1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the X86 specific subclass of TargetMachine. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "X86TargetMachine.h" 15 #include "X86.h" 16 #include "X86TargetObjectFile.h" 17 #include "X86TargetTransformInfo.h" 18 #include "llvm/CodeGen/Passes.h" 19 #include "llvm/IR/Function.h" 20 #include "llvm/IR/LegacyPassManager.h" 21 #include "llvm/Support/CommandLine.h" 22 #include "llvm/Support/FormattedStream.h" 23 #include "llvm/Support/TargetRegistry.h" 24 #include "llvm/Target/TargetOptions.h" 25 using namespace llvm; 26 27 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", 28 cl::desc("Enable the machine combiner pass"), 29 cl::init(true), cl::Hidden); 30 31 namespace llvm { 32 void initializeWinEHStatePassPass(PassRegistry &); 33 } 34 35 extern "C" void LLVMInitializeX86Target() { 36 // Register the target. 37 RegisterTargetMachine<X86TargetMachine> X(TheX86_32Target); 38 RegisterTargetMachine<X86TargetMachine> Y(TheX86_64Target); 39 40 PassRegistry &PR = *PassRegistry::getPassRegistry(); 41 initializeWinEHStatePassPass(PR); 42 } 43 44 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 45 if (TT.isOSBinFormatMachO()) { 46 if (TT.getArch() == Triple::x86_64) 47 return make_unique<X86_64MachoTargetObjectFile>(); 48 return make_unique<TargetLoweringObjectFileMachO>(); 49 } 50 51 if (TT.isOSLinux() || TT.isOSNaCl()) 52 return make_unique<X86LinuxNaClTargetObjectFile>(); 53 if (TT.isOSBinFormatELF()) 54 return make_unique<X86ELFTargetObjectFile>(); 55 if (TT.isKnownWindowsMSVCEnvironment() || TT.isWindowsCoreCLREnvironment()) 56 return make_unique<X86WindowsTargetObjectFile>(); 57 if (TT.isOSBinFormatCOFF()) 58 return make_unique<TargetLoweringObjectFileCOFF>(); 59 llvm_unreachable("unknown subtarget type"); 60 } 61 62 static std::string computeDataLayout(const Triple &TT) { 63 // X86 is little endian 64 std::string Ret = "e"; 65 66 Ret += DataLayout::getManglingComponent(TT); 67 // X86 and x32 have 32 bit pointers. 68 if ((TT.isArch64Bit() && 69 (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) || 70 !TT.isArch64Bit()) 71 Ret += "-p:32:32"; 72 73 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. 74 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) 75 Ret += "-i64:64"; 76 else 77 Ret += "-f64:32:64"; 78 79 // Some ABIs align long double to 128 bits, others to 32. 80 if (TT.isOSNaCl()) 81 ; // No f80 82 else if (TT.isArch64Bit() || TT.isOSDarwin()) 83 Ret += "-f80:128"; 84 else 85 Ret += "-f80:32"; 86 87 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. 88 if (TT.isArch64Bit()) 89 Ret += "-n8:16:32:64"; 90 else 91 Ret += "-n8:16:32"; 92 93 // The stack is aligned to 32 bits on some ABIs and 128 bits on others. 94 if (!TT.isArch64Bit() && TT.isOSWindows()) 95 Ret += "-a:0:32-S32"; 96 else 97 Ret += "-S128"; 98 99 return Ret; 100 } 101 102 /// X86TargetMachine ctor - Create an X86 target. 103 /// 104 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, 105 StringRef CPU, StringRef FS, 106 const TargetOptions &Options, 107 Reloc::Model RM, CodeModel::Model CM, 108 CodeGenOpt::Level OL) 109 : LLVMTargetMachine(T, computeDataLayout(TT), TT, CPU, FS, Options, RM, CM, 110 OL), 111 TLOF(createTLOF(getTargetTriple())), 112 Subtarget(TT, CPU, FS, *this, Options.StackAlignmentOverride) { 113 // Windows stack unwinder gets confused when execution flow "falls through" 114 // after a call to 'noreturn' function. 115 // To prevent that, we emit a trap for 'unreachable' IR instructions. 116 // (which on X86, happens to be the 'ud2' instruction) 117 if (Subtarget.isTargetWin64()) 118 this->Options.TrapUnreachable = true; 119 120 // By default (and when -ffast-math is on), enable estimate codegen for 121 // everything except scalar division. By default, use 1 refinement step for 122 // all operations. Defaults may be overridden by using command-line options. 123 // Scalar division estimates are disabled because they break too much 124 // real-world code. These defaults match GCC behavior. 125 this->Options.Reciprocals.setDefaults("sqrtf", true, 1); 126 this->Options.Reciprocals.setDefaults("divf", false, 1); 127 this->Options.Reciprocals.setDefaults("vec-sqrtf", true, 1); 128 this->Options.Reciprocals.setDefaults("vec-divf", true, 1); 129 130 initAsmInfo(); 131 } 132 133 X86TargetMachine::~X86TargetMachine() {} 134 135 const X86Subtarget * 136 X86TargetMachine::getSubtargetImpl(const Function &F) const { 137 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 138 Attribute FSAttr = F.getFnAttribute("target-features"); 139 140 std::string CPU = !CPUAttr.hasAttribute(Attribute::None) 141 ? CPUAttr.getValueAsString().str() 142 : TargetCPU; 143 std::string FS = !FSAttr.hasAttribute(Attribute::None) 144 ? FSAttr.getValueAsString().str() 145 : TargetFS; 146 147 // FIXME: This is related to the code below to reset the target options, 148 // we need to know whether or not the soft float flag is set on the 149 // function before we can generate a subtarget. We also need to use 150 // it as a key for the subtarget since that can be the only difference 151 // between two functions. 152 bool SoftFloat = 153 F.hasFnAttribute("use-soft-float") && 154 F.getFnAttribute("use-soft-float").getValueAsString() == "true"; 155 // If the soft float attribute is set on the function turn on the soft float 156 // subtarget feature. 157 if (SoftFloat) 158 FS += FS.empty() ? "+soft-float" : ",+soft-float"; 159 160 auto &I = SubtargetMap[CPU + FS]; 161 if (!I) { 162 // This needs to be done before we create a new subtarget since any 163 // creation will depend on the TM and the code generation flags on the 164 // function that reside in TargetOptions. 165 resetTargetOptions(F); 166 I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this, 167 Options.StackAlignmentOverride); 168 } 169 return I.get(); 170 } 171 172 //===----------------------------------------------------------------------===// 173 // Command line options for x86 174 //===----------------------------------------------------------------------===// 175 static cl::opt<bool> 176 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden, 177 cl::desc("Minimize AVX to SSE transition penalty"), 178 cl::init(true)); 179 180 //===----------------------------------------------------------------------===// 181 // X86 TTI query. 182 //===----------------------------------------------------------------------===// 183 184 TargetIRAnalysis X86TargetMachine::getTargetIRAnalysis() { 185 return TargetIRAnalysis([this](const Function &F) { 186 return TargetTransformInfo(X86TTIImpl(this, F)); 187 }); 188 } 189 190 191 //===----------------------------------------------------------------------===// 192 // Pass Pipeline Configuration 193 //===----------------------------------------------------------------------===// 194 195 namespace { 196 /// X86 Code Generator Pass Configuration Options. 197 class X86PassConfig : public TargetPassConfig { 198 public: 199 X86PassConfig(X86TargetMachine *TM, PassManagerBase &PM) 200 : TargetPassConfig(TM, PM) {} 201 202 X86TargetMachine &getX86TargetMachine() const { 203 return getTM<X86TargetMachine>(); 204 } 205 206 void addIRPasses() override; 207 bool addInstSelector() override; 208 bool addILPOpts() override; 209 bool addPreISel() override; 210 void addPreRegAlloc() override; 211 void addPostRegAlloc() override; 212 void addPreEmitPass() override; 213 void addPreSched2() override; 214 }; 215 } // namespace 216 217 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { 218 return new X86PassConfig(this, PM); 219 } 220 221 void X86PassConfig::addIRPasses() { 222 addPass(createAtomicExpandPass(&getX86TargetMachine())); 223 224 TargetPassConfig::addIRPasses(); 225 } 226 227 bool X86PassConfig::addInstSelector() { 228 // Install an instruction selector. 229 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); 230 231 // For ELF, cleanup any local-dynamic TLS accesses. 232 if (TM->getTargetTriple().isOSBinFormatELF() && 233 getOptLevel() != CodeGenOpt::None) 234 addPass(createCleanupLocalDynamicTLSPass()); 235 236 addPass(createX86GlobalBaseRegPass()); 237 238 return false; 239 } 240 241 bool X86PassConfig::addILPOpts() { 242 addPass(&EarlyIfConverterID); 243 if (EnableMachineCombinerPass) 244 addPass(&MachineCombinerID); 245 return true; 246 } 247 248 bool X86PassConfig::addPreISel() { 249 // Only add this pass for 32-bit x86 Windows. 250 const Triple &TT = TM->getTargetTriple(); 251 if (TT.isOSWindows() && TT.getArch() == Triple::x86) 252 addPass(createX86WinEHStatePass()); 253 return true; 254 } 255 256 void X86PassConfig::addPreRegAlloc() { 257 if (getOptLevel() != CodeGenOpt::None) 258 addPass(createX86OptimizeLEAs()); 259 260 addPass(createX86CallFrameOptimization()); 261 } 262 263 void X86PassConfig::addPostRegAlloc() { 264 addPass(createX86FloatingPointStackifierPass()); 265 } 266 267 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); } 268 269 void X86PassConfig::addPreEmitPass() { 270 if (getOptLevel() != CodeGenOpt::None) 271 addPass(createExecutionDependencyFixPass(&X86::VR128RegClass)); 272 273 if (UseVZeroUpper) 274 addPass(createX86IssueVZeroUpperPass()); 275 276 if (getOptLevel() != CodeGenOpt::None) { 277 addPass(createX86PadShortFunctions()); 278 addPass(createX86FixupLEAs()); 279 } 280 } 281