1 //===-- llvm/ADT/FoldingSet.h - Uniquing Hash Set ---------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a hash set that can be used to remove duplication of nodes 11 // in a graph. This code was originally created by Chris Lattner for use with 12 // SelectionDAGCSEMap, but was isolated to provide use across the llvm code set. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_ADT_FOLDINGSET_H 17 #define LLVM_ADT_FOLDINGSET_H 18 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/iterator.h" 22 #include "llvm/Support/Allocator.h" 23 #include "llvm/Support/DataTypes.h" 24 25 namespace llvm { 26 /// This folding set used for two purposes: 27 /// 1. Given information about a node we want to create, look up the unique 28 /// instance of the node in the set. If the node already exists, return 29 /// it, otherwise return the bucket it should be inserted into. 30 /// 2. Given a node that has already been created, remove it from the set. 31 /// 32 /// This class is implemented as a single-link chained hash table, where the 33 /// "buckets" are actually the nodes themselves (the next pointer is in the 34 /// node). The last node points back to the bucket to simplify node removal. 35 /// 36 /// Any node that is to be included in the folding set must be a subclass of 37 /// FoldingSetNode. The node class must also define a Profile method used to 38 /// establish the unique bits of data for the node. The Profile method is 39 /// passed a FoldingSetNodeID object which is used to gather the bits. Just 40 /// call one of the Add* functions defined in the FoldingSetImpl::NodeID class. 41 /// NOTE: That the folding set does not own the nodes and it is the 42 /// responsibility of the user to dispose of the nodes. 43 /// 44 /// Eg. 45 /// class MyNode : public FoldingSetNode { 46 /// private: 47 /// std::string Name; 48 /// unsigned Value; 49 /// public: 50 /// MyNode(const char *N, unsigned V) : Name(N), Value(V) {} 51 /// ... 52 /// void Profile(FoldingSetNodeID &ID) const { 53 /// ID.AddString(Name); 54 /// ID.AddInteger(Value); 55 /// } 56 /// ... 57 /// }; 58 /// 59 /// To define the folding set itself use the FoldingSet template; 60 /// 61 /// Eg. 62 /// FoldingSet<MyNode> MyFoldingSet; 63 /// 64 /// Four public methods are available to manipulate the folding set; 65 /// 66 /// 1) If you have an existing node that you want add to the set but unsure 67 /// that the node might already exist then call; 68 /// 69 /// MyNode *M = MyFoldingSet.GetOrInsertNode(N); 70 /// 71 /// If The result is equal to the input then the node has been inserted. 72 /// Otherwise, the result is the node existing in the folding set, and the 73 /// input can be discarded (use the result instead.) 74 /// 75 /// 2) If you are ready to construct a node but want to check if it already 76 /// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to 77 /// check; 78 /// 79 /// FoldingSetNodeID ID; 80 /// ID.AddString(Name); 81 /// ID.AddInteger(Value); 82 /// void *InsertPoint; 83 /// 84 /// MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint); 85 /// 86 /// If found then M with be non-NULL, else InsertPoint will point to where it 87 /// should be inserted using InsertNode. 88 /// 89 /// 3) If you get a NULL result from FindNodeOrInsertPos then you can as a new 90 /// node with FindNodeOrInsertPos; 91 /// 92 /// InsertNode(N, InsertPoint); 93 /// 94 /// 4) Finally, if you want to remove a node from the folding set call; 95 /// 96 /// bool WasRemoved = RemoveNode(N); 97 /// 98 /// The result indicates whether the node existed in the folding set. 99 100 class FoldingSetNodeID; 101 102 //===----------------------------------------------------------------------===// 103 /// FoldingSetImpl - Implements the folding set functionality. The main 104 /// structure is an array of buckets. Each bucket is indexed by the hash of 105 /// the nodes it contains. The bucket itself points to the nodes contained 106 /// in the bucket via a singly linked list. The last node in the list points 107 /// back to the bucket to facilitate node removal. 108 /// 109 class FoldingSetImpl { 110 virtual void anchor(); // Out of line virtual method. 111 112 protected: 113 /// Buckets - Array of bucket chains. 114 /// 115 void **Buckets; 116 117 /// NumBuckets - Length of the Buckets array. Always a power of 2. 118 /// 119 unsigned NumBuckets; 120 121 /// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes 122 /// is greater than twice the number of buckets. 123 unsigned NumNodes; 124 125 explicit FoldingSetImpl(unsigned Log2InitSize = 6); 126 FoldingSetImpl(FoldingSetImpl &&Arg); 127 FoldingSetImpl &operator=(FoldingSetImpl &&RHS); 128 ~FoldingSetImpl(); 129 130 public: 131 //===--------------------------------------------------------------------===// 132 /// Node - This class is used to maintain the singly linked bucket list in 133 /// a folding set. 134 /// 135 class Node { 136 private: 137 // NextInFoldingSetBucket - next link in the bucket list. 138 void *NextInFoldingSetBucket; 139 140 public: 141 Node() : NextInFoldingSetBucket(nullptr) {} 142 143 // Accessors 144 void *getNextInBucket() const { return NextInFoldingSetBucket; } 145 void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; } 146 }; 147 148 /// clear - Remove all nodes from the folding set. 149 void clear(); 150 151 /// RemoveNode - Remove a node from the folding set, returning true if one 152 /// was removed or false if the node was not in the folding set. 153 bool RemoveNode(Node *N); 154 155 /// GetOrInsertNode - If there is an existing simple Node exactly 156 /// equal to the specified node, return it. Otherwise, insert 'N' and return 157 /// it instead. 158 Node *GetOrInsertNode(Node *N); 159 160 /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, 161 /// return it. If not, return the insertion token that will make insertion 162 /// faster. 163 Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos); 164 165 /// InsertNode - Insert the specified node into the folding set, knowing that 166 /// it is not already in the folding set. InsertPos must be obtained from 167 /// FindNodeOrInsertPos. 168 void InsertNode(Node *N, void *InsertPos); 169 170 /// InsertNode - Insert the specified node into the folding set, knowing that 171 /// it is not already in the folding set. 172 void InsertNode(Node *N) { 173 Node *Inserted = GetOrInsertNode(N); 174 (void)Inserted; 175 assert(Inserted == N && "Node already inserted!"); 176 } 177 178 /// size - Returns the number of nodes in the folding set. 179 unsigned size() const { return NumNodes; } 180 181 /// empty - Returns true if there are no nodes in the folding set. 182 bool empty() const { return NumNodes == 0; } 183 184 private: 185 /// GrowHashTable - Double the size of the hash table and rehash everything. 186 /// 187 void GrowHashTable(); 188 189 protected: 190 /// GetNodeProfile - Instantiations of the FoldingSet template implement 191 /// this function to gather data bits for the given node. 192 virtual void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const = 0; 193 /// NodeEquals - Instantiations of the FoldingSet template implement 194 /// this function to compare the given node with the given ID. 195 virtual bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash, 196 FoldingSetNodeID &TempID) const=0; 197 /// ComputeNodeHash - Instantiations of the FoldingSet template implement 198 /// this function to compute a hash value for the given node. 199 virtual unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const = 0; 200 }; 201 202 //===----------------------------------------------------------------------===// 203 204 template<typename T> struct FoldingSetTrait; 205 206 /// DefaultFoldingSetTrait - This class provides default implementations 207 /// for FoldingSetTrait implementations. 208 /// 209 template<typename T> struct DefaultFoldingSetTrait { 210 static void Profile(const T &X, FoldingSetNodeID &ID) { 211 X.Profile(ID); 212 } 213 static void Profile(T &X, FoldingSetNodeID &ID) { 214 X.Profile(ID); 215 } 216 217 // Equals - Test if the profile for X would match ID, using TempID 218 // to compute a temporary ID if necessary. The default implementation 219 // just calls Profile and does a regular comparison. Implementations 220 // can override this to provide more efficient implementations. 221 static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash, 222 FoldingSetNodeID &TempID); 223 224 // ComputeHash - Compute a hash value for X, using TempID to 225 // compute a temporary ID if necessary. The default implementation 226 // just calls Profile and does a regular hash computation. 227 // Implementations can override this to provide more efficient 228 // implementations. 229 static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID); 230 }; 231 232 /// FoldingSetTrait - This trait class is used to define behavior of how 233 /// to "profile" (in the FoldingSet parlance) an object of a given type. 234 /// The default behavior is to invoke a 'Profile' method on an object, but 235 /// through template specialization the behavior can be tailored for specific 236 /// types. Combined with the FoldingSetNodeWrapper class, one can add objects 237 /// to FoldingSets that were not originally designed to have that behavior. 238 template<typename T> struct FoldingSetTrait 239 : public DefaultFoldingSetTrait<T> {}; 240 241 template<typename T, typename Ctx> struct ContextualFoldingSetTrait; 242 243 /// DefaultContextualFoldingSetTrait - Like DefaultFoldingSetTrait, but 244 /// for ContextualFoldingSets. 245 template<typename T, typename Ctx> 246 struct DefaultContextualFoldingSetTrait { 247 static void Profile(T &X, FoldingSetNodeID &ID, Ctx Context) { 248 X.Profile(ID, Context); 249 } 250 static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash, 251 FoldingSetNodeID &TempID, Ctx Context); 252 static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID, 253 Ctx Context); 254 }; 255 256 /// ContextualFoldingSetTrait - Like FoldingSetTrait, but for 257 /// ContextualFoldingSets. 258 template<typename T, typename Ctx> struct ContextualFoldingSetTrait 259 : public DefaultContextualFoldingSetTrait<T, Ctx> {}; 260 261 //===--------------------------------------------------------------------===// 262 /// FoldingSetNodeIDRef - This class describes a reference to an interned 263 /// FoldingSetNodeID, which can be a useful to store node id data rather 264 /// than using plain FoldingSetNodeIDs, since the 32-element SmallVector 265 /// is often much larger than necessary, and the possibility of heap 266 /// allocation means it requires a non-trivial destructor call. 267 class FoldingSetNodeIDRef { 268 const unsigned *Data; 269 size_t Size; 270 271 public: 272 FoldingSetNodeIDRef() : Data(nullptr), Size(0) {} 273 FoldingSetNodeIDRef(const unsigned *D, size_t S) : Data(D), Size(S) {} 274 275 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef, 276 /// used to lookup the node in the FoldingSetImpl. 277 unsigned ComputeHash() const; 278 279 bool operator==(FoldingSetNodeIDRef) const; 280 281 bool operator!=(FoldingSetNodeIDRef RHS) const { return !(*this == RHS); } 282 283 /// Used to compare the "ordering" of two nodes as defined by the 284 /// profiled bits and their ordering defined by memcmp(). 285 bool operator<(FoldingSetNodeIDRef) const; 286 287 const unsigned *getData() const { return Data; } 288 size_t getSize() const { return Size; } 289 }; 290 291 //===--------------------------------------------------------------------===// 292 /// FoldingSetNodeID - This class is used to gather all the unique data bits of 293 /// a node. When all the bits are gathered this class is used to produce a 294 /// hash value for the node. 295 /// 296 class FoldingSetNodeID { 297 /// Bits - Vector of all the data bits that make the node unique. 298 /// Use a SmallVector to avoid a heap allocation in the common case. 299 SmallVector<unsigned, 32> Bits; 300 301 public: 302 FoldingSetNodeID() {} 303 304 FoldingSetNodeID(FoldingSetNodeIDRef Ref) 305 : Bits(Ref.getData(), Ref.getData() + Ref.getSize()) {} 306 307 /// Add* - Add various data types to Bit data. 308 /// 309 void AddPointer(const void *Ptr); 310 void AddInteger(signed I); 311 void AddInteger(unsigned I); 312 void AddInteger(long I); 313 void AddInteger(unsigned long I); 314 void AddInteger(long long I); 315 void AddInteger(unsigned long long I); 316 void AddBoolean(bool B) { AddInteger(B ? 1U : 0U); } 317 void AddString(StringRef String); 318 void AddNodeID(const FoldingSetNodeID &ID); 319 320 template <typename T> 321 inline void Add(const T &x) { FoldingSetTrait<T>::Profile(x, *this); } 322 323 /// clear - Clear the accumulated profile, allowing this FoldingSetNodeID 324 /// object to be used to compute a new profile. 325 inline void clear() { Bits.clear(); } 326 327 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used 328 /// to lookup the node in the FoldingSetImpl. 329 unsigned ComputeHash() const; 330 331 /// operator== - Used to compare two nodes to each other. 332 /// 333 bool operator==(const FoldingSetNodeID &RHS) const; 334 bool operator==(const FoldingSetNodeIDRef RHS) const; 335 336 bool operator!=(const FoldingSetNodeID &RHS) const { return !(*this == RHS); } 337 bool operator!=(const FoldingSetNodeIDRef RHS) const { return !(*this ==RHS);} 338 339 /// Used to compare the "ordering" of two nodes as defined by the 340 /// profiled bits and their ordering defined by memcmp(). 341 bool operator<(const FoldingSetNodeID &RHS) const; 342 bool operator<(const FoldingSetNodeIDRef RHS) const; 343 344 /// Intern - Copy this node's data to a memory region allocated from the 345 /// given allocator and return a FoldingSetNodeIDRef describing the 346 /// interned data. 347 FoldingSetNodeIDRef Intern(BumpPtrAllocator &Allocator) const; 348 }; 349 350 // Convenience type to hide the implementation of the folding set. 351 typedef FoldingSetImpl::Node FoldingSetNode; 352 template<class T> class FoldingSetIterator; 353 template<class T> class FoldingSetBucketIterator; 354 355 // Definitions of FoldingSetTrait and ContextualFoldingSetTrait functions, which 356 // require the definition of FoldingSetNodeID. 357 template<typename T> 358 inline bool 359 DefaultFoldingSetTrait<T>::Equals(T &X, const FoldingSetNodeID &ID, 360 unsigned /*IDHash*/, 361 FoldingSetNodeID &TempID) { 362 FoldingSetTrait<T>::Profile(X, TempID); 363 return TempID == ID; 364 } 365 template<typename T> 366 inline unsigned 367 DefaultFoldingSetTrait<T>::ComputeHash(T &X, FoldingSetNodeID &TempID) { 368 FoldingSetTrait<T>::Profile(X, TempID); 369 return TempID.ComputeHash(); 370 } 371 template<typename T, typename Ctx> 372 inline bool 373 DefaultContextualFoldingSetTrait<T, Ctx>::Equals(T &X, 374 const FoldingSetNodeID &ID, 375 unsigned /*IDHash*/, 376 FoldingSetNodeID &TempID, 377 Ctx Context) { 378 ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context); 379 return TempID == ID; 380 } 381 template<typename T, typename Ctx> 382 inline unsigned 383 DefaultContextualFoldingSetTrait<T, Ctx>::ComputeHash(T &X, 384 FoldingSetNodeID &TempID, 385 Ctx Context) { 386 ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context); 387 return TempID.ComputeHash(); 388 } 389 390 //===----------------------------------------------------------------------===// 391 /// FoldingSet - This template class is used to instantiate a specialized 392 /// implementation of the folding set to the node class T. T must be a 393 /// subclass of FoldingSetNode and implement a Profile function. 394 /// 395 /// Note that this set type is movable and move-assignable. However, its 396 /// moved-from state is not a valid state for anything other than 397 /// move-assigning and destroying. This is primarily to enable movable APIs 398 /// that incorporate these objects. 399 template <class T> class FoldingSet final : public FoldingSetImpl { 400 private: 401 /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a 402 /// way to convert nodes into a unique specifier. 403 void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const override { 404 T *TN = static_cast<T *>(N); 405 FoldingSetTrait<T>::Profile(*TN, ID); 406 } 407 /// NodeEquals - Instantiations may optionally provide a way to compare a 408 /// node with a specified ID. 409 bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash, 410 FoldingSetNodeID &TempID) const override { 411 T *TN = static_cast<T *>(N); 412 return FoldingSetTrait<T>::Equals(*TN, ID, IDHash, TempID); 413 } 414 /// ComputeNodeHash - Instantiations may optionally provide a way to compute a 415 /// hash value directly from a node. 416 unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const override { 417 T *TN = static_cast<T *>(N); 418 return FoldingSetTrait<T>::ComputeHash(*TN, TempID); 419 } 420 421 public: 422 explicit FoldingSet(unsigned Log2InitSize = 6) 423 : FoldingSetImpl(Log2InitSize) {} 424 425 FoldingSet(FoldingSet &&Arg) : FoldingSetImpl(std::move(Arg)) {} 426 FoldingSet &operator=(FoldingSet &&RHS) { 427 (void)FoldingSetImpl::operator=(std::move(RHS)); 428 return *this; 429 } 430 431 typedef FoldingSetIterator<T> iterator; 432 iterator begin() { return iterator(Buckets); } 433 iterator end() { return iterator(Buckets+NumBuckets); } 434 435 typedef FoldingSetIterator<const T> const_iterator; 436 const_iterator begin() const { return const_iterator(Buckets); } 437 const_iterator end() const { return const_iterator(Buckets+NumBuckets); } 438 439 typedef FoldingSetBucketIterator<T> bucket_iterator; 440 441 bucket_iterator bucket_begin(unsigned hash) { 442 return bucket_iterator(Buckets + (hash & (NumBuckets-1))); 443 } 444 445 bucket_iterator bucket_end(unsigned hash) { 446 return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true); 447 } 448 449 /// GetOrInsertNode - If there is an existing simple Node exactly 450 /// equal to the specified node, return it. Otherwise, insert 'N' and 451 /// return it instead. 452 T *GetOrInsertNode(Node *N) { 453 return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N)); 454 } 455 456 /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, 457 /// return it. If not, return the insertion token that will make insertion 458 /// faster. 459 T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) { 460 return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos)); 461 } 462 }; 463 464 //===----------------------------------------------------------------------===// 465 /// ContextualFoldingSet - This template class is a further refinement 466 /// of FoldingSet which provides a context argument when calling 467 /// Profile on its nodes. Currently, that argument is fixed at 468 /// initialization time. 469 /// 470 /// T must be a subclass of FoldingSetNode and implement a Profile 471 /// function with signature 472 /// void Profile(llvm::FoldingSetNodeID &, Ctx); 473 template <class T, class Ctx> 474 class ContextualFoldingSet final : public FoldingSetImpl { 475 // Unfortunately, this can't derive from FoldingSet<T> because the 476 // construction vtable for FoldingSet<T> requires 477 // FoldingSet<T>::GetNodeProfile to be instantiated, which in turn 478 // requires a single-argument T::Profile(). 479 480 private: 481 Ctx Context; 482 483 /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a 484 /// way to convert nodes into a unique specifier. 485 void GetNodeProfile(FoldingSetImpl::Node *N, 486 FoldingSetNodeID &ID) const override { 487 T *TN = static_cast<T *>(N); 488 ContextualFoldingSetTrait<T, Ctx>::Profile(*TN, ID, Context); 489 } 490 bool NodeEquals(FoldingSetImpl::Node *N, const FoldingSetNodeID &ID, 491 unsigned IDHash, FoldingSetNodeID &TempID) const override { 492 T *TN = static_cast<T *>(N); 493 return ContextualFoldingSetTrait<T, Ctx>::Equals(*TN, ID, IDHash, TempID, 494 Context); 495 } 496 unsigned ComputeNodeHash(FoldingSetImpl::Node *N, 497 FoldingSetNodeID &TempID) const override { 498 T *TN = static_cast<T *>(N); 499 return ContextualFoldingSetTrait<T, Ctx>::ComputeHash(*TN, TempID, Context); 500 } 501 502 public: 503 explicit ContextualFoldingSet(Ctx Context, unsigned Log2InitSize = 6) 504 : FoldingSetImpl(Log2InitSize), Context(Context) 505 {} 506 507 Ctx getContext() const { return Context; } 508 509 typedef FoldingSetIterator<T> iterator; 510 iterator begin() { return iterator(Buckets); } 511 iterator end() { return iterator(Buckets+NumBuckets); } 512 513 typedef FoldingSetIterator<const T> const_iterator; 514 const_iterator begin() const { return const_iterator(Buckets); } 515 const_iterator end() const { return const_iterator(Buckets+NumBuckets); } 516 517 typedef FoldingSetBucketIterator<T> bucket_iterator; 518 519 bucket_iterator bucket_begin(unsigned hash) { 520 return bucket_iterator(Buckets + (hash & (NumBuckets-1))); 521 } 522 523 bucket_iterator bucket_end(unsigned hash) { 524 return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true); 525 } 526 527 /// GetOrInsertNode - If there is an existing simple Node exactly 528 /// equal to the specified node, return it. Otherwise, insert 'N' 529 /// and return it instead. 530 T *GetOrInsertNode(Node *N) { 531 return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N)); 532 } 533 534 /// FindNodeOrInsertPos - Look up the node specified by ID. If it 535 /// exists, return it. If not, return the insertion token that will 536 /// make insertion faster. 537 T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) { 538 return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos)); 539 } 540 }; 541 542 //===----------------------------------------------------------------------===// 543 /// FoldingSetVector - This template class combines a FoldingSet and a vector 544 /// to provide the interface of FoldingSet but with deterministic iteration 545 /// order based on the insertion order. T must be a subclass of FoldingSetNode 546 /// and implement a Profile function. 547 template <class T, class VectorT = SmallVector<T*, 8> > 548 class FoldingSetVector { 549 FoldingSet<T> Set; 550 VectorT Vector; 551 552 public: 553 explicit FoldingSetVector(unsigned Log2InitSize = 6) 554 : Set(Log2InitSize) { 555 } 556 557 typedef pointee_iterator<typename VectorT::iterator> iterator; 558 iterator begin() { return Vector.begin(); } 559 iterator end() { return Vector.end(); } 560 561 typedef pointee_iterator<typename VectorT::const_iterator> const_iterator; 562 const_iterator begin() const { return Vector.begin(); } 563 const_iterator end() const { return Vector.end(); } 564 565 /// clear - Remove all nodes from the folding set. 566 void clear() { Set.clear(); Vector.clear(); } 567 568 /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, 569 /// return it. If not, return the insertion token that will make insertion 570 /// faster. 571 T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) { 572 return Set.FindNodeOrInsertPos(ID, InsertPos); 573 } 574 575 /// GetOrInsertNode - If there is an existing simple Node exactly 576 /// equal to the specified node, return it. Otherwise, insert 'N' and 577 /// return it instead. 578 T *GetOrInsertNode(T *N) { 579 T *Result = Set.GetOrInsertNode(N); 580 if (Result == N) Vector.push_back(N); 581 return Result; 582 } 583 584 /// InsertNode - Insert the specified node into the folding set, knowing that 585 /// it is not already in the folding set. InsertPos must be obtained from 586 /// FindNodeOrInsertPos. 587 void InsertNode(T *N, void *InsertPos) { 588 Set.InsertNode(N, InsertPos); 589 Vector.push_back(N); 590 } 591 592 /// InsertNode - Insert the specified node into the folding set, knowing that 593 /// it is not already in the folding set. 594 void InsertNode(T *N) { 595 Set.InsertNode(N); 596 Vector.push_back(N); 597 } 598 599 /// size - Returns the number of nodes in the folding set. 600 unsigned size() const { return Set.size(); } 601 602 /// empty - Returns true if there are no nodes in the folding set. 603 bool empty() const { return Set.empty(); } 604 }; 605 606 //===----------------------------------------------------------------------===// 607 /// FoldingSetIteratorImpl - This is the common iterator support shared by all 608 /// folding sets, which knows how to walk the folding set hash table. 609 class FoldingSetIteratorImpl { 610 protected: 611 FoldingSetNode *NodePtr; 612 FoldingSetIteratorImpl(void **Bucket); 613 void advance(); 614 615 public: 616 bool operator==(const FoldingSetIteratorImpl &RHS) const { 617 return NodePtr == RHS.NodePtr; 618 } 619 bool operator!=(const FoldingSetIteratorImpl &RHS) const { 620 return NodePtr != RHS.NodePtr; 621 } 622 }; 623 624 template <class T> class FoldingSetIterator : public FoldingSetIteratorImpl { 625 public: 626 explicit FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {} 627 628 T &operator*() const { 629 return *static_cast<T*>(NodePtr); 630 } 631 632 T *operator->() const { 633 return static_cast<T*>(NodePtr); 634 } 635 636 inline FoldingSetIterator &operator++() { // Preincrement 637 advance(); 638 return *this; 639 } 640 FoldingSetIterator operator++(int) { // Postincrement 641 FoldingSetIterator tmp = *this; ++*this; return tmp; 642 } 643 }; 644 645 //===----------------------------------------------------------------------===// 646 /// FoldingSetBucketIteratorImpl - This is the common bucket iterator support 647 /// shared by all folding sets, which knows how to walk a particular bucket 648 /// of a folding set hash table. 649 650 class FoldingSetBucketIteratorImpl { 651 protected: 652 void *Ptr; 653 654 explicit FoldingSetBucketIteratorImpl(void **Bucket); 655 656 FoldingSetBucketIteratorImpl(void **Bucket, bool) 657 : Ptr(Bucket) {} 658 659 void advance() { 660 void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket(); 661 uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1; 662 Ptr = reinterpret_cast<void*>(x); 663 } 664 665 public: 666 bool operator==(const FoldingSetBucketIteratorImpl &RHS) const { 667 return Ptr == RHS.Ptr; 668 } 669 bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const { 670 return Ptr != RHS.Ptr; 671 } 672 }; 673 674 template <class T> 675 class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl { 676 public: 677 explicit FoldingSetBucketIterator(void **Bucket) : 678 FoldingSetBucketIteratorImpl(Bucket) {} 679 680 FoldingSetBucketIterator(void **Bucket, bool) : 681 FoldingSetBucketIteratorImpl(Bucket, true) {} 682 683 T &operator*() const { return *static_cast<T*>(Ptr); } 684 T *operator->() const { return static_cast<T*>(Ptr); } 685 686 inline FoldingSetBucketIterator &operator++() { // Preincrement 687 advance(); 688 return *this; 689 } 690 FoldingSetBucketIterator operator++(int) { // Postincrement 691 FoldingSetBucketIterator tmp = *this; ++*this; return tmp; 692 } 693 }; 694 695 //===----------------------------------------------------------------------===// 696 /// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary 697 /// types in an enclosing object so that they can be inserted into FoldingSets. 698 template <typename T> 699 class FoldingSetNodeWrapper : public FoldingSetNode { 700 T data; 701 702 public: 703 template <typename... Ts> 704 explicit FoldingSetNodeWrapper(Ts &&... Args) 705 : data(std::forward<Ts>(Args)...) {} 706 707 void Profile(FoldingSetNodeID &ID) { FoldingSetTrait<T>::Profile(data, ID); } 708 709 T &getValue() { return data; } 710 const T &getValue() const { return data; } 711 712 operator T&() { return data; } 713 operator const T&() const { return data; } 714 }; 715 716 //===----------------------------------------------------------------------===// 717 /// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores 718 /// a FoldingSetNodeID value rather than requiring the node to recompute it 719 /// each time it is needed. This trades space for speed (which can be 720 /// significant if the ID is long), and it also permits nodes to drop 721 /// information that would otherwise only be required for recomputing an ID. 722 class FastFoldingSetNode : public FoldingSetNode { 723 FoldingSetNodeID FastID; 724 725 protected: 726 explicit FastFoldingSetNode(const FoldingSetNodeID &ID) : FastID(ID) {} 727 728 public: 729 void Profile(FoldingSetNodeID &ID) const { ID.AddNodeID(FastID); } 730 }; 731 732 //===----------------------------------------------------------------------===// 733 // Partial specializations of FoldingSetTrait. 734 735 template<typename T> struct FoldingSetTrait<T*> { 736 static inline void Profile(T *X, FoldingSetNodeID &ID) { 737 ID.AddPointer(X); 738 } 739 }; 740 template <typename T1, typename T2> 741 struct FoldingSetTrait<std::pair<T1, T2>> { 742 static inline void Profile(const std::pair<T1, T2> &P, 743 llvm::FoldingSetNodeID &ID) { 744 ID.Add(P.first); 745 ID.Add(P.second); 746 } 747 }; 748 } // End of namespace llvm. 749 750 #endif 751