1 //===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the writing of the LLVM IR as a set of C++ calls to the 11 // LLVM IR interface. The input module is assumed to be verified. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CPPTargetMachine.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/Config/config.h" 20 #include "llvm/IR/CallingConv.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/InlineAsm.h" 24 #include "llvm/IR/Instruction.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LegacyPassManager.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCInstrInfo.h" 30 #include "llvm/MC/MCSubtargetInfo.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/FormattedStream.h" 35 #include "llvm/Support/TargetRegistry.h" 36 #include <algorithm> 37 #include <cctype> 38 #include <cstdio> 39 #include <map> 40 #include <set> 41 using namespace llvm; 42 43 static cl::opt<std::string> 44 FuncName("cppfname", cl::desc("Specify the name of the generated function"), 45 cl::value_desc("function name")); 46 47 enum WhatToGenerate { 48 GenProgram, 49 GenModule, 50 GenContents, 51 GenFunction, 52 GenFunctions, 53 GenInline, 54 GenVariable, 55 GenType 56 }; 57 58 static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional, 59 cl::desc("Choose what kind of output to generate"), 60 cl::init(GenProgram), 61 cl::values( 62 clEnumValN(GenProgram, "program", "Generate a complete program"), 63 clEnumValN(GenModule, "module", "Generate a module definition"), 64 clEnumValN(GenContents, "contents", "Generate contents of a module"), 65 clEnumValN(GenFunction, "function", "Generate a function definition"), 66 clEnumValN(GenFunctions,"functions", "Generate all function definitions"), 67 clEnumValN(GenInline, "inline", "Generate an inline function"), 68 clEnumValN(GenVariable, "variable", "Generate a variable definition"), 69 clEnumValN(GenType, "type", "Generate a type definition"), 70 clEnumValEnd 71 ) 72 ); 73 74 static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional, 75 cl::desc("Specify the name of the thing to generate"), 76 cl::init("!bad!")); 77 78 extern "C" void LLVMInitializeCppBackendTarget() { 79 // Register the target. 80 RegisterTargetMachine<CPPTargetMachine> X(TheCppBackendTarget); 81 } 82 83 namespace { 84 typedef std::vector<Type*> TypeList; 85 typedef std::map<Type*,std::string> TypeMap; 86 typedef std::map<const Value*,std::string> ValueMap; 87 typedef std::set<std::string> NameSet; 88 typedef std::set<Type*> TypeSet; 89 typedef std::set<const Value*> ValueSet; 90 typedef std::map<const Value*,std::string> ForwardRefMap; 91 92 /// CppWriter - This class is the main chunk of code that converts an LLVM 93 /// module to a C++ translation unit. 94 class CppWriter : public ModulePass { 95 std::unique_ptr<formatted_raw_ostream> OutOwner; 96 formatted_raw_ostream &Out; 97 const Module *TheModule; 98 uint64_t uniqueNum; 99 TypeMap TypeNames; 100 ValueMap ValueNames; 101 NameSet UsedNames; 102 TypeSet DefinedTypes; 103 ValueSet DefinedValues; 104 ForwardRefMap ForwardRefs; 105 bool is_inline; 106 unsigned indent_level; 107 108 public: 109 static char ID; 110 explicit CppWriter(std::unique_ptr<formatted_raw_ostream> o) 111 : ModulePass(ID), OutOwner(std::move(o)), Out(*OutOwner), uniqueNum(0), 112 is_inline(false), indent_level(0) {} 113 114 const char *getPassName() const override { return "C++ backend"; } 115 116 bool runOnModule(Module &M) override; 117 118 void printProgram(const std::string& fname, const std::string& modName ); 119 void printModule(const std::string& fname, const std::string& modName ); 120 void printContents(const std::string& fname, const std::string& modName ); 121 void printFunction(const std::string& fname, const std::string& funcName ); 122 void printFunctions(); 123 void printInline(const std::string& fname, const std::string& funcName ); 124 void printVariable(const std::string& fname, const std::string& varName ); 125 void printType(const std::string& fname, const std::string& typeName ); 126 127 void error(const std::string& msg); 128 129 130 formatted_raw_ostream& nl(formatted_raw_ostream &Out, int delta = 0); 131 inline void in() { indent_level++; } 132 inline void out() { if (indent_level >0) indent_level--; } 133 134 private: 135 void printLinkageType(GlobalValue::LinkageTypes LT); 136 void printVisibilityType(GlobalValue::VisibilityTypes VisTypes); 137 void printDLLStorageClassType(GlobalValue::DLLStorageClassTypes DSCType); 138 void printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM); 139 void printCallingConv(CallingConv::ID cc); 140 void printEscapedString(const std::string& str); 141 void printCFP(const ConstantFP* CFP); 142 143 std::string getCppName(Type* val); 144 inline void printCppName(Type* val); 145 146 std::string getCppName(const Value* val); 147 inline void printCppName(const Value* val); 148 149 void printAttributes(const AttributeSet &PAL, const std::string &name); 150 void printType(Type* Ty); 151 void printTypes(const Module* M); 152 153 void printConstant(const Constant *CPV); 154 void printConstants(const Module* M); 155 156 void printVariableUses(const GlobalVariable *GV); 157 void printVariableHead(const GlobalVariable *GV); 158 void printVariableBody(const GlobalVariable *GV); 159 160 void printFunctionUses(const Function *F); 161 void printFunctionHead(const Function *F); 162 void printFunctionBody(const Function *F); 163 void printInstruction(const Instruction *I, const std::string& bbname); 164 std::string getOpName(const Value*); 165 166 void printModuleBody(); 167 }; 168 } // end anonymous namespace. 169 170 formatted_raw_ostream &CppWriter::nl(formatted_raw_ostream &Out, int delta) { 171 Out << '\n'; 172 if (delta >= 0 || indent_level >= unsigned(-delta)) 173 indent_level += delta; 174 Out.indent(indent_level); 175 return Out; 176 } 177 178 static inline void sanitize(std::string &str) { 179 for (size_t i = 0; i < str.length(); ++i) 180 if (!isalnum(str[i]) && str[i] != '_') 181 str[i] = '_'; 182 } 183 184 static std::string getTypePrefix(Type *Ty) { 185 switch (Ty->getTypeID()) { 186 case Type::VoidTyID: return "void_"; 187 case Type::IntegerTyID: 188 return "int" + utostr(cast<IntegerType>(Ty)->getBitWidth()) + "_"; 189 case Type::FloatTyID: return "float_"; 190 case Type::DoubleTyID: return "double_"; 191 case Type::LabelTyID: return "label_"; 192 case Type::FunctionTyID: return "func_"; 193 case Type::StructTyID: return "struct_"; 194 case Type::ArrayTyID: return "array_"; 195 case Type::PointerTyID: return "ptr_"; 196 case Type::VectorTyID: return "packed_"; 197 default: return "other_"; 198 } 199 } 200 201 void CppWriter::error(const std::string& msg) { 202 report_fatal_error(msg); 203 } 204 205 static inline std::string ftostr(const APFloat& V) { 206 std::string Buf; 207 if (&V.getSemantics() == &APFloat::IEEEdouble) { 208 raw_string_ostream(Buf) << V.convertToDouble(); 209 return Buf; 210 } else if (&V.getSemantics() == &APFloat::IEEEsingle) { 211 raw_string_ostream(Buf) << (double)V.convertToFloat(); 212 return Buf; 213 } 214 return "<unknown format in ftostr>"; // error 215 } 216 217 // printCFP - Print a floating point constant .. very carefully :) 218 // This makes sure that conversion to/from floating yields the same binary 219 // result so that we don't lose precision. 220 void CppWriter::printCFP(const ConstantFP *CFP) { 221 bool ignored; 222 APFloat APF = APFloat(CFP->getValueAPF()); // copy 223 if (CFP->getType() == Type::getFloatTy(CFP->getContext())) 224 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored); 225 Out << "ConstantFP::get(mod->getContext(), "; 226 Out << "APFloat("; 227 #if HAVE_PRINTF_A 228 char Buffer[100]; 229 sprintf(Buffer, "%A", APF.convertToDouble()); 230 if ((!strncmp(Buffer, "0x", 2) || 231 !strncmp(Buffer, "-0x", 3) || 232 !strncmp(Buffer, "+0x", 3)) && 233 APF.bitwiseIsEqual(APFloat(atof(Buffer)))) { 234 if (CFP->getType() == Type::getDoubleTy(CFP->getContext())) 235 Out << "BitsToDouble(" << Buffer << ")"; 236 else 237 Out << "BitsToFloat((float)" << Buffer << ")"; 238 Out << ")"; 239 } else { 240 #endif 241 std::string StrVal = ftostr(CFP->getValueAPF()); 242 243 while (StrVal[0] == ' ') 244 StrVal.erase(StrVal.begin()); 245 246 // Check to make sure that the stringized number is not some string like 247 // "Inf" or NaN. Check that the string matches the "[-+]?[0-9]" regex. 248 if (((StrVal[0] >= '0' && StrVal[0] <= '9') || 249 ((StrVal[0] == '-' || StrVal[0] == '+') && 250 (StrVal[1] >= '0' && StrVal[1] <= '9'))) && 251 (CFP->isExactlyValue(atof(StrVal.c_str())))) { 252 if (CFP->getType() == Type::getDoubleTy(CFP->getContext())) 253 Out << StrVal; 254 else 255 Out << StrVal << "f"; 256 } else if (CFP->getType() == Type::getDoubleTy(CFP->getContext())) 257 Out << "BitsToDouble(0x" 258 << utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue()) 259 << "ULL) /* " << StrVal << " */"; 260 else 261 Out << "BitsToFloat(0x" 262 << utohexstr((uint32_t)CFP->getValueAPF(). 263 bitcastToAPInt().getZExtValue()) 264 << "U) /* " << StrVal << " */"; 265 Out << ")"; 266 #if HAVE_PRINTF_A 267 } 268 #endif 269 Out << ")"; 270 } 271 272 void CppWriter::printCallingConv(CallingConv::ID cc){ 273 // Print the calling convention. 274 switch (cc) { 275 case CallingConv::C: Out << "CallingConv::C"; break; 276 case CallingConv::Fast: Out << "CallingConv::Fast"; break; 277 case CallingConv::Cold: Out << "CallingConv::Cold"; break; 278 case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break; 279 default: Out << cc; break; 280 } 281 } 282 283 void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) { 284 switch (LT) { 285 case GlobalValue::InternalLinkage: 286 Out << "GlobalValue::InternalLinkage"; break; 287 case GlobalValue::PrivateLinkage: 288 Out << "GlobalValue::PrivateLinkage"; break; 289 case GlobalValue::AvailableExternallyLinkage: 290 Out << "GlobalValue::AvailableExternallyLinkage "; break; 291 case GlobalValue::LinkOnceAnyLinkage: 292 Out << "GlobalValue::LinkOnceAnyLinkage "; break; 293 case GlobalValue::LinkOnceODRLinkage: 294 Out << "GlobalValue::LinkOnceODRLinkage "; break; 295 case GlobalValue::WeakAnyLinkage: 296 Out << "GlobalValue::WeakAnyLinkage"; break; 297 case GlobalValue::WeakODRLinkage: 298 Out << "GlobalValue::WeakODRLinkage"; break; 299 case GlobalValue::AppendingLinkage: 300 Out << "GlobalValue::AppendingLinkage"; break; 301 case GlobalValue::ExternalLinkage: 302 Out << "GlobalValue::ExternalLinkage"; break; 303 case GlobalValue::ExternalWeakLinkage: 304 Out << "GlobalValue::ExternalWeakLinkage"; break; 305 case GlobalValue::CommonLinkage: 306 Out << "GlobalValue::CommonLinkage"; break; 307 } 308 } 309 310 void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) { 311 switch (VisType) { 312 case GlobalValue::DefaultVisibility: 313 Out << "GlobalValue::DefaultVisibility"; 314 break; 315 case GlobalValue::HiddenVisibility: 316 Out << "GlobalValue::HiddenVisibility"; 317 break; 318 case GlobalValue::ProtectedVisibility: 319 Out << "GlobalValue::ProtectedVisibility"; 320 break; 321 } 322 } 323 324 void CppWriter::printDLLStorageClassType( 325 GlobalValue::DLLStorageClassTypes DSCType) { 326 switch (DSCType) { 327 case GlobalValue::DefaultStorageClass: 328 Out << "GlobalValue::DefaultStorageClass"; 329 break; 330 case GlobalValue::DLLImportStorageClass: 331 Out << "GlobalValue::DLLImportStorageClass"; 332 break; 333 case GlobalValue::DLLExportStorageClass: 334 Out << "GlobalValue::DLLExportStorageClass"; 335 break; 336 } 337 } 338 339 void CppWriter::printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM) { 340 switch (TLM) { 341 case GlobalVariable::NotThreadLocal: 342 Out << "GlobalVariable::NotThreadLocal"; 343 break; 344 case GlobalVariable::GeneralDynamicTLSModel: 345 Out << "GlobalVariable::GeneralDynamicTLSModel"; 346 break; 347 case GlobalVariable::LocalDynamicTLSModel: 348 Out << "GlobalVariable::LocalDynamicTLSModel"; 349 break; 350 case GlobalVariable::InitialExecTLSModel: 351 Out << "GlobalVariable::InitialExecTLSModel"; 352 break; 353 case GlobalVariable::LocalExecTLSModel: 354 Out << "GlobalVariable::LocalExecTLSModel"; 355 break; 356 } 357 } 358 359 // printEscapedString - Print each character of the specified string, escaping 360 // it if it is not printable or if it is an escape char. 361 void CppWriter::printEscapedString(const std::string &Str) { 362 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 363 unsigned char C = Str[i]; 364 if (isprint(C) && C != '"' && C != '\\') { 365 Out << C; 366 } else { 367 Out << "\\x" 368 << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A')) 369 << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A')); 370 } 371 } 372 } 373 374 std::string CppWriter::getCppName(Type* Ty) { 375 switch (Ty->getTypeID()) { 376 default: 377 break; 378 case Type::VoidTyID: 379 return "Type::getVoidTy(mod->getContext())"; 380 case Type::IntegerTyID: { 381 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); 382 return "IntegerType::get(mod->getContext(), " + utostr(BitWidth) + ")"; 383 } 384 case Type::X86_FP80TyID: 385 return "Type::getX86_FP80Ty(mod->getContext())"; 386 case Type::FloatTyID: 387 return "Type::getFloatTy(mod->getContext())"; 388 case Type::DoubleTyID: 389 return "Type::getDoubleTy(mod->getContext())"; 390 case Type::LabelTyID: 391 return "Type::getLabelTy(mod->getContext())"; 392 case Type::X86_MMXTyID: 393 return "Type::getX86_MMXTy(mod->getContext())"; 394 } 395 396 // Now, see if we've seen the type before and return that 397 TypeMap::iterator I = TypeNames.find(Ty); 398 if (I != TypeNames.end()) 399 return I->second; 400 401 // Okay, let's build a new name for this type. Start with a prefix 402 const char* prefix = nullptr; 403 switch (Ty->getTypeID()) { 404 case Type::FunctionTyID: prefix = "FuncTy_"; break; 405 case Type::StructTyID: prefix = "StructTy_"; break; 406 case Type::ArrayTyID: prefix = "ArrayTy_"; break; 407 case Type::PointerTyID: prefix = "PointerTy_"; break; 408 case Type::VectorTyID: prefix = "VectorTy_"; break; 409 default: prefix = "OtherTy_"; break; // prevent breakage 410 } 411 412 // See if the type has a name in the symboltable and build accordingly 413 std::string name; 414 if (StructType *STy = dyn_cast<StructType>(Ty)) 415 if (STy->hasName()) 416 name = STy->getName(); 417 418 if (name.empty()) 419 name = utostr(uniqueNum++); 420 421 name = std::string(prefix) + name; 422 sanitize(name); 423 424 // Save the name 425 return TypeNames[Ty] = name; 426 } 427 428 void CppWriter::printCppName(Type* Ty) { 429 printEscapedString(getCppName(Ty)); 430 } 431 432 std::string CppWriter::getCppName(const Value* val) { 433 std::string name; 434 ValueMap::iterator I = ValueNames.find(val); 435 if (I != ValueNames.end() && I->first == val) 436 return I->second; 437 438 if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) { 439 name = std::string("gvar_") + 440 getTypePrefix(GV->getType()->getElementType()); 441 } else if (isa<Function>(val)) { 442 name = std::string("func_"); 443 } else if (const Constant* C = dyn_cast<Constant>(val)) { 444 name = std::string("const_") + getTypePrefix(C->getType()); 445 } else if (const Argument* Arg = dyn_cast<Argument>(val)) { 446 if (is_inline) { 447 unsigned argNum = std::distance(Arg->getParent()->arg_begin(), 448 Function::const_arg_iterator(Arg)) + 1; 449 name = std::string("arg_") + utostr(argNum); 450 NameSet::iterator NI = UsedNames.find(name); 451 if (NI != UsedNames.end()) 452 name += std::string("_") + utostr(uniqueNum++); 453 UsedNames.insert(name); 454 return ValueNames[val] = name; 455 } else { 456 name = getTypePrefix(val->getType()); 457 } 458 } else { 459 name = getTypePrefix(val->getType()); 460 } 461 if (val->hasName()) 462 name += val->getName(); 463 else 464 name += utostr(uniqueNum++); 465 sanitize(name); 466 NameSet::iterator NI = UsedNames.find(name); 467 if (NI != UsedNames.end()) 468 name += std::string("_") + utostr(uniqueNum++); 469 UsedNames.insert(name); 470 return ValueNames[val] = name; 471 } 472 473 void CppWriter::printCppName(const Value* val) { 474 printEscapedString(getCppName(val)); 475 } 476 477 void CppWriter::printAttributes(const AttributeSet &PAL, 478 const std::string &name) { 479 Out << "AttributeSet " << name << "_PAL;"; 480 nl(Out); 481 if (!PAL.isEmpty()) { 482 Out << '{'; in(); nl(Out); 483 Out << "SmallVector<AttributeSet, 4> Attrs;"; nl(Out); 484 Out << "AttributeSet PAS;"; in(); nl(Out); 485 for (unsigned i = 0; i < PAL.getNumSlots(); ++i) { 486 unsigned index = PAL.getSlotIndex(i); 487 AttrBuilder attrs(PAL.getSlotAttributes(i), index); 488 Out << "{"; in(); nl(Out); 489 Out << "AttrBuilder B;"; nl(Out); 490 491 #define HANDLE_ATTR(X) \ 492 if (attrs.contains(Attribute::X)) { \ 493 Out << "B.addAttribute(Attribute::" #X ");"; nl(Out); \ 494 attrs.removeAttribute(Attribute::X); \ 495 } 496 497 HANDLE_ATTR(SExt); 498 HANDLE_ATTR(ZExt); 499 HANDLE_ATTR(NoReturn); 500 HANDLE_ATTR(InReg); 501 HANDLE_ATTR(StructRet); 502 HANDLE_ATTR(NoUnwind); 503 HANDLE_ATTR(NoAlias); 504 HANDLE_ATTR(ByVal); 505 HANDLE_ATTR(InAlloca); 506 HANDLE_ATTR(Nest); 507 HANDLE_ATTR(ReadNone); 508 HANDLE_ATTR(ReadOnly); 509 HANDLE_ATTR(NoInline); 510 HANDLE_ATTR(AlwaysInline); 511 HANDLE_ATTR(OptimizeNone); 512 HANDLE_ATTR(OptimizeForSize); 513 HANDLE_ATTR(StackProtect); 514 HANDLE_ATTR(StackProtectReq); 515 HANDLE_ATTR(StackProtectStrong); 516 HANDLE_ATTR(SafeStack); 517 HANDLE_ATTR(NoCapture); 518 HANDLE_ATTR(NoRedZone); 519 HANDLE_ATTR(NoImplicitFloat); 520 HANDLE_ATTR(Naked); 521 HANDLE_ATTR(InlineHint); 522 HANDLE_ATTR(ReturnsTwice); 523 HANDLE_ATTR(UWTable); 524 HANDLE_ATTR(NonLazyBind); 525 HANDLE_ATTR(MinSize); 526 #undef HANDLE_ATTR 527 528 if (attrs.contains(Attribute::StackAlignment)) { 529 Out << "B.addStackAlignmentAttr(" << attrs.getStackAlignment()<<')'; 530 nl(Out); 531 attrs.removeAttribute(Attribute::StackAlignment); 532 } 533 534 Out << "PAS = AttributeSet::get(mod->getContext(), "; 535 if (index == ~0U) 536 Out << "~0U,"; 537 else 538 Out << index << "U,"; 539 Out << " B);"; out(); nl(Out); 540 Out << "}"; out(); nl(Out); 541 nl(Out); 542 Out << "Attrs.push_back(PAS);"; nl(Out); 543 } 544 Out << name << "_PAL = AttributeSet::get(mod->getContext(), Attrs);"; 545 nl(Out); 546 out(); nl(Out); 547 Out << '}'; nl(Out); 548 } 549 } 550 551 void CppWriter::printType(Type* Ty) { 552 // We don't print definitions for primitive types 553 if (Ty->isFloatingPointTy() || Ty->isX86_MMXTy() || Ty->isIntegerTy() || 554 Ty->isLabelTy() || Ty->isMetadataTy() || Ty->isVoidTy() || 555 Ty->isTokenTy()) 556 return; 557 558 // If we already defined this type, we don't need to define it again. 559 if (DefinedTypes.find(Ty) != DefinedTypes.end()) 560 return; 561 562 // Everything below needs the name for the type so get it now. 563 std::string typeName(getCppName(Ty)); 564 565 // Print the type definition 566 switch (Ty->getTypeID()) { 567 case Type::FunctionTyID: { 568 FunctionType* FT = cast<FunctionType>(Ty); 569 Out << "std::vector<Type*>" << typeName << "_args;"; 570 nl(Out); 571 FunctionType::param_iterator PI = FT->param_begin(); 572 FunctionType::param_iterator PE = FT->param_end(); 573 for (; PI != PE; ++PI) { 574 Type* argTy = static_cast<Type*>(*PI); 575 printType(argTy); 576 std::string argName(getCppName(argTy)); 577 Out << typeName << "_args.push_back(" << argName; 578 Out << ");"; 579 nl(Out); 580 } 581 printType(FT->getReturnType()); 582 std::string retTypeName(getCppName(FT->getReturnType())); 583 Out << "FunctionType* " << typeName << " = FunctionType::get("; 584 in(); nl(Out) << "/*Result=*/" << retTypeName; 585 Out << ","; 586 nl(Out) << "/*Params=*/" << typeName << "_args,"; 587 nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");"; 588 out(); 589 nl(Out); 590 break; 591 } 592 case Type::StructTyID: { 593 StructType* ST = cast<StructType>(Ty); 594 if (!ST->isLiteral()) { 595 Out << "StructType *" << typeName << " = mod->getTypeByName(\""; 596 printEscapedString(ST->getName()); 597 Out << "\");"; 598 nl(Out); 599 Out << "if (!" << typeName << ") {"; 600 nl(Out); 601 Out << typeName << " = "; 602 Out << "StructType::create(mod->getContext(), \""; 603 printEscapedString(ST->getName()); 604 Out << "\");"; 605 nl(Out); 606 Out << "}"; 607 nl(Out); 608 // Indicate that this type is now defined. 609 DefinedTypes.insert(Ty); 610 } 611 612 Out << "std::vector<Type*>" << typeName << "_fields;"; 613 nl(Out); 614 StructType::element_iterator EI = ST->element_begin(); 615 StructType::element_iterator EE = ST->element_end(); 616 for (; EI != EE; ++EI) { 617 Type* fieldTy = static_cast<Type*>(*EI); 618 printType(fieldTy); 619 std::string fieldName(getCppName(fieldTy)); 620 Out << typeName << "_fields.push_back(" << fieldName; 621 Out << ");"; 622 nl(Out); 623 } 624 625 if (ST->isLiteral()) { 626 Out << "StructType *" << typeName << " = "; 627 Out << "StructType::get(" << "mod->getContext(), "; 628 } else { 629 Out << "if (" << typeName << "->isOpaque()) {"; 630 nl(Out); 631 Out << typeName << "->setBody("; 632 } 633 634 Out << typeName << "_fields, /*isPacked=*/" 635 << (ST->isPacked() ? "true" : "false") << ");"; 636 nl(Out); 637 if (!ST->isLiteral()) { 638 Out << "}"; 639 nl(Out); 640 } 641 break; 642 } 643 case Type::ArrayTyID: { 644 ArrayType* AT = cast<ArrayType>(Ty); 645 Type* ET = AT->getElementType(); 646 printType(ET); 647 if (DefinedTypes.find(Ty) == DefinedTypes.end()) { 648 std::string elemName(getCppName(ET)); 649 Out << "ArrayType* " << typeName << " = ArrayType::get(" 650 << elemName << ", " << AT->getNumElements() << ");"; 651 nl(Out); 652 } 653 break; 654 } 655 case Type::PointerTyID: { 656 PointerType* PT = cast<PointerType>(Ty); 657 Type* ET = PT->getElementType(); 658 printType(ET); 659 if (DefinedTypes.find(Ty) == DefinedTypes.end()) { 660 std::string elemName(getCppName(ET)); 661 Out << "PointerType* " << typeName << " = PointerType::get(" 662 << elemName << ", " << PT->getAddressSpace() << ");"; 663 nl(Out); 664 } 665 break; 666 } 667 case Type::VectorTyID: { 668 VectorType* PT = cast<VectorType>(Ty); 669 Type* ET = PT->getElementType(); 670 printType(ET); 671 if (DefinedTypes.find(Ty) == DefinedTypes.end()) { 672 std::string elemName(getCppName(ET)); 673 Out << "VectorType* " << typeName << " = VectorType::get(" 674 << elemName << ", " << PT->getNumElements() << ");"; 675 nl(Out); 676 } 677 break; 678 } 679 default: 680 error("Invalid TypeID"); 681 } 682 683 // Indicate that this type is now defined. 684 DefinedTypes.insert(Ty); 685 686 // Finally, separate the type definition from other with a newline. 687 nl(Out); 688 } 689 690 void CppWriter::printTypes(const Module* M) { 691 // Add all of the global variables to the value table. 692 for (Module::const_global_iterator I = TheModule->global_begin(), 693 E = TheModule->global_end(); I != E; ++I) { 694 if (I->hasInitializer()) 695 printType(I->getInitializer()->getType()); 696 printType(I->getType()); 697 } 698 699 // Add all the functions to the table 700 for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end(); 701 FI != FE; ++FI) { 702 printType(FI->getReturnType()); 703 printType(FI->getFunctionType()); 704 // Add all the function arguments 705 for (Function::const_arg_iterator AI = FI->arg_begin(), 706 AE = FI->arg_end(); AI != AE; ++AI) { 707 printType(AI->getType()); 708 } 709 710 // Add all of the basic blocks and instructions 711 for (Function::const_iterator BB = FI->begin(), 712 E = FI->end(); BB != E; ++BB) { 713 printType(BB->getType()); 714 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; 715 ++I) { 716 printType(I->getType()); 717 for (unsigned i = 0; i < I->getNumOperands(); ++i) 718 printType(I->getOperand(i)->getType()); 719 } 720 } 721 } 722 } 723 724 725 // printConstant - Print out a constant pool entry... 726 void CppWriter::printConstant(const Constant *CV) { 727 // First, if the constant is actually a GlobalValue (variable or function) 728 // or its already in the constant list then we've printed it already and we 729 // can just return. 730 if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end()) 731 return; 732 733 std::string constName(getCppName(CV)); 734 std::string typeName(getCppName(CV->getType())); 735 736 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 737 std::string constValue = CI->getValue().toString(10, true); 738 Out << "ConstantInt* " << constName 739 << " = ConstantInt::get(mod->getContext(), APInt(" 740 << cast<IntegerType>(CI->getType())->getBitWidth() 741 << ", StringRef(\"" << constValue << "\"), 10));"; 742 } else if (isa<ConstantAggregateZero>(CV)) { 743 Out << "ConstantAggregateZero* " << constName 744 << " = ConstantAggregateZero::get(" << typeName << ");"; 745 } else if (isa<ConstantPointerNull>(CV)) { 746 Out << "ConstantPointerNull* " << constName 747 << " = ConstantPointerNull::get(" << typeName << ");"; 748 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 749 Out << "ConstantFP* " << constName << " = "; 750 printCFP(CFP); 751 Out << ";"; 752 } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) { 753 Out << "std::vector<Constant*> " << constName << "_elems;"; 754 nl(Out); 755 unsigned N = CA->getNumOperands(); 756 for (unsigned i = 0; i < N; ++i) { 757 printConstant(CA->getOperand(i)); // recurse to print operands 758 Out << constName << "_elems.push_back(" 759 << getCppName(CA->getOperand(i)) << ");"; 760 nl(Out); 761 } 762 Out << "Constant* " << constName << " = ConstantArray::get(" 763 << typeName << ", " << constName << "_elems);"; 764 } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) { 765 Out << "std::vector<Constant*> " << constName << "_fields;"; 766 nl(Out); 767 unsigned N = CS->getNumOperands(); 768 for (unsigned i = 0; i < N; i++) { 769 printConstant(CS->getOperand(i)); 770 Out << constName << "_fields.push_back(" 771 << getCppName(CS->getOperand(i)) << ");"; 772 nl(Out); 773 } 774 Out << "Constant* " << constName << " = ConstantStruct::get(" 775 << typeName << ", " << constName << "_fields);"; 776 } else if (const ConstantVector *CVec = dyn_cast<ConstantVector>(CV)) { 777 Out << "std::vector<Constant*> " << constName << "_elems;"; 778 nl(Out); 779 unsigned N = CVec->getNumOperands(); 780 for (unsigned i = 0; i < N; ++i) { 781 printConstant(CVec->getOperand(i)); 782 Out << constName << "_elems.push_back(" 783 << getCppName(CVec->getOperand(i)) << ");"; 784 nl(Out); 785 } 786 Out << "Constant* " << constName << " = ConstantVector::get(" 787 << typeName << ", " << constName << "_elems);"; 788 } else if (isa<UndefValue>(CV)) { 789 Out << "UndefValue* " << constName << " = UndefValue::get(" 790 << typeName << ");"; 791 } else if (const ConstantDataSequential *CDS = 792 dyn_cast<ConstantDataSequential>(CV)) { 793 if (CDS->isString()) { 794 Out << "Constant *" << constName << 795 " = ConstantDataArray::getString(mod->getContext(), \""; 796 StringRef Str = CDS->getAsString(); 797 bool nullTerminate = false; 798 if (Str.back() == 0) { 799 Str = Str.drop_back(); 800 nullTerminate = true; 801 } 802 printEscapedString(Str); 803 // Determine if we want null termination or not. 804 if (nullTerminate) 805 Out << "\", true);"; 806 else 807 Out << "\", false);";// No null terminator 808 } else { 809 // TODO: Could generate more efficient code generating CDS calls instead. 810 Out << "std::vector<Constant*> " << constName << "_elems;"; 811 nl(Out); 812 for (unsigned i = 0; i != CDS->getNumElements(); ++i) { 813 Constant *Elt = CDS->getElementAsConstant(i); 814 printConstant(Elt); 815 Out << constName << "_elems.push_back(" << getCppName(Elt) << ");"; 816 nl(Out); 817 } 818 Out << "Constant* " << constName; 819 820 if (isa<ArrayType>(CDS->getType())) 821 Out << " = ConstantArray::get("; 822 else 823 Out << " = ConstantVector::get("; 824 Out << typeName << ", " << constName << "_elems);"; 825 } 826 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 827 if (CE->getOpcode() == Instruction::GetElementPtr) { 828 Out << "std::vector<Constant*> " << constName << "_indices;"; 829 nl(Out); 830 printConstant(CE->getOperand(0)); 831 for (unsigned i = 1; i < CE->getNumOperands(); ++i ) { 832 printConstant(CE->getOperand(i)); 833 Out << constName << "_indices.push_back(" 834 << getCppName(CE->getOperand(i)) << ");"; 835 nl(Out); 836 } 837 Out << "Constant* " << constName 838 << " = ConstantExpr::getGetElementPtr(" 839 << getCppName(CE->getOperand(0)) << ", " 840 << constName << "_indices);"; 841 } else if (CE->isCast()) { 842 printConstant(CE->getOperand(0)); 843 Out << "Constant* " << constName << " = ConstantExpr::getCast("; 844 switch (CE->getOpcode()) { 845 default: llvm_unreachable("Invalid cast opcode"); 846 case Instruction::Trunc: Out << "Instruction::Trunc"; break; 847 case Instruction::ZExt: Out << "Instruction::ZExt"; break; 848 case Instruction::SExt: Out << "Instruction::SExt"; break; 849 case Instruction::FPTrunc: Out << "Instruction::FPTrunc"; break; 850 case Instruction::FPExt: Out << "Instruction::FPExt"; break; 851 case Instruction::FPToUI: Out << "Instruction::FPToUI"; break; 852 case Instruction::FPToSI: Out << "Instruction::FPToSI"; break; 853 case Instruction::UIToFP: Out << "Instruction::UIToFP"; break; 854 case Instruction::SIToFP: Out << "Instruction::SIToFP"; break; 855 case Instruction::PtrToInt: Out << "Instruction::PtrToInt"; break; 856 case Instruction::IntToPtr: Out << "Instruction::IntToPtr"; break; 857 case Instruction::BitCast: Out << "Instruction::BitCast"; break; 858 } 859 Out << ", " << getCppName(CE->getOperand(0)) << ", " 860 << getCppName(CE->getType()) << ");"; 861 } else { 862 unsigned N = CE->getNumOperands(); 863 for (unsigned i = 0; i < N; ++i ) { 864 printConstant(CE->getOperand(i)); 865 } 866 Out << "Constant* " << constName << " = ConstantExpr::"; 867 switch (CE->getOpcode()) { 868 case Instruction::Add: Out << "getAdd("; break; 869 case Instruction::FAdd: Out << "getFAdd("; break; 870 case Instruction::Sub: Out << "getSub("; break; 871 case Instruction::FSub: Out << "getFSub("; break; 872 case Instruction::Mul: Out << "getMul("; break; 873 case Instruction::FMul: Out << "getFMul("; break; 874 case Instruction::UDiv: Out << "getUDiv("; break; 875 case Instruction::SDiv: Out << "getSDiv("; break; 876 case Instruction::FDiv: Out << "getFDiv("; break; 877 case Instruction::URem: Out << "getURem("; break; 878 case Instruction::SRem: Out << "getSRem("; break; 879 case Instruction::FRem: Out << "getFRem("; break; 880 case Instruction::And: Out << "getAnd("; break; 881 case Instruction::Or: Out << "getOr("; break; 882 case Instruction::Xor: Out << "getXor("; break; 883 case Instruction::ICmp: 884 Out << "getICmp(ICmpInst::ICMP_"; 885 switch (CE->getPredicate()) { 886 case ICmpInst::ICMP_EQ: Out << "EQ"; break; 887 case ICmpInst::ICMP_NE: Out << "NE"; break; 888 case ICmpInst::ICMP_SLT: Out << "SLT"; break; 889 case ICmpInst::ICMP_ULT: Out << "ULT"; break; 890 case ICmpInst::ICMP_SGT: Out << "SGT"; break; 891 case ICmpInst::ICMP_UGT: Out << "UGT"; break; 892 case ICmpInst::ICMP_SLE: Out << "SLE"; break; 893 case ICmpInst::ICMP_ULE: Out << "ULE"; break; 894 case ICmpInst::ICMP_SGE: Out << "SGE"; break; 895 case ICmpInst::ICMP_UGE: Out << "UGE"; break; 896 default: error("Invalid ICmp Predicate"); 897 } 898 break; 899 case Instruction::FCmp: 900 Out << "getFCmp(FCmpInst::FCMP_"; 901 switch (CE->getPredicate()) { 902 case FCmpInst::FCMP_FALSE: Out << "FALSE"; break; 903 case FCmpInst::FCMP_ORD: Out << "ORD"; break; 904 case FCmpInst::FCMP_UNO: Out << "UNO"; break; 905 case FCmpInst::FCMP_OEQ: Out << "OEQ"; break; 906 case FCmpInst::FCMP_UEQ: Out << "UEQ"; break; 907 case FCmpInst::FCMP_ONE: Out << "ONE"; break; 908 case FCmpInst::FCMP_UNE: Out << "UNE"; break; 909 case FCmpInst::FCMP_OLT: Out << "OLT"; break; 910 case FCmpInst::FCMP_ULT: Out << "ULT"; break; 911 case FCmpInst::FCMP_OGT: Out << "OGT"; break; 912 case FCmpInst::FCMP_UGT: Out << "UGT"; break; 913 case FCmpInst::FCMP_OLE: Out << "OLE"; break; 914 case FCmpInst::FCMP_ULE: Out << "ULE"; break; 915 case FCmpInst::FCMP_OGE: Out << "OGE"; break; 916 case FCmpInst::FCMP_UGE: Out << "UGE"; break; 917 case FCmpInst::FCMP_TRUE: Out << "TRUE"; break; 918 default: error("Invalid FCmp Predicate"); 919 } 920 break; 921 case Instruction::Shl: Out << "getShl("; break; 922 case Instruction::LShr: Out << "getLShr("; break; 923 case Instruction::AShr: Out << "getAShr("; break; 924 case Instruction::Select: Out << "getSelect("; break; 925 case Instruction::ExtractElement: Out << "getExtractElement("; break; 926 case Instruction::InsertElement: Out << "getInsertElement("; break; 927 case Instruction::ShuffleVector: Out << "getShuffleVector("; break; 928 default: 929 error("Invalid constant expression"); 930 break; 931 } 932 Out << getCppName(CE->getOperand(0)); 933 for (unsigned i = 1; i < CE->getNumOperands(); ++i) 934 Out << ", " << getCppName(CE->getOperand(i)); 935 Out << ");"; 936 } 937 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) { 938 Out << "Constant* " << constName << " = "; 939 Out << "BlockAddress::get(" << getOpName(BA->getBasicBlock()) << ");"; 940 } else { 941 error("Bad Constant"); 942 Out << "Constant* " << constName << " = 0; "; 943 } 944 nl(Out); 945 } 946 947 void CppWriter::printConstants(const Module* M) { 948 // Traverse all the global variables looking for constant initializers 949 for (Module::const_global_iterator I = TheModule->global_begin(), 950 E = TheModule->global_end(); I != E; ++I) 951 if (I->hasInitializer()) 952 printConstant(I->getInitializer()); 953 954 // Traverse the LLVM functions looking for constants 955 for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end(); 956 FI != FE; ++FI) { 957 // Add all of the basic blocks and instructions 958 for (Function::const_iterator BB = FI->begin(), 959 E = FI->end(); BB != E; ++BB) { 960 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; 961 ++I) { 962 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 963 if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) { 964 printConstant(C); 965 } 966 } 967 } 968 } 969 } 970 } 971 972 void CppWriter::printVariableUses(const GlobalVariable *GV) { 973 nl(Out) << "// Type Definitions"; 974 nl(Out); 975 printType(GV->getType()); 976 if (GV->hasInitializer()) { 977 const Constant *Init = GV->getInitializer(); 978 printType(Init->getType()); 979 if (const Function *F = dyn_cast<Function>(Init)) { 980 nl(Out)<< "/ Function Declarations"; nl(Out); 981 printFunctionHead(F); 982 } else if (const GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) { 983 nl(Out) << "// Global Variable Declarations"; nl(Out); 984 printVariableHead(gv); 985 986 nl(Out) << "// Global Variable Definitions"; nl(Out); 987 printVariableBody(gv); 988 } else { 989 nl(Out) << "// Constant Definitions"; nl(Out); 990 printConstant(Init); 991 } 992 } 993 } 994 995 void CppWriter::printVariableHead(const GlobalVariable *GV) { 996 nl(Out) << "GlobalVariable* " << getCppName(GV); 997 if (is_inline) { 998 Out << " = mod->getGlobalVariable(mod->getContext(), "; 999 printEscapedString(GV->getName()); 1000 Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)"; 1001 nl(Out) << "if (!" << getCppName(GV) << ") {"; 1002 in(); nl(Out) << getCppName(GV); 1003 } 1004 Out << " = new GlobalVariable(/*Module=*/*mod, "; 1005 nl(Out) << "/*Type=*/"; 1006 printCppName(GV->getType()->getElementType()); 1007 Out << ","; 1008 nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false"); 1009 Out << ","; 1010 nl(Out) << "/*Linkage=*/"; 1011 printLinkageType(GV->getLinkage()); 1012 Out << ","; 1013 nl(Out) << "/*Initializer=*/0, "; 1014 if (GV->hasInitializer()) { 1015 Out << "// has initializer, specified below"; 1016 } 1017 nl(Out) << "/*Name=*/\""; 1018 printEscapedString(GV->getName()); 1019 Out << "\");"; 1020 nl(Out); 1021 1022 if (GV->hasSection()) { 1023 printCppName(GV); 1024 Out << "->setSection(\""; 1025 printEscapedString(GV->getSection()); 1026 Out << "\");"; 1027 nl(Out); 1028 } 1029 if (GV->getAlignment()) { 1030 printCppName(GV); 1031 Out << "->setAlignment(" << GV->getAlignment() << ");"; 1032 nl(Out); 1033 } 1034 if (GV->getVisibility() != GlobalValue::DefaultVisibility) { 1035 printCppName(GV); 1036 Out << "->setVisibility("; 1037 printVisibilityType(GV->getVisibility()); 1038 Out << ");"; 1039 nl(Out); 1040 } 1041 if (GV->getDLLStorageClass() != GlobalValue::DefaultStorageClass) { 1042 printCppName(GV); 1043 Out << "->setDLLStorageClass("; 1044 printDLLStorageClassType(GV->getDLLStorageClass()); 1045 Out << ");"; 1046 nl(Out); 1047 } 1048 if (GV->isThreadLocal()) { 1049 printCppName(GV); 1050 Out << "->setThreadLocalMode("; 1051 printThreadLocalMode(GV->getThreadLocalMode()); 1052 Out << ");"; 1053 nl(Out); 1054 } 1055 if (is_inline) { 1056 out(); Out << "}"; nl(Out); 1057 } 1058 } 1059 1060 void CppWriter::printVariableBody(const GlobalVariable *GV) { 1061 if (GV->hasInitializer()) { 1062 printCppName(GV); 1063 Out << "->setInitializer("; 1064 Out << getCppName(GV->getInitializer()) << ");"; 1065 nl(Out); 1066 } 1067 } 1068 1069 std::string CppWriter::getOpName(const Value* V) { 1070 if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end()) 1071 return getCppName(V); 1072 1073 // See if its alread in the map of forward references, if so just return the 1074 // name we already set up for it 1075 ForwardRefMap::const_iterator I = ForwardRefs.find(V); 1076 if (I != ForwardRefs.end()) 1077 return I->second; 1078 1079 // This is a new forward reference. Generate a unique name for it 1080 std::string result(std::string("fwdref_") + utostr(uniqueNum++)); 1081 1082 // Yes, this is a hack. An Argument is the smallest instantiable value that 1083 // we can make as a placeholder for the real value. We'll replace these 1084 // Argument instances later. 1085 Out << "Argument* " << result << " = new Argument(" 1086 << getCppName(V->getType()) << ");"; 1087 nl(Out); 1088 ForwardRefs[V] = result; 1089 return result; 1090 } 1091 1092 static StringRef ConvertAtomicOrdering(AtomicOrdering Ordering) { 1093 switch (Ordering) { 1094 case NotAtomic: return "NotAtomic"; 1095 case Unordered: return "Unordered"; 1096 case Monotonic: return "Monotonic"; 1097 case Acquire: return "Acquire"; 1098 case Release: return "Release"; 1099 case AcquireRelease: return "AcquireRelease"; 1100 case SequentiallyConsistent: return "SequentiallyConsistent"; 1101 } 1102 llvm_unreachable("Unknown ordering"); 1103 } 1104 1105 static StringRef ConvertAtomicSynchScope(SynchronizationScope SynchScope) { 1106 switch (SynchScope) { 1107 case SingleThread: return "SingleThread"; 1108 case CrossThread: return "CrossThread"; 1109 } 1110 llvm_unreachable("Unknown synch scope"); 1111 } 1112 1113 // printInstruction - This member is called for each Instruction in a function. 1114 void CppWriter::printInstruction(const Instruction *I, 1115 const std::string& bbname) { 1116 std::string iName(getCppName(I)); 1117 1118 // Before we emit this instruction, we need to take care of generating any 1119 // forward references. So, we get the names of all the operands in advance 1120 const unsigned Ops(I->getNumOperands()); 1121 std::string* opNames = new std::string[Ops]; 1122 for (unsigned i = 0; i < Ops; i++) 1123 opNames[i] = getOpName(I->getOperand(i)); 1124 1125 switch (I->getOpcode()) { 1126 default: 1127 error("Invalid instruction"); 1128 break; 1129 1130 case Instruction::Ret: { 1131 const ReturnInst* ret = cast<ReturnInst>(I); 1132 Out << "ReturnInst::Create(mod->getContext(), " 1133 << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");"; 1134 break; 1135 } 1136 case Instruction::Br: { 1137 const BranchInst* br = cast<BranchInst>(I); 1138 Out << "BranchInst::Create(" ; 1139 if (br->getNumOperands() == 3) { 1140 Out << opNames[2] << ", " 1141 << opNames[1] << ", " 1142 << opNames[0] << ", "; 1143 1144 } else if (br->getNumOperands() == 1) { 1145 Out << opNames[0] << ", "; 1146 } else { 1147 error("Branch with 2 operands?"); 1148 } 1149 Out << bbname << ");"; 1150 break; 1151 } 1152 case Instruction::Switch: { 1153 const SwitchInst *SI = cast<SwitchInst>(I); 1154 Out << "SwitchInst* " << iName << " = SwitchInst::Create(" 1155 << getOpName(SI->getCondition()) << ", " 1156 << getOpName(SI->getDefaultDest()) << ", " 1157 << SI->getNumCases() << ", " << bbname << ");"; 1158 nl(Out); 1159 for (SwitchInst::ConstCaseIt i = SI->case_begin(), e = SI->case_end(); 1160 i != e; ++i) { 1161 const ConstantInt* CaseVal = i.getCaseValue(); 1162 const BasicBlock *BB = i.getCaseSuccessor(); 1163 Out << iName << "->addCase(" 1164 << getOpName(CaseVal) << ", " 1165 << getOpName(BB) << ");"; 1166 nl(Out); 1167 } 1168 break; 1169 } 1170 case Instruction::IndirectBr: { 1171 const IndirectBrInst *IBI = cast<IndirectBrInst>(I); 1172 Out << "IndirectBrInst *" << iName << " = IndirectBrInst::Create(" 1173 << opNames[0] << ", " << IBI->getNumDestinations() << ");"; 1174 nl(Out); 1175 for (unsigned i = 1; i != IBI->getNumOperands(); ++i) { 1176 Out << iName << "->addDestination(" << opNames[i] << ");"; 1177 nl(Out); 1178 } 1179 break; 1180 } 1181 case Instruction::Resume: { 1182 Out << "ResumeInst::Create(" << opNames[0] << ", " << bbname << ");"; 1183 break; 1184 } 1185 case Instruction::Invoke: { 1186 const InvokeInst* inv = cast<InvokeInst>(I); 1187 Out << "std::vector<Value*> " << iName << "_params;"; 1188 nl(Out); 1189 for (unsigned i = 0; i < inv->getNumArgOperands(); ++i) { 1190 Out << iName << "_params.push_back(" 1191 << getOpName(inv->getArgOperand(i)) << ");"; 1192 nl(Out); 1193 } 1194 // FIXME: This shouldn't use magic numbers -3, -2, and -1. 1195 Out << "InvokeInst *" << iName << " = InvokeInst::Create(" 1196 << getOpName(inv->getCalledValue()) << ", " 1197 << getOpName(inv->getNormalDest()) << ", " 1198 << getOpName(inv->getUnwindDest()) << ", " 1199 << iName << "_params, \""; 1200 printEscapedString(inv->getName()); 1201 Out << "\", " << bbname << ");"; 1202 nl(Out) << iName << "->setCallingConv("; 1203 printCallingConv(inv->getCallingConv()); 1204 Out << ");"; 1205 printAttributes(inv->getAttributes(), iName); 1206 Out << iName << "->setAttributes(" << iName << "_PAL);"; 1207 nl(Out); 1208 break; 1209 } 1210 case Instruction::Unreachable: { 1211 Out << "new UnreachableInst(" 1212 << "mod->getContext(), " 1213 << bbname << ");"; 1214 break; 1215 } 1216 case Instruction::Add: 1217 case Instruction::FAdd: 1218 case Instruction::Sub: 1219 case Instruction::FSub: 1220 case Instruction::Mul: 1221 case Instruction::FMul: 1222 case Instruction::UDiv: 1223 case Instruction::SDiv: 1224 case Instruction::FDiv: 1225 case Instruction::URem: 1226 case Instruction::SRem: 1227 case Instruction::FRem: 1228 case Instruction::And: 1229 case Instruction::Or: 1230 case Instruction::Xor: 1231 case Instruction::Shl: 1232 case Instruction::LShr: 1233 case Instruction::AShr:{ 1234 Out << "BinaryOperator* " << iName << " = BinaryOperator::Create("; 1235 switch (I->getOpcode()) { 1236 case Instruction::Add: Out << "Instruction::Add"; break; 1237 case Instruction::FAdd: Out << "Instruction::FAdd"; break; 1238 case Instruction::Sub: Out << "Instruction::Sub"; break; 1239 case Instruction::FSub: Out << "Instruction::FSub"; break; 1240 case Instruction::Mul: Out << "Instruction::Mul"; break; 1241 case Instruction::FMul: Out << "Instruction::FMul"; break; 1242 case Instruction::UDiv:Out << "Instruction::UDiv"; break; 1243 case Instruction::SDiv:Out << "Instruction::SDiv"; break; 1244 case Instruction::FDiv:Out << "Instruction::FDiv"; break; 1245 case Instruction::URem:Out << "Instruction::URem"; break; 1246 case Instruction::SRem:Out << "Instruction::SRem"; break; 1247 case Instruction::FRem:Out << "Instruction::FRem"; break; 1248 case Instruction::And: Out << "Instruction::And"; break; 1249 case Instruction::Or: Out << "Instruction::Or"; break; 1250 case Instruction::Xor: Out << "Instruction::Xor"; break; 1251 case Instruction::Shl: Out << "Instruction::Shl"; break; 1252 case Instruction::LShr:Out << "Instruction::LShr"; break; 1253 case Instruction::AShr:Out << "Instruction::AShr"; break; 1254 default: Out << "Instruction::BadOpCode"; break; 1255 } 1256 Out << ", " << opNames[0] << ", " << opNames[1] << ", \""; 1257 printEscapedString(I->getName()); 1258 Out << "\", " << bbname << ");"; 1259 break; 1260 } 1261 case Instruction::FCmp: { 1262 Out << "FCmpInst* " << iName << " = new FCmpInst(*" << bbname << ", "; 1263 switch (cast<FCmpInst>(I)->getPredicate()) { 1264 case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break; 1265 case FCmpInst::FCMP_OEQ : Out << "FCmpInst::FCMP_OEQ"; break; 1266 case FCmpInst::FCMP_OGT : Out << "FCmpInst::FCMP_OGT"; break; 1267 case FCmpInst::FCMP_OGE : Out << "FCmpInst::FCMP_OGE"; break; 1268 case FCmpInst::FCMP_OLT : Out << "FCmpInst::FCMP_OLT"; break; 1269 case FCmpInst::FCMP_OLE : Out << "FCmpInst::FCMP_OLE"; break; 1270 case FCmpInst::FCMP_ONE : Out << "FCmpInst::FCMP_ONE"; break; 1271 case FCmpInst::FCMP_ORD : Out << "FCmpInst::FCMP_ORD"; break; 1272 case FCmpInst::FCMP_UNO : Out << "FCmpInst::FCMP_UNO"; break; 1273 case FCmpInst::FCMP_UEQ : Out << "FCmpInst::FCMP_UEQ"; break; 1274 case FCmpInst::FCMP_UGT : Out << "FCmpInst::FCMP_UGT"; break; 1275 case FCmpInst::FCMP_UGE : Out << "FCmpInst::FCMP_UGE"; break; 1276 case FCmpInst::FCMP_ULT : Out << "FCmpInst::FCMP_ULT"; break; 1277 case FCmpInst::FCMP_ULE : Out << "FCmpInst::FCMP_ULE"; break; 1278 case FCmpInst::FCMP_UNE : Out << "FCmpInst::FCMP_UNE"; break; 1279 case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break; 1280 default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break; 1281 } 1282 Out << ", " << opNames[0] << ", " << opNames[1] << ", \""; 1283 printEscapedString(I->getName()); 1284 Out << "\");"; 1285 break; 1286 } 1287 case Instruction::ICmp: { 1288 Out << "ICmpInst* " << iName << " = new ICmpInst(*" << bbname << ", "; 1289 switch (cast<ICmpInst>(I)->getPredicate()) { 1290 case ICmpInst::ICMP_EQ: Out << "ICmpInst::ICMP_EQ"; break; 1291 case ICmpInst::ICMP_NE: Out << "ICmpInst::ICMP_NE"; break; 1292 case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break; 1293 case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break; 1294 case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break; 1295 case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break; 1296 case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break; 1297 case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break; 1298 case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break; 1299 case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break; 1300 default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break; 1301 } 1302 Out << ", " << opNames[0] << ", " << opNames[1] << ", \""; 1303 printEscapedString(I->getName()); 1304 Out << "\");"; 1305 break; 1306 } 1307 case Instruction::Alloca: { 1308 const AllocaInst* allocaI = cast<AllocaInst>(I); 1309 Out << "AllocaInst* " << iName << " = new AllocaInst(" 1310 << getCppName(allocaI->getAllocatedType()) << ", "; 1311 if (allocaI->isArrayAllocation()) 1312 Out << opNames[0] << ", "; 1313 Out << "\""; 1314 printEscapedString(allocaI->getName()); 1315 Out << "\", " << bbname << ");"; 1316 if (allocaI->getAlignment()) 1317 nl(Out) << iName << "->setAlignment(" 1318 << allocaI->getAlignment() << ");"; 1319 break; 1320 } 1321 case Instruction::Load: { 1322 const LoadInst* load = cast<LoadInst>(I); 1323 Out << "LoadInst* " << iName << " = new LoadInst(" 1324 << opNames[0] << ", \""; 1325 printEscapedString(load->getName()); 1326 Out << "\", " << (load->isVolatile() ? "true" : "false" ) 1327 << ", " << bbname << ");"; 1328 if (load->getAlignment()) 1329 nl(Out) << iName << "->setAlignment(" 1330 << load->getAlignment() << ");"; 1331 if (load->isAtomic()) { 1332 StringRef Ordering = ConvertAtomicOrdering(load->getOrdering()); 1333 StringRef CrossThread = ConvertAtomicSynchScope(load->getSynchScope()); 1334 nl(Out) << iName << "->setAtomic(" 1335 << Ordering << ", " << CrossThread << ");"; 1336 } 1337 break; 1338 } 1339 case Instruction::Store: { 1340 const StoreInst* store = cast<StoreInst>(I); 1341 Out << "StoreInst* " << iName << " = new StoreInst(" 1342 << opNames[0] << ", " 1343 << opNames[1] << ", " 1344 << (store->isVolatile() ? "true" : "false") 1345 << ", " << bbname << ");"; 1346 if (store->getAlignment()) 1347 nl(Out) << iName << "->setAlignment(" 1348 << store->getAlignment() << ");"; 1349 if (store->isAtomic()) { 1350 StringRef Ordering = ConvertAtomicOrdering(store->getOrdering()); 1351 StringRef CrossThread = ConvertAtomicSynchScope(store->getSynchScope()); 1352 nl(Out) << iName << "->setAtomic(" 1353 << Ordering << ", " << CrossThread << ");"; 1354 } 1355 break; 1356 } 1357 case Instruction::GetElementPtr: { 1358 const GetElementPtrInst* gep = cast<GetElementPtrInst>(I); 1359 Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create(" 1360 << getCppName(gep->getSourceElementType()) << ", " << opNames[0] << ", {"; 1361 in(); 1362 for (unsigned i = 1; i < gep->getNumOperands(); ++i ) { 1363 if (i != 1) { 1364 Out << ", "; 1365 } 1366 nl(Out); 1367 Out << opNames[i]; 1368 } 1369 out(); 1370 nl(Out) << "}, \""; 1371 printEscapedString(gep->getName()); 1372 Out << "\", " << bbname << ");"; 1373 break; 1374 } 1375 case Instruction::PHI: { 1376 const PHINode* phi = cast<PHINode>(I); 1377 1378 Out << "PHINode* " << iName << " = PHINode::Create(" 1379 << getCppName(phi->getType()) << ", " 1380 << phi->getNumIncomingValues() << ", \""; 1381 printEscapedString(phi->getName()); 1382 Out << "\", " << bbname << ");"; 1383 nl(Out); 1384 for (unsigned i = 0; i < phi->getNumIncomingValues(); ++i) { 1385 Out << iName << "->addIncoming(" 1386 << opNames[PHINode::getOperandNumForIncomingValue(i)] << ", " 1387 << getOpName(phi->getIncomingBlock(i)) << ");"; 1388 nl(Out); 1389 } 1390 break; 1391 } 1392 case Instruction::Trunc: 1393 case Instruction::ZExt: 1394 case Instruction::SExt: 1395 case Instruction::FPTrunc: 1396 case Instruction::FPExt: 1397 case Instruction::FPToUI: 1398 case Instruction::FPToSI: 1399 case Instruction::UIToFP: 1400 case Instruction::SIToFP: 1401 case Instruction::PtrToInt: 1402 case Instruction::IntToPtr: 1403 case Instruction::BitCast: { 1404 const CastInst* cst = cast<CastInst>(I); 1405 Out << "CastInst* " << iName << " = new "; 1406 switch (I->getOpcode()) { 1407 case Instruction::Trunc: Out << "TruncInst"; break; 1408 case Instruction::ZExt: Out << "ZExtInst"; break; 1409 case Instruction::SExt: Out << "SExtInst"; break; 1410 case Instruction::FPTrunc: Out << "FPTruncInst"; break; 1411 case Instruction::FPExt: Out << "FPExtInst"; break; 1412 case Instruction::FPToUI: Out << "FPToUIInst"; break; 1413 case Instruction::FPToSI: Out << "FPToSIInst"; break; 1414 case Instruction::UIToFP: Out << "UIToFPInst"; break; 1415 case Instruction::SIToFP: Out << "SIToFPInst"; break; 1416 case Instruction::PtrToInt: Out << "PtrToIntInst"; break; 1417 case Instruction::IntToPtr: Out << "IntToPtrInst"; break; 1418 case Instruction::BitCast: Out << "BitCastInst"; break; 1419 default: llvm_unreachable("Unreachable"); 1420 } 1421 Out << "(" << opNames[0] << ", " 1422 << getCppName(cst->getType()) << ", \""; 1423 printEscapedString(cst->getName()); 1424 Out << "\", " << bbname << ");"; 1425 break; 1426 } 1427 case Instruction::Call: { 1428 const CallInst* call = cast<CallInst>(I); 1429 if (const InlineAsm* ila = dyn_cast<InlineAsm>(call->getCalledValue())) { 1430 Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get(" 1431 << getCppName(ila->getFunctionType()) << ", \"" 1432 << ila->getAsmString() << "\", \"" 1433 << ila->getConstraintString() << "\"," 1434 << (ila->hasSideEffects() ? "true" : "false") << ");"; 1435 nl(Out); 1436 } 1437 if (call->getNumArgOperands() > 1) { 1438 Out << "std::vector<Value*> " << iName << "_params;"; 1439 nl(Out); 1440 for (unsigned i = 0; i < call->getNumArgOperands(); ++i) { 1441 Out << iName << "_params.push_back(" << opNames[i] << ");"; 1442 nl(Out); 1443 } 1444 Out << "CallInst* " << iName << " = CallInst::Create(" 1445 << opNames[call->getNumArgOperands()] << ", " 1446 << iName << "_params, \""; 1447 } else if (call->getNumArgOperands() == 1) { 1448 Out << "CallInst* " << iName << " = CallInst::Create(" 1449 << opNames[call->getNumArgOperands()] << ", " << opNames[0] << ", \""; 1450 } else { 1451 Out << "CallInst* " << iName << " = CallInst::Create(" 1452 << opNames[call->getNumArgOperands()] << ", \""; 1453 } 1454 printEscapedString(call->getName()); 1455 Out << "\", " << bbname << ");"; 1456 nl(Out) << iName << "->setCallingConv("; 1457 printCallingConv(call->getCallingConv()); 1458 Out << ");"; 1459 nl(Out) << iName << "->setTailCall(" 1460 << (call->isTailCall() ? "true" : "false"); 1461 Out << ");"; 1462 nl(Out); 1463 printAttributes(call->getAttributes(), iName); 1464 Out << iName << "->setAttributes(" << iName << "_PAL);"; 1465 nl(Out); 1466 break; 1467 } 1468 case Instruction::Select: { 1469 const SelectInst* sel = cast<SelectInst>(I); 1470 Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create("; 1471 Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \""; 1472 printEscapedString(sel->getName()); 1473 Out << "\", " << bbname << ");"; 1474 break; 1475 } 1476 case Instruction::UserOp1: 1477 /// FALL THROUGH 1478 case Instruction::UserOp2: { 1479 /// FIXME: What should be done here? 1480 break; 1481 } 1482 case Instruction::VAArg: { 1483 const VAArgInst* va = cast<VAArgInst>(I); 1484 Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst(" 1485 << opNames[0] << ", " << getCppName(va->getType()) << ", \""; 1486 printEscapedString(va->getName()); 1487 Out << "\", " << bbname << ");"; 1488 break; 1489 } 1490 case Instruction::ExtractElement: { 1491 const ExtractElementInst* eei = cast<ExtractElementInst>(I); 1492 Out << "ExtractElementInst* " << getCppName(eei) 1493 << " = new ExtractElementInst(" << opNames[0] 1494 << ", " << opNames[1] << ", \""; 1495 printEscapedString(eei->getName()); 1496 Out << "\", " << bbname << ");"; 1497 break; 1498 } 1499 case Instruction::InsertElement: { 1500 const InsertElementInst* iei = cast<InsertElementInst>(I); 1501 Out << "InsertElementInst* " << getCppName(iei) 1502 << " = InsertElementInst::Create(" << opNames[0] 1503 << ", " << opNames[1] << ", " << opNames[2] << ", \""; 1504 printEscapedString(iei->getName()); 1505 Out << "\", " << bbname << ");"; 1506 break; 1507 } 1508 case Instruction::ShuffleVector: { 1509 const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I); 1510 Out << "ShuffleVectorInst* " << getCppName(svi) 1511 << " = new ShuffleVectorInst(" << opNames[0] 1512 << ", " << opNames[1] << ", " << opNames[2] << ", \""; 1513 printEscapedString(svi->getName()); 1514 Out << "\", " << bbname << ");"; 1515 break; 1516 } 1517 case Instruction::ExtractValue: { 1518 const ExtractValueInst *evi = cast<ExtractValueInst>(I); 1519 Out << "std::vector<unsigned> " << iName << "_indices;"; 1520 nl(Out); 1521 for (unsigned i = 0; i < evi->getNumIndices(); ++i) { 1522 Out << iName << "_indices.push_back(" 1523 << evi->idx_begin()[i] << ");"; 1524 nl(Out); 1525 } 1526 Out << "ExtractValueInst* " << getCppName(evi) 1527 << " = ExtractValueInst::Create(" << opNames[0] 1528 << ", " 1529 << iName << "_indices, \""; 1530 printEscapedString(evi->getName()); 1531 Out << "\", " << bbname << ");"; 1532 break; 1533 } 1534 case Instruction::InsertValue: { 1535 const InsertValueInst *ivi = cast<InsertValueInst>(I); 1536 Out << "std::vector<unsigned> " << iName << "_indices;"; 1537 nl(Out); 1538 for (unsigned i = 0; i < ivi->getNumIndices(); ++i) { 1539 Out << iName << "_indices.push_back(" 1540 << ivi->idx_begin()[i] << ");"; 1541 nl(Out); 1542 } 1543 Out << "InsertValueInst* " << getCppName(ivi) 1544 << " = InsertValueInst::Create(" << opNames[0] 1545 << ", " << opNames[1] << ", " 1546 << iName << "_indices, \""; 1547 printEscapedString(ivi->getName()); 1548 Out << "\", " << bbname << ");"; 1549 break; 1550 } 1551 case Instruction::Fence: { 1552 const FenceInst *fi = cast<FenceInst>(I); 1553 StringRef Ordering = ConvertAtomicOrdering(fi->getOrdering()); 1554 StringRef CrossThread = ConvertAtomicSynchScope(fi->getSynchScope()); 1555 Out << "FenceInst* " << iName 1556 << " = new FenceInst(mod->getContext(), " 1557 << Ordering << ", " << CrossThread << ", " << bbname 1558 << ");"; 1559 break; 1560 } 1561 case Instruction::AtomicCmpXchg: { 1562 const AtomicCmpXchgInst *cxi = cast<AtomicCmpXchgInst>(I); 1563 StringRef SuccessOrdering = 1564 ConvertAtomicOrdering(cxi->getSuccessOrdering()); 1565 StringRef FailureOrdering = 1566 ConvertAtomicOrdering(cxi->getFailureOrdering()); 1567 StringRef CrossThread = ConvertAtomicSynchScope(cxi->getSynchScope()); 1568 Out << "AtomicCmpXchgInst* " << iName 1569 << " = new AtomicCmpXchgInst(" 1570 << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", " 1571 << SuccessOrdering << ", " << FailureOrdering << ", " 1572 << CrossThread << ", " << bbname 1573 << ");"; 1574 nl(Out) << iName << "->setName(\""; 1575 printEscapedString(cxi->getName()); 1576 Out << "\");"; 1577 nl(Out) << iName << "->setVolatile(" 1578 << (cxi->isVolatile() ? "true" : "false") << ");"; 1579 nl(Out) << iName << "->setWeak(" 1580 << (cxi->isWeak() ? "true" : "false") << ");"; 1581 break; 1582 } 1583 case Instruction::AtomicRMW: { 1584 const AtomicRMWInst *rmwi = cast<AtomicRMWInst>(I); 1585 StringRef Ordering = ConvertAtomicOrdering(rmwi->getOrdering()); 1586 StringRef CrossThread = ConvertAtomicSynchScope(rmwi->getSynchScope()); 1587 StringRef Operation; 1588 switch (rmwi->getOperation()) { 1589 case AtomicRMWInst::Xchg: Operation = "AtomicRMWInst::Xchg"; break; 1590 case AtomicRMWInst::Add: Operation = "AtomicRMWInst::Add"; break; 1591 case AtomicRMWInst::Sub: Operation = "AtomicRMWInst::Sub"; break; 1592 case AtomicRMWInst::And: Operation = "AtomicRMWInst::And"; break; 1593 case AtomicRMWInst::Nand: Operation = "AtomicRMWInst::Nand"; break; 1594 case AtomicRMWInst::Or: Operation = "AtomicRMWInst::Or"; break; 1595 case AtomicRMWInst::Xor: Operation = "AtomicRMWInst::Xor"; break; 1596 case AtomicRMWInst::Max: Operation = "AtomicRMWInst::Max"; break; 1597 case AtomicRMWInst::Min: Operation = "AtomicRMWInst::Min"; break; 1598 case AtomicRMWInst::UMax: Operation = "AtomicRMWInst::UMax"; break; 1599 case AtomicRMWInst::UMin: Operation = "AtomicRMWInst::UMin"; break; 1600 case AtomicRMWInst::BAD_BINOP: llvm_unreachable("Bad atomic operation"); 1601 } 1602 Out << "AtomicRMWInst* " << iName 1603 << " = new AtomicRMWInst(" 1604 << Operation << ", " 1605 << opNames[0] << ", " << opNames[1] << ", " 1606 << Ordering << ", " << CrossThread << ", " << bbname 1607 << ");"; 1608 nl(Out) << iName << "->setName(\""; 1609 printEscapedString(rmwi->getName()); 1610 Out << "\");"; 1611 nl(Out) << iName << "->setVolatile(" 1612 << (rmwi->isVolatile() ? "true" : "false") << ");"; 1613 break; 1614 } 1615 case Instruction::LandingPad: { 1616 const LandingPadInst *lpi = cast<LandingPadInst>(I); 1617 Out << "LandingPadInst* " << iName << " = LandingPadInst::Create("; 1618 printCppName(lpi->getType()); 1619 Out << ", " << opNames[0] << ", " << lpi->getNumClauses() << ", \""; 1620 printEscapedString(lpi->getName()); 1621 Out << "\", " << bbname << ");"; 1622 nl(Out) << iName << "->setCleanup(" 1623 << (lpi->isCleanup() ? "true" : "false") 1624 << ");"; 1625 for (unsigned i = 0, e = lpi->getNumClauses(); i != e; ++i) 1626 nl(Out) << iName << "->addClause(" << opNames[i+1] << ");"; 1627 break; 1628 } 1629 } 1630 DefinedValues.insert(I); 1631 nl(Out); 1632 delete [] opNames; 1633 } 1634 1635 // Print out the types, constants and declarations needed by one function 1636 void CppWriter::printFunctionUses(const Function* F) { 1637 nl(Out) << "// Type Definitions"; nl(Out); 1638 if (!is_inline) { 1639 // Print the function's return type 1640 printType(F->getReturnType()); 1641 1642 // Print the function's function type 1643 printType(F->getFunctionType()); 1644 1645 // Print the types of each of the function's arguments 1646 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); 1647 AI != AE; ++AI) { 1648 printType(AI->getType()); 1649 } 1650 } 1651 1652 // Print type definitions for every type referenced by an instruction and 1653 // make a note of any global values or constants that are referenced 1654 SmallPtrSet<GlobalValue*,64> gvs; 1655 SmallPtrSet<Constant*,64> consts; 1656 for (Function::const_iterator BB = F->begin(), BE = F->end(); 1657 BB != BE; ++BB){ 1658 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1659 I != E; ++I) { 1660 // Print the type of the instruction itself 1661 printType(I->getType()); 1662 1663 // Print the type of each of the instruction's operands 1664 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 1665 Value* operand = I->getOperand(i); 1666 printType(operand->getType()); 1667 1668 // If the operand references a GVal or Constant, make a note of it 1669 if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) { 1670 gvs.insert(GV); 1671 if (GenerationType != GenFunction) 1672 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 1673 if (GVar->hasInitializer()) 1674 consts.insert(GVar->getInitializer()); 1675 } else if (Constant* C = dyn_cast<Constant>(operand)) { 1676 consts.insert(C); 1677 for (Value* operand : C->operands()) { 1678 // If the operand references a GVal or Constant, make a note of it 1679 printType(operand->getType()); 1680 if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) { 1681 gvs.insert(GV); 1682 if (GenerationType != GenFunction) 1683 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 1684 if (GVar->hasInitializer()) 1685 consts.insert(GVar->getInitializer()); 1686 } 1687 } 1688 } 1689 } 1690 } 1691 } 1692 1693 // Print the function declarations for any functions encountered 1694 nl(Out) << "// Function Declarations"; nl(Out); 1695 for (auto *GV : gvs) { 1696 if (Function *Fun = dyn_cast<Function>(GV)) { 1697 if (!is_inline || Fun != F) 1698 printFunctionHead(Fun); 1699 } 1700 } 1701 1702 // Print the global variable declarations for any variables encountered 1703 nl(Out) << "// Global Variable Declarations"; nl(Out); 1704 for (auto *GV : gvs) { 1705 if (GlobalVariable *F = dyn_cast<GlobalVariable>(GV)) 1706 printVariableHead(F); 1707 } 1708 1709 // Print the constants found 1710 nl(Out) << "// Constant Definitions"; nl(Out); 1711 for (const auto *C : consts) { 1712 printConstant(C); 1713 } 1714 1715 // Process the global variables definitions now that all the constants have 1716 // been emitted. These definitions just couple the gvars with their constant 1717 // initializers. 1718 if (GenerationType != GenFunction) { 1719 nl(Out) << "// Global Variable Definitions"; nl(Out); 1720 for (auto *GV : gvs) { 1721 if (GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) 1722 printVariableBody(Var); 1723 } 1724 } 1725 } 1726 1727 void CppWriter::printFunctionHead(const Function* F) { 1728 nl(Out) << "Function* " << getCppName(F); 1729 Out << " = mod->getFunction(\""; 1730 printEscapedString(F->getName()); 1731 Out << "\");"; 1732 nl(Out) << "if (!" << getCppName(F) << ") {"; 1733 nl(Out) << getCppName(F); 1734 1735 Out<< " = Function::Create("; 1736 nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ","; 1737 nl(Out) << "/*Linkage=*/"; 1738 printLinkageType(F->getLinkage()); 1739 Out << ","; 1740 nl(Out) << "/*Name=*/\""; 1741 printEscapedString(F->getName()); 1742 Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : ""); 1743 nl(Out,-1); 1744 printCppName(F); 1745 Out << "->setCallingConv("; 1746 printCallingConv(F->getCallingConv()); 1747 Out << ");"; 1748 nl(Out); 1749 if (F->hasSection()) { 1750 printCppName(F); 1751 Out << "->setSection(\"" << F->getSection() << "\");"; 1752 nl(Out); 1753 } 1754 if (F->getAlignment()) { 1755 printCppName(F); 1756 Out << "->setAlignment(" << F->getAlignment() << ");"; 1757 nl(Out); 1758 } 1759 if (F->getVisibility() != GlobalValue::DefaultVisibility) { 1760 printCppName(F); 1761 Out << "->setVisibility("; 1762 printVisibilityType(F->getVisibility()); 1763 Out << ");"; 1764 nl(Out); 1765 } 1766 if (F->getDLLStorageClass() != GlobalValue::DefaultStorageClass) { 1767 printCppName(F); 1768 Out << "->setDLLStorageClass("; 1769 printDLLStorageClassType(F->getDLLStorageClass()); 1770 Out << ");"; 1771 nl(Out); 1772 } 1773 if (F->hasGC()) { 1774 printCppName(F); 1775 Out << "->setGC(\"" << F->getGC() << "\");"; 1776 nl(Out); 1777 } 1778 Out << "}"; 1779 nl(Out); 1780 printAttributes(F->getAttributes(), getCppName(F)); 1781 printCppName(F); 1782 Out << "->setAttributes(" << getCppName(F) << "_PAL);"; 1783 nl(Out); 1784 } 1785 1786 void CppWriter::printFunctionBody(const Function *F) { 1787 if (F->isDeclaration()) 1788 return; // external functions have no bodies. 1789 1790 // Clear the DefinedValues and ForwardRefs maps because we can't have 1791 // cross-function forward refs 1792 ForwardRefs.clear(); 1793 DefinedValues.clear(); 1794 1795 // Create all the argument values 1796 if (!is_inline) { 1797 if (!F->arg_empty()) { 1798 Out << "Function::arg_iterator args = " << getCppName(F) 1799 << "->arg_begin();"; 1800 nl(Out); 1801 } 1802 for (const Argument &AI : F->args()) { 1803 Out << "Value* " << getCppName(&AI) << " = args++;"; 1804 nl(Out); 1805 if (AI.hasName()) { 1806 Out << getCppName(&AI) << "->setName(\""; 1807 printEscapedString(AI.getName()); 1808 Out << "\");"; 1809 nl(Out); 1810 } 1811 } 1812 } 1813 1814 // Create all the basic blocks 1815 nl(Out); 1816 for (const BasicBlock &BI : *F) { 1817 std::string bbname(getCppName(&BI)); 1818 Out << "BasicBlock* " << bbname << 1819 " = BasicBlock::Create(mod->getContext(), \""; 1820 if (BI.hasName()) 1821 printEscapedString(BI.getName()); 1822 Out << "\"," << getCppName(BI.getParent()) << ",0);"; 1823 nl(Out); 1824 } 1825 1826 // Output all of its basic blocks... for the function 1827 for (const BasicBlock &BI : *F) { 1828 std::string bbname(getCppName(&BI)); 1829 nl(Out) << "// Block " << BI.getName() << " (" << bbname << ")"; 1830 nl(Out); 1831 1832 // Output all of the instructions in the basic block... 1833 for (const Instruction &I : BI) 1834 printInstruction(&I, bbname); 1835 } 1836 1837 // Loop over the ForwardRefs and resolve them now that all instructions 1838 // are generated. 1839 if (!ForwardRefs.empty()) { 1840 nl(Out) << "// Resolve Forward References"; 1841 nl(Out); 1842 } 1843 1844 while (!ForwardRefs.empty()) { 1845 ForwardRefMap::iterator I = ForwardRefs.begin(); 1846 Out << I->second << "->replaceAllUsesWith(" 1847 << getCppName(I->first) << "); delete " << I->second << ";"; 1848 nl(Out); 1849 ForwardRefs.erase(I); 1850 } 1851 } 1852 1853 void CppWriter::printInline(const std::string& fname, 1854 const std::string& func) { 1855 const Function* F = TheModule->getFunction(func); 1856 if (!F) { 1857 error(std::string("Function '") + func + "' not found in input module"); 1858 return; 1859 } 1860 if (F->isDeclaration()) { 1861 error(std::string("Function '") + func + "' is external!"); 1862 return; 1863 } 1864 nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *" 1865 << getCppName(F); 1866 unsigned arg_count = 1; 1867 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); 1868 AI != AE; ++AI) { 1869 Out << ", Value* arg_" << arg_count++; 1870 } 1871 Out << ") {"; 1872 nl(Out); 1873 is_inline = true; 1874 printFunctionUses(F); 1875 printFunctionBody(F); 1876 is_inline = false; 1877 Out << "return " << getCppName(&F->front()) << ";"; 1878 nl(Out) << "}"; 1879 nl(Out); 1880 } 1881 1882 void CppWriter::printModuleBody() { 1883 // Print out all the type definitions 1884 nl(Out) << "// Type Definitions"; nl(Out); 1885 printTypes(TheModule); 1886 1887 // Functions can call each other and global variables can reference them so 1888 // define all the functions first before emitting their function bodies. 1889 nl(Out) << "// Function Declarations"; nl(Out); 1890 for (const Function &I : *TheModule) 1891 printFunctionHead(&I); 1892 1893 // Process the global variables declarations. We can't initialze them until 1894 // after the constants are printed so just print a header for each global 1895 nl(Out) << "// Global Variable Declarations\n"; nl(Out); 1896 for (const GlobalVariable &I : TheModule->globals()) 1897 printVariableHead(&I); 1898 1899 // Print out all the constants definitions. Constants don't recurse except 1900 // through GlobalValues. All GlobalValues have been declared at this point 1901 // so we can proceed to generate the constants. 1902 nl(Out) << "// Constant Definitions"; nl(Out); 1903 printConstants(TheModule); 1904 1905 // Process the global variables definitions now that all the constants have 1906 // been emitted. These definitions just couple the gvars with their constant 1907 // initializers. 1908 nl(Out) << "// Global Variable Definitions"; nl(Out); 1909 for (const GlobalVariable &I : TheModule->globals()) 1910 printVariableBody(&I); 1911 1912 // Finally, we can safely put out all of the function bodies. 1913 nl(Out) << "// Function Definitions"; nl(Out); 1914 for (const Function &I : *TheModule) { 1915 if (!I.isDeclaration()) { 1916 nl(Out) << "// Function: " << I.getName() << " (" << getCppName(&I) 1917 << ")"; 1918 nl(Out) << "{"; 1919 nl(Out,1); 1920 printFunctionBody(&I); 1921 nl(Out,-1) << "}"; 1922 nl(Out); 1923 } 1924 } 1925 } 1926 1927 void CppWriter::printProgram(const std::string& fname, 1928 const std::string& mName) { 1929 Out << "#include <llvm/Pass.h>\n"; 1930 1931 Out << "#include <llvm/ADT/SmallVector.h>\n"; 1932 Out << "#include <llvm/Analysis/Verifier.h>\n"; 1933 Out << "#include <llvm/IR/BasicBlock.h>\n"; 1934 Out << "#include <llvm/IR/CallingConv.h>\n"; 1935 Out << "#include <llvm/IR/Constants.h>\n"; 1936 Out << "#include <llvm/IR/DerivedTypes.h>\n"; 1937 Out << "#include <llvm/IR/Function.h>\n"; 1938 Out << "#include <llvm/IR/GlobalVariable.h>\n"; 1939 Out << "#include <llvm/IR/IRPrintingPasses.h>\n"; 1940 Out << "#include <llvm/IR/InlineAsm.h>\n"; 1941 Out << "#include <llvm/IR/Instructions.h>\n"; 1942 Out << "#include <llvm/IR/LLVMContext.h>\n"; 1943 Out << "#include <llvm/IR/LegacyPassManager.h>\n"; 1944 Out << "#include <llvm/IR/Module.h>\n"; 1945 Out << "#include <llvm/Support/FormattedStream.h>\n"; 1946 Out << "#include <llvm/Support/MathExtras.h>\n"; 1947 Out << "#include <algorithm>\n"; 1948 Out << "using namespace llvm;\n\n"; 1949 Out << "Module* " << fname << "();\n\n"; 1950 Out << "int main(int argc, char**argv) {\n"; 1951 Out << " Module* Mod = " << fname << "();\n"; 1952 Out << " verifyModule(*Mod, PrintMessageAction);\n"; 1953 Out << " PassManager PM;\n"; 1954 Out << " PM.add(createPrintModulePass(&outs()));\n"; 1955 Out << " PM.run(*Mod);\n"; 1956 Out << " return 0;\n"; 1957 Out << "}\n\n"; 1958 printModule(fname,mName); 1959 } 1960 1961 void CppWriter::printModule(const std::string& fname, 1962 const std::string& mName) { 1963 nl(Out) << "Module* " << fname << "() {"; 1964 nl(Out,1) << "// Module Construction"; 1965 nl(Out) << "Module* mod = new Module(\""; 1966 printEscapedString(mName); 1967 Out << "\", getGlobalContext());"; 1968 if (!TheModule->getTargetTriple().empty()) { 1969 nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayoutStr() 1970 << "\");"; 1971 } 1972 if (!TheModule->getTargetTriple().empty()) { 1973 nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple() 1974 << "\");"; 1975 } 1976 1977 if (!TheModule->getModuleInlineAsm().empty()) { 1978 nl(Out) << "mod->setModuleInlineAsm(\""; 1979 printEscapedString(TheModule->getModuleInlineAsm()); 1980 Out << "\");"; 1981 } 1982 nl(Out); 1983 1984 printModuleBody(); 1985 nl(Out) << "return mod;"; 1986 nl(Out,-1) << "}"; 1987 nl(Out); 1988 } 1989 1990 void CppWriter::printContents(const std::string& fname, 1991 const std::string& mName) { 1992 Out << "\nModule* " << fname << "(Module *mod) {\n"; 1993 Out << "\nmod->setModuleIdentifier(\""; 1994 printEscapedString(mName); 1995 Out << "\");\n"; 1996 printModuleBody(); 1997 Out << "\nreturn mod;\n"; 1998 Out << "\n}\n"; 1999 } 2000 2001 void CppWriter::printFunction(const std::string& fname, 2002 const std::string& funcName) { 2003 const Function* F = TheModule->getFunction(funcName); 2004 if (!F) { 2005 error(std::string("Function '") + funcName + "' not found in input module"); 2006 return; 2007 } 2008 Out << "\nFunction* " << fname << "(Module *mod) {\n"; 2009 printFunctionUses(F); 2010 printFunctionHead(F); 2011 printFunctionBody(F); 2012 Out << "return " << getCppName(F) << ";\n"; 2013 Out << "}\n"; 2014 } 2015 2016 void CppWriter::printFunctions() { 2017 const Module::FunctionListType &funcs = TheModule->getFunctionList(); 2018 Module::const_iterator I = funcs.begin(); 2019 Module::const_iterator IE = funcs.end(); 2020 2021 for (; I != IE; ++I) { 2022 const Function &func = *I; 2023 if (!func.isDeclaration()) { 2024 std::string name("define_"); 2025 name += func.getName(); 2026 printFunction(name, func.getName()); 2027 } 2028 } 2029 } 2030 2031 void CppWriter::printVariable(const std::string& fname, 2032 const std::string& varName) { 2033 const GlobalVariable* GV = TheModule->getNamedGlobal(varName); 2034 2035 if (!GV) { 2036 error(std::string("Variable '") + varName + "' not found in input module"); 2037 return; 2038 } 2039 Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n"; 2040 printVariableUses(GV); 2041 printVariableHead(GV); 2042 printVariableBody(GV); 2043 Out << "return " << getCppName(GV) << ";\n"; 2044 Out << "}\n"; 2045 } 2046 2047 void CppWriter::printType(const std::string &fname, 2048 const std::string &typeName) { 2049 Type* Ty = TheModule->getTypeByName(typeName); 2050 if (!Ty) { 2051 error(std::string("Type '") + typeName + "' not found in input module"); 2052 return; 2053 } 2054 Out << "\nType* " << fname << "(Module *mod) {\n"; 2055 printType(Ty); 2056 Out << "return " << getCppName(Ty) << ";\n"; 2057 Out << "}\n"; 2058 } 2059 2060 bool CppWriter::runOnModule(Module &M) { 2061 TheModule = &M; 2062 2063 // Emit a header 2064 Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n"; 2065 2066 // Get the name of the function we're supposed to generate 2067 std::string fname = FuncName.getValue(); 2068 2069 // Get the name of the thing we are to generate 2070 std::string tgtname = NameToGenerate.getValue(); 2071 if (GenerationType == GenModule || 2072 GenerationType == GenContents || 2073 GenerationType == GenProgram || 2074 GenerationType == GenFunctions) { 2075 if (tgtname == "!bad!") { 2076 if (M.getModuleIdentifier() == "-") 2077 tgtname = "<stdin>"; 2078 else 2079 tgtname = M.getModuleIdentifier(); 2080 } 2081 } else if (tgtname == "!bad!") 2082 error("You must use the -for option with -gen-{function,variable,type}"); 2083 2084 switch (WhatToGenerate(GenerationType)) { 2085 case GenProgram: 2086 if (fname.empty()) 2087 fname = "makeLLVMModule"; 2088 printProgram(fname,tgtname); 2089 break; 2090 case GenModule: 2091 if (fname.empty()) 2092 fname = "makeLLVMModule"; 2093 printModule(fname,tgtname); 2094 break; 2095 case GenContents: 2096 if (fname.empty()) 2097 fname = "makeLLVMModuleContents"; 2098 printContents(fname,tgtname); 2099 break; 2100 case GenFunction: 2101 if (fname.empty()) 2102 fname = "makeLLVMFunction"; 2103 printFunction(fname,tgtname); 2104 break; 2105 case GenFunctions: 2106 printFunctions(); 2107 break; 2108 case GenInline: 2109 if (fname.empty()) 2110 fname = "makeLLVMInline"; 2111 printInline(fname,tgtname); 2112 break; 2113 case GenVariable: 2114 if (fname.empty()) 2115 fname = "makeLLVMVariable"; 2116 printVariable(fname,tgtname); 2117 break; 2118 case GenType: 2119 if (fname.empty()) 2120 fname = "makeLLVMType"; 2121 printType(fname,tgtname); 2122 break; 2123 } 2124 2125 return false; 2126 } 2127 2128 char CppWriter::ID = 0; 2129 2130 //===----------------------------------------------------------------------===// 2131 // External Interface declaration 2132 //===----------------------------------------------------------------------===// 2133 2134 bool CPPTargetMachine::addPassesToEmitFile( 2135 PassManagerBase &PM, raw_pwrite_stream &o, CodeGenFileType FileType, 2136 bool DisableVerify, AnalysisID StartBefore, AnalysisID StartAfter, 2137 AnalysisID StopAfter, MachineFunctionInitializer *MFInitializer) { 2138 if (FileType != TargetMachine::CGFT_AssemblyFile) 2139 return true; 2140 auto FOut = llvm::make_unique<formatted_raw_ostream>(o); 2141 PM.add(new CppWriter(std::move(FOut))); 2142 return false; 2143 } 2144