Home | History | Annotate | Download | only in CppBackend
      1 //===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the writing of the LLVM IR as a set of C++ calls to the
     11 // LLVM IR interface. The input module is assumed to be verified.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "CPPTargetMachine.h"
     16 #include "llvm/ADT/SmallPtrSet.h"
     17 #include "llvm/ADT/StringExtras.h"
     18 #include "llvm/ADT/STLExtras.h"
     19 #include "llvm/Config/config.h"
     20 #include "llvm/IR/CallingConv.h"
     21 #include "llvm/IR/Constants.h"
     22 #include "llvm/IR/DerivedTypes.h"
     23 #include "llvm/IR/InlineAsm.h"
     24 #include "llvm/IR/Instruction.h"
     25 #include "llvm/IR/Instructions.h"
     26 #include "llvm/IR/LegacyPassManager.h"
     27 #include "llvm/IR/Module.h"
     28 #include "llvm/MC/MCAsmInfo.h"
     29 #include "llvm/MC/MCInstrInfo.h"
     30 #include "llvm/MC/MCSubtargetInfo.h"
     31 #include "llvm/Pass.h"
     32 #include "llvm/Support/CommandLine.h"
     33 #include "llvm/Support/ErrorHandling.h"
     34 #include "llvm/Support/FormattedStream.h"
     35 #include "llvm/Support/TargetRegistry.h"
     36 #include <algorithm>
     37 #include <cctype>
     38 #include <cstdio>
     39 #include <map>
     40 #include <set>
     41 using namespace llvm;
     42 
     43 static cl::opt<std::string>
     44 FuncName("cppfname", cl::desc("Specify the name of the generated function"),
     45          cl::value_desc("function name"));
     46 
     47 enum WhatToGenerate {
     48   GenProgram,
     49   GenModule,
     50   GenContents,
     51   GenFunction,
     52   GenFunctions,
     53   GenInline,
     54   GenVariable,
     55   GenType
     56 };
     57 
     58 static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional,
     59   cl::desc("Choose what kind of output to generate"),
     60   cl::init(GenProgram),
     61   cl::values(
     62     clEnumValN(GenProgram,  "program",   "Generate a complete program"),
     63     clEnumValN(GenModule,   "module",    "Generate a module definition"),
     64     clEnumValN(GenContents, "contents",  "Generate contents of a module"),
     65     clEnumValN(GenFunction, "function",  "Generate a function definition"),
     66     clEnumValN(GenFunctions,"functions", "Generate all function definitions"),
     67     clEnumValN(GenInline,   "inline",    "Generate an inline function"),
     68     clEnumValN(GenVariable, "variable",  "Generate a variable definition"),
     69     clEnumValN(GenType,     "type",      "Generate a type definition"),
     70     clEnumValEnd
     71   )
     72 );
     73 
     74 static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional,
     75   cl::desc("Specify the name of the thing to generate"),
     76   cl::init("!bad!"));
     77 
     78 extern "C" void LLVMInitializeCppBackendTarget() {
     79   // Register the target.
     80   RegisterTargetMachine<CPPTargetMachine> X(TheCppBackendTarget);
     81 }
     82 
     83 namespace {
     84   typedef std::vector<Type*> TypeList;
     85   typedef std::map<Type*,std::string> TypeMap;
     86   typedef std::map<const Value*,std::string> ValueMap;
     87   typedef std::set<std::string> NameSet;
     88   typedef std::set<Type*> TypeSet;
     89   typedef std::set<const Value*> ValueSet;
     90   typedef std::map<const Value*,std::string> ForwardRefMap;
     91 
     92   /// CppWriter - This class is the main chunk of code that converts an LLVM
     93   /// module to a C++ translation unit.
     94   class CppWriter : public ModulePass {
     95     std::unique_ptr<formatted_raw_ostream> OutOwner;
     96     formatted_raw_ostream &Out;
     97     const Module *TheModule;
     98     uint64_t uniqueNum;
     99     TypeMap TypeNames;
    100     ValueMap ValueNames;
    101     NameSet UsedNames;
    102     TypeSet DefinedTypes;
    103     ValueSet DefinedValues;
    104     ForwardRefMap ForwardRefs;
    105     bool is_inline;
    106     unsigned indent_level;
    107 
    108   public:
    109     static char ID;
    110     explicit CppWriter(std::unique_ptr<formatted_raw_ostream> o)
    111         : ModulePass(ID), OutOwner(std::move(o)), Out(*OutOwner), uniqueNum(0),
    112           is_inline(false), indent_level(0) {}
    113 
    114     const char *getPassName() const override { return "C++ backend"; }
    115 
    116     bool runOnModule(Module &M) override;
    117 
    118     void printProgram(const std::string& fname, const std::string& modName );
    119     void printModule(const std::string& fname, const std::string& modName );
    120     void printContents(const std::string& fname, const std::string& modName );
    121     void printFunction(const std::string& fname, const std::string& funcName );
    122     void printFunctions();
    123     void printInline(const std::string& fname, const std::string& funcName );
    124     void printVariable(const std::string& fname, const std::string& varName );
    125     void printType(const std::string& fname, const std::string& typeName );
    126 
    127     void error(const std::string& msg);
    128 
    129 
    130     formatted_raw_ostream& nl(formatted_raw_ostream &Out, int delta = 0);
    131     inline void in() { indent_level++; }
    132     inline void out() { if (indent_level >0) indent_level--; }
    133 
    134   private:
    135     void printLinkageType(GlobalValue::LinkageTypes LT);
    136     void printVisibilityType(GlobalValue::VisibilityTypes VisTypes);
    137     void printDLLStorageClassType(GlobalValue::DLLStorageClassTypes DSCType);
    138     void printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM);
    139     void printCallingConv(CallingConv::ID cc);
    140     void printEscapedString(const std::string& str);
    141     void printCFP(const ConstantFP* CFP);
    142 
    143     std::string getCppName(Type* val);
    144     inline void printCppName(Type* val);
    145 
    146     std::string getCppName(const Value* val);
    147     inline void printCppName(const Value* val);
    148 
    149     void printAttributes(const AttributeSet &PAL, const std::string &name);
    150     void printType(Type* Ty);
    151     void printTypes(const Module* M);
    152 
    153     void printConstant(const Constant *CPV);
    154     void printConstants(const Module* M);
    155 
    156     void printVariableUses(const GlobalVariable *GV);
    157     void printVariableHead(const GlobalVariable *GV);
    158     void printVariableBody(const GlobalVariable *GV);
    159 
    160     void printFunctionUses(const Function *F);
    161     void printFunctionHead(const Function *F);
    162     void printFunctionBody(const Function *F);
    163     void printInstruction(const Instruction *I, const std::string& bbname);
    164     std::string getOpName(const Value*);
    165 
    166     void printModuleBody();
    167   };
    168 } // end anonymous namespace.
    169 
    170 formatted_raw_ostream &CppWriter::nl(formatted_raw_ostream &Out, int delta) {
    171   Out << '\n';
    172   if (delta >= 0 || indent_level >= unsigned(-delta))
    173     indent_level += delta;
    174   Out.indent(indent_level);
    175   return Out;
    176 }
    177 
    178 static inline void sanitize(std::string &str) {
    179   for (size_t i = 0; i < str.length(); ++i)
    180     if (!isalnum(str[i]) && str[i] != '_')
    181       str[i] = '_';
    182 }
    183 
    184 static std::string getTypePrefix(Type *Ty) {
    185   switch (Ty->getTypeID()) {
    186   case Type::VoidTyID:     return "void_";
    187   case Type::IntegerTyID:
    188     return "int" + utostr(cast<IntegerType>(Ty)->getBitWidth()) + "_";
    189   case Type::FloatTyID:    return "float_";
    190   case Type::DoubleTyID:   return "double_";
    191   case Type::LabelTyID:    return "label_";
    192   case Type::FunctionTyID: return "func_";
    193   case Type::StructTyID:   return "struct_";
    194   case Type::ArrayTyID:    return "array_";
    195   case Type::PointerTyID:  return "ptr_";
    196   case Type::VectorTyID:   return "packed_";
    197   default:                 return "other_";
    198   }
    199 }
    200 
    201 void CppWriter::error(const std::string& msg) {
    202   report_fatal_error(msg);
    203 }
    204 
    205 static inline std::string ftostr(const APFloat& V) {
    206   std::string Buf;
    207   if (&V.getSemantics() == &APFloat::IEEEdouble) {
    208     raw_string_ostream(Buf) << V.convertToDouble();
    209     return Buf;
    210   } else if (&V.getSemantics() == &APFloat::IEEEsingle) {
    211     raw_string_ostream(Buf) << (double)V.convertToFloat();
    212     return Buf;
    213   }
    214   return "<unknown format in ftostr>"; // error
    215 }
    216 
    217 // printCFP - Print a floating point constant .. very carefully :)
    218 // This makes sure that conversion to/from floating yields the same binary
    219 // result so that we don't lose precision.
    220 void CppWriter::printCFP(const ConstantFP *CFP) {
    221   bool ignored;
    222   APFloat APF = APFloat(CFP->getValueAPF());  // copy
    223   if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
    224     APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
    225   Out << "ConstantFP::get(mod->getContext(), ";
    226   Out << "APFloat(";
    227 #if HAVE_PRINTF_A
    228   char Buffer[100];
    229   sprintf(Buffer, "%A", APF.convertToDouble());
    230   if ((!strncmp(Buffer, "0x", 2) ||
    231        !strncmp(Buffer, "-0x", 3) ||
    232        !strncmp(Buffer, "+0x", 3)) &&
    233       APF.bitwiseIsEqual(APFloat(atof(Buffer)))) {
    234     if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
    235       Out << "BitsToDouble(" << Buffer << ")";
    236     else
    237       Out << "BitsToFloat((float)" << Buffer << ")";
    238     Out << ")";
    239   } else {
    240 #endif
    241     std::string StrVal = ftostr(CFP->getValueAPF());
    242 
    243     while (StrVal[0] == ' ')
    244       StrVal.erase(StrVal.begin());
    245 
    246     // Check to make sure that the stringized number is not some string like
    247     // "Inf" or NaN.  Check that the string matches the "[-+]?[0-9]" regex.
    248     if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
    249          ((StrVal[0] == '-' || StrVal[0] == '+') &&
    250           (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
    251         (CFP->isExactlyValue(atof(StrVal.c_str())))) {
    252       if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
    253         Out <<  StrVal;
    254       else
    255         Out << StrVal << "f";
    256     } else if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
    257       Out << "BitsToDouble(0x"
    258           << utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue())
    259           << "ULL) /* " << StrVal << " */";
    260     else
    261       Out << "BitsToFloat(0x"
    262           << utohexstr((uint32_t)CFP->getValueAPF().
    263                                       bitcastToAPInt().getZExtValue())
    264           << "U) /* " << StrVal << " */";
    265     Out << ")";
    266 #if HAVE_PRINTF_A
    267   }
    268 #endif
    269   Out << ")";
    270 }
    271 
    272 void CppWriter::printCallingConv(CallingConv::ID cc){
    273   // Print the calling convention.
    274   switch (cc) {
    275   case CallingConv::C:     Out << "CallingConv::C"; break;
    276   case CallingConv::Fast:  Out << "CallingConv::Fast"; break;
    277   case CallingConv::Cold:  Out << "CallingConv::Cold"; break;
    278   case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
    279   default:                 Out << cc; break;
    280   }
    281 }
    282 
    283 void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
    284   switch (LT) {
    285   case GlobalValue::InternalLinkage:
    286     Out << "GlobalValue::InternalLinkage"; break;
    287   case GlobalValue::PrivateLinkage:
    288     Out << "GlobalValue::PrivateLinkage"; break;
    289   case GlobalValue::AvailableExternallyLinkage:
    290     Out << "GlobalValue::AvailableExternallyLinkage "; break;
    291   case GlobalValue::LinkOnceAnyLinkage:
    292     Out << "GlobalValue::LinkOnceAnyLinkage "; break;
    293   case GlobalValue::LinkOnceODRLinkage:
    294     Out << "GlobalValue::LinkOnceODRLinkage "; break;
    295   case GlobalValue::WeakAnyLinkage:
    296     Out << "GlobalValue::WeakAnyLinkage"; break;
    297   case GlobalValue::WeakODRLinkage:
    298     Out << "GlobalValue::WeakODRLinkage"; break;
    299   case GlobalValue::AppendingLinkage:
    300     Out << "GlobalValue::AppendingLinkage"; break;
    301   case GlobalValue::ExternalLinkage:
    302     Out << "GlobalValue::ExternalLinkage"; break;
    303   case GlobalValue::ExternalWeakLinkage:
    304     Out << "GlobalValue::ExternalWeakLinkage"; break;
    305   case GlobalValue::CommonLinkage:
    306     Out << "GlobalValue::CommonLinkage"; break;
    307   }
    308 }
    309 
    310 void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) {
    311   switch (VisType) {
    312   case GlobalValue::DefaultVisibility:
    313     Out << "GlobalValue::DefaultVisibility";
    314     break;
    315   case GlobalValue::HiddenVisibility:
    316     Out << "GlobalValue::HiddenVisibility";
    317     break;
    318   case GlobalValue::ProtectedVisibility:
    319     Out << "GlobalValue::ProtectedVisibility";
    320     break;
    321   }
    322 }
    323 
    324 void CppWriter::printDLLStorageClassType(
    325                                     GlobalValue::DLLStorageClassTypes DSCType) {
    326   switch (DSCType) {
    327   case GlobalValue::DefaultStorageClass:
    328     Out << "GlobalValue::DefaultStorageClass";
    329     break;
    330   case GlobalValue::DLLImportStorageClass:
    331     Out << "GlobalValue::DLLImportStorageClass";
    332     break;
    333   case GlobalValue::DLLExportStorageClass:
    334     Out << "GlobalValue::DLLExportStorageClass";
    335     break;
    336   }
    337 }
    338 
    339 void CppWriter::printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM) {
    340   switch (TLM) {
    341     case GlobalVariable::NotThreadLocal:
    342       Out << "GlobalVariable::NotThreadLocal";
    343       break;
    344     case GlobalVariable::GeneralDynamicTLSModel:
    345       Out << "GlobalVariable::GeneralDynamicTLSModel";
    346       break;
    347     case GlobalVariable::LocalDynamicTLSModel:
    348       Out << "GlobalVariable::LocalDynamicTLSModel";
    349       break;
    350     case GlobalVariable::InitialExecTLSModel:
    351       Out << "GlobalVariable::InitialExecTLSModel";
    352       break;
    353     case GlobalVariable::LocalExecTLSModel:
    354       Out << "GlobalVariable::LocalExecTLSModel";
    355       break;
    356   }
    357 }
    358 
    359 // printEscapedString - Print each character of the specified string, escaping
    360 // it if it is not printable or if it is an escape char.
    361 void CppWriter::printEscapedString(const std::string &Str) {
    362   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
    363     unsigned char C = Str[i];
    364     if (isprint(C) && C != '"' && C != '\\') {
    365       Out << C;
    366     } else {
    367       Out << "\\x"
    368           << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
    369           << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
    370     }
    371   }
    372 }
    373 
    374 std::string CppWriter::getCppName(Type* Ty) {
    375   switch (Ty->getTypeID()) {
    376   default:
    377     break;
    378   case Type::VoidTyID:
    379     return "Type::getVoidTy(mod->getContext())";
    380   case Type::IntegerTyID: {
    381     unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
    382     return "IntegerType::get(mod->getContext(), " + utostr(BitWidth) + ")";
    383   }
    384   case Type::X86_FP80TyID:
    385     return "Type::getX86_FP80Ty(mod->getContext())";
    386   case Type::FloatTyID:
    387     return "Type::getFloatTy(mod->getContext())";
    388   case Type::DoubleTyID:
    389     return "Type::getDoubleTy(mod->getContext())";
    390   case Type::LabelTyID:
    391     return "Type::getLabelTy(mod->getContext())";
    392   case Type::X86_MMXTyID:
    393     return "Type::getX86_MMXTy(mod->getContext())";
    394   }
    395 
    396   // Now, see if we've seen the type before and return that
    397   TypeMap::iterator I = TypeNames.find(Ty);
    398   if (I != TypeNames.end())
    399     return I->second;
    400 
    401   // Okay, let's build a new name for this type. Start with a prefix
    402   const char* prefix = nullptr;
    403   switch (Ty->getTypeID()) {
    404   case Type::FunctionTyID:    prefix = "FuncTy_"; break;
    405   case Type::StructTyID:      prefix = "StructTy_"; break;
    406   case Type::ArrayTyID:       prefix = "ArrayTy_"; break;
    407   case Type::PointerTyID:     prefix = "PointerTy_"; break;
    408   case Type::VectorTyID:      prefix = "VectorTy_"; break;
    409   default:                    prefix = "OtherTy_"; break; // prevent breakage
    410   }
    411 
    412   // See if the type has a name in the symboltable and build accordingly
    413   std::string name;
    414   if (StructType *STy = dyn_cast<StructType>(Ty))
    415     if (STy->hasName())
    416       name = STy->getName();
    417 
    418   if (name.empty())
    419     name = utostr(uniqueNum++);
    420 
    421   name = std::string(prefix) + name;
    422   sanitize(name);
    423 
    424   // Save the name
    425   return TypeNames[Ty] = name;
    426 }
    427 
    428 void CppWriter::printCppName(Type* Ty) {
    429   printEscapedString(getCppName(Ty));
    430 }
    431 
    432 std::string CppWriter::getCppName(const Value* val) {
    433   std::string name;
    434   ValueMap::iterator I = ValueNames.find(val);
    435   if (I != ValueNames.end() && I->first == val)
    436     return  I->second;
    437 
    438   if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
    439     name = std::string("gvar_") +
    440       getTypePrefix(GV->getType()->getElementType());
    441   } else if (isa<Function>(val)) {
    442     name = std::string("func_");
    443   } else if (const Constant* C = dyn_cast<Constant>(val)) {
    444     name = std::string("const_") + getTypePrefix(C->getType());
    445   } else if (const Argument* Arg = dyn_cast<Argument>(val)) {
    446     if (is_inline) {
    447       unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
    448                                       Function::const_arg_iterator(Arg)) + 1;
    449       name = std::string("arg_") + utostr(argNum);
    450       NameSet::iterator NI = UsedNames.find(name);
    451       if (NI != UsedNames.end())
    452         name += std::string("_") + utostr(uniqueNum++);
    453       UsedNames.insert(name);
    454       return ValueNames[val] = name;
    455     } else {
    456       name = getTypePrefix(val->getType());
    457     }
    458   } else {
    459     name = getTypePrefix(val->getType());
    460   }
    461   if (val->hasName())
    462     name += val->getName();
    463   else
    464     name += utostr(uniqueNum++);
    465   sanitize(name);
    466   NameSet::iterator NI = UsedNames.find(name);
    467   if (NI != UsedNames.end())
    468     name += std::string("_") + utostr(uniqueNum++);
    469   UsedNames.insert(name);
    470   return ValueNames[val] = name;
    471 }
    472 
    473 void CppWriter::printCppName(const Value* val) {
    474   printEscapedString(getCppName(val));
    475 }
    476 
    477 void CppWriter::printAttributes(const AttributeSet &PAL,
    478                                 const std::string &name) {
    479   Out << "AttributeSet " << name << "_PAL;";
    480   nl(Out);
    481   if (!PAL.isEmpty()) {
    482     Out << '{'; in(); nl(Out);
    483     Out << "SmallVector<AttributeSet, 4> Attrs;"; nl(Out);
    484     Out << "AttributeSet PAS;"; in(); nl(Out);
    485     for (unsigned i = 0; i < PAL.getNumSlots(); ++i) {
    486       unsigned index = PAL.getSlotIndex(i);
    487       AttrBuilder attrs(PAL.getSlotAttributes(i), index);
    488       Out << "{"; in(); nl(Out);
    489       Out << "AttrBuilder B;"; nl(Out);
    490 
    491 #define HANDLE_ATTR(X)                                                  \
    492       if (attrs.contains(Attribute::X)) {                               \
    493         Out << "B.addAttribute(Attribute::" #X ");"; nl(Out);           \
    494         attrs.removeAttribute(Attribute::X);                            \
    495       }
    496 
    497       HANDLE_ATTR(SExt);
    498       HANDLE_ATTR(ZExt);
    499       HANDLE_ATTR(NoReturn);
    500       HANDLE_ATTR(InReg);
    501       HANDLE_ATTR(StructRet);
    502       HANDLE_ATTR(NoUnwind);
    503       HANDLE_ATTR(NoAlias);
    504       HANDLE_ATTR(ByVal);
    505       HANDLE_ATTR(InAlloca);
    506       HANDLE_ATTR(Nest);
    507       HANDLE_ATTR(ReadNone);
    508       HANDLE_ATTR(ReadOnly);
    509       HANDLE_ATTR(NoInline);
    510       HANDLE_ATTR(AlwaysInline);
    511       HANDLE_ATTR(OptimizeNone);
    512       HANDLE_ATTR(OptimizeForSize);
    513       HANDLE_ATTR(StackProtect);
    514       HANDLE_ATTR(StackProtectReq);
    515       HANDLE_ATTR(StackProtectStrong);
    516       HANDLE_ATTR(SafeStack);
    517       HANDLE_ATTR(NoCapture);
    518       HANDLE_ATTR(NoRedZone);
    519       HANDLE_ATTR(NoImplicitFloat);
    520       HANDLE_ATTR(Naked);
    521       HANDLE_ATTR(InlineHint);
    522       HANDLE_ATTR(ReturnsTwice);
    523       HANDLE_ATTR(UWTable);
    524       HANDLE_ATTR(NonLazyBind);
    525       HANDLE_ATTR(MinSize);
    526 #undef HANDLE_ATTR
    527 
    528       if (attrs.contains(Attribute::StackAlignment)) {
    529         Out << "B.addStackAlignmentAttr(" << attrs.getStackAlignment()<<')';
    530         nl(Out);
    531         attrs.removeAttribute(Attribute::StackAlignment);
    532       }
    533 
    534       Out << "PAS = AttributeSet::get(mod->getContext(), ";
    535       if (index == ~0U)
    536         Out << "~0U,";
    537       else
    538         Out << index << "U,";
    539       Out << " B);"; out(); nl(Out);
    540       Out << "}"; out(); nl(Out);
    541       nl(Out);
    542       Out << "Attrs.push_back(PAS);"; nl(Out);
    543     }
    544     Out << name << "_PAL = AttributeSet::get(mod->getContext(), Attrs);";
    545     nl(Out);
    546     out(); nl(Out);
    547     Out << '}'; nl(Out);
    548   }
    549 }
    550 
    551 void CppWriter::printType(Type* Ty) {
    552   // We don't print definitions for primitive types
    553   if (Ty->isFloatingPointTy() || Ty->isX86_MMXTy() || Ty->isIntegerTy() ||
    554       Ty->isLabelTy() || Ty->isMetadataTy() || Ty->isVoidTy() ||
    555       Ty->isTokenTy())
    556     return;
    557 
    558   // If we already defined this type, we don't need to define it again.
    559   if (DefinedTypes.find(Ty) != DefinedTypes.end())
    560     return;
    561 
    562   // Everything below needs the name for the type so get it now.
    563   std::string typeName(getCppName(Ty));
    564 
    565   // Print the type definition
    566   switch (Ty->getTypeID()) {
    567   case Type::FunctionTyID:  {
    568     FunctionType* FT = cast<FunctionType>(Ty);
    569     Out << "std::vector<Type*>" << typeName << "_args;";
    570     nl(Out);
    571     FunctionType::param_iterator PI = FT->param_begin();
    572     FunctionType::param_iterator PE = FT->param_end();
    573     for (; PI != PE; ++PI) {
    574       Type* argTy = static_cast<Type*>(*PI);
    575       printType(argTy);
    576       std::string argName(getCppName(argTy));
    577       Out << typeName << "_args.push_back(" << argName;
    578       Out << ");";
    579       nl(Out);
    580     }
    581     printType(FT->getReturnType());
    582     std::string retTypeName(getCppName(FT->getReturnType()));
    583     Out << "FunctionType* " << typeName << " = FunctionType::get(";
    584     in(); nl(Out) << "/*Result=*/" << retTypeName;
    585     Out << ",";
    586     nl(Out) << "/*Params=*/" << typeName << "_args,";
    587     nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");";
    588     out();
    589     nl(Out);
    590     break;
    591   }
    592   case Type::StructTyID: {
    593     StructType* ST = cast<StructType>(Ty);
    594     if (!ST->isLiteral()) {
    595       Out << "StructType *" << typeName << " = mod->getTypeByName(\"";
    596       printEscapedString(ST->getName());
    597       Out << "\");";
    598       nl(Out);
    599       Out << "if (!" << typeName << ") {";
    600       nl(Out);
    601       Out << typeName << " = ";
    602       Out << "StructType::create(mod->getContext(), \"";
    603       printEscapedString(ST->getName());
    604       Out << "\");";
    605       nl(Out);
    606       Out << "}";
    607       nl(Out);
    608       // Indicate that this type is now defined.
    609       DefinedTypes.insert(Ty);
    610     }
    611 
    612     Out << "std::vector<Type*>" << typeName << "_fields;";
    613     nl(Out);
    614     StructType::element_iterator EI = ST->element_begin();
    615     StructType::element_iterator EE = ST->element_end();
    616     for (; EI != EE; ++EI) {
    617       Type* fieldTy = static_cast<Type*>(*EI);
    618       printType(fieldTy);
    619       std::string fieldName(getCppName(fieldTy));
    620       Out << typeName << "_fields.push_back(" << fieldName;
    621       Out << ");";
    622       nl(Out);
    623     }
    624 
    625     if (ST->isLiteral()) {
    626       Out << "StructType *" << typeName << " = ";
    627       Out << "StructType::get(" << "mod->getContext(), ";
    628     } else {
    629       Out << "if (" << typeName << "->isOpaque()) {";
    630       nl(Out);
    631       Out << typeName << "->setBody(";
    632     }
    633 
    634     Out << typeName << "_fields, /*isPacked=*/"
    635         << (ST->isPacked() ? "true" : "false") << ");";
    636     nl(Out);
    637     if (!ST->isLiteral()) {
    638       Out << "}";
    639       nl(Out);
    640     }
    641     break;
    642   }
    643   case Type::ArrayTyID: {
    644     ArrayType* AT = cast<ArrayType>(Ty);
    645     Type* ET = AT->getElementType();
    646     printType(ET);
    647     if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
    648       std::string elemName(getCppName(ET));
    649       Out << "ArrayType* " << typeName << " = ArrayType::get("
    650           << elemName << ", " << AT->getNumElements() << ");";
    651       nl(Out);
    652     }
    653     break;
    654   }
    655   case Type::PointerTyID: {
    656     PointerType* PT = cast<PointerType>(Ty);
    657     Type* ET = PT->getElementType();
    658     printType(ET);
    659     if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
    660       std::string elemName(getCppName(ET));
    661       Out << "PointerType* " << typeName << " = PointerType::get("
    662           << elemName << ", " << PT->getAddressSpace() << ");";
    663       nl(Out);
    664     }
    665     break;
    666   }
    667   case Type::VectorTyID: {
    668     VectorType* PT = cast<VectorType>(Ty);
    669     Type* ET = PT->getElementType();
    670     printType(ET);
    671     if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
    672       std::string elemName(getCppName(ET));
    673       Out << "VectorType* " << typeName << " = VectorType::get("
    674           << elemName << ", " << PT->getNumElements() << ");";
    675       nl(Out);
    676     }
    677     break;
    678   }
    679   default:
    680     error("Invalid TypeID");
    681   }
    682 
    683   // Indicate that this type is now defined.
    684   DefinedTypes.insert(Ty);
    685 
    686   // Finally, separate the type definition from other with a newline.
    687   nl(Out);
    688 }
    689 
    690 void CppWriter::printTypes(const Module* M) {
    691   // Add all of the global variables to the value table.
    692   for (Module::const_global_iterator I = TheModule->global_begin(),
    693          E = TheModule->global_end(); I != E; ++I) {
    694     if (I->hasInitializer())
    695       printType(I->getInitializer()->getType());
    696     printType(I->getType());
    697   }
    698 
    699   // Add all the functions to the table
    700   for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
    701        FI != FE; ++FI) {
    702     printType(FI->getReturnType());
    703     printType(FI->getFunctionType());
    704     // Add all the function arguments
    705     for (Function::const_arg_iterator AI = FI->arg_begin(),
    706            AE = FI->arg_end(); AI != AE; ++AI) {
    707       printType(AI->getType());
    708     }
    709 
    710     // Add all of the basic blocks and instructions
    711     for (Function::const_iterator BB = FI->begin(),
    712            E = FI->end(); BB != E; ++BB) {
    713       printType(BB->getType());
    714       for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
    715            ++I) {
    716         printType(I->getType());
    717         for (unsigned i = 0; i < I->getNumOperands(); ++i)
    718           printType(I->getOperand(i)->getType());
    719       }
    720     }
    721   }
    722 }
    723 
    724 
    725 // printConstant - Print out a constant pool entry...
    726 void CppWriter::printConstant(const Constant *CV) {
    727   // First, if the constant is actually a GlobalValue (variable or function)
    728   // or its already in the constant list then we've printed it already and we
    729   // can just return.
    730   if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
    731     return;
    732 
    733   std::string constName(getCppName(CV));
    734   std::string typeName(getCppName(CV->getType()));
    735 
    736   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
    737     std::string constValue = CI->getValue().toString(10, true);
    738     Out << "ConstantInt* " << constName
    739         << " = ConstantInt::get(mod->getContext(), APInt("
    740         << cast<IntegerType>(CI->getType())->getBitWidth()
    741         << ", StringRef(\"" <<  constValue << "\"), 10));";
    742   } else if (isa<ConstantAggregateZero>(CV)) {
    743     Out << "ConstantAggregateZero* " << constName
    744         << " = ConstantAggregateZero::get(" << typeName << ");";
    745   } else if (isa<ConstantPointerNull>(CV)) {
    746     Out << "ConstantPointerNull* " << constName
    747         << " = ConstantPointerNull::get(" << typeName << ");";
    748   } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
    749     Out << "ConstantFP* " << constName << " = ";
    750     printCFP(CFP);
    751     Out << ";";
    752   } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
    753     Out << "std::vector<Constant*> " << constName << "_elems;";
    754     nl(Out);
    755     unsigned N = CA->getNumOperands();
    756     for (unsigned i = 0; i < N; ++i) {
    757       printConstant(CA->getOperand(i)); // recurse to print operands
    758       Out << constName << "_elems.push_back("
    759           << getCppName(CA->getOperand(i)) << ");";
    760       nl(Out);
    761     }
    762     Out << "Constant* " << constName << " = ConstantArray::get("
    763         << typeName << ", " << constName << "_elems);";
    764   } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
    765     Out << "std::vector<Constant*> " << constName << "_fields;";
    766     nl(Out);
    767     unsigned N = CS->getNumOperands();
    768     for (unsigned i = 0; i < N; i++) {
    769       printConstant(CS->getOperand(i));
    770       Out << constName << "_fields.push_back("
    771           << getCppName(CS->getOperand(i)) << ");";
    772       nl(Out);
    773     }
    774     Out << "Constant* " << constName << " = ConstantStruct::get("
    775         << typeName << ", " << constName << "_fields);";
    776   } else if (const ConstantVector *CVec = dyn_cast<ConstantVector>(CV)) {
    777     Out << "std::vector<Constant*> " << constName << "_elems;";
    778     nl(Out);
    779     unsigned N = CVec->getNumOperands();
    780     for (unsigned i = 0; i < N; ++i) {
    781       printConstant(CVec->getOperand(i));
    782       Out << constName << "_elems.push_back("
    783           << getCppName(CVec->getOperand(i)) << ");";
    784       nl(Out);
    785     }
    786     Out << "Constant* " << constName << " = ConstantVector::get("
    787         << typeName << ", " << constName << "_elems);";
    788   } else if (isa<UndefValue>(CV)) {
    789     Out << "UndefValue* " << constName << " = UndefValue::get("
    790         << typeName << ");";
    791   } else if (const ConstantDataSequential *CDS =
    792                dyn_cast<ConstantDataSequential>(CV)) {
    793     if (CDS->isString()) {
    794       Out << "Constant *" << constName <<
    795       " = ConstantDataArray::getString(mod->getContext(), \"";
    796       StringRef Str = CDS->getAsString();
    797       bool nullTerminate = false;
    798       if (Str.back() == 0) {
    799         Str = Str.drop_back();
    800         nullTerminate = true;
    801       }
    802       printEscapedString(Str);
    803       // Determine if we want null termination or not.
    804       if (nullTerminate)
    805         Out << "\", true);";
    806       else
    807         Out << "\", false);";// No null terminator
    808     } else {
    809       // TODO: Could generate more efficient code generating CDS calls instead.
    810       Out << "std::vector<Constant*> " << constName << "_elems;";
    811       nl(Out);
    812       for (unsigned i = 0; i != CDS->getNumElements(); ++i) {
    813         Constant *Elt = CDS->getElementAsConstant(i);
    814         printConstant(Elt);
    815         Out << constName << "_elems.push_back(" << getCppName(Elt) << ");";
    816         nl(Out);
    817       }
    818       Out << "Constant* " << constName;
    819 
    820       if (isa<ArrayType>(CDS->getType()))
    821         Out << " = ConstantArray::get(";
    822       else
    823         Out << " = ConstantVector::get(";
    824       Out << typeName << ", " << constName << "_elems);";
    825     }
    826   } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
    827     if (CE->getOpcode() == Instruction::GetElementPtr) {
    828       Out << "std::vector<Constant*> " << constName << "_indices;";
    829       nl(Out);
    830       printConstant(CE->getOperand(0));
    831       for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
    832         printConstant(CE->getOperand(i));
    833         Out << constName << "_indices.push_back("
    834             << getCppName(CE->getOperand(i)) << ");";
    835         nl(Out);
    836       }
    837       Out << "Constant* " << constName
    838           << " = ConstantExpr::getGetElementPtr("
    839           << getCppName(CE->getOperand(0)) << ", "
    840           << constName << "_indices);";
    841     } else if (CE->isCast()) {
    842       printConstant(CE->getOperand(0));
    843       Out << "Constant* " << constName << " = ConstantExpr::getCast(";
    844       switch (CE->getOpcode()) {
    845       default: llvm_unreachable("Invalid cast opcode");
    846       case Instruction::Trunc: Out << "Instruction::Trunc"; break;
    847       case Instruction::ZExt:  Out << "Instruction::ZExt"; break;
    848       case Instruction::SExt:  Out << "Instruction::SExt"; break;
    849       case Instruction::FPTrunc:  Out << "Instruction::FPTrunc"; break;
    850       case Instruction::FPExt:  Out << "Instruction::FPExt"; break;
    851       case Instruction::FPToUI:  Out << "Instruction::FPToUI"; break;
    852       case Instruction::FPToSI:  Out << "Instruction::FPToSI"; break;
    853       case Instruction::UIToFP:  Out << "Instruction::UIToFP"; break;
    854       case Instruction::SIToFP:  Out << "Instruction::SIToFP"; break;
    855       case Instruction::PtrToInt:  Out << "Instruction::PtrToInt"; break;
    856       case Instruction::IntToPtr:  Out << "Instruction::IntToPtr"; break;
    857       case Instruction::BitCast:  Out << "Instruction::BitCast"; break;
    858       }
    859       Out << ", " << getCppName(CE->getOperand(0)) << ", "
    860           << getCppName(CE->getType()) << ");";
    861     } else {
    862       unsigned N = CE->getNumOperands();
    863       for (unsigned i = 0; i < N; ++i ) {
    864         printConstant(CE->getOperand(i));
    865       }
    866       Out << "Constant* " << constName << " = ConstantExpr::";
    867       switch (CE->getOpcode()) {
    868       case Instruction::Add:    Out << "getAdd(";  break;
    869       case Instruction::FAdd:   Out << "getFAdd(";  break;
    870       case Instruction::Sub:    Out << "getSub("; break;
    871       case Instruction::FSub:   Out << "getFSub("; break;
    872       case Instruction::Mul:    Out << "getMul("; break;
    873       case Instruction::FMul:   Out << "getFMul("; break;
    874       case Instruction::UDiv:   Out << "getUDiv("; break;
    875       case Instruction::SDiv:   Out << "getSDiv("; break;
    876       case Instruction::FDiv:   Out << "getFDiv("; break;
    877       case Instruction::URem:   Out << "getURem("; break;
    878       case Instruction::SRem:   Out << "getSRem("; break;
    879       case Instruction::FRem:   Out << "getFRem("; break;
    880       case Instruction::And:    Out << "getAnd("; break;
    881       case Instruction::Or:     Out << "getOr("; break;
    882       case Instruction::Xor:    Out << "getXor("; break;
    883       case Instruction::ICmp:
    884         Out << "getICmp(ICmpInst::ICMP_";
    885         switch (CE->getPredicate()) {
    886         case ICmpInst::ICMP_EQ:  Out << "EQ"; break;
    887         case ICmpInst::ICMP_NE:  Out << "NE"; break;
    888         case ICmpInst::ICMP_SLT: Out << "SLT"; break;
    889         case ICmpInst::ICMP_ULT: Out << "ULT"; break;
    890         case ICmpInst::ICMP_SGT: Out << "SGT"; break;
    891         case ICmpInst::ICMP_UGT: Out << "UGT"; break;
    892         case ICmpInst::ICMP_SLE: Out << "SLE"; break;
    893         case ICmpInst::ICMP_ULE: Out << "ULE"; break;
    894         case ICmpInst::ICMP_SGE: Out << "SGE"; break;
    895         case ICmpInst::ICMP_UGE: Out << "UGE"; break;
    896         default: error("Invalid ICmp Predicate");
    897         }
    898         break;
    899       case Instruction::FCmp:
    900         Out << "getFCmp(FCmpInst::FCMP_";
    901         switch (CE->getPredicate()) {
    902         case FCmpInst::FCMP_FALSE: Out << "FALSE"; break;
    903         case FCmpInst::FCMP_ORD:   Out << "ORD"; break;
    904         case FCmpInst::FCMP_UNO:   Out << "UNO"; break;
    905         case FCmpInst::FCMP_OEQ:   Out << "OEQ"; break;
    906         case FCmpInst::FCMP_UEQ:   Out << "UEQ"; break;
    907         case FCmpInst::FCMP_ONE:   Out << "ONE"; break;
    908         case FCmpInst::FCMP_UNE:   Out << "UNE"; break;
    909         case FCmpInst::FCMP_OLT:   Out << "OLT"; break;
    910         case FCmpInst::FCMP_ULT:   Out << "ULT"; break;
    911         case FCmpInst::FCMP_OGT:   Out << "OGT"; break;
    912         case FCmpInst::FCMP_UGT:   Out << "UGT"; break;
    913         case FCmpInst::FCMP_OLE:   Out << "OLE"; break;
    914         case FCmpInst::FCMP_ULE:   Out << "ULE"; break;
    915         case FCmpInst::FCMP_OGE:   Out << "OGE"; break;
    916         case FCmpInst::FCMP_UGE:   Out << "UGE"; break;
    917         case FCmpInst::FCMP_TRUE:  Out << "TRUE"; break;
    918         default: error("Invalid FCmp Predicate");
    919         }
    920         break;
    921       case Instruction::Shl:     Out << "getShl("; break;
    922       case Instruction::LShr:    Out << "getLShr("; break;
    923       case Instruction::AShr:    Out << "getAShr("; break;
    924       case Instruction::Select:  Out << "getSelect("; break;
    925       case Instruction::ExtractElement: Out << "getExtractElement("; break;
    926       case Instruction::InsertElement:  Out << "getInsertElement("; break;
    927       case Instruction::ShuffleVector:  Out << "getShuffleVector("; break;
    928       default:
    929         error("Invalid constant expression");
    930         break;
    931       }
    932       Out << getCppName(CE->getOperand(0));
    933       for (unsigned i = 1; i < CE->getNumOperands(); ++i)
    934         Out << ", " << getCppName(CE->getOperand(i));
    935       Out << ");";
    936     }
    937   } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
    938     Out << "Constant* " << constName << " = ";
    939     Out << "BlockAddress::get(" << getOpName(BA->getBasicBlock()) << ");";
    940   } else {
    941     error("Bad Constant");
    942     Out << "Constant* " << constName << " = 0; ";
    943   }
    944   nl(Out);
    945 }
    946 
    947 void CppWriter::printConstants(const Module* M) {
    948   // Traverse all the global variables looking for constant initializers
    949   for (Module::const_global_iterator I = TheModule->global_begin(),
    950          E = TheModule->global_end(); I != E; ++I)
    951     if (I->hasInitializer())
    952       printConstant(I->getInitializer());
    953 
    954   // Traverse the LLVM functions looking for constants
    955   for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
    956        FI != FE; ++FI) {
    957     // Add all of the basic blocks and instructions
    958     for (Function::const_iterator BB = FI->begin(),
    959            E = FI->end(); BB != E; ++BB) {
    960       for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
    961            ++I) {
    962         for (unsigned i = 0; i < I->getNumOperands(); ++i) {
    963           if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
    964             printConstant(C);
    965           }
    966         }
    967       }
    968     }
    969   }
    970 }
    971 
    972 void CppWriter::printVariableUses(const GlobalVariable *GV) {
    973   nl(Out) << "// Type Definitions";
    974   nl(Out);
    975   printType(GV->getType());
    976   if (GV->hasInitializer()) {
    977     const Constant *Init = GV->getInitializer();
    978     printType(Init->getType());
    979     if (const Function *F = dyn_cast<Function>(Init)) {
    980       nl(Out)<< "/ Function Declarations"; nl(Out);
    981       printFunctionHead(F);
    982     } else if (const GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
    983       nl(Out) << "// Global Variable Declarations"; nl(Out);
    984       printVariableHead(gv);
    985 
    986       nl(Out) << "// Global Variable Definitions"; nl(Out);
    987       printVariableBody(gv);
    988     } else  {
    989       nl(Out) << "// Constant Definitions"; nl(Out);
    990       printConstant(Init);
    991     }
    992   }
    993 }
    994 
    995 void CppWriter::printVariableHead(const GlobalVariable *GV) {
    996   nl(Out) << "GlobalVariable* " << getCppName(GV);
    997   if (is_inline) {
    998     Out << " = mod->getGlobalVariable(mod->getContext(), ";
    999     printEscapedString(GV->getName());
   1000     Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
   1001     nl(Out) << "if (!" << getCppName(GV) << ") {";
   1002     in(); nl(Out) << getCppName(GV);
   1003   }
   1004   Out << " = new GlobalVariable(/*Module=*/*mod, ";
   1005   nl(Out) << "/*Type=*/";
   1006   printCppName(GV->getType()->getElementType());
   1007   Out << ",";
   1008   nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false");
   1009   Out << ",";
   1010   nl(Out) << "/*Linkage=*/";
   1011   printLinkageType(GV->getLinkage());
   1012   Out << ",";
   1013   nl(Out) << "/*Initializer=*/0, ";
   1014   if (GV->hasInitializer()) {
   1015     Out << "// has initializer, specified below";
   1016   }
   1017   nl(Out) << "/*Name=*/\"";
   1018   printEscapedString(GV->getName());
   1019   Out << "\");";
   1020   nl(Out);
   1021 
   1022   if (GV->hasSection()) {
   1023     printCppName(GV);
   1024     Out << "->setSection(\"";
   1025     printEscapedString(GV->getSection());
   1026     Out << "\");";
   1027     nl(Out);
   1028   }
   1029   if (GV->getAlignment()) {
   1030     printCppName(GV);
   1031     Out << "->setAlignment(" << GV->getAlignment() << ");";
   1032     nl(Out);
   1033   }
   1034   if (GV->getVisibility() != GlobalValue::DefaultVisibility) {
   1035     printCppName(GV);
   1036     Out << "->setVisibility(";
   1037     printVisibilityType(GV->getVisibility());
   1038     Out << ");";
   1039     nl(Out);
   1040   }
   1041   if (GV->getDLLStorageClass() != GlobalValue::DefaultStorageClass) {
   1042     printCppName(GV);
   1043     Out << "->setDLLStorageClass(";
   1044     printDLLStorageClassType(GV->getDLLStorageClass());
   1045     Out << ");";
   1046     nl(Out);
   1047   }
   1048   if (GV->isThreadLocal()) {
   1049     printCppName(GV);
   1050     Out << "->setThreadLocalMode(";
   1051     printThreadLocalMode(GV->getThreadLocalMode());
   1052     Out << ");";
   1053     nl(Out);
   1054   }
   1055   if (is_inline) {
   1056     out(); Out << "}"; nl(Out);
   1057   }
   1058 }
   1059 
   1060 void CppWriter::printVariableBody(const GlobalVariable *GV) {
   1061   if (GV->hasInitializer()) {
   1062     printCppName(GV);
   1063     Out << "->setInitializer(";
   1064     Out << getCppName(GV->getInitializer()) << ");";
   1065     nl(Out);
   1066   }
   1067 }
   1068 
   1069 std::string CppWriter::getOpName(const Value* V) {
   1070   if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
   1071     return getCppName(V);
   1072 
   1073   // See if its alread in the map of forward references, if so just return the
   1074   // name we already set up for it
   1075   ForwardRefMap::const_iterator I = ForwardRefs.find(V);
   1076   if (I != ForwardRefs.end())
   1077     return I->second;
   1078 
   1079   // This is a new forward reference. Generate a unique name for it
   1080   std::string result(std::string("fwdref_") + utostr(uniqueNum++));
   1081 
   1082   // Yes, this is a hack. An Argument is the smallest instantiable value that
   1083   // we can make as a placeholder for the real value. We'll replace these
   1084   // Argument instances later.
   1085   Out << "Argument* " << result << " = new Argument("
   1086       << getCppName(V->getType()) << ");";
   1087   nl(Out);
   1088   ForwardRefs[V] = result;
   1089   return result;
   1090 }
   1091 
   1092 static StringRef ConvertAtomicOrdering(AtomicOrdering Ordering) {
   1093   switch (Ordering) {
   1094     case NotAtomic: return "NotAtomic";
   1095     case Unordered: return "Unordered";
   1096     case Monotonic: return "Monotonic";
   1097     case Acquire: return "Acquire";
   1098     case Release: return "Release";
   1099     case AcquireRelease: return "AcquireRelease";
   1100     case SequentiallyConsistent: return "SequentiallyConsistent";
   1101   }
   1102   llvm_unreachable("Unknown ordering");
   1103 }
   1104 
   1105 static StringRef ConvertAtomicSynchScope(SynchronizationScope SynchScope) {
   1106   switch (SynchScope) {
   1107     case SingleThread: return "SingleThread";
   1108     case CrossThread: return "CrossThread";
   1109   }
   1110   llvm_unreachable("Unknown synch scope");
   1111 }
   1112 
   1113 // printInstruction - This member is called for each Instruction in a function.
   1114 void CppWriter::printInstruction(const Instruction *I,
   1115                                  const std::string& bbname) {
   1116   std::string iName(getCppName(I));
   1117 
   1118   // Before we emit this instruction, we need to take care of generating any
   1119   // forward references. So, we get the names of all the operands in advance
   1120   const unsigned Ops(I->getNumOperands());
   1121   std::string* opNames = new std::string[Ops];
   1122   for (unsigned i = 0; i < Ops; i++)
   1123     opNames[i] = getOpName(I->getOperand(i));
   1124 
   1125   switch (I->getOpcode()) {
   1126   default:
   1127     error("Invalid instruction");
   1128     break;
   1129 
   1130   case Instruction::Ret: {
   1131     const ReturnInst* ret =  cast<ReturnInst>(I);
   1132     Out << "ReturnInst::Create(mod->getContext(), "
   1133         << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
   1134     break;
   1135   }
   1136   case Instruction::Br: {
   1137     const BranchInst* br = cast<BranchInst>(I);
   1138     Out << "BranchInst::Create(" ;
   1139     if (br->getNumOperands() == 3) {
   1140       Out << opNames[2] << ", "
   1141           << opNames[1] << ", "
   1142           << opNames[0] << ", ";
   1143 
   1144     } else if (br->getNumOperands() == 1) {
   1145       Out << opNames[0] << ", ";
   1146     } else {
   1147       error("Branch with 2 operands?");
   1148     }
   1149     Out << bbname << ");";
   1150     break;
   1151   }
   1152   case Instruction::Switch: {
   1153     const SwitchInst *SI = cast<SwitchInst>(I);
   1154     Out << "SwitchInst* " << iName << " = SwitchInst::Create("
   1155         << getOpName(SI->getCondition()) << ", "
   1156         << getOpName(SI->getDefaultDest()) << ", "
   1157         << SI->getNumCases() << ", " << bbname << ");";
   1158     nl(Out);
   1159     for (SwitchInst::ConstCaseIt i = SI->case_begin(), e = SI->case_end();
   1160          i != e; ++i) {
   1161       const ConstantInt* CaseVal = i.getCaseValue();
   1162       const BasicBlock *BB = i.getCaseSuccessor();
   1163       Out << iName << "->addCase("
   1164           << getOpName(CaseVal) << ", "
   1165           << getOpName(BB) << ");";
   1166       nl(Out);
   1167     }
   1168     break;
   1169   }
   1170   case Instruction::IndirectBr: {
   1171     const IndirectBrInst *IBI = cast<IndirectBrInst>(I);
   1172     Out << "IndirectBrInst *" << iName << " = IndirectBrInst::Create("
   1173         << opNames[0] << ", " << IBI->getNumDestinations() << ");";
   1174     nl(Out);
   1175     for (unsigned i = 1; i != IBI->getNumOperands(); ++i) {
   1176       Out << iName << "->addDestination(" << opNames[i] << ");";
   1177       nl(Out);
   1178     }
   1179     break;
   1180   }
   1181   case Instruction::Resume: {
   1182     Out << "ResumeInst::Create(" << opNames[0] << ", " << bbname << ");";
   1183     break;
   1184   }
   1185   case Instruction::Invoke: {
   1186     const InvokeInst* inv = cast<InvokeInst>(I);
   1187     Out << "std::vector<Value*> " << iName << "_params;";
   1188     nl(Out);
   1189     for (unsigned i = 0; i < inv->getNumArgOperands(); ++i) {
   1190       Out << iName << "_params.push_back("
   1191           << getOpName(inv->getArgOperand(i)) << ");";
   1192       nl(Out);
   1193     }
   1194     // FIXME: This shouldn't use magic numbers -3, -2, and -1.
   1195     Out << "InvokeInst *" << iName << " = InvokeInst::Create("
   1196         << getOpName(inv->getCalledValue()) << ", "
   1197         << getOpName(inv->getNormalDest()) << ", "
   1198         << getOpName(inv->getUnwindDest()) << ", "
   1199         << iName << "_params, \"";
   1200     printEscapedString(inv->getName());
   1201     Out << "\", " << bbname << ");";
   1202     nl(Out) << iName << "->setCallingConv(";
   1203     printCallingConv(inv->getCallingConv());
   1204     Out << ");";
   1205     printAttributes(inv->getAttributes(), iName);
   1206     Out << iName << "->setAttributes(" << iName << "_PAL);";
   1207     nl(Out);
   1208     break;
   1209   }
   1210   case Instruction::Unreachable: {
   1211     Out << "new UnreachableInst("
   1212         << "mod->getContext(), "
   1213         << bbname << ");";
   1214     break;
   1215   }
   1216   case Instruction::Add:
   1217   case Instruction::FAdd:
   1218   case Instruction::Sub:
   1219   case Instruction::FSub:
   1220   case Instruction::Mul:
   1221   case Instruction::FMul:
   1222   case Instruction::UDiv:
   1223   case Instruction::SDiv:
   1224   case Instruction::FDiv:
   1225   case Instruction::URem:
   1226   case Instruction::SRem:
   1227   case Instruction::FRem:
   1228   case Instruction::And:
   1229   case Instruction::Or:
   1230   case Instruction::Xor:
   1231   case Instruction::Shl:
   1232   case Instruction::LShr:
   1233   case Instruction::AShr:{
   1234     Out << "BinaryOperator* " << iName << " = BinaryOperator::Create(";
   1235     switch (I->getOpcode()) {
   1236     case Instruction::Add: Out << "Instruction::Add"; break;
   1237     case Instruction::FAdd: Out << "Instruction::FAdd"; break;
   1238     case Instruction::Sub: Out << "Instruction::Sub"; break;
   1239     case Instruction::FSub: Out << "Instruction::FSub"; break;
   1240     case Instruction::Mul: Out << "Instruction::Mul"; break;
   1241     case Instruction::FMul: Out << "Instruction::FMul"; break;
   1242     case Instruction::UDiv:Out << "Instruction::UDiv"; break;
   1243     case Instruction::SDiv:Out << "Instruction::SDiv"; break;
   1244     case Instruction::FDiv:Out << "Instruction::FDiv"; break;
   1245     case Instruction::URem:Out << "Instruction::URem"; break;
   1246     case Instruction::SRem:Out << "Instruction::SRem"; break;
   1247     case Instruction::FRem:Out << "Instruction::FRem"; break;
   1248     case Instruction::And: Out << "Instruction::And"; break;
   1249     case Instruction::Or:  Out << "Instruction::Or";  break;
   1250     case Instruction::Xor: Out << "Instruction::Xor"; break;
   1251     case Instruction::Shl: Out << "Instruction::Shl"; break;
   1252     case Instruction::LShr:Out << "Instruction::LShr"; break;
   1253     case Instruction::AShr:Out << "Instruction::AShr"; break;
   1254     default: Out << "Instruction::BadOpCode"; break;
   1255     }
   1256     Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
   1257     printEscapedString(I->getName());
   1258     Out << "\", " << bbname << ");";
   1259     break;
   1260   }
   1261   case Instruction::FCmp: {
   1262     Out << "FCmpInst* " << iName << " = new FCmpInst(*" << bbname << ", ";
   1263     switch (cast<FCmpInst>(I)->getPredicate()) {
   1264     case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break;
   1265     case FCmpInst::FCMP_OEQ  : Out << "FCmpInst::FCMP_OEQ"; break;
   1266     case FCmpInst::FCMP_OGT  : Out << "FCmpInst::FCMP_OGT"; break;
   1267     case FCmpInst::FCMP_OGE  : Out << "FCmpInst::FCMP_OGE"; break;
   1268     case FCmpInst::FCMP_OLT  : Out << "FCmpInst::FCMP_OLT"; break;
   1269     case FCmpInst::FCMP_OLE  : Out << "FCmpInst::FCMP_OLE"; break;
   1270     case FCmpInst::FCMP_ONE  : Out << "FCmpInst::FCMP_ONE"; break;
   1271     case FCmpInst::FCMP_ORD  : Out << "FCmpInst::FCMP_ORD"; break;
   1272     case FCmpInst::FCMP_UNO  : Out << "FCmpInst::FCMP_UNO"; break;
   1273     case FCmpInst::FCMP_UEQ  : Out << "FCmpInst::FCMP_UEQ"; break;
   1274     case FCmpInst::FCMP_UGT  : Out << "FCmpInst::FCMP_UGT"; break;
   1275     case FCmpInst::FCMP_UGE  : Out << "FCmpInst::FCMP_UGE"; break;
   1276     case FCmpInst::FCMP_ULT  : Out << "FCmpInst::FCMP_ULT"; break;
   1277     case FCmpInst::FCMP_ULE  : Out << "FCmpInst::FCMP_ULE"; break;
   1278     case FCmpInst::FCMP_UNE  : Out << "FCmpInst::FCMP_UNE"; break;
   1279     case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break;
   1280     default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break;
   1281     }
   1282     Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
   1283     printEscapedString(I->getName());
   1284     Out << "\");";
   1285     break;
   1286   }
   1287   case Instruction::ICmp: {
   1288     Out << "ICmpInst* " << iName << " = new ICmpInst(*" << bbname << ", ";
   1289     switch (cast<ICmpInst>(I)->getPredicate()) {
   1290     case ICmpInst::ICMP_EQ:  Out << "ICmpInst::ICMP_EQ";  break;
   1291     case ICmpInst::ICMP_NE:  Out << "ICmpInst::ICMP_NE";  break;
   1292     case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break;
   1293     case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break;
   1294     case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break;
   1295     case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break;
   1296     case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break;
   1297     case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break;
   1298     case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break;
   1299     case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break;
   1300     default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break;
   1301     }
   1302     Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
   1303     printEscapedString(I->getName());
   1304     Out << "\");";
   1305     break;
   1306   }
   1307   case Instruction::Alloca: {
   1308     const AllocaInst* allocaI = cast<AllocaInst>(I);
   1309     Out << "AllocaInst* " << iName << " = new AllocaInst("
   1310         << getCppName(allocaI->getAllocatedType()) << ", ";
   1311     if (allocaI->isArrayAllocation())
   1312       Out << opNames[0] << ", ";
   1313     Out << "\"";
   1314     printEscapedString(allocaI->getName());
   1315     Out << "\", " << bbname << ");";
   1316     if (allocaI->getAlignment())
   1317       nl(Out) << iName << "->setAlignment("
   1318           << allocaI->getAlignment() << ");";
   1319     break;
   1320   }
   1321   case Instruction::Load: {
   1322     const LoadInst* load = cast<LoadInst>(I);
   1323     Out << "LoadInst* " << iName << " = new LoadInst("
   1324         << opNames[0] << ", \"";
   1325     printEscapedString(load->getName());
   1326     Out << "\", " << (load->isVolatile() ? "true" : "false" )
   1327         << ", " << bbname << ");";
   1328     if (load->getAlignment())
   1329       nl(Out) << iName << "->setAlignment("
   1330               << load->getAlignment() << ");";
   1331     if (load->isAtomic()) {
   1332       StringRef Ordering = ConvertAtomicOrdering(load->getOrdering());
   1333       StringRef CrossThread = ConvertAtomicSynchScope(load->getSynchScope());
   1334       nl(Out) << iName << "->setAtomic("
   1335               << Ordering << ", " << CrossThread << ");";
   1336     }
   1337     break;
   1338   }
   1339   case Instruction::Store: {
   1340     const StoreInst* store = cast<StoreInst>(I);
   1341     Out << "StoreInst* " << iName << " = new StoreInst("
   1342         << opNames[0] << ", "
   1343         << opNames[1] << ", "
   1344         << (store->isVolatile() ? "true" : "false")
   1345         << ", " << bbname << ");";
   1346     if (store->getAlignment())
   1347       nl(Out) << iName << "->setAlignment("
   1348               << store->getAlignment() << ");";
   1349     if (store->isAtomic()) {
   1350       StringRef Ordering = ConvertAtomicOrdering(store->getOrdering());
   1351       StringRef CrossThread = ConvertAtomicSynchScope(store->getSynchScope());
   1352       nl(Out) << iName << "->setAtomic("
   1353               << Ordering << ", " << CrossThread << ");";
   1354     }
   1355     break;
   1356   }
   1357   case Instruction::GetElementPtr: {
   1358     const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
   1359     Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create("
   1360         << getCppName(gep->getSourceElementType()) << ", " << opNames[0] << ", {";
   1361     in();
   1362     for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
   1363       if (i != 1) {
   1364         Out << ", ";
   1365       }
   1366       nl(Out);
   1367       Out << opNames[i];
   1368     }
   1369     out();
   1370     nl(Out) << "}, \"";
   1371     printEscapedString(gep->getName());
   1372     Out << "\", " << bbname << ");";
   1373     break;
   1374   }
   1375   case Instruction::PHI: {
   1376     const PHINode* phi = cast<PHINode>(I);
   1377 
   1378     Out << "PHINode* " << iName << " = PHINode::Create("
   1379         << getCppName(phi->getType()) << ", "
   1380         << phi->getNumIncomingValues() << ", \"";
   1381     printEscapedString(phi->getName());
   1382     Out << "\", " << bbname << ");";
   1383     nl(Out);
   1384     for (unsigned i = 0; i < phi->getNumIncomingValues(); ++i) {
   1385       Out << iName << "->addIncoming("
   1386           << opNames[PHINode::getOperandNumForIncomingValue(i)] << ", "
   1387           << getOpName(phi->getIncomingBlock(i)) << ");";
   1388       nl(Out);
   1389     }
   1390     break;
   1391   }
   1392   case Instruction::Trunc:
   1393   case Instruction::ZExt:
   1394   case Instruction::SExt:
   1395   case Instruction::FPTrunc:
   1396   case Instruction::FPExt:
   1397   case Instruction::FPToUI:
   1398   case Instruction::FPToSI:
   1399   case Instruction::UIToFP:
   1400   case Instruction::SIToFP:
   1401   case Instruction::PtrToInt:
   1402   case Instruction::IntToPtr:
   1403   case Instruction::BitCast: {
   1404     const CastInst* cst = cast<CastInst>(I);
   1405     Out << "CastInst* " << iName << " = new ";
   1406     switch (I->getOpcode()) {
   1407     case Instruction::Trunc:    Out << "TruncInst"; break;
   1408     case Instruction::ZExt:     Out << "ZExtInst"; break;
   1409     case Instruction::SExt:     Out << "SExtInst"; break;
   1410     case Instruction::FPTrunc:  Out << "FPTruncInst"; break;
   1411     case Instruction::FPExt:    Out << "FPExtInst"; break;
   1412     case Instruction::FPToUI:   Out << "FPToUIInst"; break;
   1413     case Instruction::FPToSI:   Out << "FPToSIInst"; break;
   1414     case Instruction::UIToFP:   Out << "UIToFPInst"; break;
   1415     case Instruction::SIToFP:   Out << "SIToFPInst"; break;
   1416     case Instruction::PtrToInt: Out << "PtrToIntInst"; break;
   1417     case Instruction::IntToPtr: Out << "IntToPtrInst"; break;
   1418     case Instruction::BitCast:  Out << "BitCastInst"; break;
   1419     default: llvm_unreachable("Unreachable");
   1420     }
   1421     Out << "(" << opNames[0] << ", "
   1422         << getCppName(cst->getType()) << ", \"";
   1423     printEscapedString(cst->getName());
   1424     Out << "\", " << bbname << ");";
   1425     break;
   1426   }
   1427   case Instruction::Call: {
   1428     const CallInst* call = cast<CallInst>(I);
   1429     if (const InlineAsm* ila = dyn_cast<InlineAsm>(call->getCalledValue())) {
   1430       Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
   1431           << getCppName(ila->getFunctionType()) << ", \""
   1432           << ila->getAsmString() << "\", \""
   1433           << ila->getConstraintString() << "\","
   1434           << (ila->hasSideEffects() ? "true" : "false") << ");";
   1435       nl(Out);
   1436     }
   1437     if (call->getNumArgOperands() > 1) {
   1438       Out << "std::vector<Value*> " << iName << "_params;";
   1439       nl(Out);
   1440       for (unsigned i = 0; i < call->getNumArgOperands(); ++i) {
   1441         Out << iName << "_params.push_back(" << opNames[i] << ");";
   1442         nl(Out);
   1443       }
   1444       Out << "CallInst* " << iName << " = CallInst::Create("
   1445           << opNames[call->getNumArgOperands()] << ", "
   1446           << iName << "_params, \"";
   1447     } else if (call->getNumArgOperands() == 1) {
   1448       Out << "CallInst* " << iName << " = CallInst::Create("
   1449           << opNames[call->getNumArgOperands()] << ", " << opNames[0] << ", \"";
   1450     } else {
   1451       Out << "CallInst* " << iName << " = CallInst::Create("
   1452           << opNames[call->getNumArgOperands()] << ", \"";
   1453     }
   1454     printEscapedString(call->getName());
   1455     Out << "\", " << bbname << ");";
   1456     nl(Out) << iName << "->setCallingConv(";
   1457     printCallingConv(call->getCallingConv());
   1458     Out << ");";
   1459     nl(Out) << iName << "->setTailCall("
   1460         << (call->isTailCall() ? "true" : "false");
   1461     Out << ");";
   1462     nl(Out);
   1463     printAttributes(call->getAttributes(), iName);
   1464     Out << iName << "->setAttributes(" << iName << "_PAL);";
   1465     nl(Out);
   1466     break;
   1467   }
   1468   case Instruction::Select: {
   1469     const SelectInst* sel = cast<SelectInst>(I);
   1470     Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create(";
   1471     Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
   1472     printEscapedString(sel->getName());
   1473     Out << "\", " << bbname << ");";
   1474     break;
   1475   }
   1476   case Instruction::UserOp1:
   1477     /// FALL THROUGH
   1478   case Instruction::UserOp2: {
   1479     /// FIXME: What should be done here?
   1480     break;
   1481   }
   1482   case Instruction::VAArg: {
   1483     const VAArgInst* va = cast<VAArgInst>(I);
   1484     Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst("
   1485         << opNames[0] << ", " << getCppName(va->getType()) << ", \"";
   1486     printEscapedString(va->getName());
   1487     Out << "\", " << bbname << ");";
   1488     break;
   1489   }
   1490   case Instruction::ExtractElement: {
   1491     const ExtractElementInst* eei = cast<ExtractElementInst>(I);
   1492     Out << "ExtractElementInst* " << getCppName(eei)
   1493         << " = new ExtractElementInst(" << opNames[0]
   1494         << ", " << opNames[1] << ", \"";
   1495     printEscapedString(eei->getName());
   1496     Out << "\", " << bbname << ");";
   1497     break;
   1498   }
   1499   case Instruction::InsertElement: {
   1500     const InsertElementInst* iei = cast<InsertElementInst>(I);
   1501     Out << "InsertElementInst* " << getCppName(iei)
   1502         << " = InsertElementInst::Create(" << opNames[0]
   1503         << ", " << opNames[1] << ", " << opNames[2] << ", \"";
   1504     printEscapedString(iei->getName());
   1505     Out << "\", " << bbname << ");";
   1506     break;
   1507   }
   1508   case Instruction::ShuffleVector: {
   1509     const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
   1510     Out << "ShuffleVectorInst* " << getCppName(svi)
   1511         << " = new ShuffleVectorInst(" << opNames[0]
   1512         << ", " << opNames[1] << ", " << opNames[2] << ", \"";
   1513     printEscapedString(svi->getName());
   1514     Out << "\", " << bbname << ");";
   1515     break;
   1516   }
   1517   case Instruction::ExtractValue: {
   1518     const ExtractValueInst *evi = cast<ExtractValueInst>(I);
   1519     Out << "std::vector<unsigned> " << iName << "_indices;";
   1520     nl(Out);
   1521     for (unsigned i = 0; i < evi->getNumIndices(); ++i) {
   1522       Out << iName << "_indices.push_back("
   1523           << evi->idx_begin()[i] << ");";
   1524       nl(Out);
   1525     }
   1526     Out << "ExtractValueInst* " << getCppName(evi)
   1527         << " = ExtractValueInst::Create(" << opNames[0]
   1528         << ", "
   1529         << iName << "_indices, \"";
   1530     printEscapedString(evi->getName());
   1531     Out << "\", " << bbname << ");";
   1532     break;
   1533   }
   1534   case Instruction::InsertValue: {
   1535     const InsertValueInst *ivi = cast<InsertValueInst>(I);
   1536     Out << "std::vector<unsigned> " << iName << "_indices;";
   1537     nl(Out);
   1538     for (unsigned i = 0; i < ivi->getNumIndices(); ++i) {
   1539       Out << iName << "_indices.push_back("
   1540           << ivi->idx_begin()[i] << ");";
   1541       nl(Out);
   1542     }
   1543     Out << "InsertValueInst* " << getCppName(ivi)
   1544         << " = InsertValueInst::Create(" << opNames[0]
   1545         << ", " << opNames[1] << ", "
   1546         << iName << "_indices, \"";
   1547     printEscapedString(ivi->getName());
   1548     Out << "\", " << bbname << ");";
   1549     break;
   1550   }
   1551   case Instruction::Fence: {
   1552     const FenceInst *fi = cast<FenceInst>(I);
   1553     StringRef Ordering = ConvertAtomicOrdering(fi->getOrdering());
   1554     StringRef CrossThread = ConvertAtomicSynchScope(fi->getSynchScope());
   1555     Out << "FenceInst* " << iName
   1556         << " = new FenceInst(mod->getContext(), "
   1557         << Ordering << ", " << CrossThread << ", " << bbname
   1558         << ");";
   1559     break;
   1560   }
   1561   case Instruction::AtomicCmpXchg: {
   1562     const AtomicCmpXchgInst *cxi = cast<AtomicCmpXchgInst>(I);
   1563     StringRef SuccessOrdering =
   1564         ConvertAtomicOrdering(cxi->getSuccessOrdering());
   1565     StringRef FailureOrdering =
   1566         ConvertAtomicOrdering(cxi->getFailureOrdering());
   1567     StringRef CrossThread = ConvertAtomicSynchScope(cxi->getSynchScope());
   1568     Out << "AtomicCmpXchgInst* " << iName
   1569         << " = new AtomicCmpXchgInst("
   1570         << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", "
   1571         << SuccessOrdering << ", " << FailureOrdering << ", "
   1572         << CrossThread << ", " << bbname
   1573         << ");";
   1574     nl(Out) << iName << "->setName(\"";
   1575     printEscapedString(cxi->getName());
   1576     Out << "\");";
   1577     nl(Out) << iName << "->setVolatile("
   1578             << (cxi->isVolatile() ? "true" : "false") << ");";
   1579     nl(Out) << iName << "->setWeak("
   1580             << (cxi->isWeak() ? "true" : "false") << ");";
   1581     break;
   1582   }
   1583   case Instruction::AtomicRMW: {
   1584     const AtomicRMWInst *rmwi = cast<AtomicRMWInst>(I);
   1585     StringRef Ordering = ConvertAtomicOrdering(rmwi->getOrdering());
   1586     StringRef CrossThread = ConvertAtomicSynchScope(rmwi->getSynchScope());
   1587     StringRef Operation;
   1588     switch (rmwi->getOperation()) {
   1589       case AtomicRMWInst::Xchg: Operation = "AtomicRMWInst::Xchg"; break;
   1590       case AtomicRMWInst::Add:  Operation = "AtomicRMWInst::Add"; break;
   1591       case AtomicRMWInst::Sub:  Operation = "AtomicRMWInst::Sub"; break;
   1592       case AtomicRMWInst::And:  Operation = "AtomicRMWInst::And"; break;
   1593       case AtomicRMWInst::Nand: Operation = "AtomicRMWInst::Nand"; break;
   1594       case AtomicRMWInst::Or:   Operation = "AtomicRMWInst::Or"; break;
   1595       case AtomicRMWInst::Xor:  Operation = "AtomicRMWInst::Xor"; break;
   1596       case AtomicRMWInst::Max:  Operation = "AtomicRMWInst::Max"; break;
   1597       case AtomicRMWInst::Min:  Operation = "AtomicRMWInst::Min"; break;
   1598       case AtomicRMWInst::UMax: Operation = "AtomicRMWInst::UMax"; break;
   1599       case AtomicRMWInst::UMin: Operation = "AtomicRMWInst::UMin"; break;
   1600       case AtomicRMWInst::BAD_BINOP: llvm_unreachable("Bad atomic operation");
   1601     }
   1602     Out << "AtomicRMWInst* " << iName
   1603         << " = new AtomicRMWInst("
   1604         << Operation << ", "
   1605         << opNames[0] << ", " << opNames[1] << ", "
   1606         << Ordering << ", " << CrossThread << ", " << bbname
   1607         << ");";
   1608     nl(Out) << iName << "->setName(\"";
   1609     printEscapedString(rmwi->getName());
   1610     Out << "\");";
   1611     nl(Out) << iName << "->setVolatile("
   1612             << (rmwi->isVolatile() ? "true" : "false") << ");";
   1613     break;
   1614   }
   1615   case Instruction::LandingPad: {
   1616     const LandingPadInst *lpi = cast<LandingPadInst>(I);
   1617     Out << "LandingPadInst* " << iName << " = LandingPadInst::Create(";
   1618     printCppName(lpi->getType());
   1619     Out << ", " << opNames[0] << ", " << lpi->getNumClauses() << ", \"";
   1620     printEscapedString(lpi->getName());
   1621     Out << "\", " << bbname << ");";
   1622     nl(Out) << iName << "->setCleanup("
   1623             << (lpi->isCleanup() ? "true" : "false")
   1624             << ");";
   1625     for (unsigned i = 0, e = lpi->getNumClauses(); i != e; ++i)
   1626       nl(Out) << iName << "->addClause(" << opNames[i+1] << ");";
   1627     break;
   1628   }
   1629   }
   1630   DefinedValues.insert(I);
   1631   nl(Out);
   1632   delete [] opNames;
   1633 }
   1634 
   1635 // Print out the types, constants and declarations needed by one function
   1636 void CppWriter::printFunctionUses(const Function* F) {
   1637   nl(Out) << "// Type Definitions"; nl(Out);
   1638   if (!is_inline) {
   1639     // Print the function's return type
   1640     printType(F->getReturnType());
   1641 
   1642     // Print the function's function type
   1643     printType(F->getFunctionType());
   1644 
   1645     // Print the types of each of the function's arguments
   1646     for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
   1647          AI != AE; ++AI) {
   1648       printType(AI->getType());
   1649     }
   1650   }
   1651 
   1652   // Print type definitions for every type referenced by an instruction and
   1653   // make a note of any global values or constants that are referenced
   1654   SmallPtrSet<GlobalValue*,64> gvs;
   1655   SmallPtrSet<Constant*,64> consts;
   1656   for (Function::const_iterator BB = F->begin(), BE = F->end();
   1657        BB != BE; ++BB){
   1658     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
   1659          I != E; ++I) {
   1660       // Print the type of the instruction itself
   1661       printType(I->getType());
   1662 
   1663       // Print the type of each of the instruction's operands
   1664       for (unsigned i = 0; i < I->getNumOperands(); ++i) {
   1665         Value* operand = I->getOperand(i);
   1666         printType(operand->getType());
   1667 
   1668         // If the operand references a GVal or Constant, make a note of it
   1669         if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
   1670           gvs.insert(GV);
   1671           if (GenerationType != GenFunction)
   1672             if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
   1673               if (GVar->hasInitializer())
   1674                 consts.insert(GVar->getInitializer());
   1675         } else if (Constant* C = dyn_cast<Constant>(operand)) {
   1676           consts.insert(C);
   1677           for (Value* operand : C->operands()) {
   1678             // If the operand references a GVal or Constant, make a note of it
   1679             printType(operand->getType());
   1680             if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
   1681               gvs.insert(GV);
   1682               if (GenerationType != GenFunction)
   1683                 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
   1684                   if (GVar->hasInitializer())
   1685                     consts.insert(GVar->getInitializer());
   1686             }
   1687           }
   1688         }
   1689       }
   1690     }
   1691   }
   1692 
   1693   // Print the function declarations for any functions encountered
   1694   nl(Out) << "// Function Declarations"; nl(Out);
   1695   for (auto *GV : gvs) {
   1696     if (Function *Fun = dyn_cast<Function>(GV)) {
   1697       if (!is_inline || Fun != F)
   1698         printFunctionHead(Fun);
   1699     }
   1700   }
   1701 
   1702   // Print the global variable declarations for any variables encountered
   1703   nl(Out) << "// Global Variable Declarations"; nl(Out);
   1704   for (auto *GV : gvs) {
   1705     if (GlobalVariable *F = dyn_cast<GlobalVariable>(GV))
   1706       printVariableHead(F);
   1707   }
   1708 
   1709   // Print the constants found
   1710   nl(Out) << "// Constant Definitions"; nl(Out);
   1711   for (const auto *C : consts) {
   1712     printConstant(C);
   1713   }
   1714 
   1715   // Process the global variables definitions now that all the constants have
   1716   // been emitted. These definitions just couple the gvars with their constant
   1717   // initializers.
   1718   if (GenerationType != GenFunction) {
   1719     nl(Out) << "// Global Variable Definitions"; nl(Out);
   1720     for (auto *GV : gvs) {
   1721       if (GlobalVariable *Var = dyn_cast<GlobalVariable>(GV))
   1722         printVariableBody(Var);
   1723     }
   1724   }
   1725 }
   1726 
   1727 void CppWriter::printFunctionHead(const Function* F) {
   1728   nl(Out) << "Function* " << getCppName(F);
   1729   Out << " = mod->getFunction(\"";
   1730   printEscapedString(F->getName());
   1731   Out << "\");";
   1732   nl(Out) << "if (!" << getCppName(F) << ") {";
   1733   nl(Out) << getCppName(F);
   1734 
   1735   Out<< " = Function::Create(";
   1736   nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ",";
   1737   nl(Out) << "/*Linkage=*/";
   1738   printLinkageType(F->getLinkage());
   1739   Out << ",";
   1740   nl(Out) << "/*Name=*/\"";
   1741   printEscapedString(F->getName());
   1742   Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : "");
   1743   nl(Out,-1);
   1744   printCppName(F);
   1745   Out << "->setCallingConv(";
   1746   printCallingConv(F->getCallingConv());
   1747   Out << ");";
   1748   nl(Out);
   1749   if (F->hasSection()) {
   1750     printCppName(F);
   1751     Out << "->setSection(\"" << F->getSection() << "\");";
   1752     nl(Out);
   1753   }
   1754   if (F->getAlignment()) {
   1755     printCppName(F);
   1756     Out << "->setAlignment(" << F->getAlignment() << ");";
   1757     nl(Out);
   1758   }
   1759   if (F->getVisibility() != GlobalValue::DefaultVisibility) {
   1760     printCppName(F);
   1761     Out << "->setVisibility(";
   1762     printVisibilityType(F->getVisibility());
   1763     Out << ");";
   1764     nl(Out);
   1765   }
   1766   if (F->getDLLStorageClass() != GlobalValue::DefaultStorageClass) {
   1767     printCppName(F);
   1768     Out << "->setDLLStorageClass(";
   1769     printDLLStorageClassType(F->getDLLStorageClass());
   1770     Out << ");";
   1771     nl(Out);
   1772   }
   1773   if (F->hasGC()) {
   1774     printCppName(F);
   1775     Out << "->setGC(\"" << F->getGC() << "\");";
   1776     nl(Out);
   1777   }
   1778   Out << "}";
   1779   nl(Out);
   1780   printAttributes(F->getAttributes(), getCppName(F));
   1781   printCppName(F);
   1782   Out << "->setAttributes(" << getCppName(F) << "_PAL);";
   1783   nl(Out);
   1784 }
   1785 
   1786 void CppWriter::printFunctionBody(const Function *F) {
   1787   if (F->isDeclaration())
   1788     return; // external functions have no bodies.
   1789 
   1790   // Clear the DefinedValues and ForwardRefs maps because we can't have
   1791   // cross-function forward refs
   1792   ForwardRefs.clear();
   1793   DefinedValues.clear();
   1794 
   1795   // Create all the argument values
   1796   if (!is_inline) {
   1797     if (!F->arg_empty()) {
   1798       Out << "Function::arg_iterator args = " << getCppName(F)
   1799           << "->arg_begin();";
   1800       nl(Out);
   1801     }
   1802     for (const Argument &AI : F->args()) {
   1803       Out << "Value* " << getCppName(&AI) << " = args++;";
   1804       nl(Out);
   1805       if (AI.hasName()) {
   1806         Out << getCppName(&AI) << "->setName(\"";
   1807         printEscapedString(AI.getName());
   1808         Out << "\");";
   1809         nl(Out);
   1810       }
   1811     }
   1812   }
   1813 
   1814   // Create all the basic blocks
   1815   nl(Out);
   1816   for (const BasicBlock &BI : *F) {
   1817     std::string bbname(getCppName(&BI));
   1818     Out << "BasicBlock* " << bbname <<
   1819            " = BasicBlock::Create(mod->getContext(), \"";
   1820     if (BI.hasName())
   1821       printEscapedString(BI.getName());
   1822     Out << "\"," << getCppName(BI.getParent()) << ",0);";
   1823     nl(Out);
   1824   }
   1825 
   1826   // Output all of its basic blocks... for the function
   1827   for (const BasicBlock &BI : *F) {
   1828     std::string bbname(getCppName(&BI));
   1829     nl(Out) << "// Block " << BI.getName() << " (" << bbname << ")";
   1830     nl(Out);
   1831 
   1832     // Output all of the instructions in the basic block...
   1833     for (const Instruction &I : BI)
   1834       printInstruction(&I, bbname);
   1835   }
   1836 
   1837   // Loop over the ForwardRefs and resolve them now that all instructions
   1838   // are generated.
   1839   if (!ForwardRefs.empty()) {
   1840     nl(Out) << "// Resolve Forward References";
   1841     nl(Out);
   1842   }
   1843 
   1844   while (!ForwardRefs.empty()) {
   1845     ForwardRefMap::iterator I = ForwardRefs.begin();
   1846     Out << I->second << "->replaceAllUsesWith("
   1847         << getCppName(I->first) << "); delete " << I->second << ";";
   1848     nl(Out);
   1849     ForwardRefs.erase(I);
   1850   }
   1851 }
   1852 
   1853 void CppWriter::printInline(const std::string& fname,
   1854                             const std::string& func) {
   1855   const Function* F = TheModule->getFunction(func);
   1856   if (!F) {
   1857     error(std::string("Function '") + func + "' not found in input module");
   1858     return;
   1859   }
   1860   if (F->isDeclaration()) {
   1861     error(std::string("Function '") + func + "' is external!");
   1862     return;
   1863   }
   1864   nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *"
   1865           << getCppName(F);
   1866   unsigned arg_count = 1;
   1867   for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
   1868        AI != AE; ++AI) {
   1869     Out << ", Value* arg_" << arg_count++;
   1870   }
   1871   Out << ") {";
   1872   nl(Out);
   1873   is_inline = true;
   1874   printFunctionUses(F);
   1875   printFunctionBody(F);
   1876   is_inline = false;
   1877   Out << "return " << getCppName(&F->front()) << ";";
   1878   nl(Out) << "}";
   1879   nl(Out);
   1880 }
   1881 
   1882 void CppWriter::printModuleBody() {
   1883   // Print out all the type definitions
   1884   nl(Out) << "// Type Definitions"; nl(Out);
   1885   printTypes(TheModule);
   1886 
   1887   // Functions can call each other and global variables can reference them so
   1888   // define all the functions first before emitting their function bodies.
   1889   nl(Out) << "// Function Declarations"; nl(Out);
   1890   for (const Function &I : *TheModule)
   1891     printFunctionHead(&I);
   1892 
   1893   // Process the global variables declarations. We can't initialze them until
   1894   // after the constants are printed so just print a header for each global
   1895   nl(Out) << "// Global Variable Declarations\n"; nl(Out);
   1896   for (const GlobalVariable &I : TheModule->globals())
   1897     printVariableHead(&I);
   1898 
   1899   // Print out all the constants definitions. Constants don't recurse except
   1900   // through GlobalValues. All GlobalValues have been declared at this point
   1901   // so we can proceed to generate the constants.
   1902   nl(Out) << "// Constant Definitions"; nl(Out);
   1903   printConstants(TheModule);
   1904 
   1905   // Process the global variables definitions now that all the constants have
   1906   // been emitted. These definitions just couple the gvars with their constant
   1907   // initializers.
   1908   nl(Out) << "// Global Variable Definitions"; nl(Out);
   1909   for (const GlobalVariable &I : TheModule->globals())
   1910     printVariableBody(&I);
   1911 
   1912   // Finally, we can safely put out all of the function bodies.
   1913   nl(Out) << "// Function Definitions"; nl(Out);
   1914   for (const Function &I : *TheModule) {
   1915     if (!I.isDeclaration()) {
   1916       nl(Out) << "// Function: " << I.getName() << " (" << getCppName(&I)
   1917               << ")";
   1918       nl(Out) << "{";
   1919       nl(Out,1);
   1920       printFunctionBody(&I);
   1921       nl(Out,-1) << "}";
   1922       nl(Out);
   1923     }
   1924   }
   1925 }
   1926 
   1927 void CppWriter::printProgram(const std::string& fname,
   1928                              const std::string& mName) {
   1929   Out << "#include <llvm/Pass.h>\n";
   1930 
   1931   Out << "#include <llvm/ADT/SmallVector.h>\n";
   1932   Out << "#include <llvm/Analysis/Verifier.h>\n";
   1933   Out << "#include <llvm/IR/BasicBlock.h>\n";
   1934   Out << "#include <llvm/IR/CallingConv.h>\n";
   1935   Out << "#include <llvm/IR/Constants.h>\n";
   1936   Out << "#include <llvm/IR/DerivedTypes.h>\n";
   1937   Out << "#include <llvm/IR/Function.h>\n";
   1938   Out << "#include <llvm/IR/GlobalVariable.h>\n";
   1939   Out << "#include <llvm/IR/IRPrintingPasses.h>\n";
   1940   Out << "#include <llvm/IR/InlineAsm.h>\n";
   1941   Out << "#include <llvm/IR/Instructions.h>\n";
   1942   Out << "#include <llvm/IR/LLVMContext.h>\n";
   1943   Out << "#include <llvm/IR/LegacyPassManager.h>\n";
   1944   Out << "#include <llvm/IR/Module.h>\n";
   1945   Out << "#include <llvm/Support/FormattedStream.h>\n";
   1946   Out << "#include <llvm/Support/MathExtras.h>\n";
   1947   Out << "#include <algorithm>\n";
   1948   Out << "using namespace llvm;\n\n";
   1949   Out << "Module* " << fname << "();\n\n";
   1950   Out << "int main(int argc, char**argv) {\n";
   1951   Out << "  Module* Mod = " << fname << "();\n";
   1952   Out << "  verifyModule(*Mod, PrintMessageAction);\n";
   1953   Out << "  PassManager PM;\n";
   1954   Out << "  PM.add(createPrintModulePass(&outs()));\n";
   1955   Out << "  PM.run(*Mod);\n";
   1956   Out << "  return 0;\n";
   1957   Out << "}\n\n";
   1958   printModule(fname,mName);
   1959 }
   1960 
   1961 void CppWriter::printModule(const std::string& fname,
   1962                             const std::string& mName) {
   1963   nl(Out) << "Module* " << fname << "() {";
   1964   nl(Out,1) << "// Module Construction";
   1965   nl(Out) << "Module* mod = new Module(\"";
   1966   printEscapedString(mName);
   1967   Out << "\", getGlobalContext());";
   1968   if (!TheModule->getTargetTriple().empty()) {
   1969     nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayoutStr()
   1970             << "\");";
   1971   }
   1972   if (!TheModule->getTargetTriple().empty()) {
   1973     nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple()
   1974             << "\");";
   1975   }
   1976 
   1977   if (!TheModule->getModuleInlineAsm().empty()) {
   1978     nl(Out) << "mod->setModuleInlineAsm(\"";
   1979     printEscapedString(TheModule->getModuleInlineAsm());
   1980     Out << "\");";
   1981   }
   1982   nl(Out);
   1983 
   1984   printModuleBody();
   1985   nl(Out) << "return mod;";
   1986   nl(Out,-1) << "}";
   1987   nl(Out);
   1988 }
   1989 
   1990 void CppWriter::printContents(const std::string& fname,
   1991                               const std::string& mName) {
   1992   Out << "\nModule* " << fname << "(Module *mod) {\n";
   1993   Out << "\nmod->setModuleIdentifier(\"";
   1994   printEscapedString(mName);
   1995   Out << "\");\n";
   1996   printModuleBody();
   1997   Out << "\nreturn mod;\n";
   1998   Out << "\n}\n";
   1999 }
   2000 
   2001 void CppWriter::printFunction(const std::string& fname,
   2002                               const std::string& funcName) {
   2003   const Function* F = TheModule->getFunction(funcName);
   2004   if (!F) {
   2005     error(std::string("Function '") + funcName + "' not found in input module");
   2006     return;
   2007   }
   2008   Out << "\nFunction* " << fname << "(Module *mod) {\n";
   2009   printFunctionUses(F);
   2010   printFunctionHead(F);
   2011   printFunctionBody(F);
   2012   Out << "return " << getCppName(F) << ";\n";
   2013   Out << "}\n";
   2014 }
   2015 
   2016 void CppWriter::printFunctions() {
   2017   const Module::FunctionListType &funcs = TheModule->getFunctionList();
   2018   Module::const_iterator I  = funcs.begin();
   2019   Module::const_iterator IE = funcs.end();
   2020 
   2021   for (; I != IE; ++I) {
   2022     const Function &func = *I;
   2023     if (!func.isDeclaration()) {
   2024       std::string name("define_");
   2025       name += func.getName();
   2026       printFunction(name, func.getName());
   2027     }
   2028   }
   2029 }
   2030 
   2031 void CppWriter::printVariable(const std::string& fname,
   2032                               const std::string& varName) {
   2033   const GlobalVariable* GV = TheModule->getNamedGlobal(varName);
   2034 
   2035   if (!GV) {
   2036     error(std::string("Variable '") + varName + "' not found in input module");
   2037     return;
   2038   }
   2039   Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n";
   2040   printVariableUses(GV);
   2041   printVariableHead(GV);
   2042   printVariableBody(GV);
   2043   Out << "return " << getCppName(GV) << ";\n";
   2044   Out << "}\n";
   2045 }
   2046 
   2047 void CppWriter::printType(const std::string &fname,
   2048                           const std::string &typeName) {
   2049   Type* Ty = TheModule->getTypeByName(typeName);
   2050   if (!Ty) {
   2051     error(std::string("Type '") + typeName + "' not found in input module");
   2052     return;
   2053   }
   2054   Out << "\nType* " << fname << "(Module *mod) {\n";
   2055   printType(Ty);
   2056   Out << "return " << getCppName(Ty) << ";\n";
   2057   Out << "}\n";
   2058 }
   2059 
   2060 bool CppWriter::runOnModule(Module &M) {
   2061   TheModule = &M;
   2062 
   2063   // Emit a header
   2064   Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
   2065 
   2066   // Get the name of the function we're supposed to generate
   2067   std::string fname = FuncName.getValue();
   2068 
   2069   // Get the name of the thing we are to generate
   2070   std::string tgtname = NameToGenerate.getValue();
   2071   if (GenerationType == GenModule ||
   2072       GenerationType == GenContents ||
   2073       GenerationType == GenProgram ||
   2074       GenerationType == GenFunctions) {
   2075     if (tgtname == "!bad!") {
   2076       if (M.getModuleIdentifier() == "-")
   2077         tgtname = "<stdin>";
   2078       else
   2079         tgtname = M.getModuleIdentifier();
   2080     }
   2081   } else if (tgtname == "!bad!")
   2082     error("You must use the -for option with -gen-{function,variable,type}");
   2083 
   2084   switch (WhatToGenerate(GenerationType)) {
   2085    case GenProgram:
   2086     if (fname.empty())
   2087       fname = "makeLLVMModule";
   2088     printProgram(fname,tgtname);
   2089     break;
   2090    case GenModule:
   2091     if (fname.empty())
   2092       fname = "makeLLVMModule";
   2093     printModule(fname,tgtname);
   2094     break;
   2095    case GenContents:
   2096     if (fname.empty())
   2097       fname = "makeLLVMModuleContents";
   2098     printContents(fname,tgtname);
   2099     break;
   2100    case GenFunction:
   2101     if (fname.empty())
   2102       fname = "makeLLVMFunction";
   2103     printFunction(fname,tgtname);
   2104     break;
   2105    case GenFunctions:
   2106     printFunctions();
   2107     break;
   2108    case GenInline:
   2109     if (fname.empty())
   2110       fname = "makeLLVMInline";
   2111     printInline(fname,tgtname);
   2112     break;
   2113    case GenVariable:
   2114     if (fname.empty())
   2115       fname = "makeLLVMVariable";
   2116     printVariable(fname,tgtname);
   2117     break;
   2118    case GenType:
   2119     if (fname.empty())
   2120       fname = "makeLLVMType";
   2121     printType(fname,tgtname);
   2122     break;
   2123   }
   2124 
   2125   return false;
   2126 }
   2127 
   2128 char CppWriter::ID = 0;
   2129 
   2130 //===----------------------------------------------------------------------===//
   2131 //                       External Interface declaration
   2132 //===----------------------------------------------------------------------===//
   2133 
   2134 bool CPPTargetMachine::addPassesToEmitFile(
   2135     PassManagerBase &PM, raw_pwrite_stream &o, CodeGenFileType FileType,
   2136     bool DisableVerify, AnalysisID StartBefore, AnalysisID StartAfter,
   2137     AnalysisID StopAfter, MachineFunctionInitializer *MFInitializer) {
   2138   if (FileType != TargetMachine::CGFT_AssemblyFile)
   2139     return true;
   2140   auto FOut = llvm::make_unique<formatted_raw_ostream>(o);
   2141   PM.add(new CppWriter(std::move(FOut)));
   2142   return false;
   2143 }
   2144