1 /*M/////////////////////////////////////////////////////////////////////////////////////// 2 // 3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 4 // 5 // By downloading, copying, installing or using the software you agree to this license. 6 // If you do not agree to this license, do not download, install, 7 // copy or use the software. 8 // 9 // 10 // License Agreement 11 // For Open Source Computer Vision Library 12 // 13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. 14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved. 15 // Third party copyrights are property of their respective owners. 16 // 17 // Redistribution and use in source and binary forms, with or without modification, 18 // are permitted provided that the following conditions are met: 19 // 20 // * Redistribution's of source code must retain the above copyright notice, 21 // this list of conditions and the following disclaimer. 22 // 23 // * Redistribution's in binary form must reproduce the above copyright notice, 24 // this list of conditions and the following disclaimer in the documentation 25 // and/or other materials provided with the distribution. 26 // 27 // * The name of the copyright holders may not be used to endorse or promote products 28 // derived from this software without specific prior written permission. 29 // 30 // This software is provided by the copyright holders and contributors "as is" and 31 // any express or implied warranties, including, but not limited to, the implied 32 // warranties of merchantability and fitness for a particular purpose are disclaimed. 33 // In no event shall the Intel Corporation or contributors be liable for any direct, 34 // indirect, incidental, special, exemplary, or consequential damages 35 // (including, but not limited to, procurement of substitute goods or services; 36 // loss of use, data, or profits; or business interruption) however caused 37 // and on any theory of liability, whether in contract, strict liability, 38 // or tort (including negligence or otherwise) arising in any way out of 39 // the use of this software, even if advised of the possibility of such damage. 40 // 41 //M*/ 42 43 #ifndef __OPENCV_CUDA_TEST_UTILITY_HPP__ 44 #define __OPENCV_CUDA_TEST_UTILITY_HPP__ 45 46 #include <stdexcept> 47 #include "cvconfig.h" 48 #include "opencv2/core.hpp" 49 #include "opencv2/core/cuda.hpp" 50 #include "opencv2/imgcodecs.hpp" 51 #include "opencv2/highgui.hpp" 52 #include "opencv2/imgproc.hpp" 53 #include "opencv2/ts.hpp" 54 55 namespace cvtest 56 { 57 ////////////////////////////////////////////////////////////////////// 58 // random generators 59 60 CV_EXPORTS int randomInt(int minVal, int maxVal); 61 CV_EXPORTS double randomDouble(double minVal, double maxVal); 62 CV_EXPORTS cv::Size randomSize(int minVal, int maxVal); 63 CV_EXPORTS cv::Scalar randomScalar(double minVal, double maxVal); 64 CV_EXPORTS cv::Mat randomMat(cv::Size size, int type, double minVal = 0.0, double maxVal = 255.0); 65 66 ////////////////////////////////////////////////////////////////////// 67 // GpuMat create 68 69 CV_EXPORTS cv::cuda::GpuMat createMat(cv::Size size, int type, bool useRoi = false); 70 CV_EXPORTS cv::cuda::GpuMat loadMat(const cv::Mat& m, bool useRoi = false); 71 72 ////////////////////////////////////////////////////////////////////// 73 // Image load 74 75 //! read image from testdata folder 76 CV_EXPORTS cv::Mat readImage(const std::string& fileName, int flags = cv::IMREAD_COLOR); 77 78 //! read image from testdata folder and convert it to specified type 79 CV_EXPORTS cv::Mat readImageType(const std::string& fname, int type); 80 81 ////////////////////////////////////////////////////////////////////// 82 // Gpu devices 83 84 //! return true if device supports specified feature and gpu module was built with support the feature. 85 CV_EXPORTS bool supportFeature(const cv::cuda::DeviceInfo& info, cv::cuda::FeatureSet feature); 86 87 class CV_EXPORTS DeviceManager 88 { 89 public: 90 static DeviceManager& instance(); 91 92 void load(int i); 93 void loadAll(); 94 95 const std::vector<cv::cuda::DeviceInfo>& values() const { return devices_; } 96 97 private: 98 std::vector<cv::cuda::DeviceInfo> devices_; 99 }; 100 101 #define ALL_DEVICES testing::ValuesIn(cvtest::DeviceManager::instance().values()) 102 103 ////////////////////////////////////////////////////////////////////// 104 // Additional assertion 105 106 CV_EXPORTS void minMaxLocGold(const cv::Mat& src, double* minVal_, double* maxVal_ = 0, cv::Point* minLoc_ = 0, cv::Point* maxLoc_ = 0, const cv::Mat& mask = cv::Mat()); 107 108 CV_EXPORTS cv::Mat getMat(cv::InputArray arr); 109 110 CV_EXPORTS testing::AssertionResult assertMatNear(const char* expr1, const char* expr2, const char* eps_expr, cv::InputArray m1, cv::InputArray m2, double eps); 111 112 #define EXPECT_MAT_NEAR(m1, m2, eps) EXPECT_PRED_FORMAT3(cvtest::assertMatNear, m1, m2, eps) 113 #define ASSERT_MAT_NEAR(m1, m2, eps) ASSERT_PRED_FORMAT3(cvtest::assertMatNear, m1, m2, eps) 114 115 #define EXPECT_SCALAR_NEAR(s1, s2, eps) \ 116 { \ 117 EXPECT_NEAR(s1[0], s2[0], eps); \ 118 EXPECT_NEAR(s1[1], s2[1], eps); \ 119 EXPECT_NEAR(s1[2], s2[2], eps); \ 120 EXPECT_NEAR(s1[3], s2[3], eps); \ 121 } 122 #define ASSERT_SCALAR_NEAR(s1, s2, eps) \ 123 { \ 124 ASSERT_NEAR(s1[0], s2[0], eps); \ 125 ASSERT_NEAR(s1[1], s2[1], eps); \ 126 ASSERT_NEAR(s1[2], s2[2], eps); \ 127 ASSERT_NEAR(s1[3], s2[3], eps); \ 128 } 129 130 #define EXPECT_POINT2_NEAR(p1, p2, eps) \ 131 { \ 132 EXPECT_NEAR(p1.x, p2.x, eps); \ 133 EXPECT_NEAR(p1.y, p2.y, eps); \ 134 } 135 #define ASSERT_POINT2_NEAR(p1, p2, eps) \ 136 { \ 137 ASSERT_NEAR(p1.x, p2.x, eps); \ 138 ASSERT_NEAR(p1.y, p2.y, eps); \ 139 } 140 141 #define EXPECT_POINT3_NEAR(p1, p2, eps) \ 142 { \ 143 EXPECT_NEAR(p1.x, p2.x, eps); \ 144 EXPECT_NEAR(p1.y, p2.y, eps); \ 145 EXPECT_NEAR(p1.z, p2.z, eps); \ 146 } 147 #define ASSERT_POINT3_NEAR(p1, p2, eps) \ 148 { \ 149 ASSERT_NEAR(p1.x, p2.x, eps); \ 150 ASSERT_NEAR(p1.y, p2.y, eps); \ 151 ASSERT_NEAR(p1.z, p2.z, eps); \ 152 } 153 154 CV_EXPORTS double checkSimilarity(cv::InputArray m1, cv::InputArray m2); 155 156 #define EXPECT_MAT_SIMILAR(mat1, mat2, eps) \ 157 { \ 158 ASSERT_EQ(mat1.type(), mat2.type()); \ 159 ASSERT_EQ(mat1.size(), mat2.size()); \ 160 EXPECT_LE(checkSimilarity(mat1, mat2), eps); \ 161 } 162 #define ASSERT_MAT_SIMILAR(mat1, mat2, eps) \ 163 { \ 164 ASSERT_EQ(mat1.type(), mat2.type()); \ 165 ASSERT_EQ(mat1.size(), mat2.size()); \ 166 ASSERT_LE(checkSimilarity(mat1, mat2), eps); \ 167 } 168 169 ////////////////////////////////////////////////////////////////////// 170 // Helper structs for value-parameterized tests 171 172 #define CUDA_TEST_P(test_case_name, test_name) \ 173 class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \ 174 : public test_case_name { \ 175 public: \ 176 GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {} \ 177 virtual void TestBody(); \ 178 private: \ 179 void UnsafeTestBody(); \ 180 static int AddToRegistry() { \ 181 ::testing::UnitTest::GetInstance()->parameterized_test_registry(). \ 182 GetTestCasePatternHolder<test_case_name>(\ 183 #test_case_name, __FILE__, __LINE__)->AddTestPattern(\ 184 #test_case_name, \ 185 #test_name, \ 186 new ::testing::internal::TestMetaFactory< \ 187 GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>()); \ 188 return 0; \ 189 } \ 190 static int gtest_registering_dummy_; \ 191 GTEST_DISALLOW_COPY_AND_ASSIGN_(\ 192 GTEST_TEST_CLASS_NAME_(test_case_name, test_name)); \ 193 }; \ 194 int GTEST_TEST_CLASS_NAME_(test_case_name, \ 195 test_name)::gtest_registering_dummy_ = \ 196 GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::AddToRegistry(); \ 197 void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody() \ 198 { \ 199 try \ 200 { \ 201 UnsafeTestBody(); \ 202 } \ 203 catch (...) \ 204 { \ 205 cv::cuda::resetDevice(); \ 206 throw; \ 207 } \ 208 } \ 209 void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::UnsafeTestBody() 210 211 #define PARAM_TEST_CASE(name, ...) struct name : testing::TestWithParam< std::tr1::tuple< __VA_ARGS__ > > 212 #define GET_PARAM(k) std::tr1::get< k >(GetParam()) 213 214 #define DIFFERENT_SIZES testing::Values(cv::Size(128, 128), cv::Size(113, 113)) 215 216 // Depth 217 218 using perf::MatDepth; 219 220 #define ALL_DEPTH testing::Values(MatDepth(CV_8U), MatDepth(CV_8S), MatDepth(CV_16U), MatDepth(CV_16S), MatDepth(CV_32S), MatDepth(CV_32F), MatDepth(CV_64F)) 221 222 #define DEPTH_PAIRS testing::Values(std::make_pair(MatDepth(CV_8U), MatDepth(CV_8U)), \ 223 std::make_pair(MatDepth(CV_8U), MatDepth(CV_16U)), \ 224 std::make_pair(MatDepth(CV_8U), MatDepth(CV_16S)), \ 225 std::make_pair(MatDepth(CV_8U), MatDepth(CV_32S)), \ 226 std::make_pair(MatDepth(CV_8U), MatDepth(CV_32F)), \ 227 std::make_pair(MatDepth(CV_8U), MatDepth(CV_64F)), \ 228 \ 229 std::make_pair(MatDepth(CV_16U), MatDepth(CV_16U)), \ 230 std::make_pair(MatDepth(CV_16U), MatDepth(CV_32S)), \ 231 std::make_pair(MatDepth(CV_16U), MatDepth(CV_32F)), \ 232 std::make_pair(MatDepth(CV_16U), MatDepth(CV_64F)), \ 233 \ 234 std::make_pair(MatDepth(CV_16S), MatDepth(CV_16S)), \ 235 std::make_pair(MatDepth(CV_16S), MatDepth(CV_32S)), \ 236 std::make_pair(MatDepth(CV_16S), MatDepth(CV_32F)), \ 237 std::make_pair(MatDepth(CV_16S), MatDepth(CV_64F)), \ 238 \ 239 std::make_pair(MatDepth(CV_32S), MatDepth(CV_32S)), \ 240 std::make_pair(MatDepth(CV_32S), MatDepth(CV_32F)), \ 241 std::make_pair(MatDepth(CV_32S), MatDepth(CV_64F)), \ 242 \ 243 std::make_pair(MatDepth(CV_32F), MatDepth(CV_32F)), \ 244 std::make_pair(MatDepth(CV_32F), MatDepth(CV_64F)), \ 245 \ 246 std::make_pair(MatDepth(CV_64F), MatDepth(CV_64F))) 247 248 // Type 249 250 using perf::MatType; 251 252 //! return vector with types from specified range. 253 CV_EXPORTS std::vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end); 254 255 //! return vector with all types (depth: CV_8U-CV_64F, channels: 1-4). 256 CV_EXPORTS const std::vector<MatType>& all_types(); 257 258 #define ALL_TYPES testing::ValuesIn(all_types()) 259 #define TYPES(depth_start, depth_end, cn_start, cn_end) testing::ValuesIn(types(depth_start, depth_end, cn_start, cn_end)) 260 261 // ROI 262 263 class UseRoi 264 { 265 public: 266 inline UseRoi(bool val = false) : val_(val) {} 267 268 inline operator bool() const { return val_; } 269 270 private: 271 bool val_; 272 }; 273 274 CV_EXPORTS void PrintTo(const UseRoi& useRoi, std::ostream* os); 275 276 #define WHOLE_SUBMAT testing::Values(UseRoi(false), UseRoi(true)) 277 278 // Direct/Inverse 279 280 class Inverse 281 { 282 public: 283 inline Inverse(bool val = false) : val_(val) {} 284 285 inline operator bool() const { return val_; } 286 287 private: 288 bool val_; 289 }; 290 291 CV_EXPORTS void PrintTo(const Inverse& useRoi, std::ostream* os); 292 293 #define DIRECT_INVERSE testing::Values(Inverse(false), Inverse(true)) 294 295 // Param class 296 297 #define IMPLEMENT_PARAM_CLASS(name, type) \ 298 class name \ 299 { \ 300 public: \ 301 name ( type arg = type ()) : val_(arg) {} \ 302 operator type () const {return val_;} \ 303 private: \ 304 type val_; \ 305 }; \ 306 inline void PrintTo( name param, std::ostream* os) \ 307 { \ 308 *os << #name << "(" << testing::PrintToString(static_cast< type >(param)) << ")"; \ 309 } 310 311 IMPLEMENT_PARAM_CLASS(Channels, int) 312 313 #define ALL_CHANNELS testing::Values(Channels(1), Channels(2), Channels(3), Channels(4)) 314 #define IMAGE_CHANNELS testing::Values(Channels(1), Channels(3), Channels(4)) 315 316 // Flags and enums 317 318 CV_ENUM(NormCode, NORM_INF, NORM_L1, NORM_L2, NORM_TYPE_MASK, NORM_RELATIVE, NORM_MINMAX) 319 320 CV_ENUM(Interpolation, INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, INTER_AREA) 321 322 CV_ENUM(BorderType, BORDER_REFLECT101, BORDER_REPLICATE, BORDER_CONSTANT, BORDER_REFLECT, BORDER_WRAP) 323 #define ALL_BORDER_TYPES testing::Values(BorderType(cv::BORDER_REFLECT101), BorderType(cv::BORDER_REPLICATE), BorderType(cv::BORDER_CONSTANT), BorderType(cv::BORDER_REFLECT), BorderType(cv::BORDER_WRAP)) 324 325 CV_FLAGS(WarpFlags, INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, WARP_INVERSE_MAP) 326 327 ////////////////////////////////////////////////////////////////////// 328 // Features2D 329 330 CV_EXPORTS testing::AssertionResult assertKeyPointsEquals(const char* gold_expr, const char* actual_expr, std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual); 331 332 #define ASSERT_KEYPOINTS_EQ(gold, actual) EXPECT_PRED_FORMAT2(assertKeyPointsEquals, gold, actual) 333 334 CV_EXPORTS int getMatchedPointsCount(std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual); 335 CV_EXPORTS int getMatchedPointsCount(const std::vector<cv::KeyPoint>& keypoints1, const std::vector<cv::KeyPoint>& keypoints2, const std::vector<cv::DMatch>& matches); 336 337 ////////////////////////////////////////////////////////////////////// 338 // Other 339 340 CV_EXPORTS void dumpImage(const std::string& fileName, const cv::Mat& image); 341 CV_EXPORTS void showDiff(cv::InputArray gold, cv::InputArray actual, double eps); 342 343 CV_EXPORTS void parseCudaDeviceOptions(int argc, char **argv); 344 CV_EXPORTS void printCudaInfo(); 345 } 346 347 namespace cv { namespace cuda 348 { 349 CV_EXPORTS void PrintTo(const DeviceInfo& info, std::ostream* os); 350 }} 351 352 #ifdef HAVE_CUDA 353 354 #define CV_CUDA_TEST_MAIN(resourcesubdir) \ 355 CV_TEST_MAIN(resourcesubdir, cvtest::parseCudaDeviceOptions(argc, argv), cvtest::printCudaInfo(), cv::setUseOptimized(false)) 356 357 #else // HAVE_CUDA 358 359 #define CV_CUDA_TEST_MAIN(resourcesubdir) \ 360 int main() \ 361 { \ 362 printf("OpenCV was built without CUDA support\n"); \ 363 return 0; \ 364 } 365 366 #endif // HAVE_CUDA 367 368 369 #endif // __OPENCV_CUDA_TEST_UTILITY_HPP__ 370