Home | History | Annotate | Download | only in ADT
      1 //===-- llvm/ADT/FoldingSet.h - Uniquing Hash Set ---------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines a hash set that can be used to remove duplication of nodes
     11 // in a graph.  This code was originally created by Chris Lattner for use with
     12 // SelectionDAGCSEMap, but was isolated to provide use across the llvm code set.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_ADT_FOLDINGSET_H
     17 #define LLVM_ADT_FOLDINGSET_H
     18 
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/ADT/StringRef.h"
     21 #include "llvm/ADT/iterator.h"
     22 #include "llvm/Support/Allocator.h"
     23 #include "llvm/Support/DataTypes.h"
     24 
     25 namespace llvm {
     26 /// This folding set used for two purposes:
     27 ///   1. Given information about a node we want to create, look up the unique
     28 ///      instance of the node in the set.  If the node already exists, return
     29 ///      it, otherwise return the bucket it should be inserted into.
     30 ///   2. Given a node that has already been created, remove it from the set.
     31 ///
     32 /// This class is implemented as a single-link chained hash table, where the
     33 /// "buckets" are actually the nodes themselves (the next pointer is in the
     34 /// node).  The last node points back to the bucket to simplify node removal.
     35 ///
     36 /// Any node that is to be included in the folding set must be a subclass of
     37 /// FoldingSetNode.  The node class must also define a Profile method used to
     38 /// establish the unique bits of data for the node.  The Profile method is
     39 /// passed a FoldingSetNodeID object which is used to gather the bits.  Just
     40 /// call one of the Add* functions defined in the FoldingSetImpl::NodeID class.
     41 /// NOTE: That the folding set does not own the nodes and it is the
     42 /// responsibility of the user to dispose of the nodes.
     43 ///
     44 /// Eg.
     45 ///    class MyNode : public FoldingSetNode {
     46 ///    private:
     47 ///      std::string Name;
     48 ///      unsigned Value;
     49 ///    public:
     50 ///      MyNode(const char *N, unsigned V) : Name(N), Value(V) {}
     51 ///       ...
     52 ///      void Profile(FoldingSetNodeID &ID) const {
     53 ///        ID.AddString(Name);
     54 ///        ID.AddInteger(Value);
     55 ///      }
     56 ///      ...
     57 ///    };
     58 ///
     59 /// To define the folding set itself use the FoldingSet template;
     60 ///
     61 /// Eg.
     62 ///    FoldingSet<MyNode> MyFoldingSet;
     63 ///
     64 /// Four public methods are available to manipulate the folding set;
     65 ///
     66 /// 1) If you have an existing node that you want add to the set but unsure
     67 /// that the node might already exist then call;
     68 ///
     69 ///    MyNode *M = MyFoldingSet.GetOrInsertNode(N);
     70 ///
     71 /// If The result is equal to the input then the node has been inserted.
     72 /// Otherwise, the result is the node existing in the folding set, and the
     73 /// input can be discarded (use the result instead.)
     74 ///
     75 /// 2) If you are ready to construct a node but want to check if it already
     76 /// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to
     77 /// check;
     78 ///
     79 ///   FoldingSetNodeID ID;
     80 ///   ID.AddString(Name);
     81 ///   ID.AddInteger(Value);
     82 ///   void *InsertPoint;
     83 ///
     84 ///    MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint);
     85 ///
     86 /// If found then M with be non-NULL, else InsertPoint will point to where it
     87 /// should be inserted using InsertNode.
     88 ///
     89 /// 3) If you get a NULL result from FindNodeOrInsertPos then you can as a new
     90 /// node with FindNodeOrInsertPos;
     91 ///
     92 ///    InsertNode(N, InsertPoint);
     93 ///
     94 /// 4) Finally, if you want to remove a node from the folding set call;
     95 ///
     96 ///    bool WasRemoved = RemoveNode(N);
     97 ///
     98 /// The result indicates whether the node existed in the folding set.
     99 
    100 class FoldingSetNodeID;
    101 
    102 //===----------------------------------------------------------------------===//
    103 /// FoldingSetImpl - Implements the folding set functionality.  The main
    104 /// structure is an array of buckets.  Each bucket is indexed by the hash of
    105 /// the nodes it contains.  The bucket itself points to the nodes contained
    106 /// in the bucket via a singly linked list.  The last node in the list points
    107 /// back to the bucket to facilitate node removal.
    108 ///
    109 class FoldingSetImpl {
    110   virtual void anchor(); // Out of line virtual method.
    111 
    112 protected:
    113   /// Buckets - Array of bucket chains.
    114   ///
    115   void **Buckets;
    116 
    117   /// NumBuckets - Length of the Buckets array.  Always a power of 2.
    118   ///
    119   unsigned NumBuckets;
    120 
    121   /// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes
    122   /// is greater than twice the number of buckets.
    123   unsigned NumNodes;
    124 
    125   explicit FoldingSetImpl(unsigned Log2InitSize = 6);
    126   FoldingSetImpl(FoldingSetImpl &&Arg);
    127   FoldingSetImpl &operator=(FoldingSetImpl &&RHS);
    128   ~FoldingSetImpl();
    129 
    130 public:
    131   //===--------------------------------------------------------------------===//
    132   /// Node - This class is used to maintain the singly linked bucket list in
    133   /// a folding set.
    134   ///
    135   class Node {
    136   private:
    137     // NextInFoldingSetBucket - next link in the bucket list.
    138     void *NextInFoldingSetBucket;
    139 
    140   public:
    141     Node() : NextInFoldingSetBucket(nullptr) {}
    142 
    143     // Accessors
    144     void *getNextInBucket() const { return NextInFoldingSetBucket; }
    145     void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; }
    146   };
    147 
    148   /// clear - Remove all nodes from the folding set.
    149   void clear();
    150 
    151   /// RemoveNode - Remove a node from the folding set, returning true if one
    152   /// was removed or false if the node was not in the folding set.
    153   bool RemoveNode(Node *N);
    154 
    155   /// GetOrInsertNode - If there is an existing simple Node exactly
    156   /// equal to the specified node, return it.  Otherwise, insert 'N' and return
    157   /// it instead.
    158   Node *GetOrInsertNode(Node *N);
    159 
    160   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
    161   /// return it.  If not, return the insertion token that will make insertion
    162   /// faster.
    163   Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
    164 
    165   /// InsertNode - Insert the specified node into the folding set, knowing that
    166   /// it is not already in the folding set.  InsertPos must be obtained from
    167   /// FindNodeOrInsertPos.
    168   void InsertNode(Node *N, void *InsertPos);
    169 
    170   /// InsertNode - Insert the specified node into the folding set, knowing that
    171   /// it is not already in the folding set.
    172   void InsertNode(Node *N) {
    173     Node *Inserted = GetOrInsertNode(N);
    174     (void)Inserted;
    175     assert(Inserted == N && "Node already inserted!");
    176   }
    177 
    178   /// size - Returns the number of nodes in the folding set.
    179   unsigned size() const { return NumNodes; }
    180 
    181   /// empty - Returns true if there are no nodes in the folding set.
    182   bool empty() const { return NumNodes == 0; }
    183 
    184 private:
    185   /// GrowHashTable - Double the size of the hash table and rehash everything.
    186   ///
    187   void GrowHashTable();
    188 
    189 protected:
    190   /// GetNodeProfile - Instantiations of the FoldingSet template implement
    191   /// this function to gather data bits for the given node.
    192   virtual void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const = 0;
    193   /// NodeEquals - Instantiations of the FoldingSet template implement
    194   /// this function to compare the given node with the given ID.
    195   virtual bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
    196                           FoldingSetNodeID &TempID) const=0;
    197   /// ComputeNodeHash - Instantiations of the FoldingSet template implement
    198   /// this function to compute a hash value for the given node.
    199   virtual unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const = 0;
    200 };
    201 
    202 //===----------------------------------------------------------------------===//
    203 
    204 template<typename T> struct FoldingSetTrait;
    205 
    206 /// DefaultFoldingSetTrait - This class provides default implementations
    207 /// for FoldingSetTrait implementations.
    208 ///
    209 template<typename T> struct DefaultFoldingSetTrait {
    210   static void Profile(const T &X, FoldingSetNodeID &ID) {
    211     X.Profile(ID);
    212   }
    213   static void Profile(T &X, FoldingSetNodeID &ID) {
    214     X.Profile(ID);
    215   }
    216 
    217   // Equals - Test if the profile for X would match ID, using TempID
    218   // to compute a temporary ID if necessary. The default implementation
    219   // just calls Profile and does a regular comparison. Implementations
    220   // can override this to provide more efficient implementations.
    221   static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
    222                             FoldingSetNodeID &TempID);
    223 
    224   // ComputeHash - Compute a hash value for X, using TempID to
    225   // compute a temporary ID if necessary. The default implementation
    226   // just calls Profile and does a regular hash computation.
    227   // Implementations can override this to provide more efficient
    228   // implementations.
    229   static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID);
    230 };
    231 
    232 /// FoldingSetTrait - This trait class is used to define behavior of how
    233 /// to "profile" (in the FoldingSet parlance) an object of a given type.
    234 /// The default behavior is to invoke a 'Profile' method on an object, but
    235 /// through template specialization the behavior can be tailored for specific
    236 /// types.  Combined with the FoldingSetNodeWrapper class, one can add objects
    237 /// to FoldingSets that were not originally designed to have that behavior.
    238 template<typename T> struct FoldingSetTrait
    239   : public DefaultFoldingSetTrait<T> {};
    240 
    241 template<typename T, typename Ctx> struct ContextualFoldingSetTrait;
    242 
    243 /// DefaultContextualFoldingSetTrait - Like DefaultFoldingSetTrait, but
    244 /// for ContextualFoldingSets.
    245 template<typename T, typename Ctx>
    246 struct DefaultContextualFoldingSetTrait {
    247   static void Profile(T &X, FoldingSetNodeID &ID, Ctx Context) {
    248     X.Profile(ID, Context);
    249   }
    250   static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
    251                             FoldingSetNodeID &TempID, Ctx Context);
    252   static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID,
    253                                      Ctx Context);
    254 };
    255 
    256 /// ContextualFoldingSetTrait - Like FoldingSetTrait, but for
    257 /// ContextualFoldingSets.
    258 template<typename T, typename Ctx> struct ContextualFoldingSetTrait
    259   : public DefaultContextualFoldingSetTrait<T, Ctx> {};
    260 
    261 //===--------------------------------------------------------------------===//
    262 /// FoldingSetNodeIDRef - This class describes a reference to an interned
    263 /// FoldingSetNodeID, which can be a useful to store node id data rather
    264 /// than using plain FoldingSetNodeIDs, since the 32-element SmallVector
    265 /// is often much larger than necessary, and the possibility of heap
    266 /// allocation means it requires a non-trivial destructor call.
    267 class FoldingSetNodeIDRef {
    268   const unsigned *Data;
    269   size_t Size;
    270 
    271 public:
    272   FoldingSetNodeIDRef() : Data(nullptr), Size(0) {}
    273   FoldingSetNodeIDRef(const unsigned *D, size_t S) : Data(D), Size(S) {}
    274 
    275   /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
    276   /// used to lookup the node in the FoldingSetImpl.
    277   unsigned ComputeHash() const;
    278 
    279   bool operator==(FoldingSetNodeIDRef) const;
    280 
    281   bool operator!=(FoldingSetNodeIDRef RHS) const { return !(*this == RHS); }
    282 
    283   /// Used to compare the "ordering" of two nodes as defined by the
    284   /// profiled bits and their ordering defined by memcmp().
    285   bool operator<(FoldingSetNodeIDRef) const;
    286 
    287   const unsigned *getData() const { return Data; }
    288   size_t getSize() const { return Size; }
    289 };
    290 
    291 //===--------------------------------------------------------------------===//
    292 /// FoldingSetNodeID - This class is used to gather all the unique data bits of
    293 /// a node.  When all the bits are gathered this class is used to produce a
    294 /// hash value for the node.
    295 ///
    296 class FoldingSetNodeID {
    297   /// Bits - Vector of all the data bits that make the node unique.
    298   /// Use a SmallVector to avoid a heap allocation in the common case.
    299   SmallVector<unsigned, 32> Bits;
    300 
    301 public:
    302   FoldingSetNodeID() {}
    303 
    304   FoldingSetNodeID(FoldingSetNodeIDRef Ref)
    305     : Bits(Ref.getData(), Ref.getData() + Ref.getSize()) {}
    306 
    307   /// Add* - Add various data types to Bit data.
    308   ///
    309   void AddPointer(const void *Ptr);
    310   void AddInteger(signed I);
    311   void AddInteger(unsigned I);
    312   void AddInteger(long I);
    313   void AddInteger(unsigned long I);
    314   void AddInteger(long long I);
    315   void AddInteger(unsigned long long I);
    316   void AddBoolean(bool B) { AddInteger(B ? 1U : 0U); }
    317   void AddString(StringRef String);
    318   void AddNodeID(const FoldingSetNodeID &ID);
    319 
    320   template <typename T>
    321   inline void Add(const T &x) { FoldingSetTrait<T>::Profile(x, *this); }
    322 
    323   /// clear - Clear the accumulated profile, allowing this FoldingSetNodeID
    324   /// object to be used to compute a new profile.
    325   inline void clear() { Bits.clear(); }
    326 
    327   /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used
    328   /// to lookup the node in the FoldingSetImpl.
    329   unsigned ComputeHash() const;
    330 
    331   /// operator== - Used to compare two nodes to each other.
    332   ///
    333   bool operator==(const FoldingSetNodeID &RHS) const;
    334   bool operator==(const FoldingSetNodeIDRef RHS) const;
    335 
    336   bool operator!=(const FoldingSetNodeID &RHS) const { return !(*this == RHS); }
    337   bool operator!=(const FoldingSetNodeIDRef RHS) const { return !(*this ==RHS);}
    338 
    339   /// Used to compare the "ordering" of two nodes as defined by the
    340   /// profiled bits and their ordering defined by memcmp().
    341   bool operator<(const FoldingSetNodeID &RHS) const;
    342   bool operator<(const FoldingSetNodeIDRef RHS) const;
    343 
    344   /// Intern - Copy this node's data to a memory region allocated from the
    345   /// given allocator and return a FoldingSetNodeIDRef describing the
    346   /// interned data.
    347   FoldingSetNodeIDRef Intern(BumpPtrAllocator &Allocator) const;
    348 };
    349 
    350 // Convenience type to hide the implementation of the folding set.
    351 typedef FoldingSetImpl::Node FoldingSetNode;
    352 template<class T> class FoldingSetIterator;
    353 template<class T> class FoldingSetBucketIterator;
    354 
    355 // Definitions of FoldingSetTrait and ContextualFoldingSetTrait functions, which
    356 // require the definition of FoldingSetNodeID.
    357 template<typename T>
    358 inline bool
    359 DefaultFoldingSetTrait<T>::Equals(T &X, const FoldingSetNodeID &ID,
    360                                   unsigned /*IDHash*/,
    361                                   FoldingSetNodeID &TempID) {
    362   FoldingSetTrait<T>::Profile(X, TempID);
    363   return TempID == ID;
    364 }
    365 template<typename T>
    366 inline unsigned
    367 DefaultFoldingSetTrait<T>::ComputeHash(T &X, FoldingSetNodeID &TempID) {
    368   FoldingSetTrait<T>::Profile(X, TempID);
    369   return TempID.ComputeHash();
    370 }
    371 template<typename T, typename Ctx>
    372 inline bool
    373 DefaultContextualFoldingSetTrait<T, Ctx>::Equals(T &X,
    374                                                  const FoldingSetNodeID &ID,
    375                                                  unsigned /*IDHash*/,
    376                                                  FoldingSetNodeID &TempID,
    377                                                  Ctx Context) {
    378   ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
    379   return TempID == ID;
    380 }
    381 template<typename T, typename Ctx>
    382 inline unsigned
    383 DefaultContextualFoldingSetTrait<T, Ctx>::ComputeHash(T &X,
    384                                                       FoldingSetNodeID &TempID,
    385                                                       Ctx Context) {
    386   ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
    387   return TempID.ComputeHash();
    388 }
    389 
    390 //===----------------------------------------------------------------------===//
    391 /// FoldingSet - This template class is used to instantiate a specialized
    392 /// implementation of the folding set to the node class T.  T must be a
    393 /// subclass of FoldingSetNode and implement a Profile function.
    394 ///
    395 /// Note that this set type is movable and move-assignable. However, its
    396 /// moved-from state is not a valid state for anything other than
    397 /// move-assigning and destroying. This is primarily to enable movable APIs
    398 /// that incorporate these objects.
    399 template <class T> class FoldingSet final : public FoldingSetImpl {
    400 private:
    401   /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
    402   /// way to convert nodes into a unique specifier.
    403   void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const override {
    404     T *TN = static_cast<T *>(N);
    405     FoldingSetTrait<T>::Profile(*TN, ID);
    406   }
    407   /// NodeEquals - Instantiations may optionally provide a way to compare a
    408   /// node with a specified ID.
    409   bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
    410                   FoldingSetNodeID &TempID) const override {
    411     T *TN = static_cast<T *>(N);
    412     return FoldingSetTrait<T>::Equals(*TN, ID, IDHash, TempID);
    413   }
    414   /// ComputeNodeHash - Instantiations may optionally provide a way to compute a
    415   /// hash value directly from a node.
    416   unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const override {
    417     T *TN = static_cast<T *>(N);
    418     return FoldingSetTrait<T>::ComputeHash(*TN, TempID);
    419   }
    420 
    421 public:
    422   explicit FoldingSet(unsigned Log2InitSize = 6)
    423       : FoldingSetImpl(Log2InitSize) {}
    424 
    425   FoldingSet(FoldingSet &&Arg) : FoldingSetImpl(std::move(Arg)) {}
    426   FoldingSet &operator=(FoldingSet &&RHS) {
    427     (void)FoldingSetImpl::operator=(std::move(RHS));
    428     return *this;
    429   }
    430 
    431   typedef FoldingSetIterator<T> iterator;
    432   iterator begin() { return iterator(Buckets); }
    433   iterator end() { return iterator(Buckets+NumBuckets); }
    434 
    435   typedef FoldingSetIterator<const T> const_iterator;
    436   const_iterator begin() const { return const_iterator(Buckets); }
    437   const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
    438 
    439   typedef FoldingSetBucketIterator<T> bucket_iterator;
    440 
    441   bucket_iterator bucket_begin(unsigned hash) {
    442     return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
    443   }
    444 
    445   bucket_iterator bucket_end(unsigned hash) {
    446     return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
    447   }
    448 
    449   /// GetOrInsertNode - If there is an existing simple Node exactly
    450   /// equal to the specified node, return it.  Otherwise, insert 'N' and
    451   /// return it instead.
    452   T *GetOrInsertNode(Node *N) {
    453     return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
    454   }
    455 
    456   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
    457   /// return it.  If not, return the insertion token that will make insertion
    458   /// faster.
    459   T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
    460     return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
    461   }
    462 };
    463 
    464 //===----------------------------------------------------------------------===//
    465 /// ContextualFoldingSet - This template class is a further refinement
    466 /// of FoldingSet which provides a context argument when calling
    467 /// Profile on its nodes.  Currently, that argument is fixed at
    468 /// initialization time.
    469 ///
    470 /// T must be a subclass of FoldingSetNode and implement a Profile
    471 /// function with signature
    472 ///   void Profile(llvm::FoldingSetNodeID &, Ctx);
    473 template <class T, class Ctx>
    474 class ContextualFoldingSet final : public FoldingSetImpl {
    475   // Unfortunately, this can't derive from FoldingSet<T> because the
    476   // construction vtable for FoldingSet<T> requires
    477   // FoldingSet<T>::GetNodeProfile to be instantiated, which in turn
    478   // requires a single-argument T::Profile().
    479 
    480 private:
    481   Ctx Context;
    482 
    483   /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
    484   /// way to convert nodes into a unique specifier.
    485   void GetNodeProfile(FoldingSetImpl::Node *N,
    486                       FoldingSetNodeID &ID) const override {
    487     T *TN = static_cast<T *>(N);
    488     ContextualFoldingSetTrait<T, Ctx>::Profile(*TN, ID, Context);
    489   }
    490   bool NodeEquals(FoldingSetImpl::Node *N, const FoldingSetNodeID &ID,
    491                   unsigned IDHash, FoldingSetNodeID &TempID) const override {
    492     T *TN = static_cast<T *>(N);
    493     return ContextualFoldingSetTrait<T, Ctx>::Equals(*TN, ID, IDHash, TempID,
    494                                                      Context);
    495   }
    496   unsigned ComputeNodeHash(FoldingSetImpl::Node *N,
    497                            FoldingSetNodeID &TempID) const override {
    498     T *TN = static_cast<T *>(N);
    499     return ContextualFoldingSetTrait<T, Ctx>::ComputeHash(*TN, TempID, Context);
    500   }
    501 
    502 public:
    503   explicit ContextualFoldingSet(Ctx Context, unsigned Log2InitSize = 6)
    504   : FoldingSetImpl(Log2InitSize), Context(Context)
    505   {}
    506 
    507   Ctx getContext() const { return Context; }
    508 
    509   typedef FoldingSetIterator<T> iterator;
    510   iterator begin() { return iterator(Buckets); }
    511   iterator end() { return iterator(Buckets+NumBuckets); }
    512 
    513   typedef FoldingSetIterator<const T> const_iterator;
    514   const_iterator begin() const { return const_iterator(Buckets); }
    515   const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
    516 
    517   typedef FoldingSetBucketIterator<T> bucket_iterator;
    518 
    519   bucket_iterator bucket_begin(unsigned hash) {
    520     return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
    521   }
    522 
    523   bucket_iterator bucket_end(unsigned hash) {
    524     return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
    525   }
    526 
    527   /// GetOrInsertNode - If there is an existing simple Node exactly
    528   /// equal to the specified node, return it.  Otherwise, insert 'N'
    529   /// and return it instead.
    530   T *GetOrInsertNode(Node *N) {
    531     return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
    532   }
    533 
    534   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it
    535   /// exists, return it.  If not, return the insertion token that will
    536   /// make insertion faster.
    537   T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
    538     return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
    539   }
    540 };
    541 
    542 //===----------------------------------------------------------------------===//
    543 /// FoldingSetVector - This template class combines a FoldingSet and a vector
    544 /// to provide the interface of FoldingSet but with deterministic iteration
    545 /// order based on the insertion order. T must be a subclass of FoldingSetNode
    546 /// and implement a Profile function.
    547 template <class T, class VectorT = SmallVector<T*, 8> >
    548 class FoldingSetVector {
    549   FoldingSet<T> Set;
    550   VectorT Vector;
    551 
    552 public:
    553   explicit FoldingSetVector(unsigned Log2InitSize = 6)
    554       : Set(Log2InitSize) {
    555   }
    556 
    557   typedef pointee_iterator<typename VectorT::iterator> iterator;
    558   iterator begin() { return Vector.begin(); }
    559   iterator end()   { return Vector.end(); }
    560 
    561   typedef pointee_iterator<typename VectorT::const_iterator> const_iterator;
    562   const_iterator begin() const { return Vector.begin(); }
    563   const_iterator end()   const { return Vector.end(); }
    564 
    565   /// clear - Remove all nodes from the folding set.
    566   void clear() { Set.clear(); Vector.clear(); }
    567 
    568   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
    569   /// return it.  If not, return the insertion token that will make insertion
    570   /// faster.
    571   T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
    572     return Set.FindNodeOrInsertPos(ID, InsertPos);
    573   }
    574 
    575   /// GetOrInsertNode - If there is an existing simple Node exactly
    576   /// equal to the specified node, return it.  Otherwise, insert 'N' and
    577   /// return it instead.
    578   T *GetOrInsertNode(T *N) {
    579     T *Result = Set.GetOrInsertNode(N);
    580     if (Result == N) Vector.push_back(N);
    581     return Result;
    582   }
    583 
    584   /// InsertNode - Insert the specified node into the folding set, knowing that
    585   /// it is not already in the folding set.  InsertPos must be obtained from
    586   /// FindNodeOrInsertPos.
    587   void InsertNode(T *N, void *InsertPos) {
    588     Set.InsertNode(N, InsertPos);
    589     Vector.push_back(N);
    590   }
    591 
    592   /// InsertNode - Insert the specified node into the folding set, knowing that
    593   /// it is not already in the folding set.
    594   void InsertNode(T *N) {
    595     Set.InsertNode(N);
    596     Vector.push_back(N);
    597   }
    598 
    599   /// size - Returns the number of nodes in the folding set.
    600   unsigned size() const { return Set.size(); }
    601 
    602   /// empty - Returns true if there are no nodes in the folding set.
    603   bool empty() const { return Set.empty(); }
    604 };
    605 
    606 //===----------------------------------------------------------------------===//
    607 /// FoldingSetIteratorImpl - This is the common iterator support shared by all
    608 /// folding sets, which knows how to walk the folding set hash table.
    609 class FoldingSetIteratorImpl {
    610 protected:
    611   FoldingSetNode *NodePtr;
    612   FoldingSetIteratorImpl(void **Bucket);
    613   void advance();
    614 
    615 public:
    616   bool operator==(const FoldingSetIteratorImpl &RHS) const {
    617     return NodePtr == RHS.NodePtr;
    618   }
    619   bool operator!=(const FoldingSetIteratorImpl &RHS) const {
    620     return NodePtr != RHS.NodePtr;
    621   }
    622 };
    623 
    624 template <class T> class FoldingSetIterator : public FoldingSetIteratorImpl {
    625 public:
    626   explicit FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {}
    627 
    628   T &operator*() const {
    629     return *static_cast<T*>(NodePtr);
    630   }
    631 
    632   T *operator->() const {
    633     return static_cast<T*>(NodePtr);
    634   }
    635 
    636   inline FoldingSetIterator &operator++() {          // Preincrement
    637     advance();
    638     return *this;
    639   }
    640   FoldingSetIterator operator++(int) {        // Postincrement
    641     FoldingSetIterator tmp = *this; ++*this; return tmp;
    642   }
    643 };
    644 
    645 //===----------------------------------------------------------------------===//
    646 /// FoldingSetBucketIteratorImpl - This is the common bucket iterator support
    647 /// shared by all folding sets, which knows how to walk a particular bucket
    648 /// of a folding set hash table.
    649 
    650 class FoldingSetBucketIteratorImpl {
    651 protected:
    652   void *Ptr;
    653 
    654   explicit FoldingSetBucketIteratorImpl(void **Bucket);
    655 
    656   FoldingSetBucketIteratorImpl(void **Bucket, bool)
    657     : Ptr(Bucket) {}
    658 
    659   void advance() {
    660     void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket();
    661     uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1;
    662     Ptr = reinterpret_cast<void*>(x);
    663   }
    664 
    665 public:
    666   bool operator==(const FoldingSetBucketIteratorImpl &RHS) const {
    667     return Ptr == RHS.Ptr;
    668   }
    669   bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const {
    670     return Ptr != RHS.Ptr;
    671   }
    672 };
    673 
    674 template <class T>
    675 class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl {
    676 public:
    677   explicit FoldingSetBucketIterator(void **Bucket) :
    678     FoldingSetBucketIteratorImpl(Bucket) {}
    679 
    680   FoldingSetBucketIterator(void **Bucket, bool) :
    681     FoldingSetBucketIteratorImpl(Bucket, true) {}
    682 
    683   T &operator*() const { return *static_cast<T*>(Ptr); }
    684   T *operator->() const { return static_cast<T*>(Ptr); }
    685 
    686   inline FoldingSetBucketIterator &operator++() { // Preincrement
    687     advance();
    688     return *this;
    689   }
    690   FoldingSetBucketIterator operator++(int) {      // Postincrement
    691     FoldingSetBucketIterator tmp = *this; ++*this; return tmp;
    692   }
    693 };
    694 
    695 //===----------------------------------------------------------------------===//
    696 /// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary
    697 /// types in an enclosing object so that they can be inserted into FoldingSets.
    698 template <typename T>
    699 class FoldingSetNodeWrapper : public FoldingSetNode {
    700   T data;
    701 
    702 public:
    703   template <typename... Ts>
    704   explicit FoldingSetNodeWrapper(Ts &&... Args)
    705       : data(std::forward<Ts>(Args)...) {}
    706 
    707   void Profile(FoldingSetNodeID &ID) { FoldingSetTrait<T>::Profile(data, ID); }
    708 
    709   T &getValue() { return data; }
    710   const T &getValue() const { return data; }
    711 
    712   operator T&() { return data; }
    713   operator const T&() const { return data; }
    714 };
    715 
    716 //===----------------------------------------------------------------------===//
    717 /// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores
    718 /// a FoldingSetNodeID value rather than requiring the node to recompute it
    719 /// each time it is needed. This trades space for speed (which can be
    720 /// significant if the ID is long), and it also permits nodes to drop
    721 /// information that would otherwise only be required for recomputing an ID.
    722 class FastFoldingSetNode : public FoldingSetNode {
    723   FoldingSetNodeID FastID;
    724 
    725 protected:
    726   explicit FastFoldingSetNode(const FoldingSetNodeID &ID) : FastID(ID) {}
    727 
    728 public:
    729   void Profile(FoldingSetNodeID &ID) const { ID.AddNodeID(FastID); }
    730 };
    731 
    732 //===----------------------------------------------------------------------===//
    733 // Partial specializations of FoldingSetTrait.
    734 
    735 template<typename T> struct FoldingSetTrait<T*> {
    736   static inline void Profile(T *X, FoldingSetNodeID &ID) {
    737     ID.AddPointer(X);
    738   }
    739 };
    740 template <typename T1, typename T2>
    741 struct FoldingSetTrait<std::pair<T1, T2>> {
    742   static inline void Profile(const std::pair<T1, T2> &P,
    743                              llvm::FoldingSetNodeID &ID) {
    744     ID.Add(P.first);
    745     ID.Add(P.second);
    746   }
    747 };
    748 } // End of namespace llvm.
    749 
    750 #endif
    751