1), DL, false, 0, AC, CxtI, 1804 DT)) { 1805 Mask = Builder->CreateOr(LAnd->getOperand(1), RAnd->getOperand(1)); 1806 Masked = Builder->CreateAnd(LAnd->getOperand(0), Mask); 1807 } else if (LAnd->getOperand(1) == RAnd->getOperand(1) && 1808 isKnownToBeAPowerOfTwo(LAnd->getOperand(0), DL, false, 0, AC, 1809 CxtI, DT) && 1810 isKnownToBeAPowerOfTwo(RAnd->getOperand(0), DL, false, 0, AC, 1811 CxtI, DT)) { 1812 Mask = Builder->CreateOr(LAnd->getOperand(0), RAnd->getOperand(0)); 1813 Masked = Builder->CreateAnd(LAnd->getOperand(1), Mask); 1814 } 1815 1816 if (Masked) 1817 return Builder->CreateICmp(ICmpInst::ICMP_NE, Masked, Mask); 1818 } 1819 } 1820 1821 // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3) 1822 // --> (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3) 1823 // The original condition actually refers to the following two ranges: 1824 // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3] 1825 // We can fold these two ranges if: 1826 // 1) C1 and C2 is unsigned greater than C3. 1827 // 2) The two ranges are separated. 1828 // 3) C1 ^ C2 is one-bit mask. 1829 // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask. 1830 // This implies all values in the two ranges differ by exactly one bit. 1831 1832 if ((LHSCC == ICmpInst::ICMP_ULT || LHSCC == ICmpInst::ICMP_ULE) && 1833 LHSCC == RHSCC && LHSCst && RHSCst && LHS->hasOneUse() && 1834 RHS->hasOneUse() && LHSCst->getType() == RHSCst->getType() && 1835 LHSCst->getValue() == (RHSCst->getValue())) { 1836 1837 Value *LAdd = LHS->getOperand(0); 1838 Value *RAdd = RHS->getOperand(0); 1839 1840 Value *LAddOpnd, *RAddOpnd; 1841 ConstantInt *LAddCst, *RAddCst; 1842 if (match(LAdd, m_Add(m_Value(LAddOpnd), m_ConstantInt(LAddCst))) && 1843 match(RAdd, m_Add(m_Value(RAddOpnd), m_ConstantInt(RAddCst))) && 1844 LAddCst->getValue().ugt(LHSCst->getValue()) && 1845 RAddCst->getValue().ugt(LHSCst->getValue())) { 1846 1847 APInt DiffCst = LAddCst->getValue() ^ RAddCst->getValue(); 1848 if (LAddOpnd == RAddOpnd && DiffCst.isPowerOf2()) { 1849 ConstantInt *MaxAddCst = nullptr; 1850 if (LAddCst->getValue().ult(RAddCst->getValue())) 1851 MaxAddCst = RAddCst; 1852 else 1853 MaxAddCst = LAddCst; 1854 1855 APInt RRangeLow = -RAddCst->getValue(); 1856 APInt RRangeHigh = RRangeLow + LHSCst->getValue(); 1857 APInt LRangeLow = -LAddCst->getValue(); 1858 APInt LRangeHigh = LRangeLow + LHSCst->getValue(); 1859 APInt LowRangeDiff = RRangeLow ^ LRangeLow; 1860 APInt HighRangeDiff = RRangeHigh ^ LRangeHigh; 1861 APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow 1862 : RRangeLow - LRangeLow; 1863 1864 if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff && 1865 RangeDiff.ugt(LHSCst->getValue())) { 1866 Value *MaskCst = ConstantInt::get(LAddCst->getType(), ~DiffCst); 1867 1868 Value *NewAnd = Builder->CreateAnd(LAddOpnd, MaskCst); 1869 Value *NewAdd = Builder->CreateAdd(NewAnd, MaxAddCst); 1870 return (Builder->CreateICmp(LHS->getPredicate(), NewAdd, LHSCst)); 1871 } 1872 } 1873 } 1874 } 1875 1876 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B) 1877 if (PredicatesFoldable(LHSCC, RHSCC)) { 1878 if (LHS->getOperand(0) == RHS->getOperand(1) && 1879 LHS->getOperand(1) == RHS->getOperand(0)) 1880 LHS->swapOperands(); 1881 if (LHS->getOperand(0) == RHS->getOperand(0) && 1882 LHS->getOperand(1) == RHS->getOperand(1)) { 1883 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1); 1884 unsigned Code = getICmpCode(LHS) | getICmpCode(RHS); 1885 bool isSigned = LHS->isSigned() || RHS->isSigned(); 1886 return getNewICmpValue(isSigned, Code, Op0, Op1, Builder); 1887 } 1888 } 1889 1890 // handle (roughly): 1891 // (icmp ne (A & B), C) | (icmp ne (A & D), E) 1892 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder)) 1893 return V; 1894 1895 Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0); 1896 if (LHS->hasOneUse() || RHS->hasOneUse()) { 1897 // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1) 1898 // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1) 1899 Value *A = nullptr, *B = nullptr; 1900 if (LHSCC == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero()) { 1901 B = Val; 1902 if (RHSCC == ICmpInst::ICMP_ULT && Val == RHS->getOperand(1)) 1903 A = Val2; 1904 else if (RHSCC == ICmpInst::ICMP_UGT && Val == Val2) 1905 A = RHS->getOperand(1); 1906 } 1907 // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1) 1908 // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1) 1909 else if (RHSCC == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) { 1910 B = Val2; 1911 if (LHSCC == ICmpInst::ICMP_ULT && Val2 == LHS->getOperand(1)) 1912 A = Val; 1913 else if (LHSCC == ICmpInst::ICMP_UGT && Val2 == Val) 1914 A = LHS->getOperand(1); 1915 } 1916 if (A && B) 1917 return Builder->CreateICmp( 1918 ICmpInst::ICMP_UGE, 1919 Builder->CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A); 1920 } 1921 1922 // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n 1923 if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/true)) 1924 return V; 1925 1926 // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n 1927 if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true)) 1928 return V; 1929 1930 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2). 1931 if (!LHSCst || !RHSCst) return nullptr; 1932 1933 if (LHSCst == RHSCst && LHSCC == RHSCC) { 1934 // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0) 1935 if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) { 1936 Value *NewOr = Builder->CreateOr(Val, Val2); 1937 return Builder->CreateICmp(LHSCC, NewOr, LHSCst); 1938 } 1939 } 1940 1941 // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1) 1942 // iff C2 + CA == C1. 1943 if (LHSCC == ICmpInst::ICMP_ULT && RHSCC == ICmpInst::ICMP_EQ) { 1944 ConstantInt *AddCst; 1945 if (match(Val, m_Add(m_Specific(Val2), m_ConstantInt(AddCst)))) 1946 if (RHSCst->getValue() + AddCst->getValue() == LHSCst->getValue()) 1947 return Builder->CreateICmpULE(Val, LHSCst); 1948 } 1949 1950 // From here on, we only handle: 1951 // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler. 1952 if (Val != Val2) return nullptr; 1953 1954 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere. 1955 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE || 1956 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE || 1957 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE || 1958 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE) 1959 return nullptr; 1960 1961 // We can't fold (ugt x, C) | (sgt x, C2). 1962 if (!PredicatesFoldable(LHSCC, RHSCC)) 1963 return nullptr; 1964 1965 // Ensure that the larger constant is on the RHS. 1966 bool ShouldSwap; 1967 if (CmpInst::isSigned(LHSCC) || 1968 (ICmpInst::isEquality(LHSCC) && 1969 CmpInst::isSigned(RHSCC))) 1970 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue()); 1971 else 1972 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue()); 1973 1974 if (ShouldSwap) { 1975 std::swap(LHS, RHS); 1976 std::swap(LHSCst, RHSCst); 1977 std::swap(LHSCC, RHSCC); 1978 } 1979 1980 // At this point, we know we have two icmp instructions 1981 // comparing a value against two constants and or'ing the result 1982 // together. Because of the above check, we know that we only have 1983 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the 1984 // icmp folding check above), that the two constants are not 1985 // equal. 1986 assert(LHSCst != RHSCst && "Compares not folded above?"); 1987 1988 switch (LHSCC) { 1989 default: llvm_unreachable("Unknown integer condition code!"); 1990 case ICmpInst::ICMP_EQ: 1991 switch (RHSCC) { 1992 default: llvm_unreachable("Unknown integer condition code!"); 1993 case ICmpInst::ICMP_EQ: 1994 if (LHS->getOperand(0) == RHS->getOperand(0)) { 1995 // if LHSCst and RHSCst differ only by one bit: 1996 // (A == C1 || A == C2) -> (A | (C1 ^ C2)) == C2 1997 assert(LHSCst->getValue().ule(LHSCst->getValue())); 1998 1999 APInt Xor = LHSCst->getValue() ^ RHSCst->getValue(); 2000 if (Xor.isPowerOf2()) { 2001 Value *Cst = Builder->getInt(Xor); 2002 Value *Or = Builder->CreateOr(LHS->getOperand(0), Cst); 2003 return Builder->CreateICmp(ICmpInst::ICMP_EQ, Or, RHSCst); 2004 } 2005 } 2006 2007 if (LHSCst == SubOne(RHSCst)) { 2008 // (X == 13 | X == 14) -> X-13 <u 2 2009 Constant *AddCST = ConstantExpr::getNeg(LHSCst); 2010 Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off"); 2011 AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst); 2012 return Builder->CreateICmpULT(Add, AddCST); 2013 } 2014 2015 break; // (X == 13 | X == 15) -> no change 2016 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change 2017 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change 2018 break; 2019 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15 2020 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15 2021 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15 2022 return RHS; 2023 } 2024 break; 2025 case ICmpInst::ICMP_NE: 2026 switch (RHSCC) { 2027 default: llvm_unreachable("Unknown integer condition code!"); 2028 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13 2029 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13 2030 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13 2031 return LHS; 2032 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true 2033 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true 2034 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true 2035 return Builder->getTrue(); 2036 } 2037 case ICmpInst::ICMP_ULT: 2038 switch (RHSCC) { 2039 default: llvm_unreachable("Unknown integer condition code!"); 2040 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change 2041 break; 2042 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2 2043 // If RHSCst is [us]MAXINT, it is always false. Not handling 2044 // this can cause overflow. 2045 if (RHSCst->isMaxValue(false)) 2046 return LHS; 2047 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false); 2048 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change 2049 break; 2050 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15 2051 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15 2052 return RHS; 2053 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change 2054 break; 2055 } 2056 break; 2057 case ICmpInst::ICMP_SLT: 2058 switch (RHSCC) { 2059 default: llvm_unreachable("Unknown integer condition code!"); 2060 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change 2061 break; 2062 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2 2063 // If RHSCst is [us]MAXINT, it is always false. Not handling 2064 // this can cause overflow. 2065 if (RHSCst->isMaxValue(true)) 2066 return LHS; 2067 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false); 2068 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change 2069 break; 2070 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15 2071 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15 2072 return RHS; 2073 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change 2074 break; 2075 } 2076 break; 2077 case ICmpInst::ICMP_UGT: 2078 switch (RHSCC) { 2079 default: llvm_unreachable("Unknown integer condition code!"); 2080 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13 2081 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13 2082 return LHS; 2083 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change 2084 break; 2085 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true 2086 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true 2087 return Builder->getTrue(); 2088 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change 2089 break; 2090 } 2091 break; 2092 case ICmpInst::ICMP_SGT: 2093 switch (RHSCC) { 2094 default: llvm_unreachable("Unknown integer condition code!"); 2095 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13 2096 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13 2097 return LHS; 2098 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change 2099 break; 2100 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true 2101 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true 2102 return Builder->getTrue(); 2103 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change 2104 break; 2105 } 2106 break; 2107 } 2108 return nullptr; 2109 } 2110 2111 /// Optimize (fcmp)|(fcmp). NOTE: Unlike the rest of instcombine, this returns 2112 /// a Value which should already be inserted into the function. 2113 Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) { 2114 if (LHS->getPredicate() == FCmpInst::FCMP_UNO && 2115 RHS->getPredicate() == FCmpInst::FCMP_UNO && 2116 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) { 2117 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1))) 2118 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) { 2119 // If either of the constants are nans, then the whole thing returns 2120 // true. 2121 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN()) 2122 return Builder->getTrue(); 2123 2124 // Otherwise, no need to compare the two constants, compare the 2125 // rest. 2126 return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0)); 2127 } 2128 2129 // Handle vector zeros. This occurs because the canonical form of 2130 // "fcmp uno x,x" is "fcmp uno x, 0". 2131 if (isa<ConstantAggregateZero>(LHS->getOperand(1)) && 2132 isa<ConstantAggregateZero>(RHS->getOperand(1))) 2133 return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0)); 2134 2135 return nullptr; 2136 } 2137 2138 Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1); 2139 Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1); 2140 FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate(); 2141 2142 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) { 2143 // Swap RHS operands to match LHS. 2144 Op1CC = FCmpInst::getSwappedPredicate(Op1CC); 2145 std::swap(Op1LHS, Op1RHS); 2146 } 2147 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) { 2148 // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y). 2149 if (Op0CC == Op1CC) 2150 return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS); 2151 if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE) 2152 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1); 2153 if (Op0CC == FCmpInst::FCMP_FALSE) 2154 return RHS; 2155 if (Op1CC == FCmpInst::FCMP_FALSE) 2156 return LHS; 2157 bool Op0Ordered; 2158 bool Op1Ordered; 2159 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered); 2160 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered); 2161 if (Op0Ordered == Op1Ordered) { 2162 // If both are ordered or unordered, return a new fcmp with 2163 // or'ed predicates. 2164 return getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS, Builder); 2165 } 2166 } 2167 return nullptr; 2168 } 2169 2170 /// This helper function folds: 2171 /// 2172 /// ((A | B) & C1) | (B & C2) 2173 /// 2174 /// into: 2175 /// 2176 /// (A & C1) | B 2177 /// 2178 /// when the XOR of the two constants is "all ones" (-1). 2179 Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op, 2180 Value *A, Value *B, Value *C) { 2181 ConstantInt *CI1 = dyn_cast<ConstantInt>(C); 2182 if (!CI1) return nullptr; 2183 2184 Value *V1 = nullptr; 2185 ConstantInt *CI2 = nullptr; 2186 if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return nullptr; 2187 2188 APInt Xor = CI1->getValue() ^ CI2->getValue(); 2189 if (!Xor.isAllOnesValue()) return nullptr; 2190 2191 if (V1 == A || V1 == B) { 2192 Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1); 2193 return BinaryOperator::CreateOr(NewOp, V1); 2194 } 2195 2196 return nullptr; 2197 } 2198 2199 /// \brief This helper function folds: 2200 /// 2201 /// ((A | B) & C1) ^ (B & C2) 2202 /// 2203 /// into: 2204 /// 2205 /// (A & C1) ^ B 2206 /// 2207 /// when the XOR of the two constants is "all ones" (-1). 2208 Instruction *InstCombiner::FoldXorWithConstants(BinaryOperator &I, Value *Op, 2209 Value *A, Value *B, Value *C) { 2210 ConstantInt *CI1 = dyn_cast<ConstantInt>(C); 2211 if (!CI1) 2212 return nullptr; 2213 2214 Value *V1 = nullptr; 2215 ConstantInt *CI2 = nullptr; 2216 if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) 2217 return nullptr; 2218 2219 APInt Xor = CI1->getValue() ^ CI2->getValue(); 2220 if (!Xor.isAllOnesValue()) 2221 return nullptr; 2222 2223 if (V1 == A || V1 == B) { 2224 Value *NewOp = Builder->CreateAnd(V1 == A ? B : A, CI1); 2225 return BinaryOperator::CreateXor(NewOp, V1); 2226 } 2227 2228 return nullptr; 2229 } 2230 2231 Instruction *InstCombiner::visitOr(BinaryOperator &I) { 2232 bool Changed = SimplifyAssociativeOrCommutative(I); 2233 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2234 2235 if (Value *V = SimplifyVectorOp(I)) 2236 return ReplaceInstUsesWith(I, V); 2237 2238 if (Value *V = SimplifyOrInst(Op0, Op1, DL, TLI, DT, AC)) 2239 return ReplaceInstUsesWith(I, V); 2240 2241 // (A&B)|(A&C) -> A&(B|C) etc 2242 if (Value *V = SimplifyUsingDistributiveLaws(I)) 2243 return ReplaceInstUsesWith(I, V); 2244 2245 // See if we can simplify any instructions used by the instruction whose sole 2246 // purpose is to compute bits we don't care about. 2247 if (SimplifyDemandedInstructionBits(I)) 2248 return &I; 2249 2250 if (Value *V = SimplifyBSwap(I)) 2251 return ReplaceInstUsesWith(I, V); 2252 2253 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { 2254 ConstantInt *C1 = nullptr; Value *X = nullptr; 2255 // (X & C1) | C2 --> (X | C2) & (C1|C2) 2256 // iff (C1 & C2) == 0. 2257 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && 2258 (RHS->getValue() & C1->getValue()) != 0 && 2259 Op0->hasOneUse()) { 2260 Value *Or = Builder->CreateOr(X, RHS); 2261 Or->takeName(Op0); 2262 return BinaryOperator::CreateAnd(Or, 2263 Builder->getInt(RHS->getValue() | C1->getValue())); 2264 } 2265 2266 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2) 2267 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && 2268 Op0->hasOneUse()) { 2269 Value *Or = Builder->CreateOr(X, RHS); 2270 Or->takeName(Op0); 2271 return BinaryOperator::CreateXor(Or, 2272 Builder->getInt(C1->getValue() & ~RHS->getValue())); 2273 } 2274 2275 // Try to fold constant and into select arguments. 2276 if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) 2277 if (Instruction *R = FoldOpIntoSelect(I, SI)) 2278 return R; 2279 2280 if (isa<PHINode>(Op0)) 2281 if (Instruction *NV = FoldOpIntoPhi(I)) 2282 return NV; 2283 } 2284 2285 Value *A = nullptr, *B = nullptr; 2286 ConstantInt *C1 = nullptr, *C2 = nullptr; 2287 2288 // (A | B) | C and A | (B | C) -> bswap if possible. 2289 bool OrOfOrs = match(Op0, m_Or(m_Value(), m_Value())) || 2290 match(Op1, m_Or(m_Value(), m_Value())); 2291 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible. 2292 bool OrOfShifts = match(Op0, m_LogicalShift(m_Value(), m_Value())) && 2293 match(Op1, m_LogicalShift(m_Value(), m_Value())); 2294 // (A & B) | (C & D) -> bswap if possible. 2295 bool OrOfAnds = match(Op0, m_And(m_Value(), m_Value())) && 2296 match(Op1, m_And(m_Value(), m_Value())); 2297 2298 if (OrOfOrs || OrOfShifts || OrOfAnds) 2299 if (Instruction *BSwap = MatchBSwapOrBitReverse(I)) 2300 return BSwap; 2301 2302 // (X^C)|Y -> (X|Y)^C iff Y&C == 0 2303 if (Op0->hasOneUse() && 2304 match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) && 2305 MaskedValueIsZero(Op1, C1->getValue(), 0, &I)) { 2306 Value *NOr = Builder->CreateOr(A, Op1); 2307 NOr->takeName(Op0); 2308 return BinaryOperator::CreateXor(NOr, C1); 2309 } 2310 2311 // Y|(X^C) -> (X|Y)^C iff Y&C == 0 2312 if (Op1->hasOneUse() && 2313 match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) && 2314 MaskedValueIsZero(Op0, C1->getValue(), 0, &I)) { 2315 Value *NOr = Builder->CreateOr(A, Op0); 2316 NOr->takeName(Op0); 2317 return BinaryOperator::CreateXor(NOr, C1); 2318 } 2319 2320 // ((~A & B) | A) -> (A | B) 2321 if (match(Op0, m_And(m_Not(m_Value(A)), m_Value(B))) && 2322 match(Op1, m_Specific(A))) 2323 return BinaryOperator::CreateOr(A, B); 2324 2325 // ((A & B) | ~A) -> (~A | B) 2326 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2327 match(Op1, m_Not(m_Specific(A)))) 2328 return BinaryOperator::CreateOr(Builder->CreateNot(A), B); 2329 2330 // (A & (~B)) | (A ^ B) -> (A ^ B) 2331 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 2332 match(Op1, m_Xor(m_Specific(A), m_Specific(B)))) 2333 return BinaryOperator::CreateXor(A, B); 2334 2335 // (A ^ B) | ( A & (~B)) -> (A ^ B) 2336 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2337 match(Op1, m_And(m_Specific(A), m_Not(m_Specific(B))))) 2338 return BinaryOperator::CreateXor(A, B); 2339 2340 // (A & C)|(B & D) 2341 Value *C = nullptr, *D = nullptr; 2342 if (match(Op0, m_And(m_Value(A), m_Value(C))) && 2343 match(Op1, m_And(m_Value(B), m_Value(D)))) { 2344 Value *V1 = nullptr, *V2 = nullptr; 2345 C1 = dyn_cast<ConstantInt>(C); 2346 C2 = dyn_cast<ConstantInt>(D); 2347 if (C1 && C2) { // (A & C1)|(B & C2) 2348 if ((C1->getValue() & C2->getValue()) == 0) { 2349 // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2) 2350 // iff (C1&C2) == 0 and (N&~C1) == 0 2351 if (match(A, m_Or(m_Value(V1), m_Value(V2))) && 2352 ((V1 == B && 2353 MaskedValueIsZero(V2, ~C1->getValue(), 0, &I)) || // (V|N) 2354 (V2 == B && 2355 MaskedValueIsZero(V1, ~C1->getValue(), 0, &I)))) // (N|V) 2356 return BinaryOperator::CreateAnd(A, 2357 Builder->getInt(C1->getValue()|C2->getValue())); 2358 // Or commutes, try both ways. 2359 if (match(B, m_Or(m_Value(V1), m_Value(V2))) && 2360 ((V1 == A && 2361 MaskedValueIsZero(V2, ~C2->getValue(), 0, &I)) || // (V|N) 2362 (V2 == A && 2363 MaskedValueIsZero(V1, ~C2->getValue(), 0, &I)))) // (N|V) 2364 return BinaryOperator::CreateAnd(B, 2365 Builder->getInt(C1->getValue()|C2->getValue())); 2366 2367 // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2) 2368 // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0. 2369 ConstantInt *C3 = nullptr, *C4 = nullptr; 2370 if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) && 2371 (C3->getValue() & ~C1->getValue()) == 0 && 2372 match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) && 2373 (C4->getValue() & ~C2->getValue()) == 0) { 2374 V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield"); 2375 return BinaryOperator::CreateAnd(V2, 2376 Builder->getInt(C1->getValue()|C2->getValue())); 2377 } 2378 } 2379 } 2380 2381 // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants. 2382 // Don't do this for vector select idioms, the code generator doesn't handle 2383 // them well yet. 2384 if (!I.getType()->isVectorTy()) { 2385 if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D)) 2386 return Match; 2387 if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C)) 2388 return Match; 2389 if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D)) 2390 return Match; 2391 if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C)) 2392 return Match; 2393 } 2394 2395 // ((A&~B)|(~A&B)) -> A^B 2396 if ((match(C, m_Not(m_Specific(D))) && 2397 match(B, m_Not(m_Specific(A))))) 2398 return BinaryOperator::CreateXor(A, D); 2399 // ((~B&A)|(~A&B)) -> A^B 2400 if ((match(A, m_Not(m_Specific(D))) && 2401 match(B, m_Not(m_Specific(C))))) 2402 return BinaryOperator::CreateXor(C, D); 2403 // ((A&~B)|(B&~A)) -> A^B 2404 if ((match(C, m_Not(m_Specific(B))) && 2405 match(D, m_Not(m_Specific(A))))) 2406 return BinaryOperator::CreateXor(A, B); 2407 // ((~B&A)|(B&~A)) -> A^B 2408 if ((match(A, m_Not(m_Specific(B))) && 2409 match(D, m_Not(m_Specific(C))))) 2410 return BinaryOperator::CreateXor(C, B); 2411 2412 // ((A|B)&1)|(B&-2) -> (A&1) | B 2413 if (match(A, m_Or(m_Value(V1), m_Specific(B))) || 2414 match(A, m_Or(m_Specific(B), m_Value(V1)))) { 2415 Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C); 2416 if (Ret) return Ret; 2417 } 2418 // (B&-2)|((A|B)&1) -> (A&1) | B 2419 if (match(B, m_Or(m_Specific(A), m_Value(V1))) || 2420 match(B, m_Or(m_Value(V1), m_Specific(A)))) { 2421 Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D); 2422 if (Ret) return Ret; 2423 } 2424 // ((A^B)&1)|(B&-2) -> (A&1) ^ B 2425 if (match(A, m_Xor(m_Value(V1), m_Specific(B))) || 2426 match(A, m_Xor(m_Specific(B), m_Value(V1)))) { 2427 Instruction *Ret = FoldXorWithConstants(I, Op1, V1, B, C); 2428 if (Ret) return Ret; 2429 } 2430 // (B&-2)|((A^B)&1) -> (A&1) ^ B 2431 if (match(B, m_Xor(m_Specific(A), m_Value(V1))) || 2432 match(B, m_Xor(m_Value(V1), m_Specific(A)))) { 2433 Instruction *Ret = FoldXorWithConstants(I, Op0, A, V1, D); 2434 if (Ret) return Ret; 2435 } 2436 } 2437 2438 // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C 2439 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) 2440 if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A)))) 2441 if (Op1->hasOneUse() || cast<BinaryOperator>(Op1)->hasOneUse()) 2442 return BinaryOperator::CreateOr(Op0, C); 2443 2444 // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C 2445 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B)))) 2446 if (match(Op1, m_Xor(m_Specific(B), m_Specific(A)))) 2447 if (Op0->hasOneUse() || cast<BinaryOperator>(Op0)->hasOneUse()) 2448 return BinaryOperator::CreateOr(Op1, C); 2449 2450 // ((B | C) & A) | B -> B | (A & C) 2451 if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A)))) 2452 return BinaryOperator::CreateOr(Op1, Builder->CreateAnd(A, C)); 2453 2454 if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder)) 2455 return DeMorgan; 2456 2457 // Canonicalize xor to the RHS. 2458 bool SwappedForXor = false; 2459 if (match(Op0, m_Xor(m_Value(), m_Value()))) { 2460 std::swap(Op0, Op1); 2461 SwappedForXor = true; 2462 } 2463 2464 // A | ( A ^ B) -> A | B 2465 // A | (~A ^ B) -> A | ~B 2466 // (A & B) | (A ^ B) 2467 if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) { 2468 if (Op0 == A || Op0 == B) 2469 return BinaryOperator::CreateOr(A, B); 2470 2471 if (match(Op0, m_And(m_Specific(A), m_Specific(B))) || 2472 match(Op0, m_And(m_Specific(B), m_Specific(A)))) 2473 return BinaryOperator::CreateOr(A, B); 2474 2475 if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) { 2476 Value *Not = Builder->CreateNot(B, B->getName()+".not"); 2477 return BinaryOperator::CreateOr(Not, Op0); 2478 } 2479 if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) { 2480 Value *Not = Builder->CreateNot(A, A->getName()+".not"); 2481 return BinaryOperator::CreateOr(Not, Op0); 2482 } 2483 } 2484 2485 // A | ~(A | B) -> A | ~B 2486 // A | ~(A ^ B) -> A | ~B 2487 if (match(Op1, m_Not(m_Value(A)))) 2488 if (BinaryOperator *B = dyn_cast<BinaryOperator>(A)) 2489 if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) && 2490 Op1->hasOneUse() && (B->getOpcode() == Instruction::Or || 2491 B->getOpcode() == Instruction::Xor)) { 2492 Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) : 2493 B->getOperand(0); 2494 Value *Not = Builder->CreateNot(NotOp, NotOp->getName()+".not"); 2495 return BinaryOperator::CreateOr(Not, Op0); 2496 } 2497 2498 // (A & B) | ((~A) ^ B) -> (~A ^ B) 2499 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2500 match(Op1, m_Xor(m_Not(m_Specific(A)), m_Specific(B)))) 2501 return BinaryOperator::CreateXor(Builder->CreateNot(A), B); 2502 2503 // ((~A) ^ B) | (A & B) -> (~A ^ B) 2504 if (match(Op0, m_Xor(m_Not(m_Value(A)), m_Value(B))) && 2505 match(Op1, m_And(m_Specific(A), m_Specific(B)))) 2506 return BinaryOperator::CreateXor(Builder->CreateNot(A), B); 2507 2508 if (SwappedForXor) 2509 std::swap(Op0, Op1); 2510 2511 { 2512 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0); 2513 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1); 2514 if (LHS && RHS) 2515 if (Value *Res = FoldOrOfICmps(LHS, RHS, &I)) 2516 return ReplaceInstUsesWith(I, Res); 2517 2518 // TODO: Make this recursive; it's a little tricky because an arbitrary 2519 // number of 'or' instructions might have to be created. 2520 Value *X, *Y; 2521 if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) { 2522 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 2523 if (Value *Res = FoldOrOfICmps(LHS, Cmp, &I)) 2524 return ReplaceInstUsesWith(I, Builder->CreateOr(Res, Y)); 2525 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 2526 if (Value *Res = FoldOrOfICmps(LHS, Cmp, &I)) 2527 return ReplaceInstUsesWith(I, Builder->CreateOr(Res, X)); 2528 } 2529 if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) { 2530 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 2531 if (Value *Res = FoldOrOfICmps(Cmp, RHS, &I)) 2532 return ReplaceInstUsesWith(I, Builder->CreateOr(Res, Y)); 2533 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 2534 if (Value *Res = FoldOrOfICmps(Cmp, RHS, &I)) 2535 return ReplaceInstUsesWith(I, Builder->CreateOr(Res, X)); 2536 } 2537 } 2538 2539 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y) 2540 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) 2541 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) 2542 if (Value *Res = FoldOrOfFCmps(LHS, RHS)) 2543 return ReplaceInstUsesWith(I, Res); 2544 2545 // fold (or (cast A), (cast B)) -> (cast (or A, B)) 2546 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) { 2547 CastInst *Op1C = dyn_cast<CastInst>(Op1); 2548 if (Op1C && Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ? 2549 Type *SrcTy = Op0C->getOperand(0)->getType(); 2550 if (SrcTy == Op1C->getOperand(0)->getType() && 2551 SrcTy->isIntOrIntVectorTy()) { 2552 Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0); 2553 2554 if ((!isa<ICmpInst>(Op0COp) || !isa<ICmpInst>(Op1COp)) && 2555 // Only do this if the casts both really cause code to be 2556 // generated. 2557 ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) && 2558 ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) { 2559 Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName()); 2560 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType()); 2561 } 2562 2563 // If this is or(cast(icmp), cast(icmp)), try to fold this even if the 2564 // cast is otherwise not optimizable. This happens for vector sexts. 2565 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp)) 2566 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp)) 2567 if (Value *Res = FoldOrOfICmps(LHS, RHS, &I)) 2568 return CastInst::Create(Op0C->getOpcode(), Res, I.getType()); 2569 2570 // If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the 2571 // cast is otherwise not optimizable. This happens for vector sexts. 2572 if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp)) 2573 if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp)) 2574 if (Value *Res = FoldOrOfFCmps(LHS, RHS)) 2575 return CastInst::Create(Op0C->getOpcode(), Res, I.getType()); 2576 } 2577 } 2578 } 2579 2580 // or(sext(A), B) -> A ? -1 : B where A is an i1 2581 // or(A, sext(B)) -> B ? -1 : A where B is an i1 2582 if (match(Op0, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1)) 2583 return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1); 2584 if (match(Op1, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1)) 2585 return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0); 2586 2587 // Note: If we've gotten to the point of visiting the outer OR, then the 2588 // inner one couldn't be simplified. If it was a constant, then it won't 2589 // be simplified by a later pass either, so we try swapping the inner/outer 2590 // ORs in the hopes that we'll be able to simplify it this way. 2591 // (X|C) | V --> (X|V) | C 2592 if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) && 2593 match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) { 2594 Value *Inner = Builder->CreateOr(A, Op1); 2595 Inner->takeName(Op0); 2596 return BinaryOperator::CreateOr(Inner, C1); 2597 } 2598 2599 // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D)) 2600 // Since this OR statement hasn't been optimized further yet, we hope 2601 // that this transformation will allow the new ORs to be optimized. 2602 { 2603 Value *X = nullptr, *Y = nullptr; 2604 if (Op0->hasOneUse() && Op1->hasOneUse() && 2605 match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) && 2606 match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) { 2607 Value *orTrue = Builder->CreateOr(A, C); 2608 Value *orFalse = Builder->CreateOr(B, D); 2609 return SelectInst::Create(X, orTrue, orFalse); 2610 } 2611 } 2612 2613 return Changed ? &I : nullptr; 2614 } 2615 2616 Instruction *InstCombiner::visitXor(BinaryOperator &I) { 2617 bool Changed = SimplifyAssociativeOrCommutative(I); 2618 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2619 2620 if (Value *V = SimplifyVectorOp(I)) 2621 return ReplaceInstUsesWith(I, V); 2622 2623 if (Value *V = SimplifyXorInst(Op0, Op1, DL, TLI, DT, AC)) 2624 return ReplaceInstUsesWith(I, V); 2625 2626 // (A&B)^(A&C) -> A&(B^C) etc 2627 if (Value *V = SimplifyUsingDistributiveLaws(I)) 2628 return ReplaceInstUsesWith(I, V); 2629 2630 // See if we can simplify any instructions used by the instruction whose sole 2631 // purpose is to compute bits we don't care about. 2632 if (SimplifyDemandedInstructionBits(I)) 2633 return &I; 2634 2635 if (Value *V = SimplifyBSwap(I)) 2636 return ReplaceInstUsesWith(I, V); 2637 2638 // Is this a ~ operation? 2639 if (Value *NotOp = dyn_castNotVal(&I)) { 2640 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) { 2641 if (Op0I->getOpcode() == Instruction::And || 2642 Op0I->getOpcode() == Instruction::Or) { 2643 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law 2644 // ~(~X | Y) === (X & ~Y) - De Morgan's Law 2645 if (dyn_castNotVal(Op0I->getOperand(1))) 2646 Op0I->swapOperands(); 2647 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) { 2648 Value *NotY = 2649 Builder->CreateNot(Op0I->getOperand(1), 2650 Op0I->getOperand(1)->getName()+".not"); 2651 if (Op0I->getOpcode() == Instruction::And) 2652 return BinaryOperator::CreateOr(Op0NotVal, NotY); 2653 return BinaryOperator::CreateAnd(Op0NotVal, NotY); 2654 } 2655 2656 // ~(X & Y) --> (~X | ~Y) - De Morgan's Law 2657 // ~(X | Y) === (~X & ~Y) - De Morgan's Law 2658 if (IsFreeToInvert(Op0I->getOperand(0), 2659 Op0I->getOperand(0)->hasOneUse()) && 2660 IsFreeToInvert(Op0I->getOperand(1), 2661 Op0I->getOperand(1)->hasOneUse())) { 2662 Value *NotX = 2663 Builder->CreateNot(Op0I->getOperand(0), "notlhs"); 2664 Value *NotY = 2665 Builder->CreateNot(Op0I->getOperand(1), "notrhs"); 2666 if (Op0I->getOpcode() == Instruction::And) 2667 return BinaryOperator::CreateOr(NotX, NotY); 2668 return BinaryOperator::CreateAnd(NotX, NotY); 2669 } 2670 2671 } else if (Op0I->getOpcode() == Instruction::AShr) { 2672 // ~(~X >>s Y) --> (X >>s Y) 2673 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) 2674 return BinaryOperator::CreateAShr(Op0NotVal, Op0I->getOperand(1)); 2675 } 2676 } 2677 } 2678 2679 if (Constant *RHS = dyn_cast<Constant>(Op1)) { 2680 if (RHS->isAllOnesValue() && Op0->hasOneUse()) 2681 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B 2682 if (CmpInst *CI = dyn_cast<CmpInst>(Op0)) 2683 return CmpInst::Create(CI->getOpcode(), 2684 CI->getInversePredicate(), 2685 CI->getOperand(0), CI->getOperand(1)); 2686 } 2687 2688 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { 2689 // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp). 2690 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) { 2691 if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) { 2692 if (CI->hasOneUse() && Op0C->hasOneUse()) { 2693 Instruction::CastOps Opcode = Op0C->getOpcode(); 2694 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && 2695 (RHS == ConstantExpr::getCast(Opcode, Builder->getTrue(), 2696 Op0C->getDestTy()))) { 2697 CI->setPredicate(CI->getInversePredicate()); 2698 return CastInst::Create(Opcode, CI, Op0C->getType()); 2699 } 2700 } 2701 } 2702 } 2703 2704 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) { 2705 // ~(c-X) == X-c-1 == X+(-c-1) 2706 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue()) 2707 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) { 2708 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C); 2709 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C, 2710 ConstantInt::get(I.getType(), 1)); 2711 return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS); 2712 } 2713 2714 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) { 2715 if (Op0I->getOpcode() == Instruction::Add) { 2716 // ~(X-c) --> (-c-1)-X 2717 if (RHS->isAllOnesValue()) { 2718 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI); 2719 return BinaryOperator::CreateSub( 2720 ConstantExpr::getSub(NegOp0CI, 2721 ConstantInt::get(I.getType(), 1)), 2722 Op0I->getOperand(0)); 2723 } else if (RHS->getValue().isSignBit()) { 2724 // (X + C) ^ signbit -> (X + C + signbit) 2725 Constant *C = Builder->getInt(RHS->getValue() + Op0CI->getValue()); 2726 return BinaryOperator::CreateAdd(Op0I->getOperand(0), C); 2727 2728 } 2729 } else if (Op0I->getOpcode() == Instruction::Or) { 2730 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0 2731 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue(), 2732 0, &I)) { 2733 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS); 2734 // Anything in both C1 and C2 is known to be zero, remove it from 2735 // NewRHS. 2736 Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS); 2737 NewRHS = ConstantExpr::getAnd(NewRHS, 2738 ConstantExpr::getNot(CommonBits)); 2739 Worklist.Add(Op0I); 2740 I.setOperand(0, Op0I->getOperand(0)); 2741 I.setOperand(1, NewRHS); 2742 return &I; 2743 } 2744 } else if (Op0I->getOpcode() == Instruction::LShr) { 2745 // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3) 2746 // E1 = "X ^ C1" 2747 BinaryOperator *E1; 2748 ConstantInt *C1; 2749 if (Op0I->hasOneUse() && 2750 (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) && 2751 E1->getOpcode() == Instruction::Xor && 2752 (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) { 2753 // fold (C1 >> C2) ^ C3 2754 ConstantInt *C2 = Op0CI, *C3 = RHS; 2755 APInt FoldConst = C1->getValue().lshr(C2->getValue()); 2756 FoldConst ^= C3->getValue(); 2757 // Prepare the two operands. 2758 Value *Opnd0 = Builder->CreateLShr(E1->getOperand(0), C2); 2759 Opnd0->takeName(Op0I); 2760 cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc()); 2761 Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst); 2762 2763 return BinaryOperator::CreateXor(Opnd0, FoldVal); 2764 } 2765 } 2766 } 2767 } 2768 2769 // Try to fold constant and into select arguments. 2770 if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) 2771 if (Instruction *R = FoldOpIntoSelect(I, SI)) 2772 return R; 2773 if (isa<PHINode>(Op0)) 2774 if (Instruction *NV = FoldOpIntoPhi(I)) 2775 return NV; 2776 } 2777 2778 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1); 2779 if (Op1I) { 2780 Value *A, *B; 2781 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) { 2782 if (A == Op0) { // B^(B|A) == (A|B)^B 2783 Op1I->swapOperands(); 2784 I.swapOperands(); 2785 std::swap(Op0, Op1); 2786 } else if (B == Op0) { // B^(A|B) == (A|B)^B 2787 I.swapOperands(); // Simplified below. 2788 std::swap(Op0, Op1); 2789 } 2790 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && 2791 Op1I->hasOneUse()){ 2792 if (A == Op0) { // A^(A&B) -> A^(B&A) 2793 Op1I->swapOperands(); 2794 std::swap(A, B); 2795 } 2796 if (B == Op0) { // A^(B&A) -> (B&A)^A 2797 I.swapOperands(); // Simplified below. 2798 std::swap(Op0, Op1); 2799 } 2800 } 2801 } 2802 2803 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0); 2804 if (Op0I) { 2805 Value *A, *B; 2806 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && 2807 Op0I->hasOneUse()) { 2808 if (A == Op1) // (B|A)^B == (A|B)^B 2809 std::swap(A, B); 2810 if (B == Op1) // (A|B)^B == A & ~B 2811 return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1)); 2812 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && 2813 Op0I->hasOneUse()){ 2814 if (A == Op1) // (A&B)^A -> (B&A)^A 2815 std::swap(A, B); 2816 if (B == Op1 && // (B&A)^A == ~B & A 2817 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C 2818 return BinaryOperator::CreateAnd(Builder->CreateNot(A), Op1); 2819 } 2820 } 2821 } 2822 2823 if (Op0I && Op1I) { 2824 Value *A, *B, *C, *D; 2825 // (A & B)^(A | B) -> A ^ B 2826 if (match(Op0I, m_And(m_Value(A), m_Value(B))) && 2827 match(Op1I, m_Or(m_Value(C), m_Value(D)))) { 2828 if ((A == C && B == D) || (A == D && B == C)) 2829 return BinaryOperator::CreateXor(A, B); 2830 } 2831 // (A | B)^(A & B) -> A ^ B 2832 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && 2833 match(Op1I, m_And(m_Value(C), m_Value(D)))) { 2834 if ((A == C && B == D) || (A == D && B == C)) 2835 return BinaryOperator::CreateXor(A, B); 2836 } 2837 // (A | ~B) ^ (~A | B) -> A ^ B 2838 if (match(Op0I, m_Or(m_Value(A), m_Not(m_Value(B)))) && 2839 match(Op1I, m_Or(m_Not(m_Specific(A)), m_Specific(B)))) { 2840 return BinaryOperator::CreateXor(A, B); 2841 } 2842 // (~A | B) ^ (A | ~B) -> A ^ B 2843 if (match(Op0I, m_Or(m_Not(m_Value(A)), m_Value(B))) && 2844 match(Op1I, m_Or(m_Specific(A), m_Not(m_Specific(B))))) { 2845 return BinaryOperator::CreateXor(A, B); 2846 } 2847 // (A & ~B) ^ (~A & B) -> A ^ B 2848 if (match(Op0I, m_And(m_Value(A), m_Not(m_Value(B)))) && 2849 match(Op1I, m_And(m_Not(m_Specific(A)), m_Specific(B)))) { 2850 return BinaryOperator::CreateXor(A, B); 2851 } 2852 // (~A & B) ^ (A & ~B) -> A ^ B 2853 if (match(Op0I, m_And(m_Not(m_Value(A)), m_Value(B))) && 2854 match(Op1I, m_And(m_Specific(A), m_Not(m_Specific(B))))) { 2855 return BinaryOperator::CreateXor(A, B); 2856 } 2857 // (A ^ C)^(A | B) -> ((~A) & B) ^ C 2858 if (match(Op0I, m_Xor(m_Value(D), m_Value(C))) && 2859 match(Op1I, m_Or(m_Value(A), m_Value(B)))) { 2860 if (D == A) 2861 return BinaryOperator::CreateXor( 2862 Builder->CreateAnd(Builder->CreateNot(A), B), C); 2863 if (D == B) 2864 return BinaryOperator::CreateXor( 2865 Builder->CreateAnd(Builder->CreateNot(B), A), C); 2866 } 2867 // (A | B)^(A ^ C) -> ((~A) & B) ^ C 2868 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && 2869 match(Op1I, m_Xor(m_Value(D), m_Value(C)))) { 2870 if (D == A) 2871 return BinaryOperator::CreateXor( 2872 Builder->CreateAnd(Builder->CreateNot(A), B), C); 2873 if (D == B) 2874 return BinaryOperator::CreateXor( 2875 Builder->CreateAnd(Builder->CreateNot(B), A), C); 2876 } 2877 // (A & B) ^ (A ^ B) -> (A | B) 2878 if (match(Op0I, m_And(m_Value(A), m_Value(B))) && 2879 match(Op1I, m_Xor(m_Specific(A), m_Specific(B)))) 2880 return BinaryOperator::CreateOr(A, B); 2881 // (A ^ B) ^ (A & B) -> (A | B) 2882 if (match(Op0I, m_Xor(m_Value(A), m_Value(B))) && 2883 match(Op1I, m_And(m_Specific(A), m_Specific(B)))) 2884 return BinaryOperator::CreateOr(A, B); 2885 } 2886 2887 Value *A = nullptr, *B = nullptr; 2888 // (A & ~B) ^ (~A) -> ~(A & B) 2889 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 2890 match(Op1, m_Not(m_Specific(A)))) 2891 return BinaryOperator::CreateNot(Builder->CreateAnd(A, B)); 2892 2893 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B) 2894 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) 2895 if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0))) 2896 if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) { 2897 if (LHS->getOperand(0) == RHS->getOperand(1) && 2898 LHS->getOperand(1) == RHS->getOperand(0)) 2899 LHS->swapOperands(); 2900 if (LHS->getOperand(0) == RHS->getOperand(0) && 2901 LHS->getOperand(1) == RHS->getOperand(1)) { 2902 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1); 2903 unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS); 2904 bool isSigned = LHS->isSigned() || RHS->isSigned(); 2905 return ReplaceInstUsesWith(I, 2906 getNewICmpValue(isSigned, Code, Op0, Op1, 2907 Builder)); 2908 } 2909 } 2910 2911 // fold (xor (cast A), (cast B)) -> (cast (xor A, B)) 2912 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) { 2913 if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) 2914 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind? 2915 Type *SrcTy = Op0C->getOperand(0)->getType(); 2916 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegerTy() && 2917 // Only do this if the casts both really cause code to be generated. 2918 ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0), 2919 I.getType()) && 2920 ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0), 2921 I.getType())) { 2922 Value *NewOp = Builder->CreateXor(Op0C->getOperand(0), 2923 Op1C->getOperand(0), I.getName()); 2924 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType()); 2925 } 2926 } 2927 } 2928 2929 return Changed ? &I : nullptr; 2930 } 2931