1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the X86 implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "X86InstrInfo.h" 15 #include "X86.h" 16 #include "X86InstrBuilder.h" 17 #include "X86MachineFunctionInfo.h" 18 #include "X86Subtarget.h" 19 #include "X86TargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/CodeGen/LiveVariables.h" 22 #include "llvm/CodeGen/MachineConstantPool.h" 23 #include "llvm/CodeGen/MachineDominators.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/StackMaps.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCExpr.h" 34 #include "llvm/MC/MCInst.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetOptions.h" 40 #include <limits> 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "x86-instr-info" 45 46 #define GET_INSTRINFO_CTOR_DTOR 47 #include "X86GenInstrInfo.inc" 48 49 static cl::opt<bool> 50 NoFusing("disable-spill-fusing", 51 cl::desc("Disable fusing of spill code into instructions")); 52 static cl::opt<bool> 53 PrintFailedFusing("print-failed-fuse-candidates", 54 cl::desc("Print instructions that the allocator wants to" 55 " fuse, but the X86 backend currently can't"), 56 cl::Hidden); 57 static cl::opt<bool> 58 ReMatPICStubLoad("remat-pic-stub-load", 59 cl::desc("Re-materialize load from stub in PIC mode"), 60 cl::init(false), cl::Hidden); 61 62 enum { 63 // Select which memory operand is being unfolded. 64 // (stored in bits 0 - 3) 65 TB_INDEX_0 = 0, 66 TB_INDEX_1 = 1, 67 TB_INDEX_2 = 2, 68 TB_INDEX_3 = 3, 69 TB_INDEX_4 = 4, 70 TB_INDEX_MASK = 0xf, 71 72 // Do not insert the reverse map (MemOp -> RegOp) into the table. 73 // This may be needed because there is a many -> one mapping. 74 TB_NO_REVERSE = 1 << 4, 75 76 // Do not insert the forward map (RegOp -> MemOp) into the table. 77 // This is needed for Native Client, which prohibits branch 78 // instructions from using a memory operand. 79 TB_NO_FORWARD = 1 << 5, 80 81 TB_FOLDED_LOAD = 1 << 6, 82 TB_FOLDED_STORE = 1 << 7, 83 84 // Minimum alignment required for load/store. 85 // Used for RegOp->MemOp conversion. 86 // (stored in bits 8 - 15) 87 TB_ALIGN_SHIFT = 8, 88 TB_ALIGN_NONE = 0 << TB_ALIGN_SHIFT, 89 TB_ALIGN_16 = 16 << TB_ALIGN_SHIFT, 90 TB_ALIGN_32 = 32 << TB_ALIGN_SHIFT, 91 TB_ALIGN_64 = 64 << TB_ALIGN_SHIFT, 92 TB_ALIGN_MASK = 0xff << TB_ALIGN_SHIFT 93 }; 94 95 struct X86MemoryFoldTableEntry { 96 uint16_t RegOp; 97 uint16_t MemOp; 98 uint16_t Flags; 99 }; 100 101 // Pin the vtable to this file. 102 void X86InstrInfo::anchor() {} 103 104 X86InstrInfo::X86InstrInfo(X86Subtarget &STI) 105 : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64 106 : X86::ADJCALLSTACKDOWN32), 107 (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64 108 : X86::ADJCALLSTACKUP32), 109 X86::CATCHRET), 110 Subtarget(STI), RI(STI.getTargetTriple()) { 111 112 static const X86MemoryFoldTableEntry MemoryFoldTable2Addr[] = { 113 { X86::ADC32ri, X86::ADC32mi, 0 }, 114 { X86::ADC32ri8, X86::ADC32mi8, 0 }, 115 { X86::ADC32rr, X86::ADC32mr, 0 }, 116 { X86::ADC64ri32, X86::ADC64mi32, 0 }, 117 { X86::ADC64ri8, X86::ADC64mi8, 0 }, 118 { X86::ADC64rr, X86::ADC64mr, 0 }, 119 { X86::ADD16ri, X86::ADD16mi, 0 }, 120 { X86::ADD16ri8, X86::ADD16mi8, 0 }, 121 { X86::ADD16ri_DB, X86::ADD16mi, TB_NO_REVERSE }, 122 { X86::ADD16ri8_DB, X86::ADD16mi8, TB_NO_REVERSE }, 123 { X86::ADD16rr, X86::ADD16mr, 0 }, 124 { X86::ADD16rr_DB, X86::ADD16mr, TB_NO_REVERSE }, 125 { X86::ADD32ri, X86::ADD32mi, 0 }, 126 { X86::ADD32ri8, X86::ADD32mi8, 0 }, 127 { X86::ADD32ri_DB, X86::ADD32mi, TB_NO_REVERSE }, 128 { X86::ADD32ri8_DB, X86::ADD32mi8, TB_NO_REVERSE }, 129 { X86::ADD32rr, X86::ADD32mr, 0 }, 130 { X86::ADD32rr_DB, X86::ADD32mr, TB_NO_REVERSE }, 131 { X86::ADD64ri32, X86::ADD64mi32, 0 }, 132 { X86::ADD64ri8, X86::ADD64mi8, 0 }, 133 { X86::ADD64ri32_DB,X86::ADD64mi32, TB_NO_REVERSE }, 134 { X86::ADD64ri8_DB, X86::ADD64mi8, TB_NO_REVERSE }, 135 { X86::ADD64rr, X86::ADD64mr, 0 }, 136 { X86::ADD64rr_DB, X86::ADD64mr, TB_NO_REVERSE }, 137 { X86::ADD8ri, X86::ADD8mi, 0 }, 138 { X86::ADD8rr, X86::ADD8mr, 0 }, 139 { X86::AND16ri, X86::AND16mi, 0 }, 140 { X86::AND16ri8, X86::AND16mi8, 0 }, 141 { X86::AND16rr, X86::AND16mr, 0 }, 142 { X86::AND32ri, X86::AND32mi, 0 }, 143 { X86::AND32ri8, X86::AND32mi8, 0 }, 144 { X86::AND32rr, X86::AND32mr, 0 }, 145 { X86::AND64ri32, X86::AND64mi32, 0 }, 146 { X86::AND64ri8, X86::AND64mi8, 0 }, 147 { X86::AND64rr, X86::AND64mr, 0 }, 148 { X86::AND8ri, X86::AND8mi, 0 }, 149 { X86::AND8rr, X86::AND8mr, 0 }, 150 { X86::DEC16r, X86::DEC16m, 0 }, 151 { X86::DEC32r, X86::DEC32m, 0 }, 152 { X86::DEC64r, X86::DEC64m, 0 }, 153 { X86::DEC8r, X86::DEC8m, 0 }, 154 { X86::INC16r, X86::INC16m, 0 }, 155 { X86::INC32r, X86::INC32m, 0 }, 156 { X86::INC64r, X86::INC64m, 0 }, 157 { X86::INC8r, X86::INC8m, 0 }, 158 { X86::NEG16r, X86::NEG16m, 0 }, 159 { X86::NEG32r, X86::NEG32m, 0 }, 160 { X86::NEG64r, X86::NEG64m, 0 }, 161 { X86::NEG8r, X86::NEG8m, 0 }, 162 { X86::NOT16r, X86::NOT16m, 0 }, 163 { X86::NOT32r, X86::NOT32m, 0 }, 164 { X86::NOT64r, X86::NOT64m, 0 }, 165 { X86::NOT8r, X86::NOT8m, 0 }, 166 { X86::OR16ri, X86::OR16mi, 0 }, 167 { X86::OR16ri8, X86::OR16mi8, 0 }, 168 { X86::OR16rr, X86::OR16mr, 0 }, 169 { X86::OR32ri, X86::OR32mi, 0 }, 170 { X86::OR32ri8, X86::OR32mi8, 0 }, 171 { X86::OR32rr, X86::OR32mr, 0 }, 172 { X86::OR64ri32, X86::OR64mi32, 0 }, 173 { X86::OR64ri8, X86::OR64mi8, 0 }, 174 { X86::OR64rr, X86::OR64mr, 0 }, 175 { X86::OR8ri, X86::OR8mi, 0 }, 176 { X86::OR8rr, X86::OR8mr, 0 }, 177 { X86::ROL16r1, X86::ROL16m1, 0 }, 178 { X86::ROL16rCL, X86::ROL16mCL, 0 }, 179 { X86::ROL16ri, X86::ROL16mi, 0 }, 180 { X86::ROL32r1, X86::ROL32m1, 0 }, 181 { X86::ROL32rCL, X86::ROL32mCL, 0 }, 182 { X86::ROL32ri, X86::ROL32mi, 0 }, 183 { X86::ROL64r1, X86::ROL64m1, 0 }, 184 { X86::ROL64rCL, X86::ROL64mCL, 0 }, 185 { X86::ROL64ri, X86::ROL64mi, 0 }, 186 { X86::ROL8r1, X86::ROL8m1, 0 }, 187 { X86::ROL8rCL, X86::ROL8mCL, 0 }, 188 { X86::ROL8ri, X86::ROL8mi, 0 }, 189 { X86::ROR16r1, X86::ROR16m1, 0 }, 190 { X86::ROR16rCL, X86::ROR16mCL, 0 }, 191 { X86::ROR16ri, X86::ROR16mi, 0 }, 192 { X86::ROR32r1, X86::ROR32m1, 0 }, 193 { X86::ROR32rCL, X86::ROR32mCL, 0 }, 194 { X86::ROR32ri, X86::ROR32mi, 0 }, 195 { X86::ROR64r1, X86::ROR64m1, 0 }, 196 { X86::ROR64rCL, X86::ROR64mCL, 0 }, 197 { X86::ROR64ri, X86::ROR64mi, 0 }, 198 { X86::ROR8r1, X86::ROR8m1, 0 }, 199 { X86::ROR8rCL, X86::ROR8mCL, 0 }, 200 { X86::ROR8ri, X86::ROR8mi, 0 }, 201 { X86::SAR16r1, X86::SAR16m1, 0 }, 202 { X86::SAR16rCL, X86::SAR16mCL, 0 }, 203 { X86::SAR16ri, X86::SAR16mi, 0 }, 204 { X86::SAR32r1, X86::SAR32m1, 0 }, 205 { X86::SAR32rCL, X86::SAR32mCL, 0 }, 206 { X86::SAR32ri, X86::SAR32mi, 0 }, 207 { X86::SAR64r1, X86::SAR64m1, 0 }, 208 { X86::SAR64rCL, X86::SAR64mCL, 0 }, 209 { X86::SAR64ri, X86::SAR64mi, 0 }, 210 { X86::SAR8r1, X86::SAR8m1, 0 }, 211 { X86::SAR8rCL, X86::SAR8mCL, 0 }, 212 { X86::SAR8ri, X86::SAR8mi, 0 }, 213 { X86::SBB32ri, X86::SBB32mi, 0 }, 214 { X86::SBB32ri8, X86::SBB32mi8, 0 }, 215 { X86::SBB32rr, X86::SBB32mr, 0 }, 216 { X86::SBB64ri32, X86::SBB64mi32, 0 }, 217 { X86::SBB64ri8, X86::SBB64mi8, 0 }, 218 { X86::SBB64rr, X86::SBB64mr, 0 }, 219 { X86::SHL16rCL, X86::SHL16mCL, 0 }, 220 { X86::SHL16ri, X86::SHL16mi, 0 }, 221 { X86::SHL32rCL, X86::SHL32mCL, 0 }, 222 { X86::SHL32ri, X86::SHL32mi, 0 }, 223 { X86::SHL64rCL, X86::SHL64mCL, 0 }, 224 { X86::SHL64ri, X86::SHL64mi, 0 }, 225 { X86::SHL8rCL, X86::SHL8mCL, 0 }, 226 { X86::SHL8ri, X86::SHL8mi, 0 }, 227 { X86::SHLD16rrCL, X86::SHLD16mrCL, 0 }, 228 { X86::SHLD16rri8, X86::SHLD16mri8, 0 }, 229 { X86::SHLD32rrCL, X86::SHLD32mrCL, 0 }, 230 { X86::SHLD32rri8, X86::SHLD32mri8, 0 }, 231 { X86::SHLD64rrCL, X86::SHLD64mrCL, 0 }, 232 { X86::SHLD64rri8, X86::SHLD64mri8, 0 }, 233 { X86::SHR16r1, X86::SHR16m1, 0 }, 234 { X86::SHR16rCL, X86::SHR16mCL, 0 }, 235 { X86::SHR16ri, X86::SHR16mi, 0 }, 236 { X86::SHR32r1, X86::SHR32m1, 0 }, 237 { X86::SHR32rCL, X86::SHR32mCL, 0 }, 238 { X86::SHR32ri, X86::SHR32mi, 0 }, 239 { X86::SHR64r1, X86::SHR64m1, 0 }, 240 { X86::SHR64rCL, X86::SHR64mCL, 0 }, 241 { X86::SHR64ri, X86::SHR64mi, 0 }, 242 { X86::SHR8r1, X86::SHR8m1, 0 }, 243 { X86::SHR8rCL, X86::SHR8mCL, 0 }, 244 { X86::SHR8ri, X86::SHR8mi, 0 }, 245 { X86::SHRD16rrCL, X86::SHRD16mrCL, 0 }, 246 { X86::SHRD16rri8, X86::SHRD16mri8, 0 }, 247 { X86::SHRD32rrCL, X86::SHRD32mrCL, 0 }, 248 { X86::SHRD32rri8, X86::SHRD32mri8, 0 }, 249 { X86::SHRD64rrCL, X86::SHRD64mrCL, 0 }, 250 { X86::SHRD64rri8, X86::SHRD64mri8, 0 }, 251 { X86::SUB16ri, X86::SUB16mi, 0 }, 252 { X86::SUB16ri8, X86::SUB16mi8, 0 }, 253 { X86::SUB16rr, X86::SUB16mr, 0 }, 254 { X86::SUB32ri, X86::SUB32mi, 0 }, 255 { X86::SUB32ri8, X86::SUB32mi8, 0 }, 256 { X86::SUB32rr, X86::SUB32mr, 0 }, 257 { X86::SUB64ri32, X86::SUB64mi32, 0 }, 258 { X86::SUB64ri8, X86::SUB64mi8, 0 }, 259 { X86::SUB64rr, X86::SUB64mr, 0 }, 260 { X86::SUB8ri, X86::SUB8mi, 0 }, 261 { X86::SUB8rr, X86::SUB8mr, 0 }, 262 { X86::XOR16ri, X86::XOR16mi, 0 }, 263 { X86::XOR16ri8, X86::XOR16mi8, 0 }, 264 { X86::XOR16rr, X86::XOR16mr, 0 }, 265 { X86::XOR32ri, X86::XOR32mi, 0 }, 266 { X86::XOR32ri8, X86::XOR32mi8, 0 }, 267 { X86::XOR32rr, X86::XOR32mr, 0 }, 268 { X86::XOR64ri32, X86::XOR64mi32, 0 }, 269 { X86::XOR64ri8, X86::XOR64mi8, 0 }, 270 { X86::XOR64rr, X86::XOR64mr, 0 }, 271 { X86::XOR8ri, X86::XOR8mi, 0 }, 272 { X86::XOR8rr, X86::XOR8mr, 0 } 273 }; 274 275 for (X86MemoryFoldTableEntry Entry : MemoryFoldTable2Addr) { 276 AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable, 277 Entry.RegOp, Entry.MemOp, 278 // Index 0, folded load and store, no alignment requirement. 279 Entry.Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE); 280 } 281 282 static const X86MemoryFoldTableEntry MemoryFoldTable0[] = { 283 { X86::BT16ri8, X86::BT16mi8, TB_FOLDED_LOAD }, 284 { X86::BT32ri8, X86::BT32mi8, TB_FOLDED_LOAD }, 285 { X86::BT64ri8, X86::BT64mi8, TB_FOLDED_LOAD }, 286 { X86::CALL32r, X86::CALL32m, TB_FOLDED_LOAD }, 287 { X86::CALL64r, X86::CALL64m, TB_FOLDED_LOAD }, 288 { X86::CMP16ri, X86::CMP16mi, TB_FOLDED_LOAD }, 289 { X86::CMP16ri8, X86::CMP16mi8, TB_FOLDED_LOAD }, 290 { X86::CMP16rr, X86::CMP16mr, TB_FOLDED_LOAD }, 291 { X86::CMP32ri, X86::CMP32mi, TB_FOLDED_LOAD }, 292 { X86::CMP32ri8, X86::CMP32mi8, TB_FOLDED_LOAD }, 293 { X86::CMP32rr, X86::CMP32mr, TB_FOLDED_LOAD }, 294 { X86::CMP64ri32, X86::CMP64mi32, TB_FOLDED_LOAD }, 295 { X86::CMP64ri8, X86::CMP64mi8, TB_FOLDED_LOAD }, 296 { X86::CMP64rr, X86::CMP64mr, TB_FOLDED_LOAD }, 297 { X86::CMP8ri, X86::CMP8mi, TB_FOLDED_LOAD }, 298 { X86::CMP8rr, X86::CMP8mr, TB_FOLDED_LOAD }, 299 { X86::DIV16r, X86::DIV16m, TB_FOLDED_LOAD }, 300 { X86::DIV32r, X86::DIV32m, TB_FOLDED_LOAD }, 301 { X86::DIV64r, X86::DIV64m, TB_FOLDED_LOAD }, 302 { X86::DIV8r, X86::DIV8m, TB_FOLDED_LOAD }, 303 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, TB_FOLDED_STORE }, 304 { X86::IDIV16r, X86::IDIV16m, TB_FOLDED_LOAD }, 305 { X86::IDIV32r, X86::IDIV32m, TB_FOLDED_LOAD }, 306 { X86::IDIV64r, X86::IDIV64m, TB_FOLDED_LOAD }, 307 { X86::IDIV8r, X86::IDIV8m, TB_FOLDED_LOAD }, 308 { X86::IMUL16r, X86::IMUL16m, TB_FOLDED_LOAD }, 309 { X86::IMUL32r, X86::IMUL32m, TB_FOLDED_LOAD }, 310 { X86::IMUL64r, X86::IMUL64m, TB_FOLDED_LOAD }, 311 { X86::IMUL8r, X86::IMUL8m, TB_FOLDED_LOAD }, 312 { X86::JMP32r, X86::JMP32m, TB_FOLDED_LOAD }, 313 { X86::JMP64r, X86::JMP64m, TB_FOLDED_LOAD }, 314 { X86::MOV16ri, X86::MOV16mi, TB_FOLDED_STORE }, 315 { X86::MOV16rr, X86::MOV16mr, TB_FOLDED_STORE }, 316 { X86::MOV32ri, X86::MOV32mi, TB_FOLDED_STORE }, 317 { X86::MOV32rr, X86::MOV32mr, TB_FOLDED_STORE }, 318 { X86::MOV64ri32, X86::MOV64mi32, TB_FOLDED_STORE }, 319 { X86::MOV64rr, X86::MOV64mr, TB_FOLDED_STORE }, 320 { X86::MOV8ri, X86::MOV8mi, TB_FOLDED_STORE }, 321 { X86::MOV8rr, X86::MOV8mr, TB_FOLDED_STORE }, 322 { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE }, 323 { X86::MOVAPDrr, X86::MOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 }, 324 { X86::MOVAPSrr, X86::MOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 }, 325 { X86::MOVDQArr, X86::MOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 }, 326 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, TB_FOLDED_STORE }, 327 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, TB_FOLDED_STORE }, 328 { X86::MOVSDto64rr, X86::MOVSDto64mr, TB_FOLDED_STORE }, 329 { X86::MOVSS2DIrr, X86::MOVSS2DImr, TB_FOLDED_STORE }, 330 { X86::MOVUPDrr, X86::MOVUPDmr, TB_FOLDED_STORE }, 331 { X86::MOVUPSrr, X86::MOVUPSmr, TB_FOLDED_STORE }, 332 { X86::MUL16r, X86::MUL16m, TB_FOLDED_LOAD }, 333 { X86::MUL32r, X86::MUL32m, TB_FOLDED_LOAD }, 334 { X86::MUL64r, X86::MUL64m, TB_FOLDED_LOAD }, 335 { X86::MUL8r, X86::MUL8m, TB_FOLDED_LOAD }, 336 { X86::PEXTRDrr, X86::PEXTRDmr, TB_FOLDED_STORE }, 337 { X86::PEXTRQrr, X86::PEXTRQmr, TB_FOLDED_STORE }, 338 { X86::PUSH16r, X86::PUSH16rmm, TB_FOLDED_LOAD }, 339 { X86::PUSH32r, X86::PUSH32rmm, TB_FOLDED_LOAD }, 340 { X86::PUSH64r, X86::PUSH64rmm, TB_FOLDED_LOAD }, 341 { X86::SETAEr, X86::SETAEm, TB_FOLDED_STORE }, 342 { X86::SETAr, X86::SETAm, TB_FOLDED_STORE }, 343 { X86::SETBEr, X86::SETBEm, TB_FOLDED_STORE }, 344 { X86::SETBr, X86::SETBm, TB_FOLDED_STORE }, 345 { X86::SETEr, X86::SETEm, TB_FOLDED_STORE }, 346 { X86::SETGEr, X86::SETGEm, TB_FOLDED_STORE }, 347 { X86::SETGr, X86::SETGm, TB_FOLDED_STORE }, 348 { X86::SETLEr, X86::SETLEm, TB_FOLDED_STORE }, 349 { X86::SETLr, X86::SETLm, TB_FOLDED_STORE }, 350 { X86::SETNEr, X86::SETNEm, TB_FOLDED_STORE }, 351 { X86::SETNOr, X86::SETNOm, TB_FOLDED_STORE }, 352 { X86::SETNPr, X86::SETNPm, TB_FOLDED_STORE }, 353 { X86::SETNSr, X86::SETNSm, TB_FOLDED_STORE }, 354 { X86::SETOr, X86::SETOm, TB_FOLDED_STORE }, 355 { X86::SETPr, X86::SETPm, TB_FOLDED_STORE }, 356 { X86::SETSr, X86::SETSm, TB_FOLDED_STORE }, 357 { X86::TAILJMPr, X86::TAILJMPm, TB_FOLDED_LOAD }, 358 { X86::TAILJMPr64, X86::TAILJMPm64, TB_FOLDED_LOAD }, 359 { X86::TAILJMPr64_REX, X86::TAILJMPm64_REX, TB_FOLDED_LOAD }, 360 { X86::TEST16ri, X86::TEST16mi, TB_FOLDED_LOAD }, 361 { X86::TEST32ri, X86::TEST32mi, TB_FOLDED_LOAD }, 362 { X86::TEST64ri32, X86::TEST64mi32, TB_FOLDED_LOAD }, 363 { X86::TEST8ri, X86::TEST8mi, TB_FOLDED_LOAD }, 364 365 // AVX 128-bit versions of foldable instructions 366 { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr, TB_FOLDED_STORE }, 367 { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, 368 { X86::VMOVAPDrr, X86::VMOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 }, 369 { X86::VMOVAPSrr, X86::VMOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 }, 370 { X86::VMOVDQArr, X86::VMOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 }, 371 { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr, TB_FOLDED_STORE }, 372 { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE }, 373 { X86::VMOVSDto64rr,X86::VMOVSDto64mr, TB_FOLDED_STORE }, 374 { X86::VMOVSS2DIrr, X86::VMOVSS2DImr, TB_FOLDED_STORE }, 375 { X86::VMOVUPDrr, X86::VMOVUPDmr, TB_FOLDED_STORE }, 376 { X86::VMOVUPSrr, X86::VMOVUPSmr, TB_FOLDED_STORE }, 377 { X86::VPEXTRDrr, X86::VPEXTRDmr, TB_FOLDED_STORE }, 378 { X86::VPEXTRQrr, X86::VPEXTRQmr, TB_FOLDED_STORE }, 379 380 // AVX 256-bit foldable instructions 381 { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, 382 { X86::VMOVAPDYrr, X86::VMOVAPDYmr, TB_FOLDED_STORE | TB_ALIGN_32 }, 383 { X86::VMOVAPSYrr, X86::VMOVAPSYmr, TB_FOLDED_STORE | TB_ALIGN_32 }, 384 { X86::VMOVDQAYrr, X86::VMOVDQAYmr, TB_FOLDED_STORE | TB_ALIGN_32 }, 385 { X86::VMOVUPDYrr, X86::VMOVUPDYmr, TB_FOLDED_STORE }, 386 { X86::VMOVUPSYrr, X86::VMOVUPSYmr, TB_FOLDED_STORE }, 387 388 // AVX-512 foldable instructions 389 { X86::VMOVPDI2DIZrr, X86::VMOVPDI2DIZmr, TB_FOLDED_STORE }, 390 { X86::VMOVAPDZrr, X86::VMOVAPDZmr, TB_FOLDED_STORE | TB_ALIGN_64 }, 391 { X86::VMOVAPSZrr, X86::VMOVAPSZmr, TB_FOLDED_STORE | TB_ALIGN_64 }, 392 { X86::VMOVDQA32Zrr, X86::VMOVDQA32Zmr, TB_FOLDED_STORE | TB_ALIGN_64 }, 393 { X86::VMOVDQA64Zrr, X86::VMOVDQA64Zmr, TB_FOLDED_STORE | TB_ALIGN_64 }, 394 { X86::VMOVUPDZrr, X86::VMOVUPDZmr, TB_FOLDED_STORE }, 395 { X86::VMOVUPSZrr, X86::VMOVUPSZmr, TB_FOLDED_STORE }, 396 { X86::VMOVDQU8Zrr, X86::VMOVDQU8Zmr, TB_FOLDED_STORE }, 397 { X86::VMOVDQU16Zrr, X86::VMOVDQU16Zmr, TB_FOLDED_STORE }, 398 { X86::VMOVDQU32Zrr, X86::VMOVDQU32Zmr, TB_FOLDED_STORE }, 399 { X86::VMOVDQU64Zrr, X86::VMOVDQU64Zmr, TB_FOLDED_STORE }, 400 401 // AVX-512 foldable instructions (256-bit versions) 402 { X86::VMOVAPDZ256rr, X86::VMOVAPDZ256mr, TB_FOLDED_STORE | TB_ALIGN_32 }, 403 { X86::VMOVAPSZ256rr, X86::VMOVAPSZ256mr, TB_FOLDED_STORE | TB_ALIGN_32 }, 404 { X86::VMOVDQA32Z256rr, X86::VMOVDQA32Z256mr, TB_FOLDED_STORE | TB_ALIGN_32 }, 405 { X86::VMOVDQA64Z256rr, X86::VMOVDQA64Z256mr, TB_FOLDED_STORE | TB_ALIGN_32 }, 406 { X86::VMOVUPDZ256rr, X86::VMOVUPDZ256mr, TB_FOLDED_STORE }, 407 { X86::VMOVUPSZ256rr, X86::VMOVUPSZ256mr, TB_FOLDED_STORE }, 408 { X86::VMOVDQU8Z256rr, X86::VMOVDQU8Z256mr, TB_FOLDED_STORE }, 409 { X86::VMOVDQU16Z256rr, X86::VMOVDQU16Z256mr, TB_FOLDED_STORE }, 410 { X86::VMOVDQU32Z256rr, X86::VMOVDQU32Z256mr, TB_FOLDED_STORE }, 411 { X86::VMOVDQU64Z256rr, X86::VMOVDQU64Z256mr, TB_FOLDED_STORE }, 412 413 // AVX-512 foldable instructions (128-bit versions) 414 { X86::VMOVAPDZ128rr, X86::VMOVAPDZ128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, 415 { X86::VMOVAPSZ128rr, X86::VMOVAPSZ128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, 416 { X86::VMOVDQA32Z128rr, X86::VMOVDQA32Z128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, 417 { X86::VMOVDQA64Z128rr, X86::VMOVDQA64Z128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, 418 { X86::VMOVUPDZ128rr, X86::VMOVUPDZ128mr, TB_FOLDED_STORE }, 419 { X86::VMOVUPSZ128rr, X86::VMOVUPSZ128mr, TB_FOLDED_STORE }, 420 { X86::VMOVDQU8Z128rr, X86::VMOVDQU8Z128mr, TB_FOLDED_STORE }, 421 { X86::VMOVDQU16Z128rr, X86::VMOVDQU16Z128mr, TB_FOLDED_STORE }, 422 { X86::VMOVDQU32Z128rr, X86::VMOVDQU32Z128mr, TB_FOLDED_STORE }, 423 { X86::VMOVDQU64Z128rr, X86::VMOVDQU64Z128mr, TB_FOLDED_STORE }, 424 425 // F16C foldable instructions 426 { X86::VCVTPS2PHrr, X86::VCVTPS2PHmr, TB_FOLDED_STORE }, 427 { X86::VCVTPS2PHYrr, X86::VCVTPS2PHYmr, TB_FOLDED_STORE } 428 }; 429 430 for (X86MemoryFoldTableEntry Entry : MemoryFoldTable0) { 431 AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable, 432 Entry.RegOp, Entry.MemOp, TB_INDEX_0 | Entry.Flags); 433 } 434 435 static const X86MemoryFoldTableEntry MemoryFoldTable1[] = { 436 { X86::BSF16rr, X86::BSF16rm, 0 }, 437 { X86::BSF32rr, X86::BSF32rm, 0 }, 438 { X86::BSF64rr, X86::BSF64rm, 0 }, 439 { X86::BSR16rr, X86::BSR16rm, 0 }, 440 { X86::BSR32rr, X86::BSR32rm, 0 }, 441 { X86::BSR64rr, X86::BSR64rm, 0 }, 442 { X86::CMP16rr, X86::CMP16rm, 0 }, 443 { X86::CMP32rr, X86::CMP32rm, 0 }, 444 { X86::CMP64rr, X86::CMP64rm, 0 }, 445 { X86::CMP8rr, X86::CMP8rm, 0 }, 446 { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 }, 447 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 }, 448 { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 }, 449 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 }, 450 { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 }, 451 { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 }, 452 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 }, 453 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 }, 454 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 }, 455 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 }, 456 { X86::IMUL16rri, X86::IMUL16rmi, 0 }, 457 { X86::IMUL16rri8, X86::IMUL16rmi8, 0 }, 458 { X86::IMUL32rri, X86::IMUL32rmi, 0 }, 459 { X86::IMUL32rri8, X86::IMUL32rmi8, 0 }, 460 { X86::IMUL64rri32, X86::IMUL64rmi32, 0 }, 461 { X86::IMUL64rri8, X86::IMUL64rmi8, 0 }, 462 { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 }, 463 { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 }, 464 { X86::CVTSD2SI64rr, X86::CVTSD2SI64rm, 0 }, 465 { X86::CVTSD2SIrr, X86::CVTSD2SIrm, 0 }, 466 { X86::CVTSS2SI64rr, X86::CVTSS2SI64rm, 0 }, 467 { X86::CVTSS2SIrr, X86::CVTSS2SIrm, 0 }, 468 { X86::CVTDQ2PDrr, X86::CVTDQ2PDrm, TB_ALIGN_16 }, 469 { X86::CVTDQ2PSrr, X86::CVTDQ2PSrm, TB_ALIGN_16 }, 470 { X86::CVTPD2DQrr, X86::CVTPD2DQrm, TB_ALIGN_16 }, 471 { X86::CVTPD2PSrr, X86::CVTPD2PSrm, TB_ALIGN_16 }, 472 { X86::CVTPS2DQrr, X86::CVTPS2DQrm, TB_ALIGN_16 }, 473 { X86::CVTPS2PDrr, X86::CVTPS2PDrm, TB_ALIGN_16 }, 474 { X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, TB_ALIGN_16 }, 475 { X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, TB_ALIGN_16 }, 476 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 }, 477 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 }, 478 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 }, 479 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 }, 480 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 }, 481 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 }, 482 { X86::MOV16rr, X86::MOV16rm, 0 }, 483 { X86::MOV32rr, X86::MOV32rm, 0 }, 484 { X86::MOV64rr, X86::MOV64rm, 0 }, 485 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 }, 486 { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 }, 487 { X86::MOV8rr, X86::MOV8rm, 0 }, 488 { X86::MOVAPDrr, X86::MOVAPDrm, TB_ALIGN_16 }, 489 { X86::MOVAPSrr, X86::MOVAPSrm, TB_ALIGN_16 }, 490 { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 }, 491 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 }, 492 { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 }, 493 { X86::MOVDQArr, X86::MOVDQArm, TB_ALIGN_16 }, 494 { X86::MOVSHDUPrr, X86::MOVSHDUPrm, TB_ALIGN_16 }, 495 { X86::MOVSLDUPrr, X86::MOVSLDUPrm, TB_ALIGN_16 }, 496 { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 }, 497 { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 }, 498 { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 }, 499 { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 }, 500 { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 }, 501 { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 }, 502 { X86::MOVUPDrr, X86::MOVUPDrm, TB_ALIGN_16 }, 503 { X86::MOVUPSrr, X86::MOVUPSrm, 0 }, 504 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, TB_ALIGN_16 }, 505 { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 }, 506 { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 }, 507 { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 }, 508 { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 }, 509 { X86::PABSBrr128, X86::PABSBrm128, TB_ALIGN_16 }, 510 { X86::PABSDrr128, X86::PABSDrm128, TB_ALIGN_16 }, 511 { X86::PABSWrr128, X86::PABSWrm128, TB_ALIGN_16 }, 512 { X86::PCMPESTRIrr, X86::PCMPESTRIrm, TB_ALIGN_16 }, 513 { X86::PCMPESTRM128rr, X86::PCMPESTRM128rm, TB_ALIGN_16 }, 514 { X86::PCMPISTRIrr, X86::PCMPISTRIrm, TB_ALIGN_16 }, 515 { X86::PCMPISTRM128rr, X86::PCMPISTRM128rm, TB_ALIGN_16 }, 516 { X86::PHMINPOSUWrr128, X86::PHMINPOSUWrm128, TB_ALIGN_16 }, 517 { X86::PMOVSXBDrr, X86::PMOVSXBDrm, TB_ALIGN_16 }, 518 { X86::PMOVSXBQrr, X86::PMOVSXBQrm, TB_ALIGN_16 }, 519 { X86::PMOVSXBWrr, X86::PMOVSXBWrm, TB_ALIGN_16 }, 520 { X86::PMOVSXDQrr, X86::PMOVSXDQrm, TB_ALIGN_16 }, 521 { X86::PMOVSXWDrr, X86::PMOVSXWDrm, TB_ALIGN_16 }, 522 { X86::PMOVSXWQrr, X86::PMOVSXWQrm, TB_ALIGN_16 }, 523 { X86::PMOVZXBDrr, X86::PMOVZXBDrm, TB_ALIGN_16 }, 524 { X86::PMOVZXBQrr, X86::PMOVZXBQrm, TB_ALIGN_16 }, 525 { X86::PMOVZXBWrr, X86::PMOVZXBWrm, TB_ALIGN_16 }, 526 { X86::PMOVZXDQrr, X86::PMOVZXDQrm, TB_ALIGN_16 }, 527 { X86::PMOVZXWDrr, X86::PMOVZXWDrm, TB_ALIGN_16 }, 528 { X86::PMOVZXWQrr, X86::PMOVZXWQrm, TB_ALIGN_16 }, 529 { X86::PSHUFDri, X86::PSHUFDmi, TB_ALIGN_16 }, 530 { X86::PSHUFHWri, X86::PSHUFHWmi, TB_ALIGN_16 }, 531 { X86::PSHUFLWri, X86::PSHUFLWmi, TB_ALIGN_16 }, 532 { X86::PTESTrr, X86::PTESTrm, TB_ALIGN_16 }, 533 { X86::RCPPSr, X86::RCPPSm, TB_ALIGN_16 }, 534 { X86::RCPSSr, X86::RCPSSm, 0 }, 535 { X86::RCPSSr_Int, X86::RCPSSm_Int, 0 }, 536 { X86::ROUNDPDr, X86::ROUNDPDm, TB_ALIGN_16 }, 537 { X86::ROUNDPSr, X86::ROUNDPSm, TB_ALIGN_16 }, 538 { X86::RSQRTPSr, X86::RSQRTPSm, TB_ALIGN_16 }, 539 { X86::RSQRTSSr, X86::RSQRTSSm, 0 }, 540 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 }, 541 { X86::SQRTPDr, X86::SQRTPDm, TB_ALIGN_16 }, 542 { X86::SQRTPSr, X86::SQRTPSm, TB_ALIGN_16 }, 543 { X86::SQRTSDr, X86::SQRTSDm, 0 }, 544 { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 }, 545 { X86::SQRTSSr, X86::SQRTSSm, 0 }, 546 { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 }, 547 { X86::TEST16rr, X86::TEST16rm, 0 }, 548 { X86::TEST32rr, X86::TEST32rm, 0 }, 549 { X86::TEST64rr, X86::TEST64rm, 0 }, 550 { X86::TEST8rr, X86::TEST8rm, 0 }, 551 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0 552 { X86::UCOMISDrr, X86::UCOMISDrm, 0 }, 553 { X86::UCOMISSrr, X86::UCOMISSrm, 0 }, 554 555 // MMX version of foldable instructions 556 { X86::MMX_CVTPD2PIirr, X86::MMX_CVTPD2PIirm, 0 }, 557 { X86::MMX_CVTPI2PDirr, X86::MMX_CVTPI2PDirm, 0 }, 558 { X86::MMX_CVTPS2PIirr, X86::MMX_CVTPS2PIirm, 0 }, 559 { X86::MMX_CVTTPD2PIirr, X86::MMX_CVTTPD2PIirm, 0 }, 560 { X86::MMX_CVTTPS2PIirr, X86::MMX_CVTTPS2PIirm, 0 }, 561 { X86::MMX_MOVD64to64rr, X86::MMX_MOVQ64rm, 0 }, 562 { X86::MMX_PABSBrr64, X86::MMX_PABSBrm64, 0 }, 563 { X86::MMX_PABSDrr64, X86::MMX_PABSDrm64, 0 }, 564 { X86::MMX_PABSWrr64, X86::MMX_PABSWrm64, 0 }, 565 { X86::MMX_PSHUFWri, X86::MMX_PSHUFWmi, 0 }, 566 567 // 3DNow! version of foldable instructions 568 { X86::PF2IDrr, X86::PF2IDrm, 0 }, 569 { X86::PF2IWrr, X86::PF2IWrm, 0 }, 570 { X86::PFRCPrr, X86::PFRCPrm, 0 }, 571 { X86::PFRSQRTrr, X86::PFRSQRTrm, 0 }, 572 { X86::PI2FDrr, X86::PI2FDrm, 0 }, 573 { X86::PI2FWrr, X86::PI2FWrm, 0 }, 574 { X86::PSWAPDrr, X86::PSWAPDrm, 0 }, 575 576 // AVX 128-bit versions of foldable instructions 577 { X86::Int_VCOMISDrr, X86::Int_VCOMISDrm, 0 }, 578 { X86::Int_VCOMISSrr, X86::Int_VCOMISSrm, 0 }, 579 { X86::Int_VUCOMISDrr, X86::Int_VUCOMISDrm, 0 }, 580 { X86::Int_VUCOMISSrr, X86::Int_VUCOMISSrm, 0 }, 581 { X86::VCVTTSD2SI64rr, X86::VCVTTSD2SI64rm, 0 }, 582 { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 }, 583 { X86::VCVTTSD2SIrr, X86::VCVTTSD2SIrm, 0 }, 584 { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm, 0 }, 585 { X86::VCVTTSS2SI64rr, X86::VCVTTSS2SI64rm, 0 }, 586 { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 }, 587 { X86::VCVTTSS2SIrr, X86::VCVTTSS2SIrm, 0 }, 588 { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm, 0 }, 589 { X86::VCVTSD2SI64rr, X86::VCVTSD2SI64rm, 0 }, 590 { X86::VCVTSD2SIrr, X86::VCVTSD2SIrm, 0 }, 591 { X86::VCVTSS2SI64rr, X86::VCVTSS2SI64rm, 0 }, 592 { X86::VCVTSS2SIrr, X86::VCVTSS2SIrm, 0 }, 593 { X86::VCVTDQ2PDrr, X86::VCVTDQ2PDrm, 0 }, 594 { X86::VCVTDQ2PSrr, X86::VCVTDQ2PSrm, 0 }, 595 { X86::VCVTPD2DQrr, X86::VCVTPD2DQXrm, 0 }, 596 { X86::VCVTPD2PSrr, X86::VCVTPD2PSXrm, 0 }, 597 { X86::VCVTPS2DQrr, X86::VCVTPS2DQrm, 0 }, 598 { X86::VCVTPS2PDrr, X86::VCVTPS2PDrm, 0 }, 599 { X86::VCVTTPD2DQrr, X86::VCVTTPD2DQXrm, 0 }, 600 { X86::VCVTTPS2DQrr, X86::VCVTTPS2DQrm, 0 }, 601 { X86::VMOV64toPQIrr, X86::VMOVQI2PQIrm, 0 }, 602 { X86::VMOV64toSDrr, X86::VMOV64toSDrm, 0 }, 603 { X86::VMOVAPDrr, X86::VMOVAPDrm, TB_ALIGN_16 }, 604 { X86::VMOVAPSrr, X86::VMOVAPSrm, TB_ALIGN_16 }, 605 { X86::VMOVDDUPrr, X86::VMOVDDUPrm, 0 }, 606 { X86::VMOVDI2PDIrr, X86::VMOVDI2PDIrm, 0 }, 607 { X86::VMOVDI2SSrr, X86::VMOVDI2SSrm, 0 }, 608 { X86::VMOVDQArr, X86::VMOVDQArm, TB_ALIGN_16 }, 609 { X86::VMOVSLDUPrr, X86::VMOVSLDUPrm, 0 }, 610 { X86::VMOVSHDUPrr, X86::VMOVSHDUPrm, 0 }, 611 { X86::VMOVUPDrr, X86::VMOVUPDrm, 0 }, 612 { X86::VMOVUPSrr, X86::VMOVUPSrm, 0 }, 613 { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm, TB_ALIGN_16 }, 614 { X86::VPABSBrr128, X86::VPABSBrm128, 0 }, 615 { X86::VPABSDrr128, X86::VPABSDrm128, 0 }, 616 { X86::VPABSWrr128, X86::VPABSWrm128, 0 }, 617 { X86::VPCMPESTRIrr, X86::VPCMPESTRIrm, 0 }, 618 { X86::VPCMPESTRM128rr, X86::VPCMPESTRM128rm, 0 }, 619 { X86::VPCMPISTRIrr, X86::VPCMPISTRIrm, 0 }, 620 { X86::VPCMPISTRM128rr, X86::VPCMPISTRM128rm, 0 }, 621 { X86::VPHMINPOSUWrr128, X86::VPHMINPOSUWrm128, 0 }, 622 { X86::VPERMILPDri, X86::VPERMILPDmi, 0 }, 623 { X86::VPERMILPSri, X86::VPERMILPSmi, 0 }, 624 { X86::VPMOVSXBDrr, X86::VPMOVSXBDrm, 0 }, 625 { X86::VPMOVSXBQrr, X86::VPMOVSXBQrm, 0 }, 626 { X86::VPMOVSXBWrr, X86::VPMOVSXBWrm, 0 }, 627 { X86::VPMOVSXDQrr, X86::VPMOVSXDQrm, 0 }, 628 { X86::VPMOVSXWDrr, X86::VPMOVSXWDrm, 0 }, 629 { X86::VPMOVSXWQrr, X86::VPMOVSXWQrm, 0 }, 630 { X86::VPMOVZXBDrr, X86::VPMOVZXBDrm, 0 }, 631 { X86::VPMOVZXBQrr, X86::VPMOVZXBQrm, 0 }, 632 { X86::VPMOVZXBWrr, X86::VPMOVZXBWrm, 0 }, 633 { X86::VPMOVZXDQrr, X86::VPMOVZXDQrm, 0 }, 634 { X86::VPMOVZXWDrr, X86::VPMOVZXWDrm, 0 }, 635 { X86::VPMOVZXWQrr, X86::VPMOVZXWQrm, 0 }, 636 { X86::VPSHUFDri, X86::VPSHUFDmi, 0 }, 637 { X86::VPSHUFHWri, X86::VPSHUFHWmi, 0 }, 638 { X86::VPSHUFLWri, X86::VPSHUFLWmi, 0 }, 639 { X86::VPTESTrr, X86::VPTESTrm, 0 }, 640 { X86::VRCPPSr, X86::VRCPPSm, 0 }, 641 { X86::VROUNDPDr, X86::VROUNDPDm, 0 }, 642 { X86::VROUNDPSr, X86::VROUNDPSm, 0 }, 643 { X86::VRSQRTPSr, X86::VRSQRTPSm, 0 }, 644 { X86::VSQRTPDr, X86::VSQRTPDm, 0 }, 645 { X86::VSQRTPSr, X86::VSQRTPSm, 0 }, 646 { X86::VTESTPDrr, X86::VTESTPDrm, 0 }, 647 { X86::VTESTPSrr, X86::VTESTPSrm, 0 }, 648 { X86::VUCOMISDrr, X86::VUCOMISDrm, 0 }, 649 { X86::VUCOMISSrr, X86::VUCOMISSrm, 0 }, 650 651 // AVX 256-bit foldable instructions 652 { X86::VCVTDQ2PDYrr, X86::VCVTDQ2PDYrm, 0 }, 653 { X86::VCVTDQ2PSYrr, X86::VCVTDQ2PSYrm, 0 }, 654 { X86::VCVTPD2DQYrr, X86::VCVTPD2DQYrm, 0 }, 655 { X86::VCVTPD2PSYrr, X86::VCVTPD2PSYrm, 0 }, 656 { X86::VCVTPS2DQYrr, X86::VCVTPS2DQYrm, 0 }, 657 { X86::VCVTPS2PDYrr, X86::VCVTPS2PDYrm, 0 }, 658 { X86::VCVTTPD2DQYrr, X86::VCVTTPD2DQYrm, 0 }, 659 { X86::VCVTTPS2DQYrr, X86::VCVTTPS2DQYrm, 0 }, 660 { X86::VMOVAPDYrr, X86::VMOVAPDYrm, TB_ALIGN_32 }, 661 { X86::VMOVAPSYrr, X86::VMOVAPSYrm, TB_ALIGN_32 }, 662 { X86::VMOVDDUPYrr, X86::VMOVDDUPYrm, 0 }, 663 { X86::VMOVDQAYrr, X86::VMOVDQAYrm, TB_ALIGN_32 }, 664 { X86::VMOVSLDUPYrr, X86::VMOVSLDUPYrm, 0 }, 665 { X86::VMOVSHDUPYrr, X86::VMOVSHDUPYrm, 0 }, 666 { X86::VMOVUPDYrr, X86::VMOVUPDYrm, 0 }, 667 { X86::VMOVUPSYrr, X86::VMOVUPSYrm, 0 }, 668 { X86::VPERMILPDYri, X86::VPERMILPDYmi, 0 }, 669 { X86::VPERMILPSYri, X86::VPERMILPSYmi, 0 }, 670 { X86::VPTESTYrr, X86::VPTESTYrm, 0 }, 671 { X86::VRCPPSYr, X86::VRCPPSYm, 0 }, 672 { X86::VROUNDYPDr, X86::VROUNDYPDm, 0 }, 673 { X86::VROUNDYPSr, X86::VROUNDYPSm, 0 }, 674 { X86::VRSQRTPSYr, X86::VRSQRTPSYm, 0 }, 675 { X86::VSQRTPDYr, X86::VSQRTPDYm, 0 }, 676 { X86::VSQRTPSYr, X86::VSQRTPSYm, 0 }, 677 { X86::VTESTPDYrr, X86::VTESTPDYrm, 0 }, 678 { X86::VTESTPSYrr, X86::VTESTPSYrm, 0 }, 679 680 // AVX2 foldable instructions 681 682 // VBROADCASTS{SD}rr register instructions were an AVX2 addition while the 683 // VBROADCASTS{SD}rm memory instructions were available from AVX1. 684 // TB_NO_REVERSE prevents unfolding from introducing an illegal instruction 685 // on AVX1 targets. The VPBROADCAST instructions are all AVX2 instructions 686 // so they don't need an equivalent limitation. 687 { X86::VBROADCASTSSrr, X86::VBROADCASTSSrm, TB_NO_REVERSE }, 688 { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm, TB_NO_REVERSE }, 689 { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm, TB_NO_REVERSE }, 690 { X86::VPABSBrr256, X86::VPABSBrm256, 0 }, 691 { X86::VPABSDrr256, X86::VPABSDrm256, 0 }, 692 { X86::VPABSWrr256, X86::VPABSWrm256, 0 }, 693 { X86::VPBROADCASTBrr, X86::VPBROADCASTBrm, 0 }, 694 { X86::VPBROADCASTBYrr, X86::VPBROADCASTBYrm, 0 }, 695 { X86::VPBROADCASTDrr, X86::VPBROADCASTDrm, 0 }, 696 { X86::VPBROADCASTDYrr, X86::VPBROADCASTDYrm, 0 }, 697 { X86::VPBROADCASTQrr, X86::VPBROADCASTQrm, 0 }, 698 { X86::VPBROADCASTQYrr, X86::VPBROADCASTQYrm, 0 }, 699 { X86::VPBROADCASTWrr, X86::VPBROADCASTWrm, 0 }, 700 { X86::VPBROADCASTWYrr, X86::VPBROADCASTWYrm, 0 }, 701 { X86::VPERMPDYri, X86::VPERMPDYmi, 0 }, 702 { X86::VPERMQYri, X86::VPERMQYmi, 0 }, 703 { X86::VPMOVSXBDYrr, X86::VPMOVSXBDYrm, 0 }, 704 { X86::VPMOVSXBQYrr, X86::VPMOVSXBQYrm, 0 }, 705 { X86::VPMOVSXBWYrr, X86::VPMOVSXBWYrm, 0 }, 706 { X86::VPMOVSXDQYrr, X86::VPMOVSXDQYrm, 0 }, 707 { X86::VPMOVSXWDYrr, X86::VPMOVSXWDYrm, 0 }, 708 { X86::VPMOVSXWQYrr, X86::VPMOVSXWQYrm, 0 }, 709 { X86::VPMOVZXBDYrr, X86::VPMOVZXBDYrm, 0 }, 710 { X86::VPMOVZXBQYrr, X86::VPMOVZXBQYrm, 0 }, 711 { X86::VPMOVZXBWYrr, X86::VPMOVZXBWYrm, 0 }, 712 { X86::VPMOVZXDQYrr, X86::VPMOVZXDQYrm, 0 }, 713 { X86::VPMOVZXWDYrr, X86::VPMOVZXWDYrm, 0 }, 714 { X86::VPMOVZXWQYrr, X86::VPMOVZXWQYrm, 0 }, 715 { X86::VPSHUFDYri, X86::VPSHUFDYmi, 0 }, 716 { X86::VPSHUFHWYri, X86::VPSHUFHWYmi, 0 }, 717 { X86::VPSHUFLWYri, X86::VPSHUFLWYmi, 0 }, 718 719 // XOP foldable instructions 720 { X86::VFRCZPDrr, X86::VFRCZPDrm, 0 }, 721 { X86::VFRCZPDrrY, X86::VFRCZPDrmY, 0 }, 722 { X86::VFRCZPSrr, X86::VFRCZPSrm, 0 }, 723 { X86::VFRCZPSrrY, X86::VFRCZPSrmY, 0 }, 724 { X86::VFRCZSDrr, X86::VFRCZSDrm, 0 }, 725 { X86::VFRCZSSrr, X86::VFRCZSSrm, 0 }, 726 { X86::VPHADDBDrr, X86::VPHADDBDrm, 0 }, 727 { X86::VPHADDBQrr, X86::VPHADDBQrm, 0 }, 728 { X86::VPHADDBWrr, X86::VPHADDBWrm, 0 }, 729 { X86::VPHADDDQrr, X86::VPHADDDQrm, 0 }, 730 { X86::VPHADDWDrr, X86::VPHADDWDrm, 0 }, 731 { X86::VPHADDWQrr, X86::VPHADDWQrm, 0 }, 732 { X86::VPHADDUBDrr, X86::VPHADDUBDrm, 0 }, 733 { X86::VPHADDUBQrr, X86::VPHADDUBQrm, 0 }, 734 { X86::VPHADDUBWrr, X86::VPHADDUBWrm, 0 }, 735 { X86::VPHADDUDQrr, X86::VPHADDUDQrm, 0 }, 736 { X86::VPHADDUWDrr, X86::VPHADDUWDrm, 0 }, 737 { X86::VPHADDUWQrr, X86::VPHADDUWQrm, 0 }, 738 { X86::VPHSUBBWrr, X86::VPHSUBBWrm, 0 }, 739 { X86::VPHSUBDQrr, X86::VPHSUBDQrm, 0 }, 740 { X86::VPHSUBWDrr, X86::VPHSUBWDrm, 0 }, 741 { X86::VPROTBri, X86::VPROTBmi, 0 }, 742 { X86::VPROTBrr, X86::VPROTBmr, 0 }, 743 { X86::VPROTDri, X86::VPROTDmi, 0 }, 744 { X86::VPROTDrr, X86::VPROTDmr, 0 }, 745 { X86::VPROTQri, X86::VPROTQmi, 0 }, 746 { X86::VPROTQrr, X86::VPROTQmr, 0 }, 747 { X86::VPROTWri, X86::VPROTWmi, 0 }, 748 { X86::VPROTWrr, X86::VPROTWmr, 0 }, 749 { X86::VPSHABrr, X86::VPSHABmr, 0 }, 750 { X86::VPSHADrr, X86::VPSHADmr, 0 }, 751 { X86::VPSHAQrr, X86::VPSHAQmr, 0 }, 752 { X86::VPSHAWrr, X86::VPSHAWmr, 0 }, 753 { X86::VPSHLBrr, X86::VPSHLBmr, 0 }, 754 { X86::VPSHLDrr, X86::VPSHLDmr, 0 }, 755 { X86::VPSHLQrr, X86::VPSHLQmr, 0 }, 756 { X86::VPSHLWrr, X86::VPSHLWmr, 0 }, 757 758 // BMI/BMI2/LZCNT/POPCNT/TBM foldable instructions 759 { X86::BEXTR32rr, X86::BEXTR32rm, 0 }, 760 { X86::BEXTR64rr, X86::BEXTR64rm, 0 }, 761 { X86::BEXTRI32ri, X86::BEXTRI32mi, 0 }, 762 { X86::BEXTRI64ri, X86::BEXTRI64mi, 0 }, 763 { X86::BLCFILL32rr, X86::BLCFILL32rm, 0 }, 764 { X86::BLCFILL64rr, X86::BLCFILL64rm, 0 }, 765 { X86::BLCI32rr, X86::BLCI32rm, 0 }, 766 { X86::BLCI64rr, X86::BLCI64rm, 0 }, 767 { X86::BLCIC32rr, X86::BLCIC32rm, 0 }, 768 { X86::BLCIC64rr, X86::BLCIC64rm, 0 }, 769 { X86::BLCMSK32rr, X86::BLCMSK32rm, 0 }, 770 { X86::BLCMSK64rr, X86::BLCMSK64rm, 0 }, 771 { X86::BLCS32rr, X86::BLCS32rm, 0 }, 772 { X86::BLCS64rr, X86::BLCS64rm, 0 }, 773 { X86::BLSFILL32rr, X86::BLSFILL32rm, 0 }, 774 { X86::BLSFILL64rr, X86::BLSFILL64rm, 0 }, 775 { X86::BLSI32rr, X86::BLSI32rm, 0 }, 776 { X86::BLSI64rr, X86::BLSI64rm, 0 }, 777 { X86::BLSIC32rr, X86::BLSIC32rm, 0 }, 778 { X86::BLSIC64rr, X86::BLSIC64rm, 0 }, 779 { X86::BLSMSK32rr, X86::BLSMSK32rm, 0 }, 780 { X86::BLSMSK64rr, X86::BLSMSK64rm, 0 }, 781 { X86::BLSR32rr, X86::BLSR32rm, 0 }, 782 { X86::BLSR64rr, X86::BLSR64rm, 0 }, 783 { X86::BZHI32rr, X86::BZHI32rm, 0 }, 784 { X86::BZHI64rr, X86::BZHI64rm, 0 }, 785 { X86::LZCNT16rr, X86::LZCNT16rm, 0 }, 786 { X86::LZCNT32rr, X86::LZCNT32rm, 0 }, 787 { X86::LZCNT64rr, X86::LZCNT64rm, 0 }, 788 { X86::POPCNT16rr, X86::POPCNT16rm, 0 }, 789 { X86::POPCNT32rr, X86::POPCNT32rm, 0 }, 790 { X86::POPCNT64rr, X86::POPCNT64rm, 0 }, 791 { X86::RORX32ri, X86::RORX32mi, 0 }, 792 { X86::RORX64ri, X86::RORX64mi, 0 }, 793 { X86::SARX32rr, X86::SARX32rm, 0 }, 794 { X86::SARX64rr, X86::SARX64rm, 0 }, 795 { X86::SHRX32rr, X86::SHRX32rm, 0 }, 796 { X86::SHRX64rr, X86::SHRX64rm, 0 }, 797 { X86::SHLX32rr, X86::SHLX32rm, 0 }, 798 { X86::SHLX64rr, X86::SHLX64rm, 0 }, 799 { X86::T1MSKC32rr, X86::T1MSKC32rm, 0 }, 800 { X86::T1MSKC64rr, X86::T1MSKC64rm, 0 }, 801 { X86::TZCNT16rr, X86::TZCNT16rm, 0 }, 802 { X86::TZCNT32rr, X86::TZCNT32rm, 0 }, 803 { X86::TZCNT64rr, X86::TZCNT64rm, 0 }, 804 { X86::TZMSK32rr, X86::TZMSK32rm, 0 }, 805 { X86::TZMSK64rr, X86::TZMSK64rm, 0 }, 806 807 // AVX-512 foldable instructions 808 { X86::VMOV64toPQIZrr, X86::VMOVQI2PQIZrm, 0 }, 809 { X86::VMOVDI2SSZrr, X86::VMOVDI2SSZrm, 0 }, 810 { X86::VMOVAPDZrr, X86::VMOVAPDZrm, TB_ALIGN_64 }, 811 { X86::VMOVAPSZrr, X86::VMOVAPSZrm, TB_ALIGN_64 }, 812 { X86::VMOVDQA32Zrr, X86::VMOVDQA32Zrm, TB_ALIGN_64 }, 813 { X86::VMOVDQA64Zrr, X86::VMOVDQA64Zrm, TB_ALIGN_64 }, 814 { X86::VMOVDQU8Zrr, X86::VMOVDQU8Zrm, 0 }, 815 { X86::VMOVDQU16Zrr, X86::VMOVDQU16Zrm, 0 }, 816 { X86::VMOVDQU32Zrr, X86::VMOVDQU32Zrm, 0 }, 817 { X86::VMOVDQU64Zrr, X86::VMOVDQU64Zrm, 0 }, 818 { X86::VMOVUPDZrr, X86::VMOVUPDZrm, 0 }, 819 { X86::VMOVUPSZrr, X86::VMOVUPSZrm, 0 }, 820 { X86::VPABSDZrr, X86::VPABSDZrm, 0 }, 821 { X86::VPABSQZrr, X86::VPABSQZrm, 0 }, 822 { X86::VBROADCASTSSZr, X86::VBROADCASTSSZm, TB_NO_REVERSE }, 823 { X86::VBROADCASTSDZr, X86::VBROADCASTSDZm, TB_NO_REVERSE }, 824 825 // AVX-512 foldable instructions (256-bit versions) 826 { X86::VMOVAPDZ256rr, X86::VMOVAPDZ256rm, TB_ALIGN_32 }, 827 { X86::VMOVAPSZ256rr, X86::VMOVAPSZ256rm, TB_ALIGN_32 }, 828 { X86::VMOVDQA32Z256rr, X86::VMOVDQA32Z256rm, TB_ALIGN_32 }, 829 { X86::VMOVDQA64Z256rr, X86::VMOVDQA64Z256rm, TB_ALIGN_32 }, 830 { X86::VMOVDQU8Z256rr, X86::VMOVDQU8Z256rm, 0 }, 831 { X86::VMOVDQU16Z256rr, X86::VMOVDQU16Z256rm, 0 }, 832 { X86::VMOVDQU32Z256rr, X86::VMOVDQU32Z256rm, 0 }, 833 { X86::VMOVDQU64Z256rr, X86::VMOVDQU64Z256rm, 0 }, 834 { X86::VMOVUPDZ256rr, X86::VMOVUPDZ256rm, 0 }, 835 { X86::VMOVUPSZ256rr, X86::VMOVUPSZ256rm, 0 }, 836 { X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256m, TB_NO_REVERSE }, 837 { X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256m, TB_NO_REVERSE }, 838 839 // AVX-512 foldable instructions (256-bit versions) 840 { X86::VMOVAPDZ128rr, X86::VMOVAPDZ128rm, TB_ALIGN_16 }, 841 { X86::VMOVAPSZ128rr, X86::VMOVAPSZ128rm, TB_ALIGN_16 }, 842 { X86::VMOVDQA32Z128rr, X86::VMOVDQA32Z128rm, TB_ALIGN_16 }, 843 { X86::VMOVDQA64Z128rr, X86::VMOVDQA64Z128rm, TB_ALIGN_16 }, 844 { X86::VMOVDQU8Z128rr, X86::VMOVDQU8Z128rm, 0 }, 845 { X86::VMOVDQU16Z128rr, X86::VMOVDQU16Z128rm, 0 }, 846 { X86::VMOVDQU32Z128rr, X86::VMOVDQU32Z128rm, 0 }, 847 { X86::VMOVDQU64Z128rr, X86::VMOVDQU64Z128rm, 0 }, 848 { X86::VMOVUPDZ128rr, X86::VMOVUPDZ128rm, 0 }, 849 { X86::VMOVUPSZ128rr, X86::VMOVUPSZ128rm, 0 }, 850 { X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128m, TB_NO_REVERSE }, 851 852 // F16C foldable instructions 853 { X86::VCVTPH2PSrr, X86::VCVTPH2PSrm, 0 }, 854 { X86::VCVTPH2PSYrr, X86::VCVTPH2PSYrm, 0 }, 855 856 // AES foldable instructions 857 { X86::AESIMCrr, X86::AESIMCrm, TB_ALIGN_16 }, 858 { X86::AESKEYGENASSIST128rr, X86::AESKEYGENASSIST128rm, TB_ALIGN_16 }, 859 { X86::VAESIMCrr, X86::VAESIMCrm, 0 }, 860 { X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, 0 } 861 }; 862 863 for (X86MemoryFoldTableEntry Entry : MemoryFoldTable1) { 864 AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable, 865 Entry.RegOp, Entry.MemOp, 866 // Index 1, folded load 867 Entry.Flags | TB_INDEX_1 | TB_FOLDED_LOAD); 868 } 869 870 static const X86MemoryFoldTableEntry MemoryFoldTable2[] = { 871 { X86::ADC32rr, X86::ADC32rm, 0 }, 872 { X86::ADC64rr, X86::ADC64rm, 0 }, 873 { X86::ADD16rr, X86::ADD16rm, 0 }, 874 { X86::ADD16rr_DB, X86::ADD16rm, TB_NO_REVERSE }, 875 { X86::ADD32rr, X86::ADD32rm, 0 }, 876 { X86::ADD32rr_DB, X86::ADD32rm, TB_NO_REVERSE }, 877 { X86::ADD64rr, X86::ADD64rm, 0 }, 878 { X86::ADD64rr_DB, X86::ADD64rm, TB_NO_REVERSE }, 879 { X86::ADD8rr, X86::ADD8rm, 0 }, 880 { X86::ADDPDrr, X86::ADDPDrm, TB_ALIGN_16 }, 881 { X86::ADDPSrr, X86::ADDPSrm, TB_ALIGN_16 }, 882 { X86::ADDSDrr, X86::ADDSDrm, 0 }, 883 { X86::ADDSDrr_Int, X86::ADDSDrm_Int, 0 }, 884 { X86::ADDSSrr, X86::ADDSSrm, 0 }, 885 { X86::ADDSSrr_Int, X86::ADDSSrm_Int, 0 }, 886 { X86::ADDSUBPDrr, X86::ADDSUBPDrm, TB_ALIGN_16 }, 887 { X86::ADDSUBPSrr, X86::ADDSUBPSrm, TB_ALIGN_16 }, 888 { X86::AND16rr, X86::AND16rm, 0 }, 889 { X86::AND32rr, X86::AND32rm, 0 }, 890 { X86::AND64rr, X86::AND64rm, 0 }, 891 { X86::AND8rr, X86::AND8rm, 0 }, 892 { X86::ANDNPDrr, X86::ANDNPDrm, TB_ALIGN_16 }, 893 { X86::ANDNPSrr, X86::ANDNPSrm, TB_ALIGN_16 }, 894 { X86::ANDPDrr, X86::ANDPDrm, TB_ALIGN_16 }, 895 { X86::ANDPSrr, X86::ANDPSrm, TB_ALIGN_16 }, 896 { X86::BLENDPDrri, X86::BLENDPDrmi, TB_ALIGN_16 }, 897 { X86::BLENDPSrri, X86::BLENDPSrmi, TB_ALIGN_16 }, 898 { X86::BLENDVPDrr0, X86::BLENDVPDrm0, TB_ALIGN_16 }, 899 { X86::BLENDVPSrr0, X86::BLENDVPSrm0, TB_ALIGN_16 }, 900 { X86::CMOVA16rr, X86::CMOVA16rm, 0 }, 901 { X86::CMOVA32rr, X86::CMOVA32rm, 0 }, 902 { X86::CMOVA64rr, X86::CMOVA64rm, 0 }, 903 { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 }, 904 { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 }, 905 { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 }, 906 { X86::CMOVB16rr, X86::CMOVB16rm, 0 }, 907 { X86::CMOVB32rr, X86::CMOVB32rm, 0 }, 908 { X86::CMOVB64rr, X86::CMOVB64rm, 0 }, 909 { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 }, 910 { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 }, 911 { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 }, 912 { X86::CMOVE16rr, X86::CMOVE16rm, 0 }, 913 { X86::CMOVE32rr, X86::CMOVE32rm, 0 }, 914 { X86::CMOVE64rr, X86::CMOVE64rm, 0 }, 915 { X86::CMOVG16rr, X86::CMOVG16rm, 0 }, 916 { X86::CMOVG32rr, X86::CMOVG32rm, 0 }, 917 { X86::CMOVG64rr, X86::CMOVG64rm, 0 }, 918 { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 }, 919 { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 }, 920 { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 }, 921 { X86::CMOVL16rr, X86::CMOVL16rm, 0 }, 922 { X86::CMOVL32rr, X86::CMOVL32rm, 0 }, 923 { X86::CMOVL64rr, X86::CMOVL64rm, 0 }, 924 { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 }, 925 { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 }, 926 { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 }, 927 { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 }, 928 { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 }, 929 { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 }, 930 { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 }, 931 { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 }, 932 { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 }, 933 { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 }, 934 { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 }, 935 { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 }, 936 { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 }, 937 { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 }, 938 { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 }, 939 { X86::CMOVO16rr, X86::CMOVO16rm, 0 }, 940 { X86::CMOVO32rr, X86::CMOVO32rm, 0 }, 941 { X86::CMOVO64rr, X86::CMOVO64rm, 0 }, 942 { X86::CMOVP16rr, X86::CMOVP16rm, 0 }, 943 { X86::CMOVP32rr, X86::CMOVP32rm, 0 }, 944 { X86::CMOVP64rr, X86::CMOVP64rm, 0 }, 945 { X86::CMOVS16rr, X86::CMOVS16rm, 0 }, 946 { X86::CMOVS32rr, X86::CMOVS32rm, 0 }, 947 { X86::CMOVS64rr, X86::CMOVS64rm, 0 }, 948 { X86::CMPPDrri, X86::CMPPDrmi, TB_ALIGN_16 }, 949 { X86::CMPPSrri, X86::CMPPSrmi, TB_ALIGN_16 }, 950 { X86::CMPSDrr, X86::CMPSDrm, 0 }, 951 { X86::CMPSSrr, X86::CMPSSrm, 0 }, 952 { X86::CRC32r32r32, X86::CRC32r32m32, 0 }, 953 { X86::CRC32r64r64, X86::CRC32r64m64, 0 }, 954 { X86::DIVPDrr, X86::DIVPDrm, TB_ALIGN_16 }, 955 { X86::DIVPSrr, X86::DIVPSrm, TB_ALIGN_16 }, 956 { X86::DIVSDrr, X86::DIVSDrm, 0 }, 957 { X86::DIVSDrr_Int, X86::DIVSDrm_Int, 0 }, 958 { X86::DIVSSrr, X86::DIVSSrm, 0 }, 959 { X86::DIVSSrr_Int, X86::DIVSSrm_Int, 0 }, 960 { X86::DPPDrri, X86::DPPDrmi, TB_ALIGN_16 }, 961 { X86::DPPSrri, X86::DPPSrmi, TB_ALIGN_16 }, 962 963 // Do not fold Fs* scalar logical op loads because there are no scalar 964 // load variants for these instructions. When folded, the load is required 965 // to be 128-bits, so the load size would not match. 966 967 { X86::FvANDNPDrr, X86::FvANDNPDrm, TB_ALIGN_16 }, 968 { X86::FvANDNPSrr, X86::FvANDNPSrm, TB_ALIGN_16 }, 969 { X86::FvANDPDrr, X86::FvANDPDrm, TB_ALIGN_16 }, 970 { X86::FvANDPSrr, X86::FvANDPSrm, TB_ALIGN_16 }, 971 { X86::FvORPDrr, X86::FvORPDrm, TB_ALIGN_16 }, 972 { X86::FvORPSrr, X86::FvORPSrm, TB_ALIGN_16 }, 973 { X86::FvXORPDrr, X86::FvXORPDrm, TB_ALIGN_16 }, 974 { X86::FvXORPSrr, X86::FvXORPSrm, TB_ALIGN_16 }, 975 { X86::HADDPDrr, X86::HADDPDrm, TB_ALIGN_16 }, 976 { X86::HADDPSrr, X86::HADDPSrm, TB_ALIGN_16 }, 977 { X86::HSUBPDrr, X86::HSUBPDrm, TB_ALIGN_16 }, 978 { X86::HSUBPSrr, X86::HSUBPSrm, TB_ALIGN_16 }, 979 { X86::IMUL16rr, X86::IMUL16rm, 0 }, 980 { X86::IMUL32rr, X86::IMUL32rm, 0 }, 981 { X86::IMUL64rr, X86::IMUL64rm, 0 }, 982 { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 }, 983 { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 }, 984 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 }, 985 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 }, 986 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 }, 987 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 }, 988 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 }, 989 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 }, 990 { X86::MAXPDrr, X86::MAXPDrm, TB_ALIGN_16 }, 991 { X86::MAXPSrr, X86::MAXPSrm, TB_ALIGN_16 }, 992 { X86::MAXSDrr, X86::MAXSDrm, 0 }, 993 { X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 }, 994 { X86::MAXSSrr, X86::MAXSSrm, 0 }, 995 { X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 }, 996 { X86::MINPDrr, X86::MINPDrm, TB_ALIGN_16 }, 997 { X86::MINPSrr, X86::MINPSrm, TB_ALIGN_16 }, 998 { X86::MINSDrr, X86::MINSDrm, 0 }, 999 { X86::MINSDrr_Int, X86::MINSDrm_Int, 0 }, 1000 { X86::MINSSrr, X86::MINSSrm, 0 }, 1001 { X86::MINSSrr_Int, X86::MINSSrm_Int, 0 }, 1002 { X86::MPSADBWrri, X86::MPSADBWrmi, TB_ALIGN_16 }, 1003 { X86::MULPDrr, X86::MULPDrm, TB_ALIGN_16 }, 1004 { X86::MULPSrr, X86::MULPSrm, TB_ALIGN_16 }, 1005 { X86::MULSDrr, X86::MULSDrm, 0 }, 1006 { X86::MULSDrr_Int, X86::MULSDrm_Int, 0 }, 1007 { X86::MULSSrr, X86::MULSSrm, 0 }, 1008 { X86::MULSSrr_Int, X86::MULSSrm_Int, 0 }, 1009 { X86::OR16rr, X86::OR16rm, 0 }, 1010 { X86::OR32rr, X86::OR32rm, 0 }, 1011 { X86::OR64rr, X86::OR64rm, 0 }, 1012 { X86::OR8rr, X86::OR8rm, 0 }, 1013 { X86::ORPDrr, X86::ORPDrm, TB_ALIGN_16 }, 1014 { X86::ORPSrr, X86::ORPSrm, TB_ALIGN_16 }, 1015 { X86::PACKSSDWrr, X86::PACKSSDWrm, TB_ALIGN_16 }, 1016 { X86::PACKSSWBrr, X86::PACKSSWBrm, TB_ALIGN_16 }, 1017 { X86::PACKUSDWrr, X86::PACKUSDWrm, TB_ALIGN_16 }, 1018 { X86::PACKUSWBrr, X86::PACKUSWBrm, TB_ALIGN_16 }, 1019 { X86::PADDBrr, X86::PADDBrm, TB_ALIGN_16 }, 1020 { X86::PADDDrr, X86::PADDDrm, TB_ALIGN_16 }, 1021 { X86::PADDQrr, X86::PADDQrm, TB_ALIGN_16 }, 1022 { X86::PADDSBrr, X86::PADDSBrm, TB_ALIGN_16 }, 1023 { X86::PADDSWrr, X86::PADDSWrm, TB_ALIGN_16 }, 1024 { X86::PADDUSBrr, X86::PADDUSBrm, TB_ALIGN_16 }, 1025 { X86::PADDUSWrr, X86::PADDUSWrm, TB_ALIGN_16 }, 1026 { X86::PADDWrr, X86::PADDWrm, TB_ALIGN_16 }, 1027 { X86::PALIGNR128rr, X86::PALIGNR128rm, TB_ALIGN_16 }, 1028 { X86::PANDNrr, X86::PANDNrm, TB_ALIGN_16 }, 1029 { X86::PANDrr, X86::PANDrm, TB_ALIGN_16 }, 1030 { X86::PAVGBrr, X86::PAVGBrm, TB_ALIGN_16 }, 1031 { X86::PAVGWrr, X86::PAVGWrm, TB_ALIGN_16 }, 1032 { X86::PBLENDVBrr0, X86::PBLENDVBrm0, TB_ALIGN_16 }, 1033 { X86::PBLENDWrri, X86::PBLENDWrmi, TB_ALIGN_16 }, 1034 { X86::PCLMULQDQrr, X86::PCLMULQDQrm, TB_ALIGN_16 }, 1035 { X86::PCMPEQBrr, X86::PCMPEQBrm, TB_ALIGN_16 }, 1036 { X86::PCMPEQDrr, X86::PCMPEQDrm, TB_ALIGN_16 }, 1037 { X86::PCMPEQQrr, X86::PCMPEQQrm, TB_ALIGN_16 }, 1038 { X86::PCMPEQWrr, X86::PCMPEQWrm, TB_ALIGN_16 }, 1039 { X86::PCMPGTBrr, X86::PCMPGTBrm, TB_ALIGN_16 }, 1040 { X86::PCMPGTDrr, X86::PCMPGTDrm, TB_ALIGN_16 }, 1041 { X86::PCMPGTQrr, X86::PCMPGTQrm, TB_ALIGN_16 }, 1042 { X86::PCMPGTWrr, X86::PCMPGTWrm, TB_ALIGN_16 }, 1043 { X86::PHADDDrr, X86::PHADDDrm, TB_ALIGN_16 }, 1044 { X86::PHADDWrr, X86::PHADDWrm, TB_ALIGN_16 }, 1045 { X86::PHADDSWrr128, X86::PHADDSWrm128, TB_ALIGN_16 }, 1046 { X86::PHSUBDrr, X86::PHSUBDrm, TB_ALIGN_16 }, 1047 { X86::PHSUBSWrr128, X86::PHSUBSWrm128, TB_ALIGN_16 }, 1048 { X86::PHSUBWrr, X86::PHSUBWrm, TB_ALIGN_16 }, 1049 { X86::PINSRBrr, X86::PINSRBrm, 0 }, 1050 { X86::PINSRDrr, X86::PINSRDrm, 0 }, 1051 { X86::PINSRQrr, X86::PINSRQrm, 0 }, 1052 { X86::PINSRWrri, X86::PINSRWrmi, 0 }, 1053 { X86::PMADDUBSWrr128, X86::PMADDUBSWrm128, TB_ALIGN_16 }, 1054 { X86::PMADDWDrr, X86::PMADDWDrm, TB_ALIGN_16 }, 1055 { X86::PMAXSWrr, X86::PMAXSWrm, TB_ALIGN_16 }, 1056 { X86::PMAXUBrr, X86::PMAXUBrm, TB_ALIGN_16 }, 1057 { X86::PMINSWrr, X86::PMINSWrm, TB_ALIGN_16 }, 1058 { X86::PMINUBrr, X86::PMINUBrm, TB_ALIGN_16 }, 1059 { X86::PMINSBrr, X86::PMINSBrm, TB_ALIGN_16 }, 1060 { X86::PMINSDrr, X86::PMINSDrm, TB_ALIGN_16 }, 1061 { X86::PMINUDrr, X86::PMINUDrm, TB_ALIGN_16 }, 1062 { X86::PMINUWrr, X86::PMINUWrm, TB_ALIGN_16 }, 1063 { X86::PMAXSBrr, X86::PMAXSBrm, TB_ALIGN_16 }, 1064 { X86::PMAXSDrr, X86::PMAXSDrm, TB_ALIGN_16 }, 1065 { X86::PMAXUDrr, X86::PMAXUDrm, TB_ALIGN_16 }, 1066 { X86::PMAXUWrr, X86::PMAXUWrm, TB_ALIGN_16 }, 1067 { X86::PMULDQrr, X86::PMULDQrm, TB_ALIGN_16 }, 1068 { X86::PMULHRSWrr128, X86::PMULHRSWrm128, TB_ALIGN_16 }, 1069 { X86::PMULHUWrr, X86::PMULHUWrm, TB_ALIGN_16 }, 1070 { X86::PMULHWrr, X86::PMULHWrm, TB_ALIGN_16 }, 1071 { X86::PMULLDrr, X86::PMULLDrm, TB_ALIGN_16 }, 1072 { X86::PMULLWrr, X86::PMULLWrm, TB_ALIGN_16 }, 1073 { X86::PMULUDQrr, X86::PMULUDQrm, TB_ALIGN_16 }, 1074 { X86::PORrr, X86::PORrm, TB_ALIGN_16 }, 1075 { X86::PSADBWrr, X86::PSADBWrm, TB_ALIGN_16 }, 1076 { X86::PSHUFBrr, X86::PSHUFBrm, TB_ALIGN_16 }, 1077 { X86::PSIGNBrr, X86::PSIGNBrm, TB_ALIGN_16 }, 1078 { X86::PSIGNWrr, X86::PSIGNWrm, TB_ALIGN_16 }, 1079 { X86::PSIGNDrr, X86::PSIGNDrm, TB_ALIGN_16 }, 1080 { X86::PSLLDrr, X86::PSLLDrm, TB_ALIGN_16 }, 1081 { X86::PSLLQrr, X86::PSLLQrm, TB_ALIGN_16 }, 1082 { X86::PSLLWrr, X86::PSLLWrm, TB_ALIGN_16 }, 1083 { X86::PSRADrr, X86::PSRADrm, TB_ALIGN_16 }, 1084 { X86::PSRAWrr, X86::PSRAWrm, TB_ALIGN_16 }, 1085 { X86::PSRLDrr, X86::PSRLDrm, TB_ALIGN_16 }, 1086 { X86::PSRLQrr, X86::PSRLQrm, TB_ALIGN_16 }, 1087 { X86::PSRLWrr, X86::PSRLWrm, TB_ALIGN_16 }, 1088 { X86::PSUBBrr, X86::PSUBBrm, TB_ALIGN_16 }, 1089 { X86::PSUBDrr, X86::PSUBDrm, TB_ALIGN_16 }, 1090 { X86::PSUBQrr, X86::PSUBQrm, TB_ALIGN_16 }, 1091 { X86::PSUBSBrr, X86::PSUBSBrm, TB_ALIGN_16 }, 1092 { X86::PSUBSWrr, X86::PSUBSWrm, TB_ALIGN_16 }, 1093 { X86::PSUBUSBrr, X86::PSUBUSBrm, TB_ALIGN_16 }, 1094 { X86::PSUBUSWrr, X86::PSUBUSWrm, TB_ALIGN_16 }, 1095 { X86::PSUBWrr, X86::PSUBWrm, TB_ALIGN_16 }, 1096 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, TB_ALIGN_16 }, 1097 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, TB_ALIGN_16 }, 1098 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, TB_ALIGN_16 }, 1099 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, TB_ALIGN_16 }, 1100 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, TB_ALIGN_16 }, 1101 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, TB_ALIGN_16 }, 1102 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, TB_ALIGN_16 }, 1103 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, TB_ALIGN_16 }, 1104 { X86::PXORrr, X86::PXORrm, TB_ALIGN_16 }, 1105 { X86::ROUNDSDr, X86::ROUNDSDm, 0 }, 1106 { X86::ROUNDSSr, X86::ROUNDSSm, 0 }, 1107 { X86::SBB32rr, X86::SBB32rm, 0 }, 1108 { X86::SBB64rr, X86::SBB64rm, 0 }, 1109 { X86::SHUFPDrri, X86::SHUFPDrmi, TB_ALIGN_16 }, 1110 { X86::SHUFPSrri, X86::SHUFPSrmi, TB_ALIGN_16 }, 1111 { X86::SUB16rr, X86::SUB16rm, 0 }, 1112 { X86::SUB32rr, X86::SUB32rm, 0 }, 1113 { X86::SUB64rr, X86::SUB64rm, 0 }, 1114 { X86::SUB8rr, X86::SUB8rm, 0 }, 1115 { X86::SUBPDrr, X86::SUBPDrm, TB_ALIGN_16 }, 1116 { X86::SUBPSrr, X86::SUBPSrm, TB_ALIGN_16 }, 1117 { X86::SUBSDrr, X86::SUBSDrm, 0 }, 1118 { X86::SUBSDrr_Int, X86::SUBSDrm_Int, 0 }, 1119 { X86::SUBSSrr, X86::SUBSSrm, 0 }, 1120 { X86::SUBSSrr_Int, X86::SUBSSrm_Int, 0 }, 1121 // FIXME: TEST*rr -> swapped operand of TEST*mr. 1122 { X86::UNPCKHPDrr, X86::UNPCKHPDrm, TB_ALIGN_16 }, 1123 { X86::UNPCKHPSrr, X86::UNPCKHPSrm, TB_ALIGN_16 }, 1124 { X86::UNPCKLPDrr, X86::UNPCKLPDrm, TB_ALIGN_16 }, 1125 { X86::UNPCKLPSrr, X86::UNPCKLPSrm, TB_ALIGN_16 }, 1126 { X86::XOR16rr, X86::XOR16rm, 0 }, 1127 { X86::XOR32rr, X86::XOR32rm, 0 }, 1128 { X86::XOR64rr, X86::XOR64rm, 0 }, 1129 { X86::XOR8rr, X86::XOR8rm, 0 }, 1130 { X86::XORPDrr, X86::XORPDrm, TB_ALIGN_16 }, 1131 { X86::XORPSrr, X86::XORPSrm, TB_ALIGN_16 }, 1132 1133 // MMX version of foldable instructions 1134 { X86::MMX_CVTPI2PSirr, X86::MMX_CVTPI2PSirm, 0 }, 1135 { X86::MMX_PACKSSDWirr, X86::MMX_PACKSSDWirm, 0 }, 1136 { X86::MMX_PACKSSWBirr, X86::MMX_PACKSSWBirm, 0 }, 1137 { X86::MMX_PACKUSWBirr, X86::MMX_PACKUSWBirm, 0 }, 1138 { X86::MMX_PADDBirr, X86::MMX_PADDBirm, 0 }, 1139 { X86::MMX_PADDDirr, X86::MMX_PADDDirm, 0 }, 1140 { X86::MMX_PADDQirr, X86::MMX_PADDQirm, 0 }, 1141 { X86::MMX_PADDSBirr, X86::MMX_PADDSBirm, 0 }, 1142 { X86::MMX_PADDSWirr, X86::MMX_PADDSWirm, 0 }, 1143 { X86::MMX_PADDUSBirr, X86::MMX_PADDUSBirm, 0 }, 1144 { X86::MMX_PADDUSWirr, X86::MMX_PADDUSWirm, 0 }, 1145 { X86::MMX_PADDWirr, X86::MMX_PADDWirm, 0 }, 1146 { X86::MMX_PALIGNR64irr, X86::MMX_PALIGNR64irm, 0 }, 1147 { X86::MMX_PANDNirr, X86::MMX_PANDNirm, 0 }, 1148 { X86::MMX_PANDirr, X86::MMX_PANDirm, 0 }, 1149 { X86::MMX_PAVGBirr, X86::MMX_PAVGBirm, 0 }, 1150 { X86::MMX_PAVGWirr, X86::MMX_PAVGWirm, 0 }, 1151 { X86::MMX_PCMPEQBirr, X86::MMX_PCMPEQBirm, 0 }, 1152 { X86::MMX_PCMPEQDirr, X86::MMX_PCMPEQDirm, 0 }, 1153 { X86::MMX_PCMPEQWirr, X86::MMX_PCMPEQWirm, 0 }, 1154 { X86::MMX_PCMPGTBirr, X86::MMX_PCMPGTBirm, 0 }, 1155 { X86::MMX_PCMPGTDirr, X86::MMX_PCMPGTDirm, 0 }, 1156 { X86::MMX_PCMPGTWirr, X86::MMX_PCMPGTWirm, 0 }, 1157 { X86::MMX_PHADDSWrr64, X86::MMX_PHADDSWrm64, 0 }, 1158 { X86::MMX_PHADDWrr64, X86::MMX_PHADDWrm64, 0 }, 1159 { X86::MMX_PHADDrr64, X86::MMX_PHADDrm64, 0 }, 1160 { X86::MMX_PHSUBDrr64, X86::MMX_PHSUBDrm64, 0 }, 1161 { X86::MMX_PHSUBSWrr64, X86::MMX_PHSUBSWrm64, 0 }, 1162 { X86::MMX_PHSUBWrr64, X86::MMX_PHSUBWrm64, 0 }, 1163 { X86::MMX_PINSRWirri, X86::MMX_PINSRWirmi, 0 }, 1164 { X86::MMX_PMADDUBSWrr64, X86::MMX_PMADDUBSWrm64, 0 }, 1165 { X86::MMX_PMADDWDirr, X86::MMX_PMADDWDirm, 0 }, 1166 { X86::MMX_PMAXSWirr, X86::MMX_PMAXSWirm, 0 }, 1167 { X86::MMX_PMAXUBirr, X86::MMX_PMAXUBirm, 0 }, 1168 { X86::MMX_PMINSWirr, X86::MMX_PMINSWirm, 0 }, 1169 { X86::MMX_PMINUBirr, X86::MMX_PMINUBirm, 0 }, 1170 { X86::MMX_PMULHRSWrr64, X86::MMX_PMULHRSWrm64, 0 }, 1171 { X86::MMX_PMULHUWirr, X86::MMX_PMULHUWirm, 0 }, 1172 { X86::MMX_PMULHWirr, X86::MMX_PMULHWirm, 0 }, 1173 { X86::MMX_PMULLWirr, X86::MMX_PMULLWirm, 0 }, 1174 { X86::MMX_PMULUDQirr, X86::MMX_PMULUDQirm, 0 }, 1175 { X86::MMX_PORirr, X86::MMX_PORirm, 0 }, 1176 { X86::MMX_PSADBWirr, X86::MMX_PSADBWirm, 0 }, 1177 { X86::MMX_PSHUFBrr64, X86::MMX_PSHUFBrm64, 0 }, 1178 { X86::MMX_PSIGNBrr64, X86::MMX_PSIGNBrm64, 0 }, 1179 { X86::MMX_PSIGNDrr64, X86::MMX_PSIGNDrm64, 0 }, 1180 { X86::MMX_PSIGNWrr64, X86::MMX_PSIGNWrm64, 0 }, 1181 { X86::MMX_PSLLDrr, X86::MMX_PSLLDrm, 0 }, 1182 { X86::MMX_PSLLQrr, X86::MMX_PSLLQrm, 0 }, 1183 { X86::MMX_PSLLWrr, X86::MMX_PSLLWrm, 0 }, 1184 { X86::MMX_PSRADrr, X86::MMX_PSRADrm, 0 }, 1185 { X86::MMX_PSRAWrr, X86::MMX_PSRAWrm, 0 }, 1186 { X86::MMX_PSRLDrr, X86::MMX_PSRLDrm, 0 }, 1187 { X86::MMX_PSRLQrr, X86::MMX_PSRLQrm, 0 }, 1188 { X86::MMX_PSRLWrr, X86::MMX_PSRLWrm, 0 }, 1189 { X86::MMX_PSUBBirr, X86::MMX_PSUBBirm, 0 }, 1190 { X86::MMX_PSUBDirr, X86::MMX_PSUBDirm, 0 }, 1191 { X86::MMX_PSUBQirr, X86::MMX_PSUBQirm, 0 }, 1192 { X86::MMX_PSUBSBirr, X86::MMX_PSUBSBirm, 0 }, 1193 { X86::MMX_PSUBSWirr, X86::MMX_PSUBSWirm, 0 }, 1194 { X86::MMX_PSUBUSBirr, X86::MMX_PSUBUSBirm, 0 }, 1195 { X86::MMX_PSUBUSWirr, X86::MMX_PSUBUSWirm, 0 }, 1196 { X86::MMX_PSUBWirr, X86::MMX_PSUBWirm, 0 }, 1197 { X86::MMX_PUNPCKHBWirr, X86::MMX_PUNPCKHBWirm, 0 }, 1198 { X86::MMX_PUNPCKHDQirr, X86::MMX_PUNPCKHDQirm, 0 }, 1199 { X86::MMX_PUNPCKHWDirr, X86::MMX_PUNPCKHWDirm, 0 }, 1200 { X86::MMX_PUNPCKLBWirr, X86::MMX_PUNPCKLBWirm, 0 }, 1201 { X86::MMX_PUNPCKLDQirr, X86::MMX_PUNPCKLDQirm, 0 }, 1202 { X86::MMX_PUNPCKLWDirr, X86::MMX_PUNPCKLWDirm, 0 }, 1203 { X86::MMX_PXORirr, X86::MMX_PXORirm, 0 }, 1204 1205 // 3DNow! version of foldable instructions 1206 { X86::PAVGUSBrr, X86::PAVGUSBrm, 0 }, 1207 { X86::PFACCrr, X86::PFACCrm, 0 }, 1208 { X86::PFADDrr, X86::PFADDrm, 0 }, 1209 { X86::PFCMPEQrr, X86::PFCMPEQrm, 0 }, 1210 { X86::PFCMPGErr, X86::PFCMPGErm, 0 }, 1211 { X86::PFCMPGTrr, X86::PFCMPGTrm, 0 }, 1212 { X86::PFMAXrr, X86::PFMAXrm, 0 }, 1213 { X86::PFMINrr, X86::PFMINrm, 0 }, 1214 { X86::PFMULrr, X86::PFMULrm, 0 }, 1215 { X86::PFNACCrr, X86::PFNACCrm, 0 }, 1216 { X86::PFPNACCrr, X86::PFPNACCrm, 0 }, 1217 { X86::PFRCPIT1rr, X86::PFRCPIT1rm, 0 }, 1218 { X86::PFRCPIT2rr, X86::PFRCPIT2rm, 0 }, 1219 { X86::PFRSQIT1rr, X86::PFRSQIT1rm, 0 }, 1220 { X86::PFSUBrr, X86::PFSUBrm, 0 }, 1221 { X86::PFSUBRrr, X86::PFSUBRrm, 0 }, 1222 { X86::PMULHRWrr, X86::PMULHRWrm, 0 }, 1223 1224 // AVX 128-bit versions of foldable instructions 1225 { X86::VCVTSD2SSrr, X86::VCVTSD2SSrm, 0 }, 1226 { X86::Int_VCVTSD2SSrr, X86::Int_VCVTSD2SSrm, 0 }, 1227 { X86::VCVTSI2SD64rr, X86::VCVTSI2SD64rm, 0 }, 1228 { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm, 0 }, 1229 { X86::VCVTSI2SDrr, X86::VCVTSI2SDrm, 0 }, 1230 { X86::Int_VCVTSI2SDrr, X86::Int_VCVTSI2SDrm, 0 }, 1231 { X86::VCVTSI2SS64rr, X86::VCVTSI2SS64rm, 0 }, 1232 { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm, 0 }, 1233 { X86::VCVTSI2SSrr, X86::VCVTSI2SSrm, 0 }, 1234 { X86::Int_VCVTSI2SSrr, X86::Int_VCVTSI2SSrm, 0 }, 1235 { X86::VCVTSS2SDrr, X86::VCVTSS2SDrm, 0 }, 1236 { X86::Int_VCVTSS2SDrr, X86::Int_VCVTSS2SDrm, 0 }, 1237 { X86::VRCPSSr, X86::VRCPSSm, 0 }, 1238 { X86::VRCPSSr_Int, X86::VRCPSSm_Int, 0 }, 1239 { X86::VRSQRTSSr, X86::VRSQRTSSm, 0 }, 1240 { X86::VRSQRTSSr_Int, X86::VRSQRTSSm_Int, 0 }, 1241 { X86::VSQRTSDr, X86::VSQRTSDm, 0 }, 1242 { X86::VSQRTSDr_Int, X86::VSQRTSDm_Int, 0 }, 1243 { X86::VSQRTSSr, X86::VSQRTSSm, 0 }, 1244 { X86::VSQRTSSr_Int, X86::VSQRTSSm_Int, 0 }, 1245 { X86::VADDPDrr, X86::VADDPDrm, 0 }, 1246 { X86::VADDPSrr, X86::VADDPSrm, 0 }, 1247 { X86::VADDSDrr, X86::VADDSDrm, 0 }, 1248 { X86::VADDSDrr_Int, X86::VADDSDrm_Int, 0 }, 1249 { X86::VADDSSrr, X86::VADDSSrm, 0 }, 1250 { X86::VADDSSrr_Int, X86::VADDSSrm_Int, 0 }, 1251 { X86::VADDSUBPDrr, X86::VADDSUBPDrm, 0 }, 1252 { X86::VADDSUBPSrr, X86::VADDSUBPSrm, 0 }, 1253 { X86::VANDNPDrr, X86::VANDNPDrm, 0 }, 1254 { X86::VANDNPSrr, X86::VANDNPSrm, 0 }, 1255 { X86::VANDPDrr, X86::VANDPDrm, 0 }, 1256 { X86::VANDPSrr, X86::VANDPSrm, 0 }, 1257 { X86::VBLENDPDrri, X86::VBLENDPDrmi, 0 }, 1258 { X86::VBLENDPSrri, X86::VBLENDPSrmi, 0 }, 1259 { X86::VBLENDVPDrr, X86::VBLENDVPDrm, 0 }, 1260 { X86::VBLENDVPSrr, X86::VBLENDVPSrm, 0 }, 1261 { X86::VCMPPDrri, X86::VCMPPDrmi, 0 }, 1262 { X86::VCMPPSrri, X86::VCMPPSrmi, 0 }, 1263 { X86::VCMPSDrr, X86::VCMPSDrm, 0 }, 1264 { X86::VCMPSSrr, X86::VCMPSSrm, 0 }, 1265 { X86::VDIVPDrr, X86::VDIVPDrm, 0 }, 1266 { X86::VDIVPSrr, X86::VDIVPSrm, 0 }, 1267 { X86::VDIVSDrr, X86::VDIVSDrm, 0 }, 1268 { X86::VDIVSDrr_Int, X86::VDIVSDrm_Int, 0 }, 1269 { X86::VDIVSSrr, X86::VDIVSSrm, 0 }, 1270 { X86::VDIVSSrr_Int, X86::VDIVSSrm_Int, 0 }, 1271 { X86::VDPPDrri, X86::VDPPDrmi, 0 }, 1272 { X86::VDPPSrri, X86::VDPPSrmi, 0 }, 1273 // Do not fold VFs* loads because there are no scalar load variants for 1274 // these instructions. When folded, the load is required to be 128-bits, so 1275 // the load size would not match. 1276 { X86::VFvANDNPDrr, X86::VFvANDNPDrm, 0 }, 1277 { X86::VFvANDNPSrr, X86::VFvANDNPSrm, 0 }, 1278 { X86::VFvANDPDrr, X86::VFvANDPDrm, 0 }, 1279 { X86::VFvANDPSrr, X86::VFvANDPSrm, 0 }, 1280 { X86::VFvORPDrr, X86::VFvORPDrm, 0 }, 1281 { X86::VFvORPSrr, X86::VFvORPSrm, 0 }, 1282 { X86::VFvXORPDrr, X86::VFvXORPDrm, 0 }, 1283 { X86::VFvXORPSrr, X86::VFvXORPSrm, 0 }, 1284 { X86::VHADDPDrr, X86::VHADDPDrm, 0 }, 1285 { X86::VHADDPSrr, X86::VHADDPSrm, 0 }, 1286 { X86::VHSUBPDrr, X86::VHSUBPDrm, 0 }, 1287 { X86::VHSUBPSrr, X86::VHSUBPSrm, 0 }, 1288 { X86::Int_VCMPSDrr, X86::Int_VCMPSDrm, 0 }, 1289 { X86::Int_VCMPSSrr, X86::Int_VCMPSSrm, 0 }, 1290 { X86::VMAXPDrr, X86::VMAXPDrm, 0 }, 1291 { X86::VMAXPSrr, X86::VMAXPSrm, 0 }, 1292 { X86::VMAXSDrr, X86::VMAXSDrm, 0 }, 1293 { X86::VMAXSDrr_Int, X86::VMAXSDrm_Int, 0 }, 1294 { X86::VMAXSSrr, X86::VMAXSSrm, 0 }, 1295 { X86::VMAXSSrr_Int, X86::VMAXSSrm_Int, 0 }, 1296 { X86::VMINPDrr, X86::VMINPDrm, 0 }, 1297 { X86::VMINPSrr, X86::VMINPSrm, 0 }, 1298 { X86::VMINSDrr, X86::VMINSDrm, 0 }, 1299 { X86::VMINSDrr_Int, X86::VMINSDrm_Int, 0 }, 1300 { X86::VMINSSrr, X86::VMINSSrm, 0 }, 1301 { X86::VMINSSrr_Int, X86::VMINSSrm_Int, 0 }, 1302 { X86::VMPSADBWrri, X86::VMPSADBWrmi, 0 }, 1303 { X86::VMULPDrr, X86::VMULPDrm, 0 }, 1304 { X86::VMULPSrr, X86::VMULPSrm, 0 }, 1305 { X86::VMULSDrr, X86::VMULSDrm, 0 }, 1306 { X86::VMULSDrr_Int, X86::VMULSDrm_Int, 0 }, 1307 { X86::VMULSSrr, X86::VMULSSrm, 0 }, 1308 { X86::VMULSSrr_Int, X86::VMULSSrm_Int, 0 }, 1309 { X86::VORPDrr, X86::VORPDrm, 0 }, 1310 { X86::VORPSrr, X86::VORPSrm, 0 }, 1311 { X86::VPACKSSDWrr, X86::VPACKSSDWrm, 0 }, 1312 { X86::VPACKSSWBrr, X86::VPACKSSWBrm, 0 }, 1313 { X86::VPACKUSDWrr, X86::VPACKUSDWrm, 0 }, 1314 { X86::VPACKUSWBrr, X86::VPACKUSWBrm, 0 }, 1315 { X86::VPADDBrr, X86::VPADDBrm, 0 }, 1316 { X86::VPADDDrr, X86::VPADDDrm, 0 }, 1317 { X86::VPADDQrr, X86::VPADDQrm, 0 }, 1318 { X86::VPADDSBrr, X86::VPADDSBrm, 0 }, 1319 { X86::VPADDSWrr, X86::VPADDSWrm, 0 }, 1320 { X86::VPADDUSBrr, X86::VPADDUSBrm, 0 }, 1321 { X86::VPADDUSWrr, X86::VPADDUSWrm, 0 }, 1322 { X86::VPADDWrr, X86::VPADDWrm, 0 }, 1323 { X86::VPALIGNR128rr, X86::VPALIGNR128rm, 0 }, 1324 { X86::VPANDNrr, X86::VPANDNrm, 0 }, 1325 { X86::VPANDrr, X86::VPANDrm, 0 }, 1326 { X86::VPAVGBrr, X86::VPAVGBrm, 0 }, 1327 { X86::VPAVGWrr, X86::VPAVGWrm, 0 }, 1328 { X86::VPBLENDVBrr, X86::VPBLENDVBrm, 0 }, 1329 { X86::VPBLENDWrri, X86::VPBLENDWrmi, 0 }, 1330 { X86::VPCLMULQDQrr, X86::VPCLMULQDQrm, 0 }, 1331 { X86::VPCMPEQBrr, X86::VPCMPEQBrm, 0 }, 1332 { X86::VPCMPEQDrr, X86::VPCMPEQDrm, 0 }, 1333 { X86::VPCMPEQQrr, X86::VPCMPEQQrm, 0 }, 1334 { X86::VPCMPEQWrr, X86::VPCMPEQWrm, 0 }, 1335 { X86::VPCMPGTBrr, X86::VPCMPGTBrm, 0 }, 1336 { X86::VPCMPGTDrr, X86::VPCMPGTDrm, 0 }, 1337 { X86::VPCMPGTQrr, X86::VPCMPGTQrm, 0 }, 1338 { X86::VPCMPGTWrr, X86::VPCMPGTWrm, 0 }, 1339 { X86::VPHADDDrr, X86::VPHADDDrm, 0 }, 1340 { X86::VPHADDSWrr128, X86::VPHADDSWrm128, 0 }, 1341 { X86::VPHADDWrr, X86::VPHADDWrm, 0 }, 1342 { X86::VPHSUBDrr, X86::VPHSUBDrm, 0 }, 1343 { X86::VPHSUBSWrr128, X86::VPHSUBSWrm128, 0 }, 1344 { X86::VPHSUBWrr, X86::VPHSUBWrm, 0 }, 1345 { X86::VPERMILPDrr, X86::VPERMILPDrm, 0 }, 1346 { X86::VPERMILPSrr, X86::VPERMILPSrm, 0 }, 1347 { X86::VPINSRBrr, X86::VPINSRBrm, 0 }, 1348 { X86::VPINSRDrr, X86::VPINSRDrm, 0 }, 1349 { X86::VPINSRQrr, X86::VPINSRQrm, 0 }, 1350 { X86::VPINSRWrri, X86::VPINSRWrmi, 0 }, 1351 { X86::VPMADDUBSWrr128, X86::VPMADDUBSWrm128, 0 }, 1352 { X86::VPMADDWDrr, X86::VPMADDWDrm, 0 }, 1353 { X86::VPMAXSWrr, X86::VPMAXSWrm, 0 }, 1354 { X86::VPMAXUBrr, X86::VPMAXUBrm, 0 }, 1355 { X86::VPMINSWrr, X86::VPMINSWrm, 0 }, 1356 { X86::VPMINUBrr, X86::VPMINUBrm, 0 }, 1357 { X86::VPMINSBrr, X86::VPMINSBrm, 0 }, 1358 { X86::VPMINSDrr, X86::VPMINSDrm, 0 }, 1359 { X86::VPMINUDrr, X86::VPMINUDrm, 0 }, 1360 { X86::VPMINUWrr, X86::VPMINUWrm, 0 }, 1361 { X86::VPMAXSBrr, X86::VPMAXSBrm, 0 }, 1362 { X86::VPMAXSDrr, X86::VPMAXSDrm, 0 }, 1363 { X86::VPMAXUDrr, X86::VPMAXUDrm, 0 }, 1364 { X86::VPMAXUWrr, X86::VPMAXUWrm, 0 }, 1365 { X86::VPMULDQrr, X86::VPMULDQrm, 0 }, 1366 { X86::VPMULHRSWrr128, X86::VPMULHRSWrm128, 0 }, 1367 { X86::VPMULHUWrr, X86::VPMULHUWrm, 0 }, 1368 { X86::VPMULHWrr, X86::VPMULHWrm, 0 }, 1369 { X86::VPMULLDrr, X86::VPMULLDrm, 0 }, 1370 { X86::VPMULLWrr, X86::VPMULLWrm, 0 }, 1371 { X86::VPMULUDQrr, X86::VPMULUDQrm, 0 }, 1372 { X86::VPORrr, X86::VPORrm, 0 }, 1373 { X86::VPSADBWrr, X86::VPSADBWrm, 0 }, 1374 { X86::VPSHUFBrr, X86::VPSHUFBrm, 0 }, 1375 { X86::VPSIGNBrr, X86::VPSIGNBrm, 0 }, 1376 { X86::VPSIGNWrr, X86::VPSIGNWrm, 0 }, 1377 { X86::VPSIGNDrr, X86::VPSIGNDrm, 0 }, 1378 { X86::VPSLLDrr, X86::VPSLLDrm, 0 }, 1379 { X86::VPSLLQrr, X86::VPSLLQrm, 0 }, 1380 { X86::VPSLLWrr, X86::VPSLLWrm, 0 }, 1381 { X86::VPSRADrr, X86::VPSRADrm, 0 }, 1382 { X86::VPSRAWrr, X86::VPSRAWrm, 0 }, 1383 { X86::VPSRLDrr, X86::VPSRLDrm, 0 }, 1384 { X86::VPSRLQrr, X86::VPSRLQrm, 0 }, 1385 { X86::VPSRLWrr, X86::VPSRLWrm, 0 }, 1386 { X86::VPSUBBrr, X86::VPSUBBrm, 0 }, 1387 { X86::VPSUBDrr, X86::VPSUBDrm, 0 }, 1388 { X86::VPSUBQrr, X86::VPSUBQrm, 0 }, 1389 { X86::VPSUBSBrr, X86::VPSUBSBrm, 0 }, 1390 { X86::VPSUBSWrr, X86::VPSUBSWrm, 0 }, 1391 { X86::VPSUBUSBrr, X86::VPSUBUSBrm, 0 }, 1392 { X86::VPSUBUSWrr, X86::VPSUBUSWrm, 0 }, 1393 { X86::VPSUBWrr, X86::VPSUBWrm, 0 }, 1394 { X86::VPUNPCKHBWrr, X86::VPUNPCKHBWrm, 0 }, 1395 { X86::VPUNPCKHDQrr, X86::VPUNPCKHDQrm, 0 }, 1396 { X86::VPUNPCKHQDQrr, X86::VPUNPCKHQDQrm, 0 }, 1397 { X86::VPUNPCKHWDrr, X86::VPUNPCKHWDrm, 0 }, 1398 { X86::VPUNPCKLBWrr, X86::VPUNPCKLBWrm, 0 }, 1399 { X86::VPUNPCKLDQrr, X86::VPUNPCKLDQrm, 0 }, 1400 { X86::VPUNPCKLQDQrr, X86::VPUNPCKLQDQrm, 0 }, 1401 { X86::VPUNPCKLWDrr, X86::VPUNPCKLWDrm, 0 }, 1402 { X86::VPXORrr, X86::VPXORrm, 0 }, 1403 { X86::VROUNDSDr, X86::VROUNDSDm, 0 }, 1404 { X86::VROUNDSSr, X86::VROUNDSSm, 0 }, 1405 { X86::VSHUFPDrri, X86::VSHUFPDrmi, 0 }, 1406 { X86::VSHUFPSrri, X86::VSHUFPSrmi, 0 }, 1407 { X86::VSUBPDrr, X86::VSUBPDrm, 0 }, 1408 { X86::VSUBPSrr, X86::VSUBPSrm, 0 }, 1409 { X86::VSUBSDrr, X86::VSUBSDrm, 0 }, 1410 { X86::VSUBSDrr_Int, X86::VSUBSDrm_Int, 0 }, 1411 { X86::VSUBSSrr, X86::VSUBSSrm, 0 }, 1412 { X86::VSUBSSrr_Int, X86::VSUBSSrm_Int, 0 }, 1413 { X86::VUNPCKHPDrr, X86::VUNPCKHPDrm, 0 }, 1414 { X86::VUNPCKHPSrr, X86::VUNPCKHPSrm, 0 }, 1415 { X86::VUNPCKLPDrr, X86::VUNPCKLPDrm, 0 }, 1416 { X86::VUNPCKLPSrr, X86::VUNPCKLPSrm, 0 }, 1417 { X86::VXORPDrr, X86::VXORPDrm, 0 }, 1418 { X86::VXORPSrr, X86::VXORPSrm, 0 }, 1419 1420 // AVX 256-bit foldable instructions 1421 { X86::VADDPDYrr, X86::VADDPDYrm, 0 }, 1422 { X86::VADDPSYrr, X86::VADDPSYrm, 0 }, 1423 { X86::VADDSUBPDYrr, X86::VADDSUBPDYrm, 0 }, 1424 { X86::VADDSUBPSYrr, X86::VADDSUBPSYrm, 0 }, 1425 { X86::VANDNPDYrr, X86::VANDNPDYrm, 0 }, 1426 { X86::VANDNPSYrr, X86::VANDNPSYrm, 0 }, 1427 { X86::VANDPDYrr, X86::VANDPDYrm, 0 }, 1428 { X86::VANDPSYrr, X86::VANDPSYrm, 0 }, 1429 { X86::VBLENDPDYrri, X86::VBLENDPDYrmi, 0 }, 1430 { X86::VBLENDPSYrri, X86::VBLENDPSYrmi, 0 }, 1431 { X86::VBLENDVPDYrr, X86::VBLENDVPDYrm, 0 }, 1432 { X86::VBLENDVPSYrr, X86::VBLENDVPSYrm, 0 }, 1433 { X86::VCMPPDYrri, X86::VCMPPDYrmi, 0 }, 1434 { X86::VCMPPSYrri, X86::VCMPPSYrmi, 0 }, 1435 { X86::VDIVPDYrr, X86::VDIVPDYrm, 0 }, 1436 { X86::VDIVPSYrr, X86::VDIVPSYrm, 0 }, 1437 { X86::VDPPSYrri, X86::VDPPSYrmi, 0 }, 1438 { X86::VHADDPDYrr, X86::VHADDPDYrm, 0 }, 1439 { X86::VHADDPSYrr, X86::VHADDPSYrm, 0 }, 1440 { X86::VHSUBPDYrr, X86::VHSUBPDYrm, 0 }, 1441 { X86::VHSUBPSYrr, X86::VHSUBPSYrm, 0 }, 1442 { X86::VINSERTF128rr, X86::VINSERTF128rm, 0 }, 1443 { X86::VMAXPDYrr, X86::VMAXPDYrm, 0 }, 1444 { X86::VMAXPSYrr, X86::VMAXPSYrm, 0 }, 1445 { X86::VMINPDYrr, X86::VMINPDYrm, 0 }, 1446 { X86::VMINPSYrr, X86::VMINPSYrm, 0 }, 1447 { X86::VMULPDYrr, X86::VMULPDYrm, 0 }, 1448 { X86::VMULPSYrr, X86::VMULPSYrm, 0 }, 1449 { X86::VORPDYrr, X86::VORPDYrm, 0 }, 1450 { X86::VORPSYrr, X86::VORPSYrm, 0 }, 1451 { X86::VPERM2F128rr, X86::VPERM2F128rm, 0 }, 1452 { X86::VPERMILPDYrr, X86::VPERMILPDYrm, 0 }, 1453 { X86::VPERMILPSYrr, X86::VPERMILPSYrm, 0 }, 1454 { X86::VSHUFPDYrri, X86::VSHUFPDYrmi, 0 }, 1455 { X86::VSHUFPSYrri, X86::VSHUFPSYrmi, 0 }, 1456 { X86::VSUBPDYrr, X86::VSUBPDYrm, 0 }, 1457 { X86::VSUBPSYrr, X86::VSUBPSYrm, 0 }, 1458 { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrm, 0 }, 1459 { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrm, 0 }, 1460 { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrm, 0 }, 1461 { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrm, 0 }, 1462 { X86::VXORPDYrr, X86::VXORPDYrm, 0 }, 1463 { X86::VXORPSYrr, X86::VXORPSYrm, 0 }, 1464 1465 // AVX2 foldable instructions 1466 { X86::VINSERTI128rr, X86::VINSERTI128rm, 0 }, 1467 { X86::VPACKSSDWYrr, X86::VPACKSSDWYrm, 0 }, 1468 { X86::VPACKSSWBYrr, X86::VPACKSSWBYrm, 0 }, 1469 { X86::VPACKUSDWYrr, X86::VPACKUSDWYrm, 0 }, 1470 { X86::VPACKUSWBYrr, X86::VPACKUSWBYrm, 0 }, 1471 { X86::VPADDBYrr, X86::VPADDBYrm, 0 }, 1472 { X86::VPADDDYrr, X86::VPADDDYrm, 0 }, 1473 { X86::VPADDQYrr, X86::VPADDQYrm, 0 }, 1474 { X86::VPADDSBYrr, X86::VPADDSBYrm, 0 }, 1475 { X86::VPADDSWYrr, X86::VPADDSWYrm, 0 }, 1476 { X86::VPADDUSBYrr, X86::VPADDUSBYrm, 0 }, 1477 { X86::VPADDUSWYrr, X86::VPADDUSWYrm, 0 }, 1478 { X86::VPADDWYrr, X86::VPADDWYrm, 0 }, 1479 { X86::VPALIGNR256rr, X86::VPALIGNR256rm, 0 }, 1480 { X86::VPANDNYrr, X86::VPANDNYrm, 0 }, 1481 { X86::VPANDYrr, X86::VPANDYrm, 0 }, 1482 { X86::VPAVGBYrr, X86::VPAVGBYrm, 0 }, 1483 { X86::VPAVGWYrr, X86::VPAVGWYrm, 0 }, 1484 { X86::VPBLENDDrri, X86::VPBLENDDrmi, 0 }, 1485 { X86::VPBLENDDYrri, X86::VPBLENDDYrmi, 0 }, 1486 { X86::VPBLENDVBYrr, X86::VPBLENDVBYrm, 0 }, 1487 { X86::VPBLENDWYrri, X86::VPBLENDWYrmi, 0 }, 1488 { X86::VPCMPEQBYrr, X86::VPCMPEQBYrm, 0 }, 1489 { X86::VPCMPEQDYrr, X86::VPCMPEQDYrm, 0 }, 1490 { X86::VPCMPEQQYrr, X86::VPCMPEQQYrm, 0 }, 1491 { X86::VPCMPEQWYrr, X86::VPCMPEQWYrm, 0 }, 1492 { X86::VPCMPGTBYrr, X86::VPCMPGTBYrm, 0 }, 1493 { X86::VPCMPGTDYrr, X86::VPCMPGTDYrm, 0 }, 1494 { X86::VPCMPGTQYrr, X86::VPCMPGTQYrm, 0 }, 1495 { X86::VPCMPGTWYrr, X86::VPCMPGTWYrm, 0 }, 1496 { X86::VPERM2I128rr, X86::VPERM2I128rm, 0 }, 1497 { X86::VPERMDYrr, X86::VPERMDYrm, 0 }, 1498 { X86::VPERMPSYrr, X86::VPERMPSYrm, 0 }, 1499 { X86::VPHADDDYrr, X86::VPHADDDYrm, 0 }, 1500 { X86::VPHADDSWrr256, X86::VPHADDSWrm256, 0 }, 1501 { X86::VPHADDWYrr, X86::VPHADDWYrm, 0 }, 1502 { X86::VPHSUBDYrr, X86::VPHSUBDYrm, 0 }, 1503 { X86::VPHSUBSWrr256, X86::VPHSUBSWrm256, 0 }, 1504 { X86::VPHSUBWYrr, X86::VPHSUBWYrm, 0 }, 1505 { X86::VPMADDUBSWrr256, X86::VPMADDUBSWrm256, 0 }, 1506 { X86::VPMADDWDYrr, X86::VPMADDWDYrm, 0 }, 1507 { X86::VPMAXSWYrr, X86::VPMAXSWYrm, 0 }, 1508 { X86::VPMAXUBYrr, X86::VPMAXUBYrm, 0 }, 1509 { X86::VPMINSWYrr, X86::VPMINSWYrm, 0 }, 1510 { X86::VPMINUBYrr, X86::VPMINUBYrm, 0 }, 1511 { X86::VPMINSBYrr, X86::VPMINSBYrm, 0 }, 1512 { X86::VPMINSDYrr, X86::VPMINSDYrm, 0 }, 1513 { X86::VPMINUDYrr, X86::VPMINUDYrm, 0 }, 1514 { X86::VPMINUWYrr, X86::VPMINUWYrm, 0 }, 1515 { X86::VPMAXSBYrr, X86::VPMAXSBYrm, 0 }, 1516 { X86::VPMAXSDYrr, X86::VPMAXSDYrm, 0 }, 1517 { X86::VPMAXUDYrr, X86::VPMAXUDYrm, 0 }, 1518 { X86::VPMAXUWYrr, X86::VPMAXUWYrm, 0 }, 1519 { X86::VMPSADBWYrri, X86::VMPSADBWYrmi, 0 }, 1520 { X86::VPMULDQYrr, X86::VPMULDQYrm, 0 }, 1521 { X86::VPMULHRSWrr256, X86::VPMULHRSWrm256, 0 }, 1522 { X86::VPMULHUWYrr, X86::VPMULHUWYrm, 0 }, 1523 { X86::VPMULHWYrr, X86::VPMULHWYrm, 0 }, 1524 { X86::VPMULLDYrr, X86::VPMULLDYrm, 0 }, 1525 { X86::VPMULLWYrr, X86::VPMULLWYrm, 0 }, 1526 { X86::VPMULUDQYrr, X86::VPMULUDQYrm, 0 }, 1527 { X86::VPORYrr, X86::VPORYrm, 0 }, 1528 { X86::VPSADBWYrr, X86::VPSADBWYrm, 0 }, 1529 { X86::VPSHUFBYrr, X86::VPSHUFBYrm, 0 }, 1530 { X86::VPSIGNBYrr, X86::VPSIGNBYrm, 0 }, 1531 { X86::VPSIGNWYrr, X86::VPSIGNWYrm, 0 }, 1532 { X86::VPSIGNDYrr, X86::VPSIGNDYrm, 0 }, 1533 { X86::VPSLLDYrr, X86::VPSLLDYrm, 0 }, 1534 { X86::VPSLLQYrr, X86::VPSLLQYrm, 0 }, 1535 { X86::VPSLLWYrr, X86::VPSLLWYrm, 0 }, 1536 { X86::VPSLLVDrr, X86::VPSLLVDrm, 0 }, 1537 { X86::VPSLLVDYrr, X86::VPSLLVDYrm, 0 }, 1538 { X86::VPSLLVQrr, X86::VPSLLVQrm, 0 }, 1539 { X86::VPSLLVQYrr, X86::VPSLLVQYrm, 0 }, 1540 { X86::VPSRADYrr, X86::VPSRADYrm, 0 }, 1541 { X86::VPSRAWYrr, X86::VPSRAWYrm, 0 }, 1542 { X86::VPSRAVDrr, X86::VPSRAVDrm, 0 }, 1543 { X86::VPSRAVDYrr, X86::VPSRAVDYrm, 0 }, 1544 { X86::VPSRLDYrr, X86::VPSRLDYrm, 0 }, 1545 { X86::VPSRLQYrr, X86::VPSRLQYrm, 0 }, 1546 { X86::VPSRLWYrr, X86::VPSRLWYrm, 0 }, 1547 { X86::VPSRLVDrr, X86::VPSRLVDrm, 0 }, 1548 { X86::VPSRLVDYrr, X86::VPSRLVDYrm, 0 }, 1549 { X86::VPSRLVQrr, X86::VPSRLVQrm, 0 }, 1550 { X86::VPSRLVQYrr, X86::VPSRLVQYrm, 0 }, 1551 { X86::VPSUBBYrr, X86::VPSUBBYrm, 0 }, 1552 { X86::VPSUBDYrr, X86::VPSUBDYrm, 0 }, 1553 { X86::VPSUBQYrr, X86::VPSUBQYrm, 0 }, 1554 { X86::VPSUBSBYrr, X86::VPSUBSBYrm, 0 }, 1555 { X86::VPSUBSWYrr, X86::VPSUBSWYrm, 0 }, 1556 { X86::VPSUBUSBYrr, X86::VPSUBUSBYrm, 0 }, 1557 { X86::VPSUBUSWYrr, X86::VPSUBUSWYrm, 0 }, 1558 { X86::VPSUBWYrr, X86::VPSUBWYrm, 0 }, 1559 { X86::VPUNPCKHBWYrr, X86::VPUNPCKHBWYrm, 0 }, 1560 { X86::VPUNPCKHDQYrr, X86::VPUNPCKHDQYrm, 0 }, 1561 { X86::VPUNPCKHQDQYrr, X86::VPUNPCKHQDQYrm, 0 }, 1562 { X86::VPUNPCKHWDYrr, X86::VPUNPCKHWDYrm, 0 }, 1563 { X86::VPUNPCKLBWYrr, X86::VPUNPCKLBWYrm, 0 }, 1564 { X86::VPUNPCKLDQYrr, X86::VPUNPCKLDQYrm, 0 }, 1565 { X86::VPUNPCKLQDQYrr, X86::VPUNPCKLQDQYrm, 0 }, 1566 { X86::VPUNPCKLWDYrr, X86::VPUNPCKLWDYrm, 0 }, 1567 { X86::VPXORYrr, X86::VPXORYrm, 0 }, 1568 1569 // FMA4 foldable patterns 1570 { X86::VFMADDSS4rr, X86::VFMADDSS4mr, TB_ALIGN_NONE }, 1571 { X86::VFMADDSD4rr, X86::VFMADDSD4mr, TB_ALIGN_NONE }, 1572 { X86::VFMADDPS4rr, X86::VFMADDPS4mr, TB_ALIGN_NONE }, 1573 { X86::VFMADDPD4rr, X86::VFMADDPD4mr, TB_ALIGN_NONE }, 1574 { X86::VFMADDPS4rrY, X86::VFMADDPS4mrY, TB_ALIGN_NONE }, 1575 { X86::VFMADDPD4rrY, X86::VFMADDPD4mrY, TB_ALIGN_NONE }, 1576 { X86::VFNMADDSS4rr, X86::VFNMADDSS4mr, TB_ALIGN_NONE }, 1577 { X86::VFNMADDSD4rr, X86::VFNMADDSD4mr, TB_ALIGN_NONE }, 1578 { X86::VFNMADDPS4rr, X86::VFNMADDPS4mr, TB_ALIGN_NONE }, 1579 { X86::VFNMADDPD4rr, X86::VFNMADDPD4mr, TB_ALIGN_NONE }, 1580 { X86::VFNMADDPS4rrY, X86::VFNMADDPS4mrY, TB_ALIGN_NONE }, 1581 { X86::VFNMADDPD4rrY, X86::VFNMADDPD4mrY, TB_ALIGN_NONE }, 1582 { X86::VFMSUBSS4rr, X86::VFMSUBSS4mr, TB_ALIGN_NONE }, 1583 { X86::VFMSUBSD4rr, X86::VFMSUBSD4mr, TB_ALIGN_NONE }, 1584 { X86::VFMSUBPS4rr, X86::VFMSUBPS4mr, TB_ALIGN_NONE }, 1585 { X86::VFMSUBPD4rr, X86::VFMSUBPD4mr, TB_ALIGN_NONE }, 1586 { X86::VFMSUBPS4rrY, X86::VFMSUBPS4mrY, TB_ALIGN_NONE }, 1587 { X86::VFMSUBPD4rrY, X86::VFMSUBPD4mrY, TB_ALIGN_NONE }, 1588 { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4mr, TB_ALIGN_NONE }, 1589 { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4mr, TB_ALIGN_NONE }, 1590 { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4mr, TB_ALIGN_NONE }, 1591 { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4mr, TB_ALIGN_NONE }, 1592 { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4mrY, TB_ALIGN_NONE }, 1593 { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4mrY, TB_ALIGN_NONE }, 1594 { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4mr, TB_ALIGN_NONE }, 1595 { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4mr, TB_ALIGN_NONE }, 1596 { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4mrY, TB_ALIGN_NONE }, 1597 { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4mrY, TB_ALIGN_NONE }, 1598 { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4mr, TB_ALIGN_NONE }, 1599 { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4mr, TB_ALIGN_NONE }, 1600 { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4mrY, TB_ALIGN_NONE }, 1601 { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4mrY, TB_ALIGN_NONE }, 1602 1603 // XOP foldable instructions 1604 { X86::VPCMOVrr, X86::VPCMOVmr, 0 }, 1605 { X86::VPCMOVrrY, X86::VPCMOVmrY, 0 }, 1606 { X86::VPCOMBri, X86::VPCOMBmi, 0 }, 1607 { X86::VPCOMDri, X86::VPCOMDmi, 0 }, 1608 { X86::VPCOMQri, X86::VPCOMQmi, 0 }, 1609 { X86::VPCOMWri, X86::VPCOMWmi, 0 }, 1610 { X86::VPCOMUBri, X86::VPCOMUBmi, 0 }, 1611 { X86::VPCOMUDri, X86::VPCOMUDmi, 0 }, 1612 { X86::VPCOMUQri, X86::VPCOMUQmi, 0 }, 1613 { X86::VPCOMUWri, X86::VPCOMUWmi, 0 }, 1614 { X86::VPERMIL2PDrr, X86::VPERMIL2PDmr, 0 }, 1615 { X86::VPERMIL2PDrrY, X86::VPERMIL2PDmrY, 0 }, 1616 { X86::VPERMIL2PSrr, X86::VPERMIL2PSmr, 0 }, 1617 { X86::VPERMIL2PSrrY, X86::VPERMIL2PSmrY, 0 }, 1618 { X86::VPMACSDDrr, X86::VPMACSDDrm, 0 }, 1619 { X86::VPMACSDQHrr, X86::VPMACSDQHrm, 0 }, 1620 { X86::VPMACSDQLrr, X86::VPMACSDQLrm, 0 }, 1621 { X86::VPMACSSDDrr, X86::VPMACSSDDrm, 0 }, 1622 { X86::VPMACSSDQHrr, X86::VPMACSSDQHrm, 0 }, 1623 { X86::VPMACSSDQLrr, X86::VPMACSSDQLrm, 0 }, 1624 { X86::VPMACSSWDrr, X86::VPMACSSWDrm, 0 }, 1625 { X86::VPMACSSWWrr, X86::VPMACSSWWrm, 0 }, 1626 { X86::VPMACSWDrr, X86::VPMACSWDrm, 0 }, 1627 { X86::VPMACSWWrr, X86::VPMACSWWrm, 0 }, 1628 { X86::VPMADCSSWDrr, X86::VPMADCSSWDrm, 0 }, 1629 { X86::VPMADCSWDrr, X86::VPMADCSWDrm, 0 }, 1630 { X86::VPPERMrr, X86::VPPERMmr, 0 }, 1631 { X86::VPROTBrr, X86::VPROTBrm, 0 }, 1632 { X86::VPROTDrr, X86::VPROTDrm, 0 }, 1633 { X86::VPROTQrr, X86::VPROTQrm, 0 }, 1634 { X86::VPROTWrr, X86::VPROTWrm, 0 }, 1635 { X86::VPSHABrr, X86::VPSHABrm, 0 }, 1636 { X86::VPSHADrr, X86::VPSHADrm, 0 }, 1637 { X86::VPSHAQrr, X86::VPSHAQrm, 0 }, 1638 { X86::VPSHAWrr, X86::VPSHAWrm, 0 }, 1639 { X86::VPSHLBrr, X86::VPSHLBrm, 0 }, 1640 { X86::VPSHLDrr, X86::VPSHLDrm, 0 }, 1641 { X86::VPSHLQrr, X86::VPSHLQrm, 0 }, 1642 { X86::VPSHLWrr, X86::VPSHLWrm, 0 }, 1643 1644 // BMI/BMI2 foldable instructions 1645 { X86::ANDN32rr, X86::ANDN32rm, 0 }, 1646 { X86::ANDN64rr, X86::ANDN64rm, 0 }, 1647 { X86::MULX32rr, X86::MULX32rm, 0 }, 1648 { X86::MULX64rr, X86::MULX64rm, 0 }, 1649 { X86::PDEP32rr, X86::PDEP32rm, 0 }, 1650 { X86::PDEP64rr, X86::PDEP64rm, 0 }, 1651 { X86::PEXT32rr, X86::PEXT32rm, 0 }, 1652 { X86::PEXT64rr, X86::PEXT64rm, 0 }, 1653 1654 // ADX foldable instructions 1655 { X86::ADCX32rr, X86::ADCX32rm, 0 }, 1656 { X86::ADCX64rr, X86::ADCX64rm, 0 }, 1657 { X86::ADOX32rr, X86::ADOX32rm, 0 }, 1658 { X86::ADOX64rr, X86::ADOX64rm, 0 }, 1659 1660 // AVX-512 foldable instructions 1661 { X86::VADDPSZrr, X86::VADDPSZrm, 0 }, 1662 { X86::VADDPDZrr, X86::VADDPDZrm, 0 }, 1663 { X86::VSUBPSZrr, X86::VSUBPSZrm, 0 }, 1664 { X86::VSUBPDZrr, X86::VSUBPDZrm, 0 }, 1665 { X86::VMULPSZrr, X86::VMULPSZrm, 0 }, 1666 { X86::VMULPDZrr, X86::VMULPDZrm, 0 }, 1667 { X86::VDIVPSZrr, X86::VDIVPSZrm, 0 }, 1668 { X86::VDIVPDZrr, X86::VDIVPDZrm, 0 }, 1669 { X86::VMINPSZrr, X86::VMINPSZrm, 0 }, 1670 { X86::VMINPDZrr, X86::VMINPDZrm, 0 }, 1671 { X86::VMAXPSZrr, X86::VMAXPSZrm, 0 }, 1672 { X86::VMAXPDZrr, X86::VMAXPDZrm, 0 }, 1673 { X86::VPADDDZrr, X86::VPADDDZrm, 0 }, 1674 { X86::VPADDQZrr, X86::VPADDQZrm, 0 }, 1675 { X86::VPERMPDZri, X86::VPERMPDZmi, 0 }, 1676 { X86::VPERMPSZrr, X86::VPERMPSZrm, 0 }, 1677 { X86::VPMAXSDZrr, X86::VPMAXSDZrm, 0 }, 1678 { X86::VPMAXSQZrr, X86::VPMAXSQZrm, 0 }, 1679 { X86::VPMAXUDZrr, X86::VPMAXUDZrm, 0 }, 1680 { X86::VPMAXUQZrr, X86::VPMAXUQZrm, 0 }, 1681 { X86::VPMINSDZrr, X86::VPMINSDZrm, 0 }, 1682 { X86::VPMINSQZrr, X86::VPMINSQZrm, 0 }, 1683 { X86::VPMINUDZrr, X86::VPMINUDZrm, 0 }, 1684 { X86::VPMINUQZrr, X86::VPMINUQZrm, 0 }, 1685 { X86::VPMULDQZrr, X86::VPMULDQZrm, 0 }, 1686 { X86::VPSLLVDZrr, X86::VPSLLVDZrm, 0 }, 1687 { X86::VPSLLVQZrr, X86::VPSLLVQZrm, 0 }, 1688 { X86::VPSRAVDZrr, X86::VPSRAVDZrm, 0 }, 1689 { X86::VPSRLVDZrr, X86::VPSRLVDZrm, 0 }, 1690 { X86::VPSRLVQZrr, X86::VPSRLVQZrm, 0 }, 1691 { X86::VPSUBDZrr, X86::VPSUBDZrm, 0 }, 1692 { X86::VPSUBQZrr, X86::VPSUBQZrm, 0 }, 1693 { X86::VSHUFPDZrri, X86::VSHUFPDZrmi, 0 }, 1694 { X86::VSHUFPSZrri, X86::VSHUFPSZrmi, 0 }, 1695 { X86::VALIGNQZrri, X86::VALIGNQZrmi, 0 }, 1696 { X86::VALIGNDZrri, X86::VALIGNDZrmi, 0 }, 1697 { X86::VPMULUDQZrr, X86::VPMULUDQZrm, 0 }, 1698 { X86::VBROADCASTSSZrkz, X86::VBROADCASTSSZmkz, TB_NO_REVERSE }, 1699 { X86::VBROADCASTSDZrkz, X86::VBROADCASTSDZmkz, TB_NO_REVERSE }, 1700 1701 // AVX-512{F,VL} foldable instructions 1702 { X86::VBROADCASTSSZ256rkz, X86::VBROADCASTSSZ256mkz, TB_NO_REVERSE }, 1703 { X86::VBROADCASTSDZ256rkz, X86::VBROADCASTSDZ256mkz, TB_NO_REVERSE }, 1704 { X86::VBROADCASTSSZ128rkz, X86::VBROADCASTSSZ128mkz, TB_NO_REVERSE }, 1705 1706 // AVX-512{F,VL} foldable instructions 1707 { X86::VADDPDZ128rr, X86::VADDPDZ128rm, 0 }, 1708 { X86::VADDPDZ256rr, X86::VADDPDZ256rm, 0 }, 1709 { X86::VADDPSZ128rr, X86::VADDPSZ128rm, 0 }, 1710 { X86::VADDPSZ256rr, X86::VADDPSZ256rm, 0 }, 1711 1712 // AES foldable instructions 1713 { X86::AESDECLASTrr, X86::AESDECLASTrm, TB_ALIGN_16 }, 1714 { X86::AESDECrr, X86::AESDECrm, TB_ALIGN_16 }, 1715 { X86::AESENCLASTrr, X86::AESENCLASTrm, TB_ALIGN_16 }, 1716 { X86::AESENCrr, X86::AESENCrm, TB_ALIGN_16 }, 1717 { X86::VAESDECLASTrr, X86::VAESDECLASTrm, 0 }, 1718 { X86::VAESDECrr, X86::VAESDECrm, 0 }, 1719 { X86::VAESENCLASTrr, X86::VAESENCLASTrm, 0 }, 1720 { X86::VAESENCrr, X86::VAESENCrm, 0 }, 1721 1722 // SHA foldable instructions 1723 { X86::SHA1MSG1rr, X86::SHA1MSG1rm, TB_ALIGN_16 }, 1724 { X86::SHA1MSG2rr, X86::SHA1MSG2rm, TB_ALIGN_16 }, 1725 { X86::SHA1NEXTErr, X86::SHA1NEXTErm, TB_ALIGN_16 }, 1726 { X86::SHA1RNDS4rri, X86::SHA1RNDS4rmi, TB_ALIGN_16 }, 1727 { X86::SHA256MSG1rr, X86::SHA256MSG1rm, TB_ALIGN_16 }, 1728 { X86::SHA256MSG2rr, X86::SHA256MSG2rm, TB_ALIGN_16 }, 1729 { X86::SHA256RNDS2rr, X86::SHA256RNDS2rm, TB_ALIGN_16 } 1730 }; 1731 1732 for (X86MemoryFoldTableEntry Entry : MemoryFoldTable2) { 1733 AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable, 1734 Entry.RegOp, Entry.MemOp, 1735 // Index 2, folded load 1736 Entry.Flags | TB_INDEX_2 | TB_FOLDED_LOAD); 1737 } 1738 1739 static const X86MemoryFoldTableEntry MemoryFoldTable3[] = { 1740 // FMA foldable instructions 1741 { X86::VFMADDSSr231r, X86::VFMADDSSr231m, TB_ALIGN_NONE }, 1742 { X86::VFMADDSSr231r_Int, X86::VFMADDSSr231m_Int, TB_ALIGN_NONE }, 1743 { X86::VFMADDSDr231r, X86::VFMADDSDr231m, TB_ALIGN_NONE }, 1744 { X86::VFMADDSDr231r_Int, X86::VFMADDSDr231m_Int, TB_ALIGN_NONE }, 1745 { X86::VFMADDSSr132r, X86::VFMADDSSr132m, TB_ALIGN_NONE }, 1746 { X86::VFMADDSSr132r_Int, X86::VFMADDSSr132m_Int, TB_ALIGN_NONE }, 1747 { X86::VFMADDSDr132r, X86::VFMADDSDr132m, TB_ALIGN_NONE }, 1748 { X86::VFMADDSDr132r_Int, X86::VFMADDSDr132m_Int, TB_ALIGN_NONE }, 1749 { X86::VFMADDSSr213r, X86::VFMADDSSr213m, TB_ALIGN_NONE }, 1750 { X86::VFMADDSSr213r_Int, X86::VFMADDSSr213m_Int, TB_ALIGN_NONE }, 1751 { X86::VFMADDSDr213r, X86::VFMADDSDr213m, TB_ALIGN_NONE }, 1752 { X86::VFMADDSDr213r_Int, X86::VFMADDSDr213m_Int, TB_ALIGN_NONE }, 1753 1754 { X86::VFMADDPSr231r, X86::VFMADDPSr231m, TB_ALIGN_NONE }, 1755 { X86::VFMADDPDr231r, X86::VFMADDPDr231m, TB_ALIGN_NONE }, 1756 { X86::VFMADDPSr132r, X86::VFMADDPSr132m, TB_ALIGN_NONE }, 1757 { X86::VFMADDPDr132r, X86::VFMADDPDr132m, TB_ALIGN_NONE }, 1758 { X86::VFMADDPSr213r, X86::VFMADDPSr213m, TB_ALIGN_NONE }, 1759 { X86::VFMADDPDr213r, X86::VFMADDPDr213m, TB_ALIGN_NONE }, 1760 { X86::VFMADDPSr231rY, X86::VFMADDPSr231mY, TB_ALIGN_NONE }, 1761 { X86::VFMADDPDr231rY, X86::VFMADDPDr231mY, TB_ALIGN_NONE }, 1762 { X86::VFMADDPSr132rY, X86::VFMADDPSr132mY, TB_ALIGN_NONE }, 1763 { X86::VFMADDPDr132rY, X86::VFMADDPDr132mY, TB_ALIGN_NONE }, 1764 { X86::VFMADDPSr213rY, X86::VFMADDPSr213mY, TB_ALIGN_NONE }, 1765 { X86::VFMADDPDr213rY, X86::VFMADDPDr213mY, TB_ALIGN_NONE }, 1766 1767 { X86::VFNMADDSSr231r, X86::VFNMADDSSr231m, TB_ALIGN_NONE }, 1768 { X86::VFNMADDSSr231r_Int, X86::VFNMADDSSr231m_Int, TB_ALIGN_NONE }, 1769 { X86::VFNMADDSDr231r, X86::VFNMADDSDr231m, TB_ALIGN_NONE }, 1770 { X86::VFNMADDSDr231r_Int, X86::VFNMADDSDr231m_Int, TB_ALIGN_NONE }, 1771 { X86::VFNMADDSSr132r, X86::VFNMADDSSr132m, TB_ALIGN_NONE }, 1772 { X86::VFNMADDSSr132r_Int, X86::VFNMADDSSr132m_Int, TB_ALIGN_NONE }, 1773 { X86::VFNMADDSDr132r, X86::VFNMADDSDr132m, TB_ALIGN_NONE }, 1774 { X86::VFNMADDSDr132r_Int, X86::VFNMADDSDr132m_Int, TB_ALIGN_NONE }, 1775 { X86::VFNMADDSSr213r, X86::VFNMADDSSr213m, TB_ALIGN_NONE }, 1776 { X86::VFNMADDSSr213r_Int, X86::VFNMADDSSr213m_Int, TB_ALIGN_NONE }, 1777 { X86::VFNMADDSDr213r, X86::VFNMADDSDr213m, TB_ALIGN_NONE }, 1778 { X86::VFNMADDSDr213r_Int, X86::VFNMADDSDr213m_Int, TB_ALIGN_NONE }, 1779 1780 { X86::VFNMADDPSr231r, X86::VFNMADDPSr231m, TB_ALIGN_NONE }, 1781 { X86::VFNMADDPDr231r, X86::VFNMADDPDr231m, TB_ALIGN_NONE }, 1782 { X86::VFNMADDPSr132r, X86::VFNMADDPSr132m, TB_ALIGN_NONE }, 1783 { X86::VFNMADDPDr132r, X86::VFNMADDPDr132m, TB_ALIGN_NONE }, 1784 { X86::VFNMADDPSr213r, X86::VFNMADDPSr213m, TB_ALIGN_NONE }, 1785 { X86::VFNMADDPDr213r, X86::VFNMADDPDr213m, TB_ALIGN_NONE }, 1786 { X86::VFNMADDPSr231rY, X86::VFNMADDPSr231mY, TB_ALIGN_NONE }, 1787 { X86::VFNMADDPDr231rY, X86::VFNMADDPDr231mY, TB_ALIGN_NONE }, 1788 { X86::VFNMADDPSr132rY, X86::VFNMADDPSr132mY, TB_ALIGN_NONE }, 1789 { X86::VFNMADDPDr132rY, X86::VFNMADDPDr132mY, TB_ALIGN_NONE }, 1790 { X86::VFNMADDPSr213rY, X86::VFNMADDPSr213mY, TB_ALIGN_NONE }, 1791 { X86::VFNMADDPDr213rY, X86::VFNMADDPDr213mY, TB_ALIGN_NONE }, 1792 1793 { X86::VFMSUBSSr231r, X86::VFMSUBSSr231m, TB_ALIGN_NONE }, 1794 { X86::VFMSUBSSr231r_Int, X86::VFMSUBSSr231m_Int, TB_ALIGN_NONE }, 1795 { X86::VFMSUBSDr231r, X86::VFMSUBSDr231m, TB_ALIGN_NONE }, 1796 { X86::VFMSUBSDr231r_Int, X86::VFMSUBSDr231m_Int, TB_ALIGN_NONE }, 1797 { X86::VFMSUBSSr132r, X86::VFMSUBSSr132m, TB_ALIGN_NONE }, 1798 { X86::VFMSUBSSr132r_Int, X86::VFMSUBSSr132m_Int, TB_ALIGN_NONE }, 1799 { X86::VFMSUBSDr132r, X86::VFMSUBSDr132m, TB_ALIGN_NONE }, 1800 { X86::VFMSUBSDr132r_Int, X86::VFMSUBSDr132m_Int, TB_ALIGN_NONE }, 1801 { X86::VFMSUBSSr213r, X86::VFMSUBSSr213m, TB_ALIGN_NONE }, 1802 { X86::VFMSUBSSr213r_Int, X86::VFMSUBSSr213m_Int, TB_ALIGN_NONE }, 1803 { X86::VFMSUBSDr213r, X86::VFMSUBSDr213m, TB_ALIGN_NONE }, 1804 { X86::VFMSUBSDr213r_Int, X86::VFMSUBSDr213m_Int, TB_ALIGN_NONE }, 1805 1806 { X86::VFMSUBPSr231r, X86::VFMSUBPSr231m, TB_ALIGN_NONE }, 1807 { X86::VFMSUBPDr231r, X86::VFMSUBPDr231m, TB_ALIGN_NONE }, 1808 { X86::VFMSUBPSr132r, X86::VFMSUBPSr132m, TB_ALIGN_NONE }, 1809 { X86::VFMSUBPDr132r, X86::VFMSUBPDr132m, TB_ALIGN_NONE }, 1810 { X86::VFMSUBPSr213r, X86::VFMSUBPSr213m, TB_ALIGN_NONE }, 1811 { X86::VFMSUBPDr213r, X86::VFMSUBPDr213m, TB_ALIGN_NONE }, 1812 { X86::VFMSUBPSr231rY, X86::VFMSUBPSr231mY, TB_ALIGN_NONE }, 1813 { X86::VFMSUBPDr231rY, X86::VFMSUBPDr231mY, TB_ALIGN_NONE }, 1814 { X86::VFMSUBPSr132rY, X86::VFMSUBPSr132mY, TB_ALIGN_NONE }, 1815 { X86::VFMSUBPDr132rY, X86::VFMSUBPDr132mY, TB_ALIGN_NONE }, 1816 { X86::VFMSUBPSr213rY, X86::VFMSUBPSr213mY, TB_ALIGN_NONE }, 1817 { X86::VFMSUBPDr213rY, X86::VFMSUBPDr213mY, TB_ALIGN_NONE }, 1818 1819 { X86::VFNMSUBSSr231r, X86::VFNMSUBSSr231m, TB_ALIGN_NONE }, 1820 { X86::VFNMSUBSSr231r_Int, X86::VFNMSUBSSr231m_Int, TB_ALIGN_NONE }, 1821 { X86::VFNMSUBSDr231r, X86::VFNMSUBSDr231m, TB_ALIGN_NONE }, 1822 { X86::VFNMSUBSDr231r_Int, X86::VFNMSUBSDr231m_Int, TB_ALIGN_NONE }, 1823 { X86::VFNMSUBSSr132r, X86::VFNMSUBSSr132m, TB_ALIGN_NONE }, 1824 { X86::VFNMSUBSSr132r_Int, X86::VFNMSUBSSr132m_Int, TB_ALIGN_NONE }, 1825 { X86::VFNMSUBSDr132r, X86::VFNMSUBSDr132m, TB_ALIGN_NONE }, 1826 { X86::VFNMSUBSDr132r_Int, X86::VFNMSUBSDr132m_Int, TB_ALIGN_NONE }, 1827 { X86::VFNMSUBSSr213r, X86::VFNMSUBSSr213m, TB_ALIGN_NONE }, 1828 { X86::VFNMSUBSSr213r_Int, X86::VFNMSUBSSr213m_Int, TB_ALIGN_NONE }, 1829 { X86::VFNMSUBSDr213r, X86::VFNMSUBSDr213m, TB_ALIGN_NONE }, 1830 { X86::VFNMSUBSDr213r_Int, X86::VFNMSUBSDr213m_Int, TB_ALIGN_NONE }, 1831 1832 { X86::VFNMSUBPSr231r, X86::VFNMSUBPSr231m, TB_ALIGN_NONE }, 1833 { X86::VFNMSUBPDr231r, X86::VFNMSUBPDr231m, TB_ALIGN_NONE }, 1834 { X86::VFNMSUBPSr132r, X86::VFNMSUBPSr132m, TB_ALIGN_NONE }, 1835 { X86::VFNMSUBPDr132r, X86::VFNMSUBPDr132m, TB_ALIGN_NONE }, 1836 { X86::VFNMSUBPSr213r, X86::VFNMSUBPSr213m, TB_ALIGN_NONE }, 1837 { X86::VFNMSUBPDr213r, X86::VFNMSUBPDr213m, TB_ALIGN_NONE }, 1838 { X86::VFNMSUBPSr231rY, X86::VFNMSUBPSr231mY, TB_ALIGN_NONE }, 1839 { X86::VFNMSUBPDr231rY, X86::VFNMSUBPDr231mY, TB_ALIGN_NONE }, 1840 { X86::VFNMSUBPSr132rY, X86::VFNMSUBPSr132mY, TB_ALIGN_NONE }, 1841 { X86::VFNMSUBPDr132rY, X86::VFNMSUBPDr132mY, TB_ALIGN_NONE }, 1842 { X86::VFNMSUBPSr213rY, X86::VFNMSUBPSr213mY, TB_ALIGN_NONE }, 1843 { X86::VFNMSUBPDr213rY, X86::VFNMSUBPDr213mY, TB_ALIGN_NONE }, 1844 1845 { X86::VFMADDSUBPSr231r, X86::VFMADDSUBPSr231m, TB_ALIGN_NONE }, 1846 { X86::VFMADDSUBPDr231r, X86::VFMADDSUBPDr231m, TB_ALIGN_NONE }, 1847 { X86::VFMADDSUBPSr132r, X86::VFMADDSUBPSr132m, TB_ALIGN_NONE }, 1848 { X86::VFMADDSUBPDr132r, X86::VFMADDSUBPDr132m, TB_ALIGN_NONE }, 1849 { X86::VFMADDSUBPSr213r, X86::VFMADDSUBPSr213m, TB_ALIGN_NONE }, 1850 { X86::VFMADDSUBPDr213r, X86::VFMADDSUBPDr213m, TB_ALIGN_NONE }, 1851 { X86::VFMADDSUBPSr231rY, X86::VFMADDSUBPSr231mY, TB_ALIGN_NONE }, 1852 { X86::VFMADDSUBPDr231rY, X86::VFMADDSUBPDr231mY, TB_ALIGN_NONE }, 1853 { X86::VFMADDSUBPSr132rY, X86::VFMADDSUBPSr132mY, TB_ALIGN_NONE }, 1854 { X86::VFMADDSUBPDr132rY, X86::VFMADDSUBPDr132mY, TB_ALIGN_NONE }, 1855 { X86::VFMADDSUBPSr213rY, X86::VFMADDSUBPSr213mY, TB_ALIGN_NONE }, 1856 { X86::VFMADDSUBPDr213rY, X86::VFMADDSUBPDr213mY, TB_ALIGN_NONE }, 1857 1858 { X86::VFMSUBADDPSr231r, X86::VFMSUBADDPSr231m, TB_ALIGN_NONE }, 1859 { X86::VFMSUBADDPDr231r, X86::VFMSUBADDPDr231m, TB_ALIGN_NONE }, 1860 { X86::VFMSUBADDPSr132r, X86::VFMSUBADDPSr132m, TB_ALIGN_NONE }, 1861 { X86::VFMSUBADDPDr132r, X86::VFMSUBADDPDr132m, TB_ALIGN_NONE }, 1862 { X86::VFMSUBADDPSr213r, X86::VFMSUBADDPSr213m, TB_ALIGN_NONE }, 1863 { X86::VFMSUBADDPDr213r, X86::VFMSUBADDPDr213m, TB_ALIGN_NONE }, 1864 { X86::VFMSUBADDPSr231rY, X86::VFMSUBADDPSr231mY, TB_ALIGN_NONE }, 1865 { X86::VFMSUBADDPDr231rY, X86::VFMSUBADDPDr231mY, TB_ALIGN_NONE }, 1866 { X86::VFMSUBADDPSr132rY, X86::VFMSUBADDPSr132mY, TB_ALIGN_NONE }, 1867 { X86::VFMSUBADDPDr132rY, X86::VFMSUBADDPDr132mY, TB_ALIGN_NONE }, 1868 { X86::VFMSUBADDPSr213rY, X86::VFMSUBADDPSr213mY, TB_ALIGN_NONE }, 1869 { X86::VFMSUBADDPDr213rY, X86::VFMSUBADDPDr213mY, TB_ALIGN_NONE }, 1870 1871 // FMA4 foldable patterns 1872 { X86::VFMADDSS4rr, X86::VFMADDSS4rm, TB_ALIGN_NONE }, 1873 { X86::VFMADDSD4rr, X86::VFMADDSD4rm, TB_ALIGN_NONE }, 1874 { X86::VFMADDPS4rr, X86::VFMADDPS4rm, TB_ALIGN_NONE }, 1875 { X86::VFMADDPD4rr, X86::VFMADDPD4rm, TB_ALIGN_NONE }, 1876 { X86::VFMADDPS4rrY, X86::VFMADDPS4rmY, TB_ALIGN_NONE }, 1877 { X86::VFMADDPD4rrY, X86::VFMADDPD4rmY, TB_ALIGN_NONE }, 1878 { X86::VFNMADDSS4rr, X86::VFNMADDSS4rm, TB_ALIGN_NONE }, 1879 { X86::VFNMADDSD4rr, X86::VFNMADDSD4rm, TB_ALIGN_NONE }, 1880 { X86::VFNMADDPS4rr, X86::VFNMADDPS4rm, TB_ALIGN_NONE }, 1881 { X86::VFNMADDPD4rr, X86::VFNMADDPD4rm, TB_ALIGN_NONE }, 1882 { X86::VFNMADDPS4rrY, X86::VFNMADDPS4rmY, TB_ALIGN_NONE }, 1883 { X86::VFNMADDPD4rrY, X86::VFNMADDPD4rmY, TB_ALIGN_NONE }, 1884 { X86::VFMSUBSS4rr, X86::VFMSUBSS4rm, TB_ALIGN_NONE }, 1885 { X86::VFMSUBSD4rr, X86::VFMSUBSD4rm, TB_ALIGN_NONE }, 1886 { X86::VFMSUBPS4rr, X86::VFMSUBPS4rm, TB_ALIGN_NONE }, 1887 { X86::VFMSUBPD4rr, X86::VFMSUBPD4rm, TB_ALIGN_NONE }, 1888 { X86::VFMSUBPS4rrY, X86::VFMSUBPS4rmY, TB_ALIGN_NONE }, 1889 { X86::VFMSUBPD4rrY, X86::VFMSUBPD4rmY, TB_ALIGN_NONE }, 1890 { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4rm, TB_ALIGN_NONE }, 1891 { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4rm, TB_ALIGN_NONE }, 1892 { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4rm, TB_ALIGN_NONE }, 1893 { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4rm, TB_ALIGN_NONE }, 1894 { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4rmY, TB_ALIGN_NONE }, 1895 { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4rmY, TB_ALIGN_NONE }, 1896 { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4rm, TB_ALIGN_NONE }, 1897 { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4rm, TB_ALIGN_NONE }, 1898 { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4rmY, TB_ALIGN_NONE }, 1899 { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4rmY, TB_ALIGN_NONE }, 1900 { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4rm, TB_ALIGN_NONE }, 1901 { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4rm, TB_ALIGN_NONE }, 1902 { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4rmY, TB_ALIGN_NONE }, 1903 { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4rmY, TB_ALIGN_NONE }, 1904 1905 // XOP foldable instructions 1906 { X86::VPCMOVrr, X86::VPCMOVrm, 0 }, 1907 { X86::VPCMOVrrY, X86::VPCMOVrmY, 0 }, 1908 { X86::VPERMIL2PDrr, X86::VPERMIL2PDrm, 0 }, 1909 { X86::VPERMIL2PDrrY, X86::VPERMIL2PDrmY, 0 }, 1910 { X86::VPERMIL2PSrr, X86::VPERMIL2PSrm, 0 }, 1911 { X86::VPERMIL2PSrrY, X86::VPERMIL2PSrmY, 0 }, 1912 { X86::VPPERMrr, X86::VPPERMrm, 0 }, 1913 1914 // AVX-512 VPERMI instructions with 3 source operands. 1915 { X86::VPERMI2Drr, X86::VPERMI2Drm, 0 }, 1916 { X86::VPERMI2Qrr, X86::VPERMI2Qrm, 0 }, 1917 { X86::VPERMI2PSrr, X86::VPERMI2PSrm, 0 }, 1918 { X86::VPERMI2PDrr, X86::VPERMI2PDrm, 0 }, 1919 { X86::VBLENDMPDZrr, X86::VBLENDMPDZrm, 0 }, 1920 { X86::VBLENDMPSZrr, X86::VBLENDMPSZrm, 0 }, 1921 { X86::VPBLENDMDZrr, X86::VPBLENDMDZrm, 0 }, 1922 { X86::VPBLENDMQZrr, X86::VPBLENDMQZrm, 0 }, 1923 { X86::VBROADCASTSSZrk, X86::VBROADCASTSSZmk, TB_NO_REVERSE }, 1924 { X86::VBROADCASTSDZrk, X86::VBROADCASTSDZmk, TB_NO_REVERSE }, 1925 { X86::VBROADCASTSSZ256rk, X86::VBROADCASTSSZ256mk, TB_NO_REVERSE }, 1926 { X86::VBROADCASTSDZ256rk, X86::VBROADCASTSDZ256mk, TB_NO_REVERSE }, 1927 { X86::VBROADCASTSSZ128rk, X86::VBROADCASTSSZ128mk, TB_NO_REVERSE }, 1928 // AVX-512 arithmetic instructions 1929 { X86::VADDPSZrrkz, X86::VADDPSZrmkz, 0 }, 1930 { X86::VADDPDZrrkz, X86::VADDPDZrmkz, 0 }, 1931 { X86::VSUBPSZrrkz, X86::VSUBPSZrmkz, 0 }, 1932 { X86::VSUBPDZrrkz, X86::VSUBPDZrmkz, 0 }, 1933 { X86::VMULPSZrrkz, X86::VMULPSZrmkz, 0 }, 1934 { X86::VMULPDZrrkz, X86::VMULPDZrmkz, 0 }, 1935 { X86::VDIVPSZrrkz, X86::VDIVPSZrmkz, 0 }, 1936 { X86::VDIVPDZrrkz, X86::VDIVPDZrmkz, 0 }, 1937 { X86::VMINPSZrrkz, X86::VMINPSZrmkz, 0 }, 1938 { X86::VMINPDZrrkz, X86::VMINPDZrmkz, 0 }, 1939 { X86::VMAXPSZrrkz, X86::VMAXPSZrmkz, 0 }, 1940 { X86::VMAXPDZrrkz, X86::VMAXPDZrmkz, 0 }, 1941 // AVX-512{F,VL} arithmetic instructions 256-bit 1942 { X86::VADDPSZ256rrkz, X86::VADDPSZ256rmkz, 0 }, 1943 { X86::VADDPDZ256rrkz, X86::VADDPDZ256rmkz, 0 }, 1944 { X86::VSUBPSZ256rrkz, X86::VSUBPSZ256rmkz, 0 }, 1945 { X86::VSUBPDZ256rrkz, X86::VSUBPDZ256rmkz, 0 }, 1946 { X86::VMULPSZ256rrkz, X86::VMULPSZ256rmkz, 0 }, 1947 { X86::VMULPDZ256rrkz, X86::VMULPDZ256rmkz, 0 }, 1948 { X86::VDIVPSZ256rrkz, X86::VDIVPSZ256rmkz, 0 }, 1949 { X86::VDIVPDZ256rrkz, X86::VDIVPDZ256rmkz, 0 }, 1950 { X86::VMINPSZ256rrkz, X86::VMINPSZ256rmkz, 0 }, 1951 { X86::VMINPDZ256rrkz, X86::VMINPDZ256rmkz, 0 }, 1952 { X86::VMAXPSZ256rrkz, X86::VMAXPSZ256rmkz, 0 }, 1953 { X86::VMAXPDZ256rrkz, X86::VMAXPDZ256rmkz, 0 }, 1954 // AVX-512{F,VL} arithmetic instructions 128-bit 1955 { X86::VADDPSZ128rrkz, X86::VADDPSZ128rmkz, 0 }, 1956 { X86::VADDPDZ128rrkz, X86::VADDPDZ128rmkz, 0 }, 1957 { X86::VSUBPSZ128rrkz, X86::VSUBPSZ128rmkz, 0 }, 1958 { X86::VSUBPDZ128rrkz, X86::VSUBPDZ128rmkz, 0 }, 1959 { X86::VMULPSZ128rrkz, X86::VMULPSZ128rmkz, 0 }, 1960 { X86::VMULPDZ128rrkz, X86::VMULPDZ128rmkz, 0 }, 1961 { X86::VDIVPSZ128rrkz, X86::VDIVPSZ128rmkz, 0 }, 1962 { X86::VDIVPDZ128rrkz, X86::VDIVPDZ128rmkz, 0 }, 1963 { X86::VMINPSZ128rrkz, X86::VMINPSZ128rmkz, 0 }, 1964 { X86::VMINPDZ128rrkz, X86::VMINPDZ128rmkz, 0 }, 1965 { X86::VMAXPSZ128rrkz, X86::VMAXPSZ128rmkz, 0 }, 1966 { X86::VMAXPDZ128rrkz, X86::VMAXPDZ128rmkz, 0 } 1967 }; 1968 1969 for (X86MemoryFoldTableEntry Entry : MemoryFoldTable3) { 1970 AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable, 1971 Entry.RegOp, Entry.MemOp, 1972 // Index 3, folded load 1973 Entry.Flags | TB_INDEX_3 | TB_FOLDED_LOAD); 1974 } 1975 1976 static const X86MemoryFoldTableEntry MemoryFoldTable4[] = { 1977 // AVX-512 foldable instructions 1978 { X86::VADDPSZrrk, X86::VADDPSZrmk, 0 }, 1979 { X86::VADDPDZrrk, X86::VADDPDZrmk, 0 }, 1980 { X86::VSUBPSZrrk, X86::VSUBPSZrmk, 0 }, 1981 { X86::VSUBPDZrrk, X86::VSUBPDZrmk, 0 }, 1982 { X86::VMULPSZrrk, X86::VMULPSZrmk, 0 }, 1983 { X86::VMULPDZrrk, X86::VMULPDZrmk, 0 }, 1984 { X86::VDIVPSZrrk, X86::VDIVPSZrmk, 0 }, 1985 { X86::VDIVPDZrrk, X86::VDIVPDZrmk, 0 }, 1986 { X86::VMINPSZrrk, X86::VMINPSZrmk, 0 }, 1987 { X86::VMINPDZrrk, X86::VMINPDZrmk, 0 }, 1988 { X86::VMAXPSZrrk, X86::VMAXPSZrmk, 0 }, 1989 { X86::VMAXPDZrrk, X86::VMAXPDZrmk, 0 }, 1990 // AVX-512{F,VL} foldable instructions 256-bit 1991 { X86::VADDPSZ256rrk, X86::VADDPSZ256rmk, 0 }, 1992 { X86::VADDPDZ256rrk, X86::VADDPDZ256rmk, 0 }, 1993 { X86::VSUBPSZ256rrk, X86::VSUBPSZ256rmk, 0 }, 1994 { X86::VSUBPDZ256rrk, X86::VSUBPDZ256rmk, 0 }, 1995 { X86::VMULPSZ256rrk, X86::VMULPSZ256rmk, 0 }, 1996 { X86::VMULPDZ256rrk, X86::VMULPDZ256rmk, 0 }, 1997 { X86::VDIVPSZ256rrk, X86::VDIVPSZ256rmk, 0 }, 1998 { X86::VDIVPDZ256rrk, X86::VDIVPDZ256rmk, 0 }, 1999 { X86::VMINPSZ256rrk, X86::VMINPSZ256rmk, 0 }, 2000 { X86::VMINPDZ256rrk, X86::VMINPDZ256rmk, 0 }, 2001 { X86::VMAXPSZ256rrk, X86::VMAXPSZ256rmk, 0 }, 2002 { X86::VMAXPDZ256rrk, X86::VMAXPDZ256rmk, 0 }, 2003 // AVX-512{F,VL} foldable instructions 128-bit 2004 { X86::VADDPSZ128rrk, X86::VADDPSZ128rmk, 0 }, 2005 { X86::VADDPDZ128rrk, X86::VADDPDZ128rmk, 0 }, 2006 { X86::VSUBPSZ128rrk, X86::VSUBPSZ128rmk, 0 }, 2007 { X86::VSUBPDZ128rrk, X86::VSUBPDZ128rmk, 0 }, 2008 { X86::VMULPSZ128rrk, X86::VMULPSZ128rmk, 0 }, 2009 { X86::VMULPDZ128rrk, X86::VMULPDZ128rmk, 0 }, 2010 { X86::VDIVPSZ128rrk, X86::VDIVPSZ128rmk, 0 }, 2011 { X86::VDIVPDZ128rrk, X86::VDIVPDZ128rmk, 0 }, 2012 { X86::VMINPSZ128rrk, X86::VMINPSZ128rmk, 0 }, 2013 { X86::VMINPDZ128rrk, X86::VMINPDZ128rmk, 0 }, 2014 { X86::VMAXPSZ128rrk, X86::VMAXPSZ128rmk, 0 }, 2015 { X86::VMAXPDZ128rrk, X86::VMAXPDZ128rmk, 0 } 2016 }; 2017 2018 for (X86MemoryFoldTableEntry Entry : MemoryFoldTable4) { 2019 AddTableEntry(RegOp2MemOpTable4, MemOp2RegOpTable, 2020 Entry.RegOp, Entry.MemOp, 2021 // Index 4, folded load 2022 Entry.Flags | TB_INDEX_4 | TB_FOLDED_LOAD); 2023 } 2024 } 2025 2026 void 2027 X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable, 2028 MemOp2RegOpTableType &M2RTable, 2029 unsigned RegOp, unsigned MemOp, unsigned Flags) { 2030 if ((Flags & TB_NO_FORWARD) == 0) { 2031 assert(!R2MTable.count(RegOp) && "Duplicate entry!"); 2032 R2MTable[RegOp] = std::make_pair(MemOp, Flags); 2033 } 2034 if ((Flags & TB_NO_REVERSE) == 0) { 2035 assert(!M2RTable.count(MemOp) && 2036 "Duplicated entries in unfolding maps?"); 2037 M2RTable[MemOp] = std::make_pair(RegOp, Flags); 2038 } 2039 } 2040 2041 bool 2042 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 2043 unsigned &SrcReg, unsigned &DstReg, 2044 unsigned &SubIdx) const { 2045 switch (MI.getOpcode()) { 2046 default: break; 2047 case X86::MOVSX16rr8: 2048 case X86::MOVZX16rr8: 2049 case X86::MOVSX32rr8: 2050 case X86::MOVZX32rr8: 2051 case X86::MOVSX64rr8: 2052 if (!Subtarget.is64Bit()) 2053 // It's not always legal to reference the low 8-bit of the larger 2054 // register in 32-bit mode. 2055 return false; 2056 case X86::MOVSX32rr16: 2057 case X86::MOVZX32rr16: 2058 case X86::MOVSX64rr16: 2059 case X86::MOVSX64rr32: { 2060 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) 2061 // Be conservative. 2062 return false; 2063 SrcReg = MI.getOperand(1).getReg(); 2064 DstReg = MI.getOperand(0).getReg(); 2065 switch (MI.getOpcode()) { 2066 default: llvm_unreachable("Unreachable!"); 2067 case X86::MOVSX16rr8: 2068 case X86::MOVZX16rr8: 2069 case X86::MOVSX32rr8: 2070 case X86::MOVZX32rr8: 2071 case X86::MOVSX64rr8: 2072 SubIdx = X86::sub_8bit; 2073 break; 2074 case X86::MOVSX32rr16: 2075 case X86::MOVZX32rr16: 2076 case X86::MOVSX64rr16: 2077 SubIdx = X86::sub_16bit; 2078 break; 2079 case X86::MOVSX64rr32: 2080 SubIdx = X86::sub_32bit; 2081 break; 2082 } 2083 return true; 2084 } 2085 } 2086 return false; 2087 } 2088 2089 int X86InstrInfo::getSPAdjust(const MachineInstr *MI) const { 2090 const MachineFunction *MF = MI->getParent()->getParent(); 2091 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2092 2093 if (MI->getOpcode() == getCallFrameSetupOpcode() || 2094 MI->getOpcode() == getCallFrameDestroyOpcode()) { 2095 unsigned StackAlign = TFI->getStackAlignment(); 2096 int SPAdj = (MI->getOperand(0).getImm() + StackAlign - 1) / StackAlign * 2097 StackAlign; 2098 2099 SPAdj -= MI->getOperand(1).getImm(); 2100 2101 if (MI->getOpcode() == getCallFrameSetupOpcode()) 2102 return SPAdj; 2103 else 2104 return -SPAdj; 2105 } 2106 2107 // To know whether a call adjusts the stack, we need information 2108 // that is bound to the following ADJCALLSTACKUP pseudo. 2109 // Look for the next ADJCALLSTACKUP that follows the call. 2110 if (MI->isCall()) { 2111 const MachineBasicBlock* MBB = MI->getParent(); 2112 auto I = ++MachineBasicBlock::const_iterator(MI); 2113 for (auto E = MBB->end(); I != E; ++I) { 2114 if (I->getOpcode() == getCallFrameDestroyOpcode() || 2115 I->isCall()) 2116 break; 2117 } 2118 2119 // If we could not find a frame destroy opcode, then it has already 2120 // been simplified, so we don't care. 2121 if (I->getOpcode() != getCallFrameDestroyOpcode()) 2122 return 0; 2123 2124 return -(I->getOperand(1).getImm()); 2125 } 2126 2127 // Currently handle only PUSHes we can reasonably expect to see 2128 // in call sequences 2129 switch (MI->getOpcode()) { 2130 default: 2131 return 0; 2132 case X86::PUSH32i8: 2133 case X86::PUSH32r: 2134 case X86::PUSH32rmm: 2135 case X86::PUSH32rmr: 2136 case X86::PUSHi32: 2137 return 4; 2138 } 2139 } 2140 2141 /// Return true and the FrameIndex if the specified 2142 /// operand and follow operands form a reference to the stack frame. 2143 bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op, 2144 int &FrameIndex) const { 2145 if (MI->getOperand(Op+X86::AddrBaseReg).isFI() && 2146 MI->getOperand(Op+X86::AddrScaleAmt).isImm() && 2147 MI->getOperand(Op+X86::AddrIndexReg).isReg() && 2148 MI->getOperand(Op+X86::AddrDisp).isImm() && 2149 MI->getOperand(Op+X86::AddrScaleAmt).getImm() == 1 && 2150 MI->getOperand(Op+X86::AddrIndexReg).getReg() == 0 && 2151 MI->getOperand(Op+X86::AddrDisp).getImm() == 0) { 2152 FrameIndex = MI->getOperand(Op+X86::AddrBaseReg).getIndex(); 2153 return true; 2154 } 2155 return false; 2156 } 2157 2158 static bool isFrameLoadOpcode(int Opcode) { 2159 switch (Opcode) { 2160 default: 2161 return false; 2162 case X86::MOV8rm: 2163 case X86::MOV16rm: 2164 case X86::MOV32rm: 2165 case X86::MOV64rm: 2166 case X86::LD_Fp64m: 2167 case X86::MOVSSrm: 2168 case X86::MOVSDrm: 2169 case X86::MOVAPSrm: 2170 case X86::MOVAPDrm: 2171 case X86::MOVDQArm: 2172 case X86::VMOVSSrm: 2173 case X86::VMOVSDrm: 2174 case X86::VMOVAPSrm: 2175 case X86::VMOVAPDrm: 2176 case X86::VMOVDQArm: 2177 case X86::VMOVUPSYrm: 2178 case X86::VMOVAPSYrm: 2179 case X86::VMOVUPDYrm: 2180 case X86::VMOVAPDYrm: 2181 case X86::VMOVDQUYrm: 2182 case X86::VMOVDQAYrm: 2183 case X86::MMX_MOVD64rm: 2184 case X86::MMX_MOVQ64rm: 2185 case X86::VMOVAPSZrm: 2186 case X86::VMOVUPSZrm: 2187 return true; 2188 } 2189 } 2190 2191 static bool isFrameStoreOpcode(int Opcode) { 2192 switch (Opcode) { 2193 default: break; 2194 case X86::MOV8mr: 2195 case X86::MOV16mr: 2196 case X86::MOV32mr: 2197 case X86::MOV64mr: 2198 case X86::ST_FpP64m: 2199 case X86::MOVSSmr: 2200 case X86::MOVSDmr: 2201 case X86::MOVAPSmr: 2202 case X86::MOVAPDmr: 2203 case X86::MOVDQAmr: 2204 case X86::VMOVSSmr: 2205 case X86::VMOVSDmr: 2206 case X86::VMOVAPSmr: 2207 case X86::VMOVAPDmr: 2208 case X86::VMOVDQAmr: 2209 case X86::VMOVUPSYmr: 2210 case X86::VMOVAPSYmr: 2211 case X86::VMOVUPDYmr: 2212 case X86::VMOVAPDYmr: 2213 case X86::VMOVDQUYmr: 2214 case X86::VMOVDQAYmr: 2215 case X86::VMOVUPSZmr: 2216 case X86::VMOVAPSZmr: 2217 case X86::MMX_MOVD64mr: 2218 case X86::MMX_MOVQ64mr: 2219 case X86::MMX_MOVNTQmr: 2220 return true; 2221 } 2222 return false; 2223 } 2224 2225 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 2226 int &FrameIndex) const { 2227 if (isFrameLoadOpcode(MI->getOpcode())) 2228 if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex)) 2229 return MI->getOperand(0).getReg(); 2230 return 0; 2231 } 2232 2233 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI, 2234 int &FrameIndex) const { 2235 if (isFrameLoadOpcode(MI->getOpcode())) { 2236 unsigned Reg; 2237 if ((Reg = isLoadFromStackSlot(MI, FrameIndex))) 2238 return Reg; 2239 // Check for post-frame index elimination operations 2240 const MachineMemOperand *Dummy; 2241 return hasLoadFromStackSlot(MI, Dummy, FrameIndex); 2242 } 2243 return 0; 2244 } 2245 2246 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI, 2247 int &FrameIndex) const { 2248 if (isFrameStoreOpcode(MI->getOpcode())) 2249 if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 && 2250 isFrameOperand(MI, 0, FrameIndex)) 2251 return MI->getOperand(X86::AddrNumOperands).getReg(); 2252 return 0; 2253 } 2254 2255 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI, 2256 int &FrameIndex) const { 2257 if (isFrameStoreOpcode(MI->getOpcode())) { 2258 unsigned Reg; 2259 if ((Reg = isStoreToStackSlot(MI, FrameIndex))) 2260 return Reg; 2261 // Check for post-frame index elimination operations 2262 const MachineMemOperand *Dummy; 2263 return hasStoreToStackSlot(MI, Dummy, FrameIndex); 2264 } 2265 return 0; 2266 } 2267 2268 /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r. 2269 static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) { 2270 // Don't waste compile time scanning use-def chains of physregs. 2271 if (!TargetRegisterInfo::isVirtualRegister(BaseReg)) 2272 return false; 2273 bool isPICBase = false; 2274 for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg), 2275 E = MRI.def_instr_end(); I != E; ++I) { 2276 MachineInstr *DefMI = &*I; 2277 if (DefMI->getOpcode() != X86::MOVPC32r) 2278 return false; 2279 assert(!isPICBase && "More than one PIC base?"); 2280 isPICBase = true; 2281 } 2282 return isPICBase; 2283 } 2284 2285 bool 2286 X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI, 2287 AliasAnalysis *AA) const { 2288 switch (MI->getOpcode()) { 2289 default: break; 2290 case X86::MOV8rm: 2291 case X86::MOV16rm: 2292 case X86::MOV32rm: 2293 case X86::MOV64rm: 2294 case X86::LD_Fp64m: 2295 case X86::MOVSSrm: 2296 case X86::MOVSDrm: 2297 case X86::MOVAPSrm: 2298 case X86::MOVUPSrm: 2299 case X86::MOVAPDrm: 2300 case X86::MOVDQArm: 2301 case X86::MOVDQUrm: 2302 case X86::VMOVSSrm: 2303 case X86::VMOVSDrm: 2304 case X86::VMOVAPSrm: 2305 case X86::VMOVUPSrm: 2306 case X86::VMOVAPDrm: 2307 case X86::VMOVDQArm: 2308 case X86::VMOVDQUrm: 2309 case X86::VMOVAPSYrm: 2310 case X86::VMOVUPSYrm: 2311 case X86::VMOVAPDYrm: 2312 case X86::VMOVDQAYrm: 2313 case X86::VMOVDQUYrm: 2314 case X86::MMX_MOVD64rm: 2315 case X86::MMX_MOVQ64rm: 2316 case X86::FsVMOVAPSrm: 2317 case X86::FsVMOVAPDrm: 2318 case X86::FsMOVAPSrm: 2319 case X86::FsMOVAPDrm: 2320 // AVX-512 2321 case X86::VMOVAPDZ128rm: 2322 case X86::VMOVAPDZ256rm: 2323 case X86::VMOVAPDZrm: 2324 case X86::VMOVAPSZ128rm: 2325 case X86::VMOVAPSZ256rm: 2326 case X86::VMOVAPSZrm: 2327 case X86::VMOVDQA32Z128rm: 2328 case X86::VMOVDQA32Z256rm: 2329 case X86::VMOVDQA32Zrm: 2330 case X86::VMOVDQA64Z128rm: 2331 case X86::VMOVDQA64Z256rm: 2332 case X86::VMOVDQA64Zrm: 2333 case X86::VMOVDQU16Z128rm: 2334 case X86::VMOVDQU16Z256rm: 2335 case X86::VMOVDQU16Zrm: 2336 case X86::VMOVDQU32Z128rm: 2337 case X86::VMOVDQU32Z256rm: 2338 case X86::VMOVDQU32Zrm: 2339 case X86::VMOVDQU64Z128rm: 2340 case X86::VMOVDQU64Z256rm: 2341 case X86::VMOVDQU64Zrm: 2342 case X86::VMOVDQU8Z128rm: 2343 case X86::VMOVDQU8Z256rm: 2344 case X86::VMOVDQU8Zrm: 2345 case X86::VMOVUPSZ128rm: 2346 case X86::VMOVUPSZ256rm: 2347 case X86::VMOVUPSZrm: { 2348 // Loads from constant pools are trivially rematerializable. 2349 if (MI->getOperand(1+X86::AddrBaseReg).isReg() && 2350 MI->getOperand(1+X86::AddrScaleAmt).isImm() && 2351 MI->getOperand(1+X86::AddrIndexReg).isReg() && 2352 MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 && 2353 MI->isInvariantLoad(AA)) { 2354 unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg(); 2355 if (BaseReg == 0 || BaseReg == X86::RIP) 2356 return true; 2357 // Allow re-materialization of PIC load. 2358 if (!ReMatPICStubLoad && MI->getOperand(1+X86::AddrDisp).isGlobal()) 2359 return false; 2360 const MachineFunction &MF = *MI->getParent()->getParent(); 2361 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2362 return regIsPICBase(BaseReg, MRI); 2363 } 2364 return false; 2365 } 2366 2367 case X86::LEA32r: 2368 case X86::LEA64r: { 2369 if (MI->getOperand(1+X86::AddrScaleAmt).isImm() && 2370 MI->getOperand(1+X86::AddrIndexReg).isReg() && 2371 MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 && 2372 !MI->getOperand(1+X86::AddrDisp).isReg()) { 2373 // lea fi#, lea GV, etc. are all rematerializable. 2374 if (!MI->getOperand(1+X86::AddrBaseReg).isReg()) 2375 return true; 2376 unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg(); 2377 if (BaseReg == 0) 2378 return true; 2379 // Allow re-materialization of lea PICBase + x. 2380 const MachineFunction &MF = *MI->getParent()->getParent(); 2381 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2382 return regIsPICBase(BaseReg, MRI); 2383 } 2384 return false; 2385 } 2386 } 2387 2388 // All other instructions marked M_REMATERIALIZABLE are always trivially 2389 // rematerializable. 2390 return true; 2391 } 2392 2393 bool X86InstrInfo::isSafeToClobberEFLAGS(MachineBasicBlock &MBB, 2394 MachineBasicBlock::iterator I) const { 2395 MachineBasicBlock::iterator E = MBB.end(); 2396 2397 // For compile time consideration, if we are not able to determine the 2398 // safety after visiting 4 instructions in each direction, we will assume 2399 // it's not safe. 2400 MachineBasicBlock::iterator Iter = I; 2401 for (unsigned i = 0; Iter != E && i < 4; ++i) { 2402 bool SeenDef = false; 2403 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { 2404 MachineOperand &MO = Iter->getOperand(j); 2405 if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS)) 2406 SeenDef = true; 2407 if (!MO.isReg()) 2408 continue; 2409 if (MO.getReg() == X86::EFLAGS) { 2410 if (MO.isUse()) 2411 return false; 2412 SeenDef = true; 2413 } 2414 } 2415 2416 if (SeenDef) 2417 // This instruction defines EFLAGS, no need to look any further. 2418 return true; 2419 ++Iter; 2420 // Skip over DBG_VALUE. 2421 while (Iter != E && Iter->isDebugValue()) 2422 ++Iter; 2423 } 2424 2425 // It is safe to clobber EFLAGS at the end of a block of no successor has it 2426 // live in. 2427 if (Iter == E) { 2428 for (MachineBasicBlock *S : MBB.successors()) 2429 if (S->isLiveIn(X86::EFLAGS)) 2430 return false; 2431 return true; 2432 } 2433 2434 MachineBasicBlock::iterator B = MBB.begin(); 2435 Iter = I; 2436 for (unsigned i = 0; i < 4; ++i) { 2437 // If we make it to the beginning of the block, it's safe to clobber 2438 // EFLAGS iff EFLAGS is not live-in. 2439 if (Iter == B) 2440 return !MBB.isLiveIn(X86::EFLAGS); 2441 2442 --Iter; 2443 // Skip over DBG_VALUE. 2444 while (Iter != B && Iter->isDebugValue()) 2445 --Iter; 2446 2447 bool SawKill = false; 2448 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { 2449 MachineOperand &MO = Iter->getOperand(j); 2450 // A register mask may clobber EFLAGS, but we should still look for a 2451 // live EFLAGS def. 2452 if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS)) 2453 SawKill = true; 2454 if (MO.isReg() && MO.getReg() == X86::EFLAGS) { 2455 if (MO.isDef()) return MO.isDead(); 2456 if (MO.isKill()) SawKill = true; 2457 } 2458 } 2459 2460 if (SawKill) 2461 // This instruction kills EFLAGS and doesn't redefine it, so 2462 // there's no need to look further. 2463 return true; 2464 } 2465 2466 // Conservative answer. 2467 return false; 2468 } 2469 2470 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, 2471 MachineBasicBlock::iterator I, 2472 unsigned DestReg, unsigned SubIdx, 2473 const MachineInstr *Orig, 2474 const TargetRegisterInfo &TRI) const { 2475 bool ClobbersEFLAGS = false; 2476 for (const MachineOperand &MO : Orig->operands()) { 2477 if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) { 2478 ClobbersEFLAGS = true; 2479 break; 2480 } 2481 } 2482 2483 if (ClobbersEFLAGS && !isSafeToClobberEFLAGS(MBB, I)) { 2484 // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side 2485 // effects. 2486 int Value; 2487 switch (Orig->getOpcode()) { 2488 case X86::MOV32r0: Value = 0; break; 2489 case X86::MOV32r1: Value = 1; break; 2490 case X86::MOV32r_1: Value = -1; break; 2491 default: 2492 llvm_unreachable("Unexpected instruction!"); 2493 } 2494 2495 DebugLoc DL = Orig->getDebugLoc(); 2496 BuildMI(MBB, I, DL, get(X86::MOV32ri)).addOperand(Orig->getOperand(0)) 2497 .addImm(Value); 2498 } else { 2499 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); 2500 MBB.insert(I, MI); 2501 } 2502 2503 MachineInstr *NewMI = std::prev(I); 2504 NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI); 2505 } 2506 2507 /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead. 2508 bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr *MI) const { 2509 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 2510 MachineOperand &MO = MI->getOperand(i); 2511 if (MO.isReg() && MO.isDef() && 2512 MO.getReg() == X86::EFLAGS && !MO.isDead()) { 2513 return true; 2514 } 2515 } 2516 return false; 2517 } 2518 2519 /// Check whether the shift count for a machine operand is non-zero. 2520 inline static unsigned getTruncatedShiftCount(MachineInstr *MI, 2521 unsigned ShiftAmtOperandIdx) { 2522 // The shift count is six bits with the REX.W prefix and five bits without. 2523 unsigned ShiftCountMask = (MI->getDesc().TSFlags & X86II::REX_W) ? 63 : 31; 2524 unsigned Imm = MI->getOperand(ShiftAmtOperandIdx).getImm(); 2525 return Imm & ShiftCountMask; 2526 } 2527 2528 /// Check whether the given shift count is appropriate 2529 /// can be represented by a LEA instruction. 2530 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) { 2531 // Left shift instructions can be transformed into load-effective-address 2532 // instructions if we can encode them appropriately. 2533 // A LEA instruction utilizes a SIB byte to encode its scale factor. 2534 // The SIB.scale field is two bits wide which means that we can encode any 2535 // shift amount less than 4. 2536 return ShAmt < 4 && ShAmt > 0; 2537 } 2538 2539 bool X86InstrInfo::classifyLEAReg(MachineInstr *MI, const MachineOperand &Src, 2540 unsigned Opc, bool AllowSP, 2541 unsigned &NewSrc, bool &isKill, bool &isUndef, 2542 MachineOperand &ImplicitOp) const { 2543 MachineFunction &MF = *MI->getParent()->getParent(); 2544 const TargetRegisterClass *RC; 2545 if (AllowSP) { 2546 RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass; 2547 } else { 2548 RC = Opc != X86::LEA32r ? 2549 &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass; 2550 } 2551 unsigned SrcReg = Src.getReg(); 2552 2553 // For both LEA64 and LEA32 the register already has essentially the right 2554 // type (32-bit or 64-bit) we may just need to forbid SP. 2555 if (Opc != X86::LEA64_32r) { 2556 NewSrc = SrcReg; 2557 isKill = Src.isKill(); 2558 isUndef = Src.isUndef(); 2559 2560 if (TargetRegisterInfo::isVirtualRegister(NewSrc) && 2561 !MF.getRegInfo().constrainRegClass(NewSrc, RC)) 2562 return false; 2563 2564 return true; 2565 } 2566 2567 // This is for an LEA64_32r and incoming registers are 32-bit. One way or 2568 // another we need to add 64-bit registers to the final MI. 2569 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) { 2570 ImplicitOp = Src; 2571 ImplicitOp.setImplicit(); 2572 2573 NewSrc = getX86SubSuperRegister(Src.getReg(), MVT::i64); 2574 MachineBasicBlock::LivenessQueryResult LQR = 2575 MI->getParent()->computeRegisterLiveness(&getRegisterInfo(), NewSrc, MI); 2576 2577 switch (LQR) { 2578 case MachineBasicBlock::LQR_Unknown: 2579 // We can't give sane liveness flags to the instruction, abandon LEA 2580 // formation. 2581 return false; 2582 case MachineBasicBlock::LQR_Live: 2583 isKill = MI->killsRegister(SrcReg); 2584 isUndef = false; 2585 break; 2586 default: 2587 // The physreg itself is dead, so we have to use it as an <undef>. 2588 isKill = false; 2589 isUndef = true; 2590 break; 2591 } 2592 } else { 2593 // Virtual register of the wrong class, we have to create a temporary 64-bit 2594 // vreg to feed into the LEA. 2595 NewSrc = MF.getRegInfo().createVirtualRegister(RC); 2596 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 2597 get(TargetOpcode::COPY)) 2598 .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit) 2599 .addOperand(Src); 2600 2601 // Which is obviously going to be dead after we're done with it. 2602 isKill = true; 2603 isUndef = false; 2604 } 2605 2606 // We've set all the parameters without issue. 2607 return true; 2608 } 2609 2610 /// Helper for convertToThreeAddress when 16-bit LEA is disabled, use 32-bit 2611 /// LEA to form 3-address code by promoting to a 32-bit superregister and then 2612 /// truncating back down to a 16-bit subregister. 2613 MachineInstr * 2614 X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc, 2615 MachineFunction::iterator &MFI, 2616 MachineBasicBlock::iterator &MBBI, 2617 LiveVariables *LV) const { 2618 MachineInstr *MI = MBBI; 2619 unsigned Dest = MI->getOperand(0).getReg(); 2620 unsigned Src = MI->getOperand(1).getReg(); 2621 bool isDead = MI->getOperand(0).isDead(); 2622 bool isKill = MI->getOperand(1).isKill(); 2623 2624 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo(); 2625 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass); 2626 unsigned Opc, leaInReg; 2627 if (Subtarget.is64Bit()) { 2628 Opc = X86::LEA64_32r; 2629 leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); 2630 } else { 2631 Opc = X86::LEA32r; 2632 leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); 2633 } 2634 2635 // Build and insert into an implicit UNDEF value. This is OK because 2636 // well be shifting and then extracting the lower 16-bits. 2637 // This has the potential to cause partial register stall. e.g. 2638 // movw (%rbp,%rcx,2), %dx 2639 // leal -65(%rdx), %esi 2640 // But testing has shown this *does* help performance in 64-bit mode (at 2641 // least on modern x86 machines). 2642 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg); 2643 MachineInstr *InsMI = 2644 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY)) 2645 .addReg(leaInReg, RegState::Define, X86::sub_16bit) 2646 .addReg(Src, getKillRegState(isKill)); 2647 2648 MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(), 2649 get(Opc), leaOutReg); 2650 switch (MIOpc) { 2651 default: llvm_unreachable("Unreachable!"); 2652 case X86::SHL16ri: { 2653 unsigned ShAmt = MI->getOperand(2).getImm(); 2654 MIB.addReg(0).addImm(1 << ShAmt) 2655 .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0); 2656 break; 2657 } 2658 case X86::INC16r: 2659 addRegOffset(MIB, leaInReg, true, 1); 2660 break; 2661 case X86::DEC16r: 2662 addRegOffset(MIB, leaInReg, true, -1); 2663 break; 2664 case X86::ADD16ri: 2665 case X86::ADD16ri8: 2666 case X86::ADD16ri_DB: 2667 case X86::ADD16ri8_DB: 2668 addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm()); 2669 break; 2670 case X86::ADD16rr: 2671 case X86::ADD16rr_DB: { 2672 unsigned Src2 = MI->getOperand(2).getReg(); 2673 bool isKill2 = MI->getOperand(2).isKill(); 2674 unsigned leaInReg2 = 0; 2675 MachineInstr *InsMI2 = nullptr; 2676 if (Src == Src2) { 2677 // ADD16rr %reg1028<kill>, %reg1028 2678 // just a single insert_subreg. 2679 addRegReg(MIB, leaInReg, true, leaInReg, false); 2680 } else { 2681 if (Subtarget.is64Bit()) 2682 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); 2683 else 2684 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); 2685 // Build and insert into an implicit UNDEF value. This is OK because 2686 // well be shifting and then extracting the lower 16-bits. 2687 BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2); 2688 InsMI2 = 2689 BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY)) 2690 .addReg(leaInReg2, RegState::Define, X86::sub_16bit) 2691 .addReg(Src2, getKillRegState(isKill2)); 2692 addRegReg(MIB, leaInReg, true, leaInReg2, true); 2693 } 2694 if (LV && isKill2 && InsMI2) 2695 LV->replaceKillInstruction(Src2, MI, InsMI2); 2696 break; 2697 } 2698 } 2699 2700 MachineInstr *NewMI = MIB; 2701 MachineInstr *ExtMI = 2702 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY)) 2703 .addReg(Dest, RegState::Define | getDeadRegState(isDead)) 2704 .addReg(leaOutReg, RegState::Kill, X86::sub_16bit); 2705 2706 if (LV) { 2707 // Update live variables 2708 LV->getVarInfo(leaInReg).Kills.push_back(NewMI); 2709 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI); 2710 if (isKill) 2711 LV->replaceKillInstruction(Src, MI, InsMI); 2712 if (isDead) 2713 LV->replaceKillInstruction(Dest, MI, ExtMI); 2714 } 2715 2716 return ExtMI; 2717 } 2718 2719 /// This method must be implemented by targets that 2720 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target 2721 /// may be able to convert a two-address instruction into a true 2722 /// three-address instruction on demand. This allows the X86 target (for 2723 /// example) to convert ADD and SHL instructions into LEA instructions if they 2724 /// would require register copies due to two-addressness. 2725 /// 2726 /// This method returns a null pointer if the transformation cannot be 2727 /// performed, otherwise it returns the new instruction. 2728 /// 2729 MachineInstr * 2730 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, 2731 MachineBasicBlock::iterator &MBBI, 2732 LiveVariables *LV) const { 2733 MachineInstr *MI = MBBI; 2734 2735 // The following opcodes also sets the condition code register(s). Only 2736 // convert them to equivalent lea if the condition code register def's 2737 // are dead! 2738 if (hasLiveCondCodeDef(MI)) 2739 return nullptr; 2740 2741 MachineFunction &MF = *MI->getParent()->getParent(); 2742 // All instructions input are two-addr instructions. Get the known operands. 2743 const MachineOperand &Dest = MI->getOperand(0); 2744 const MachineOperand &Src = MI->getOperand(1); 2745 2746 MachineInstr *NewMI = nullptr; 2747 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When 2748 // we have better subtarget support, enable the 16-bit LEA generation here. 2749 // 16-bit LEA is also slow on Core2. 2750 bool DisableLEA16 = true; 2751 bool is64Bit = Subtarget.is64Bit(); 2752 2753 unsigned MIOpc = MI->getOpcode(); 2754 switch (MIOpc) { 2755 default: return nullptr; 2756 case X86::SHL64ri: { 2757 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); 2758 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 2759 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; 2760 2761 // LEA can't handle RSP. 2762 if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) && 2763 !MF.getRegInfo().constrainRegClass(Src.getReg(), 2764 &X86::GR64_NOSPRegClass)) 2765 return nullptr; 2766 2767 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) 2768 .addOperand(Dest) 2769 .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0); 2770 break; 2771 } 2772 case X86::SHL32ri: { 2773 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); 2774 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 2775 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; 2776 2777 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; 2778 2779 // LEA can't handle ESP. 2780 bool isKill, isUndef; 2781 unsigned SrcReg; 2782 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 2783 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, 2784 SrcReg, isKill, isUndef, ImplicitOp)) 2785 return nullptr; 2786 2787 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc)) 2788 .addOperand(Dest) 2789 .addReg(0).addImm(1 << ShAmt) 2790 .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef)) 2791 .addImm(0).addReg(0); 2792 if (ImplicitOp.getReg() != 0) 2793 MIB.addOperand(ImplicitOp); 2794 NewMI = MIB; 2795 2796 break; 2797 } 2798 case X86::SHL16ri: { 2799 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); 2800 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 2801 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; 2802 2803 if (DisableLEA16) 2804 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : nullptr; 2805 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) 2806 .addOperand(Dest) 2807 .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0); 2808 break; 2809 } 2810 case X86::INC64r: 2811 case X86::INC32r: { 2812 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!"); 2813 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r 2814 : (is64Bit ? X86::LEA64_32r : X86::LEA32r); 2815 bool isKill, isUndef; 2816 unsigned SrcReg; 2817 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 2818 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, 2819 SrcReg, isKill, isUndef, ImplicitOp)) 2820 return nullptr; 2821 2822 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc)) 2823 .addOperand(Dest) 2824 .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef)); 2825 if (ImplicitOp.getReg() != 0) 2826 MIB.addOperand(ImplicitOp); 2827 2828 NewMI = addOffset(MIB, 1); 2829 break; 2830 } 2831 case X86::INC16r: 2832 if (DisableLEA16) 2833 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) 2834 : nullptr; 2835 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!"); 2836 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) 2837 .addOperand(Dest).addOperand(Src), 1); 2838 break; 2839 case X86::DEC64r: 2840 case X86::DEC32r: { 2841 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!"); 2842 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r 2843 : (is64Bit ? X86::LEA64_32r : X86::LEA32r); 2844 2845 bool isKill, isUndef; 2846 unsigned SrcReg; 2847 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 2848 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, 2849 SrcReg, isKill, isUndef, ImplicitOp)) 2850 return nullptr; 2851 2852 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc)) 2853 .addOperand(Dest) 2854 .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill)); 2855 if (ImplicitOp.getReg() != 0) 2856 MIB.addOperand(ImplicitOp); 2857 2858 NewMI = addOffset(MIB, -1); 2859 2860 break; 2861 } 2862 case X86::DEC16r: 2863 if (DisableLEA16) 2864 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) 2865 : nullptr; 2866 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!"); 2867 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) 2868 .addOperand(Dest).addOperand(Src), -1); 2869 break; 2870 case X86::ADD64rr: 2871 case X86::ADD64rr_DB: 2872 case X86::ADD32rr: 2873 case X86::ADD32rr_DB: { 2874 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); 2875 unsigned Opc; 2876 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) 2877 Opc = X86::LEA64r; 2878 else 2879 Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; 2880 2881 bool isKill, isUndef; 2882 unsigned SrcReg; 2883 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 2884 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, 2885 SrcReg, isKill, isUndef, ImplicitOp)) 2886 return nullptr; 2887 2888 const MachineOperand &Src2 = MI->getOperand(2); 2889 bool isKill2, isUndef2; 2890 unsigned SrcReg2; 2891 MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false); 2892 if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false, 2893 SrcReg2, isKill2, isUndef2, ImplicitOp2)) 2894 return nullptr; 2895 2896 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc)) 2897 .addOperand(Dest); 2898 if (ImplicitOp.getReg() != 0) 2899 MIB.addOperand(ImplicitOp); 2900 if (ImplicitOp2.getReg() != 0) 2901 MIB.addOperand(ImplicitOp2); 2902 2903 NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2); 2904 2905 // Preserve undefness of the operands. 2906 NewMI->getOperand(1).setIsUndef(isUndef); 2907 NewMI->getOperand(3).setIsUndef(isUndef2); 2908 2909 if (LV && Src2.isKill()) 2910 LV->replaceKillInstruction(SrcReg2, MI, NewMI); 2911 break; 2912 } 2913 case X86::ADD16rr: 2914 case X86::ADD16rr_DB: { 2915 if (DisableLEA16) 2916 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) 2917 : nullptr; 2918 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); 2919 unsigned Src2 = MI->getOperand(2).getReg(); 2920 bool isKill2 = MI->getOperand(2).isKill(); 2921 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) 2922 .addOperand(Dest), 2923 Src.getReg(), Src.isKill(), Src2, isKill2); 2924 2925 // Preserve undefness of the operands. 2926 bool isUndef = MI->getOperand(1).isUndef(); 2927 bool isUndef2 = MI->getOperand(2).isUndef(); 2928 NewMI->getOperand(1).setIsUndef(isUndef); 2929 NewMI->getOperand(3).setIsUndef(isUndef2); 2930 2931 if (LV && isKill2) 2932 LV->replaceKillInstruction(Src2, MI, NewMI); 2933 break; 2934 } 2935 case X86::ADD64ri32: 2936 case X86::ADD64ri8: 2937 case X86::ADD64ri32_DB: 2938 case X86::ADD64ri8_DB: 2939 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); 2940 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) 2941 .addOperand(Dest).addOperand(Src), 2942 MI->getOperand(2).getImm()); 2943 break; 2944 case X86::ADD32ri: 2945 case X86::ADD32ri8: 2946 case X86::ADD32ri_DB: 2947 case X86::ADD32ri8_DB: { 2948 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); 2949 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; 2950 2951 bool isKill, isUndef; 2952 unsigned SrcReg; 2953 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 2954 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, 2955 SrcReg, isKill, isUndef, ImplicitOp)) 2956 return nullptr; 2957 2958 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc)) 2959 .addOperand(Dest) 2960 .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill)); 2961 if (ImplicitOp.getReg() != 0) 2962 MIB.addOperand(ImplicitOp); 2963 2964 NewMI = addOffset(MIB, MI->getOperand(2).getImm()); 2965 break; 2966 } 2967 case X86::ADD16ri: 2968 case X86::ADD16ri8: 2969 case X86::ADD16ri_DB: 2970 case X86::ADD16ri8_DB: 2971 if (DisableLEA16) 2972 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) 2973 : nullptr; 2974 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); 2975 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) 2976 .addOperand(Dest).addOperand(Src), 2977 MI->getOperand(2).getImm()); 2978 break; 2979 } 2980 2981 if (!NewMI) return nullptr; 2982 2983 if (LV) { // Update live variables 2984 if (Src.isKill()) 2985 LV->replaceKillInstruction(Src.getReg(), MI, NewMI); 2986 if (Dest.isDead()) 2987 LV->replaceKillInstruction(Dest.getReg(), MI, NewMI); 2988 } 2989 2990 MFI->insert(MBBI, NewMI); // Insert the new inst 2991 return NewMI; 2992 } 2993 2994 /// Returns true if the given instruction opcode is FMA3. 2995 /// Otherwise, returns false. 2996 /// The second parameter is optional and is used as the second return from 2997 /// the function. It is set to true if the given instruction has FMA3 opcode 2998 /// that is used for lowering of scalar FMA intrinsics, and it is set to false 2999 /// otherwise. 3000 static bool isFMA3(unsigned Opcode, bool *IsIntrinsic = nullptr) { 3001 if (IsIntrinsic) 3002 *IsIntrinsic = false; 3003 3004 switch (Opcode) { 3005 case X86::VFMADDSDr132r: case X86::VFMADDSDr132m: 3006 case X86::VFMADDSSr132r: case X86::VFMADDSSr132m: 3007 case X86::VFMSUBSDr132r: case X86::VFMSUBSDr132m: 3008 case X86::VFMSUBSSr132r: case X86::VFMSUBSSr132m: 3009 case X86::VFNMADDSDr132r: case X86::VFNMADDSDr132m: 3010 case X86::VFNMADDSSr132r: case X86::VFNMADDSSr132m: 3011 case X86::VFNMSUBSDr132r: case X86::VFNMSUBSDr132m: 3012 case X86::VFNMSUBSSr132r: case X86::VFNMSUBSSr132m: 3013 3014 case X86::VFMADDSDr213r: case X86::VFMADDSDr213m: 3015 case X86::VFMADDSSr213r: case X86::VFMADDSSr213m: 3016 case X86::VFMSUBSDr213r: case X86::VFMSUBSDr213m: 3017 case X86::VFMSUBSSr213r: case X86::VFMSUBSSr213m: 3018 case X86::VFNMADDSDr213r: case X86::VFNMADDSDr213m: 3019 case X86::VFNMADDSSr213r: case X86::VFNMADDSSr213m: 3020 case X86::VFNMSUBSDr213r: case X86::VFNMSUBSDr213m: 3021 case X86::VFNMSUBSSr213r: case X86::VFNMSUBSSr213m: 3022 3023 case X86::VFMADDSDr231r: case X86::VFMADDSDr231m: 3024 case X86::VFMADDSSr231r: case X86::VFMADDSSr231m: 3025 case X86::VFMSUBSDr231r: case X86::VFMSUBSDr231m: 3026 case X86::VFMSUBSSr231r: case X86::VFMSUBSSr231m: 3027 case X86::VFNMADDSDr231r: case X86::VFNMADDSDr231m: 3028 case X86::VFNMADDSSr231r: case X86::VFNMADDSSr231m: 3029 case X86::VFNMSUBSDr231r: case X86::VFNMSUBSDr231m: 3030 case X86::VFNMSUBSSr231r: case X86::VFNMSUBSSr231m: 3031 3032 case X86::VFMADDSUBPDr132r: case X86::VFMADDSUBPDr132m: 3033 case X86::VFMADDSUBPSr132r: case X86::VFMADDSUBPSr132m: 3034 case X86::VFMSUBADDPDr132r: case X86::VFMSUBADDPDr132m: 3035 case X86::VFMSUBADDPSr132r: case X86::VFMSUBADDPSr132m: 3036 case X86::VFMADDSUBPDr132rY: case X86::VFMADDSUBPDr132mY: 3037 case X86::VFMADDSUBPSr132rY: case X86::VFMADDSUBPSr132mY: 3038 case X86::VFMSUBADDPDr132rY: case X86::VFMSUBADDPDr132mY: 3039 case X86::VFMSUBADDPSr132rY: case X86::VFMSUBADDPSr132mY: 3040 3041 case X86::VFMADDPDr132r: case X86::VFMADDPDr132m: 3042 case X86::VFMADDPSr132r: case X86::VFMADDPSr132m: 3043 case X86::VFMSUBPDr132r: case X86::VFMSUBPDr132m: 3044 case X86::VFMSUBPSr132r: case X86::VFMSUBPSr132m: 3045 case X86::VFNMADDPDr132r: case X86::VFNMADDPDr132m: 3046 case X86::VFNMADDPSr132r: case X86::VFNMADDPSr132m: 3047 case X86::VFNMSUBPDr132r: case X86::VFNMSUBPDr132m: 3048 case X86::VFNMSUBPSr132r: case X86::VFNMSUBPSr132m: 3049 case X86::VFMADDPDr132rY: case X86::VFMADDPDr132mY: 3050 case X86::VFMADDPSr132rY: case X86::VFMADDPSr132mY: 3051 case X86::VFMSUBPDr132rY: case X86::VFMSUBPDr132mY: 3052 case X86::VFMSUBPSr132rY: case X86::VFMSUBPSr132mY: 3053 case X86::VFNMADDPDr132rY: case X86::VFNMADDPDr132mY: 3054 case X86::VFNMADDPSr132rY: case X86::VFNMADDPSr132mY: 3055 case X86::VFNMSUBPDr132rY: case X86::VFNMSUBPDr132mY: 3056 case X86::VFNMSUBPSr132rY: case X86::VFNMSUBPSr132mY: 3057 3058 case X86::VFMADDSUBPDr213r: case X86::VFMADDSUBPDr213m: 3059 case X86::VFMADDSUBPSr213r: case X86::VFMADDSUBPSr213m: 3060 case X86::VFMSUBADDPDr213r: case X86::VFMSUBADDPDr213m: 3061 case X86::VFMSUBADDPSr213r: case X86::VFMSUBADDPSr213m: 3062 case X86::VFMADDSUBPDr213rY: case X86::VFMADDSUBPDr213mY: 3063 case X86::VFMADDSUBPSr213rY: case X86::VFMADDSUBPSr213mY: 3064 case X86::VFMSUBADDPDr213rY: case X86::VFMSUBADDPDr213mY: 3065 case X86::VFMSUBADDPSr213rY: case X86::VFMSUBADDPSr213mY: 3066 3067 case X86::VFMADDPDr213r: case X86::VFMADDPDr213m: 3068 case X86::VFMADDPSr213r: case X86::VFMADDPSr213m: 3069 case X86::VFMSUBPDr213r: case X86::VFMSUBPDr213m: 3070 case X86::VFMSUBPSr213r: case X86::VFMSUBPSr213m: 3071 case X86::VFNMADDPDr213r: case X86::VFNMADDPDr213m: 3072 case X86::VFNMADDPSr213r: case X86::VFNMADDPSr213m: 3073 case X86::VFNMSUBPDr213r: case X86::VFNMSUBPDr213m: 3074 case X86::VFNMSUBPSr213r: case X86::VFNMSUBPSr213m: 3075 case X86::VFMADDPDr213rY: case X86::VFMADDPDr213mY: 3076 case X86::VFMADDPSr213rY: case X86::VFMADDPSr213mY: 3077 case X86::VFMSUBPDr213rY: case X86::VFMSUBPDr213mY: 3078 case X86::VFMSUBPSr213rY: case X86::VFMSUBPSr213mY: 3079 case X86::VFNMADDPDr213rY: case X86::VFNMADDPDr213mY: 3080 case X86::VFNMADDPSr213rY: case X86::VFNMADDPSr213mY: 3081 case X86::VFNMSUBPDr213rY: case X86::VFNMSUBPDr213mY: 3082 case X86::VFNMSUBPSr213rY: case X86::VFNMSUBPSr213mY: 3083 3084 case X86::VFMADDSUBPDr231r: case X86::VFMADDSUBPDr231m: 3085 case X86::VFMADDSUBPSr231r: case X86::VFMADDSUBPSr231m: 3086 case X86::VFMSUBADDPDr231r: case X86::VFMSUBADDPDr231m: 3087 case X86::VFMSUBADDPSr231r: case X86::VFMSUBADDPSr231m: 3088 case X86::VFMADDSUBPDr231rY: case X86::VFMADDSUBPDr231mY: 3089 case X86::VFMADDSUBPSr231rY: case X86::VFMADDSUBPSr231mY: 3090 case X86::VFMSUBADDPDr231rY: case X86::VFMSUBADDPDr231mY: 3091 case X86::VFMSUBADDPSr231rY: case X86::VFMSUBADDPSr231mY: 3092 3093 case X86::VFMADDPDr231r: case X86::VFMADDPDr231m: 3094 case X86::VFMADDPSr231r: case X86::VFMADDPSr231m: 3095 case X86::VFMSUBPDr231r: case X86::VFMSUBPDr231m: 3096 case X86::VFMSUBPSr231r: case X86::VFMSUBPSr231m: 3097 case X86::VFNMADDPDr231r: case X86::VFNMADDPDr231m: 3098 case X86::VFNMADDPSr231r: case X86::VFNMADDPSr231m: 3099 case X86::VFNMSUBPDr231r: case X86::VFNMSUBPDr231m: 3100 case X86::VFNMSUBPSr231r: case X86::VFNMSUBPSr231m: 3101 case X86::VFMADDPDr231rY: case X86::VFMADDPDr231mY: 3102 case X86::VFMADDPSr231rY: case X86::VFMADDPSr231mY: 3103 case X86::VFMSUBPDr231rY: case X86::VFMSUBPDr231mY: 3104 case X86::VFMSUBPSr231rY: case X86::VFMSUBPSr231mY: 3105 case X86::VFNMADDPDr231rY: case X86::VFNMADDPDr231mY: 3106 case X86::VFNMADDPSr231rY: case X86::VFNMADDPSr231mY: 3107 case X86::VFNMSUBPDr231rY: case X86::VFNMSUBPDr231mY: 3108 case X86::VFNMSUBPSr231rY: case X86::VFNMSUBPSr231mY: 3109 return true; 3110 3111 case X86::VFMADDSDr132r_Int: case X86::VFMADDSDr132m_Int: 3112 case X86::VFMADDSSr132r_Int: case X86::VFMADDSSr132m_Int: 3113 case X86::VFMSUBSDr132r_Int: case X86::VFMSUBSDr132m_Int: 3114 case X86::VFMSUBSSr132r_Int: case X86::VFMSUBSSr132m_Int: 3115 case X86::VFNMADDSDr132r_Int: case X86::VFNMADDSDr132m_Int: 3116 case X86::VFNMADDSSr132r_Int: case X86::VFNMADDSSr132m_Int: 3117 case X86::VFNMSUBSDr132r_Int: case X86::VFNMSUBSDr132m_Int: 3118 case X86::VFNMSUBSSr132r_Int: case X86::VFNMSUBSSr132m_Int: 3119 3120 case X86::VFMADDSDr213r_Int: case X86::VFMADDSDr213m_Int: 3121 case X86::VFMADDSSr213r_Int: case X86::VFMADDSSr213m_Int: 3122 case X86::VFMSUBSDr213r_Int: case X86::VFMSUBSDr213m_Int: 3123 case X86::VFMSUBSSr213r_Int: case X86::VFMSUBSSr213m_Int: 3124 case X86::VFNMADDSDr213r_Int: case X86::VFNMADDSDr213m_Int: 3125 case X86::VFNMADDSSr213r_Int: case X86::VFNMADDSSr213m_Int: 3126 case X86::VFNMSUBSDr213r_Int: case X86::VFNMSUBSDr213m_Int: 3127 case X86::VFNMSUBSSr213r_Int: case X86::VFNMSUBSSr213m_Int: 3128 3129 case X86::VFMADDSDr231r_Int: case X86::VFMADDSDr231m_Int: 3130 case X86::VFMADDSSr231r_Int: case X86::VFMADDSSr231m_Int: 3131 case X86::VFMSUBSDr231r_Int: case X86::VFMSUBSDr231m_Int: 3132 case X86::VFMSUBSSr231r_Int: case X86::VFMSUBSSr231m_Int: 3133 case X86::VFNMADDSDr231r_Int: case X86::VFNMADDSDr231m_Int: 3134 case X86::VFNMADDSSr231r_Int: case X86::VFNMADDSSr231m_Int: 3135 case X86::VFNMSUBSDr231r_Int: case X86::VFNMSUBSDr231m_Int: 3136 case X86::VFNMSUBSSr231r_Int: case X86::VFNMSUBSSr231m_Int: 3137 if (IsIntrinsic) 3138 *IsIntrinsic = true; 3139 return true; 3140 default: 3141 return false; 3142 } 3143 llvm_unreachable("Opcode not handled by the switch"); 3144 } 3145 3146 MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr *MI, 3147 bool NewMI, 3148 unsigned OpIdx1, 3149 unsigned OpIdx2) const { 3150 switch (MI->getOpcode()) { 3151 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I) 3152 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I) 3153 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I) 3154 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I) 3155 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I) 3156 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I) 3157 unsigned Opc; 3158 unsigned Size; 3159 switch (MI->getOpcode()) { 3160 default: llvm_unreachable("Unreachable!"); 3161 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break; 3162 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break; 3163 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break; 3164 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break; 3165 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break; 3166 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break; 3167 } 3168 unsigned Amt = MI->getOperand(3).getImm(); 3169 if (NewMI) { 3170 MachineFunction &MF = *MI->getParent()->getParent(); 3171 MI = MF.CloneMachineInstr(MI); 3172 NewMI = false; 3173 } 3174 MI->setDesc(get(Opc)); 3175 MI->getOperand(3).setImm(Size-Amt); 3176 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 3177 } 3178 case X86::BLENDPDrri: 3179 case X86::BLENDPSrri: 3180 case X86::PBLENDWrri: 3181 case X86::VBLENDPDrri: 3182 case X86::VBLENDPSrri: 3183 case X86::VBLENDPDYrri: 3184 case X86::VBLENDPSYrri: 3185 case X86::VPBLENDDrri: 3186 case X86::VPBLENDWrri: 3187 case X86::VPBLENDDYrri: 3188 case X86::VPBLENDWYrri:{ 3189 unsigned Mask; 3190 switch (MI->getOpcode()) { 3191 default: llvm_unreachable("Unreachable!"); 3192 case X86::BLENDPDrri: Mask = 0x03; break; 3193 case X86::BLENDPSrri: Mask = 0x0F; break; 3194 case X86::PBLENDWrri: Mask = 0xFF; break; 3195 case X86::VBLENDPDrri: Mask = 0x03; break; 3196 case X86::VBLENDPSrri: Mask = 0x0F; break; 3197 case X86::VBLENDPDYrri: Mask = 0x0F; break; 3198 case X86::VBLENDPSYrri: Mask = 0xFF; break; 3199 case X86::VPBLENDDrri: Mask = 0x0F; break; 3200 case X86::VPBLENDWrri: Mask = 0xFF; break; 3201 case X86::VPBLENDDYrri: Mask = 0xFF; break; 3202 case X86::VPBLENDWYrri: Mask = 0xFF; break; 3203 } 3204 // Only the least significant bits of Imm are used. 3205 unsigned Imm = MI->getOperand(3).getImm() & Mask; 3206 if (NewMI) { 3207 MachineFunction &MF = *MI->getParent()->getParent(); 3208 MI = MF.CloneMachineInstr(MI); 3209 NewMI = false; 3210 } 3211 MI->getOperand(3).setImm(Mask ^ Imm); 3212 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 3213 } 3214 case X86::PCLMULQDQrr: 3215 case X86::VPCLMULQDQrr:{ 3216 // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0] 3217 // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0] 3218 unsigned Imm = MI->getOperand(3).getImm(); 3219 unsigned Src1Hi = Imm & 0x01; 3220 unsigned Src2Hi = Imm & 0x10; 3221 if (NewMI) { 3222 MachineFunction &MF = *MI->getParent()->getParent(); 3223 MI = MF.CloneMachineInstr(MI); 3224 NewMI = false; 3225 } 3226 MI->getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4)); 3227 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 3228 } 3229 case X86::CMPPDrri: 3230 case X86::CMPPSrri: 3231 case X86::VCMPPDrri: 3232 case X86::VCMPPSrri: 3233 case X86::VCMPPDYrri: 3234 case X86::VCMPPSYrri: { 3235 // Float comparison can be safely commuted for 3236 // Ordered/Unordered/Equal/NotEqual tests 3237 unsigned Imm = MI->getOperand(3).getImm() & 0x7; 3238 switch (Imm) { 3239 case 0x00: // EQUAL 3240 case 0x03: // UNORDERED 3241 case 0x04: // NOT EQUAL 3242 case 0x07: // ORDERED 3243 if (NewMI) { 3244 MachineFunction &MF = *MI->getParent()->getParent(); 3245 MI = MF.CloneMachineInstr(MI); 3246 NewMI = false; 3247 } 3248 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 3249 default: 3250 return nullptr; 3251 } 3252 } 3253 case X86::VPCOMBri: case X86::VPCOMUBri: 3254 case X86::VPCOMDri: case X86::VPCOMUDri: 3255 case X86::VPCOMQri: case X86::VPCOMUQri: 3256 case X86::VPCOMWri: case X86::VPCOMUWri: { 3257 // Flip comparison mode immediate (if necessary). 3258 unsigned Imm = MI->getOperand(3).getImm() & 0x7; 3259 switch (Imm) { 3260 case 0x00: Imm = 0x02; break; // LT -> GT 3261 case 0x01: Imm = 0x03; break; // LE -> GE 3262 case 0x02: Imm = 0x00; break; // GT -> LT 3263 case 0x03: Imm = 0x01; break; // GE -> LE 3264 case 0x04: // EQ 3265 case 0x05: // NE 3266 case 0x06: // FALSE 3267 case 0x07: // TRUE 3268 default: 3269 break; 3270 } 3271 if (NewMI) { 3272 MachineFunction &MF = *MI->getParent()->getParent(); 3273 MI = MF.CloneMachineInstr(MI); 3274 NewMI = false; 3275 } 3276 MI->getOperand(3).setImm(Imm); 3277 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 3278 } 3279 case X86::CMOVB16rr: case X86::CMOVB32rr: case X86::CMOVB64rr: 3280 case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr: 3281 case X86::CMOVE16rr: case X86::CMOVE32rr: case X86::CMOVE64rr: 3282 case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr: 3283 case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr: 3284 case X86::CMOVA16rr: case X86::CMOVA32rr: case X86::CMOVA64rr: 3285 case X86::CMOVL16rr: case X86::CMOVL32rr: case X86::CMOVL64rr: 3286 case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr: 3287 case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr: 3288 case X86::CMOVG16rr: case X86::CMOVG32rr: case X86::CMOVG64rr: 3289 case X86::CMOVS16rr: case X86::CMOVS32rr: case X86::CMOVS64rr: 3290 case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr: 3291 case X86::CMOVP16rr: case X86::CMOVP32rr: case X86::CMOVP64rr: 3292 case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr: 3293 case X86::CMOVO16rr: case X86::CMOVO32rr: case X86::CMOVO64rr: 3294 case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: { 3295 unsigned Opc; 3296 switch (MI->getOpcode()) { 3297 default: llvm_unreachable("Unreachable!"); 3298 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break; 3299 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break; 3300 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break; 3301 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break; 3302 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break; 3303 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break; 3304 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break; 3305 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break; 3306 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break; 3307 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break; 3308 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break; 3309 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break; 3310 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break; 3311 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break; 3312 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break; 3313 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break; 3314 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break; 3315 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break; 3316 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break; 3317 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break; 3318 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break; 3319 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break; 3320 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break; 3321 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break; 3322 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break; 3323 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break; 3324 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break; 3325 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break; 3326 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break; 3327 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break; 3328 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break; 3329 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break; 3330 case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break; 3331 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break; 3332 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break; 3333 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break; 3334 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break; 3335 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break; 3336 case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break; 3337 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break; 3338 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break; 3339 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break; 3340 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break; 3341 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break; 3342 case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break; 3343 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break; 3344 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break; 3345 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break; 3346 } 3347 if (NewMI) { 3348 MachineFunction &MF = *MI->getParent()->getParent(); 3349 MI = MF.CloneMachineInstr(MI); 3350 NewMI = false; 3351 } 3352 MI->setDesc(get(Opc)); 3353 // Fallthrough intended. 3354 } 3355 default: 3356 if (isFMA3(MI->getOpcode())) { 3357 unsigned Opc = getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2); 3358 if (Opc == 0) 3359 return nullptr; 3360 if (NewMI) { 3361 MachineFunction &MF = *MI->getParent()->getParent(); 3362 MI = MF.CloneMachineInstr(MI); 3363 NewMI = false; 3364 } 3365 MI->setDesc(get(Opc)); 3366 } 3367 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 3368 } 3369 } 3370 3371 bool X86InstrInfo::findFMA3CommutedOpIndices(MachineInstr *MI, 3372 unsigned &SrcOpIdx1, 3373 unsigned &SrcOpIdx2) const { 3374 3375 unsigned RegOpsNum = isMem(MI, 3) ? 2 : 3; 3376 3377 // Only the first RegOpsNum operands are commutable. 3378 // Also, the value 'CommuteAnyOperandIndex' is valid here as it means 3379 // that the operand is not specified/fixed. 3380 if (SrcOpIdx1 != CommuteAnyOperandIndex && 3381 (SrcOpIdx1 < 1 || SrcOpIdx1 > RegOpsNum)) 3382 return false; 3383 if (SrcOpIdx2 != CommuteAnyOperandIndex && 3384 (SrcOpIdx2 < 1 || SrcOpIdx2 > RegOpsNum)) 3385 return false; 3386 3387 // Look for two different register operands assumed to be commutable 3388 // regardless of the FMA opcode. The FMA opcode is adjusted later. 3389 if (SrcOpIdx1 == CommuteAnyOperandIndex || 3390 SrcOpIdx2 == CommuteAnyOperandIndex) { 3391 unsigned CommutableOpIdx1 = SrcOpIdx1; 3392 unsigned CommutableOpIdx2 = SrcOpIdx2; 3393 3394 // At least one of operands to be commuted is not specified and 3395 // this method is free to choose appropriate commutable operands. 3396 if (SrcOpIdx1 == SrcOpIdx2) 3397 // Both of operands are not fixed. By default set one of commutable 3398 // operands to the last register operand of the instruction. 3399 CommutableOpIdx2 = RegOpsNum; 3400 else if (SrcOpIdx2 == CommuteAnyOperandIndex) 3401 // Only one of operands is not fixed. 3402 CommutableOpIdx2 = SrcOpIdx1; 3403 3404 // CommutableOpIdx2 is well defined now. Let's choose another commutable 3405 // operand and assign its index to CommutableOpIdx1. 3406 unsigned Op2Reg = MI->getOperand(CommutableOpIdx2).getReg(); 3407 for (CommutableOpIdx1 = RegOpsNum; CommutableOpIdx1 > 0; CommutableOpIdx1--) { 3408 // The commuted operands must have different registers. 3409 // Otherwise, the commute transformation does not change anything and 3410 // is useless then. 3411 if (Op2Reg != MI->getOperand(CommutableOpIdx1).getReg()) 3412 break; 3413 } 3414 3415 // No appropriate commutable operands were found. 3416 if (CommutableOpIdx1 == 0) 3417 return false; 3418 3419 // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2 3420 // to return those values. 3421 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 3422 CommutableOpIdx1, CommutableOpIdx2)) 3423 return false; 3424 } 3425 3426 // Check if we can adjust the opcode to preserve the semantics when 3427 // commute the register operands. 3428 return getFMA3OpcodeToCommuteOperands(MI, SrcOpIdx1, SrcOpIdx2) != 0; 3429 } 3430 3431 unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(MachineInstr *MI, 3432 unsigned SrcOpIdx1, 3433 unsigned SrcOpIdx2) const { 3434 unsigned Opc = MI->getOpcode(); 3435 3436 // Define the array that holds FMA opcodes in groups 3437 // of 3 opcodes(132, 213, 231) in each group. 3438 static const unsigned RegularOpcodeGroups[][3] = { 3439 { X86::VFMADDSSr132r, X86::VFMADDSSr213r, X86::VFMADDSSr231r }, 3440 { X86::VFMADDSDr132r, X86::VFMADDSDr213r, X86::VFMADDSDr231r }, 3441 { X86::VFMADDPSr132r, X86::VFMADDPSr213r, X86::VFMADDPSr231r }, 3442 { X86::VFMADDPDr132r, X86::VFMADDPDr213r, X86::VFMADDPDr231r }, 3443 { X86::VFMADDPSr132rY, X86::VFMADDPSr213rY, X86::VFMADDPSr231rY }, 3444 { X86::VFMADDPDr132rY, X86::VFMADDPDr213rY, X86::VFMADDPDr231rY }, 3445 { X86::VFMADDSSr132m, X86::VFMADDSSr213m, X86::VFMADDSSr231m }, 3446 { X86::VFMADDSDr132m, X86::VFMADDSDr213m, X86::VFMADDSDr231m }, 3447 { X86::VFMADDPSr132m, X86::VFMADDPSr213m, X86::VFMADDPSr231m }, 3448 { X86::VFMADDPDr132m, X86::VFMADDPDr213m, X86::VFMADDPDr231m }, 3449 { X86::VFMADDPSr132mY, X86::VFMADDPSr213mY, X86::VFMADDPSr231mY }, 3450 { X86::VFMADDPDr132mY, X86::VFMADDPDr213mY, X86::VFMADDPDr231mY }, 3451 3452 { X86::VFMSUBSSr132r, X86::VFMSUBSSr213r, X86::VFMSUBSSr231r }, 3453 { X86::VFMSUBSDr132r, X86::VFMSUBSDr213r, X86::VFMSUBSDr231r }, 3454 { X86::VFMSUBPSr132r, X86::VFMSUBPSr213r, X86::VFMSUBPSr231r }, 3455 { X86::VFMSUBPDr132r, X86::VFMSUBPDr213r, X86::VFMSUBPDr231r }, 3456 { X86::VFMSUBPSr132rY, X86::VFMSUBPSr213rY, X86::VFMSUBPSr231rY }, 3457 { X86::VFMSUBPDr132rY, X86::VFMSUBPDr213rY, X86::VFMSUBPDr231rY }, 3458 { X86::VFMSUBSSr132m, X86::VFMSUBSSr213m, X86::VFMSUBSSr231m }, 3459 { X86::VFMSUBSDr132m, X86::VFMSUBSDr213m, X86::VFMSUBSDr231m }, 3460 { X86::VFMSUBPSr132m, X86::VFMSUBPSr213m, X86::VFMSUBPSr231m }, 3461 { X86::VFMSUBPDr132m, X86::VFMSUBPDr213m, X86::VFMSUBPDr231m }, 3462 { X86::VFMSUBPSr132mY, X86::VFMSUBPSr213mY, X86::VFMSUBPSr231mY }, 3463 { X86::VFMSUBPDr132mY, X86::VFMSUBPDr213mY, X86::VFMSUBPDr231mY }, 3464 3465 { X86::VFNMADDSSr132r, X86::VFNMADDSSr213r, X86::VFNMADDSSr231r }, 3466 { X86::VFNMADDSDr132r, X86::VFNMADDSDr213r, X86::VFNMADDSDr231r }, 3467 { X86::VFNMADDPSr132r, X86::VFNMADDPSr213r, X86::VFNMADDPSr231r }, 3468 { X86::VFNMADDPDr132r, X86::VFNMADDPDr213r, X86::VFNMADDPDr231r }, 3469 { X86::VFNMADDPSr132rY, X86::VFNMADDPSr213rY, X86::VFNMADDPSr231rY }, 3470 { X86::VFNMADDPDr132rY, X86::VFNMADDPDr213rY, X86::VFNMADDPDr231rY }, 3471 { X86::VFNMADDSSr132m, X86::VFNMADDSSr213m, X86::VFNMADDSSr231m }, 3472 { X86::VFNMADDSDr132m, X86::VFNMADDSDr213m, X86::VFNMADDSDr231m }, 3473 { X86::VFNMADDPSr132m, X86::VFNMADDPSr213m, X86::VFNMADDPSr231m }, 3474 { X86::VFNMADDPDr132m, X86::VFNMADDPDr213m, X86::VFNMADDPDr231m }, 3475 { X86::VFNMADDPSr132mY, X86::VFNMADDPSr213mY, X86::VFNMADDPSr231mY }, 3476 { X86::VFNMADDPDr132mY, X86::VFNMADDPDr213mY, X86::VFNMADDPDr231mY }, 3477 3478 { X86::VFNMSUBSSr132r, X86::VFNMSUBSSr213r, X86::VFNMSUBSSr231r }, 3479 { X86::VFNMSUBSDr132r, X86::VFNMSUBSDr213r, X86::VFNMSUBSDr231r }, 3480 { X86::VFNMSUBPSr132r, X86::VFNMSUBPSr213r, X86::VFNMSUBPSr231r }, 3481 { X86::VFNMSUBPDr132r, X86::VFNMSUBPDr213r, X86::VFNMSUBPDr231r }, 3482 { X86::VFNMSUBPSr132rY, X86::VFNMSUBPSr213rY, X86::VFNMSUBPSr231rY }, 3483 { X86::VFNMSUBPDr132rY, X86::VFNMSUBPDr213rY, X86::VFNMSUBPDr231rY }, 3484 { X86::VFNMSUBSSr132m, X86::VFNMSUBSSr213m, X86::VFNMSUBSSr231m }, 3485 { X86::VFNMSUBSDr132m, X86::VFNMSUBSDr213m, X86::VFNMSUBSDr231m }, 3486 { X86::VFNMSUBPSr132m, X86::VFNMSUBPSr213m, X86::VFNMSUBPSr231m }, 3487 { X86::VFNMSUBPDr132m, X86::VFNMSUBPDr213m, X86::VFNMSUBPDr231m }, 3488 { X86::VFNMSUBPSr132mY, X86::VFNMSUBPSr213mY, X86::VFNMSUBPSr231mY }, 3489 { X86::VFNMSUBPDr132mY, X86::VFNMSUBPDr213mY, X86::VFNMSUBPDr231mY }, 3490 3491 { X86::VFMADDSUBPSr132r, X86::VFMADDSUBPSr213r, X86::VFMADDSUBPSr231r }, 3492 { X86::VFMADDSUBPDr132r, X86::VFMADDSUBPDr213r, X86::VFMADDSUBPDr231r }, 3493 { X86::VFMADDSUBPSr132rY, X86::VFMADDSUBPSr213rY, X86::VFMADDSUBPSr231rY }, 3494 { X86::VFMADDSUBPDr132rY, X86::VFMADDSUBPDr213rY, X86::VFMADDSUBPDr231rY }, 3495 { X86::VFMADDSUBPSr132m, X86::VFMADDSUBPSr213m, X86::VFMADDSUBPSr231m }, 3496 { X86::VFMADDSUBPDr132m, X86::VFMADDSUBPDr213m, X86::VFMADDSUBPDr231m }, 3497 { X86::VFMADDSUBPSr132mY, X86::VFMADDSUBPSr213mY, X86::VFMADDSUBPSr231mY }, 3498 { X86::VFMADDSUBPDr132mY, X86::VFMADDSUBPDr213mY, X86::VFMADDSUBPDr231mY }, 3499 3500 { X86::VFMSUBADDPSr132r, X86::VFMSUBADDPSr213r, X86::VFMSUBADDPSr231r }, 3501 { X86::VFMSUBADDPDr132r, X86::VFMSUBADDPDr213r, X86::VFMSUBADDPDr231r }, 3502 { X86::VFMSUBADDPSr132rY, X86::VFMSUBADDPSr213rY, X86::VFMSUBADDPSr231rY }, 3503 { X86::VFMSUBADDPDr132rY, X86::VFMSUBADDPDr213rY, X86::VFMSUBADDPDr231rY }, 3504 { X86::VFMSUBADDPSr132m, X86::VFMSUBADDPSr213m, X86::VFMSUBADDPSr231m }, 3505 { X86::VFMSUBADDPDr132m, X86::VFMSUBADDPDr213m, X86::VFMSUBADDPDr231m }, 3506 { X86::VFMSUBADDPSr132mY, X86::VFMSUBADDPSr213mY, X86::VFMSUBADDPSr231mY }, 3507 { X86::VFMSUBADDPDr132mY, X86::VFMSUBADDPDr213mY, X86::VFMSUBADDPDr231mY } 3508 }; 3509 3510 // Define the array that holds FMA*_Int opcodes in groups 3511 // of 3 opcodes(132, 213, 231) in each group. 3512 static const unsigned IntrinOpcodeGroups[][3] = { 3513 { X86::VFMADDSSr132r_Int, X86::VFMADDSSr213r_Int, X86::VFMADDSSr231r_Int }, 3514 { X86::VFMADDSDr132r_Int, X86::VFMADDSDr213r_Int, X86::VFMADDSDr231r_Int }, 3515 { X86::VFMADDSSr132m_Int, X86::VFMADDSSr213m_Int, X86::VFMADDSSr231m_Int }, 3516 { X86::VFMADDSDr132m_Int, X86::VFMADDSDr213m_Int, X86::VFMADDSDr231m_Int }, 3517 3518 { X86::VFMSUBSSr132r_Int, X86::VFMSUBSSr213r_Int, X86::VFMSUBSSr231r_Int }, 3519 { X86::VFMSUBSDr132r_Int, X86::VFMSUBSDr213r_Int, X86::VFMSUBSDr231r_Int }, 3520 { X86::VFMSUBSSr132m_Int, X86::VFMSUBSSr213m_Int, X86::VFMSUBSSr231m_Int }, 3521 { X86::VFMSUBSDr132m_Int, X86::VFMSUBSDr213m_Int, X86::VFMSUBSDr231m_Int }, 3522 3523 { X86::VFNMADDSSr132r_Int, X86::VFNMADDSSr213r_Int, X86::VFNMADDSSr231r_Int }, 3524 { X86::VFNMADDSDr132r_Int, X86::VFNMADDSDr213r_Int, X86::VFNMADDSDr231r_Int }, 3525 { X86::VFNMADDSSr132m_Int, X86::VFNMADDSSr213m_Int, X86::VFNMADDSSr231m_Int }, 3526 { X86::VFNMADDSDr132m_Int, X86::VFNMADDSDr213m_Int, X86::VFNMADDSDr231m_Int }, 3527 3528 { X86::VFNMSUBSSr132r_Int, X86::VFNMSUBSSr213r_Int, X86::VFNMSUBSSr231r_Int }, 3529 { X86::VFNMSUBSDr132r_Int, X86::VFNMSUBSDr213r_Int, X86::VFNMSUBSDr231r_Int }, 3530 { X86::VFNMSUBSSr132m_Int, X86::VFNMSUBSSr213m_Int, X86::VFNMSUBSSr231m_Int }, 3531 { X86::VFNMSUBSDr132m_Int, X86::VFNMSUBSDr213m_Int, X86::VFNMSUBSDr231m_Int }, 3532 }; 3533 3534 const unsigned Form132Index = 0; 3535 const unsigned Form213Index = 1; 3536 const unsigned Form231Index = 2; 3537 const unsigned FormsNum = 3; 3538 3539 bool IsIntrinOpcode; 3540 isFMA3(Opc, &IsIntrinOpcode); 3541 3542 size_t GroupsNum; 3543 const unsigned (*OpcodeGroups)[3]; 3544 if (IsIntrinOpcode) { 3545 GroupsNum = array_lengthof(IntrinOpcodeGroups); 3546 OpcodeGroups = IntrinOpcodeGroups; 3547 } else { 3548 GroupsNum = array_lengthof(RegularOpcodeGroups); 3549 OpcodeGroups = RegularOpcodeGroups; 3550 } 3551 3552 const unsigned *FoundOpcodesGroup = nullptr; 3553 size_t FormIndex; 3554 3555 // Look for the input opcode in the corresponding opcodes table. 3556 for (size_t GroupIndex = 0; GroupIndex < GroupsNum && !FoundOpcodesGroup; 3557 ++GroupIndex) { 3558 for (FormIndex = 0; FormIndex < FormsNum; ++FormIndex) { 3559 if (OpcodeGroups[GroupIndex][FormIndex] == Opc) { 3560 FoundOpcodesGroup = OpcodeGroups[GroupIndex]; 3561 break; 3562 } 3563 } 3564 } 3565 3566 // The input opcode does not match with any of the opcodes from the tables. 3567 // The unsupported FMA opcode must be added to one of the two opcode groups 3568 // defined above. 3569 assert(FoundOpcodesGroup != nullptr && "Unexpected FMA3 opcode"); 3570 3571 // Put the lowest index to SrcOpIdx1 to simplify the checks below. 3572 if (SrcOpIdx1 > SrcOpIdx2) 3573 std::swap(SrcOpIdx1, SrcOpIdx2); 3574 3575 // TODO: Commuting the 1st operand of FMA*_Int requires some additional 3576 // analysis. The commute optimization is legal only if all users of FMA*_Int 3577 // use only the lowest element of the FMA*_Int instruction. Such analysis are 3578 // not implemented yet. So, just return 0 in that case. 3579 // When such analysis are available this place will be the right place for 3580 // calling it. 3581 if (IsIntrinOpcode && SrcOpIdx1 == 1) 3582 return 0; 3583 3584 unsigned Case; 3585 if (SrcOpIdx1 == 1 && SrcOpIdx2 == 2) 3586 Case = 0; 3587 else if (SrcOpIdx1 == 1 && SrcOpIdx2 == 3) 3588 Case = 1; 3589 else if (SrcOpIdx1 == 2 && SrcOpIdx2 == 3) 3590 Case = 2; 3591 else 3592 return 0; 3593 3594 // Define the FMA forms mapping array that helps to map input FMA form 3595 // to output FMA form to preserve the operation semantics after 3596 // commuting the operands. 3597 static const unsigned FormMapping[][3] = { 3598 // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2; 3599 // FMA132 A, C, b; ==> FMA231 C, A, b; 3600 // FMA213 B, A, c; ==> FMA213 A, B, c; 3601 // FMA231 C, A, b; ==> FMA132 A, C, b; 3602 { Form231Index, Form213Index, Form132Index }, 3603 // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3; 3604 // FMA132 A, c, B; ==> FMA132 B, c, A; 3605 // FMA213 B, a, C; ==> FMA231 C, a, B; 3606 // FMA231 C, a, B; ==> FMA213 B, a, C; 3607 { Form132Index, Form231Index, Form213Index }, 3608 // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3; 3609 // FMA132 a, C, B; ==> FMA213 a, B, C; 3610 // FMA213 b, A, C; ==> FMA132 b, C, A; 3611 // FMA231 c, A, B; ==> FMA231 c, B, A; 3612 { Form213Index, Form132Index, Form231Index } 3613 }; 3614 3615 // Everything is ready, just adjust the FMA opcode and return it. 3616 FormIndex = FormMapping[Case][FormIndex]; 3617 return FoundOpcodesGroup[FormIndex]; 3618 } 3619 3620 bool X86InstrInfo::findCommutedOpIndices(MachineInstr *MI, 3621 unsigned &SrcOpIdx1, 3622 unsigned &SrcOpIdx2) const { 3623 switch (MI->getOpcode()) { 3624 case X86::CMPPDrri: 3625 case X86::CMPPSrri: 3626 case X86::VCMPPDrri: 3627 case X86::VCMPPSrri: 3628 case X86::VCMPPDYrri: 3629 case X86::VCMPPSYrri: { 3630 // Float comparison can be safely commuted for 3631 // Ordered/Unordered/Equal/NotEqual tests 3632 unsigned Imm = MI->getOperand(3).getImm() & 0x7; 3633 switch (Imm) { 3634 case 0x00: // EQUAL 3635 case 0x03: // UNORDERED 3636 case 0x04: // NOT EQUAL 3637 case 0x07: // ORDERED 3638 // The indices of the commutable operands are 1 and 2. 3639 // Assign them to the returned operand indices here. 3640 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1, 2); 3641 } 3642 return false; 3643 } 3644 default: 3645 if (isFMA3(MI->getOpcode())) 3646 return findFMA3CommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 3647 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 3648 } 3649 return false; 3650 } 3651 3652 static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) { 3653 switch (BrOpc) { 3654 default: return X86::COND_INVALID; 3655 case X86::JE_1: return X86::COND_E; 3656 case X86::JNE_1: return X86::COND_NE; 3657 case X86::JL_1: return X86::COND_L; 3658 case X86::JLE_1: return X86::COND_LE; 3659 case X86::JG_1: return X86::COND_G; 3660 case X86::JGE_1: return X86::COND_GE; 3661 case X86::JB_1: return X86::COND_B; 3662 case X86::JBE_1: return X86::COND_BE; 3663 case X86::JA_1: return X86::COND_A; 3664 case X86::JAE_1: return X86::COND_AE; 3665 case X86::JS_1: return X86::COND_S; 3666 case X86::JNS_1: return X86::COND_NS; 3667 case X86::JP_1: return X86::COND_P; 3668 case X86::JNP_1: return X86::COND_NP; 3669 case X86::JO_1: return X86::COND_O; 3670 case X86::JNO_1: return X86::COND_NO; 3671 } 3672 } 3673 3674 /// Return condition code of a SET opcode. 3675 static X86::CondCode getCondFromSETOpc(unsigned Opc) { 3676 switch (Opc) { 3677 default: return X86::COND_INVALID; 3678 case X86::SETAr: case X86::SETAm: return X86::COND_A; 3679 case X86::SETAEr: case X86::SETAEm: return X86::COND_AE; 3680 case X86::SETBr: case X86::SETBm: return X86::COND_B; 3681 case X86::SETBEr: case X86::SETBEm: return X86::COND_BE; 3682 case X86::SETEr: case X86::SETEm: return X86::COND_E; 3683 case X86::SETGr: case X86::SETGm: return X86::COND_G; 3684 case X86::SETGEr: case X86::SETGEm: return X86::COND_GE; 3685 case X86::SETLr: case X86::SETLm: return X86::COND_L; 3686 case X86::SETLEr: case X86::SETLEm: return X86::COND_LE; 3687 case X86::SETNEr: case X86::SETNEm: return X86::COND_NE; 3688 case X86::SETNOr: case X86::SETNOm: return X86::COND_NO; 3689 case X86::SETNPr: case X86::SETNPm: return X86::COND_NP; 3690 case X86::SETNSr: case X86::SETNSm: return X86::COND_NS; 3691 case X86::SETOr: case X86::SETOm: return X86::COND_O; 3692 case X86::SETPr: case X86::SETPm: return X86::COND_P; 3693 case X86::SETSr: case X86::SETSm: return X86::COND_S; 3694 } 3695 } 3696 3697 /// Return condition code of a CMov opcode. 3698 X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) { 3699 switch (Opc) { 3700 default: return X86::COND_INVALID; 3701 case X86::CMOVA16rm: case X86::CMOVA16rr: case X86::CMOVA32rm: 3702 case X86::CMOVA32rr: case X86::CMOVA64rm: case X86::CMOVA64rr: 3703 return X86::COND_A; 3704 case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm: 3705 case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr: 3706 return X86::COND_AE; 3707 case X86::CMOVB16rm: case X86::CMOVB16rr: case X86::CMOVB32rm: 3708 case X86::CMOVB32rr: case X86::CMOVB64rm: case X86::CMOVB64rr: 3709 return X86::COND_B; 3710 case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm: 3711 case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr: 3712 return X86::COND_BE; 3713 case X86::CMOVE16rm: case X86::CMOVE16rr: case X86::CMOVE32rm: 3714 case X86::CMOVE32rr: case X86::CMOVE64rm: case X86::CMOVE64rr: 3715 return X86::COND_E; 3716 case X86::CMOVG16rm: case X86::CMOVG16rr: case X86::CMOVG32rm: 3717 case X86::CMOVG32rr: case X86::CMOVG64rm: case X86::CMOVG64rr: 3718 return X86::COND_G; 3719 case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm: 3720 case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr: 3721 return X86::COND_GE; 3722 case X86::CMOVL16rm: case X86::CMOVL16rr: case X86::CMOVL32rm: 3723 case X86::CMOVL32rr: case X86::CMOVL64rm: case X86::CMOVL64rr: 3724 return X86::COND_L; 3725 case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm: 3726 case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr: 3727 return X86::COND_LE; 3728 case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm: 3729 case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr: 3730 return X86::COND_NE; 3731 case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm: 3732 case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr: 3733 return X86::COND_NO; 3734 case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm: 3735 case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr: 3736 return X86::COND_NP; 3737 case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm: 3738 case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr: 3739 return X86::COND_NS; 3740 case X86::CMOVO16rm: case X86::CMOVO16rr: case X86::CMOVO32rm: 3741 case X86::CMOVO32rr: case X86::CMOVO64rm: case X86::CMOVO64rr: 3742 return X86::COND_O; 3743 case X86::CMOVP16rm: case X86::CMOVP16rr: case X86::CMOVP32rm: 3744 case X86::CMOVP32rr: case X86::CMOVP64rm: case X86::CMOVP64rr: 3745 return X86::COND_P; 3746 case X86::CMOVS16rm: case X86::CMOVS16rr: case X86::CMOVS32rm: 3747 case X86::CMOVS32rr: case X86::CMOVS64rm: case X86::CMOVS64rr: 3748 return X86::COND_S; 3749 } 3750 } 3751 3752 unsigned X86::GetCondBranchFromCond(X86::CondCode CC) { 3753 switch (CC) { 3754 default: llvm_unreachable("Illegal condition code!"); 3755 case X86::COND_E: return X86::JE_1; 3756 case X86::COND_NE: return X86::JNE_1; 3757 case X86::COND_L: return X86::JL_1; 3758 case X86::COND_LE: return X86::JLE_1; 3759 case X86::COND_G: return X86::JG_1; 3760 case X86::COND_GE: return X86::JGE_1; 3761 case X86::COND_B: return X86::JB_1; 3762 case X86::COND_BE: return X86::JBE_1; 3763 case X86::COND_A: return X86::JA_1; 3764 case X86::COND_AE: return X86::JAE_1; 3765 case X86::COND_S: return X86::JS_1; 3766 case X86::COND_NS: return X86::JNS_1; 3767 case X86::COND_P: return X86::JP_1; 3768 case X86::COND_NP: return X86::JNP_1; 3769 case X86::COND_O: return X86::JO_1; 3770 case X86::COND_NO: return X86::JNO_1; 3771 } 3772 } 3773 3774 /// Return the inverse of the specified condition, 3775 /// e.g. turning COND_E to COND_NE. 3776 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { 3777 switch (CC) { 3778 default: llvm_unreachable("Illegal condition code!"); 3779 case X86::COND_E: return X86::COND_NE; 3780 case X86::COND_NE: return X86::COND_E; 3781 case X86::COND_L: return X86::COND_GE; 3782 case X86::COND_LE: return X86::COND_G; 3783 case X86::COND_G: return X86::COND_LE; 3784 case X86::COND_GE: return X86::COND_L; 3785 case X86::COND_B: return X86::COND_AE; 3786 case X86::COND_BE: return X86::COND_A; 3787 case X86::COND_A: return X86::COND_BE; 3788 case X86::COND_AE: return X86::COND_B; 3789 case X86::COND_S: return X86::COND_NS; 3790 case X86::COND_NS: return X86::COND_S; 3791 case X86::COND_P: return X86::COND_NP; 3792 case X86::COND_NP: return X86::COND_P; 3793 case X86::COND_O: return X86::COND_NO; 3794 case X86::COND_NO: return X86::COND_O; 3795 } 3796 } 3797 3798 /// Assuming the flags are set by MI(a,b), return the condition code if we 3799 /// modify the instructions such that flags are set by MI(b,a). 3800 static X86::CondCode getSwappedCondition(X86::CondCode CC) { 3801 switch (CC) { 3802 default: return X86::COND_INVALID; 3803 case X86::COND_E: return X86::COND_E; 3804 case X86::COND_NE: return X86::COND_NE; 3805 case X86::COND_L: return X86::COND_G; 3806 case X86::COND_LE: return X86::COND_GE; 3807 case X86::COND_G: return X86::COND_L; 3808 case X86::COND_GE: return X86::COND_LE; 3809 case X86::COND_B: return X86::COND_A; 3810 case X86::COND_BE: return X86::COND_AE; 3811 case X86::COND_A: return X86::COND_B; 3812 case X86::COND_AE: return X86::COND_BE; 3813 } 3814 } 3815 3816 /// Return a set opcode for the given condition and 3817 /// whether it has memory operand. 3818 unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) { 3819 static const uint16_t Opc[16][2] = { 3820 { X86::SETAr, X86::SETAm }, 3821 { X86::SETAEr, X86::SETAEm }, 3822 { X86::SETBr, X86::SETBm }, 3823 { X86::SETBEr, X86::SETBEm }, 3824 { X86::SETEr, X86::SETEm }, 3825 { X86::SETGr, X86::SETGm }, 3826 { X86::SETGEr, X86::SETGEm }, 3827 { X86::SETLr, X86::SETLm }, 3828 { X86::SETLEr, X86::SETLEm }, 3829 { X86::SETNEr, X86::SETNEm }, 3830 { X86::SETNOr, X86::SETNOm }, 3831 { X86::SETNPr, X86::SETNPm }, 3832 { X86::SETNSr, X86::SETNSm }, 3833 { X86::SETOr, X86::SETOm }, 3834 { X86::SETPr, X86::SETPm }, 3835 { X86::SETSr, X86::SETSm } 3836 }; 3837 3838 assert(CC <= LAST_VALID_COND && "Can only handle standard cond codes"); 3839 return Opc[CC][HasMemoryOperand ? 1 : 0]; 3840 } 3841 3842 /// Return a cmov opcode for the given condition, 3843 /// register size in bytes, and operand type. 3844 unsigned X86::getCMovFromCond(CondCode CC, unsigned RegBytes, 3845 bool HasMemoryOperand) { 3846 static const uint16_t Opc[32][3] = { 3847 { X86::CMOVA16rr, X86::CMOVA32rr, X86::CMOVA64rr }, 3848 { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr }, 3849 { X86::CMOVB16rr, X86::CMOVB32rr, X86::CMOVB64rr }, 3850 { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr }, 3851 { X86::CMOVE16rr, X86::CMOVE32rr, X86::CMOVE64rr }, 3852 { X86::CMOVG16rr, X86::CMOVG32rr, X86::CMOVG64rr }, 3853 { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr }, 3854 { X86::CMOVL16rr, X86::CMOVL32rr, X86::CMOVL64rr }, 3855 { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr }, 3856 { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr }, 3857 { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr }, 3858 { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr }, 3859 { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr }, 3860 { X86::CMOVO16rr, X86::CMOVO32rr, X86::CMOVO64rr }, 3861 { X86::CMOVP16rr, X86::CMOVP32rr, X86::CMOVP64rr }, 3862 { X86::CMOVS16rr, X86::CMOVS32rr, X86::CMOVS64rr }, 3863 { X86::CMOVA16rm, X86::CMOVA32rm, X86::CMOVA64rm }, 3864 { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm }, 3865 { X86::CMOVB16rm, X86::CMOVB32rm, X86::CMOVB64rm }, 3866 { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm }, 3867 { X86::CMOVE16rm, X86::CMOVE32rm, X86::CMOVE64rm }, 3868 { X86::CMOVG16rm, X86::CMOVG32rm, X86::CMOVG64rm }, 3869 { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm }, 3870 { X86::CMOVL16rm, X86::CMOVL32rm, X86::CMOVL64rm }, 3871 { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm }, 3872 { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm }, 3873 { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm }, 3874 { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm }, 3875 { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm }, 3876 { X86::CMOVO16rm, X86::CMOVO32rm, X86::CMOVO64rm }, 3877 { X86::CMOVP16rm, X86::CMOVP32rm, X86::CMOVP64rm }, 3878 { X86::CMOVS16rm, X86::CMOVS32rm, X86::CMOVS64rm } 3879 }; 3880 3881 assert(CC < 16 && "Can only handle standard cond codes"); 3882 unsigned Idx = HasMemoryOperand ? 16+CC : CC; 3883 switch(RegBytes) { 3884 default: llvm_unreachable("Illegal register size!"); 3885 case 2: return Opc[Idx][0]; 3886 case 4: return Opc[Idx][1]; 3887 case 8: return Opc[Idx][2]; 3888 } 3889 } 3890 3891 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { 3892 if (!MI->isTerminator()) return false; 3893 3894 // Conditional branch is a special case. 3895 if (MI->isBranch() && !MI->isBarrier()) 3896 return true; 3897 if (!MI->isPredicable()) 3898 return true; 3899 return !isPredicated(MI); 3900 } 3901 3902 bool X86InstrInfo::AnalyzeBranchImpl( 3903 MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, 3904 SmallVectorImpl<MachineOperand> &Cond, 3905 SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const { 3906 3907 // Start from the bottom of the block and work up, examining the 3908 // terminator instructions. 3909 MachineBasicBlock::iterator I = MBB.end(); 3910 MachineBasicBlock::iterator UnCondBrIter = MBB.end(); 3911 while (I != MBB.begin()) { 3912 --I; 3913 if (I->isDebugValue()) 3914 continue; 3915 3916 // Working from the bottom, when we see a non-terminator instruction, we're 3917 // done. 3918 if (!isUnpredicatedTerminator(I)) 3919 break; 3920 3921 // A terminator that isn't a branch can't easily be handled by this 3922 // analysis. 3923 if (!I->isBranch()) 3924 return true; 3925 3926 // Handle unconditional branches. 3927 if (I->getOpcode() == X86::JMP_1) { 3928 UnCondBrIter = I; 3929 3930 if (!AllowModify) { 3931 TBB = I->getOperand(0).getMBB(); 3932 continue; 3933 } 3934 3935 // If the block has any instructions after a JMP, delete them. 3936 while (std::next(I) != MBB.end()) 3937 std::next(I)->eraseFromParent(); 3938 3939 Cond.clear(); 3940 FBB = nullptr; 3941 3942 // Delete the JMP if it's equivalent to a fall-through. 3943 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 3944 TBB = nullptr; 3945 I->eraseFromParent(); 3946 I = MBB.end(); 3947 UnCondBrIter = MBB.end(); 3948 continue; 3949 } 3950 3951 // TBB is used to indicate the unconditional destination. 3952 TBB = I->getOperand(0).getMBB(); 3953 continue; 3954 } 3955 3956 // Handle conditional branches. 3957 X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode()); 3958 if (BranchCode == X86::COND_INVALID) 3959 return true; // Can't handle indirect branch. 3960 3961 // Working from the bottom, handle the first conditional branch. 3962 if (Cond.empty()) { 3963 MachineBasicBlock *TargetBB = I->getOperand(0).getMBB(); 3964 if (AllowModify && UnCondBrIter != MBB.end() && 3965 MBB.isLayoutSuccessor(TargetBB)) { 3966 // If we can modify the code and it ends in something like: 3967 // 3968 // jCC L1 3969 // jmp L2 3970 // L1: 3971 // ... 3972 // L2: 3973 // 3974 // Then we can change this to: 3975 // 3976 // jnCC L2 3977 // L1: 3978 // ... 3979 // L2: 3980 // 3981 // Which is a bit more efficient. 3982 // We conditionally jump to the fall-through block. 3983 BranchCode = GetOppositeBranchCondition(BranchCode); 3984 unsigned JNCC = GetCondBranchFromCond(BranchCode); 3985 MachineBasicBlock::iterator OldInst = I; 3986 3987 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC)) 3988 .addMBB(UnCondBrIter->getOperand(0).getMBB()); 3989 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1)) 3990 .addMBB(TargetBB); 3991 3992 OldInst->eraseFromParent(); 3993 UnCondBrIter->eraseFromParent(); 3994 3995 // Restart the analysis. 3996 UnCondBrIter = MBB.end(); 3997 I = MBB.end(); 3998 continue; 3999 } 4000 4001 FBB = TBB; 4002 TBB = I->getOperand(0).getMBB(); 4003 Cond.push_back(MachineOperand::CreateImm(BranchCode)); 4004 CondBranches.push_back(I); 4005 continue; 4006 } 4007 4008 // Handle subsequent conditional branches. Only handle the case where all 4009 // conditional branches branch to the same destination and their condition 4010 // opcodes fit one of the special multi-branch idioms. 4011 assert(Cond.size() == 1); 4012 assert(TBB); 4013 4014 // Only handle the case where all conditional branches branch to the same 4015 // destination. 4016 if (TBB != I->getOperand(0).getMBB()) 4017 return true; 4018 4019 // If the conditions are the same, we can leave them alone. 4020 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm(); 4021 if (OldBranchCode == BranchCode) 4022 continue; 4023 4024 // If they differ, see if they fit one of the known patterns. Theoretically, 4025 // we could handle more patterns here, but we shouldn't expect to see them 4026 // if instruction selection has done a reasonable job. 4027 if ((OldBranchCode == X86::COND_NP && 4028 BranchCode == X86::COND_E) || 4029 (OldBranchCode == X86::COND_E && 4030 BranchCode == X86::COND_NP)) 4031 BranchCode = X86::COND_NP_OR_E; 4032 else if ((OldBranchCode == X86::COND_P && 4033 BranchCode == X86::COND_NE) || 4034 (OldBranchCode == X86::COND_NE && 4035 BranchCode == X86::COND_P)) 4036 BranchCode = X86::COND_NE_OR_P; 4037 else 4038 return true; 4039 4040 // Update the MachineOperand. 4041 Cond[0].setImm(BranchCode); 4042 CondBranches.push_back(I); 4043 } 4044 4045 return false; 4046 } 4047 4048 bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, 4049 MachineBasicBlock *&TBB, 4050 MachineBasicBlock *&FBB, 4051 SmallVectorImpl<MachineOperand> &Cond, 4052 bool AllowModify) const { 4053 SmallVector<MachineInstr *, 4> CondBranches; 4054 return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify); 4055 } 4056 4057 bool X86InstrInfo::AnalyzeBranchPredicate(MachineBasicBlock &MBB, 4058 MachineBranchPredicate &MBP, 4059 bool AllowModify) const { 4060 using namespace std::placeholders; 4061 4062 SmallVector<MachineOperand, 4> Cond; 4063 SmallVector<MachineInstr *, 4> CondBranches; 4064 if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches, 4065 AllowModify)) 4066 return true; 4067 4068 if (Cond.size() != 1) 4069 return true; 4070 4071 assert(MBP.TrueDest && "expected!"); 4072 4073 if (!MBP.FalseDest) 4074 MBP.FalseDest = MBB.getNextNode(); 4075 4076 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4077 4078 MachineInstr *ConditionDef = nullptr; 4079 bool SingleUseCondition = true; 4080 4081 for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) { 4082 if (I->modifiesRegister(X86::EFLAGS, TRI)) { 4083 ConditionDef = &*I; 4084 break; 4085 } 4086 4087 if (I->readsRegister(X86::EFLAGS, TRI)) 4088 SingleUseCondition = false; 4089 } 4090 4091 if (!ConditionDef) 4092 return true; 4093 4094 if (SingleUseCondition) { 4095 for (auto *Succ : MBB.successors()) 4096 if (Succ->isLiveIn(X86::EFLAGS)) 4097 SingleUseCondition = false; 4098 } 4099 4100 MBP.ConditionDef = ConditionDef; 4101 MBP.SingleUseCondition = SingleUseCondition; 4102 4103 // Currently we only recognize the simple pattern: 4104 // 4105 // test %reg, %reg 4106 // je %label 4107 // 4108 const unsigned TestOpcode = 4109 Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr; 4110 4111 if (ConditionDef->getOpcode() == TestOpcode && 4112 ConditionDef->getNumOperands() == 3 && 4113 ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) && 4114 (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) { 4115 MBP.LHS = ConditionDef->getOperand(0); 4116 MBP.RHS = MachineOperand::CreateImm(0); 4117 MBP.Predicate = Cond[0].getImm() == X86::COND_NE 4118 ? MachineBranchPredicate::PRED_NE 4119 : MachineBranchPredicate::PRED_EQ; 4120 return false; 4121 } 4122 4123 return true; 4124 } 4125 4126 unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 4127 MachineBasicBlock::iterator I = MBB.end(); 4128 unsigned Count = 0; 4129 4130 while (I != MBB.begin()) { 4131 --I; 4132 if (I->isDebugValue()) 4133 continue; 4134 if (I->getOpcode() != X86::JMP_1 && 4135 getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID) 4136 break; 4137 // Remove the branch. 4138 I->eraseFromParent(); 4139 I = MBB.end(); 4140 ++Count; 4141 } 4142 4143 return Count; 4144 } 4145 4146 unsigned 4147 X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 4148 MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond, 4149 DebugLoc DL) const { 4150 // Shouldn't be a fall through. 4151 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 4152 assert((Cond.size() == 1 || Cond.size() == 0) && 4153 "X86 branch conditions have one component!"); 4154 4155 if (Cond.empty()) { 4156 // Unconditional branch? 4157 assert(!FBB && "Unconditional branch with multiple successors!"); 4158 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB); 4159 return 1; 4160 } 4161 4162 // Conditional branch. 4163 unsigned Count = 0; 4164 X86::CondCode CC = (X86::CondCode)Cond[0].getImm(); 4165 switch (CC) { 4166 case X86::COND_NP_OR_E: 4167 // Synthesize NP_OR_E with two branches. 4168 BuildMI(&MBB, DL, get(X86::JNP_1)).addMBB(TBB); 4169 ++Count; 4170 BuildMI(&MBB, DL, get(X86::JE_1)).addMBB(TBB); 4171 ++Count; 4172 break; 4173 case X86::COND_NE_OR_P: 4174 // Synthesize NE_OR_P with two branches. 4175 BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(TBB); 4176 ++Count; 4177 BuildMI(&MBB, DL, get(X86::JP_1)).addMBB(TBB); 4178 ++Count; 4179 break; 4180 default: { 4181 unsigned Opc = GetCondBranchFromCond(CC); 4182 BuildMI(&MBB, DL, get(Opc)).addMBB(TBB); 4183 ++Count; 4184 } 4185 } 4186 if (FBB) { 4187 // Two-way Conditional branch. Insert the second branch. 4188 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB); 4189 ++Count; 4190 } 4191 return Count; 4192 } 4193 4194 bool X86InstrInfo:: 4195 canInsertSelect(const MachineBasicBlock &MBB, 4196 ArrayRef<MachineOperand> Cond, 4197 unsigned TrueReg, unsigned FalseReg, 4198 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 4199 // Not all subtargets have cmov instructions. 4200 if (!Subtarget.hasCMov()) 4201 return false; 4202 if (Cond.size() != 1) 4203 return false; 4204 // We cannot do the composite conditions, at least not in SSA form. 4205 if ((X86::CondCode)Cond[0].getImm() > X86::COND_S) 4206 return false; 4207 4208 // Check register classes. 4209 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 4210 const TargetRegisterClass *RC = 4211 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 4212 if (!RC) 4213 return false; 4214 4215 // We have cmov instructions for 16, 32, and 64 bit general purpose registers. 4216 if (X86::GR16RegClass.hasSubClassEq(RC) || 4217 X86::GR32RegClass.hasSubClassEq(RC) || 4218 X86::GR64RegClass.hasSubClassEq(RC)) { 4219 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy 4220 // Bridge. Probably Ivy Bridge as well. 4221 CondCycles = 2; 4222 TrueCycles = 2; 4223 FalseCycles = 2; 4224 return true; 4225 } 4226 4227 // Can't do vectors. 4228 return false; 4229 } 4230 4231 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB, 4232 MachineBasicBlock::iterator I, DebugLoc DL, 4233 unsigned DstReg, ArrayRef<MachineOperand> Cond, 4234 unsigned TrueReg, unsigned FalseReg) const { 4235 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 4236 assert(Cond.size() == 1 && "Invalid Cond array"); 4237 unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(), 4238 MRI.getRegClass(DstReg)->getSize(), 4239 false/*HasMemoryOperand*/); 4240 BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg); 4241 } 4242 4243 /// Test if the given register is a physical h register. 4244 static bool isHReg(unsigned Reg) { 4245 return X86::GR8_ABCD_HRegClass.contains(Reg); 4246 } 4247 4248 // Try and copy between VR128/VR64 and GR64 registers. 4249 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg, 4250 const X86Subtarget &Subtarget) { 4251 4252 // SrcReg(VR128) -> DestReg(GR64) 4253 // SrcReg(VR64) -> DestReg(GR64) 4254 // SrcReg(GR64) -> DestReg(VR128) 4255 // SrcReg(GR64) -> DestReg(VR64) 4256 4257 bool HasAVX = Subtarget.hasAVX(); 4258 bool HasAVX512 = Subtarget.hasAVX512(); 4259 if (X86::GR64RegClass.contains(DestReg)) { 4260 if (X86::VR128XRegClass.contains(SrcReg)) 4261 // Copy from a VR128 register to a GR64 register. 4262 return HasAVX512 ? X86::VMOVPQIto64Zrr: (HasAVX ? X86::VMOVPQIto64rr : 4263 X86::MOVPQIto64rr); 4264 if (X86::VR64RegClass.contains(SrcReg)) 4265 // Copy from a VR64 register to a GR64 register. 4266 return X86::MMX_MOVD64from64rr; 4267 } else if (X86::GR64RegClass.contains(SrcReg)) { 4268 // Copy from a GR64 register to a VR128 register. 4269 if (X86::VR128XRegClass.contains(DestReg)) 4270 return HasAVX512 ? X86::VMOV64toPQIZrr: (HasAVX ? X86::VMOV64toPQIrr : 4271 X86::MOV64toPQIrr); 4272 // Copy from a GR64 register to a VR64 register. 4273 if (X86::VR64RegClass.contains(DestReg)) 4274 return X86::MMX_MOVD64to64rr; 4275 } 4276 4277 // SrcReg(FR32) -> DestReg(GR32) 4278 // SrcReg(GR32) -> DestReg(FR32) 4279 4280 if (X86::GR32RegClass.contains(DestReg) && X86::FR32XRegClass.contains(SrcReg)) 4281 // Copy from a FR32 register to a GR32 register. 4282 return HasAVX512 ? X86::VMOVSS2DIZrr : (HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr); 4283 4284 if (X86::FR32XRegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg)) 4285 // Copy from a GR32 register to a FR32 register. 4286 return HasAVX512 ? X86::VMOVDI2SSZrr : (HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr); 4287 return 0; 4288 } 4289 4290 static bool MaskRegClassContains(unsigned Reg) { 4291 return X86::VK8RegClass.contains(Reg) || 4292 X86::VK16RegClass.contains(Reg) || 4293 X86::VK32RegClass.contains(Reg) || 4294 X86::VK64RegClass.contains(Reg) || 4295 X86::VK1RegClass.contains(Reg); 4296 } 4297 4298 static bool GRRegClassContains(unsigned Reg) { 4299 return X86::GR64RegClass.contains(Reg) || 4300 X86::GR32RegClass.contains(Reg) || 4301 X86::GR16RegClass.contains(Reg) || 4302 X86::GR8RegClass.contains(Reg); 4303 } 4304 static 4305 unsigned copyPhysRegOpcode_AVX512_DQ(unsigned& DestReg, unsigned& SrcReg) { 4306 if (MaskRegClassContains(SrcReg) && X86::GR8RegClass.contains(DestReg)) { 4307 DestReg = getX86SubSuperRegister(DestReg, MVT::i32); 4308 return X86::KMOVBrk; 4309 } 4310 if (MaskRegClassContains(DestReg) && X86::GR8RegClass.contains(SrcReg)) { 4311 SrcReg = getX86SubSuperRegister(SrcReg, MVT::i32); 4312 return X86::KMOVBkr; 4313 } 4314 return 0; 4315 } 4316 4317 static 4318 unsigned copyPhysRegOpcode_AVX512_BW(unsigned& DestReg, unsigned& SrcReg) { 4319 if (MaskRegClassContains(SrcReg) && MaskRegClassContains(DestReg)) 4320 return X86::KMOVQkk; 4321 if (MaskRegClassContains(SrcReg) && X86::GR32RegClass.contains(DestReg)) 4322 return X86::KMOVDrk; 4323 if (MaskRegClassContains(SrcReg) && X86::GR64RegClass.contains(DestReg)) 4324 return X86::KMOVQrk; 4325 if (MaskRegClassContains(DestReg) && X86::GR32RegClass.contains(SrcReg)) 4326 return X86::KMOVDkr; 4327 if (MaskRegClassContains(DestReg) && X86::GR64RegClass.contains(SrcReg)) 4328 return X86::KMOVQkr; 4329 return 0; 4330 } 4331 4332 static 4333 unsigned copyPhysRegOpcode_AVX512(unsigned& DestReg, unsigned& SrcReg, 4334 const X86Subtarget &Subtarget) 4335 { 4336 if (Subtarget.hasDQI()) 4337 if (auto Opc = copyPhysRegOpcode_AVX512_DQ(DestReg, SrcReg)) 4338 return Opc; 4339 if (Subtarget.hasBWI()) 4340 if (auto Opc = copyPhysRegOpcode_AVX512_BW(DestReg, SrcReg)) 4341 return Opc; 4342 if (X86::VR128XRegClass.contains(DestReg, SrcReg) || 4343 X86::VR256XRegClass.contains(DestReg, SrcReg) || 4344 X86::VR512RegClass.contains(DestReg, SrcReg)) { 4345 DestReg = get512BitSuperRegister(DestReg); 4346 SrcReg = get512BitSuperRegister(SrcReg); 4347 return X86::VMOVAPSZrr; 4348 } 4349 if (MaskRegClassContains(DestReg) && MaskRegClassContains(SrcReg)) 4350 return X86::KMOVWkk; 4351 if (MaskRegClassContains(DestReg) && GRRegClassContains(SrcReg)) { 4352 SrcReg = getX86SubSuperRegister(SrcReg, MVT::i32); 4353 return X86::KMOVWkr; 4354 } 4355 if (GRRegClassContains(DestReg) && MaskRegClassContains(SrcReg)) { 4356 DestReg = getX86SubSuperRegister(DestReg, MVT::i32); 4357 return X86::KMOVWrk; 4358 } 4359 return 0; 4360 } 4361 4362 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB, 4363 MachineBasicBlock::iterator MI, DebugLoc DL, 4364 unsigned DestReg, unsigned SrcReg, 4365 bool KillSrc) const { 4366 // First deal with the normal symmetric copies. 4367 bool HasAVX = Subtarget.hasAVX(); 4368 bool HasAVX512 = Subtarget.hasAVX512(); 4369 unsigned Opc = 0; 4370 if (X86::GR64RegClass.contains(DestReg, SrcReg)) 4371 Opc = X86::MOV64rr; 4372 else if (X86::GR32RegClass.contains(DestReg, SrcReg)) 4373 Opc = X86::MOV32rr; 4374 else if (X86::GR16RegClass.contains(DestReg, SrcReg)) 4375 Opc = X86::MOV16rr; 4376 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) { 4377 // Copying to or from a physical H register on x86-64 requires a NOREX 4378 // move. Otherwise use a normal move. 4379 if ((isHReg(DestReg) || isHReg(SrcReg)) && 4380 Subtarget.is64Bit()) { 4381 Opc = X86::MOV8rr_NOREX; 4382 // Both operands must be encodable without an REX prefix. 4383 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) && 4384 "8-bit H register can not be copied outside GR8_NOREX"); 4385 } else 4386 Opc = X86::MOV8rr; 4387 } 4388 else if (X86::VR64RegClass.contains(DestReg, SrcReg)) 4389 Opc = X86::MMX_MOVQ64rr; 4390 else if (HasAVX512) 4391 Opc = copyPhysRegOpcode_AVX512(DestReg, SrcReg, Subtarget); 4392 else if (X86::VR128RegClass.contains(DestReg, SrcReg)) 4393 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr; 4394 else if (X86::VR256RegClass.contains(DestReg, SrcReg)) 4395 Opc = X86::VMOVAPSYrr; 4396 if (!Opc) 4397 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget); 4398 4399 if (Opc) { 4400 BuildMI(MBB, MI, DL, get(Opc), DestReg) 4401 .addReg(SrcReg, getKillRegState(KillSrc)); 4402 return; 4403 } 4404 4405 bool FromEFLAGS = SrcReg == X86::EFLAGS; 4406 bool ToEFLAGS = DestReg == X86::EFLAGS; 4407 int Reg = FromEFLAGS ? DestReg : SrcReg; 4408 bool is32 = X86::GR32RegClass.contains(Reg); 4409 bool is64 = X86::GR64RegClass.contains(Reg); 4410 4411 if ((FromEFLAGS || ToEFLAGS) && (is32 || is64)) { 4412 int Mov = is64 ? X86::MOV64rr : X86::MOV32rr; 4413 int Push = is64 ? X86::PUSH64r : X86::PUSH32r; 4414 int PushF = is64 ? X86::PUSHF64 : X86::PUSHF32; 4415 int Pop = is64 ? X86::POP64r : X86::POP32r; 4416 int PopF = is64 ? X86::POPF64 : X86::POPF32; 4417 int AX = is64 ? X86::RAX : X86::EAX; 4418 4419 if (!Subtarget.hasLAHFSAHF()) { 4420 assert(Subtarget.is64Bit() && 4421 "Not having LAHF/SAHF only happens on 64-bit."); 4422 // Moving EFLAGS to / from another register requires a push and a pop. 4423 // Notice that we have to adjust the stack if we don't want to clobber the 4424 // first frame index. See X86FrameLowering.cpp - clobbersTheStack. 4425 if (FromEFLAGS) { 4426 BuildMI(MBB, MI, DL, get(PushF)); 4427 BuildMI(MBB, MI, DL, get(Pop), DestReg); 4428 } 4429 if (ToEFLAGS) { 4430 BuildMI(MBB, MI, DL, get(Push)) 4431 .addReg(SrcReg, getKillRegState(KillSrc)); 4432 BuildMI(MBB, MI, DL, get(PopF)); 4433 } 4434 return; 4435 } 4436 4437 // The flags need to be saved, but saving EFLAGS with PUSHF/POPF is 4438 // inefficient. Instead: 4439 // - Save the overflow flag OF into AL using SETO, and restore it using a 4440 // signed 8-bit addition of AL and INT8_MAX. 4441 // - Save/restore the bottom 8 EFLAGS bits (CF, PF, AF, ZF, SF) to/from AH 4442 // using LAHF/SAHF. 4443 // - When RAX/EAX is live and isn't the destination register, make sure it 4444 // isn't clobbered by PUSH/POP'ing it before and after saving/restoring 4445 // the flags. 4446 // This approach is ~2.25x faster than using PUSHF/POPF. 4447 // 4448 // This is still somewhat inefficient because we don't know which flags are 4449 // actually live inside EFLAGS. Were we able to do a single SETcc instead of 4450 // SETO+LAHF / ADDB+SAHF the code could be 1.02x faster. 4451 // 4452 // PUSHF/POPF is also potentially incorrect because it affects other flags 4453 // such as TF/IF/DF, which LLVM doesn't model. 4454 // 4455 // Notice that we have to adjust the stack if we don't want to clobber the 4456 // first frame index. See X86FrameLowering.cpp - clobbersTheStack. 4457 4458 4459 bool AXDead = (Reg == AX) || 4460 (MachineBasicBlock::LQR_Dead == 4461 MBB.computeRegisterLiveness(&getRegisterInfo(), AX, MI)); 4462 if (!AXDead) { 4463 // FIXME: If computeRegisterLiveness() reported LQR_Unknown then AX may 4464 // actually be dead. This is not a problem for correctness as we are just 4465 // (unnecessarily) saving+restoring a dead register. However the 4466 // MachineVerifier expects operands that read from dead registers 4467 // to be marked with the "undef" flag. 4468 BuildMI(MBB, MI, DL, get(Push)).addReg(AX, getKillRegState(true)); 4469 } 4470 if (FromEFLAGS) { 4471 BuildMI(MBB, MI, DL, get(X86::SETOr), X86::AL); 4472 BuildMI(MBB, MI, DL, get(X86::LAHF)); 4473 BuildMI(MBB, MI, DL, get(Mov), Reg).addReg(AX); 4474 } 4475 if (ToEFLAGS) { 4476 BuildMI(MBB, MI, DL, get(Mov), AX).addReg(Reg, getKillRegState(KillSrc)); 4477 BuildMI(MBB, MI, DL, get(X86::ADD8ri), X86::AL) 4478 .addReg(X86::AL) 4479 .addImm(INT8_MAX); 4480 BuildMI(MBB, MI, DL, get(X86::SAHF)); 4481 } 4482 if (!AXDead) 4483 BuildMI(MBB, MI, DL, get(Pop), AX); 4484 return; 4485 } 4486 4487 DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) 4488 << " to " << RI.getName(DestReg) << '\n'); 4489 llvm_unreachable("Cannot emit physreg copy instruction"); 4490 } 4491 4492 static unsigned getLoadStoreRegOpcode(unsigned Reg, 4493 const TargetRegisterClass *RC, 4494 bool isStackAligned, 4495 const X86Subtarget &STI, 4496 bool load) { 4497 if (STI.hasAVX512()) { 4498 if (X86::VK8RegClass.hasSubClassEq(RC) || 4499 X86::VK16RegClass.hasSubClassEq(RC)) 4500 return load ? X86::KMOVWkm : X86::KMOVWmk; 4501 if (RC->getSize() == 4 && X86::FR32XRegClass.hasSubClassEq(RC)) 4502 return load ? X86::VMOVSSZrm : X86::VMOVSSZmr; 4503 if (RC->getSize() == 8 && X86::FR64XRegClass.hasSubClassEq(RC)) 4504 return load ? X86::VMOVSDZrm : X86::VMOVSDZmr; 4505 if (X86::VR512RegClass.hasSubClassEq(RC)) 4506 return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr; 4507 } 4508 4509 bool HasAVX = STI.hasAVX(); 4510 switch (RC->getSize()) { 4511 default: 4512 llvm_unreachable("Unknown spill size"); 4513 case 1: 4514 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass"); 4515 if (STI.is64Bit()) 4516 // Copying to or from a physical H register on x86-64 requires a NOREX 4517 // move. Otherwise use a normal move. 4518 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC)) 4519 return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX; 4520 return load ? X86::MOV8rm : X86::MOV8mr; 4521 case 2: 4522 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass"); 4523 return load ? X86::MOV16rm : X86::MOV16mr; 4524 case 4: 4525 if (X86::GR32RegClass.hasSubClassEq(RC)) 4526 return load ? X86::MOV32rm : X86::MOV32mr; 4527 if (X86::FR32RegClass.hasSubClassEq(RC)) 4528 return load ? 4529 (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) : 4530 (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr); 4531 if (X86::RFP32RegClass.hasSubClassEq(RC)) 4532 return load ? X86::LD_Fp32m : X86::ST_Fp32m; 4533 llvm_unreachable("Unknown 4-byte regclass"); 4534 case 8: 4535 if (X86::GR64RegClass.hasSubClassEq(RC)) 4536 return load ? X86::MOV64rm : X86::MOV64mr; 4537 if (X86::FR64RegClass.hasSubClassEq(RC)) 4538 return load ? 4539 (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) : 4540 (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr); 4541 if (X86::VR64RegClass.hasSubClassEq(RC)) 4542 return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr; 4543 if (X86::RFP64RegClass.hasSubClassEq(RC)) 4544 return load ? X86::LD_Fp64m : X86::ST_Fp64m; 4545 llvm_unreachable("Unknown 8-byte regclass"); 4546 case 10: 4547 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass"); 4548 return load ? X86::LD_Fp80m : X86::ST_FpP80m; 4549 case 16: { 4550 assert((X86::VR128RegClass.hasSubClassEq(RC) || 4551 X86::VR128XRegClass.hasSubClassEq(RC))&& "Unknown 16-byte regclass"); 4552 // If stack is realigned we can use aligned stores. 4553 if (isStackAligned) 4554 return load ? 4555 (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) : 4556 (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr); 4557 else 4558 return load ? 4559 (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) : 4560 (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr); 4561 } 4562 case 32: 4563 assert((X86::VR256RegClass.hasSubClassEq(RC) || 4564 X86::VR256XRegClass.hasSubClassEq(RC)) && "Unknown 32-byte regclass"); 4565 // If stack is realigned we can use aligned stores. 4566 if (isStackAligned) 4567 return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr; 4568 else 4569 return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr; 4570 case 64: 4571 assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass"); 4572 if (isStackAligned) 4573 return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr; 4574 else 4575 return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr; 4576 } 4577 } 4578 4579 bool X86InstrInfo::getMemOpBaseRegImmOfs(MachineInstr *MemOp, unsigned &BaseReg, 4580 unsigned &Offset, 4581 const TargetRegisterInfo *TRI) const { 4582 const MCInstrDesc &Desc = MemOp->getDesc(); 4583 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags, MemOp->getOpcode()); 4584 if (MemRefBegin < 0) 4585 return false; 4586 4587 MemRefBegin += X86II::getOperandBias(Desc); 4588 4589 BaseReg = MemOp->getOperand(MemRefBegin + X86::AddrBaseReg).getReg(); 4590 if (MemOp->getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1) 4591 return false; 4592 4593 if (MemOp->getOperand(MemRefBegin + X86::AddrIndexReg).getReg() != 4594 X86::NoRegister) 4595 return false; 4596 4597 const MachineOperand &DispMO = MemOp->getOperand(MemRefBegin + X86::AddrDisp); 4598 4599 // Displacement can be symbolic 4600 if (!DispMO.isImm()) 4601 return false; 4602 4603 Offset = DispMO.getImm(); 4604 4605 return (MemOp->getOperand(MemRefBegin + X86::AddrIndexReg).getReg() == 4606 X86::NoRegister); 4607 } 4608 4609 static unsigned getStoreRegOpcode(unsigned SrcReg, 4610 const TargetRegisterClass *RC, 4611 bool isStackAligned, 4612 const X86Subtarget &STI) { 4613 return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false); 4614 } 4615 4616 4617 static unsigned getLoadRegOpcode(unsigned DestReg, 4618 const TargetRegisterClass *RC, 4619 bool isStackAligned, 4620 const X86Subtarget &STI) { 4621 return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true); 4622 } 4623 4624 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 4625 MachineBasicBlock::iterator MI, 4626 unsigned SrcReg, bool isKill, int FrameIdx, 4627 const TargetRegisterClass *RC, 4628 const TargetRegisterInfo *TRI) const { 4629 const MachineFunction &MF = *MBB.getParent(); 4630 assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() && 4631 "Stack slot too small for store"); 4632 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16); 4633 bool isAligned = 4634 (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) || 4635 RI.canRealignStack(MF); 4636 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget); 4637 DebugLoc DL = MBB.findDebugLoc(MI); 4638 addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx) 4639 .addReg(SrcReg, getKillRegState(isKill)); 4640 } 4641 4642 void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg, 4643 bool isKill, 4644 SmallVectorImpl<MachineOperand> &Addr, 4645 const TargetRegisterClass *RC, 4646 MachineInstr::mmo_iterator MMOBegin, 4647 MachineInstr::mmo_iterator MMOEnd, 4648 SmallVectorImpl<MachineInstr*> &NewMIs) const { 4649 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16); 4650 bool isAligned = MMOBegin != MMOEnd && 4651 (*MMOBegin)->getAlignment() >= Alignment; 4652 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget); 4653 DebugLoc DL; 4654 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)); 4655 for (unsigned i = 0, e = Addr.size(); i != e; ++i) 4656 MIB.addOperand(Addr[i]); 4657 MIB.addReg(SrcReg, getKillRegState(isKill)); 4658 (*MIB).setMemRefs(MMOBegin, MMOEnd); 4659 NewMIs.push_back(MIB); 4660 } 4661 4662 4663 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 4664 MachineBasicBlock::iterator MI, 4665 unsigned DestReg, int FrameIdx, 4666 const TargetRegisterClass *RC, 4667 const TargetRegisterInfo *TRI) const { 4668 const MachineFunction &MF = *MBB.getParent(); 4669 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16); 4670 bool isAligned = 4671 (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) || 4672 RI.canRealignStack(MF); 4673 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget); 4674 DebugLoc DL = MBB.findDebugLoc(MI); 4675 addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx); 4676 } 4677 4678 void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, 4679 SmallVectorImpl<MachineOperand> &Addr, 4680 const TargetRegisterClass *RC, 4681 MachineInstr::mmo_iterator MMOBegin, 4682 MachineInstr::mmo_iterator MMOEnd, 4683 SmallVectorImpl<MachineInstr*> &NewMIs) const { 4684 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16); 4685 bool isAligned = MMOBegin != MMOEnd && 4686 (*MMOBegin)->getAlignment() >= Alignment; 4687 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget); 4688 DebugLoc DL; 4689 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg); 4690 for (unsigned i = 0, e = Addr.size(); i != e; ++i) 4691 MIB.addOperand(Addr[i]); 4692 (*MIB).setMemRefs(MMOBegin, MMOEnd); 4693 NewMIs.push_back(MIB); 4694 } 4695 4696 bool X86InstrInfo:: 4697 analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2, 4698 int &CmpMask, int &CmpValue) const { 4699 switch (MI->getOpcode()) { 4700 default: break; 4701 case X86::CMP64ri32: 4702 case X86::CMP64ri8: 4703 case X86::CMP32ri: 4704 case X86::CMP32ri8: 4705 case X86::CMP16ri: 4706 case X86::CMP16ri8: 4707 case X86::CMP8ri: 4708 SrcReg = MI->getOperand(0).getReg(); 4709 SrcReg2 = 0; 4710 CmpMask = ~0; 4711 CmpValue = MI->getOperand(1).getImm(); 4712 return true; 4713 // A SUB can be used to perform comparison. 4714 case X86::SUB64rm: 4715 case X86::SUB32rm: 4716 case X86::SUB16rm: 4717 case X86::SUB8rm: 4718 SrcReg = MI->getOperand(1).getReg(); 4719 SrcReg2 = 0; 4720 CmpMask = ~0; 4721 CmpValue = 0; 4722 return true; 4723 case X86::SUB64rr: 4724 case X86::SUB32rr: 4725 case X86::SUB16rr: 4726 case X86::SUB8rr: 4727 SrcReg = MI->getOperand(1).getReg(); 4728 SrcReg2 = MI->getOperand(2).getReg(); 4729 CmpMask = ~0; 4730 CmpValue = 0; 4731 return true; 4732 case X86::SUB64ri32: 4733 case X86::SUB64ri8: 4734 case X86::SUB32ri: 4735 case X86::SUB32ri8: 4736 case X86::SUB16ri: 4737 case X86::SUB16ri8: 4738 case X86::SUB8ri: 4739 SrcReg = MI->getOperand(1).getReg(); 4740 SrcReg2 = 0; 4741 CmpMask = ~0; 4742 CmpValue = MI->getOperand(2).getImm(); 4743 return true; 4744 case X86::CMP64rr: 4745 case X86::CMP32rr: 4746 case X86::CMP16rr: 4747 case X86::CMP8rr: 4748 SrcReg = MI->getOperand(0).getReg(); 4749 SrcReg2 = MI->getOperand(1).getReg(); 4750 CmpMask = ~0; 4751 CmpValue = 0; 4752 return true; 4753 case X86::TEST8rr: 4754 case X86::TEST16rr: 4755 case X86::TEST32rr: 4756 case X86::TEST64rr: 4757 SrcReg = MI->getOperand(0).getReg(); 4758 if (MI->getOperand(1).getReg() != SrcReg) return false; 4759 // Compare against zero. 4760 SrcReg2 = 0; 4761 CmpMask = ~0; 4762 CmpValue = 0; 4763 return true; 4764 } 4765 return false; 4766 } 4767 4768 /// Check whether the first instruction, whose only 4769 /// purpose is to update flags, can be made redundant. 4770 /// CMPrr can be made redundant by SUBrr if the operands are the same. 4771 /// This function can be extended later on. 4772 /// SrcReg, SrcRegs: register operands for FlagI. 4773 /// ImmValue: immediate for FlagI if it takes an immediate. 4774 inline static bool isRedundantFlagInstr(MachineInstr *FlagI, unsigned SrcReg, 4775 unsigned SrcReg2, int ImmValue, 4776 MachineInstr *OI) { 4777 if (((FlagI->getOpcode() == X86::CMP64rr && 4778 OI->getOpcode() == X86::SUB64rr) || 4779 (FlagI->getOpcode() == X86::CMP32rr && 4780 OI->getOpcode() == X86::SUB32rr)|| 4781 (FlagI->getOpcode() == X86::CMP16rr && 4782 OI->getOpcode() == X86::SUB16rr)|| 4783 (FlagI->getOpcode() == X86::CMP8rr && 4784 OI->getOpcode() == X86::SUB8rr)) && 4785 ((OI->getOperand(1).getReg() == SrcReg && 4786 OI->getOperand(2).getReg() == SrcReg2) || 4787 (OI->getOperand(1).getReg() == SrcReg2 && 4788 OI->getOperand(2).getReg() == SrcReg))) 4789 return true; 4790 4791 if (((FlagI->getOpcode() == X86::CMP64ri32 && 4792 OI->getOpcode() == X86::SUB64ri32) || 4793 (FlagI->getOpcode() == X86::CMP64ri8 && 4794 OI->getOpcode() == X86::SUB64ri8) || 4795 (FlagI->getOpcode() == X86::CMP32ri && 4796 OI->getOpcode() == X86::SUB32ri) || 4797 (FlagI->getOpcode() == X86::CMP32ri8 && 4798 OI->getOpcode() == X86::SUB32ri8) || 4799 (FlagI->getOpcode() == X86::CMP16ri && 4800 OI->getOpcode() == X86::SUB16ri) || 4801 (FlagI->getOpcode() == X86::CMP16ri8 && 4802 OI->getOpcode() == X86::SUB16ri8) || 4803 (FlagI->getOpcode() == X86::CMP8ri && 4804 OI->getOpcode() == X86::SUB8ri)) && 4805 OI->getOperand(1).getReg() == SrcReg && 4806 OI->getOperand(2).getImm() == ImmValue) 4807 return true; 4808 return false; 4809 } 4810 4811 /// Check whether the definition can be converted 4812 /// to remove a comparison against zero. 4813 inline static bool isDefConvertible(MachineInstr *MI) { 4814 switch (MI->getOpcode()) { 4815 default: return false; 4816 4817 // The shift instructions only modify ZF if their shift count is non-zero. 4818 // N.B.: The processor truncates the shift count depending on the encoding. 4819 case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri: 4820 case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri: 4821 return getTruncatedShiftCount(MI, 2) != 0; 4822 4823 // Some left shift instructions can be turned into LEA instructions but only 4824 // if their flags aren't used. Avoid transforming such instructions. 4825 case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{ 4826 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 4827 if (isTruncatedShiftCountForLEA(ShAmt)) return false; 4828 return ShAmt != 0; 4829 } 4830 4831 case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8: 4832 case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8: 4833 return getTruncatedShiftCount(MI, 3) != 0; 4834 4835 case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri: 4836 case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8: 4837 case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr: 4838 case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm: 4839 case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm: 4840 case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r: 4841 case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri: 4842 case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8: 4843 case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr: 4844 case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm: 4845 case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm: 4846 case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r: 4847 case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri: 4848 case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8: 4849 case X86::AND8ri: case X86::AND64rr: case X86::AND32rr: 4850 case X86::AND16rr: case X86::AND8rr: case X86::AND64rm: 4851 case X86::AND32rm: case X86::AND16rm: case X86::AND8rm: 4852 case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri: 4853 case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8: 4854 case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr: 4855 case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm: 4856 case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm: 4857 case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri: 4858 case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8: 4859 case X86::OR8ri: case X86::OR64rr: case X86::OR32rr: 4860 case X86::OR16rr: case X86::OR8rr: case X86::OR64rm: 4861 case X86::OR32rm: case X86::OR16rm: case X86::OR8rm: 4862 case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r: 4863 case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1: 4864 case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1: 4865 case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1: 4866 case X86::ADC32ri: case X86::ADC32ri8: 4867 case X86::ADC32rr: case X86::ADC64ri32: 4868 case X86::ADC64ri8: case X86::ADC64rr: 4869 case X86::SBB32ri: case X86::SBB32ri8: 4870 case X86::SBB32rr: case X86::SBB64ri32: 4871 case X86::SBB64ri8: case X86::SBB64rr: 4872 case X86::ANDN32rr: case X86::ANDN32rm: 4873 case X86::ANDN64rr: case X86::ANDN64rm: 4874 case X86::BEXTR32rr: case X86::BEXTR64rr: 4875 case X86::BEXTR32rm: case X86::BEXTR64rm: 4876 case X86::BLSI32rr: case X86::BLSI32rm: 4877 case X86::BLSI64rr: case X86::BLSI64rm: 4878 case X86::BLSMSK32rr:case X86::BLSMSK32rm: 4879 case X86::BLSMSK64rr:case X86::BLSMSK64rm: 4880 case X86::BLSR32rr: case X86::BLSR32rm: 4881 case X86::BLSR64rr: case X86::BLSR64rm: 4882 case X86::BZHI32rr: case X86::BZHI32rm: 4883 case X86::BZHI64rr: case X86::BZHI64rm: 4884 case X86::LZCNT16rr: case X86::LZCNT16rm: 4885 case X86::LZCNT32rr: case X86::LZCNT32rm: 4886 case X86::LZCNT64rr: case X86::LZCNT64rm: 4887 case X86::POPCNT16rr:case X86::POPCNT16rm: 4888 case X86::POPCNT32rr:case X86::POPCNT32rm: 4889 case X86::POPCNT64rr:case X86::POPCNT64rm: 4890 case X86::TZCNT16rr: case X86::TZCNT16rm: 4891 case X86::TZCNT32rr: case X86::TZCNT32rm: 4892 case X86::TZCNT64rr: case X86::TZCNT64rm: 4893 return true; 4894 } 4895 } 4896 4897 /// Check whether the use can be converted to remove a comparison against zero. 4898 static X86::CondCode isUseDefConvertible(MachineInstr *MI) { 4899 switch (MI->getOpcode()) { 4900 default: return X86::COND_INVALID; 4901 case X86::LZCNT16rr: case X86::LZCNT16rm: 4902 case X86::LZCNT32rr: case X86::LZCNT32rm: 4903 case X86::LZCNT64rr: case X86::LZCNT64rm: 4904 return X86::COND_B; 4905 case X86::POPCNT16rr:case X86::POPCNT16rm: 4906 case X86::POPCNT32rr:case X86::POPCNT32rm: 4907 case X86::POPCNT64rr:case X86::POPCNT64rm: 4908 return X86::COND_E; 4909 case X86::TZCNT16rr: case X86::TZCNT16rm: 4910 case X86::TZCNT32rr: case X86::TZCNT32rm: 4911 case X86::TZCNT64rr: case X86::TZCNT64rm: 4912 return X86::COND_B; 4913 } 4914 } 4915 4916 /// Check if there exists an earlier instruction that 4917 /// operates on the same source operands and sets flags in the same way as 4918 /// Compare; remove Compare if possible. 4919 bool X86InstrInfo:: 4920 optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2, 4921 int CmpMask, int CmpValue, 4922 const MachineRegisterInfo *MRI) const { 4923 // Check whether we can replace SUB with CMP. 4924 unsigned NewOpcode = 0; 4925 switch (CmpInstr->getOpcode()) { 4926 default: break; 4927 case X86::SUB64ri32: 4928 case X86::SUB64ri8: 4929 case X86::SUB32ri: 4930 case X86::SUB32ri8: 4931 case X86::SUB16ri: 4932 case X86::SUB16ri8: 4933 case X86::SUB8ri: 4934 case X86::SUB64rm: 4935 case X86::SUB32rm: 4936 case X86::SUB16rm: 4937 case X86::SUB8rm: 4938 case X86::SUB64rr: 4939 case X86::SUB32rr: 4940 case X86::SUB16rr: 4941 case X86::SUB8rr: { 4942 if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg())) 4943 return false; 4944 // There is no use of the destination register, we can replace SUB with CMP. 4945 switch (CmpInstr->getOpcode()) { 4946 default: llvm_unreachable("Unreachable!"); 4947 case X86::SUB64rm: NewOpcode = X86::CMP64rm; break; 4948 case X86::SUB32rm: NewOpcode = X86::CMP32rm; break; 4949 case X86::SUB16rm: NewOpcode = X86::CMP16rm; break; 4950 case X86::SUB8rm: NewOpcode = X86::CMP8rm; break; 4951 case X86::SUB64rr: NewOpcode = X86::CMP64rr; break; 4952 case X86::SUB32rr: NewOpcode = X86::CMP32rr; break; 4953 case X86::SUB16rr: NewOpcode = X86::CMP16rr; break; 4954 case X86::SUB8rr: NewOpcode = X86::CMP8rr; break; 4955 case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break; 4956 case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break; 4957 case X86::SUB32ri: NewOpcode = X86::CMP32ri; break; 4958 case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break; 4959 case X86::SUB16ri: NewOpcode = X86::CMP16ri; break; 4960 case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break; 4961 case X86::SUB8ri: NewOpcode = X86::CMP8ri; break; 4962 } 4963 CmpInstr->setDesc(get(NewOpcode)); 4964 CmpInstr->RemoveOperand(0); 4965 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri. 4966 if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm || 4967 NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm) 4968 return false; 4969 } 4970 } 4971 4972 // Get the unique definition of SrcReg. 4973 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 4974 if (!MI) return false; 4975 4976 // CmpInstr is the first instruction of the BB. 4977 MachineBasicBlock::iterator I = CmpInstr, Def = MI; 4978 4979 // If we are comparing against zero, check whether we can use MI to update 4980 // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize. 4981 bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0); 4982 if (IsCmpZero && MI->getParent() != CmpInstr->getParent()) 4983 return false; 4984 4985 // If we have a use of the source register between the def and our compare 4986 // instruction we can eliminate the compare iff the use sets EFLAGS in the 4987 // right way. 4988 bool ShouldUpdateCC = false; 4989 X86::CondCode NewCC = X86::COND_INVALID; 4990 if (IsCmpZero && !isDefConvertible(MI)) { 4991 // Scan forward from the use until we hit the use we're looking for or the 4992 // compare instruction. 4993 for (MachineBasicBlock::iterator J = MI;; ++J) { 4994 // Do we have a convertible instruction? 4995 NewCC = isUseDefConvertible(J); 4996 if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() && 4997 J->getOperand(1).getReg() == SrcReg) { 4998 assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!"); 4999 ShouldUpdateCC = true; // Update CC later on. 5000 // This is not a def of SrcReg, but still a def of EFLAGS. Keep going 5001 // with the new def. 5002 MI = Def = J; 5003 break; 5004 } 5005 5006 if (J == I) 5007 return false; 5008 } 5009 } 5010 5011 // We are searching for an earlier instruction that can make CmpInstr 5012 // redundant and that instruction will be saved in Sub. 5013 MachineInstr *Sub = nullptr; 5014 const TargetRegisterInfo *TRI = &getRegisterInfo(); 5015 5016 // We iterate backward, starting from the instruction before CmpInstr and 5017 // stop when reaching the definition of a source register or done with the BB. 5018 // RI points to the instruction before CmpInstr. 5019 // If the definition is in this basic block, RE points to the definition; 5020 // otherwise, RE is the rend of the basic block. 5021 MachineBasicBlock::reverse_iterator 5022 RI = MachineBasicBlock::reverse_iterator(I), 5023 RE = CmpInstr->getParent() == MI->getParent() ? 5024 MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ : 5025 CmpInstr->getParent()->rend(); 5026 MachineInstr *Movr0Inst = nullptr; 5027 for (; RI != RE; ++RI) { 5028 MachineInstr *Instr = &*RI; 5029 // Check whether CmpInstr can be made redundant by the current instruction. 5030 if (!IsCmpZero && 5031 isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) { 5032 Sub = Instr; 5033 break; 5034 } 5035 5036 if (Instr->modifiesRegister(X86::EFLAGS, TRI) || 5037 Instr->readsRegister(X86::EFLAGS, TRI)) { 5038 // This instruction modifies or uses EFLAGS. 5039 5040 // MOV32r0 etc. are implemented with xor which clobbers condition code. 5041 // They are safe to move up, if the definition to EFLAGS is dead and 5042 // earlier instructions do not read or write EFLAGS. 5043 if (!Movr0Inst && Instr->getOpcode() == X86::MOV32r0 && 5044 Instr->registerDefIsDead(X86::EFLAGS, TRI)) { 5045 Movr0Inst = Instr; 5046 continue; 5047 } 5048 5049 // We can't remove CmpInstr. 5050 return false; 5051 } 5052 } 5053 5054 // Return false if no candidates exist. 5055 if (!IsCmpZero && !Sub) 5056 return false; 5057 5058 bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 5059 Sub->getOperand(2).getReg() == SrcReg); 5060 5061 // Scan forward from the instruction after CmpInstr for uses of EFLAGS. 5062 // It is safe to remove CmpInstr if EFLAGS is redefined or killed. 5063 // If we are done with the basic block, we need to check whether EFLAGS is 5064 // live-out. 5065 bool IsSafe = false; 5066 SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate; 5067 MachineBasicBlock::iterator E = CmpInstr->getParent()->end(); 5068 for (++I; I != E; ++I) { 5069 const MachineInstr &Instr = *I; 5070 bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI); 5071 bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI); 5072 // We should check the usage if this instruction uses and updates EFLAGS. 5073 if (!UseEFLAGS && ModifyEFLAGS) { 5074 // It is safe to remove CmpInstr if EFLAGS is updated again. 5075 IsSafe = true; 5076 break; 5077 } 5078 if (!UseEFLAGS && !ModifyEFLAGS) 5079 continue; 5080 5081 // EFLAGS is used by this instruction. 5082 X86::CondCode OldCC = X86::COND_INVALID; 5083 bool OpcIsSET = false; 5084 if (IsCmpZero || IsSwapped) { 5085 // We decode the condition code from opcode. 5086 if (Instr.isBranch()) 5087 OldCC = getCondFromBranchOpc(Instr.getOpcode()); 5088 else { 5089 OldCC = getCondFromSETOpc(Instr.getOpcode()); 5090 if (OldCC != X86::COND_INVALID) 5091 OpcIsSET = true; 5092 else 5093 OldCC = X86::getCondFromCMovOpc(Instr.getOpcode()); 5094 } 5095 if (OldCC == X86::COND_INVALID) return false; 5096 } 5097 if (IsCmpZero) { 5098 switch (OldCC) { 5099 default: break; 5100 case X86::COND_A: case X86::COND_AE: 5101 case X86::COND_B: case X86::COND_BE: 5102 case X86::COND_G: case X86::COND_GE: 5103 case X86::COND_L: case X86::COND_LE: 5104 case X86::COND_O: case X86::COND_NO: 5105 // CF and OF are used, we can't perform this optimization. 5106 return false; 5107 } 5108 5109 // If we're updating the condition code check if we have to reverse the 5110 // condition. 5111 if (ShouldUpdateCC) 5112 switch (OldCC) { 5113 default: 5114 return false; 5115 case X86::COND_E: 5116 break; 5117 case X86::COND_NE: 5118 NewCC = GetOppositeBranchCondition(NewCC); 5119 break; 5120 } 5121 } else if (IsSwapped) { 5122 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs 5123 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 5124 // We swap the condition code and synthesize the new opcode. 5125 NewCC = getSwappedCondition(OldCC); 5126 if (NewCC == X86::COND_INVALID) return false; 5127 } 5128 5129 if ((ShouldUpdateCC || IsSwapped) && NewCC != OldCC) { 5130 // Synthesize the new opcode. 5131 bool HasMemoryOperand = Instr.hasOneMemOperand(); 5132 unsigned NewOpc; 5133 if (Instr.isBranch()) 5134 NewOpc = GetCondBranchFromCond(NewCC); 5135 else if(OpcIsSET) 5136 NewOpc = getSETFromCond(NewCC, HasMemoryOperand); 5137 else { 5138 unsigned DstReg = Instr.getOperand(0).getReg(); 5139 NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(), 5140 HasMemoryOperand); 5141 } 5142 5143 // Push the MachineInstr to OpsToUpdate. 5144 // If it is safe to remove CmpInstr, the condition code of these 5145 // instructions will be modified. 5146 OpsToUpdate.push_back(std::make_pair(&*I, NewOpc)); 5147 } 5148 if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) { 5149 // It is safe to remove CmpInstr if EFLAGS is updated again or killed. 5150 IsSafe = true; 5151 break; 5152 } 5153 } 5154 5155 // If EFLAGS is not killed nor re-defined, we should check whether it is 5156 // live-out. If it is live-out, do not optimize. 5157 if ((IsCmpZero || IsSwapped) && !IsSafe) { 5158 MachineBasicBlock *MBB = CmpInstr->getParent(); 5159 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), 5160 SE = MBB->succ_end(); SI != SE; ++SI) 5161 if ((*SI)->isLiveIn(X86::EFLAGS)) 5162 return false; 5163 } 5164 5165 // The instruction to be updated is either Sub or MI. 5166 Sub = IsCmpZero ? MI : Sub; 5167 // Move Movr0Inst to the appropriate place before Sub. 5168 if (Movr0Inst) { 5169 // Look backwards until we find a def that doesn't use the current EFLAGS. 5170 Def = Sub; 5171 MachineBasicBlock::reverse_iterator 5172 InsertI = MachineBasicBlock::reverse_iterator(++Def), 5173 InsertE = Sub->getParent()->rend(); 5174 for (; InsertI != InsertE; ++InsertI) { 5175 MachineInstr *Instr = &*InsertI; 5176 if (!Instr->readsRegister(X86::EFLAGS, TRI) && 5177 Instr->modifiesRegister(X86::EFLAGS, TRI)) { 5178 Sub->getParent()->remove(Movr0Inst); 5179 Instr->getParent()->insert(MachineBasicBlock::iterator(Instr), 5180 Movr0Inst); 5181 break; 5182 } 5183 } 5184 if (InsertI == InsertE) 5185 return false; 5186 } 5187 5188 // Make sure Sub instruction defines EFLAGS and mark the def live. 5189 unsigned i = 0, e = Sub->getNumOperands(); 5190 for (; i != e; ++i) { 5191 MachineOperand &MO = Sub->getOperand(i); 5192 if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) { 5193 MO.setIsDead(false); 5194 break; 5195 } 5196 } 5197 assert(i != e && "Unable to locate a def EFLAGS operand"); 5198 5199 CmpInstr->eraseFromParent(); 5200 5201 // Modify the condition code of instructions in OpsToUpdate. 5202 for (unsigned i = 0, e = OpsToUpdate.size(); i < e; i++) 5203 OpsToUpdate[i].first->setDesc(get(OpsToUpdate[i].second)); 5204 return true; 5205 } 5206 5207 /// Try to remove the load by folding it to a register 5208 /// operand at the use. We fold the load instructions if load defines a virtual 5209 /// register, the virtual register is used once in the same BB, and the 5210 /// instructions in-between do not load or store, and have no side effects. 5211 MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr *MI, 5212 const MachineRegisterInfo *MRI, 5213 unsigned &FoldAsLoadDefReg, 5214 MachineInstr *&DefMI) const { 5215 if (FoldAsLoadDefReg == 0) 5216 return nullptr; 5217 // To be conservative, if there exists another load, clear the load candidate. 5218 if (MI->mayLoad()) { 5219 FoldAsLoadDefReg = 0; 5220 return nullptr; 5221 } 5222 5223 // Check whether we can move DefMI here. 5224 DefMI = MRI->getVRegDef(FoldAsLoadDefReg); 5225 assert(DefMI); 5226 bool SawStore = false; 5227 if (!DefMI->isSafeToMove(nullptr, SawStore)) 5228 return nullptr; 5229 5230 // Collect information about virtual register operands of MI. 5231 unsigned SrcOperandId = 0; 5232 bool FoundSrcOperand = false; 5233 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 5234 MachineOperand &MO = MI->getOperand(i); 5235 if (!MO.isReg()) 5236 continue; 5237 unsigned Reg = MO.getReg(); 5238 if (Reg != FoldAsLoadDefReg) 5239 continue; 5240 // Do not fold if we have a subreg use or a def or multiple uses. 5241 if (MO.getSubReg() || MO.isDef() || FoundSrcOperand) 5242 return nullptr; 5243 5244 SrcOperandId = i; 5245 FoundSrcOperand = true; 5246 } 5247 if (!FoundSrcOperand) 5248 return nullptr; 5249 5250 // Check whether we can fold the def into SrcOperandId. 5251 MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandId, DefMI); 5252 if (FoldMI) { 5253 FoldAsLoadDefReg = 0; 5254 return FoldMI; 5255 } 5256 5257 return nullptr; 5258 } 5259 5260 /// Expand a single-def pseudo instruction to a two-addr 5261 /// instruction with two undef reads of the register being defined. 5262 /// This is used for mapping: 5263 /// %xmm4 = V_SET0 5264 /// to: 5265 /// %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef> 5266 /// 5267 static bool Expand2AddrUndef(MachineInstrBuilder &MIB, 5268 const MCInstrDesc &Desc) { 5269 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); 5270 unsigned Reg = MIB->getOperand(0).getReg(); 5271 MIB->setDesc(Desc); 5272 5273 // MachineInstr::addOperand() will insert explicit operands before any 5274 // implicit operands. 5275 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); 5276 // But we don't trust that. 5277 assert(MIB->getOperand(1).getReg() == Reg && 5278 MIB->getOperand(2).getReg() == Reg && "Misplaced operand"); 5279 return true; 5280 } 5281 5282 static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII, 5283 bool MinusOne) { 5284 MachineBasicBlock &MBB = *MIB->getParent(); 5285 DebugLoc DL = MIB->getDebugLoc(); 5286 unsigned Reg = MIB->getOperand(0).getReg(); 5287 5288 // Insert the XOR. 5289 BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg) 5290 .addReg(Reg, RegState::Undef) 5291 .addReg(Reg, RegState::Undef); 5292 5293 // Turn the pseudo into an INC or DEC. 5294 MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r)); 5295 MIB.addReg(Reg); 5296 5297 return true; 5298 } 5299 5300 bool X86InstrInfo::ExpandMOVImmSExti8(MachineInstrBuilder &MIB) const { 5301 MachineBasicBlock &MBB = *MIB->getParent(); 5302 DebugLoc DL = MIB->getDebugLoc(); 5303 int64_t Imm = MIB->getOperand(1).getImm(); 5304 assert(Imm != 0 && "Using push/pop for 0 is not efficient."); 5305 MachineBasicBlock::iterator I = MIB.getInstr(); 5306 5307 int StackAdjustment; 5308 5309 if (Subtarget.is64Bit()) { 5310 assert(MIB->getOpcode() == X86::MOV64ImmSExti8 || 5311 MIB->getOpcode() == X86::MOV32ImmSExti8); 5312 // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and 5313 // widen the register if necessary. 5314 StackAdjustment = 8; 5315 BuildMI(MBB, I, DL, get(X86::PUSH64i8)).addImm(Imm); 5316 MIB->setDesc(get(X86::POP64r)); 5317 MIB->getOperand(0) 5318 .setReg(getX86SubSuperRegister(MIB->getOperand(0).getReg(), MVT::i64)); 5319 } else { 5320 assert(MIB->getOpcode() == X86::MOV32ImmSExti8); 5321 StackAdjustment = 4; 5322 BuildMI(MBB, I, DL, get(X86::PUSH32i8)).addImm(Imm); 5323 MIB->setDesc(get(X86::POP32r)); 5324 } 5325 5326 // Build CFI if necessary. 5327 MachineFunction &MF = *MBB.getParent(); 5328 const X86FrameLowering *TFL = Subtarget.getFrameLowering(); 5329 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 5330 bool NeedsDwarfCFI = 5331 !IsWin64Prologue && 5332 (MF.getMMI().hasDebugInfo() || MF.getFunction()->needsUnwindTableEntry()); 5333 bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI; 5334 if (EmitCFI) { 5335 TFL->BuildCFI(MBB, I, DL, 5336 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment)); 5337 TFL->BuildCFI(MBB, std::next(I), DL, 5338 MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment)); 5339 } 5340 5341 return true; 5342 } 5343 5344 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different 5345 // code sequence is needed for other targets. 5346 static void expandLoadStackGuard(MachineInstrBuilder &MIB, 5347 const TargetInstrInfo &TII) { 5348 MachineBasicBlock &MBB = *MIB->getParent(); 5349 DebugLoc DL = MIB->getDebugLoc(); 5350 unsigned Reg = MIB->getOperand(0).getReg(); 5351 const GlobalValue *GV = 5352 cast<GlobalValue>((*MIB->memoperands_begin())->getValue()); 5353 unsigned Flag = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant; 5354 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( 5355 MachinePointerInfo::getGOT(*MBB.getParent()), Flag, 8, 8); 5356 MachineBasicBlock::iterator I = MIB.getInstr(); 5357 5358 BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1) 5359 .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0) 5360 .addMemOperand(MMO); 5361 MIB->setDebugLoc(DL); 5362 MIB->setDesc(TII.get(X86::MOV64rm)); 5363 MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0); 5364 } 5365 5366 bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { 5367 bool HasAVX = Subtarget.hasAVX(); 5368 MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI); 5369 switch (MI->getOpcode()) { 5370 case X86::MOV32r0: 5371 return Expand2AddrUndef(MIB, get(X86::XOR32rr)); 5372 case X86::MOV32r1: 5373 return expandMOV32r1(MIB, *this, /*MinusOne=*/ false); 5374 case X86::MOV32r_1: 5375 return expandMOV32r1(MIB, *this, /*MinusOne=*/ true); 5376 case X86::MOV32ImmSExti8: 5377 case X86::MOV64ImmSExti8: 5378 return ExpandMOVImmSExti8(MIB); 5379 case X86::SETB_C8r: 5380 return Expand2AddrUndef(MIB, get(X86::SBB8rr)); 5381 case X86::SETB_C16r: 5382 return Expand2AddrUndef(MIB, get(X86::SBB16rr)); 5383 case X86::SETB_C32r: 5384 return Expand2AddrUndef(MIB, get(X86::SBB32rr)); 5385 case X86::SETB_C64r: 5386 return Expand2AddrUndef(MIB, get(X86::SBB64rr)); 5387 case X86::V_SET0: 5388 case X86::FsFLD0SS: 5389 case X86::FsFLD0SD: 5390 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr)); 5391 case X86::AVX_SET0: 5392 assert(HasAVX && "AVX not supported"); 5393 return Expand2AddrUndef(MIB, get(X86::VXORPSYrr)); 5394 case X86::AVX512_512_SET0: 5395 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); 5396 case X86::V_SETALLONES: 5397 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr)); 5398 case X86::AVX2_SETALLONES: 5399 return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr)); 5400 case X86::TEST8ri_NOREX: 5401 MI->setDesc(get(X86::TEST8ri)); 5402 return true; 5403 case X86::KSET0B: 5404 case X86::KSET0W: return Expand2AddrUndef(MIB, get(X86::KXORWrr)); 5405 case X86::KSET0D: return Expand2AddrUndef(MIB, get(X86::KXORDrr)); 5406 case X86::KSET0Q: return Expand2AddrUndef(MIB, get(X86::KXORQrr)); 5407 case X86::KSET1B: 5408 case X86::KSET1W: return Expand2AddrUndef(MIB, get(X86::KXNORWrr)); 5409 case X86::KSET1D: return Expand2AddrUndef(MIB, get(X86::KXNORDrr)); 5410 case X86::KSET1Q: return Expand2AddrUndef(MIB, get(X86::KXNORQrr)); 5411 case TargetOpcode::LOAD_STACK_GUARD: 5412 expandLoadStackGuard(MIB, *this); 5413 return true; 5414 } 5415 return false; 5416 } 5417 5418 static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs, 5419 int PtrOffset = 0) { 5420 unsigned NumAddrOps = MOs.size(); 5421 5422 if (NumAddrOps < 4) { 5423 // FrameIndex only - add an immediate offset (whether its zero or not). 5424 for (unsigned i = 0; i != NumAddrOps; ++i) 5425 MIB.addOperand(MOs[i]); 5426 addOffset(MIB, PtrOffset); 5427 } else { 5428 // General Memory Addressing - we need to add any offset to an existing 5429 // offset. 5430 assert(MOs.size() == 5 && "Unexpected memory operand list length"); 5431 for (unsigned i = 0; i != NumAddrOps; ++i) { 5432 const MachineOperand &MO = MOs[i]; 5433 if (i == 3 && PtrOffset != 0) { 5434 MIB.addDisp(MO, PtrOffset); 5435 } else { 5436 MIB.addOperand(MO); 5437 } 5438 } 5439 } 5440 } 5441 5442 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, 5443 ArrayRef<MachineOperand> MOs, 5444 MachineBasicBlock::iterator InsertPt, 5445 MachineInstr *MI, 5446 const TargetInstrInfo &TII) { 5447 // Create the base instruction with the memory operand as the first part. 5448 // Omit the implicit operands, something BuildMI can't do. 5449 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), 5450 MI->getDebugLoc(), true); 5451 MachineInstrBuilder MIB(MF, NewMI); 5452 addOperands(MIB, MOs); 5453 5454 // Loop over the rest of the ri operands, converting them over. 5455 unsigned NumOps = MI->getDesc().getNumOperands()-2; 5456 for (unsigned i = 0; i != NumOps; ++i) { 5457 MachineOperand &MO = MI->getOperand(i+2); 5458 MIB.addOperand(MO); 5459 } 5460 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) { 5461 MachineOperand &MO = MI->getOperand(i); 5462 MIB.addOperand(MO); 5463 } 5464 5465 MachineBasicBlock *MBB = InsertPt->getParent(); 5466 MBB->insert(InsertPt, NewMI); 5467 5468 return MIB; 5469 } 5470 5471 static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode, 5472 unsigned OpNo, ArrayRef<MachineOperand> MOs, 5473 MachineBasicBlock::iterator InsertPt, 5474 MachineInstr *MI, const TargetInstrInfo &TII, 5475 int PtrOffset = 0) { 5476 // Omit the implicit operands, something BuildMI can't do. 5477 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), 5478 MI->getDebugLoc(), true); 5479 MachineInstrBuilder MIB(MF, NewMI); 5480 5481 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 5482 MachineOperand &MO = MI->getOperand(i); 5483 if (i == OpNo) { 5484 assert(MO.isReg() && "Expected to fold into reg operand!"); 5485 addOperands(MIB, MOs, PtrOffset); 5486 } else { 5487 MIB.addOperand(MO); 5488 } 5489 } 5490 5491 MachineBasicBlock *MBB = InsertPt->getParent(); 5492 MBB->insert(InsertPt, NewMI); 5493 5494 return MIB; 5495 } 5496 5497 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, 5498 ArrayRef<MachineOperand> MOs, 5499 MachineBasicBlock::iterator InsertPt, 5500 MachineInstr *MI) { 5501 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, 5502 MI->getDebugLoc(), TII.get(Opcode)); 5503 addOperands(MIB, MOs); 5504 return MIB.addImm(0); 5505 } 5506 5507 MachineInstr *X86InstrInfo::foldMemoryOperandCustom( 5508 MachineFunction &MF, MachineInstr *MI, unsigned OpNum, 5509 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, 5510 unsigned Size, unsigned Align) const { 5511 switch (MI->getOpcode()) { 5512 case X86::INSERTPSrr: 5513 case X86::VINSERTPSrr: 5514 // Attempt to convert the load of inserted vector into a fold load 5515 // of a single float. 5516 if (OpNum == 2) { 5517 unsigned Imm = MI->getOperand(MI->getNumOperands() - 1).getImm(); 5518 unsigned ZMask = Imm & 15; 5519 unsigned DstIdx = (Imm >> 4) & 3; 5520 unsigned SrcIdx = (Imm >> 6) & 3; 5521 5522 unsigned RCSize = getRegClass(MI->getDesc(), OpNum, &RI, MF)->getSize(); 5523 if (Size <= RCSize && 4 <= Align) { 5524 int PtrOffset = SrcIdx * 4; 5525 unsigned NewImm = (DstIdx << 4) | ZMask; 5526 unsigned NewOpCode = 5527 (MI->getOpcode() == X86::VINSERTPSrr ? X86::VINSERTPSrm 5528 : X86::INSERTPSrm); 5529 MachineInstr *NewMI = 5530 FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset); 5531 NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm); 5532 return NewMI; 5533 } 5534 } 5535 break; 5536 }; 5537 5538 return nullptr; 5539 } 5540 5541 MachineInstr *X86InstrInfo::foldMemoryOperandImpl( 5542 MachineFunction &MF, MachineInstr *MI, unsigned OpNum, 5543 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, 5544 unsigned Size, unsigned Align, bool AllowCommute) const { 5545 const DenseMap<unsigned, 5546 std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr; 5547 bool isCallRegIndirect = Subtarget.callRegIndirect(); 5548 bool isTwoAddrFold = false; 5549 5550 // For CPUs that favor the register form of a call or push, 5551 // do not fold loads into calls or pushes, unless optimizing for size 5552 // aggressively. 5553 if (isCallRegIndirect && !MF.getFunction()->optForMinSize() && 5554 (MI->getOpcode() == X86::CALL32r || MI->getOpcode() == X86::CALL64r || 5555 MI->getOpcode() == X86::PUSH16r || MI->getOpcode() == X86::PUSH32r || 5556 MI->getOpcode() == X86::PUSH64r)) 5557 return nullptr; 5558 5559 unsigned NumOps = MI->getDesc().getNumOperands(); 5560 bool isTwoAddr = NumOps > 1 && 5561 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; 5562 5563 // FIXME: AsmPrinter doesn't know how to handle 5564 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. 5565 if (MI->getOpcode() == X86::ADD32ri && 5566 MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) 5567 return nullptr; 5568 5569 MachineInstr *NewMI = nullptr; 5570 5571 // Attempt to fold any custom cases we have. 5572 if (MachineInstr *CustomMI = 5573 foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt, Size, Align)) 5574 return CustomMI; 5575 5576 // Folding a memory location into the two-address part of a two-address 5577 // instruction is different than folding it other places. It requires 5578 // replacing the *two* registers with the memory location. 5579 if (isTwoAddr && NumOps >= 2 && OpNum < 2 && 5580 MI->getOperand(0).isReg() && 5581 MI->getOperand(1).isReg() && 5582 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) { 5583 OpcodeTablePtr = &RegOp2MemOpTable2Addr; 5584 isTwoAddrFold = true; 5585 } else if (OpNum == 0) { 5586 if (MI->getOpcode() == X86::MOV32r0) { 5587 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI); 5588 if (NewMI) 5589 return NewMI; 5590 } 5591 5592 OpcodeTablePtr = &RegOp2MemOpTable0; 5593 } else if (OpNum == 1) { 5594 OpcodeTablePtr = &RegOp2MemOpTable1; 5595 } else if (OpNum == 2) { 5596 OpcodeTablePtr = &RegOp2MemOpTable2; 5597 } else if (OpNum == 3) { 5598 OpcodeTablePtr = &RegOp2MemOpTable3; 5599 } else if (OpNum == 4) { 5600 OpcodeTablePtr = &RegOp2MemOpTable4; 5601 } 5602 5603 // If table selected... 5604 if (OpcodeTablePtr) { 5605 // Find the Opcode to fuse 5606 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = 5607 OpcodeTablePtr->find(MI->getOpcode()); 5608 if (I != OpcodeTablePtr->end()) { 5609 unsigned Opcode = I->second.first; 5610 unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT; 5611 if (Align < MinAlign) 5612 return nullptr; 5613 bool NarrowToMOV32rm = false; 5614 if (Size) { 5615 unsigned RCSize = getRegClass(MI->getDesc(), OpNum, &RI, MF)->getSize(); 5616 if (Size < RCSize) { 5617 // Check if it's safe to fold the load. If the size of the object is 5618 // narrower than the load width, then it's not. 5619 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4) 5620 return nullptr; 5621 // If this is a 64-bit load, but the spill slot is 32, then we can do 5622 // a 32-bit load which is implicitly zero-extended. This likely is 5623 // due to live interval analysis remat'ing a load from stack slot. 5624 if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg()) 5625 return nullptr; 5626 Opcode = X86::MOV32rm; 5627 NarrowToMOV32rm = true; 5628 } 5629 } 5630 5631 if (isTwoAddrFold) 5632 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this); 5633 else 5634 NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this); 5635 5636 if (NarrowToMOV32rm) { 5637 // If this is the special case where we use a MOV32rm to load a 32-bit 5638 // value and zero-extend the top bits. Change the destination register 5639 // to a 32-bit one. 5640 unsigned DstReg = NewMI->getOperand(0).getReg(); 5641 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 5642 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit)); 5643 else 5644 NewMI->getOperand(0).setSubReg(X86::sub_32bit); 5645 } 5646 return NewMI; 5647 } 5648 } 5649 5650 // If the instruction and target operand are commutable, commute the 5651 // instruction and try again. 5652 if (AllowCommute) { 5653 unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex; 5654 if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) { 5655 bool HasDef = MI->getDesc().getNumDefs(); 5656 unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0; 5657 unsigned Reg1 = MI->getOperand(CommuteOpIdx1).getReg(); 5658 unsigned Reg2 = MI->getOperand(CommuteOpIdx2).getReg(); 5659 bool Tied1 = 5660 0 == MI->getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO); 5661 bool Tied2 = 5662 0 == MI->getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO); 5663 5664 // If either of the commutable operands are tied to the destination 5665 // then we can not commute + fold. 5666 if ((HasDef && Reg0 == Reg1 && Tied1) || 5667 (HasDef && Reg0 == Reg2 && Tied2)) 5668 return nullptr; 5669 5670 MachineInstr *CommutedMI = 5671 commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2); 5672 if (!CommutedMI) { 5673 // Unable to commute. 5674 return nullptr; 5675 } 5676 if (CommutedMI != MI) { 5677 // New instruction. We can't fold from this. 5678 CommutedMI->eraseFromParent(); 5679 return nullptr; 5680 } 5681 5682 // Attempt to fold with the commuted version of the instruction. 5683 NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, 5684 Size, Align, /*AllowCommute=*/false); 5685 if (NewMI) 5686 return NewMI; 5687 5688 // Folding failed again - undo the commute before returning. 5689 MachineInstr *UncommutedMI = 5690 commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2); 5691 if (!UncommutedMI) { 5692 // Unable to commute. 5693 return nullptr; 5694 } 5695 if (UncommutedMI != MI) { 5696 // New instruction. It doesn't need to be kept. 5697 UncommutedMI->eraseFromParent(); 5698 return nullptr; 5699 } 5700 5701 // Return here to prevent duplicate fuse failure report. 5702 return nullptr; 5703 } 5704 } 5705 5706 // No fusion 5707 if (PrintFailedFusing && !MI->isCopy()) 5708 dbgs() << "We failed to fuse operand " << OpNum << " in " << *MI; 5709 return nullptr; 5710 } 5711 5712 /// Return true for all instructions that only update 5713 /// the first 32 or 64-bits of the destination register and leave the rest 5714 /// unmodified. This can be used to avoid folding loads if the instructions 5715 /// only update part of the destination register, and the non-updated part is 5716 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these 5717 /// instructions breaks the partial register dependency and it can improve 5718 /// performance. e.g.: 5719 /// 5720 /// movss (%rdi), %xmm0 5721 /// cvtss2sd %xmm0, %xmm0 5722 /// 5723 /// Instead of 5724 /// cvtss2sd (%rdi), %xmm0 5725 /// 5726 /// FIXME: This should be turned into a TSFlags. 5727 /// 5728 static bool hasPartialRegUpdate(unsigned Opcode) { 5729 switch (Opcode) { 5730 case X86::CVTSI2SSrr: 5731 case X86::CVTSI2SSrm: 5732 case X86::CVTSI2SS64rr: 5733 case X86::CVTSI2SS64rm: 5734 case X86::CVTSI2SDrr: 5735 case X86::CVTSI2SDrm: 5736 case X86::CVTSI2SD64rr: 5737 case X86::CVTSI2SD64rm: 5738 case X86::CVTSD2SSrr: 5739 case X86::CVTSD2SSrm: 5740 case X86::Int_CVTSD2SSrr: 5741 case X86::Int_CVTSD2SSrm: 5742 case X86::CVTSS2SDrr: 5743 case X86::CVTSS2SDrm: 5744 case X86::Int_CVTSS2SDrr: 5745 case X86::Int_CVTSS2SDrm: 5746 case X86::RCPSSr: 5747 case X86::RCPSSm: 5748 case X86::RCPSSr_Int: 5749 case X86::RCPSSm_Int: 5750 case X86::ROUNDSDr: 5751 case X86::ROUNDSDm: 5752 case X86::ROUNDSDr_Int: 5753 case X86::ROUNDSSr: 5754 case X86::ROUNDSSm: 5755 case X86::ROUNDSSr_Int: 5756 case X86::RSQRTSSr: 5757 case X86::RSQRTSSm: 5758 case X86::RSQRTSSr_Int: 5759 case X86::RSQRTSSm_Int: 5760 case X86::SQRTSSr: 5761 case X86::SQRTSSm: 5762 case X86::SQRTSSr_Int: 5763 case X86::SQRTSSm_Int: 5764 case X86::SQRTSDr: 5765 case X86::SQRTSDm: 5766 case X86::SQRTSDr_Int: 5767 case X86::SQRTSDm_Int: 5768 return true; 5769 } 5770 5771 return false; 5772 } 5773 5774 /// Inform the ExeDepsFix pass how many idle 5775 /// instructions we would like before a partial register update. 5776 unsigned X86InstrInfo:: 5777 getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum, 5778 const TargetRegisterInfo *TRI) const { 5779 if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode())) 5780 return 0; 5781 5782 // If MI is marked as reading Reg, the partial register update is wanted. 5783 const MachineOperand &MO = MI->getOperand(0); 5784 unsigned Reg = MO.getReg(); 5785 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 5786 if (MO.readsReg() || MI->readsVirtualRegister(Reg)) 5787 return 0; 5788 } else { 5789 if (MI->readsRegister(Reg, TRI)) 5790 return 0; 5791 } 5792 5793 // If any of the preceding 16 instructions are reading Reg, insert a 5794 // dependency breaking instruction. The magic number is based on a few 5795 // Nehalem experiments. 5796 return 16; 5797 } 5798 5799 // Return true for any instruction the copies the high bits of the first source 5800 // operand into the unused high bits of the destination operand. 5801 static bool hasUndefRegUpdate(unsigned Opcode) { 5802 switch (Opcode) { 5803 case X86::VCVTSI2SSrr: 5804 case X86::VCVTSI2SSrm: 5805 case X86::Int_VCVTSI2SSrr: 5806 case X86::Int_VCVTSI2SSrm: 5807 case X86::VCVTSI2SS64rr: 5808 case X86::VCVTSI2SS64rm: 5809 case X86::Int_VCVTSI2SS64rr: 5810 case X86::Int_VCVTSI2SS64rm: 5811 case X86::VCVTSI2SDrr: 5812 case X86::VCVTSI2SDrm: 5813 case X86::Int_VCVTSI2SDrr: 5814 case X86::Int_VCVTSI2SDrm: 5815 case X86::VCVTSI2SD64rr: 5816 case X86::VCVTSI2SD64rm: 5817 case X86::Int_VCVTSI2SD64rr: 5818 case X86::Int_VCVTSI2SD64rm: 5819 case X86::VCVTSD2SSrr: 5820 case X86::VCVTSD2SSrm: 5821 case X86::Int_VCVTSD2SSrr: 5822 case X86::Int_VCVTSD2SSrm: 5823 case X86::VCVTSS2SDrr: 5824 case X86::VCVTSS2SDrm: 5825 case X86::Int_VCVTSS2SDrr: 5826 case X86::Int_VCVTSS2SDrm: 5827 case X86::VRCPSSr: 5828 case X86::VRCPSSm: 5829 case X86::VRCPSSm_Int: 5830 case X86::VROUNDSDr: 5831 case X86::VROUNDSDm: 5832 case X86::VROUNDSDr_Int: 5833 case X86::VROUNDSSr: 5834 case X86::VROUNDSSm: 5835 case X86::VROUNDSSr_Int: 5836 case X86::VRSQRTSSr: 5837 case X86::VRSQRTSSm: 5838 case X86::VRSQRTSSm_Int: 5839 case X86::VSQRTSSr: 5840 case X86::VSQRTSSm: 5841 case X86::VSQRTSSm_Int: 5842 case X86::VSQRTSDr: 5843 case X86::VSQRTSDm: 5844 case X86::VSQRTSDm_Int: 5845 // AVX-512 5846 case X86::VCVTSD2SSZrr: 5847 case X86::VCVTSD2SSZrm: 5848 case X86::VCVTSS2SDZrr: 5849 case X86::VCVTSS2SDZrm: 5850 return true; 5851 } 5852 5853 return false; 5854 } 5855 5856 /// Inform the ExeDepsFix pass how many idle instructions we would like before 5857 /// certain undef register reads. 5858 /// 5859 /// This catches the VCVTSI2SD family of instructions: 5860 /// 5861 /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14 5862 /// 5863 /// We should to be careful *not* to catch VXOR idioms which are presumably 5864 /// handled specially in the pipeline: 5865 /// 5866 /// vxorps %xmm1<undef>, %xmm1<undef>, %xmm1 5867 /// 5868 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the 5869 /// high bits that are passed-through are not live. 5870 unsigned X86InstrInfo:: 5871 getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum, 5872 const TargetRegisterInfo *TRI) const { 5873 if (!hasUndefRegUpdate(MI->getOpcode())) 5874 return 0; 5875 5876 // Set the OpNum parameter to the first source operand. 5877 OpNum = 1; 5878 5879 const MachineOperand &MO = MI->getOperand(OpNum); 5880 if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { 5881 // Use the same magic number as getPartialRegUpdateClearance. 5882 return 16; 5883 } 5884 return 0; 5885 } 5886 5887 void X86InstrInfo:: 5888 breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum, 5889 const TargetRegisterInfo *TRI) const { 5890 unsigned Reg = MI->getOperand(OpNum).getReg(); 5891 // If MI kills this register, the false dependence is already broken. 5892 if (MI->killsRegister(Reg, TRI)) 5893 return; 5894 if (X86::VR128RegClass.contains(Reg)) { 5895 // These instructions are all floating point domain, so xorps is the best 5896 // choice. 5897 bool HasAVX = Subtarget.hasAVX(); 5898 unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr; 5899 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg) 5900 .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); 5901 } else if (X86::VR256RegClass.contains(Reg)) { 5902 // Use vxorps to clear the full ymm register. 5903 // It wants to read and write the xmm sub-register. 5904 unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm); 5905 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg) 5906 .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef) 5907 .addReg(Reg, RegState::ImplicitDefine); 5908 } else 5909 return; 5910 MI->addRegisterKilled(Reg, TRI, true); 5911 } 5912 5913 MachineInstr *X86InstrInfo::foldMemoryOperandImpl( 5914 MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops, 5915 MachineBasicBlock::iterator InsertPt, int FrameIndex) const { 5916 // Check switch flag 5917 if (NoFusing) return nullptr; 5918 5919 // Unless optimizing for size, don't fold to avoid partial 5920 // register update stalls 5921 if (!MF.getFunction()->optForSize() && hasPartialRegUpdate(MI->getOpcode())) 5922 return nullptr; 5923 5924 const MachineFrameInfo *MFI = MF.getFrameInfo(); 5925 unsigned Size = MFI->getObjectSize(FrameIndex); 5926 unsigned Alignment = MFI->getObjectAlignment(FrameIndex); 5927 // If the function stack isn't realigned we don't want to fold instructions 5928 // that need increased alignment. 5929 if (!RI.needsStackRealignment(MF)) 5930 Alignment = 5931 std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment()); 5932 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 5933 unsigned NewOpc = 0; 5934 unsigned RCSize = 0; 5935 switch (MI->getOpcode()) { 5936 default: return nullptr; 5937 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break; 5938 case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break; 5939 case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break; 5940 case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break; 5941 } 5942 // Check if it's safe to fold the load. If the size of the object is 5943 // narrower than the load width, then it's not. 5944 if (Size < RCSize) 5945 return nullptr; 5946 // Change to CMPXXri r, 0 first. 5947 MI->setDesc(get(NewOpc)); 5948 MI->getOperand(1).ChangeToImmediate(0); 5949 } else if (Ops.size() != 1) 5950 return nullptr; 5951 5952 return foldMemoryOperandImpl(MF, MI, Ops[0], 5953 MachineOperand::CreateFI(FrameIndex), InsertPt, 5954 Size, Alignment, /*AllowCommute=*/true); 5955 } 5956 5957 /// Check if \p LoadMI is a partial register load that we can't fold into \p MI 5958 /// because the latter uses contents that wouldn't be defined in the folded 5959 /// version. For instance, this transformation isn't legal: 5960 /// movss (%rdi), %xmm0 5961 /// addps %xmm0, %xmm0 5962 /// -> 5963 /// addps (%rdi), %xmm0 5964 /// 5965 /// But this one is: 5966 /// movss (%rdi), %xmm0 5967 /// addss %xmm0, %xmm0 5968 /// -> 5969 /// addss (%rdi), %xmm0 5970 /// 5971 static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI, 5972 const MachineInstr &UserMI, 5973 const MachineFunction &MF) { 5974 unsigned Opc = LoadMI.getOpcode(); 5975 unsigned UserOpc = UserMI.getOpcode(); 5976 unsigned RegSize = 5977 MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg())->getSize(); 5978 5979 if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm) && RegSize > 4) { 5980 // These instructions only load 32 bits, we can't fold them if the 5981 // destination register is wider than 32 bits (4 bytes), and its user 5982 // instruction isn't scalar (SS). 5983 switch (UserOpc) { 5984 case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: 5985 case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: 5986 case X86::MULSSrr_Int: case X86::VMULSSrr_Int: 5987 case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: 5988 case X86::VFMADDSSr132r_Int: case X86::VFNMADDSSr132r_Int: 5989 case X86::VFMADDSSr213r_Int: case X86::VFNMADDSSr213r_Int: 5990 case X86::VFMADDSSr231r_Int: case X86::VFNMADDSSr231r_Int: 5991 case X86::VFMSUBSSr132r_Int: case X86::VFNMSUBSSr132r_Int: 5992 case X86::VFMSUBSSr213r_Int: case X86::VFNMSUBSSr213r_Int: 5993 case X86::VFMSUBSSr231r_Int: case X86::VFNMSUBSSr231r_Int: 5994 return false; 5995 default: 5996 return true; 5997 } 5998 } 5999 6000 if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm) && RegSize > 8) { 6001 // These instructions only load 64 bits, we can't fold them if the 6002 // destination register is wider than 64 bits (8 bytes), and its user 6003 // instruction isn't scalar (SD). 6004 switch (UserOpc) { 6005 case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: 6006 case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: 6007 case X86::MULSDrr_Int: case X86::VMULSDrr_Int: 6008 case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: 6009 case X86::VFMADDSDr132r_Int: case X86::VFNMADDSDr132r_Int: 6010 case X86::VFMADDSDr213r_Int: case X86::VFNMADDSDr213r_Int: 6011 case X86::VFMADDSDr231r_Int: case X86::VFNMADDSDr231r_Int: 6012 case X86::VFMSUBSDr132r_Int: case X86::VFNMSUBSDr132r_Int: 6013 case X86::VFMSUBSDr213r_Int: case X86::VFNMSUBSDr213r_Int: 6014 case X86::VFMSUBSDr231r_Int: case X86::VFNMSUBSDr231r_Int: 6015 return false; 6016 default: 6017 return true; 6018 } 6019 } 6020 6021 return false; 6022 } 6023 6024 MachineInstr *X86InstrInfo::foldMemoryOperandImpl( 6025 MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops, 6026 MachineBasicBlock::iterator InsertPt, MachineInstr *LoadMI) const { 6027 // If loading from a FrameIndex, fold directly from the FrameIndex. 6028 unsigned NumOps = LoadMI->getDesc().getNumOperands(); 6029 int FrameIndex; 6030 if (isLoadFromStackSlot(LoadMI, FrameIndex)) { 6031 if (isNonFoldablePartialRegisterLoad(*LoadMI, *MI, MF)) 6032 return nullptr; 6033 return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex); 6034 } 6035 6036 // Check switch flag 6037 if (NoFusing) return nullptr; 6038 6039 // Avoid partial register update stalls unless optimizing for size. 6040 if (!MF.getFunction()->optForSize() && hasPartialRegUpdate(MI->getOpcode())) 6041 return nullptr; 6042 6043 // Determine the alignment of the load. 6044 unsigned Alignment = 0; 6045 if (LoadMI->hasOneMemOperand()) 6046 Alignment = (*LoadMI->memoperands_begin())->getAlignment(); 6047 else 6048 switch (LoadMI->getOpcode()) { 6049 case X86::AVX2_SETALLONES: 6050 case X86::AVX_SET0: 6051 Alignment = 32; 6052 break; 6053 case X86::V_SET0: 6054 case X86::V_SETALLONES: 6055 Alignment = 16; 6056 break; 6057 case X86::FsFLD0SD: 6058 Alignment = 8; 6059 break; 6060 case X86::FsFLD0SS: 6061 Alignment = 4; 6062 break; 6063 default: 6064 return nullptr; 6065 } 6066 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 6067 unsigned NewOpc = 0; 6068 switch (MI->getOpcode()) { 6069 default: return nullptr; 6070 case X86::TEST8rr: NewOpc = X86::CMP8ri; break; 6071 case X86::TEST16rr: NewOpc = X86::CMP16ri8; break; 6072 case X86::TEST32rr: NewOpc = X86::CMP32ri8; break; 6073 case X86::TEST64rr: NewOpc = X86::CMP64ri8; break; 6074 } 6075 // Change to CMPXXri r, 0 first. 6076 MI->setDesc(get(NewOpc)); 6077 MI->getOperand(1).ChangeToImmediate(0); 6078 } else if (Ops.size() != 1) 6079 return nullptr; 6080 6081 // Make sure the subregisters match. 6082 // Otherwise we risk changing the size of the load. 6083 if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg()) 6084 return nullptr; 6085 6086 SmallVector<MachineOperand,X86::AddrNumOperands> MOs; 6087 switch (LoadMI->getOpcode()) { 6088 case X86::V_SET0: 6089 case X86::V_SETALLONES: 6090 case X86::AVX2_SETALLONES: 6091 case X86::AVX_SET0: 6092 case X86::FsFLD0SD: 6093 case X86::FsFLD0SS: { 6094 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure. 6095 // Create a constant-pool entry and operands to load from it. 6096 6097 // Medium and large mode can't fold loads this way. 6098 if (MF.getTarget().getCodeModel() != CodeModel::Small && 6099 MF.getTarget().getCodeModel() != CodeModel::Kernel) 6100 return nullptr; 6101 6102 // x86-32 PIC requires a PIC base register for constant pools. 6103 unsigned PICBase = 0; 6104 if (MF.getTarget().getRelocationModel() == Reloc::PIC_) { 6105 if (Subtarget.is64Bit()) 6106 PICBase = X86::RIP; 6107 else 6108 // FIXME: PICBase = getGlobalBaseReg(&MF); 6109 // This doesn't work for several reasons. 6110 // 1. GlobalBaseReg may have been spilled. 6111 // 2. It may not be live at MI. 6112 return nullptr; 6113 } 6114 6115 // Create a constant-pool entry. 6116 MachineConstantPool &MCP = *MF.getConstantPool(); 6117 Type *Ty; 6118 unsigned Opc = LoadMI->getOpcode(); 6119 if (Opc == X86::FsFLD0SS) 6120 Ty = Type::getFloatTy(MF.getFunction()->getContext()); 6121 else if (Opc == X86::FsFLD0SD) 6122 Ty = Type::getDoubleTy(MF.getFunction()->getContext()); 6123 else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0) 6124 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8); 6125 else 6126 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4); 6127 6128 bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES); 6129 const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) : 6130 Constant::getNullValue(Ty); 6131 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment); 6132 6133 // Create operands to load from the constant pool entry. 6134 MOs.push_back(MachineOperand::CreateReg(PICBase, false)); 6135 MOs.push_back(MachineOperand::CreateImm(1)); 6136 MOs.push_back(MachineOperand::CreateReg(0, false)); 6137 MOs.push_back(MachineOperand::CreateCPI(CPI, 0)); 6138 MOs.push_back(MachineOperand::CreateReg(0, false)); 6139 break; 6140 } 6141 default: { 6142 if (isNonFoldablePartialRegisterLoad(*LoadMI, *MI, MF)) 6143 return nullptr; 6144 6145 // Folding a normal load. Just copy the load's address operands. 6146 MOs.append(LoadMI->operands_begin() + NumOps - X86::AddrNumOperands, 6147 LoadMI->operands_begin() + NumOps); 6148 break; 6149 } 6150 } 6151 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt, 6152 /*Size=*/0, Alignment, /*AllowCommute=*/true); 6153 } 6154 6155 bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, 6156 unsigned Reg, bool UnfoldLoad, bool UnfoldStore, 6157 SmallVectorImpl<MachineInstr*> &NewMIs) const { 6158 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = 6159 MemOp2RegOpTable.find(MI->getOpcode()); 6160 if (I == MemOp2RegOpTable.end()) 6161 return false; 6162 unsigned Opc = I->second.first; 6163 unsigned Index = I->second.second & TB_INDEX_MASK; 6164 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; 6165 bool FoldedStore = I->second.second & TB_FOLDED_STORE; 6166 if (UnfoldLoad && !FoldedLoad) 6167 return false; 6168 UnfoldLoad &= FoldedLoad; 6169 if (UnfoldStore && !FoldedStore) 6170 return false; 6171 UnfoldStore &= FoldedStore; 6172 6173 const MCInstrDesc &MCID = get(Opc); 6174 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); 6175 // TODO: Check if 32-byte or greater accesses are slow too? 6176 if (!MI->hasOneMemOperand() && 6177 RC == &X86::VR128RegClass && 6178 Subtarget.isUnalignedMem16Slow()) 6179 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will 6180 // conservatively assume the address is unaligned. That's bad for 6181 // performance. 6182 return false; 6183 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps; 6184 SmallVector<MachineOperand,2> BeforeOps; 6185 SmallVector<MachineOperand,2> AfterOps; 6186 SmallVector<MachineOperand,4> ImpOps; 6187 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 6188 MachineOperand &Op = MI->getOperand(i); 6189 if (i >= Index && i < Index + X86::AddrNumOperands) 6190 AddrOps.push_back(Op); 6191 else if (Op.isReg() && Op.isImplicit()) 6192 ImpOps.push_back(Op); 6193 else if (i < Index) 6194 BeforeOps.push_back(Op); 6195 else if (i > Index) 6196 AfterOps.push_back(Op); 6197 } 6198 6199 // Emit the load instruction. 6200 if (UnfoldLoad) { 6201 std::pair<MachineInstr::mmo_iterator, 6202 MachineInstr::mmo_iterator> MMOs = 6203 MF.extractLoadMemRefs(MI->memoperands_begin(), 6204 MI->memoperands_end()); 6205 loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs); 6206 if (UnfoldStore) { 6207 // Address operands cannot be marked isKill. 6208 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) { 6209 MachineOperand &MO = NewMIs[0]->getOperand(i); 6210 if (MO.isReg()) 6211 MO.setIsKill(false); 6212 } 6213 } 6214 } 6215 6216 // Emit the data processing instruction. 6217 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true); 6218 MachineInstrBuilder MIB(MF, DataMI); 6219 6220 if (FoldedStore) 6221 MIB.addReg(Reg, RegState::Define); 6222 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i) 6223 MIB.addOperand(BeforeOps[i]); 6224 if (FoldedLoad) 6225 MIB.addReg(Reg); 6226 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i) 6227 MIB.addOperand(AfterOps[i]); 6228 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) { 6229 MachineOperand &MO = ImpOps[i]; 6230 MIB.addReg(MO.getReg(), 6231 getDefRegState(MO.isDef()) | 6232 RegState::Implicit | 6233 getKillRegState(MO.isKill()) | 6234 getDeadRegState(MO.isDead()) | 6235 getUndefRegState(MO.isUndef())); 6236 } 6237 // Change CMP32ri r, 0 back to TEST32rr r, r, etc. 6238 switch (DataMI->getOpcode()) { 6239 default: break; 6240 case X86::CMP64ri32: 6241 case X86::CMP64ri8: 6242 case X86::CMP32ri: 6243 case X86::CMP32ri8: 6244 case X86::CMP16ri: 6245 case X86::CMP16ri8: 6246 case X86::CMP8ri: { 6247 MachineOperand &MO0 = DataMI->getOperand(0); 6248 MachineOperand &MO1 = DataMI->getOperand(1); 6249 if (MO1.getImm() == 0) { 6250 unsigned NewOpc; 6251 switch (DataMI->getOpcode()) { 6252 default: llvm_unreachable("Unreachable!"); 6253 case X86::CMP64ri8: 6254 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break; 6255 case X86::CMP32ri8: 6256 case X86::CMP32ri: NewOpc = X86::TEST32rr; break; 6257 case X86::CMP16ri8: 6258 case X86::CMP16ri: NewOpc = X86::TEST16rr; break; 6259 case X86::CMP8ri: NewOpc = X86::TEST8rr; break; 6260 } 6261 DataMI->setDesc(get(NewOpc)); 6262 MO1.ChangeToRegister(MO0.getReg(), false); 6263 } 6264 } 6265 } 6266 NewMIs.push_back(DataMI); 6267 6268 // Emit the store instruction. 6269 if (UnfoldStore) { 6270 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF); 6271 std::pair<MachineInstr::mmo_iterator, 6272 MachineInstr::mmo_iterator> MMOs = 6273 MF.extractStoreMemRefs(MI->memoperands_begin(), 6274 MI->memoperands_end()); 6275 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs); 6276 } 6277 6278 return true; 6279 } 6280 6281 bool 6282 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, 6283 SmallVectorImpl<SDNode*> &NewNodes) const { 6284 if (!N->isMachineOpcode()) 6285 return false; 6286 6287 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = 6288 MemOp2RegOpTable.find(N->getMachineOpcode()); 6289 if (I == MemOp2RegOpTable.end()) 6290 return false; 6291 unsigned Opc = I->second.first; 6292 unsigned Index = I->second.second & TB_INDEX_MASK; 6293 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; 6294 bool FoldedStore = I->second.second & TB_FOLDED_STORE; 6295 const MCInstrDesc &MCID = get(Opc); 6296 MachineFunction &MF = DAG.getMachineFunction(); 6297 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); 6298 unsigned NumDefs = MCID.NumDefs; 6299 std::vector<SDValue> AddrOps; 6300 std::vector<SDValue> BeforeOps; 6301 std::vector<SDValue> AfterOps; 6302 SDLoc dl(N); 6303 unsigned NumOps = N->getNumOperands(); 6304 for (unsigned i = 0; i != NumOps-1; ++i) { 6305 SDValue Op = N->getOperand(i); 6306 if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands) 6307 AddrOps.push_back(Op); 6308 else if (i < Index-NumDefs) 6309 BeforeOps.push_back(Op); 6310 else if (i > Index-NumDefs) 6311 AfterOps.push_back(Op); 6312 } 6313 SDValue Chain = N->getOperand(NumOps-1); 6314 AddrOps.push_back(Chain); 6315 6316 // Emit the load instruction. 6317 SDNode *Load = nullptr; 6318 if (FoldedLoad) { 6319 EVT VT = *RC->vt_begin(); 6320 std::pair<MachineInstr::mmo_iterator, 6321 MachineInstr::mmo_iterator> MMOs = 6322 MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(), 6323 cast<MachineSDNode>(N)->memoperands_end()); 6324 if (!(*MMOs.first) && 6325 RC == &X86::VR128RegClass && 6326 Subtarget.isUnalignedMem16Slow()) 6327 // Do not introduce a slow unaligned load. 6328 return false; 6329 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte 6330 // memory access is slow above. 6331 unsigned Alignment = RC->getSize() == 32 ? 32 : 16; 6332 bool isAligned = (*MMOs.first) && 6333 (*MMOs.first)->getAlignment() >= Alignment; 6334 Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl, 6335 VT, MVT::Other, AddrOps); 6336 NewNodes.push_back(Load); 6337 6338 // Preserve memory reference information. 6339 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second); 6340 } 6341 6342 // Emit the data processing instruction. 6343 std::vector<EVT> VTs; 6344 const TargetRegisterClass *DstRC = nullptr; 6345 if (MCID.getNumDefs() > 0) { 6346 DstRC = getRegClass(MCID, 0, &RI, MF); 6347 VTs.push_back(*DstRC->vt_begin()); 6348 } 6349 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { 6350 EVT VT = N->getValueType(i); 6351 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs()) 6352 VTs.push_back(VT); 6353 } 6354 if (Load) 6355 BeforeOps.push_back(SDValue(Load, 0)); 6356 BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end()); 6357 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps); 6358 NewNodes.push_back(NewNode); 6359 6360 // Emit the store instruction. 6361 if (FoldedStore) { 6362 AddrOps.pop_back(); 6363 AddrOps.push_back(SDValue(NewNode, 0)); 6364 AddrOps.push_back(Chain); 6365 std::pair<MachineInstr::mmo_iterator, 6366 MachineInstr::mmo_iterator> MMOs = 6367 MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(), 6368 cast<MachineSDNode>(N)->memoperands_end()); 6369 if (!(*MMOs.first) && 6370 RC == &X86::VR128RegClass && 6371 Subtarget.isUnalignedMem16Slow()) 6372 // Do not introduce a slow unaligned store. 6373 return false; 6374 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte 6375 // memory access is slow above. 6376 unsigned Alignment = RC->getSize() == 32 ? 32 : 16; 6377 bool isAligned = (*MMOs.first) && 6378 (*MMOs.first)->getAlignment() >= Alignment; 6379 SDNode *Store = 6380 DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget), 6381 dl, MVT::Other, AddrOps); 6382 NewNodes.push_back(Store); 6383 6384 // Preserve memory reference information. 6385 cast<MachineSDNode>(Store)->setMemRefs(MMOs.first, MMOs.second); 6386 } 6387 6388 return true; 6389 } 6390 6391 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, 6392 bool UnfoldLoad, bool UnfoldStore, 6393 unsigned *LoadRegIndex) const { 6394 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = 6395 MemOp2RegOpTable.find(Opc); 6396 if (I == MemOp2RegOpTable.end()) 6397 return 0; 6398 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; 6399 bool FoldedStore = I->second.second & TB_FOLDED_STORE; 6400 if (UnfoldLoad && !FoldedLoad) 6401 return 0; 6402 if (UnfoldStore && !FoldedStore) 6403 return 0; 6404 if (LoadRegIndex) 6405 *LoadRegIndex = I->second.second & TB_INDEX_MASK; 6406 return I->second.first; 6407 } 6408 6409 bool 6410 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 6411 int64_t &Offset1, int64_t &Offset2) const { 6412 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 6413 return false; 6414 unsigned Opc1 = Load1->getMachineOpcode(); 6415 unsigned Opc2 = Load2->getMachineOpcode(); 6416 switch (Opc1) { 6417 default: return false; 6418 case X86::MOV8rm: 6419 case X86::MOV16rm: 6420 case X86::MOV32rm: 6421 case X86::MOV64rm: 6422 case X86::LD_Fp32m: 6423 case X86::LD_Fp64m: 6424 case X86::LD_Fp80m: 6425 case X86::MOVSSrm: 6426 case X86::MOVSDrm: 6427 case X86::MMX_MOVD64rm: 6428 case X86::MMX_MOVQ64rm: 6429 case X86::FsMOVAPSrm: 6430 case X86::FsMOVAPDrm: 6431 case X86::MOVAPSrm: 6432 case X86::MOVUPSrm: 6433 case X86::MOVAPDrm: 6434 case X86::MOVDQArm: 6435 case X86::MOVDQUrm: 6436 // AVX load instructions 6437 case X86::VMOVSSrm: 6438 case X86::VMOVSDrm: 6439 case X86::FsVMOVAPSrm: 6440 case X86::FsVMOVAPDrm: 6441 case X86::VMOVAPSrm: 6442 case X86::VMOVUPSrm: 6443 case X86::VMOVAPDrm: 6444 case X86::VMOVDQArm: 6445 case X86::VMOVDQUrm: 6446 case X86::VMOVAPSYrm: 6447 case X86::VMOVUPSYrm: 6448 case X86::VMOVAPDYrm: 6449 case X86::VMOVDQAYrm: 6450 case X86::VMOVDQUYrm: 6451 break; 6452 } 6453 switch (Opc2) { 6454 default: return false; 6455 case X86::MOV8rm: 6456 case X86::MOV16rm: 6457 case X86::MOV32rm: 6458 case X86::MOV64rm: 6459 case X86::LD_Fp32m: 6460 case X86::LD_Fp64m: 6461 case X86::LD_Fp80m: 6462 case X86::MOVSSrm: 6463 case X86::MOVSDrm: 6464 case X86::MMX_MOVD64rm: 6465 case X86::MMX_MOVQ64rm: 6466 case X86::FsMOVAPSrm: 6467 case X86::FsMOVAPDrm: 6468 case X86::MOVAPSrm: 6469 case X86::MOVUPSrm: 6470 case X86::MOVAPDrm: 6471 case X86::MOVDQArm: 6472 case X86::MOVDQUrm: 6473 // AVX load instructions 6474 case X86::VMOVSSrm: 6475 case X86::VMOVSDrm: 6476 case X86::FsVMOVAPSrm: 6477 case X86::FsVMOVAPDrm: 6478 case X86::VMOVAPSrm: 6479 case X86::VMOVUPSrm: 6480 case X86::VMOVAPDrm: 6481 case X86::VMOVDQArm: 6482 case X86::VMOVDQUrm: 6483 case X86::VMOVAPSYrm: 6484 case X86::VMOVUPSYrm: 6485 case X86::VMOVAPDYrm: 6486 case X86::VMOVDQAYrm: 6487 case X86::VMOVDQUYrm: 6488 break; 6489 } 6490 6491 // Check if chain operands and base addresses match. 6492 if (Load1->getOperand(0) != Load2->getOperand(0) || 6493 Load1->getOperand(5) != Load2->getOperand(5)) 6494 return false; 6495 // Segment operands should match as well. 6496 if (Load1->getOperand(4) != Load2->getOperand(4)) 6497 return false; 6498 // Scale should be 1, Index should be Reg0. 6499 if (Load1->getOperand(1) == Load2->getOperand(1) && 6500 Load1->getOperand(2) == Load2->getOperand(2)) { 6501 if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1) 6502 return false; 6503 6504 // Now let's examine the displacements. 6505 if (isa<ConstantSDNode>(Load1->getOperand(3)) && 6506 isa<ConstantSDNode>(Load2->getOperand(3))) { 6507 Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue(); 6508 Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue(); 6509 return true; 6510 } 6511 } 6512 return false; 6513 } 6514 6515 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 6516 int64_t Offset1, int64_t Offset2, 6517 unsigned NumLoads) const { 6518 assert(Offset2 > Offset1); 6519 if ((Offset2 - Offset1) / 8 > 64) 6520 return false; 6521 6522 unsigned Opc1 = Load1->getMachineOpcode(); 6523 unsigned Opc2 = Load2->getMachineOpcode(); 6524 if (Opc1 != Opc2) 6525 return false; // FIXME: overly conservative? 6526 6527 switch (Opc1) { 6528 default: break; 6529 case X86::LD_Fp32m: 6530 case X86::LD_Fp64m: 6531 case X86::LD_Fp80m: 6532 case X86::MMX_MOVD64rm: 6533 case X86::MMX_MOVQ64rm: 6534 return false; 6535 } 6536 6537 EVT VT = Load1->getValueType(0); 6538 switch (VT.getSimpleVT().SimpleTy) { 6539 default: 6540 // XMM registers. In 64-bit mode we can be a bit more aggressive since we 6541 // have 16 of them to play with. 6542 if (Subtarget.is64Bit()) { 6543 if (NumLoads >= 3) 6544 return false; 6545 } else if (NumLoads) { 6546 return false; 6547 } 6548 break; 6549 case MVT::i8: 6550 case MVT::i16: 6551 case MVT::i32: 6552 case MVT::i64: 6553 case MVT::f32: 6554 case MVT::f64: 6555 if (NumLoads) 6556 return false; 6557 break; 6558 } 6559 6560 return true; 6561 } 6562 6563 bool X86InstrInfo::shouldScheduleAdjacent(MachineInstr* First, 6564 MachineInstr *Second) const { 6565 // Check if this processor supports macro-fusion. Since this is a minor 6566 // heuristic, we haven't specifically reserved a feature. hasAVX is a decent 6567 // proxy for SandyBridge+. 6568 if (!Subtarget.hasAVX()) 6569 return false; 6570 6571 enum { 6572 FuseTest, 6573 FuseCmp, 6574 FuseInc 6575 } FuseKind; 6576 6577 switch(Second->getOpcode()) { 6578 default: 6579 return false; 6580 case X86::JE_1: 6581 case X86::JNE_1: 6582 case X86::JL_1: 6583 case X86::JLE_1: 6584 case X86::JG_1: 6585 case X86::JGE_1: 6586 FuseKind = FuseInc; 6587 break; 6588 case X86::JB_1: 6589 case X86::JBE_1: 6590 case X86::JA_1: 6591 case X86::JAE_1: 6592 FuseKind = FuseCmp; 6593 break; 6594 case X86::JS_1: 6595 case X86::JNS_1: 6596 case X86::JP_1: 6597 case X86::JNP_1: 6598 case X86::JO_1: 6599 case X86::JNO_1: 6600 FuseKind = FuseTest; 6601 break; 6602 } 6603 switch (First->getOpcode()) { 6604 default: 6605 return false; 6606 case X86::TEST8rr: 6607 case X86::TEST16rr: 6608 case X86::TEST32rr: 6609 case X86::TEST64rr: 6610 case X86::TEST8ri: 6611 case X86::TEST16ri: 6612 case X86::TEST32ri: 6613 case X86::TEST32i32: 6614 case X86::TEST64i32: 6615 case X86::TEST64ri32: 6616 case X86::TEST8rm: 6617 case X86::TEST16rm: 6618 case X86::TEST32rm: 6619 case X86::TEST64rm: 6620 case X86::TEST8ri_NOREX: 6621 case X86::AND16i16: 6622 case X86::AND16ri: 6623 case X86::AND16ri8: 6624 case X86::AND16rm: 6625 case X86::AND16rr: 6626 case X86::AND32i32: 6627 case X86::AND32ri: 6628 case X86::AND32ri8: 6629 case X86::AND32rm: 6630 case X86::AND32rr: 6631 case X86::AND64i32: 6632 case X86::AND64ri32: 6633 case X86::AND64ri8: 6634 case X86::AND64rm: 6635 case X86::AND64rr: 6636 case X86::AND8i8: 6637 case X86::AND8ri: 6638 case X86::AND8rm: 6639 case X86::AND8rr: 6640 return true; 6641 case X86::CMP16i16: 6642 case X86::CMP16ri: 6643 case X86::CMP16ri8: 6644 case X86::CMP16rm: 6645 case X86::CMP16rr: 6646 case X86::CMP32i32: 6647 case X86::CMP32ri: 6648 case X86::CMP32ri8: 6649 case X86::CMP32rm: 6650 case X86::CMP32rr: 6651 case X86::CMP64i32: 6652 case X86::CMP64ri32: 6653 case X86::CMP64ri8: 6654 case X86::CMP64rm: 6655 case X86::CMP64rr: 6656 case X86::CMP8i8: 6657 case X86::CMP8ri: 6658 case X86::CMP8rm: 6659 case X86::CMP8rr: 6660 case X86::ADD16i16: 6661 case X86::ADD16ri: 6662 case X86::ADD16ri8: 6663 case X86::ADD16ri8_DB: 6664 case X86::ADD16ri_DB: 6665 case X86::ADD16rm: 6666 case X86::ADD16rr: 6667 case X86::ADD16rr_DB: 6668 case X86::ADD32i32: 6669 case X86::ADD32ri: 6670 case X86::ADD32ri8: 6671 case X86::ADD32ri8_DB: 6672 case X86::ADD32ri_DB: 6673 case X86::ADD32rm: 6674 case X86::ADD32rr: 6675 case X86::ADD32rr_DB: 6676 case X86::ADD64i32: 6677 case X86::ADD64ri32: 6678 case X86::ADD64ri32_DB: 6679 case X86::ADD64ri8: 6680 case X86::ADD64ri8_DB: 6681 case X86::ADD64rm: 6682 case X86::ADD64rr: 6683 case X86::ADD64rr_DB: 6684 case X86::ADD8i8: 6685 case X86::ADD8mi: 6686 case X86::ADD8mr: 6687 case X86::ADD8ri: 6688 case X86::ADD8rm: 6689 case X86::ADD8rr: 6690 case X86::SUB16i16: 6691 case X86::SUB16ri: 6692 case X86::SUB16ri8: 6693 case X86::SUB16rm: 6694 case X86::SUB16rr: 6695 case X86::SUB32i32: 6696 case X86::SUB32ri: 6697 case X86::SUB32ri8: 6698 case X86::SUB32rm: 6699 case X86::SUB32rr: 6700 case X86::SUB64i32: 6701 case X86::SUB64ri32: 6702 case X86::SUB64ri8: 6703 case X86::SUB64rm: 6704 case X86::SUB64rr: 6705 case X86::SUB8i8: 6706 case X86::SUB8ri: 6707 case X86::SUB8rm: 6708 case X86::SUB8rr: 6709 return FuseKind == FuseCmp || FuseKind == FuseInc; 6710 case X86::INC16r: 6711 case X86::INC32r: 6712 case X86::INC64r: 6713 case X86::INC8r: 6714 case X86::DEC16r: 6715 case X86::DEC32r: 6716 case X86::DEC64r: 6717 case X86::DEC8r: 6718 return FuseKind == FuseInc; 6719 } 6720 } 6721 6722 bool X86InstrInfo:: 6723 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 6724 assert(Cond.size() == 1 && "Invalid X86 branch condition!"); 6725 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm()); 6726 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E) 6727 return true; 6728 Cond[0].setImm(GetOppositeBranchCondition(CC)); 6729 return false; 6730 } 6731 6732 bool X86InstrInfo:: 6733 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { 6734 // FIXME: Return false for x87 stack register classes for now. We can't 6735 // allow any loads of these registers before FpGet_ST0_80. 6736 return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass || 6737 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass); 6738 } 6739 6740 /// Return a virtual register initialized with the 6741 /// the global base register value. Output instructions required to 6742 /// initialize the register in the function entry block, if necessary. 6743 /// 6744 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo. 6745 /// 6746 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { 6747 assert(!Subtarget.is64Bit() && 6748 "X86-64 PIC uses RIP relative addressing"); 6749 6750 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); 6751 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); 6752 if (GlobalBaseReg != 0) 6753 return GlobalBaseReg; 6754 6755 // Create the register. The code to initialize it is inserted 6756 // later, by the CGBR pass (below). 6757 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 6758 GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); 6759 X86FI->setGlobalBaseReg(GlobalBaseReg); 6760 return GlobalBaseReg; 6761 } 6762 6763 // These are the replaceable SSE instructions. Some of these have Int variants 6764 // that we don't include here. We don't want to replace instructions selected 6765 // by intrinsics. 6766 static const uint16_t ReplaceableInstrs[][3] = { 6767 //PackedSingle PackedDouble PackedInt 6768 { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr }, 6769 { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm }, 6770 { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr }, 6771 { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr }, 6772 { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm }, 6773 { X86::MOVLPSmr, X86::MOVLPDmr, X86::MOVPQI2QImr }, 6774 { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr }, 6775 { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm }, 6776 { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr }, 6777 { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm }, 6778 { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr }, 6779 { X86::ORPSrm, X86::ORPDrm, X86::PORrm }, 6780 { X86::ORPSrr, X86::ORPDrr, X86::PORrr }, 6781 { X86::XORPSrm, X86::XORPDrm, X86::PXORrm }, 6782 { X86::XORPSrr, X86::XORPDrr, X86::PXORrr }, 6783 // AVX 128-bit support 6784 { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr }, 6785 { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm }, 6786 { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr }, 6787 { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr }, 6788 { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm }, 6789 { X86::VMOVLPSmr, X86::VMOVLPDmr, X86::VMOVPQI2QImr }, 6790 { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr }, 6791 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm }, 6792 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr }, 6793 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm }, 6794 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr }, 6795 { X86::VORPSrm, X86::VORPDrm, X86::VPORrm }, 6796 { X86::VORPSrr, X86::VORPDrr, X86::VPORrr }, 6797 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm }, 6798 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr }, 6799 // AVX 256-bit support 6800 { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr }, 6801 { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm }, 6802 { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr }, 6803 { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr }, 6804 { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm }, 6805 { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr } 6806 }; 6807 6808 static const uint16_t ReplaceableInstrsAVX2[][3] = { 6809 //PackedSingle PackedDouble PackedInt 6810 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm }, 6811 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr }, 6812 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm }, 6813 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr }, 6814 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm }, 6815 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr }, 6816 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm }, 6817 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr }, 6818 { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr }, 6819 { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr }, 6820 { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm }, 6821 { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr }, 6822 { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm }, 6823 { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr }, 6824 { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm}, 6825 { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr}, 6826 { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr}, 6827 { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm}, 6828 { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr}, 6829 { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm} 6830 }; 6831 6832 // FIXME: Some shuffle and unpack instructions have equivalents in different 6833 // domains, but they require a bit more work than just switching opcodes. 6834 6835 static const uint16_t *lookup(unsigned opcode, unsigned domain) { 6836 for (const uint16_t (&Row)[3] : ReplaceableInstrs) 6837 if (Row[domain-1] == opcode) 6838 return Row; 6839 return nullptr; 6840 } 6841 6842 static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) { 6843 for (const uint16_t (&Row)[3] : ReplaceableInstrsAVX2) 6844 if (Row[domain-1] == opcode) 6845 return Row; 6846 return nullptr; 6847 } 6848 6849 std::pair<uint16_t, uint16_t> 6850 X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const { 6851 uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3; 6852 bool hasAVX2 = Subtarget.hasAVX2(); 6853 uint16_t validDomains = 0; 6854 if (domain && lookup(MI->getOpcode(), domain)) 6855 validDomains = 0xe; 6856 else if (domain && lookupAVX2(MI->getOpcode(), domain)) 6857 validDomains = hasAVX2 ? 0xe : 0x6; 6858 return std::make_pair(domain, validDomains); 6859 } 6860 6861 void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const { 6862 assert(Domain>0 && Domain<4 && "Invalid execution domain"); 6863 uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3; 6864 assert(dom && "Not an SSE instruction"); 6865 const uint16_t *table = lookup(MI->getOpcode(), dom); 6866 if (!table) { // try the other table 6867 assert((Subtarget.hasAVX2() || Domain < 3) && 6868 "256-bit vector operations only available in AVX2"); 6869 table = lookupAVX2(MI->getOpcode(), dom); 6870 } 6871 assert(table && "Cannot change domain"); 6872 MI->setDesc(get(table[Domain-1])); 6873 } 6874 6875 /// Return the noop instruction to use for a noop. 6876 void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { 6877 NopInst.setOpcode(X86::NOOP); 6878 } 6879 6880 // This code must remain in sync with getJumpInstrTableEntryBound in this class! 6881 // In particular, getJumpInstrTableEntryBound must always return an upper bound 6882 // on the encoding lengths of the instructions generated by 6883 // getUnconditionalBranch and getTrap. 6884 void X86InstrInfo::getUnconditionalBranch( 6885 MCInst &Branch, const MCSymbolRefExpr *BranchTarget) const { 6886 Branch.setOpcode(X86::JMP_1); 6887 Branch.addOperand(MCOperand::createExpr(BranchTarget)); 6888 } 6889 6890 // This code must remain in sync with getJumpInstrTableEntryBound in this class! 6891 // In particular, getJumpInstrTableEntryBound must always return an upper bound 6892 // on the encoding lengths of the instructions generated by 6893 // getUnconditionalBranch and getTrap. 6894 void X86InstrInfo::getTrap(MCInst &MI) const { 6895 MI.setOpcode(X86::TRAP); 6896 } 6897 6898 // See getTrap and getUnconditionalBranch for conditions on the value returned 6899 // by this function. 6900 unsigned X86InstrInfo::getJumpInstrTableEntryBound() const { 6901 // 5 bytes suffice: JMP_4 Symbol@PLT is uses 1 byte (E9) for the JMP_4 and 4 6902 // bytes for the symbol offset. And TRAP is ud2, which is two bytes (0F 0B). 6903 return 5; 6904 } 6905 6906 bool X86InstrInfo::isHighLatencyDef(int opc) const { 6907 switch (opc) { 6908 default: return false; 6909 case X86::DIVSDrm: 6910 case X86::DIVSDrm_Int: 6911 case X86::DIVSDrr: 6912 case X86::DIVSDrr_Int: 6913 case X86::DIVSSrm: 6914 case X86::DIVSSrm_Int: 6915 case X86::DIVSSrr: 6916 case X86::DIVSSrr_Int: 6917 case X86::SQRTPDm: 6918 case X86::SQRTPDr: 6919 case X86::SQRTPSm: 6920 case X86::SQRTPSr: 6921 case X86::SQRTSDm: 6922 case X86::SQRTSDm_Int: 6923 case X86::SQRTSDr: 6924 case X86::SQRTSDr_Int: 6925 case X86::SQRTSSm: 6926 case X86::SQRTSSm_Int: 6927 case X86::SQRTSSr: 6928 case X86::SQRTSSr_Int: 6929 // AVX instructions with high latency 6930 case X86::VDIVSDrm: 6931 case X86::VDIVSDrm_Int: 6932 case X86::VDIVSDrr: 6933 case X86::VDIVSDrr_Int: 6934 case X86::VDIVSSrm: 6935 case X86::VDIVSSrm_Int: 6936 case X86::VDIVSSrr: 6937 case X86::VDIVSSrr_Int: 6938 case X86::VSQRTPDm: 6939 case X86::VSQRTPDr: 6940 case X86::VSQRTPSm: 6941 case X86::VSQRTPSr: 6942 case X86::VSQRTSDm: 6943 case X86::VSQRTSDm_Int: 6944 case X86::VSQRTSDr: 6945 case X86::VSQRTSSm: 6946 case X86::VSQRTSSm_Int: 6947 case X86::VSQRTSSr: 6948 case X86::VSQRTPDZm: 6949 case X86::VSQRTPDZr: 6950 case X86::VSQRTPSZm: 6951 case X86::VSQRTPSZr: 6952 case X86::VSQRTSDZm: 6953 case X86::VSQRTSDZm_Int: 6954 case X86::VSQRTSDZr: 6955 case X86::VSQRTSSZm_Int: 6956 case X86::VSQRTSSZr: 6957 case X86::VSQRTSSZm: 6958 case X86::VDIVSDZrm: 6959 case X86::VDIVSDZrr: 6960 case X86::VDIVSSZrm: 6961 case X86::VDIVSSZrr: 6962 6963 case X86::VGATHERQPSZrm: 6964 case X86::VGATHERQPDZrm: 6965 case X86::VGATHERDPDZrm: 6966 case X86::VGATHERDPSZrm: 6967 case X86::VPGATHERQDZrm: 6968 case X86::VPGATHERQQZrm: 6969 case X86::VPGATHERDDZrm: 6970 case X86::VPGATHERDQZrm: 6971 case X86::VSCATTERQPDZmr: 6972 case X86::VSCATTERQPSZmr: 6973 case X86::VSCATTERDPDZmr: 6974 case X86::VSCATTERDPSZmr: 6975 case X86::VPSCATTERQDZmr: 6976 case X86::VPSCATTERQQZmr: 6977 case X86::VPSCATTERDDZmr: 6978 case X86::VPSCATTERDQZmr: 6979 return true; 6980 } 6981 } 6982 6983 bool X86InstrInfo:: 6984 hasHighOperandLatency(const TargetSchedModel &SchedModel, 6985 const MachineRegisterInfo *MRI, 6986 const MachineInstr *DefMI, unsigned DefIdx, 6987 const MachineInstr *UseMI, unsigned UseIdx) const { 6988 return isHighLatencyDef(DefMI->getOpcode()); 6989 } 6990 6991 bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst, 6992 const MachineBasicBlock *MBB) const { 6993 assert((Inst.getNumOperands() == 3 || Inst.getNumOperands() == 4) && 6994 "Reassociation needs binary operators"); 6995 6996 // Integer binary math/logic instructions have a third source operand: 6997 // the EFLAGS register. That operand must be both defined here and never 6998 // used; ie, it must be dead. If the EFLAGS operand is live, then we can 6999 // not change anything because rearranging the operands could affect other 7000 // instructions that depend on the exact status flags (zero, sign, etc.) 7001 // that are set by using these particular operands with this operation. 7002 if (Inst.getNumOperands() == 4) { 7003 assert(Inst.getOperand(3).isReg() && 7004 Inst.getOperand(3).getReg() == X86::EFLAGS && 7005 "Unexpected operand in reassociable instruction"); 7006 if (!Inst.getOperand(3).isDead()) 7007 return false; 7008 } 7009 7010 return TargetInstrInfo::hasReassociableOperands(Inst, MBB); 7011 } 7012 7013 // TODO: There are many more machine instruction opcodes to match: 7014 // 1. Other data types (integer, vectors) 7015 // 2. Other math / logic operations (xor, or) 7016 // 3. Other forms of the same operation (intrinsics and other variants) 7017 bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 7018 switch (Inst.getOpcode()) { 7019 case X86::AND8rr: 7020 case X86::AND16rr: 7021 case X86::AND32rr: 7022 case X86::AND64rr: 7023 case X86::OR8rr: 7024 case X86::OR16rr: 7025 case X86::OR32rr: 7026 case X86::OR64rr: 7027 case X86::XOR8rr: 7028 case X86::XOR16rr: 7029 case X86::XOR32rr: 7030 case X86::XOR64rr: 7031 case X86::IMUL16rr: 7032 case X86::IMUL32rr: 7033 case X86::IMUL64rr: 7034 case X86::PANDrr: 7035 case X86::PORrr: 7036 case X86::PXORrr: 7037 case X86::VPANDrr: 7038 case X86::VPANDYrr: 7039 case X86::VPORrr: 7040 case X86::VPORYrr: 7041 case X86::VPXORrr: 7042 case X86::VPXORYrr: 7043 // Normal min/max instructions are not commutative because of NaN and signed 7044 // zero semantics, but these are. Thus, there's no need to check for global 7045 // relaxed math; the instructions themselves have the properties we need. 7046 case X86::MAXCPDrr: 7047 case X86::MAXCPSrr: 7048 case X86::MAXCSDrr: 7049 case X86::MAXCSSrr: 7050 case X86::MINCPDrr: 7051 case X86::MINCPSrr: 7052 case X86::MINCSDrr: 7053 case X86::MINCSSrr: 7054 case X86::VMAXCPDrr: 7055 case X86::VMAXCPSrr: 7056 case X86::VMAXCPDYrr: 7057 case X86::VMAXCPSYrr: 7058 case X86::VMAXCSDrr: 7059 case X86::VMAXCSSrr: 7060 case X86::VMINCPDrr: 7061 case X86::VMINCPSrr: 7062 case X86::VMINCPDYrr: 7063 case X86::VMINCPSYrr: 7064 case X86::VMINCSDrr: 7065 case X86::VMINCSSrr: 7066 return true; 7067 case X86::ADDPDrr: 7068 case X86::ADDPSrr: 7069 case X86::ADDSDrr: 7070 case X86::ADDSSrr: 7071 case X86::MULPDrr: 7072 case X86::MULPSrr: 7073 case X86::MULSDrr: 7074 case X86::MULSSrr: 7075 case X86::VADDPDrr: 7076 case X86::VADDPSrr: 7077 case X86::VADDPDYrr: 7078 case X86::VADDPSYrr: 7079 case X86::VADDSDrr: 7080 case X86::VADDSSrr: 7081 case X86::VMULPDrr: 7082 case X86::VMULPSrr: 7083 case X86::VMULPDYrr: 7084 case X86::VMULPSYrr: 7085 case X86::VMULSDrr: 7086 case X86::VMULSSrr: 7087 return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath; 7088 default: 7089 return false; 7090 } 7091 } 7092 7093 /// This is an architecture-specific helper function of reassociateOps. 7094 /// Set special operand attributes for new instructions after reassociation. 7095 void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, 7096 MachineInstr &OldMI2, 7097 MachineInstr &NewMI1, 7098 MachineInstr &NewMI2) const { 7099 // Integer instructions define an implicit EFLAGS source register operand as 7100 // the third source (fourth total) operand. 7101 if (OldMI1.getNumOperands() != 4 || OldMI2.getNumOperands() != 4) 7102 return; 7103 7104 assert(NewMI1.getNumOperands() == 4 && NewMI2.getNumOperands() == 4 && 7105 "Unexpected instruction type for reassociation"); 7106 7107 MachineOperand &OldOp1 = OldMI1.getOperand(3); 7108 MachineOperand &OldOp2 = OldMI2.getOperand(3); 7109 MachineOperand &NewOp1 = NewMI1.getOperand(3); 7110 MachineOperand &NewOp2 = NewMI2.getOperand(3); 7111 7112 assert(OldOp1.isReg() && OldOp1.getReg() == X86::EFLAGS && OldOp1.isDead() && 7113 "Must have dead EFLAGS operand in reassociable instruction"); 7114 assert(OldOp2.isReg() && OldOp2.getReg() == X86::EFLAGS && OldOp2.isDead() && 7115 "Must have dead EFLAGS operand in reassociable instruction"); 7116 7117 (void)OldOp1; 7118 (void)OldOp2; 7119 7120 assert(NewOp1.isReg() && NewOp1.getReg() == X86::EFLAGS && 7121 "Unexpected operand in reassociable instruction"); 7122 assert(NewOp2.isReg() && NewOp2.getReg() == X86::EFLAGS && 7123 "Unexpected operand in reassociable instruction"); 7124 7125 // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations 7126 // of this pass or other passes. The EFLAGS operands must be dead in these new 7127 // instructions because the EFLAGS operands in the original instructions must 7128 // be dead in order for reassociation to occur. 7129 NewOp1.setIsDead(); 7130 NewOp2.setIsDead(); 7131 } 7132 7133 std::pair<unsigned, unsigned> 7134 X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 7135 return std::make_pair(TF, 0u); 7136 } 7137 7138 ArrayRef<std::pair<unsigned, const char *>> 7139 X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 7140 using namespace X86II; 7141 static const std::pair<unsigned, const char *> TargetFlags[] = { 7142 {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"}, 7143 {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"}, 7144 {MO_GOT, "x86-got"}, 7145 {MO_GOTOFF, "x86-gotoff"}, 7146 {MO_GOTPCREL, "x86-gotpcrel"}, 7147 {MO_PLT, "x86-plt"}, 7148 {MO_TLSGD, "x86-tlsgd"}, 7149 {MO_TLSLD, "x86-tlsld"}, 7150 {MO_TLSLDM, "x86-tlsldm"}, 7151 {MO_GOTTPOFF, "x86-gottpoff"}, 7152 {MO_INDNTPOFF, "x86-indntpoff"}, 7153 {MO_TPOFF, "x86-tpoff"}, 7154 {MO_DTPOFF, "x86-dtpoff"}, 7155 {MO_NTPOFF, "x86-ntpoff"}, 7156 {MO_GOTNTPOFF, "x86-gotntpoff"}, 7157 {MO_DLLIMPORT, "x86-dllimport"}, 7158 {MO_DARWIN_STUB, "x86-darwin-stub"}, 7159 {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"}, 7160 {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"}, 7161 {MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE, "x86-darwin-hidden-nonlazy-pic-base"}, 7162 {MO_TLVP, "x86-tlvp"}, 7163 {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"}, 7164 {MO_SECREL, "x86-secrel"}}; 7165 return makeArrayRef(TargetFlags); 7166 } 7167 7168 namespace { 7169 /// Create Global Base Reg pass. This initializes the PIC 7170 /// global base register for x86-32. 7171 struct CGBR : public MachineFunctionPass { 7172 static char ID; 7173 CGBR() : MachineFunctionPass(ID) {} 7174 7175 bool runOnMachineFunction(MachineFunction &MF) override { 7176 const X86TargetMachine *TM = 7177 static_cast<const X86TargetMachine *>(&MF.getTarget()); 7178 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 7179 7180 // Don't do anything if this is 64-bit as 64-bit PIC 7181 // uses RIP relative addressing. 7182 if (STI.is64Bit()) 7183 return false; 7184 7185 // Only emit a global base reg in PIC mode. 7186 if (TM->getRelocationModel() != Reloc::PIC_) 7187 return false; 7188 7189 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 7190 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); 7191 7192 // If we didn't need a GlobalBaseReg, don't insert code. 7193 if (GlobalBaseReg == 0) 7194 return false; 7195 7196 // Insert the set of GlobalBaseReg into the first MBB of the function 7197 MachineBasicBlock &FirstMBB = MF.front(); 7198 MachineBasicBlock::iterator MBBI = FirstMBB.begin(); 7199 DebugLoc DL = FirstMBB.findDebugLoc(MBBI); 7200 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7201 const X86InstrInfo *TII = STI.getInstrInfo(); 7202 7203 unsigned PC; 7204 if (STI.isPICStyleGOT()) 7205 PC = RegInfo.createVirtualRegister(&X86::GR32RegClass); 7206 else 7207 PC = GlobalBaseReg; 7208 7209 // Operand of MovePCtoStack is completely ignored by asm printer. It's 7210 // only used in JIT code emission as displacement to pc. 7211 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0); 7212 7213 // If we're using vanilla 'GOT' PIC style, we should use relative addressing 7214 // not to pc, but to _GLOBAL_OFFSET_TABLE_ external. 7215 if (STI.isPICStyleGOT()) { 7216 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register 7217 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg) 7218 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_", 7219 X86II::MO_GOT_ABSOLUTE_ADDRESS); 7220 } 7221 7222 return true; 7223 } 7224 7225 const char *getPassName() const override { 7226 return "X86 PIC Global Base Reg Initialization"; 7227 } 7228 7229 void getAnalysisUsage(AnalysisUsage &AU) const override { 7230 AU.setPreservesCFG(); 7231 MachineFunctionPass::getAnalysisUsage(AU); 7232 } 7233 }; 7234 } 7235 7236 char CGBR::ID = 0; 7237 FunctionPass* 7238 llvm::createX86GlobalBaseRegPass() { return new CGBR(); } 7239 7240 namespace { 7241 struct LDTLSCleanup : public MachineFunctionPass { 7242 static char ID; 7243 LDTLSCleanup() : MachineFunctionPass(ID) {} 7244 7245 bool runOnMachineFunction(MachineFunction &MF) override { 7246 X86MachineFunctionInfo* MFI = MF.getInfo<X86MachineFunctionInfo>(); 7247 if (MFI->getNumLocalDynamicTLSAccesses() < 2) { 7248 // No point folding accesses if there isn't at least two. 7249 return false; 7250 } 7251 7252 MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>(); 7253 return VisitNode(DT->getRootNode(), 0); 7254 } 7255 7256 // Visit the dominator subtree rooted at Node in pre-order. 7257 // If TLSBaseAddrReg is non-null, then use that to replace any 7258 // TLS_base_addr instructions. Otherwise, create the register 7259 // when the first such instruction is seen, and then use it 7260 // as we encounter more instructions. 7261 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) { 7262 MachineBasicBlock *BB = Node->getBlock(); 7263 bool Changed = false; 7264 7265 // Traverse the current block. 7266 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; 7267 ++I) { 7268 switch (I->getOpcode()) { 7269 case X86::TLS_base_addr32: 7270 case X86::TLS_base_addr64: 7271 if (TLSBaseAddrReg) 7272 I = ReplaceTLSBaseAddrCall(I, TLSBaseAddrReg); 7273 else 7274 I = SetRegister(I, &TLSBaseAddrReg); 7275 Changed = true; 7276 break; 7277 default: 7278 break; 7279 } 7280 } 7281 7282 // Visit the children of this block in the dominator tree. 7283 for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end(); 7284 I != E; ++I) { 7285 Changed |= VisitNode(*I, TLSBaseAddrReg); 7286 } 7287 7288 return Changed; 7289 } 7290 7291 // Replace the TLS_base_addr instruction I with a copy from 7292 // TLSBaseAddrReg, returning the new instruction. 7293 MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr *I, 7294 unsigned TLSBaseAddrReg) { 7295 MachineFunction *MF = I->getParent()->getParent(); 7296 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>(); 7297 const bool is64Bit = STI.is64Bit(); 7298 const X86InstrInfo *TII = STI.getInstrInfo(); 7299 7300 // Insert a Copy from TLSBaseAddrReg to RAX/EAX. 7301 MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(), 7302 TII->get(TargetOpcode::COPY), 7303 is64Bit ? X86::RAX : X86::EAX) 7304 .addReg(TLSBaseAddrReg); 7305 7306 // Erase the TLS_base_addr instruction. 7307 I->eraseFromParent(); 7308 7309 return Copy; 7310 } 7311 7312 // Create a virtal register in *TLSBaseAddrReg, and populate it by 7313 // inserting a copy instruction after I. Returns the new instruction. 7314 MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) { 7315 MachineFunction *MF = I->getParent()->getParent(); 7316 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>(); 7317 const bool is64Bit = STI.is64Bit(); 7318 const X86InstrInfo *TII = STI.getInstrInfo(); 7319 7320 // Create a virtual register for the TLS base address. 7321 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 7322 *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit 7323 ? &X86::GR64RegClass 7324 : &X86::GR32RegClass); 7325 7326 // Insert a copy from RAX/EAX to TLSBaseAddrReg. 7327 MachineInstr *Next = I->getNextNode(); 7328 MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(), 7329 TII->get(TargetOpcode::COPY), 7330 *TLSBaseAddrReg) 7331 .addReg(is64Bit ? X86::RAX : X86::EAX); 7332 7333 return Copy; 7334 } 7335 7336 const char *getPassName() const override { 7337 return "Local Dynamic TLS Access Clean-up"; 7338 } 7339 7340 void getAnalysisUsage(AnalysisUsage &AU) const override { 7341 AU.setPreservesCFG(); 7342 AU.addRequired<MachineDominatorTree>(); 7343 MachineFunctionPass::getAnalysisUsage(AU); 7344 } 7345 }; 7346 } 7347 7348 char LDTLSCleanup::ID = 0; 7349 FunctionPass* 7350 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); } 7351