Home | History | Annotate | Download | only in X86
      1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the X86 specific subclass of TargetMachine.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "X86TargetMachine.h"
     15 #include "X86.h"
     16 #include "X86TargetObjectFile.h"
     17 #include "X86TargetTransformInfo.h"
     18 #include "llvm/CodeGen/Passes.h"
     19 #include "llvm/IR/Function.h"
     20 #include "llvm/IR/LegacyPassManager.h"
     21 #include "llvm/Support/CommandLine.h"
     22 #include "llvm/Support/FormattedStream.h"
     23 #include "llvm/Support/TargetRegistry.h"
     24 #include "llvm/Target/TargetOptions.h"
     25 using namespace llvm;
     26 
     27 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
     28                                cl::desc("Enable the machine combiner pass"),
     29                                cl::init(true), cl::Hidden);
     30 
     31 namespace llvm {
     32 void initializeWinEHStatePassPass(PassRegistry &);
     33 }
     34 
     35 extern "C" void LLVMInitializeX86Target() {
     36   // Register the target.
     37   RegisterTargetMachine<X86TargetMachine> X(TheX86_32Target);
     38   RegisterTargetMachine<X86TargetMachine> Y(TheX86_64Target);
     39 
     40   PassRegistry &PR = *PassRegistry::getPassRegistry();
     41   initializeWinEHStatePassPass(PR);
     42 }
     43 
     44 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
     45   if (TT.isOSBinFormatMachO()) {
     46     if (TT.getArch() == Triple::x86_64)
     47       return make_unique<X86_64MachoTargetObjectFile>();
     48     return make_unique<TargetLoweringObjectFileMachO>();
     49   }
     50 
     51   if (TT.isOSLinux() || TT.isOSNaCl())
     52     return make_unique<X86LinuxNaClTargetObjectFile>();
     53   if (TT.isOSBinFormatELF())
     54     return make_unique<X86ELFTargetObjectFile>();
     55   if (TT.isKnownWindowsMSVCEnvironment() || TT.isWindowsCoreCLREnvironment())
     56     return make_unique<X86WindowsTargetObjectFile>();
     57   if (TT.isOSBinFormatCOFF())
     58     return make_unique<TargetLoweringObjectFileCOFF>();
     59   llvm_unreachable("unknown subtarget type");
     60 }
     61 
     62 static std::string computeDataLayout(const Triple &TT) {
     63   // X86 is little endian
     64   std::string Ret = "e";
     65 
     66   Ret += DataLayout::getManglingComponent(TT);
     67   // X86 and x32 have 32 bit pointers.
     68   if ((TT.isArch64Bit() &&
     69        (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
     70       !TT.isArch64Bit())
     71     Ret += "-p:32:32";
     72 
     73   // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
     74   if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
     75     Ret += "-i64:64";
     76   else
     77     Ret += "-f64:32:64";
     78 
     79   // Some ABIs align long double to 128 bits, others to 32.
     80   if (TT.isOSNaCl())
     81     ; // No f80
     82   else if (TT.isArch64Bit() || TT.isOSDarwin())
     83     Ret += "-f80:128";
     84   else
     85     Ret += "-f80:32";
     86 
     87   // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
     88   if (TT.isArch64Bit())
     89     Ret += "-n8:16:32:64";
     90   else
     91     Ret += "-n8:16:32";
     92 
     93   // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
     94   if (!TT.isArch64Bit() && TT.isOSWindows())
     95     Ret += "-a:0:32-S32";
     96   else
     97     Ret += "-S128";
     98 
     99   return Ret;
    100 }
    101 
    102 /// X86TargetMachine ctor - Create an X86 target.
    103 ///
    104 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
    105                                    StringRef CPU, StringRef FS,
    106                                    const TargetOptions &Options,
    107                                    Reloc::Model RM, CodeModel::Model CM,
    108                                    CodeGenOpt::Level OL)
    109     : LLVMTargetMachine(T, computeDataLayout(TT), TT, CPU, FS, Options, RM, CM,
    110                         OL),
    111       TLOF(createTLOF(getTargetTriple())),
    112       Subtarget(TT, CPU, FS, *this, Options.StackAlignmentOverride) {
    113   // Windows stack unwinder gets confused when execution flow "falls through"
    114   // after a call to 'noreturn' function.
    115   // To prevent that, we emit a trap for 'unreachable' IR instructions.
    116   // (which on X86, happens to be the 'ud2' instruction)
    117   if (Subtarget.isTargetWin64())
    118     this->Options.TrapUnreachable = true;
    119 
    120   // By default (and when -ffast-math is on), enable estimate codegen for
    121   // everything except scalar division. By default, use 1 refinement step for
    122   // all operations. Defaults may be overridden by using command-line options.
    123   // Scalar division estimates are disabled because they break too much
    124   // real-world code. These defaults match GCC behavior.
    125   this->Options.Reciprocals.setDefaults("sqrtf", true, 1);
    126   this->Options.Reciprocals.setDefaults("divf", false, 1);
    127   this->Options.Reciprocals.setDefaults("vec-sqrtf", true, 1);
    128   this->Options.Reciprocals.setDefaults("vec-divf", true, 1);
    129 
    130   initAsmInfo();
    131 }
    132 
    133 X86TargetMachine::~X86TargetMachine() {}
    134 
    135 const X86Subtarget *
    136 X86TargetMachine::getSubtargetImpl(const Function &F) const {
    137   Attribute CPUAttr = F.getFnAttribute("target-cpu");
    138   Attribute FSAttr = F.getFnAttribute("target-features");
    139 
    140   std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
    141                         ? CPUAttr.getValueAsString().str()
    142                         : TargetCPU;
    143   std::string FS = !FSAttr.hasAttribute(Attribute::None)
    144                        ? FSAttr.getValueAsString().str()
    145                        : TargetFS;
    146 
    147   // FIXME: This is related to the code below to reset the target options,
    148   // we need to know whether or not the soft float flag is set on the
    149   // function before we can generate a subtarget. We also need to use
    150   // it as a key for the subtarget since that can be the only difference
    151   // between two functions.
    152   bool SoftFloat =
    153       F.hasFnAttribute("use-soft-float") &&
    154       F.getFnAttribute("use-soft-float").getValueAsString() == "true";
    155   // If the soft float attribute is set on the function turn on the soft float
    156   // subtarget feature.
    157   if (SoftFloat)
    158     FS += FS.empty() ? "+soft-float" : ",+soft-float";
    159 
    160   auto &I = SubtargetMap[CPU + FS];
    161   if (!I) {
    162     // This needs to be done before we create a new subtarget since any
    163     // creation will depend on the TM and the code generation flags on the
    164     // function that reside in TargetOptions.
    165     resetTargetOptions(F);
    166     I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this,
    167                                         Options.StackAlignmentOverride);
    168   }
    169   return I.get();
    170 }
    171 
    172 //===----------------------------------------------------------------------===//
    173 // Command line options for x86
    174 //===----------------------------------------------------------------------===//
    175 static cl::opt<bool>
    176 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden,
    177   cl::desc("Minimize AVX to SSE transition penalty"),
    178   cl::init(true));
    179 
    180 //===----------------------------------------------------------------------===//
    181 // X86 TTI query.
    182 //===----------------------------------------------------------------------===//
    183 
    184 TargetIRAnalysis X86TargetMachine::getTargetIRAnalysis() {
    185   return TargetIRAnalysis([this](const Function &F) {
    186     return TargetTransformInfo(X86TTIImpl(this, F));
    187   });
    188 }
    189 
    190 
    191 //===----------------------------------------------------------------------===//
    192 // Pass Pipeline Configuration
    193 //===----------------------------------------------------------------------===//
    194 
    195 namespace {
    196 /// X86 Code Generator Pass Configuration Options.
    197 class X86PassConfig : public TargetPassConfig {
    198 public:
    199   X86PassConfig(X86TargetMachine *TM, PassManagerBase &PM)
    200     : TargetPassConfig(TM, PM) {}
    201 
    202   X86TargetMachine &getX86TargetMachine() const {
    203     return getTM<X86TargetMachine>();
    204   }
    205 
    206   void addIRPasses() override;
    207   bool addInstSelector() override;
    208   bool addILPOpts() override;
    209   bool addPreISel() override;
    210   void addPreRegAlloc() override;
    211   void addPostRegAlloc() override;
    212   void addPreEmitPass() override;
    213   void addPreSched2() override;
    214 };
    215 } // namespace
    216 
    217 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
    218   return new X86PassConfig(this, PM);
    219 }
    220 
    221 void X86PassConfig::addIRPasses() {
    222   addPass(createAtomicExpandPass(&getX86TargetMachine()));
    223 
    224   TargetPassConfig::addIRPasses();
    225 }
    226 
    227 bool X86PassConfig::addInstSelector() {
    228   // Install an instruction selector.
    229   addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
    230 
    231   // For ELF, cleanup any local-dynamic TLS accesses.
    232   if (TM->getTargetTriple().isOSBinFormatELF() &&
    233       getOptLevel() != CodeGenOpt::None)
    234     addPass(createCleanupLocalDynamicTLSPass());
    235 
    236   addPass(createX86GlobalBaseRegPass());
    237 
    238   return false;
    239 }
    240 
    241 bool X86PassConfig::addILPOpts() {
    242   addPass(&EarlyIfConverterID);
    243   if (EnableMachineCombinerPass)
    244     addPass(&MachineCombinerID);
    245   return true;
    246 }
    247 
    248 bool X86PassConfig::addPreISel() {
    249   // Only add this pass for 32-bit x86 Windows.
    250   const Triple &TT = TM->getTargetTriple();
    251   if (TT.isOSWindows() && TT.getArch() == Triple::x86)
    252     addPass(createX86WinEHStatePass());
    253   return true;
    254 }
    255 
    256 void X86PassConfig::addPreRegAlloc() {
    257   if (getOptLevel() != CodeGenOpt::None)
    258     addPass(createX86OptimizeLEAs());
    259 
    260   addPass(createX86CallFrameOptimization());
    261 }
    262 
    263 void X86PassConfig::addPostRegAlloc() {
    264   addPass(createX86FloatingPointStackifierPass());
    265 }
    266 
    267 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); }
    268 
    269 void X86PassConfig::addPreEmitPass() {
    270   if (getOptLevel() != CodeGenOpt::None)
    271     addPass(createExecutionDependencyFixPass(&X86::VR128RegClass));
    272 
    273   if (UseVZeroUpper)
    274     addPass(createX86IssueVZeroUpperPass());
    275 
    276   if (getOptLevel() != CodeGenOpt::None) {
    277     addPass(createX86PadShortFunctions());
    278     addPass(createX86FixupLEAs());
    279   }
    280 }
    281