Home | History | Annotate | Download | only in IR
      1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the function verifier interface, that can be used for some
     11 // sanity checking of input to the system.
     12 //
     13 // Note that this does not provide full `Java style' security and verifications,
     14 // instead it just tries to ensure that code is well-formed.
     15 //
     16 //  * Both of a binary operator's parameters are of the same type
     17 //  * Verify that the indices of mem access instructions match other operands
     18 //  * Verify that arithmetic and other things are only performed on first-class
     19 //    types.  Verify that shifts & logicals only happen on integrals f.e.
     20 //  * All of the constants in a switch statement are of the correct type
     21 //  * The code is in valid SSA form
     22 //  * It should be illegal to put a label into any other type (like a structure)
     23 //    or to return one. [except constant arrays!]
     24 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
     25 //  * PHI nodes must have an entry for each predecessor, with no extras.
     26 //  * PHI nodes must be the first thing in a basic block, all grouped together
     27 //  * PHI nodes must have at least one entry
     28 //  * All basic blocks should only end with terminator insts, not contain them
     29 //  * The entry node to a function must not have predecessors
     30 //  * All Instructions must be embedded into a basic block
     31 //  * Functions cannot take a void-typed parameter
     32 //  * Verify that a function's argument list agrees with it's declared type.
     33 //  * It is illegal to specify a name for a void value.
     34 //  * It is illegal to have a internal global value with no initializer
     35 //  * It is illegal to have a ret instruction that returns a value that does not
     36 //    agree with the function return value type.
     37 //  * Function call argument types match the function prototype
     38 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
     39 //    only by the unwind edge of an invoke instruction.
     40 //  * A landingpad instruction must be the first non-PHI instruction in the
     41 //    block.
     42 //  * Landingpad instructions must be in a function with a personality function.
     43 //  * All other things that are tested by asserts spread about the code...
     44 //
     45 //===----------------------------------------------------------------------===//
     46 
     47 #include "llvm/IR/Verifier.h"
     48 #include "llvm/ADT/STLExtras.h"
     49 #include "llvm/ADT/SetVector.h"
     50 #include "llvm/ADT/SmallPtrSet.h"
     51 #include "llvm/ADT/SmallVector.h"
     52 #include "llvm/ADT/StringExtras.h"
     53 #include "llvm/IR/CFG.h"
     54 #include "llvm/IR/CallSite.h"
     55 #include "llvm/IR/CallingConv.h"
     56 #include "llvm/IR/ConstantRange.h"
     57 #include "llvm/IR/Constants.h"
     58 #include "llvm/IR/DataLayout.h"
     59 #include "llvm/IR/DebugInfo.h"
     60 #include "llvm/IR/DerivedTypes.h"
     61 #include "llvm/IR/Dominators.h"
     62 #include "llvm/IR/InlineAsm.h"
     63 #include "llvm/IR/InstIterator.h"
     64 #include "llvm/IR/InstVisitor.h"
     65 #include "llvm/IR/IntrinsicInst.h"
     66 #include "llvm/IR/LLVMContext.h"
     67 #include "llvm/IR/Metadata.h"
     68 #include "llvm/IR/Module.h"
     69 #include "llvm/IR/PassManager.h"
     70 #include "llvm/IR/Statepoint.h"
     71 #include "llvm/Pass.h"
     72 #include "llvm/Support/CommandLine.h"
     73 #include "llvm/Support/Debug.h"
     74 #include "llvm/Support/ErrorHandling.h"
     75 #include "llvm/Support/raw_ostream.h"
     76 #include <algorithm>
     77 #include <cstdarg>
     78 using namespace llvm;
     79 
     80 static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
     81 
     82 namespace {
     83 struct VerifierSupport {
     84   raw_ostream &OS;
     85   const Module *M;
     86 
     87   /// \brief Track the brokenness of the module while recursively visiting.
     88   bool Broken;
     89 
     90   explicit VerifierSupport(raw_ostream &OS)
     91       : OS(OS), M(nullptr), Broken(false) {}
     92 
     93 private:
     94   template <class NodeTy> void Write(const ilist_iterator<NodeTy> &I) {
     95     Write(&*I);
     96   }
     97 
     98   void Write(const Module *M) {
     99     if (!M)
    100       return;
    101     OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
    102   }
    103 
    104   void Write(const Value *V) {
    105     if (!V)
    106       return;
    107     if (isa<Instruction>(V)) {
    108       OS << *V << '\n';
    109     } else {
    110       V->printAsOperand(OS, true, M);
    111       OS << '\n';
    112     }
    113   }
    114   void Write(ImmutableCallSite CS) {
    115     Write(CS.getInstruction());
    116   }
    117 
    118   void Write(const Metadata *MD) {
    119     if (!MD)
    120       return;
    121     MD->print(OS, M);
    122     OS << '\n';
    123   }
    124 
    125   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
    126     Write(MD.get());
    127   }
    128 
    129   void Write(const NamedMDNode *NMD) {
    130     if (!NMD)
    131       return;
    132     NMD->print(OS);
    133     OS << '\n';
    134   }
    135 
    136   void Write(Type *T) {
    137     if (!T)
    138       return;
    139     OS << ' ' << *T;
    140   }
    141 
    142   void Write(const Comdat *C) {
    143     if (!C)
    144       return;
    145     OS << *C;
    146   }
    147 
    148   template <typename T1, typename... Ts>
    149   void WriteTs(const T1 &V1, const Ts &... Vs) {
    150     Write(V1);
    151     WriteTs(Vs...);
    152   }
    153 
    154   template <typename... Ts> void WriteTs() {}
    155 
    156 public:
    157   /// \brief A check failed, so printout out the condition and the message.
    158   ///
    159   /// This provides a nice place to put a breakpoint if you want to see why
    160   /// something is not correct.
    161   void CheckFailed(const Twine &Message) {
    162     OS << Message << '\n';
    163     Broken = true;
    164   }
    165 
    166   /// \brief A check failed (with values to print).
    167   ///
    168   /// This calls the Message-only version so that the above is easier to set a
    169   /// breakpoint on.
    170   template <typename T1, typename... Ts>
    171   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
    172     CheckFailed(Message);
    173     WriteTs(V1, Vs...);
    174   }
    175 };
    176 
    177 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
    178   friend class InstVisitor<Verifier>;
    179 
    180   LLVMContext *Context;
    181   DominatorTree DT;
    182 
    183   /// \brief When verifying a basic block, keep track of all of the
    184   /// instructions we have seen so far.
    185   ///
    186   /// This allows us to do efficient dominance checks for the case when an
    187   /// instruction has an operand that is an instruction in the same block.
    188   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
    189 
    190   /// \brief Keep track of the metadata nodes that have been checked already.
    191   SmallPtrSet<const Metadata *, 32> MDNodes;
    192 
    193   /// \brief Track unresolved string-based type references.
    194   SmallDenseMap<const MDString *, const MDNode *, 32> UnresolvedTypeRefs;
    195 
    196   /// \brief The result type for a landingpad.
    197   Type *LandingPadResultTy;
    198 
    199   /// \brief Whether we've seen a call to @llvm.localescape in this function
    200   /// already.
    201   bool SawFrameEscape;
    202 
    203   /// Stores the count of how many objects were passed to llvm.localescape for a
    204   /// given function and the largest index passed to llvm.localrecover.
    205   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
    206 
    207   /// Cache of constants visited in search of ConstantExprs.
    208   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
    209 
    210   void checkAtomicMemAccessSize(const Module *M, Type *Ty,
    211                                 const Instruction *I);
    212 public:
    213   explicit Verifier(raw_ostream &OS)
    214       : VerifierSupport(OS), Context(nullptr), LandingPadResultTy(nullptr),
    215         SawFrameEscape(false) {}
    216 
    217   bool verify(const Function &F) {
    218     M = F.getParent();
    219     Context = &M->getContext();
    220 
    221     // First ensure the function is well-enough formed to compute dominance
    222     // information.
    223     if (F.empty()) {
    224       OS << "Function '" << F.getName()
    225          << "' does not contain an entry block!\n";
    226       return false;
    227     }
    228     for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) {
    229       if (I->empty() || !I->back().isTerminator()) {
    230         OS << "Basic Block in function '" << F.getName()
    231            << "' does not have terminator!\n";
    232         I->printAsOperand(OS, true);
    233         OS << "\n";
    234         return false;
    235       }
    236     }
    237 
    238     // Now directly compute a dominance tree. We don't rely on the pass
    239     // manager to provide this as it isolates us from a potentially
    240     // out-of-date dominator tree and makes it significantly more complex to
    241     // run this code outside of a pass manager.
    242     // FIXME: It's really gross that we have to cast away constness here.
    243     DT.recalculate(const_cast<Function &>(F));
    244 
    245     Broken = false;
    246     // FIXME: We strip const here because the inst visitor strips const.
    247     visit(const_cast<Function &>(F));
    248     InstsInThisBlock.clear();
    249     LandingPadResultTy = nullptr;
    250     SawFrameEscape = false;
    251 
    252     return !Broken;
    253   }
    254 
    255   bool verify(const Module &M) {
    256     this->M = &M;
    257     Context = &M.getContext();
    258     Broken = false;
    259 
    260     // Scan through, checking all of the external function's linkage now...
    261     for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
    262       visitGlobalValue(*I);
    263 
    264       // Check to make sure function prototypes are okay.
    265       if (I->isDeclaration())
    266         visitFunction(*I);
    267     }
    268 
    269     // Now that we've visited every function, verify that we never asked to
    270     // recover a frame index that wasn't escaped.
    271     verifyFrameRecoverIndices();
    272 
    273     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
    274          I != E; ++I)
    275       visitGlobalVariable(*I);
    276 
    277     for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
    278          I != E; ++I)
    279       visitGlobalAlias(*I);
    280 
    281     for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
    282                                                E = M.named_metadata_end();
    283          I != E; ++I)
    284       visitNamedMDNode(*I);
    285 
    286     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
    287       visitComdat(SMEC.getValue());
    288 
    289     visitModuleFlags(M);
    290     visitModuleIdents(M);
    291 
    292     // Verify type referneces last.
    293     verifyTypeRefs();
    294 
    295     return !Broken;
    296   }
    297 
    298 private:
    299   // Verification methods...
    300   void visitGlobalValue(const GlobalValue &GV);
    301   void visitGlobalVariable(const GlobalVariable &GV);
    302   void visitGlobalAlias(const GlobalAlias &GA);
    303   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
    304   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
    305                            const GlobalAlias &A, const Constant &C);
    306   void visitNamedMDNode(const NamedMDNode &NMD);
    307   void visitMDNode(const MDNode &MD);
    308   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
    309   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
    310   void visitComdat(const Comdat &C);
    311   void visitModuleIdents(const Module &M);
    312   void visitModuleFlags(const Module &M);
    313   void visitModuleFlag(const MDNode *Op,
    314                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
    315                        SmallVectorImpl<const MDNode *> &Requirements);
    316   void visitFunction(const Function &F);
    317   void visitBasicBlock(BasicBlock &BB);
    318   void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty);
    319   void visitDereferenceableMetadata(Instruction& I, MDNode* MD);
    320 
    321   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
    322 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
    323 #include "llvm/IR/Metadata.def"
    324   void visitDIScope(const DIScope &N);
    325   void visitDIVariable(const DIVariable &N);
    326   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
    327   void visitDITemplateParameter(const DITemplateParameter &N);
    328 
    329   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
    330 
    331   /// \brief Check for a valid string-based type reference.
    332   ///
    333   /// Checks if \c MD is a string-based type reference.  If it is, keeps track
    334   /// of it (and its user, \c N) for error messages later.
    335   bool isValidUUID(const MDNode &N, const Metadata *MD);
    336 
    337   /// \brief Check for a valid type reference.
    338   ///
    339   /// Checks for subclasses of \a DIType, or \a isValidUUID().
    340   bool isTypeRef(const MDNode &N, const Metadata *MD);
    341 
    342   /// \brief Check for a valid scope reference.
    343   ///
    344   /// Checks for subclasses of \a DIScope, or \a isValidUUID().
    345   bool isScopeRef(const MDNode &N, const Metadata *MD);
    346 
    347   /// \brief Check for a valid debug info reference.
    348   ///
    349   /// Checks for subclasses of \a DINode, or \a isValidUUID().
    350   bool isDIRef(const MDNode &N, const Metadata *MD);
    351 
    352   // InstVisitor overrides...
    353   using InstVisitor<Verifier>::visit;
    354   void visit(Instruction &I);
    355 
    356   void visitTruncInst(TruncInst &I);
    357   void visitZExtInst(ZExtInst &I);
    358   void visitSExtInst(SExtInst &I);
    359   void visitFPTruncInst(FPTruncInst &I);
    360   void visitFPExtInst(FPExtInst &I);
    361   void visitFPToUIInst(FPToUIInst &I);
    362   void visitFPToSIInst(FPToSIInst &I);
    363   void visitUIToFPInst(UIToFPInst &I);
    364   void visitSIToFPInst(SIToFPInst &I);
    365   void visitIntToPtrInst(IntToPtrInst &I);
    366   void visitPtrToIntInst(PtrToIntInst &I);
    367   void visitBitCastInst(BitCastInst &I);
    368   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
    369   void visitPHINode(PHINode &PN);
    370   void visitBinaryOperator(BinaryOperator &B);
    371   void visitICmpInst(ICmpInst &IC);
    372   void visitFCmpInst(FCmpInst &FC);
    373   void visitExtractElementInst(ExtractElementInst &EI);
    374   void visitInsertElementInst(InsertElementInst &EI);
    375   void visitShuffleVectorInst(ShuffleVectorInst &EI);
    376   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
    377   void visitCallInst(CallInst &CI);
    378   void visitInvokeInst(InvokeInst &II);
    379   void visitGetElementPtrInst(GetElementPtrInst &GEP);
    380   void visitLoadInst(LoadInst &LI);
    381   void visitStoreInst(StoreInst &SI);
    382   void verifyDominatesUse(Instruction &I, unsigned i);
    383   void visitInstruction(Instruction &I);
    384   void visitTerminatorInst(TerminatorInst &I);
    385   void visitBranchInst(BranchInst &BI);
    386   void visitReturnInst(ReturnInst &RI);
    387   void visitSwitchInst(SwitchInst &SI);
    388   void visitIndirectBrInst(IndirectBrInst &BI);
    389   void visitSelectInst(SelectInst &SI);
    390   void visitUserOp1(Instruction &I);
    391   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
    392   void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
    393   template <class DbgIntrinsicTy>
    394   void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
    395   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
    396   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
    397   void visitFenceInst(FenceInst &FI);
    398   void visitAllocaInst(AllocaInst &AI);
    399   void visitExtractValueInst(ExtractValueInst &EVI);
    400   void visitInsertValueInst(InsertValueInst &IVI);
    401   void visitEHPadPredecessors(Instruction &I);
    402   void visitLandingPadInst(LandingPadInst &LPI);
    403   void visitCatchPadInst(CatchPadInst &CPI);
    404   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
    405   void visitCleanupPadInst(CleanupPadInst &CPI);
    406   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
    407   void visitCleanupReturnInst(CleanupReturnInst &CRI);
    408 
    409   void VerifyCallSite(CallSite CS);
    410   void verifyMustTailCall(CallInst &CI);
    411   bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
    412                         unsigned ArgNo, std::string &Suffix);
    413   bool VerifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
    414                            SmallVectorImpl<Type *> &ArgTys);
    415   bool VerifyIntrinsicIsVarArg(bool isVarArg,
    416                                ArrayRef<Intrinsic::IITDescriptor> &Infos);
    417   bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params);
    418   void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
    419                             const Value *V);
    420   void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
    421                             bool isReturnValue, const Value *V);
    422   void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
    423                            const Value *V);
    424   void VerifyFunctionMetadata(
    425       const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs);
    426 
    427   void visitConstantExprsRecursively(const Constant *EntryC);
    428   void visitConstantExpr(const ConstantExpr *CE);
    429   void VerifyStatepoint(ImmutableCallSite CS);
    430   void verifyFrameRecoverIndices();
    431 
    432   // Module-level debug info verification...
    433   void verifyTypeRefs();
    434   template <class MapTy>
    435   void verifyBitPieceExpression(const DbgInfoIntrinsic &I,
    436                                 const MapTy &TypeRefs);
    437   void visitUnresolvedTypeRef(const MDString *S, const MDNode *N);
    438 };
    439 } // End anonymous namespace
    440 
    441 // Assert - We know that cond should be true, if not print an error message.
    442 #define Assert(C, ...) \
    443   do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0)
    444 
    445 void Verifier::visit(Instruction &I) {
    446   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
    447     Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
    448   InstVisitor<Verifier>::visit(I);
    449 }
    450 
    451 
    452 void Verifier::visitGlobalValue(const GlobalValue &GV) {
    453   Assert(!GV.isDeclaration() || GV.hasExternalLinkage() ||
    454              GV.hasExternalWeakLinkage(),
    455          "Global is external, but doesn't have external or weak linkage!", &GV);
    456 
    457   Assert(GV.getAlignment() <= Value::MaximumAlignment,
    458          "huge alignment values are unsupported", &GV);
    459   Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
    460          "Only global variables can have appending linkage!", &GV);
    461 
    462   if (GV.hasAppendingLinkage()) {
    463     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
    464     Assert(GVar && GVar->getValueType()->isArrayTy(),
    465            "Only global arrays can have appending linkage!", GVar);
    466   }
    467 
    468   if (GV.isDeclarationForLinker())
    469     Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
    470 }
    471 
    472 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
    473   if (GV.hasInitializer()) {
    474     Assert(GV.getInitializer()->getType() == GV.getType()->getElementType(),
    475            "Global variable initializer type does not match global "
    476            "variable type!",
    477            &GV);
    478 
    479     // If the global has common linkage, it must have a zero initializer and
    480     // cannot be constant.
    481     if (GV.hasCommonLinkage()) {
    482       Assert(GV.getInitializer()->isNullValue(),
    483              "'common' global must have a zero initializer!", &GV);
    484       Assert(!GV.isConstant(), "'common' global may not be marked constant!",
    485              &GV);
    486       Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
    487     }
    488   } else {
    489     Assert(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
    490            "invalid linkage type for global declaration", &GV);
    491   }
    492 
    493   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
    494                        GV.getName() == "llvm.global_dtors")) {
    495     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
    496            "invalid linkage for intrinsic global variable", &GV);
    497     // Don't worry about emitting an error for it not being an array,
    498     // visitGlobalValue will complain on appending non-array.
    499     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
    500       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
    501       PointerType *FuncPtrTy =
    502           FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
    503       // FIXME: Reject the 2-field form in LLVM 4.0.
    504       Assert(STy &&
    505                  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
    506                  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
    507                  STy->getTypeAtIndex(1) == FuncPtrTy,
    508              "wrong type for intrinsic global variable", &GV);
    509       if (STy->getNumElements() == 3) {
    510         Type *ETy = STy->getTypeAtIndex(2);
    511         Assert(ETy->isPointerTy() &&
    512                    cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
    513                "wrong type for intrinsic global variable", &GV);
    514       }
    515     }
    516   }
    517 
    518   if (GV.hasName() && (GV.getName() == "llvm.used" ||
    519                        GV.getName() == "llvm.compiler.used")) {
    520     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
    521            "invalid linkage for intrinsic global variable", &GV);
    522     Type *GVType = GV.getValueType();
    523     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
    524       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
    525       Assert(PTy, "wrong type for intrinsic global variable", &GV);
    526       if (GV.hasInitializer()) {
    527         const Constant *Init = GV.getInitializer();
    528         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
    529         Assert(InitArray, "wrong initalizer for intrinsic global variable",
    530                Init);
    531         for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) {
    532           Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases();
    533           Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
    534                      isa<GlobalAlias>(V),
    535                  "invalid llvm.used member", V);
    536           Assert(V->hasName(), "members of llvm.used must be named", V);
    537         }
    538       }
    539     }
    540   }
    541 
    542   Assert(!GV.hasDLLImportStorageClass() ||
    543              (GV.isDeclaration() && GV.hasExternalLinkage()) ||
    544              GV.hasAvailableExternallyLinkage(),
    545          "Global is marked as dllimport, but not external", &GV);
    546 
    547   if (!GV.hasInitializer()) {
    548     visitGlobalValue(GV);
    549     return;
    550   }
    551 
    552   // Walk any aggregate initializers looking for bitcasts between address spaces
    553   visitConstantExprsRecursively(GV.getInitializer());
    554 
    555   visitGlobalValue(GV);
    556 }
    557 
    558 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
    559   SmallPtrSet<const GlobalAlias*, 4> Visited;
    560   Visited.insert(&GA);
    561   visitAliaseeSubExpr(Visited, GA, C);
    562 }
    563 
    564 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
    565                                    const GlobalAlias &GA, const Constant &C) {
    566   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
    567     Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
    568            &GA);
    569 
    570     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
    571       Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
    572 
    573       Assert(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias",
    574              &GA);
    575     } else {
    576       // Only continue verifying subexpressions of GlobalAliases.
    577       // Do not recurse into global initializers.
    578       return;
    579     }
    580   }
    581 
    582   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
    583     visitConstantExprsRecursively(CE);
    584 
    585   for (const Use &U : C.operands()) {
    586     Value *V = &*U;
    587     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
    588       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
    589     else if (const auto *C2 = dyn_cast<Constant>(V))
    590       visitAliaseeSubExpr(Visited, GA, *C2);
    591   }
    592 }
    593 
    594 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
    595   Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
    596          "Alias should have private, internal, linkonce, weak, linkonce_odr, "
    597          "weak_odr, or external linkage!",
    598          &GA);
    599   const Constant *Aliasee = GA.getAliasee();
    600   Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
    601   Assert(GA.getType() == Aliasee->getType(),
    602          "Alias and aliasee types should match!", &GA);
    603 
    604   Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
    605          "Aliasee should be either GlobalValue or ConstantExpr", &GA);
    606 
    607   visitAliaseeSubExpr(GA, *Aliasee);
    608 
    609   visitGlobalValue(GA);
    610 }
    611 
    612 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
    613   for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
    614     MDNode *MD = NMD.getOperand(i);
    615 
    616     if (NMD.getName() == "llvm.dbg.cu") {
    617       Assert(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
    618     }
    619 
    620     if (!MD)
    621       continue;
    622 
    623     visitMDNode(*MD);
    624   }
    625 }
    626 
    627 void Verifier::visitMDNode(const MDNode &MD) {
    628   // Only visit each node once.  Metadata can be mutually recursive, so this
    629   // avoids infinite recursion here, as well as being an optimization.
    630   if (!MDNodes.insert(&MD).second)
    631     return;
    632 
    633   switch (MD.getMetadataID()) {
    634   default:
    635     llvm_unreachable("Invalid MDNode subclass");
    636   case Metadata::MDTupleKind:
    637     break;
    638 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
    639   case Metadata::CLASS##Kind:                                                  \
    640     visit##CLASS(cast<CLASS>(MD));                                             \
    641     break;
    642 #include "llvm/IR/Metadata.def"
    643   }
    644 
    645   for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
    646     Metadata *Op = MD.getOperand(i);
    647     if (!Op)
    648       continue;
    649     Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
    650            &MD, Op);
    651     if (auto *N = dyn_cast<MDNode>(Op)) {
    652       visitMDNode(*N);
    653       continue;
    654     }
    655     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
    656       visitValueAsMetadata(*V, nullptr);
    657       continue;
    658     }
    659   }
    660 
    661   // Check these last, so we diagnose problems in operands first.
    662   Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
    663   Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
    664 }
    665 
    666 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
    667   Assert(MD.getValue(), "Expected valid value", &MD);
    668   Assert(!MD.getValue()->getType()->isMetadataTy(),
    669          "Unexpected metadata round-trip through values", &MD, MD.getValue());
    670 
    671   auto *L = dyn_cast<LocalAsMetadata>(&MD);
    672   if (!L)
    673     return;
    674 
    675   Assert(F, "function-local metadata used outside a function", L);
    676 
    677   // If this was an instruction, bb, or argument, verify that it is in the
    678   // function that we expect.
    679   Function *ActualF = nullptr;
    680   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
    681     Assert(I->getParent(), "function-local metadata not in basic block", L, I);
    682     ActualF = I->getParent()->getParent();
    683   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
    684     ActualF = BB->getParent();
    685   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
    686     ActualF = A->getParent();
    687   assert(ActualF && "Unimplemented function local metadata case!");
    688 
    689   Assert(ActualF == F, "function-local metadata used in wrong function", L);
    690 }
    691 
    692 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
    693   Metadata *MD = MDV.getMetadata();
    694   if (auto *N = dyn_cast<MDNode>(MD)) {
    695     visitMDNode(*N);
    696     return;
    697   }
    698 
    699   // Only visit each node once.  Metadata can be mutually recursive, so this
    700   // avoids infinite recursion here, as well as being an optimization.
    701   if (!MDNodes.insert(MD).second)
    702     return;
    703 
    704   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
    705     visitValueAsMetadata(*V, F);
    706 }
    707 
    708 bool Verifier::isValidUUID(const MDNode &N, const Metadata *MD) {
    709   auto *S = dyn_cast<MDString>(MD);
    710   if (!S)
    711     return false;
    712   if (S->getString().empty())
    713     return false;
    714 
    715   // Keep track of names of types referenced via UUID so we can check that they
    716   // actually exist.
    717   UnresolvedTypeRefs.insert(std::make_pair(S, &N));
    718   return true;
    719 }
    720 
    721 /// \brief Check if a value can be a reference to a type.
    722 bool Verifier::isTypeRef(const MDNode &N, const Metadata *MD) {
    723   return !MD || isValidUUID(N, MD) || isa<DIType>(MD);
    724 }
    725 
    726 /// \brief Check if a value can be a ScopeRef.
    727 bool Verifier::isScopeRef(const MDNode &N, const Metadata *MD) {
    728   return !MD || isValidUUID(N, MD) || isa<DIScope>(MD);
    729 }
    730 
    731 /// \brief Check if a value can be a debug info ref.
    732 bool Verifier::isDIRef(const MDNode &N, const Metadata *MD) {
    733   return !MD || isValidUUID(N, MD) || isa<DINode>(MD);
    734 }
    735 
    736 template <class Ty>
    737 bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) {
    738   for (Metadata *MD : N.operands()) {
    739     if (MD) {
    740       if (!isa<Ty>(MD))
    741         return false;
    742     } else {
    743       if (!AllowNull)
    744         return false;
    745     }
    746   }
    747   return true;
    748 }
    749 
    750 template <class Ty>
    751 bool isValidMetadataArray(const MDTuple &N) {
    752   return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false);
    753 }
    754 
    755 template <class Ty>
    756 bool isValidMetadataNullArray(const MDTuple &N) {
    757   return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true);
    758 }
    759 
    760 void Verifier::visitDILocation(const DILocation &N) {
    761   Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
    762          "location requires a valid scope", &N, N.getRawScope());
    763   if (auto *IA = N.getRawInlinedAt())
    764     Assert(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
    765 }
    766 
    767 void Verifier::visitGenericDINode(const GenericDINode &N) {
    768   Assert(N.getTag(), "invalid tag", &N);
    769 }
    770 
    771 void Verifier::visitDIScope(const DIScope &N) {
    772   if (auto *F = N.getRawFile())
    773     Assert(isa<DIFile>(F), "invalid file", &N, F);
    774 }
    775 
    776 void Verifier::visitDISubrange(const DISubrange &N) {
    777   Assert(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
    778   Assert(N.getCount() >= -1, "invalid subrange count", &N);
    779 }
    780 
    781 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
    782   Assert(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
    783 }
    784 
    785 void Verifier::visitDIBasicType(const DIBasicType &N) {
    786   Assert(N.getTag() == dwarf::DW_TAG_base_type ||
    787              N.getTag() == dwarf::DW_TAG_unspecified_type,
    788          "invalid tag", &N);
    789 }
    790 
    791 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
    792   // Common scope checks.
    793   visitDIScope(N);
    794 
    795   Assert(N.getTag() == dwarf::DW_TAG_typedef ||
    796              N.getTag() == dwarf::DW_TAG_pointer_type ||
    797              N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
    798              N.getTag() == dwarf::DW_TAG_reference_type ||
    799              N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
    800              N.getTag() == dwarf::DW_TAG_const_type ||
    801              N.getTag() == dwarf::DW_TAG_volatile_type ||
    802              N.getTag() == dwarf::DW_TAG_restrict_type ||
    803              N.getTag() == dwarf::DW_TAG_member ||
    804              N.getTag() == dwarf::DW_TAG_inheritance ||
    805              N.getTag() == dwarf::DW_TAG_friend,
    806          "invalid tag", &N);
    807   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
    808     Assert(isTypeRef(N, N.getExtraData()), "invalid pointer to member type", &N,
    809            N.getExtraData());
    810   }
    811 
    812   Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope());
    813   Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N,
    814          N.getBaseType());
    815 }
    816 
    817 static bool hasConflictingReferenceFlags(unsigned Flags) {
    818   return (Flags & DINode::FlagLValueReference) &&
    819          (Flags & DINode::FlagRValueReference);
    820 }
    821 
    822 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
    823   auto *Params = dyn_cast<MDTuple>(&RawParams);
    824   Assert(Params, "invalid template params", &N, &RawParams);
    825   for (Metadata *Op : Params->operands()) {
    826     Assert(Op && isa<DITemplateParameter>(Op), "invalid template parameter", &N,
    827            Params, Op);
    828   }
    829 }
    830 
    831 void Verifier::visitDICompositeType(const DICompositeType &N) {
    832   // Common scope checks.
    833   visitDIScope(N);
    834 
    835   Assert(N.getTag() == dwarf::DW_TAG_array_type ||
    836              N.getTag() == dwarf::DW_TAG_structure_type ||
    837              N.getTag() == dwarf::DW_TAG_union_type ||
    838              N.getTag() == dwarf::DW_TAG_enumeration_type ||
    839              N.getTag() == dwarf::DW_TAG_class_type,
    840          "invalid tag", &N);
    841 
    842   Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope());
    843   Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N,
    844          N.getBaseType());
    845 
    846   Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
    847          "invalid composite elements", &N, N.getRawElements());
    848   Assert(isTypeRef(N, N.getRawVTableHolder()), "invalid vtable holder", &N,
    849          N.getRawVTableHolder());
    850   Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
    851          &N);
    852   if (auto *Params = N.getRawTemplateParams())
    853     visitTemplateParams(N, *Params);
    854 
    855   if (N.getTag() == dwarf::DW_TAG_class_type ||
    856       N.getTag() == dwarf::DW_TAG_union_type) {
    857     Assert(N.getFile() && !N.getFile()->getFilename().empty(),
    858            "class/union requires a filename", &N, N.getFile());
    859   }
    860 }
    861 
    862 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
    863   Assert(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
    864   if (auto *Types = N.getRawTypeArray()) {
    865     Assert(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
    866     for (Metadata *Ty : N.getTypeArray()->operands()) {
    867       Assert(isTypeRef(N, Ty), "invalid subroutine type ref", &N, Types, Ty);
    868     }
    869   }
    870   Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
    871          &N);
    872 }
    873 
    874 void Verifier::visitDIFile(const DIFile &N) {
    875   Assert(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
    876 }
    877 
    878 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
    879   Assert(N.isDistinct(), "compile units must be distinct", &N);
    880   Assert(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
    881 
    882   // Don't bother verifying the compilation directory or producer string
    883   // as those could be empty.
    884   Assert(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
    885          N.getRawFile());
    886   Assert(!N.getFile()->getFilename().empty(), "invalid filename", &N,
    887          N.getFile());
    888 
    889   if (auto *Array = N.getRawEnumTypes()) {
    890     Assert(isa<MDTuple>(Array), "invalid enum list", &N, Array);
    891     for (Metadata *Op : N.getEnumTypes()->operands()) {
    892       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
    893       Assert(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
    894              "invalid enum type", &N, N.getEnumTypes(), Op);
    895     }
    896   }
    897   if (auto *Array = N.getRawRetainedTypes()) {
    898     Assert(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
    899     for (Metadata *Op : N.getRetainedTypes()->operands()) {
    900       Assert(Op && isa<DIType>(Op), "invalid retained type", &N, Op);
    901     }
    902   }
    903   if (auto *Array = N.getRawSubprograms()) {
    904     Assert(isa<MDTuple>(Array), "invalid subprogram list", &N, Array);
    905     for (Metadata *Op : N.getSubprograms()->operands()) {
    906       Assert(Op && isa<DISubprogram>(Op), "invalid subprogram ref", &N, Op);
    907     }
    908   }
    909   if (auto *Array = N.getRawGlobalVariables()) {
    910     Assert(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
    911     for (Metadata *Op : N.getGlobalVariables()->operands()) {
    912       Assert(Op && isa<DIGlobalVariable>(Op), "invalid global variable ref", &N,
    913              Op);
    914     }
    915   }
    916   if (auto *Array = N.getRawImportedEntities()) {
    917     Assert(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
    918     for (Metadata *Op : N.getImportedEntities()->operands()) {
    919       Assert(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", &N,
    920              Op);
    921     }
    922   }
    923   if (auto *Array = N.getRawMacros()) {
    924     Assert(isa<MDTuple>(Array), "invalid macro list", &N, Array);
    925     for (Metadata *Op : N.getMacros()->operands()) {
    926       Assert(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
    927     }
    928   }
    929 }
    930 
    931 void Verifier::visitDISubprogram(const DISubprogram &N) {
    932   Assert(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
    933   Assert(isScopeRef(N, N.getRawScope()), "invalid scope", &N, N.getRawScope());
    934   if (auto *T = N.getRawType())
    935     Assert(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
    936   Assert(isTypeRef(N, N.getRawContainingType()), "invalid containing type", &N,
    937          N.getRawContainingType());
    938   if (auto *Params = N.getRawTemplateParams())
    939     visitTemplateParams(N, *Params);
    940   if (auto *S = N.getRawDeclaration()) {
    941     Assert(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
    942            "invalid subprogram declaration", &N, S);
    943   }
    944   if (auto *RawVars = N.getRawVariables()) {
    945     auto *Vars = dyn_cast<MDTuple>(RawVars);
    946     Assert(Vars, "invalid variable list", &N, RawVars);
    947     for (Metadata *Op : Vars->operands()) {
    948       Assert(Op && isa<DILocalVariable>(Op), "invalid local variable", &N, Vars,
    949              Op);
    950     }
    951   }
    952   Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
    953          &N);
    954 
    955   if (N.isDefinition())
    956     Assert(N.isDistinct(), "subprogram definitions must be distinct", &N);
    957 }
    958 
    959 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
    960   Assert(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
    961   Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
    962          "invalid local scope", &N, N.getRawScope());
    963 }
    964 
    965 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
    966   visitDILexicalBlockBase(N);
    967 
    968   Assert(N.getLine() || !N.getColumn(),
    969          "cannot have column info without line info", &N);
    970 }
    971 
    972 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
    973   visitDILexicalBlockBase(N);
    974 }
    975 
    976 void Verifier::visitDINamespace(const DINamespace &N) {
    977   Assert(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
    978   if (auto *S = N.getRawScope())
    979     Assert(isa<DIScope>(S), "invalid scope ref", &N, S);
    980 }
    981 
    982 void Verifier::visitDIMacro(const DIMacro &N) {
    983   Assert(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
    984          N.getMacinfoType() == dwarf::DW_MACINFO_undef,
    985          "invalid macinfo type", &N);
    986   Assert(!N.getName().empty(), "anonymous macro", &N);
    987 }
    988 
    989 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
    990   Assert(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
    991          "invalid macinfo type", &N);
    992   if (auto *F = N.getRawFile())
    993     Assert(isa<DIFile>(F), "invalid file", &N, F);
    994 
    995   if (auto *Array = N.getRawElements()) {
    996     Assert(isa<MDTuple>(Array), "invalid macro list", &N, Array);
    997     for (Metadata *Op : N.getElements()->operands()) {
    998       Assert(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
    999     }
   1000   }
   1001 }
   1002 
   1003 void Verifier::visitDIModule(const DIModule &N) {
   1004   Assert(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
   1005   Assert(!N.getName().empty(), "anonymous module", &N);
   1006 }
   1007 
   1008 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
   1009   Assert(isTypeRef(N, N.getType()), "invalid type ref", &N, N.getType());
   1010 }
   1011 
   1012 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
   1013   visitDITemplateParameter(N);
   1014 
   1015   Assert(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
   1016          &N);
   1017 }
   1018 
   1019 void Verifier::visitDITemplateValueParameter(
   1020     const DITemplateValueParameter &N) {
   1021   visitDITemplateParameter(N);
   1022 
   1023   Assert(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
   1024              N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
   1025              N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
   1026          "invalid tag", &N);
   1027 }
   1028 
   1029 void Verifier::visitDIVariable(const DIVariable &N) {
   1030   if (auto *S = N.getRawScope())
   1031     Assert(isa<DIScope>(S), "invalid scope", &N, S);
   1032   Assert(isTypeRef(N, N.getRawType()), "invalid type ref", &N, N.getRawType());
   1033   if (auto *F = N.getRawFile())
   1034     Assert(isa<DIFile>(F), "invalid file", &N, F);
   1035 }
   1036 
   1037 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
   1038   // Checks common to all variables.
   1039   visitDIVariable(N);
   1040 
   1041   Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
   1042   Assert(!N.getName().empty(), "missing global variable name", &N);
   1043   if (auto *V = N.getRawVariable()) {
   1044     Assert(isa<ConstantAsMetadata>(V) &&
   1045                !isa<Function>(cast<ConstantAsMetadata>(V)->getValue()),
   1046            "invalid global varaible ref", &N, V);
   1047   }
   1048   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
   1049     Assert(isa<DIDerivedType>(Member), "invalid static data member declaration",
   1050            &N, Member);
   1051   }
   1052 }
   1053 
   1054 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
   1055   // Checks common to all variables.
   1056   visitDIVariable(N);
   1057 
   1058   Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
   1059   Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
   1060          "local variable requires a valid scope", &N, N.getRawScope());
   1061 }
   1062 
   1063 void Verifier::visitDIExpression(const DIExpression &N) {
   1064   Assert(N.isValid(), "invalid expression", &N);
   1065 }
   1066 
   1067 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
   1068   Assert(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
   1069   if (auto *T = N.getRawType())
   1070     Assert(isTypeRef(N, T), "invalid type ref", &N, T);
   1071   if (auto *F = N.getRawFile())
   1072     Assert(isa<DIFile>(F), "invalid file", &N, F);
   1073 }
   1074 
   1075 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
   1076   Assert(N.getTag() == dwarf::DW_TAG_imported_module ||
   1077              N.getTag() == dwarf::DW_TAG_imported_declaration,
   1078          "invalid tag", &N);
   1079   if (auto *S = N.getRawScope())
   1080     Assert(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
   1081   Assert(isDIRef(N, N.getEntity()), "invalid imported entity", &N,
   1082          N.getEntity());
   1083 }
   1084 
   1085 void Verifier::visitComdat(const Comdat &C) {
   1086   // The Module is invalid if the GlobalValue has private linkage.  Entities
   1087   // with private linkage don't have entries in the symbol table.
   1088   if (const GlobalValue *GV = M->getNamedValue(C.getName()))
   1089     Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
   1090            GV);
   1091 }
   1092 
   1093 void Verifier::visitModuleIdents(const Module &M) {
   1094   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
   1095   if (!Idents)
   1096     return;
   1097 
   1098   // llvm.ident takes a list of metadata entry. Each entry has only one string.
   1099   // Scan each llvm.ident entry and make sure that this requirement is met.
   1100   for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) {
   1101     const MDNode *N = Idents->getOperand(i);
   1102     Assert(N->getNumOperands() == 1,
   1103            "incorrect number of operands in llvm.ident metadata", N);
   1104     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
   1105            ("invalid value for llvm.ident metadata entry operand"
   1106             "(the operand should be a string)"),
   1107            N->getOperand(0));
   1108   }
   1109 }
   1110 
   1111 void Verifier::visitModuleFlags(const Module &M) {
   1112   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
   1113   if (!Flags) return;
   1114 
   1115   // Scan each flag, and track the flags and requirements.
   1116   DenseMap<const MDString*, const MDNode*> SeenIDs;
   1117   SmallVector<const MDNode*, 16> Requirements;
   1118   for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
   1119     visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
   1120   }
   1121 
   1122   // Validate that the requirements in the module are valid.
   1123   for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
   1124     const MDNode *Requirement = Requirements[I];
   1125     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
   1126     const Metadata *ReqValue = Requirement->getOperand(1);
   1127 
   1128     const MDNode *Op = SeenIDs.lookup(Flag);
   1129     if (!Op) {
   1130       CheckFailed("invalid requirement on flag, flag is not present in module",
   1131                   Flag);
   1132       continue;
   1133     }
   1134 
   1135     if (Op->getOperand(2) != ReqValue) {
   1136       CheckFailed(("invalid requirement on flag, "
   1137                    "flag does not have the required value"),
   1138                   Flag);
   1139       continue;
   1140     }
   1141   }
   1142 }
   1143 
   1144 void
   1145 Verifier::visitModuleFlag(const MDNode *Op,
   1146                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
   1147                           SmallVectorImpl<const MDNode *> &Requirements) {
   1148   // Each module flag should have three arguments, the merge behavior (a
   1149   // constant int), the flag ID (an MDString), and the value.
   1150   Assert(Op->getNumOperands() == 3,
   1151          "incorrect number of operands in module flag", Op);
   1152   Module::ModFlagBehavior MFB;
   1153   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
   1154     Assert(
   1155         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
   1156         "invalid behavior operand in module flag (expected constant integer)",
   1157         Op->getOperand(0));
   1158     Assert(false,
   1159            "invalid behavior operand in module flag (unexpected constant)",
   1160            Op->getOperand(0));
   1161   }
   1162   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
   1163   Assert(ID, "invalid ID operand in module flag (expected metadata string)",
   1164          Op->getOperand(1));
   1165 
   1166   // Sanity check the values for behaviors with additional requirements.
   1167   switch (MFB) {
   1168   case Module::Error:
   1169   case Module::Warning:
   1170   case Module::Override:
   1171     // These behavior types accept any value.
   1172     break;
   1173 
   1174   case Module::Require: {
   1175     // The value should itself be an MDNode with two operands, a flag ID (an
   1176     // MDString), and a value.
   1177     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
   1178     Assert(Value && Value->getNumOperands() == 2,
   1179            "invalid value for 'require' module flag (expected metadata pair)",
   1180            Op->getOperand(2));
   1181     Assert(isa<MDString>(Value->getOperand(0)),
   1182            ("invalid value for 'require' module flag "
   1183             "(first value operand should be a string)"),
   1184            Value->getOperand(0));
   1185 
   1186     // Append it to the list of requirements, to check once all module flags are
   1187     // scanned.
   1188     Requirements.push_back(Value);
   1189     break;
   1190   }
   1191 
   1192   case Module::Append:
   1193   case Module::AppendUnique: {
   1194     // These behavior types require the operand be an MDNode.
   1195     Assert(isa<MDNode>(Op->getOperand(2)),
   1196            "invalid value for 'append'-type module flag "
   1197            "(expected a metadata node)",
   1198            Op->getOperand(2));
   1199     break;
   1200   }
   1201   }
   1202 
   1203   // Unless this is a "requires" flag, check the ID is unique.
   1204   if (MFB != Module::Require) {
   1205     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
   1206     Assert(Inserted,
   1207            "module flag identifiers must be unique (or of 'require' type)", ID);
   1208   }
   1209 }
   1210 
   1211 void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
   1212                                     bool isFunction, const Value *V) {
   1213   unsigned Slot = ~0U;
   1214   for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
   1215     if (Attrs.getSlotIndex(I) == Idx) {
   1216       Slot = I;
   1217       break;
   1218     }
   1219 
   1220   assert(Slot != ~0U && "Attribute set inconsistency!");
   1221 
   1222   for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
   1223          I != E; ++I) {
   1224     if (I->isStringAttribute())
   1225       continue;
   1226 
   1227     if (I->getKindAsEnum() == Attribute::NoReturn ||
   1228         I->getKindAsEnum() == Attribute::NoUnwind ||
   1229         I->getKindAsEnum() == Attribute::NoInline ||
   1230         I->getKindAsEnum() == Attribute::AlwaysInline ||
   1231         I->getKindAsEnum() == Attribute::OptimizeForSize ||
   1232         I->getKindAsEnum() == Attribute::StackProtect ||
   1233         I->getKindAsEnum() == Attribute::StackProtectReq ||
   1234         I->getKindAsEnum() == Attribute::StackProtectStrong ||
   1235         I->getKindAsEnum() == Attribute::SafeStack ||
   1236         I->getKindAsEnum() == Attribute::NoRedZone ||
   1237         I->getKindAsEnum() == Attribute::NoImplicitFloat ||
   1238         I->getKindAsEnum() == Attribute::Naked ||
   1239         I->getKindAsEnum() == Attribute::InlineHint ||
   1240         I->getKindAsEnum() == Attribute::StackAlignment ||
   1241         I->getKindAsEnum() == Attribute::UWTable ||
   1242         I->getKindAsEnum() == Attribute::NonLazyBind ||
   1243         I->getKindAsEnum() == Attribute::ReturnsTwice ||
   1244         I->getKindAsEnum() == Attribute::SanitizeAddress ||
   1245         I->getKindAsEnum() == Attribute::SanitizeThread ||
   1246         I->getKindAsEnum() == Attribute::SanitizeMemory ||
   1247         I->getKindAsEnum() == Attribute::MinSize ||
   1248         I->getKindAsEnum() == Attribute::NoDuplicate ||
   1249         I->getKindAsEnum() == Attribute::Builtin ||
   1250         I->getKindAsEnum() == Attribute::NoBuiltin ||
   1251         I->getKindAsEnum() == Attribute::Cold ||
   1252         I->getKindAsEnum() == Attribute::OptimizeNone ||
   1253         I->getKindAsEnum() == Attribute::JumpTable ||
   1254         I->getKindAsEnum() == Attribute::Convergent ||
   1255         I->getKindAsEnum() == Attribute::ArgMemOnly ||
   1256         I->getKindAsEnum() == Attribute::NoRecurse ||
   1257         I->getKindAsEnum() == Attribute::InaccessibleMemOnly ||
   1258         I->getKindAsEnum() == Attribute::InaccessibleMemOrArgMemOnly) {
   1259       if (!isFunction) {
   1260         CheckFailed("Attribute '" + I->getAsString() +
   1261                     "' only applies to functions!", V);
   1262         return;
   1263       }
   1264     } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
   1265                I->getKindAsEnum() == Attribute::ReadNone) {
   1266       if (Idx == 0) {
   1267         CheckFailed("Attribute '" + I->getAsString() +
   1268                     "' does not apply to function returns");
   1269         return;
   1270       }
   1271     } else if (isFunction) {
   1272       CheckFailed("Attribute '" + I->getAsString() +
   1273                   "' does not apply to functions!", V);
   1274       return;
   1275     }
   1276   }
   1277 }
   1278 
   1279 // VerifyParameterAttrs - Check the given attributes for an argument or return
   1280 // value of the specified type.  The value V is printed in error messages.
   1281 void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
   1282                                     bool isReturnValue, const Value *V) {
   1283   if (!Attrs.hasAttributes(Idx))
   1284     return;
   1285 
   1286   VerifyAttributeTypes(Attrs, Idx, false, V);
   1287 
   1288   if (isReturnValue)
   1289     Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
   1290                !Attrs.hasAttribute(Idx, Attribute::Nest) &&
   1291                !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
   1292                !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
   1293                !Attrs.hasAttribute(Idx, Attribute::Returned) &&
   1294                !Attrs.hasAttribute(Idx, Attribute::InAlloca),
   1295            "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
   1296            "'returned' do not apply to return values!",
   1297            V);
   1298 
   1299   // Check for mutually incompatible attributes.  Only inreg is compatible with
   1300   // sret.
   1301   unsigned AttrCount = 0;
   1302   AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
   1303   AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
   1304   AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
   1305                Attrs.hasAttribute(Idx, Attribute::InReg);
   1306   AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
   1307   Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
   1308                          "and 'sret' are incompatible!",
   1309          V);
   1310 
   1311   Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
   1312            Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
   1313          "Attributes "
   1314          "'inalloca and readonly' are incompatible!",
   1315          V);
   1316 
   1317   Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
   1318            Attrs.hasAttribute(Idx, Attribute::Returned)),
   1319          "Attributes "
   1320          "'sret and returned' are incompatible!",
   1321          V);
   1322 
   1323   Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
   1324            Attrs.hasAttribute(Idx, Attribute::SExt)),
   1325          "Attributes "
   1326          "'zeroext and signext' are incompatible!",
   1327          V);
   1328 
   1329   Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
   1330            Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
   1331          "Attributes "
   1332          "'readnone and readonly' are incompatible!",
   1333          V);
   1334 
   1335   Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
   1336            Attrs.hasAttribute(Idx, Attribute::AlwaysInline)),
   1337          "Attributes "
   1338          "'noinline and alwaysinline' are incompatible!",
   1339          V);
   1340 
   1341   Assert(!AttrBuilder(Attrs, Idx)
   1342               .overlaps(AttributeFuncs::typeIncompatible(Ty)),
   1343          "Wrong types for attribute: " +
   1344          AttributeSet::get(*Context, Idx,
   1345                         AttributeFuncs::typeIncompatible(Ty)).getAsString(Idx),
   1346          V);
   1347 
   1348   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
   1349     SmallPtrSet<Type*, 4> Visited;
   1350     if (!PTy->getElementType()->isSized(&Visited)) {
   1351       Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
   1352                  !Attrs.hasAttribute(Idx, Attribute::InAlloca),
   1353              "Attributes 'byval' and 'inalloca' do not support unsized types!",
   1354              V);
   1355     }
   1356   } else {
   1357     Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal),
   1358            "Attribute 'byval' only applies to parameters with pointer type!",
   1359            V);
   1360   }
   1361 }
   1362 
   1363 // VerifyFunctionAttrs - Check parameter attributes against a function type.
   1364 // The value V is printed in error messages.
   1365 void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
   1366                                    const Value *V) {
   1367   if (Attrs.isEmpty())
   1368     return;
   1369 
   1370   bool SawNest = false;
   1371   bool SawReturned = false;
   1372   bool SawSRet = false;
   1373 
   1374   for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
   1375     unsigned Idx = Attrs.getSlotIndex(i);
   1376 
   1377     Type *Ty;
   1378     if (Idx == 0)
   1379       Ty = FT->getReturnType();
   1380     else if (Idx-1 < FT->getNumParams())
   1381       Ty = FT->getParamType(Idx-1);
   1382     else
   1383       break;  // VarArgs attributes, verified elsewhere.
   1384 
   1385     VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
   1386 
   1387     if (Idx == 0)
   1388       continue;
   1389 
   1390     if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
   1391       Assert(!SawNest, "More than one parameter has attribute nest!", V);
   1392       SawNest = true;
   1393     }
   1394 
   1395     if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
   1396       Assert(!SawReturned, "More than one parameter has attribute returned!",
   1397              V);
   1398       Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
   1399              "Incompatible "
   1400              "argument and return types for 'returned' attribute",
   1401              V);
   1402       SawReturned = true;
   1403     }
   1404 
   1405     if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
   1406       Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
   1407       Assert(Idx == 1 || Idx == 2,
   1408              "Attribute 'sret' is not on first or second parameter!", V);
   1409       SawSRet = true;
   1410     }
   1411 
   1412     if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
   1413       Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!",
   1414              V);
   1415     }
   1416   }
   1417 
   1418   if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
   1419     return;
   1420 
   1421   VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
   1422 
   1423   Assert(
   1424       !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
   1425         Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)),
   1426       "Attributes 'readnone and readonly' are incompatible!", V);
   1427 
   1428   Assert(
   1429       !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
   1430         Attrs.hasAttribute(AttributeSet::FunctionIndex,
   1431                            Attribute::InaccessibleMemOrArgMemOnly)),
   1432       "Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!", V);
   1433 
   1434   Assert(
   1435       !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
   1436         Attrs.hasAttribute(AttributeSet::FunctionIndex,
   1437                            Attribute::InaccessibleMemOnly)),
   1438       "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
   1439 
   1440   Assert(
   1441       !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) &&
   1442         Attrs.hasAttribute(AttributeSet::FunctionIndex,
   1443                            Attribute::AlwaysInline)),
   1444       "Attributes 'noinline and alwaysinline' are incompatible!", V);
   1445 
   1446   if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
   1447                          Attribute::OptimizeNone)) {
   1448     Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline),
   1449            "Attribute 'optnone' requires 'noinline'!", V);
   1450 
   1451     Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
   1452                                Attribute::OptimizeForSize),
   1453            "Attributes 'optsize and optnone' are incompatible!", V);
   1454 
   1455     Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize),
   1456            "Attributes 'minsize and optnone' are incompatible!", V);
   1457   }
   1458 
   1459   if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
   1460                          Attribute::JumpTable)) {
   1461     const GlobalValue *GV = cast<GlobalValue>(V);
   1462     Assert(GV->hasUnnamedAddr(),
   1463            "Attribute 'jumptable' requires 'unnamed_addr'", V);
   1464   }
   1465 }
   1466 
   1467 void Verifier::VerifyFunctionMetadata(
   1468     const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs) {
   1469   if (MDs.empty())
   1470     return;
   1471 
   1472   for (unsigned i = 0; i < MDs.size(); i++) {
   1473     if (MDs[i].first == LLVMContext::MD_prof) {
   1474       MDNode *MD = MDs[i].second;
   1475       Assert(MD->getNumOperands() == 2,
   1476              "!prof annotations should have exactly 2 operands", MD);
   1477 
   1478       // Check first operand.
   1479       Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
   1480              MD);
   1481       Assert(isa<MDString>(MD->getOperand(0)),
   1482              "expected string with name of the !prof annotation", MD);
   1483       MDString *MDS = cast<MDString>(MD->getOperand(0));
   1484       StringRef ProfName = MDS->getString();
   1485       Assert(ProfName.equals("function_entry_count"),
   1486              "first operand should be 'function_entry_count'", MD);
   1487 
   1488       // Check second operand.
   1489       Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
   1490              MD);
   1491       Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
   1492              "expected integer argument to function_entry_count", MD);
   1493     }
   1494   }
   1495 }
   1496 
   1497 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
   1498   if (!ConstantExprVisited.insert(EntryC).second)
   1499     return;
   1500 
   1501   SmallVector<const Constant *, 16> Stack;
   1502   Stack.push_back(EntryC);
   1503 
   1504   while (!Stack.empty()) {
   1505     const Constant *C = Stack.pop_back_val();
   1506 
   1507     // Check this constant expression.
   1508     if (const auto *CE = dyn_cast<ConstantExpr>(C))
   1509       visitConstantExpr(CE);
   1510 
   1511     // Visit all sub-expressions.
   1512     for (const Use &U : C->operands()) {
   1513       const auto *OpC = dyn_cast<Constant>(U);
   1514       if (!OpC)
   1515         continue;
   1516       if (isa<GlobalValue>(OpC))
   1517         continue; // Global values get visited separately.
   1518       if (!ConstantExprVisited.insert(OpC).second)
   1519         continue;
   1520       Stack.push_back(OpC);
   1521     }
   1522   }
   1523 }
   1524 
   1525 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
   1526   if (CE->getOpcode() != Instruction::BitCast)
   1527     return;
   1528 
   1529   Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
   1530                                CE->getType()),
   1531          "Invalid bitcast", CE);
   1532 }
   1533 
   1534 bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) {
   1535   if (Attrs.getNumSlots() == 0)
   1536     return true;
   1537 
   1538   unsigned LastSlot = Attrs.getNumSlots() - 1;
   1539   unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
   1540   if (LastIndex <= Params
   1541       || (LastIndex == AttributeSet::FunctionIndex
   1542           && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
   1543     return true;
   1544 
   1545   return false;
   1546 }
   1547 
   1548 /// \brief Verify that statepoint intrinsic is well formed.
   1549 void Verifier::VerifyStatepoint(ImmutableCallSite CS) {
   1550   assert(CS.getCalledFunction() &&
   1551          CS.getCalledFunction()->getIntrinsicID() ==
   1552            Intrinsic::experimental_gc_statepoint);
   1553 
   1554   const Instruction &CI = *CS.getInstruction();
   1555 
   1556   Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
   1557          !CS.onlyAccessesArgMemory(),
   1558          "gc.statepoint must read and write all memory to preserve "
   1559          "reordering restrictions required by safepoint semantics",
   1560          &CI);
   1561 
   1562   const Value *IDV = CS.getArgument(0);
   1563   Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
   1564          &CI);
   1565 
   1566   const Value *NumPatchBytesV = CS.getArgument(1);
   1567   Assert(isa<ConstantInt>(NumPatchBytesV),
   1568          "gc.statepoint number of patchable bytes must be a constant integer",
   1569          &CI);
   1570   const int64_t NumPatchBytes =
   1571       cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
   1572   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
   1573   Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
   1574                              "positive",
   1575          &CI);
   1576 
   1577   const Value *Target = CS.getArgument(2);
   1578   auto *PT = dyn_cast<PointerType>(Target->getType());
   1579   Assert(PT && PT->getElementType()->isFunctionTy(),
   1580          "gc.statepoint callee must be of function pointer type", &CI, Target);
   1581   FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
   1582 
   1583   const Value *NumCallArgsV = CS.getArgument(3);
   1584   Assert(isa<ConstantInt>(NumCallArgsV),
   1585          "gc.statepoint number of arguments to underlying call "
   1586          "must be constant integer",
   1587          &CI);
   1588   const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
   1589   Assert(NumCallArgs >= 0,
   1590          "gc.statepoint number of arguments to underlying call "
   1591          "must be positive",
   1592          &CI);
   1593   const int NumParams = (int)TargetFuncType->getNumParams();
   1594   if (TargetFuncType->isVarArg()) {
   1595     Assert(NumCallArgs >= NumParams,
   1596            "gc.statepoint mismatch in number of vararg call args", &CI);
   1597 
   1598     // TODO: Remove this limitation
   1599     Assert(TargetFuncType->getReturnType()->isVoidTy(),
   1600            "gc.statepoint doesn't support wrapping non-void "
   1601            "vararg functions yet",
   1602            &CI);
   1603   } else
   1604     Assert(NumCallArgs == NumParams,
   1605            "gc.statepoint mismatch in number of call args", &CI);
   1606 
   1607   const Value *FlagsV = CS.getArgument(4);
   1608   Assert(isa<ConstantInt>(FlagsV),
   1609          "gc.statepoint flags must be constant integer", &CI);
   1610   const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
   1611   Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
   1612          "unknown flag used in gc.statepoint flags argument", &CI);
   1613 
   1614   // Verify that the types of the call parameter arguments match
   1615   // the type of the wrapped callee.
   1616   for (int i = 0; i < NumParams; i++) {
   1617     Type *ParamType = TargetFuncType->getParamType(i);
   1618     Type *ArgType = CS.getArgument(5 + i)->getType();
   1619     Assert(ArgType == ParamType,
   1620            "gc.statepoint call argument does not match wrapped "
   1621            "function type",
   1622            &CI);
   1623   }
   1624 
   1625   const int EndCallArgsInx = 4 + NumCallArgs;
   1626 
   1627   const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
   1628   Assert(isa<ConstantInt>(NumTransitionArgsV),
   1629          "gc.statepoint number of transition arguments "
   1630          "must be constant integer",
   1631          &CI);
   1632   const int NumTransitionArgs =
   1633       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
   1634   Assert(NumTransitionArgs >= 0,
   1635          "gc.statepoint number of transition arguments must be positive", &CI);
   1636   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
   1637 
   1638   const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
   1639   Assert(isa<ConstantInt>(NumDeoptArgsV),
   1640          "gc.statepoint number of deoptimization arguments "
   1641          "must be constant integer",
   1642          &CI);
   1643   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
   1644   Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
   1645                             "must be positive",
   1646          &CI);
   1647 
   1648   const int ExpectedNumArgs =
   1649       7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
   1650   Assert(ExpectedNumArgs <= (int)CS.arg_size(),
   1651          "gc.statepoint too few arguments according to length fields", &CI);
   1652 
   1653   // Check that the only uses of this gc.statepoint are gc.result or
   1654   // gc.relocate calls which are tied to this statepoint and thus part
   1655   // of the same statepoint sequence
   1656   for (const User *U : CI.users()) {
   1657     const CallInst *Call = dyn_cast<const CallInst>(U);
   1658     Assert(Call, "illegal use of statepoint token", &CI, U);
   1659     if (!Call) continue;
   1660     Assert(isGCRelocate(Call) || isGCResult(Call),
   1661            "gc.result or gc.relocate are the only value uses"
   1662            "of a gc.statepoint",
   1663            &CI, U);
   1664     if (isGCResult(Call)) {
   1665       Assert(Call->getArgOperand(0) == &CI,
   1666              "gc.result connected to wrong gc.statepoint", &CI, Call);
   1667     } else if (isGCRelocate(Call)) {
   1668       Assert(Call->getArgOperand(0) == &CI,
   1669              "gc.relocate connected to wrong gc.statepoint", &CI, Call);
   1670     }
   1671   }
   1672 
   1673   // Note: It is legal for a single derived pointer to be listed multiple
   1674   // times.  It's non-optimal, but it is legal.  It can also happen after
   1675   // insertion if we strip a bitcast away.
   1676   // Note: It is really tempting to check that each base is relocated and
   1677   // that a derived pointer is never reused as a base pointer.  This turns
   1678   // out to be problematic since optimizations run after safepoint insertion
   1679   // can recognize equality properties that the insertion logic doesn't know
   1680   // about.  See example statepoint.ll in the verifier subdirectory
   1681 }
   1682 
   1683 void Verifier::verifyFrameRecoverIndices() {
   1684   for (auto &Counts : FrameEscapeInfo) {
   1685     Function *F = Counts.first;
   1686     unsigned EscapedObjectCount = Counts.second.first;
   1687     unsigned MaxRecoveredIndex = Counts.second.second;
   1688     Assert(MaxRecoveredIndex <= EscapedObjectCount,
   1689            "all indices passed to llvm.localrecover must be less than the "
   1690            "number of arguments passed ot llvm.localescape in the parent "
   1691            "function",
   1692            F);
   1693   }
   1694 }
   1695 
   1696 // visitFunction - Verify that a function is ok.
   1697 //
   1698 void Verifier::visitFunction(const Function &F) {
   1699   // Check function arguments.
   1700   FunctionType *FT = F.getFunctionType();
   1701   unsigned NumArgs = F.arg_size();
   1702 
   1703   Assert(Context == &F.getContext(),
   1704          "Function context does not match Module context!", &F);
   1705 
   1706   Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
   1707   Assert(FT->getNumParams() == NumArgs,
   1708          "# formal arguments must match # of arguments for function type!", &F,
   1709          FT);
   1710   Assert(F.getReturnType()->isFirstClassType() ||
   1711              F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
   1712          "Functions cannot return aggregate values!", &F);
   1713 
   1714   Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
   1715          "Invalid struct return type!", &F);
   1716 
   1717   AttributeSet Attrs = F.getAttributes();
   1718 
   1719   Assert(VerifyAttributeCount(Attrs, FT->getNumParams()),
   1720          "Attribute after last parameter!", &F);
   1721 
   1722   // Check function attributes.
   1723   VerifyFunctionAttrs(FT, Attrs, &F);
   1724 
   1725   // On function declarations/definitions, we do not support the builtin
   1726   // attribute. We do not check this in VerifyFunctionAttrs since that is
   1727   // checking for Attributes that can/can not ever be on functions.
   1728   Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin),
   1729          "Attribute 'builtin' can only be applied to a callsite.", &F);
   1730 
   1731   // Check that this function meets the restrictions on this calling convention.
   1732   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
   1733   // restrictions can be lifted.
   1734   switch (F.getCallingConv()) {
   1735   default:
   1736   case CallingConv::C:
   1737     break;
   1738   case CallingConv::Fast:
   1739   case CallingConv::Cold:
   1740   case CallingConv::Intel_OCL_BI:
   1741   case CallingConv::PTX_Kernel:
   1742   case CallingConv::PTX_Device:
   1743     Assert(!F.isVarArg(), "Calling convention does not support varargs or "
   1744                           "perfect forwarding!",
   1745            &F);
   1746     break;
   1747   }
   1748 
   1749   bool isLLVMdotName = F.getName().size() >= 5 &&
   1750                        F.getName().substr(0, 5) == "llvm.";
   1751 
   1752   // Check that the argument values match the function type for this function...
   1753   unsigned i = 0;
   1754   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
   1755        ++I, ++i) {
   1756     Assert(I->getType() == FT->getParamType(i),
   1757            "Argument value does not match function argument type!", I,
   1758            FT->getParamType(i));
   1759     Assert(I->getType()->isFirstClassType(),
   1760            "Function arguments must have first-class types!", I);
   1761     if (!isLLVMdotName) {
   1762       Assert(!I->getType()->isMetadataTy(),
   1763              "Function takes metadata but isn't an intrinsic", I, &F);
   1764       Assert(!I->getType()->isTokenTy(),
   1765              "Function takes token but isn't an intrinsic", I, &F);
   1766     }
   1767   }
   1768 
   1769   if (!isLLVMdotName)
   1770     Assert(!F.getReturnType()->isTokenTy(),
   1771            "Functions returns a token but isn't an intrinsic", &F);
   1772 
   1773   // Get the function metadata attachments.
   1774   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
   1775   F.getAllMetadata(MDs);
   1776   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
   1777   VerifyFunctionMetadata(MDs);
   1778 
   1779   // Check validity of the personality function
   1780   if (F.hasPersonalityFn()) {
   1781     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
   1782     if (Per)
   1783       Assert(Per->getParent() == F.getParent(),
   1784              "Referencing personality function in another module!",
   1785              &F, F.getParent(), Per, Per->getParent());
   1786   }
   1787 
   1788   if (F.isMaterializable()) {
   1789     // Function has a body somewhere we can't see.
   1790     Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
   1791            MDs.empty() ? nullptr : MDs.front().second);
   1792   } else if (F.isDeclaration()) {
   1793     Assert(F.hasExternalLinkage() || F.hasExternalWeakLinkage(),
   1794            "invalid linkage type for function declaration", &F);
   1795     Assert(MDs.empty(), "function without a body cannot have metadata", &F,
   1796            MDs.empty() ? nullptr : MDs.front().second);
   1797     Assert(!F.hasPersonalityFn(),
   1798            "Function declaration shouldn't have a personality routine", &F);
   1799   } else {
   1800     // Verify that this function (which has a body) is not named "llvm.*".  It
   1801     // is not legal to define intrinsics.
   1802     Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
   1803 
   1804     // Check the entry node
   1805     const BasicBlock *Entry = &F.getEntryBlock();
   1806     Assert(pred_empty(Entry),
   1807            "Entry block to function must not have predecessors!", Entry);
   1808 
   1809     // The address of the entry block cannot be taken, unless it is dead.
   1810     if (Entry->hasAddressTaken()) {
   1811       Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
   1812              "blockaddress may not be used with the entry block!", Entry);
   1813     }
   1814 
   1815     // Visit metadata attachments.
   1816     for (const auto &I : MDs) {
   1817       // Verify that the attachment is legal.
   1818       switch (I.first) {
   1819       default:
   1820         break;
   1821       case LLVMContext::MD_dbg:
   1822         Assert(isa<DISubprogram>(I.second),
   1823                "function !dbg attachment must be a subprogram", &F, I.second);
   1824         break;
   1825       }
   1826 
   1827       // Verify the metadata itself.
   1828       visitMDNode(*I.second);
   1829     }
   1830   }
   1831 
   1832   // If this function is actually an intrinsic, verify that it is only used in
   1833   // direct call/invokes, never having its "address taken".
   1834   // Only do this if the module is materialized, otherwise we don't have all the
   1835   // uses.
   1836   if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
   1837     const User *U;
   1838     if (F.hasAddressTaken(&U))
   1839       Assert(0, "Invalid user of intrinsic instruction!", U);
   1840   }
   1841 
   1842   Assert(!F.hasDLLImportStorageClass() ||
   1843              (F.isDeclaration() && F.hasExternalLinkage()) ||
   1844              F.hasAvailableExternallyLinkage(),
   1845          "Function is marked as dllimport, but not external.", &F);
   1846 
   1847   auto *N = F.getSubprogram();
   1848   if (!N)
   1849     return;
   1850 
   1851   // Check that all !dbg attachments lead to back to N (or, at least, another
   1852   // subprogram that describes the same function).
   1853   //
   1854   // FIXME: Check this incrementally while visiting !dbg attachments.
   1855   // FIXME: Only check when N is the canonical subprogram for F.
   1856   SmallPtrSet<const MDNode *, 32> Seen;
   1857   for (auto &BB : F)
   1858     for (auto &I : BB) {
   1859       // Be careful about using DILocation here since we might be dealing with
   1860       // broken code (this is the Verifier after all).
   1861       DILocation *DL =
   1862           dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
   1863       if (!DL)
   1864         continue;
   1865       if (!Seen.insert(DL).second)
   1866         continue;
   1867 
   1868       DILocalScope *Scope = DL->getInlinedAtScope();
   1869       if (Scope && !Seen.insert(Scope).second)
   1870         continue;
   1871 
   1872       DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
   1873 
   1874       // Scope and SP could be the same MDNode and we don't want to skip
   1875       // validation in that case
   1876       if (SP && ((Scope != SP) && !Seen.insert(SP).second))
   1877         continue;
   1878 
   1879       // FIXME: Once N is canonical, check "SP == &N".
   1880       Assert(SP->describes(&F),
   1881              "!dbg attachment points at wrong subprogram for function", N, &F,
   1882              &I, DL, Scope, SP);
   1883     }
   1884 }
   1885 
   1886 // verifyBasicBlock - Verify that a basic block is well formed...
   1887 //
   1888 void Verifier::visitBasicBlock(BasicBlock &BB) {
   1889   InstsInThisBlock.clear();
   1890 
   1891   // Ensure that basic blocks have terminators!
   1892   Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
   1893 
   1894   // Check constraints that this basic block imposes on all of the PHI nodes in
   1895   // it.
   1896   if (isa<PHINode>(BB.front())) {
   1897     SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
   1898     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
   1899     std::sort(Preds.begin(), Preds.end());
   1900     PHINode *PN;
   1901     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
   1902       // Ensure that PHI nodes have at least one entry!
   1903       Assert(PN->getNumIncomingValues() != 0,
   1904              "PHI nodes must have at least one entry.  If the block is dead, "
   1905              "the PHI should be removed!",
   1906              PN);
   1907       Assert(PN->getNumIncomingValues() == Preds.size(),
   1908              "PHINode should have one entry for each predecessor of its "
   1909              "parent basic block!",
   1910              PN);
   1911 
   1912       // Get and sort all incoming values in the PHI node...
   1913       Values.clear();
   1914       Values.reserve(PN->getNumIncomingValues());
   1915       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   1916         Values.push_back(std::make_pair(PN->getIncomingBlock(i),
   1917                                         PN->getIncomingValue(i)));
   1918       std::sort(Values.begin(), Values.end());
   1919 
   1920       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
   1921         // Check to make sure that if there is more than one entry for a
   1922         // particular basic block in this PHI node, that the incoming values are
   1923         // all identical.
   1924         //
   1925         Assert(i == 0 || Values[i].first != Values[i - 1].first ||
   1926                    Values[i].second == Values[i - 1].second,
   1927                "PHI node has multiple entries for the same basic block with "
   1928                "different incoming values!",
   1929                PN, Values[i].first, Values[i].second, Values[i - 1].second);
   1930 
   1931         // Check to make sure that the predecessors and PHI node entries are
   1932         // matched up.
   1933         Assert(Values[i].first == Preds[i],
   1934                "PHI node entries do not match predecessors!", PN,
   1935                Values[i].first, Preds[i]);
   1936       }
   1937     }
   1938   }
   1939 
   1940   // Check that all instructions have their parent pointers set up correctly.
   1941   for (auto &I : BB)
   1942   {
   1943     Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
   1944   }
   1945 }
   1946 
   1947 void Verifier::visitTerminatorInst(TerminatorInst &I) {
   1948   // Ensure that terminators only exist at the end of the basic block.
   1949   Assert(&I == I.getParent()->getTerminator(),
   1950          "Terminator found in the middle of a basic block!", I.getParent());
   1951   visitInstruction(I);
   1952 }
   1953 
   1954 void Verifier::visitBranchInst(BranchInst &BI) {
   1955   if (BI.isConditional()) {
   1956     Assert(BI.getCondition()->getType()->isIntegerTy(1),
   1957            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
   1958   }
   1959   visitTerminatorInst(BI);
   1960 }
   1961 
   1962 void Verifier::visitReturnInst(ReturnInst &RI) {
   1963   Function *F = RI.getParent()->getParent();
   1964   unsigned N = RI.getNumOperands();
   1965   if (F->getReturnType()->isVoidTy())
   1966     Assert(N == 0,
   1967            "Found return instr that returns non-void in Function of void "
   1968            "return type!",
   1969            &RI, F->getReturnType());
   1970   else
   1971     Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
   1972            "Function return type does not match operand "
   1973            "type of return inst!",
   1974            &RI, F->getReturnType());
   1975 
   1976   // Check to make sure that the return value has necessary properties for
   1977   // terminators...
   1978   visitTerminatorInst(RI);
   1979 }
   1980 
   1981 void Verifier::visitSwitchInst(SwitchInst &SI) {
   1982   // Check to make sure that all of the constants in the switch instruction
   1983   // have the same type as the switched-on value.
   1984   Type *SwitchTy = SI.getCondition()->getType();
   1985   SmallPtrSet<ConstantInt*, 32> Constants;
   1986   for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
   1987     Assert(i.getCaseValue()->getType() == SwitchTy,
   1988            "Switch constants must all be same type as switch value!", &SI);
   1989     Assert(Constants.insert(i.getCaseValue()).second,
   1990            "Duplicate integer as switch case", &SI, i.getCaseValue());
   1991   }
   1992 
   1993   visitTerminatorInst(SI);
   1994 }
   1995 
   1996 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
   1997   Assert(BI.getAddress()->getType()->isPointerTy(),
   1998          "Indirectbr operand must have pointer type!", &BI);
   1999   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
   2000     Assert(BI.getDestination(i)->getType()->isLabelTy(),
   2001            "Indirectbr destinations must all have pointer type!", &BI);
   2002 
   2003   visitTerminatorInst(BI);
   2004 }
   2005 
   2006 void Verifier::visitSelectInst(SelectInst &SI) {
   2007   Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
   2008                                          SI.getOperand(2)),
   2009          "Invalid operands for select instruction!", &SI);
   2010 
   2011   Assert(SI.getTrueValue()->getType() == SI.getType(),
   2012          "Select values must have same type as select instruction!", &SI);
   2013   visitInstruction(SI);
   2014 }
   2015 
   2016 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
   2017 /// a pass, if any exist, it's an error.
   2018 ///
   2019 void Verifier::visitUserOp1(Instruction &I) {
   2020   Assert(0, "User-defined operators should not live outside of a pass!", &I);
   2021 }
   2022 
   2023 void Verifier::visitTruncInst(TruncInst &I) {
   2024   // Get the source and destination types
   2025   Type *SrcTy = I.getOperand(0)->getType();
   2026   Type *DestTy = I.getType();
   2027 
   2028   // Get the size of the types in bits, we'll need this later
   2029   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
   2030   unsigned DestBitSize = DestTy->getScalarSizeInBits();
   2031 
   2032   Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
   2033   Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
   2034   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
   2035          "trunc source and destination must both be a vector or neither", &I);
   2036   Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
   2037 
   2038   visitInstruction(I);
   2039 }
   2040 
   2041 void Verifier::visitZExtInst(ZExtInst &I) {
   2042   // Get the source and destination types
   2043   Type *SrcTy = I.getOperand(0)->getType();
   2044   Type *DestTy = I.getType();
   2045 
   2046   // Get the size of the types in bits, we'll need this later
   2047   Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
   2048   Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
   2049   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
   2050          "zext source and destination must both be a vector or neither", &I);
   2051   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
   2052   unsigned DestBitSize = DestTy->getScalarSizeInBits();
   2053 
   2054   Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
   2055 
   2056   visitInstruction(I);
   2057 }
   2058 
   2059 void Verifier::visitSExtInst(SExtInst &I) {
   2060   // Get the source and destination types
   2061   Type *SrcTy = I.getOperand(0)->getType();
   2062   Type *DestTy = I.getType();
   2063 
   2064   // Get the size of the types in bits, we'll need this later
   2065   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
   2066   unsigned DestBitSize = DestTy->getScalarSizeInBits();
   2067 
   2068   Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
   2069   Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
   2070   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
   2071          "sext source and destination must both be a vector or neither", &I);
   2072   Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
   2073 
   2074   visitInstruction(I);
   2075 }
   2076 
   2077 void Verifier::visitFPTruncInst(FPTruncInst &I) {
   2078   // Get the source and destination types
   2079   Type *SrcTy = I.getOperand(0)->getType();
   2080   Type *DestTy = I.getType();
   2081   // Get the size of the types in bits, we'll need this later
   2082   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
   2083   unsigned DestBitSize = DestTy->getScalarSizeInBits();
   2084 
   2085   Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
   2086   Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
   2087   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
   2088          "fptrunc source and destination must both be a vector or neither", &I);
   2089   Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
   2090 
   2091   visitInstruction(I);
   2092 }
   2093 
   2094 void Verifier::visitFPExtInst(FPExtInst &I) {
   2095   // Get the source and destination types
   2096   Type *SrcTy = I.getOperand(0)->getType();
   2097   Type *DestTy = I.getType();
   2098 
   2099   // Get the size of the types in bits, we'll need this later
   2100   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
   2101   unsigned DestBitSize = DestTy->getScalarSizeInBits();
   2102 
   2103   Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
   2104   Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
   2105   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
   2106          "fpext source and destination must both be a vector or neither", &I);
   2107   Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
   2108 
   2109   visitInstruction(I);
   2110 }
   2111 
   2112 void Verifier::visitUIToFPInst(UIToFPInst &I) {
   2113   // Get the source and destination types
   2114   Type *SrcTy = I.getOperand(0)->getType();
   2115   Type *DestTy = I.getType();
   2116 
   2117   bool SrcVec = SrcTy->isVectorTy();
   2118   bool DstVec = DestTy->isVectorTy();
   2119 
   2120   Assert(SrcVec == DstVec,
   2121          "UIToFP source and dest must both be vector or scalar", &I);
   2122   Assert(SrcTy->isIntOrIntVectorTy(),
   2123          "UIToFP source must be integer or integer vector", &I);
   2124   Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
   2125          &I);
   2126 
   2127   if (SrcVec && DstVec)
   2128     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
   2129                cast<VectorType>(DestTy)->getNumElements(),
   2130            "UIToFP source and dest vector length mismatch", &I);
   2131 
   2132   visitInstruction(I);
   2133 }
   2134 
   2135 void Verifier::visitSIToFPInst(SIToFPInst &I) {
   2136   // Get the source and destination types
   2137   Type *SrcTy = I.getOperand(0)->getType();
   2138   Type *DestTy = I.getType();
   2139 
   2140   bool SrcVec = SrcTy->isVectorTy();
   2141   bool DstVec = DestTy->isVectorTy();
   2142 
   2143   Assert(SrcVec == DstVec,
   2144          "SIToFP source and dest must both be vector or scalar", &I);
   2145   Assert(SrcTy->isIntOrIntVectorTy(),
   2146          "SIToFP source must be integer or integer vector", &I);
   2147   Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
   2148          &I);
   2149 
   2150   if (SrcVec && DstVec)
   2151     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
   2152                cast<VectorType>(DestTy)->getNumElements(),
   2153            "SIToFP source and dest vector length mismatch", &I);
   2154 
   2155   visitInstruction(I);
   2156 }
   2157 
   2158 void Verifier::visitFPToUIInst(FPToUIInst &I) {
   2159   // Get the source and destination types
   2160   Type *SrcTy = I.getOperand(0)->getType();
   2161   Type *DestTy = I.getType();
   2162 
   2163   bool SrcVec = SrcTy->isVectorTy();
   2164   bool DstVec = DestTy->isVectorTy();
   2165 
   2166   Assert(SrcVec == DstVec,
   2167          "FPToUI source and dest must both be vector or scalar", &I);
   2168   Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
   2169          &I);
   2170   Assert(DestTy->isIntOrIntVectorTy(),
   2171          "FPToUI result must be integer or integer vector", &I);
   2172 
   2173   if (SrcVec && DstVec)
   2174     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
   2175                cast<VectorType>(DestTy)->getNumElements(),
   2176            "FPToUI source and dest vector length mismatch", &I);
   2177 
   2178   visitInstruction(I);
   2179 }
   2180 
   2181 void Verifier::visitFPToSIInst(FPToSIInst &I) {
   2182   // Get the source and destination types
   2183   Type *SrcTy = I.getOperand(0)->getType();
   2184   Type *DestTy = I.getType();
   2185 
   2186   bool SrcVec = SrcTy->isVectorTy();
   2187   bool DstVec = DestTy->isVectorTy();
   2188 
   2189   Assert(SrcVec == DstVec,
   2190          "FPToSI source and dest must both be vector or scalar", &I);
   2191   Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
   2192          &I);
   2193   Assert(DestTy->isIntOrIntVectorTy(),
   2194          "FPToSI result must be integer or integer vector", &I);
   2195 
   2196   if (SrcVec && DstVec)
   2197     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
   2198                cast<VectorType>(DestTy)->getNumElements(),
   2199            "FPToSI source and dest vector length mismatch", &I);
   2200 
   2201   visitInstruction(I);
   2202 }
   2203 
   2204 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
   2205   // Get the source and destination types
   2206   Type *SrcTy = I.getOperand(0)->getType();
   2207   Type *DestTy = I.getType();
   2208 
   2209   Assert(SrcTy->getScalarType()->isPointerTy(),
   2210          "PtrToInt source must be pointer", &I);
   2211   Assert(DestTy->getScalarType()->isIntegerTy(),
   2212          "PtrToInt result must be integral", &I);
   2213   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
   2214          &I);
   2215 
   2216   if (SrcTy->isVectorTy()) {
   2217     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
   2218     VectorType *VDest = dyn_cast<VectorType>(DestTy);
   2219     Assert(VSrc->getNumElements() == VDest->getNumElements(),
   2220            "PtrToInt Vector width mismatch", &I);
   2221   }
   2222 
   2223   visitInstruction(I);
   2224 }
   2225 
   2226 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
   2227   // Get the source and destination types
   2228   Type *SrcTy = I.getOperand(0)->getType();
   2229   Type *DestTy = I.getType();
   2230 
   2231   Assert(SrcTy->getScalarType()->isIntegerTy(),
   2232          "IntToPtr source must be an integral", &I);
   2233   Assert(DestTy->getScalarType()->isPointerTy(),
   2234          "IntToPtr result must be a pointer", &I);
   2235   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
   2236          &I);
   2237   if (SrcTy->isVectorTy()) {
   2238     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
   2239     VectorType *VDest = dyn_cast<VectorType>(DestTy);
   2240     Assert(VSrc->getNumElements() == VDest->getNumElements(),
   2241            "IntToPtr Vector width mismatch", &I);
   2242   }
   2243   visitInstruction(I);
   2244 }
   2245 
   2246 void Verifier::visitBitCastInst(BitCastInst &I) {
   2247   Assert(
   2248       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
   2249       "Invalid bitcast", &I);
   2250   visitInstruction(I);
   2251 }
   2252 
   2253 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
   2254   Type *SrcTy = I.getOperand(0)->getType();
   2255   Type *DestTy = I.getType();
   2256 
   2257   Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
   2258          &I);
   2259   Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
   2260          &I);
   2261   Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
   2262          "AddrSpaceCast must be between different address spaces", &I);
   2263   if (SrcTy->isVectorTy())
   2264     Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
   2265            "AddrSpaceCast vector pointer number of elements mismatch", &I);
   2266   visitInstruction(I);
   2267 }
   2268 
   2269 /// visitPHINode - Ensure that a PHI node is well formed.
   2270 ///
   2271 void Verifier::visitPHINode(PHINode &PN) {
   2272   // Ensure that the PHI nodes are all grouped together at the top of the block.
   2273   // This can be tested by checking whether the instruction before this is
   2274   // either nonexistent (because this is begin()) or is a PHI node.  If not,
   2275   // then there is some other instruction before a PHI.
   2276   Assert(&PN == &PN.getParent()->front() ||
   2277              isa<PHINode>(--BasicBlock::iterator(&PN)),
   2278          "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
   2279 
   2280   // Check that a PHI doesn't yield a Token.
   2281   Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
   2282 
   2283   // Check that all of the values of the PHI node have the same type as the
   2284   // result, and that the incoming blocks are really basic blocks.
   2285   for (Value *IncValue : PN.incoming_values()) {
   2286     Assert(PN.getType() == IncValue->getType(),
   2287            "PHI node operands are not the same type as the result!", &PN);
   2288   }
   2289 
   2290   // All other PHI node constraints are checked in the visitBasicBlock method.
   2291 
   2292   visitInstruction(PN);
   2293 }
   2294 
   2295 void Verifier::VerifyCallSite(CallSite CS) {
   2296   Instruction *I = CS.getInstruction();
   2297 
   2298   Assert(CS.getCalledValue()->getType()->isPointerTy(),
   2299          "Called function must be a pointer!", I);
   2300   PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
   2301 
   2302   Assert(FPTy->getElementType()->isFunctionTy(),
   2303          "Called function is not pointer to function type!", I);
   2304 
   2305   Assert(FPTy->getElementType() == CS.getFunctionType(),
   2306          "Called function is not the same type as the call!", I);
   2307 
   2308   FunctionType *FTy = CS.getFunctionType();
   2309 
   2310   // Verify that the correct number of arguments are being passed
   2311   if (FTy->isVarArg())
   2312     Assert(CS.arg_size() >= FTy->getNumParams(),
   2313            "Called function requires more parameters than were provided!", I);
   2314   else
   2315     Assert(CS.arg_size() == FTy->getNumParams(),
   2316            "Incorrect number of arguments passed to called function!", I);
   2317 
   2318   // Verify that all arguments to the call match the function type.
   2319   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
   2320     Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
   2321            "Call parameter type does not match function signature!",
   2322            CS.getArgument(i), FTy->getParamType(i), I);
   2323 
   2324   AttributeSet Attrs = CS.getAttributes();
   2325 
   2326   Assert(VerifyAttributeCount(Attrs, CS.arg_size()),
   2327          "Attribute after last parameter!", I);
   2328 
   2329   // Verify call attributes.
   2330   VerifyFunctionAttrs(FTy, Attrs, I);
   2331 
   2332   // Conservatively check the inalloca argument.
   2333   // We have a bug if we can find that there is an underlying alloca without
   2334   // inalloca.
   2335   if (CS.hasInAllocaArgument()) {
   2336     Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
   2337     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
   2338       Assert(AI->isUsedWithInAlloca(),
   2339              "inalloca argument for call has mismatched alloca", AI, I);
   2340   }
   2341 
   2342   if (FTy->isVarArg()) {
   2343     // FIXME? is 'nest' even legal here?
   2344     bool SawNest = false;
   2345     bool SawReturned = false;
   2346 
   2347     for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
   2348       if (Attrs.hasAttribute(Idx, Attribute::Nest))
   2349         SawNest = true;
   2350       if (Attrs.hasAttribute(Idx, Attribute::Returned))
   2351         SawReturned = true;
   2352     }
   2353 
   2354     // Check attributes on the varargs part.
   2355     for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
   2356       Type *Ty = CS.getArgument(Idx-1)->getType();
   2357       VerifyParameterAttrs(Attrs, Idx, Ty, false, I);
   2358 
   2359       if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
   2360         Assert(!SawNest, "More than one parameter has attribute nest!", I);
   2361         SawNest = true;
   2362       }
   2363 
   2364       if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
   2365         Assert(!SawReturned, "More than one parameter has attribute returned!",
   2366                I);
   2367         Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
   2368                "Incompatible argument and return types for 'returned' "
   2369                "attribute",
   2370                I);
   2371         SawReturned = true;
   2372       }
   2373 
   2374       Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet),
   2375              "Attribute 'sret' cannot be used for vararg call arguments!", I);
   2376 
   2377       if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
   2378         Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I);
   2379     }
   2380   }
   2381 
   2382   // Verify that there's no metadata unless it's a direct call to an intrinsic.
   2383   if (CS.getCalledFunction() == nullptr ||
   2384       !CS.getCalledFunction()->getName().startswith("llvm.")) {
   2385     for (Type *ParamTy : FTy->params()) {
   2386       Assert(!ParamTy->isMetadataTy(),
   2387              "Function has metadata parameter but isn't an intrinsic", I);
   2388       Assert(!ParamTy->isTokenTy(),
   2389              "Function has token parameter but isn't an intrinsic", I);
   2390     }
   2391   }
   2392 
   2393   // Verify that indirect calls don't return tokens.
   2394   if (CS.getCalledFunction() == nullptr)
   2395     Assert(!FTy->getReturnType()->isTokenTy(),
   2396            "Return type cannot be token for indirect call!");
   2397 
   2398   if (Function *F = CS.getCalledFunction())
   2399     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
   2400       visitIntrinsicCallSite(ID, CS);
   2401 
   2402   // Verify that a callsite has at most one "deopt" and one "funclet" operand
   2403   // bundle.
   2404   bool FoundDeoptBundle = false, FoundFuncletBundle = false;
   2405   for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
   2406     OperandBundleUse BU = CS.getOperandBundleAt(i);
   2407     uint32_t Tag = BU.getTagID();
   2408     if (Tag == LLVMContext::OB_deopt) {
   2409       Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I);
   2410       FoundDeoptBundle = true;
   2411     }
   2412     if (Tag == LLVMContext::OB_funclet) {
   2413       Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I);
   2414       FoundFuncletBundle = true;
   2415       Assert(BU.Inputs.size() == 1,
   2416              "Expected exactly one funclet bundle operand", I);
   2417       Assert(isa<FuncletPadInst>(BU.Inputs.front()),
   2418              "Funclet bundle operands should correspond to a FuncletPadInst",
   2419              I);
   2420     }
   2421   }
   2422 
   2423   visitInstruction(*I);
   2424 }
   2425 
   2426 /// Two types are "congruent" if they are identical, or if they are both pointer
   2427 /// types with different pointee types and the same address space.
   2428 static bool isTypeCongruent(Type *L, Type *R) {
   2429   if (L == R)
   2430     return true;
   2431   PointerType *PL = dyn_cast<PointerType>(L);
   2432   PointerType *PR = dyn_cast<PointerType>(R);
   2433   if (!PL || !PR)
   2434     return false;
   2435   return PL->getAddressSpace() == PR->getAddressSpace();
   2436 }
   2437 
   2438 static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
   2439   static const Attribute::AttrKind ABIAttrs[] = {
   2440       Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
   2441       Attribute::InReg, Attribute::Returned};
   2442   AttrBuilder Copy;
   2443   for (auto AK : ABIAttrs) {
   2444     if (Attrs.hasAttribute(I + 1, AK))
   2445       Copy.addAttribute(AK);
   2446   }
   2447   if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
   2448     Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
   2449   return Copy;
   2450 }
   2451 
   2452 void Verifier::verifyMustTailCall(CallInst &CI) {
   2453   Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
   2454 
   2455   // - The caller and callee prototypes must match.  Pointer types of
   2456   //   parameters or return types may differ in pointee type, but not
   2457   //   address space.
   2458   Function *F = CI.getParent()->getParent();
   2459   FunctionType *CallerTy = F->getFunctionType();
   2460   FunctionType *CalleeTy = CI.getFunctionType();
   2461   Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
   2462          "cannot guarantee tail call due to mismatched parameter counts", &CI);
   2463   Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
   2464          "cannot guarantee tail call due to mismatched varargs", &CI);
   2465   Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
   2466          "cannot guarantee tail call due to mismatched return types", &CI);
   2467   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
   2468     Assert(
   2469         isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
   2470         "cannot guarantee tail call due to mismatched parameter types", &CI);
   2471   }
   2472 
   2473   // - The calling conventions of the caller and callee must match.
   2474   Assert(F->getCallingConv() == CI.getCallingConv(),
   2475          "cannot guarantee tail call due to mismatched calling conv", &CI);
   2476 
   2477   // - All ABI-impacting function attributes, such as sret, byval, inreg,
   2478   //   returned, and inalloca, must match.
   2479   AttributeSet CallerAttrs = F->getAttributes();
   2480   AttributeSet CalleeAttrs = CI.getAttributes();
   2481   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
   2482     AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
   2483     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
   2484     Assert(CallerABIAttrs == CalleeABIAttrs,
   2485            "cannot guarantee tail call due to mismatched ABI impacting "
   2486            "function attributes",
   2487            &CI, CI.getOperand(I));
   2488   }
   2489 
   2490   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
   2491   //   or a pointer bitcast followed by a ret instruction.
   2492   // - The ret instruction must return the (possibly bitcasted) value
   2493   //   produced by the call or void.
   2494   Value *RetVal = &CI;
   2495   Instruction *Next = CI.getNextNode();
   2496 
   2497   // Handle the optional bitcast.
   2498   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
   2499     Assert(BI->getOperand(0) == RetVal,
   2500            "bitcast following musttail call must use the call", BI);
   2501     RetVal = BI;
   2502     Next = BI->getNextNode();
   2503   }
   2504 
   2505   // Check the return.
   2506   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
   2507   Assert(Ret, "musttail call must be precede a ret with an optional bitcast",
   2508          &CI);
   2509   Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
   2510          "musttail call result must be returned", Ret);
   2511 }
   2512 
   2513 void Verifier::visitCallInst(CallInst &CI) {
   2514   VerifyCallSite(&CI);
   2515 
   2516   if (CI.isMustTailCall())
   2517     verifyMustTailCall(CI);
   2518 }
   2519 
   2520 void Verifier::visitInvokeInst(InvokeInst &II) {
   2521   VerifyCallSite(&II);
   2522 
   2523   // Verify that the first non-PHI instruction of the unwind destination is an
   2524   // exception handling instruction.
   2525   Assert(
   2526       II.getUnwindDest()->isEHPad(),
   2527       "The unwind destination does not have an exception handling instruction!",
   2528       &II);
   2529 
   2530   visitTerminatorInst(II);
   2531 }
   2532 
   2533 /// visitBinaryOperator - Check that both arguments to the binary operator are
   2534 /// of the same type!
   2535 ///
   2536 void Verifier::visitBinaryOperator(BinaryOperator &B) {
   2537   Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
   2538          "Both operands to a binary operator are not of the same type!", &B);
   2539 
   2540   switch (B.getOpcode()) {
   2541   // Check that integer arithmetic operators are only used with
   2542   // integral operands.
   2543   case Instruction::Add:
   2544   case Instruction::Sub:
   2545   case Instruction::Mul:
   2546   case Instruction::SDiv:
   2547   case Instruction::UDiv:
   2548   case Instruction::SRem:
   2549   case Instruction::URem:
   2550     Assert(B.getType()->isIntOrIntVectorTy(),
   2551            "Integer arithmetic operators only work with integral types!", &B);
   2552     Assert(B.getType() == B.getOperand(0)->getType(),
   2553            "Integer arithmetic operators must have same type "
   2554            "for operands and result!",
   2555            &B);
   2556     break;
   2557   // Check that floating-point arithmetic operators are only used with
   2558   // floating-point operands.
   2559   case Instruction::FAdd:
   2560   case Instruction::FSub:
   2561   case Instruction::FMul:
   2562   case Instruction::FDiv:
   2563   case Instruction::FRem:
   2564     Assert(B.getType()->isFPOrFPVectorTy(),
   2565            "Floating-point arithmetic operators only work with "
   2566            "floating-point types!",
   2567            &B);
   2568     Assert(B.getType() == B.getOperand(0)->getType(),
   2569            "Floating-point arithmetic operators must have same type "
   2570            "for operands and result!",
   2571            &B);
   2572     break;
   2573   // Check that logical operators are only used with integral operands.
   2574   case Instruction::And:
   2575   case Instruction::Or:
   2576   case Instruction::Xor:
   2577     Assert(B.getType()->isIntOrIntVectorTy(),
   2578            "Logical operators only work with integral types!", &B);
   2579     Assert(B.getType() == B.getOperand(0)->getType(),
   2580            "Logical operators must have same type for operands and result!",
   2581            &B);
   2582     break;
   2583   case Instruction::Shl:
   2584   case Instruction::LShr:
   2585   case Instruction::AShr:
   2586     Assert(B.getType()->isIntOrIntVectorTy(),
   2587            "Shifts only work with integral types!", &B);
   2588     Assert(B.getType() == B.getOperand(0)->getType(),
   2589            "Shift return type must be same as operands!", &B);
   2590     break;
   2591   default:
   2592     llvm_unreachable("Unknown BinaryOperator opcode!");
   2593   }
   2594 
   2595   visitInstruction(B);
   2596 }
   2597 
   2598 void Verifier::visitICmpInst(ICmpInst &IC) {
   2599   // Check that the operands are the same type
   2600   Type *Op0Ty = IC.getOperand(0)->getType();
   2601   Type *Op1Ty = IC.getOperand(1)->getType();
   2602   Assert(Op0Ty == Op1Ty,
   2603          "Both operands to ICmp instruction are not of the same type!", &IC);
   2604   // Check that the operands are the right type
   2605   Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
   2606          "Invalid operand types for ICmp instruction", &IC);
   2607   // Check that the predicate is valid.
   2608   Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
   2609              IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
   2610          "Invalid predicate in ICmp instruction!", &IC);
   2611 
   2612   visitInstruction(IC);
   2613 }
   2614 
   2615 void Verifier::visitFCmpInst(FCmpInst &FC) {
   2616   // Check that the operands are the same type
   2617   Type *Op0Ty = FC.getOperand(0)->getType();
   2618   Type *Op1Ty = FC.getOperand(1)->getType();
   2619   Assert(Op0Ty == Op1Ty,
   2620          "Both operands to FCmp instruction are not of the same type!", &FC);
   2621   // Check that the operands are the right type
   2622   Assert(Op0Ty->isFPOrFPVectorTy(),
   2623          "Invalid operand types for FCmp instruction", &FC);
   2624   // Check that the predicate is valid.
   2625   Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
   2626              FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
   2627          "Invalid predicate in FCmp instruction!", &FC);
   2628 
   2629   visitInstruction(FC);
   2630 }
   2631 
   2632 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
   2633   Assert(
   2634       ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
   2635       "Invalid extractelement operands!", &EI);
   2636   visitInstruction(EI);
   2637 }
   2638 
   2639 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
   2640   Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
   2641                                             IE.getOperand(2)),
   2642          "Invalid insertelement operands!", &IE);
   2643   visitInstruction(IE);
   2644 }
   2645 
   2646 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
   2647   Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
   2648                                             SV.getOperand(2)),
   2649          "Invalid shufflevector operands!", &SV);
   2650   visitInstruction(SV);
   2651 }
   2652 
   2653 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
   2654   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
   2655 
   2656   Assert(isa<PointerType>(TargetTy),
   2657          "GEP base pointer is not a vector or a vector of pointers", &GEP);
   2658   Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
   2659   SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
   2660   Type *ElTy =
   2661       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
   2662   Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
   2663 
   2664   Assert(GEP.getType()->getScalarType()->isPointerTy() &&
   2665              GEP.getResultElementType() == ElTy,
   2666          "GEP is not of right type for indices!", &GEP, ElTy);
   2667 
   2668   if (GEP.getType()->isVectorTy()) {
   2669     // Additional checks for vector GEPs.
   2670     unsigned GEPWidth = GEP.getType()->getVectorNumElements();
   2671     if (GEP.getPointerOperandType()->isVectorTy())
   2672       Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
   2673              "Vector GEP result width doesn't match operand's", &GEP);
   2674     for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
   2675       Type *IndexTy = Idxs[i]->getType();
   2676       if (IndexTy->isVectorTy()) {
   2677         unsigned IndexWidth = IndexTy->getVectorNumElements();
   2678         Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
   2679       }
   2680       Assert(IndexTy->getScalarType()->isIntegerTy(),
   2681              "All GEP indices should be of integer type");
   2682     }
   2683   }
   2684   visitInstruction(GEP);
   2685 }
   2686 
   2687 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
   2688   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
   2689 }
   2690 
   2691 void Verifier::visitRangeMetadata(Instruction& I,
   2692                                   MDNode* Range, Type* Ty) {
   2693   assert(Range &&
   2694          Range == I.getMetadata(LLVMContext::MD_range) &&
   2695          "precondition violation");
   2696 
   2697   unsigned NumOperands = Range->getNumOperands();
   2698   Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
   2699   unsigned NumRanges = NumOperands / 2;
   2700   Assert(NumRanges >= 1, "It should have at least one range!", Range);
   2701 
   2702   ConstantRange LastRange(1); // Dummy initial value
   2703   for (unsigned i = 0; i < NumRanges; ++i) {
   2704     ConstantInt *Low =
   2705         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
   2706     Assert(Low, "The lower limit must be an integer!", Low);
   2707     ConstantInt *High =
   2708         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
   2709     Assert(High, "The upper limit must be an integer!", High);
   2710     Assert(High->getType() == Low->getType() && High->getType() == Ty,
   2711            "Range types must match instruction type!", &I);
   2712 
   2713     APInt HighV = High->getValue();
   2714     APInt LowV = Low->getValue();
   2715     ConstantRange CurRange(LowV, HighV);
   2716     Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
   2717            "Range must not be empty!", Range);
   2718     if (i != 0) {
   2719       Assert(CurRange.intersectWith(LastRange).isEmptySet(),
   2720              "Intervals are overlapping", Range);
   2721       Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
   2722              Range);
   2723       Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
   2724              Range);
   2725     }
   2726     LastRange = ConstantRange(LowV, HighV);
   2727   }
   2728   if (NumRanges > 2) {
   2729     APInt FirstLow =
   2730         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
   2731     APInt FirstHigh =
   2732         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
   2733     ConstantRange FirstRange(FirstLow, FirstHigh);
   2734     Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
   2735            "Intervals are overlapping", Range);
   2736     Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
   2737            Range);
   2738   }
   2739 }
   2740 
   2741 void Verifier::checkAtomicMemAccessSize(const Module *M, Type *Ty,
   2742                                         const Instruction *I) {
   2743   unsigned Size = M->getDataLayout().getTypeSizeInBits(Ty);
   2744   Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
   2745   Assert(!(Size & (Size - 1)),
   2746          "atomic memory access' operand must have a power-of-two size", Ty, I);
   2747 }
   2748 
   2749 void Verifier::visitLoadInst(LoadInst &LI) {
   2750   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
   2751   Assert(PTy, "Load operand must be a pointer.", &LI);
   2752   Type *ElTy = LI.getType();
   2753   Assert(LI.getAlignment() <= Value::MaximumAlignment,
   2754          "huge alignment values are unsupported", &LI);
   2755   if (LI.isAtomic()) {
   2756     Assert(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
   2757            "Load cannot have Release ordering", &LI);
   2758     Assert(LI.getAlignment() != 0,
   2759            "Atomic load must specify explicit alignment", &LI);
   2760     Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
   2761                ElTy->isFloatingPointTy(),
   2762            "atomic load operand must have integer, pointer, or floating point "
   2763            "type!",
   2764            ElTy, &LI);
   2765     checkAtomicMemAccessSize(M, ElTy, &LI);
   2766   } else {
   2767     Assert(LI.getSynchScope() == CrossThread,
   2768            "Non-atomic load cannot have SynchronizationScope specified", &LI);
   2769   }
   2770 
   2771   visitInstruction(LI);
   2772 }
   2773 
   2774 void Verifier::visitStoreInst(StoreInst &SI) {
   2775   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
   2776   Assert(PTy, "Store operand must be a pointer.", &SI);
   2777   Type *ElTy = PTy->getElementType();
   2778   Assert(ElTy == SI.getOperand(0)->getType(),
   2779          "Stored value type does not match pointer operand type!", &SI, ElTy);
   2780   Assert(SI.getAlignment() <= Value::MaximumAlignment,
   2781          "huge alignment values are unsupported", &SI);
   2782   if (SI.isAtomic()) {
   2783     Assert(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
   2784            "Store cannot have Acquire ordering", &SI);
   2785     Assert(SI.getAlignment() != 0,
   2786            "Atomic store must specify explicit alignment", &SI);
   2787     Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
   2788                ElTy->isFloatingPointTy(),
   2789            "atomic store operand must have integer, pointer, or floating point "
   2790            "type!",
   2791            ElTy, &SI);
   2792     checkAtomicMemAccessSize(M, ElTy, &SI);
   2793   } else {
   2794     Assert(SI.getSynchScope() == CrossThread,
   2795            "Non-atomic store cannot have SynchronizationScope specified", &SI);
   2796   }
   2797   visitInstruction(SI);
   2798 }
   2799 
   2800 void Verifier::visitAllocaInst(AllocaInst &AI) {
   2801   SmallPtrSet<Type*, 4> Visited;
   2802   PointerType *PTy = AI.getType();
   2803   Assert(PTy->getAddressSpace() == 0,
   2804          "Allocation instruction pointer not in the generic address space!",
   2805          &AI);
   2806   Assert(AI.getAllocatedType()->isSized(&Visited),
   2807          "Cannot allocate unsized type", &AI);
   2808   Assert(AI.getArraySize()->getType()->isIntegerTy(),
   2809          "Alloca array size must have integer type", &AI);
   2810   Assert(AI.getAlignment() <= Value::MaximumAlignment,
   2811          "huge alignment values are unsupported", &AI);
   2812 
   2813   visitInstruction(AI);
   2814 }
   2815 
   2816 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
   2817 
   2818   // FIXME: more conditions???
   2819   Assert(CXI.getSuccessOrdering() != NotAtomic,
   2820          "cmpxchg instructions must be atomic.", &CXI);
   2821   Assert(CXI.getFailureOrdering() != NotAtomic,
   2822          "cmpxchg instructions must be atomic.", &CXI);
   2823   Assert(CXI.getSuccessOrdering() != Unordered,
   2824          "cmpxchg instructions cannot be unordered.", &CXI);
   2825   Assert(CXI.getFailureOrdering() != Unordered,
   2826          "cmpxchg instructions cannot be unordered.", &CXI);
   2827   Assert(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(),
   2828          "cmpxchg instructions be at least as constrained on success as fail",
   2829          &CXI);
   2830   Assert(CXI.getFailureOrdering() != Release &&
   2831              CXI.getFailureOrdering() != AcquireRelease,
   2832          "cmpxchg failure ordering cannot include release semantics", &CXI);
   2833 
   2834   PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
   2835   Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
   2836   Type *ElTy = PTy->getElementType();
   2837   Assert(ElTy->isIntegerTy(), "cmpxchg operand must have integer type!", &CXI,
   2838          ElTy);
   2839   checkAtomicMemAccessSize(M, ElTy, &CXI);
   2840   Assert(ElTy == CXI.getOperand(1)->getType(),
   2841          "Expected value type does not match pointer operand type!", &CXI,
   2842          ElTy);
   2843   Assert(ElTy == CXI.getOperand(2)->getType(),
   2844          "Stored value type does not match pointer operand type!", &CXI, ElTy);
   2845   visitInstruction(CXI);
   2846 }
   2847 
   2848 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
   2849   Assert(RMWI.getOrdering() != NotAtomic,
   2850          "atomicrmw instructions must be atomic.", &RMWI);
   2851   Assert(RMWI.getOrdering() != Unordered,
   2852          "atomicrmw instructions cannot be unordered.", &RMWI);
   2853   PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
   2854   Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
   2855   Type *ElTy = PTy->getElementType();
   2856   Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
   2857          &RMWI, ElTy);
   2858   checkAtomicMemAccessSize(M, ElTy, &RMWI);
   2859   Assert(ElTy == RMWI.getOperand(1)->getType(),
   2860          "Argument value type does not match pointer operand type!", &RMWI,
   2861          ElTy);
   2862   Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
   2863              RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
   2864          "Invalid binary operation!", &RMWI);
   2865   visitInstruction(RMWI);
   2866 }
   2867 
   2868 void Verifier::visitFenceInst(FenceInst &FI) {
   2869   const AtomicOrdering Ordering = FI.getOrdering();
   2870   Assert(Ordering == Acquire || Ordering == Release ||
   2871              Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
   2872          "fence instructions may only have "
   2873          "acquire, release, acq_rel, or seq_cst ordering.",
   2874          &FI);
   2875   visitInstruction(FI);
   2876 }
   2877 
   2878 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
   2879   Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
   2880                                           EVI.getIndices()) == EVI.getType(),
   2881          "Invalid ExtractValueInst operands!", &EVI);
   2882 
   2883   visitInstruction(EVI);
   2884 }
   2885 
   2886 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
   2887   Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
   2888                                           IVI.getIndices()) ==
   2889              IVI.getOperand(1)->getType(),
   2890          "Invalid InsertValueInst operands!", &IVI);
   2891 
   2892   visitInstruction(IVI);
   2893 }
   2894 
   2895 void Verifier::visitEHPadPredecessors(Instruction &I) {
   2896   assert(I.isEHPad());
   2897 
   2898   BasicBlock *BB = I.getParent();
   2899   Function *F = BB->getParent();
   2900 
   2901   Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
   2902 
   2903   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
   2904     // The landingpad instruction defines its parent as a landing pad block. The
   2905     // landing pad block may be branched to only by the unwind edge of an
   2906     // invoke.
   2907     for (BasicBlock *PredBB : predecessors(BB)) {
   2908       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
   2909       Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
   2910              "Block containing LandingPadInst must be jumped to "
   2911              "only by the unwind edge of an invoke.",
   2912              LPI);
   2913     }
   2914     return;
   2915   }
   2916   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
   2917     if (!pred_empty(BB))
   2918       Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
   2919              "Block containg CatchPadInst must be jumped to "
   2920              "only by its catchswitch.",
   2921              CPI);
   2922     return;
   2923   }
   2924 
   2925   for (BasicBlock *PredBB : predecessors(BB)) {
   2926     TerminatorInst *TI = PredBB->getTerminator();
   2927     if (auto *II = dyn_cast<InvokeInst>(TI)) {
   2928       Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
   2929              "EH pad must be jumped to via an unwind edge", &I, II);
   2930     } else if (!isa<CleanupReturnInst>(TI) && !isa<CatchSwitchInst>(TI)) {
   2931       Assert(false, "EH pad must be jumped to via an unwind edge", &I, TI);
   2932     }
   2933   }
   2934 }
   2935 
   2936 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
   2937   // The landingpad instruction is ill-formed if it doesn't have any clauses and
   2938   // isn't a cleanup.
   2939   Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
   2940          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
   2941 
   2942   visitEHPadPredecessors(LPI);
   2943 
   2944   if (!LandingPadResultTy)
   2945     LandingPadResultTy = LPI.getType();
   2946   else
   2947     Assert(LandingPadResultTy == LPI.getType(),
   2948            "The landingpad instruction should have a consistent result type "
   2949            "inside a function.",
   2950            &LPI);
   2951 
   2952   Function *F = LPI.getParent()->getParent();
   2953   Assert(F->hasPersonalityFn(),
   2954          "LandingPadInst needs to be in a function with a personality.", &LPI);
   2955 
   2956   // The landingpad instruction must be the first non-PHI instruction in the
   2957   // block.
   2958   Assert(LPI.getParent()->getLandingPadInst() == &LPI,
   2959          "LandingPadInst not the first non-PHI instruction in the block.",
   2960          &LPI);
   2961 
   2962   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
   2963     Constant *Clause = LPI.getClause(i);
   2964     if (LPI.isCatch(i)) {
   2965       Assert(isa<PointerType>(Clause->getType()),
   2966              "Catch operand does not have pointer type!", &LPI);
   2967     } else {
   2968       Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
   2969       Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
   2970              "Filter operand is not an array of constants!", &LPI);
   2971     }
   2972   }
   2973 
   2974   visitInstruction(LPI);
   2975 }
   2976 
   2977 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
   2978   visitEHPadPredecessors(CPI);
   2979 
   2980   BasicBlock *BB = CPI.getParent();
   2981 
   2982   Function *F = BB->getParent();
   2983   Assert(F->hasPersonalityFn(),
   2984          "CatchPadInst needs to be in a function with a personality.", &CPI);
   2985 
   2986   Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
   2987          "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
   2988          CPI.getParentPad());
   2989 
   2990   // The catchpad instruction must be the first non-PHI instruction in the
   2991   // block.
   2992   Assert(BB->getFirstNonPHI() == &CPI,
   2993          "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
   2994 
   2995   visitInstruction(CPI);
   2996 }
   2997 
   2998 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
   2999   Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
   3000          "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
   3001          CatchReturn.getOperand(0));
   3002 
   3003   visitTerminatorInst(CatchReturn);
   3004 }
   3005 
   3006 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
   3007   visitEHPadPredecessors(CPI);
   3008 
   3009   BasicBlock *BB = CPI.getParent();
   3010 
   3011   Function *F = BB->getParent();
   3012   Assert(F->hasPersonalityFn(),
   3013          "CleanupPadInst needs to be in a function with a personality.", &CPI);
   3014 
   3015   // The cleanuppad instruction must be the first non-PHI instruction in the
   3016   // block.
   3017   Assert(BB->getFirstNonPHI() == &CPI,
   3018          "CleanupPadInst not the first non-PHI instruction in the block.",
   3019          &CPI);
   3020 
   3021   auto *ParentPad = CPI.getParentPad();
   3022   Assert(isa<CatchSwitchInst>(ParentPad) || isa<ConstantTokenNone>(ParentPad) ||
   3023              isa<CleanupPadInst>(ParentPad) || isa<CatchPadInst>(ParentPad),
   3024          "CleanupPadInst has an invalid parent.", &CPI);
   3025 
   3026   User *FirstUser = nullptr;
   3027   BasicBlock *FirstUnwindDest = nullptr;
   3028   for (User *U : CPI.users()) {
   3029     BasicBlock *UnwindDest;
   3030     if (CleanupReturnInst *CRI = dyn_cast<CleanupReturnInst>(U)) {
   3031       UnwindDest = CRI->getUnwindDest();
   3032     } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
   3033       continue;
   3034     } else if (CallSite(U)) {
   3035       continue;
   3036     } else {
   3037       Assert(false, "bogus cleanuppad use", &CPI);
   3038     }
   3039 
   3040     if (!FirstUser) {
   3041       FirstUser = U;
   3042       FirstUnwindDest = UnwindDest;
   3043     } else {
   3044       Assert(
   3045           UnwindDest == FirstUnwindDest,
   3046           "cleanupret instructions from the same cleanuppad must have the same "
   3047           "unwind destination",
   3048           FirstUser, U);
   3049     }
   3050   }
   3051 
   3052   visitInstruction(CPI);
   3053 }
   3054 
   3055 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
   3056   visitEHPadPredecessors(CatchSwitch);
   3057 
   3058   BasicBlock *BB = CatchSwitch.getParent();
   3059 
   3060   Function *F = BB->getParent();
   3061   Assert(F->hasPersonalityFn(),
   3062          "CatchSwitchInst needs to be in a function with a personality.",
   3063          &CatchSwitch);
   3064 
   3065   // The catchswitch instruction must be the first non-PHI instruction in the
   3066   // block.
   3067   Assert(BB->getFirstNonPHI() == &CatchSwitch,
   3068          "CatchSwitchInst not the first non-PHI instruction in the block.",
   3069          &CatchSwitch);
   3070 
   3071   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
   3072     Instruction *I = UnwindDest->getFirstNonPHI();
   3073     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
   3074            "CatchSwitchInst must unwind to an EH block which is not a "
   3075            "landingpad.",
   3076            &CatchSwitch);
   3077   }
   3078 
   3079   auto *ParentPad = CatchSwitch.getParentPad();
   3080   Assert(isa<CatchSwitchInst>(ParentPad) || isa<ConstantTokenNone>(ParentPad) ||
   3081              isa<CleanupPadInst>(ParentPad) || isa<CatchPadInst>(ParentPad),
   3082          "CatchSwitchInst has an invalid parent.", ParentPad);
   3083 
   3084   visitTerminatorInst(CatchSwitch);
   3085 }
   3086 
   3087 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
   3088   Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
   3089          "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
   3090          CRI.getOperand(0));
   3091 
   3092   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
   3093     Instruction *I = UnwindDest->getFirstNonPHI();
   3094     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
   3095            "CleanupReturnInst must unwind to an EH block which is not a "
   3096            "landingpad.",
   3097            &CRI);
   3098   }
   3099 
   3100   visitTerminatorInst(CRI);
   3101 }
   3102 
   3103 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
   3104   Instruction *Op = cast<Instruction>(I.getOperand(i));
   3105   // If the we have an invalid invoke, don't try to compute the dominance.
   3106   // We already reject it in the invoke specific checks and the dominance
   3107   // computation doesn't handle multiple edges.
   3108   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
   3109     if (II->getNormalDest() == II->getUnwindDest())
   3110       return;
   3111   }
   3112 
   3113   const Use &U = I.getOperandUse(i);
   3114   Assert(InstsInThisBlock.count(Op) || DT.dominates(Op, U),
   3115          "Instruction does not dominate all uses!", Op, &I);
   3116 }
   3117 
   3118 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
   3119   Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
   3120          "apply only to pointer types", &I);
   3121   Assert(isa<LoadInst>(I),
   3122          "dereferenceable, dereferenceable_or_null apply only to load"
   3123          " instructions, use attributes for calls or invokes", &I);
   3124   Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
   3125          "take one operand!", &I);
   3126   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
   3127   Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
   3128          "dereferenceable_or_null metadata value must be an i64!", &I);
   3129 }
   3130 
   3131 /// verifyInstruction - Verify that an instruction is well formed.
   3132 ///
   3133 void Verifier::visitInstruction(Instruction &I) {
   3134   BasicBlock *BB = I.getParent();
   3135   Assert(BB, "Instruction not embedded in basic block!", &I);
   3136 
   3137   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
   3138     for (User *U : I.users()) {
   3139       Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
   3140              "Only PHI nodes may reference their own value!", &I);
   3141     }
   3142   }
   3143 
   3144   // Check that void typed values don't have names
   3145   Assert(!I.getType()->isVoidTy() || !I.hasName(),
   3146          "Instruction has a name, but provides a void value!", &I);
   3147 
   3148   // Check that the return value of the instruction is either void or a legal
   3149   // value type.
   3150   Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
   3151          "Instruction returns a non-scalar type!", &I);
   3152 
   3153   // Check that the instruction doesn't produce metadata. Calls are already
   3154   // checked against the callee type.
   3155   Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
   3156          "Invalid use of metadata!", &I);
   3157 
   3158   // Check that all uses of the instruction, if they are instructions
   3159   // themselves, actually have parent basic blocks.  If the use is not an
   3160   // instruction, it is an error!
   3161   for (Use &U : I.uses()) {
   3162     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
   3163       Assert(Used->getParent() != nullptr,
   3164              "Instruction referencing"
   3165              " instruction not embedded in a basic block!",
   3166              &I, Used);
   3167     else {
   3168       CheckFailed("Use of instruction is not an instruction!", U);
   3169       return;
   3170     }
   3171   }
   3172 
   3173   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
   3174     Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
   3175 
   3176     // Check to make sure that only first-class-values are operands to
   3177     // instructions.
   3178     if (!I.getOperand(i)->getType()->isFirstClassType()) {
   3179       Assert(0, "Instruction operands must be first-class values!", &I);
   3180     }
   3181 
   3182     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
   3183       // Check to make sure that the "address of" an intrinsic function is never
   3184       // taken.
   3185       Assert(
   3186           !F->isIntrinsic() ||
   3187               i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
   3188           "Cannot take the address of an intrinsic!", &I);
   3189       Assert(
   3190           !F->isIntrinsic() || isa<CallInst>(I) ||
   3191               F->getIntrinsicID() == Intrinsic::donothing ||
   3192               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
   3193               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
   3194               F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
   3195           "Cannot invoke an intrinsinc other than"
   3196           " donothing or patchpoint",
   3197           &I);
   3198       Assert(F->getParent() == M, "Referencing function in another module!",
   3199              &I, M, F, F->getParent());
   3200     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
   3201       Assert(OpBB->getParent() == BB->getParent(),
   3202              "Referring to a basic block in another function!", &I);
   3203     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
   3204       Assert(OpArg->getParent() == BB->getParent(),
   3205              "Referring to an argument in another function!", &I);
   3206     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
   3207       Assert(GV->getParent() == M, "Referencing global in another module!", &I, M, GV, GV->getParent());
   3208     } else if (isa<Instruction>(I.getOperand(i))) {
   3209       verifyDominatesUse(I, i);
   3210     } else if (isa<InlineAsm>(I.getOperand(i))) {
   3211       Assert((i + 1 == e && isa<CallInst>(I)) ||
   3212                  (i + 3 == e && isa<InvokeInst>(I)),
   3213              "Cannot take the address of an inline asm!", &I);
   3214     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
   3215       if (CE->getType()->isPtrOrPtrVectorTy()) {
   3216         // If we have a ConstantExpr pointer, we need to see if it came from an
   3217         // illegal bitcast (inttoptr <constant int> )
   3218         visitConstantExprsRecursively(CE);
   3219       }
   3220     }
   3221   }
   3222 
   3223   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
   3224     Assert(I.getType()->isFPOrFPVectorTy(),
   3225            "fpmath requires a floating point result!", &I);
   3226     Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
   3227     if (ConstantFP *CFP0 =
   3228             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
   3229       APFloat Accuracy = CFP0->getValueAPF();
   3230       Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
   3231              "fpmath accuracy not a positive number!", &I);
   3232     } else {
   3233       Assert(false, "invalid fpmath accuracy!", &I);
   3234     }
   3235   }
   3236 
   3237   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
   3238     Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
   3239            "Ranges are only for loads, calls and invokes!", &I);
   3240     visitRangeMetadata(I, Range, I.getType());
   3241   }
   3242 
   3243   if (I.getMetadata(LLVMContext::MD_nonnull)) {
   3244     Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
   3245            &I);
   3246     Assert(isa<LoadInst>(I),
   3247            "nonnull applies only to load instructions, use attributes"
   3248            " for calls or invokes",
   3249            &I);
   3250   }
   3251 
   3252   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
   3253     visitDereferenceableMetadata(I, MD);
   3254 
   3255   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
   3256     visitDereferenceableMetadata(I, MD);
   3257 
   3258   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
   3259     Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
   3260            &I);
   3261     Assert(isa<LoadInst>(I), "align applies only to load instructions, "
   3262            "use attributes for calls or invokes", &I);
   3263     Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
   3264     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
   3265     Assert(CI && CI->getType()->isIntegerTy(64),
   3266            "align metadata value must be an i64!", &I);
   3267     uint64_t Align = CI->getZExtValue();
   3268     Assert(isPowerOf2_64(Align),
   3269            "align metadata value must be a power of 2!", &I);
   3270     Assert(Align <= Value::MaximumAlignment,
   3271            "alignment is larger that implementation defined limit", &I);
   3272   }
   3273 
   3274   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
   3275     Assert(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
   3276     visitMDNode(*N);
   3277   }
   3278 
   3279   InstsInThisBlock.insert(&I);
   3280 }
   3281 
   3282 /// VerifyIntrinsicType - Verify that the specified type (which comes from an
   3283 /// intrinsic argument or return value) matches the type constraints specified
   3284 /// by the .td file (e.g. an "any integer" argument really is an integer).
   3285 ///
   3286 /// This return true on error but does not print a message.
   3287 bool Verifier::VerifyIntrinsicType(Type *Ty,
   3288                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
   3289                                    SmallVectorImpl<Type*> &ArgTys) {
   3290   using namespace Intrinsic;
   3291 
   3292   // If we ran out of descriptors, there are too many arguments.
   3293   if (Infos.empty()) return true;
   3294   IITDescriptor D = Infos.front();
   3295   Infos = Infos.slice(1);
   3296 
   3297   switch (D.Kind) {
   3298   case IITDescriptor::Void: return !Ty->isVoidTy();
   3299   case IITDescriptor::VarArg: return true;
   3300   case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
   3301   case IITDescriptor::Token: return !Ty->isTokenTy();
   3302   case IITDescriptor::Metadata: return !Ty->isMetadataTy();
   3303   case IITDescriptor::Half: return !Ty->isHalfTy();
   3304   case IITDescriptor::Float: return !Ty->isFloatTy();
   3305   case IITDescriptor::Double: return !Ty->isDoubleTy();
   3306   case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
   3307   case IITDescriptor::Vector: {
   3308     VectorType *VT = dyn_cast<VectorType>(Ty);
   3309     return !VT || VT->getNumElements() != D.Vector_Width ||
   3310            VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
   3311   }
   3312   case IITDescriptor::Pointer: {
   3313     PointerType *PT = dyn_cast<PointerType>(Ty);
   3314     return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
   3315            VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
   3316   }
   3317 
   3318   case IITDescriptor::Struct: {
   3319     StructType *ST = dyn_cast<StructType>(Ty);
   3320     if (!ST || ST->getNumElements() != D.Struct_NumElements)
   3321       return true;
   3322 
   3323     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
   3324       if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
   3325         return true;
   3326     return false;
   3327   }
   3328 
   3329   case IITDescriptor::Argument:
   3330     // Two cases here - If this is the second occurrence of an argument, verify
   3331     // that the later instance matches the previous instance.
   3332     if (D.getArgumentNumber() < ArgTys.size())
   3333       return Ty != ArgTys[D.getArgumentNumber()];
   3334 
   3335     // Otherwise, if this is the first instance of an argument, record it and
   3336     // verify the "Any" kind.
   3337     assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
   3338     ArgTys.push_back(Ty);
   3339 
   3340     switch (D.getArgumentKind()) {
   3341     case IITDescriptor::AK_Any:        return false; // Success
   3342     case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
   3343     case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
   3344     case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
   3345     case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
   3346     }
   3347     llvm_unreachable("all argument kinds not covered");
   3348 
   3349   case IITDescriptor::ExtendArgument: {
   3350     // This may only be used when referring to a previous vector argument.
   3351     if (D.getArgumentNumber() >= ArgTys.size())
   3352       return true;
   3353 
   3354     Type *NewTy = ArgTys[D.getArgumentNumber()];
   3355     if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
   3356       NewTy = VectorType::getExtendedElementVectorType(VTy);
   3357     else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
   3358       NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
   3359     else
   3360       return true;
   3361 
   3362     return Ty != NewTy;
   3363   }
   3364   case IITDescriptor::TruncArgument: {
   3365     // This may only be used when referring to a previous vector argument.
   3366     if (D.getArgumentNumber() >= ArgTys.size())
   3367       return true;
   3368 
   3369     Type *NewTy = ArgTys[D.getArgumentNumber()];
   3370     if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
   3371       NewTy = VectorType::getTruncatedElementVectorType(VTy);
   3372     else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
   3373       NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
   3374     else
   3375       return true;
   3376 
   3377     return Ty != NewTy;
   3378   }
   3379   case IITDescriptor::HalfVecArgument:
   3380     // This may only be used when referring to a previous vector argument.
   3381     return D.getArgumentNumber() >= ArgTys.size() ||
   3382            !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
   3383            VectorType::getHalfElementsVectorType(
   3384                          cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
   3385   case IITDescriptor::SameVecWidthArgument: {
   3386     if (D.getArgumentNumber() >= ArgTys.size())
   3387       return true;
   3388     VectorType * ReferenceType =
   3389       dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
   3390     VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
   3391     if (!ThisArgType || !ReferenceType ||
   3392         (ReferenceType->getVectorNumElements() !=
   3393          ThisArgType->getVectorNumElements()))
   3394       return true;
   3395     return VerifyIntrinsicType(ThisArgType->getVectorElementType(),
   3396                                Infos, ArgTys);
   3397   }
   3398   case IITDescriptor::PtrToArgument: {
   3399     if (D.getArgumentNumber() >= ArgTys.size())
   3400       return true;
   3401     Type * ReferenceType = ArgTys[D.getArgumentNumber()];
   3402     PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
   3403     return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
   3404   }
   3405   case IITDescriptor::VecOfPtrsToElt: {
   3406     if (D.getArgumentNumber() >= ArgTys.size())
   3407       return true;
   3408     VectorType * ReferenceType =
   3409       dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
   3410     VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
   3411     if (!ThisArgVecTy || !ReferenceType ||
   3412         (ReferenceType->getVectorNumElements() !=
   3413          ThisArgVecTy->getVectorNumElements()))
   3414       return true;
   3415     PointerType *ThisArgEltTy =
   3416       dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
   3417     if (!ThisArgEltTy)
   3418       return true;
   3419     return ThisArgEltTy->getElementType() !=
   3420            ReferenceType->getVectorElementType();
   3421   }
   3422   }
   3423   llvm_unreachable("unhandled");
   3424 }
   3425 
   3426 /// \brief Verify if the intrinsic has variable arguments.
   3427 /// This method is intended to be called after all the fixed arguments have been
   3428 /// verified first.
   3429 ///
   3430 /// This method returns true on error and does not print an error message.
   3431 bool
   3432 Verifier::VerifyIntrinsicIsVarArg(bool isVarArg,
   3433                                   ArrayRef<Intrinsic::IITDescriptor> &Infos) {
   3434   using namespace Intrinsic;
   3435 
   3436   // If there are no descriptors left, then it can't be a vararg.
   3437   if (Infos.empty())
   3438     return isVarArg;
   3439 
   3440   // There should be only one descriptor remaining at this point.
   3441   if (Infos.size() != 1)
   3442     return true;
   3443 
   3444   // Check and verify the descriptor.
   3445   IITDescriptor D = Infos.front();
   3446   Infos = Infos.slice(1);
   3447   if (D.Kind == IITDescriptor::VarArg)
   3448     return !isVarArg;
   3449 
   3450   return true;
   3451 }
   3452 
   3453 /// Allow intrinsics to be verified in different ways.
   3454 void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
   3455   Function *IF = CS.getCalledFunction();
   3456   Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
   3457          IF);
   3458 
   3459   // Verify that the intrinsic prototype lines up with what the .td files
   3460   // describe.
   3461   FunctionType *IFTy = IF->getFunctionType();
   3462   bool IsVarArg = IFTy->isVarArg();
   3463 
   3464   SmallVector<Intrinsic::IITDescriptor, 8> Table;
   3465   getIntrinsicInfoTableEntries(ID, Table);
   3466   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
   3467 
   3468   SmallVector<Type *, 4> ArgTys;
   3469   Assert(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
   3470          "Intrinsic has incorrect return type!", IF);
   3471   for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
   3472     Assert(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
   3473            "Intrinsic has incorrect argument type!", IF);
   3474 
   3475   // Verify if the intrinsic call matches the vararg property.
   3476   if (IsVarArg)
   3477     Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
   3478            "Intrinsic was not defined with variable arguments!", IF);
   3479   else
   3480     Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
   3481            "Callsite was not defined with variable arguments!", IF);
   3482 
   3483   // All descriptors should be absorbed by now.
   3484   Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
   3485 
   3486   // Now that we have the intrinsic ID and the actual argument types (and we
   3487   // know they are legal for the intrinsic!) get the intrinsic name through the
   3488   // usual means.  This allows us to verify the mangling of argument types into
   3489   // the name.
   3490   const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
   3491   Assert(ExpectedName == IF->getName(),
   3492          "Intrinsic name not mangled correctly for type arguments! "
   3493          "Should be: " +
   3494              ExpectedName,
   3495          IF);
   3496 
   3497   // If the intrinsic takes MDNode arguments, verify that they are either global
   3498   // or are local to *this* function.
   3499   for (Value *V : CS.args())
   3500     if (auto *MD = dyn_cast<MetadataAsValue>(V))
   3501       visitMetadataAsValue(*MD, CS.getCaller());
   3502 
   3503   switch (ID) {
   3504   default:
   3505     break;
   3506   case Intrinsic::ctlz:  // llvm.ctlz
   3507   case Intrinsic::cttz:  // llvm.cttz
   3508     Assert(isa<ConstantInt>(CS.getArgOperand(1)),
   3509            "is_zero_undef argument of bit counting intrinsics must be a "
   3510            "constant int",
   3511            CS);
   3512     break;
   3513   case Intrinsic::dbg_declare: // llvm.dbg.declare
   3514     Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),
   3515            "invalid llvm.dbg.declare intrinsic call 1", CS);
   3516     visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction()));
   3517     break;
   3518   case Intrinsic::dbg_value: // llvm.dbg.value
   3519     visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction()));
   3520     break;
   3521   case Intrinsic::memcpy:
   3522   case Intrinsic::memmove:
   3523   case Intrinsic::memset: {
   3524     ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
   3525     Assert(AlignCI,
   3526            "alignment argument of memory intrinsics must be a constant int",
   3527            CS);
   3528     const APInt &AlignVal = AlignCI->getValue();
   3529     Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),
   3530            "alignment argument of memory intrinsics must be a power of 2", CS);
   3531     Assert(isa<ConstantInt>(CS.getArgOperand(4)),
   3532            "isvolatile argument of memory intrinsics must be a constant int",
   3533            CS);
   3534     break;
   3535   }
   3536   case Intrinsic::gcroot:
   3537   case Intrinsic::gcwrite:
   3538   case Intrinsic::gcread:
   3539     if (ID == Intrinsic::gcroot) {
   3540       AllocaInst *AI =
   3541         dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
   3542       Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS);
   3543       Assert(isa<Constant>(CS.getArgOperand(1)),
   3544              "llvm.gcroot parameter #2 must be a constant.", CS);
   3545       if (!AI->getAllocatedType()->isPointerTy()) {
   3546         Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),
   3547                "llvm.gcroot parameter #1 must either be a pointer alloca, "
   3548                "or argument #2 must be a non-null constant.",
   3549                CS);
   3550       }
   3551     }
   3552 
   3553     Assert(CS.getParent()->getParent()->hasGC(),
   3554            "Enclosing function does not use GC.", CS);
   3555     break;
   3556   case Intrinsic::init_trampoline:
   3557     Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),
   3558            "llvm.init_trampoline parameter #2 must resolve to a function.",
   3559            CS);
   3560     break;
   3561   case Intrinsic::prefetch:
   3562     Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&
   3563                isa<ConstantInt>(CS.getArgOperand(2)) &&
   3564                cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&
   3565                cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,
   3566            "invalid arguments to llvm.prefetch", CS);
   3567     break;
   3568   case Intrinsic::stackprotector:
   3569     Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),
   3570            "llvm.stackprotector parameter #2 must resolve to an alloca.", CS);
   3571     break;
   3572   case Intrinsic::lifetime_start:
   3573   case Intrinsic::lifetime_end:
   3574   case Intrinsic::invariant_start:
   3575     Assert(isa<ConstantInt>(CS.getArgOperand(0)),
   3576            "size argument of memory use markers must be a constant integer",
   3577            CS);
   3578     break;
   3579   case Intrinsic::invariant_end:
   3580     Assert(isa<ConstantInt>(CS.getArgOperand(1)),
   3581            "llvm.invariant.end parameter #2 must be a constant integer", CS);
   3582     break;
   3583 
   3584   case Intrinsic::localescape: {
   3585     BasicBlock *BB = CS.getParent();
   3586     Assert(BB == &BB->getParent()->front(),
   3587            "llvm.localescape used outside of entry block", CS);
   3588     Assert(!SawFrameEscape,
   3589            "multiple calls to llvm.localescape in one function", CS);
   3590     for (Value *Arg : CS.args()) {
   3591       if (isa<ConstantPointerNull>(Arg))
   3592         continue; // Null values are allowed as placeholders.
   3593       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
   3594       Assert(AI && AI->isStaticAlloca(),
   3595              "llvm.localescape only accepts static allocas", CS);
   3596     }
   3597     FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
   3598     SawFrameEscape = true;
   3599     break;
   3600   }
   3601   case Intrinsic::localrecover: {
   3602     Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
   3603     Function *Fn = dyn_cast<Function>(FnArg);
   3604     Assert(Fn && !Fn->isDeclaration(),
   3605            "llvm.localrecover first "
   3606            "argument must be function defined in this module",
   3607            CS);
   3608     auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
   3609     Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",
   3610            CS);
   3611     auto &Entry = FrameEscapeInfo[Fn];
   3612     Entry.second = unsigned(
   3613         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
   3614     break;
   3615   }
   3616 
   3617   case Intrinsic::experimental_gc_statepoint:
   3618     Assert(!CS.isInlineAsm(),
   3619            "gc.statepoint support for inline assembly unimplemented", CS);
   3620     Assert(CS.getParent()->getParent()->hasGC(),
   3621            "Enclosing function does not use GC.", CS);
   3622 
   3623     VerifyStatepoint(CS);
   3624     break;
   3625   case Intrinsic::experimental_gc_result_int:
   3626   case Intrinsic::experimental_gc_result_float:
   3627   case Intrinsic::experimental_gc_result_ptr:
   3628   case Intrinsic::experimental_gc_result: {
   3629     Assert(CS.getParent()->getParent()->hasGC(),
   3630            "Enclosing function does not use GC.", CS);
   3631     // Are we tied to a statepoint properly?
   3632     CallSite StatepointCS(CS.getArgOperand(0));
   3633     const Function *StatepointFn =
   3634       StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
   3635     Assert(StatepointFn && StatepointFn->isDeclaration() &&
   3636                StatepointFn->getIntrinsicID() ==
   3637                    Intrinsic::experimental_gc_statepoint,
   3638            "gc.result operand #1 must be from a statepoint", CS,
   3639            CS.getArgOperand(0));
   3640 
   3641     // Assert that result type matches wrapped callee.
   3642     const Value *Target = StatepointCS.getArgument(2);
   3643     auto *PT = cast<PointerType>(Target->getType());
   3644     auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
   3645     Assert(CS.getType() == TargetFuncType->getReturnType(),
   3646            "gc.result result type does not match wrapped callee", CS);
   3647     break;
   3648   }
   3649   case Intrinsic::experimental_gc_relocate: {
   3650     Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS);
   3651 
   3652     // Check that this relocate is correctly tied to the statepoint
   3653 
   3654     // This is case for relocate on the unwinding path of an invoke statepoint
   3655     if (ExtractValueInst *ExtractValue =
   3656           dyn_cast<ExtractValueInst>(CS.getArgOperand(0))) {
   3657       Assert(isa<LandingPadInst>(ExtractValue->getAggregateOperand()),
   3658              "gc relocate on unwind path incorrectly linked to the statepoint",
   3659              CS);
   3660 
   3661       const BasicBlock *InvokeBB =
   3662         ExtractValue->getParent()->getUniquePredecessor();
   3663 
   3664       // Landingpad relocates should have only one predecessor with invoke
   3665       // statepoint terminator
   3666       Assert(InvokeBB, "safepoints should have unique landingpads",
   3667              ExtractValue->getParent());
   3668       Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
   3669              InvokeBB);
   3670       Assert(isStatepoint(InvokeBB->getTerminator()),
   3671              "gc relocate should be linked to a statepoint", InvokeBB);
   3672     }
   3673     else {
   3674       // In all other cases relocate should be tied to the statepoint directly.
   3675       // This covers relocates on a normal return path of invoke statepoint and
   3676       // relocates of a call statepoint
   3677       auto Token = CS.getArgOperand(0);
   3678       Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
   3679              "gc relocate is incorrectly tied to the statepoint", CS, Token);
   3680     }
   3681 
   3682     // Verify rest of the relocate arguments
   3683 
   3684     GCRelocateOperands Ops(CS);
   3685     ImmutableCallSite StatepointCS(Ops.getStatepoint());
   3686 
   3687     // Both the base and derived must be piped through the safepoint
   3688     Value* Base = CS.getArgOperand(1);
   3689     Assert(isa<ConstantInt>(Base),
   3690            "gc.relocate operand #2 must be integer offset", CS);
   3691 
   3692     Value* Derived = CS.getArgOperand(2);
   3693     Assert(isa<ConstantInt>(Derived),
   3694            "gc.relocate operand #3 must be integer offset", CS);
   3695 
   3696     const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
   3697     const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
   3698     // Check the bounds
   3699     Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
   3700            "gc.relocate: statepoint base index out of bounds", CS);
   3701     Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
   3702            "gc.relocate: statepoint derived index out of bounds", CS);
   3703 
   3704     // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
   3705     // section of the statepoint's argument
   3706     Assert(StatepointCS.arg_size() > 0,
   3707            "gc.statepoint: insufficient arguments");
   3708     Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
   3709            "gc.statement: number of call arguments must be constant integer");
   3710     const unsigned NumCallArgs =
   3711         cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
   3712     Assert(StatepointCS.arg_size() > NumCallArgs + 5,
   3713            "gc.statepoint: mismatch in number of call arguments");
   3714     Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
   3715            "gc.statepoint: number of transition arguments must be "
   3716            "a constant integer");
   3717     const int NumTransitionArgs =
   3718         cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
   3719             ->getZExtValue();
   3720     const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
   3721     Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
   3722            "gc.statepoint: number of deoptimization arguments must be "
   3723            "a constant integer");
   3724     const int NumDeoptArgs =
   3725       cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))->getZExtValue();
   3726     const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
   3727     const int GCParamArgsEnd = StatepointCS.arg_size();
   3728     Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
   3729            "gc.relocate: statepoint base index doesn't fall within the "
   3730            "'gc parameters' section of the statepoint call",
   3731            CS);
   3732     Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
   3733            "gc.relocate: statepoint derived index doesn't fall within the "
   3734            "'gc parameters' section of the statepoint call",
   3735            CS);
   3736 
   3737     // Relocated value must be a pointer type, but gc_relocate does not need to return the
   3738     // same pointer type as the relocated pointer. It can be casted to the correct type later
   3739     // if it's desired. However, they must have the same address space.
   3740     GCRelocateOperands Operands(CS);
   3741     Assert(Operands.getDerivedPtr()->getType()->isPointerTy(),
   3742            "gc.relocate: relocated value must be a gc pointer", CS);
   3743 
   3744     // gc_relocate return type must be a pointer type, and is verified earlier in
   3745     // VerifyIntrinsicType().
   3746     Assert(cast<PointerType>(CS.getType())->getAddressSpace() ==
   3747            cast<PointerType>(Operands.getDerivedPtr()->getType())->getAddressSpace(),
   3748            "gc.relocate: relocating a pointer shouldn't change its address space", CS);
   3749     break;
   3750   }
   3751   case Intrinsic::eh_exceptioncode:
   3752   case Intrinsic::eh_exceptionpointer: {
   3753     Assert(isa<CatchPadInst>(CS.getArgOperand(0)),
   3754            "eh.exceptionpointer argument must be a catchpad", CS);
   3755     break;
   3756   }
   3757   };
   3758 }
   3759 
   3760 /// \brief Carefully grab the subprogram from a local scope.
   3761 ///
   3762 /// This carefully grabs the subprogram from a local scope, avoiding the
   3763 /// built-in assertions that would typically fire.
   3764 static DISubprogram *getSubprogram(Metadata *LocalScope) {
   3765   if (!LocalScope)
   3766     return nullptr;
   3767 
   3768   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
   3769     return SP;
   3770 
   3771   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
   3772     return getSubprogram(LB->getRawScope());
   3773 
   3774   // Just return null; broken scope chains are checked elsewhere.
   3775   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
   3776   return nullptr;
   3777 }
   3778 
   3779 template <class DbgIntrinsicTy>
   3780 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
   3781   auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
   3782   Assert(isa<ValueAsMetadata>(MD) ||
   3783              (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
   3784          "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
   3785   Assert(isa<DILocalVariable>(DII.getRawVariable()),
   3786          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
   3787          DII.getRawVariable());
   3788   Assert(isa<DIExpression>(DII.getRawExpression()),
   3789          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
   3790          DII.getRawExpression());
   3791 
   3792   // Ignore broken !dbg attachments; they're checked elsewhere.
   3793   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
   3794     if (!isa<DILocation>(N))
   3795       return;
   3796 
   3797   BasicBlock *BB = DII.getParent();
   3798   Function *F = BB ? BB->getParent() : nullptr;
   3799 
   3800   // The scopes for variables and !dbg attachments must agree.
   3801   DILocalVariable *Var = DII.getVariable();
   3802   DILocation *Loc = DII.getDebugLoc();
   3803   Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
   3804          &DII, BB, F);
   3805 
   3806   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
   3807   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
   3808   if (!VarSP || !LocSP)
   3809     return; // Broken scope chains are checked elsewhere.
   3810 
   3811   Assert(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
   3812                              " variable and !dbg attachment",
   3813          &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
   3814          Loc->getScope()->getSubprogram());
   3815 }
   3816 
   3817 template <class MapTy>
   3818 static uint64_t getVariableSize(const DILocalVariable &V, const MapTy &Map) {
   3819   // Be careful of broken types (checked elsewhere).
   3820   const Metadata *RawType = V.getRawType();
   3821   while (RawType) {
   3822     // Try to get the size directly.
   3823     if (auto *T = dyn_cast<DIType>(RawType))
   3824       if (uint64_t Size = T->getSizeInBits())
   3825         return Size;
   3826 
   3827     if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
   3828       // Look at the base type.
   3829       RawType = DT->getRawBaseType();
   3830       continue;
   3831     }
   3832 
   3833     if (auto *S = dyn_cast<MDString>(RawType)) {
   3834       // Don't error on missing types (checked elsewhere).
   3835       RawType = Map.lookup(S);
   3836       continue;
   3837     }
   3838 
   3839     // Missing type or size.
   3840     break;
   3841   }
   3842 
   3843   // Fail gracefully.
   3844   return 0;
   3845 }
   3846 
   3847 template <class MapTy>
   3848 void Verifier::verifyBitPieceExpression(const DbgInfoIntrinsic &I,
   3849                                         const MapTy &TypeRefs) {
   3850   DILocalVariable *V;
   3851   DIExpression *E;
   3852   if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
   3853     V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable());
   3854     E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression());
   3855   } else {
   3856     auto *DDI = cast<DbgDeclareInst>(&I);
   3857     V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable());
   3858     E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression());
   3859   }
   3860 
   3861   // We don't know whether this intrinsic verified correctly.
   3862   if (!V || !E || !E->isValid())
   3863     return;
   3864 
   3865   // Nothing to do if this isn't a bit piece expression.
   3866   if (!E->isBitPiece())
   3867     return;
   3868 
   3869   // The frontend helps out GDB by emitting the members of local anonymous
   3870   // unions as artificial local variables with shared storage. When SROA splits
   3871   // the storage for artificial local variables that are smaller than the entire
   3872   // union, the overhang piece will be outside of the allotted space for the
   3873   // variable and this check fails.
   3874   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
   3875   if (V->isArtificial())
   3876     return;
   3877 
   3878   // If there's no size, the type is broken, but that should be checked
   3879   // elsewhere.
   3880   uint64_t VarSize = getVariableSize(*V, TypeRefs);
   3881   if (!VarSize)
   3882     return;
   3883 
   3884   unsigned PieceSize = E->getBitPieceSize();
   3885   unsigned PieceOffset = E->getBitPieceOffset();
   3886   Assert(PieceSize + PieceOffset <= VarSize,
   3887          "piece is larger than or outside of variable", &I, V, E);
   3888   Assert(PieceSize != VarSize, "piece covers entire variable", &I, V, E);
   3889 }
   3890 
   3891 void Verifier::visitUnresolvedTypeRef(const MDString *S, const MDNode *N) {
   3892   // This is in its own function so we get an error for each bad type ref (not
   3893   // just the first).
   3894   Assert(false, "unresolved type ref", S, N);
   3895 }
   3896 
   3897 void Verifier::verifyTypeRefs() {
   3898   auto *CUs = M->getNamedMetadata("llvm.dbg.cu");
   3899   if (!CUs)
   3900     return;
   3901 
   3902   // Visit all the compile units again to map the type references.
   3903   SmallDenseMap<const MDString *, const DIType *, 32> TypeRefs;
   3904   for (auto *CU : CUs->operands())
   3905     if (auto Ts = cast<DICompileUnit>(CU)->getRetainedTypes())
   3906       for (DIType *Op : Ts)
   3907         if (auto *T = dyn_cast_or_null<DICompositeType>(Op))
   3908           if (auto *S = T->getRawIdentifier()) {
   3909             UnresolvedTypeRefs.erase(S);
   3910             TypeRefs.insert(std::make_pair(S, T));
   3911           }
   3912 
   3913   // Verify debug info intrinsic bit piece expressions.  This needs a second
   3914   // pass through the intructions, since we haven't built TypeRefs yet when
   3915   // verifying functions, and simply queuing the DbgInfoIntrinsics to evaluate
   3916   // later/now would queue up some that could be later deleted.
   3917   for (const Function &F : *M)
   3918     for (const BasicBlock &BB : F)
   3919       for (const Instruction &I : BB)
   3920         if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
   3921           verifyBitPieceExpression(*DII, TypeRefs);
   3922 
   3923   // Return early if all typerefs were resolved.
   3924   if (UnresolvedTypeRefs.empty())
   3925     return;
   3926 
   3927   // Sort the unresolved references by name so the output is deterministic.
   3928   typedef std::pair<const MDString *, const MDNode *> TypeRef;
   3929   SmallVector<TypeRef, 32> Unresolved(UnresolvedTypeRefs.begin(),
   3930                                       UnresolvedTypeRefs.end());
   3931   std::sort(Unresolved.begin(), Unresolved.end(),
   3932             [](const TypeRef &LHS, const TypeRef &RHS) {
   3933     return LHS.first->getString() < RHS.first->getString();
   3934   });
   3935 
   3936   // Visit the unresolved refs (printing out the errors).
   3937   for (const TypeRef &TR : Unresolved)
   3938     visitUnresolvedTypeRef(TR.first, TR.second);
   3939 }
   3940 
   3941 //===----------------------------------------------------------------------===//
   3942 //  Implement the public interfaces to this file...
   3943 //===----------------------------------------------------------------------===//
   3944 
   3945 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
   3946   Function &F = const_cast<Function &>(f);
   3947   assert(!F.isDeclaration() && "Cannot verify external functions");
   3948 
   3949   raw_null_ostream NullStr;
   3950   Verifier V(OS ? *OS : NullStr);
   3951 
   3952   // Note that this function's return value is inverted from what you would
   3953   // expect of a function called "verify".
   3954   return !V.verify(F);
   3955 }
   3956 
   3957 bool llvm::verifyModule(const Module &M, raw_ostream *OS) {
   3958   raw_null_ostream NullStr;
   3959   Verifier V(OS ? *OS : NullStr);
   3960 
   3961   bool Broken = false;
   3962   for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
   3963     if (!I->isDeclaration() && !I->isMaterializable())
   3964       Broken |= !V.verify(*I);
   3965 
   3966   // Note that this function's return value is inverted from what you would
   3967   // expect of a function called "verify".
   3968   return !V.verify(M) || Broken;
   3969 }
   3970 
   3971 namespace {
   3972 struct VerifierLegacyPass : public FunctionPass {
   3973   static char ID;
   3974 
   3975   Verifier V;
   3976   bool FatalErrors;
   3977 
   3978   VerifierLegacyPass() : FunctionPass(ID), V(dbgs()), FatalErrors(true) {
   3979     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
   3980   }
   3981   explicit VerifierLegacyPass(bool FatalErrors)
   3982       : FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) {
   3983     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
   3984   }
   3985 
   3986   bool runOnFunction(Function &F) override {
   3987     if (!V.verify(F) && FatalErrors)
   3988       report_fatal_error("Broken function found, compilation aborted!");
   3989 
   3990     return false;
   3991   }
   3992 
   3993   bool doFinalization(Module &M) override {
   3994     if (!V.verify(M) && FatalErrors)
   3995       report_fatal_error("Broken module found, compilation aborted!");
   3996 
   3997     return false;
   3998   }
   3999 
   4000   void getAnalysisUsage(AnalysisUsage &AU) const override {
   4001     AU.setPreservesAll();
   4002   }
   4003 };
   4004 }
   4005 
   4006 char VerifierLegacyPass::ID = 0;
   4007 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
   4008 
   4009 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
   4010   return new VerifierLegacyPass(FatalErrors);
   4011 }
   4012 
   4013 PreservedAnalyses VerifierPass::run(Module &M) {
   4014   if (verifyModule(M, &dbgs()) && FatalErrors)
   4015     report_fatal_error("Broken module found, compilation aborted!");
   4016 
   4017   return PreservedAnalyses::all();
   4018 }
   4019 
   4020 PreservedAnalyses VerifierPass::run(Function &F) {
   4021   if (verifyFunction(F, &dbgs()) && FatalErrors)
   4022     report_fatal_error("Broken function found, compilation aborted!");
   4023 
   4024   return PreservedAnalyses::all();
   4025 }
   4026