Home | History | Annotate | Download | only in Sema
      1 //===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements name lookup for C, C++, Objective-C, and
     11 //  Objective-C++.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "clang/Sema/Lookup.h"
     16 #include "clang/AST/ASTContext.h"
     17 #include "clang/AST/ASTMutationListener.h"
     18 #include "clang/AST/CXXInheritance.h"
     19 #include "clang/AST/Decl.h"
     20 #include "clang/AST/DeclCXX.h"
     21 #include "clang/AST/DeclLookups.h"
     22 #include "clang/AST/DeclObjC.h"
     23 #include "clang/AST/DeclTemplate.h"
     24 #include "clang/AST/Expr.h"
     25 #include "clang/AST/ExprCXX.h"
     26 #include "clang/Basic/Builtins.h"
     27 #include "clang/Basic/LangOptions.h"
     28 #include "clang/Lex/HeaderSearch.h"
     29 #include "clang/Lex/ModuleLoader.h"
     30 #include "clang/Lex/Preprocessor.h"
     31 #include "clang/Sema/DeclSpec.h"
     32 #include "clang/Sema/ExternalSemaSource.h"
     33 #include "clang/Sema/Overload.h"
     34 #include "clang/Sema/Scope.h"
     35 #include "clang/Sema/ScopeInfo.h"
     36 #include "clang/Sema/Sema.h"
     37 #include "clang/Sema/SemaInternal.h"
     38 #include "clang/Sema/TemplateDeduction.h"
     39 #include "clang/Sema/TypoCorrection.h"
     40 #include "llvm/ADT/STLExtras.h"
     41 #include "llvm/ADT/SetVector.h"
     42 #include "llvm/ADT/SmallPtrSet.h"
     43 #include "llvm/ADT/StringMap.h"
     44 #include "llvm/ADT/TinyPtrVector.h"
     45 #include "llvm/ADT/edit_distance.h"
     46 #include "llvm/Support/ErrorHandling.h"
     47 #include <algorithm>
     48 #include <iterator>
     49 #include <limits>
     50 #include <list>
     51 #include <map>
     52 #include <set>
     53 #include <utility>
     54 #include <vector>
     55 
     56 using namespace clang;
     57 using namespace sema;
     58 
     59 namespace {
     60   class UnqualUsingEntry {
     61     const DeclContext *Nominated;
     62     const DeclContext *CommonAncestor;
     63 
     64   public:
     65     UnqualUsingEntry(const DeclContext *Nominated,
     66                      const DeclContext *CommonAncestor)
     67       : Nominated(Nominated), CommonAncestor(CommonAncestor) {
     68     }
     69 
     70     const DeclContext *getCommonAncestor() const {
     71       return CommonAncestor;
     72     }
     73 
     74     const DeclContext *getNominatedNamespace() const {
     75       return Nominated;
     76     }
     77 
     78     // Sort by the pointer value of the common ancestor.
     79     struct Comparator {
     80       bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
     81         return L.getCommonAncestor() < R.getCommonAncestor();
     82       }
     83 
     84       bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
     85         return E.getCommonAncestor() < DC;
     86       }
     87 
     88       bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
     89         return DC < E.getCommonAncestor();
     90       }
     91     };
     92   };
     93 
     94   /// A collection of using directives, as used by C++ unqualified
     95   /// lookup.
     96   class UnqualUsingDirectiveSet {
     97     typedef SmallVector<UnqualUsingEntry, 8> ListTy;
     98 
     99     ListTy list;
    100     llvm::SmallPtrSet<DeclContext*, 8> visited;
    101 
    102   public:
    103     UnqualUsingDirectiveSet() {}
    104 
    105     void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
    106       // C++ [namespace.udir]p1:
    107       //   During unqualified name lookup, the names appear as if they
    108       //   were declared in the nearest enclosing namespace which contains
    109       //   both the using-directive and the nominated namespace.
    110       DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
    111       assert(InnermostFileDC && InnermostFileDC->isFileContext());
    112 
    113       for (; S; S = S->getParent()) {
    114         // C++ [namespace.udir]p1:
    115         //   A using-directive shall not appear in class scope, but may
    116         //   appear in namespace scope or in block scope.
    117         DeclContext *Ctx = S->getEntity();
    118         if (Ctx && Ctx->isFileContext()) {
    119           visit(Ctx, Ctx);
    120         } else if (!Ctx || Ctx->isFunctionOrMethod()) {
    121           for (auto *I : S->using_directives())
    122             visit(I, InnermostFileDC);
    123         }
    124       }
    125     }
    126 
    127     // Visits a context and collect all of its using directives
    128     // recursively.  Treats all using directives as if they were
    129     // declared in the context.
    130     //
    131     // A given context is only every visited once, so it is important
    132     // that contexts be visited from the inside out in order to get
    133     // the effective DCs right.
    134     void visit(DeclContext *DC, DeclContext *EffectiveDC) {
    135       if (!visited.insert(DC).second)
    136         return;
    137 
    138       addUsingDirectives(DC, EffectiveDC);
    139     }
    140 
    141     // Visits a using directive and collects all of its using
    142     // directives recursively.  Treats all using directives as if they
    143     // were declared in the effective DC.
    144     void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
    145       DeclContext *NS = UD->getNominatedNamespace();
    146       if (!visited.insert(NS).second)
    147         return;
    148 
    149       addUsingDirective(UD, EffectiveDC);
    150       addUsingDirectives(NS, EffectiveDC);
    151     }
    152 
    153     // Adds all the using directives in a context (and those nominated
    154     // by its using directives, transitively) as if they appeared in
    155     // the given effective context.
    156     void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
    157       SmallVector<DeclContext*, 4> queue;
    158       while (true) {
    159         for (auto UD : DC->using_directives()) {
    160           DeclContext *NS = UD->getNominatedNamespace();
    161           if (visited.insert(NS).second) {
    162             addUsingDirective(UD, EffectiveDC);
    163             queue.push_back(NS);
    164           }
    165         }
    166 
    167         if (queue.empty())
    168           return;
    169 
    170         DC = queue.pop_back_val();
    171       }
    172     }
    173 
    174     // Add a using directive as if it had been declared in the given
    175     // context.  This helps implement C++ [namespace.udir]p3:
    176     //   The using-directive is transitive: if a scope contains a
    177     //   using-directive that nominates a second namespace that itself
    178     //   contains using-directives, the effect is as if the
    179     //   using-directives from the second namespace also appeared in
    180     //   the first.
    181     void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
    182       // Find the common ancestor between the effective context and
    183       // the nominated namespace.
    184       DeclContext *Common = UD->getNominatedNamespace();
    185       while (!Common->Encloses(EffectiveDC))
    186         Common = Common->getParent();
    187       Common = Common->getPrimaryContext();
    188 
    189       list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
    190     }
    191 
    192     void done() {
    193       std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
    194     }
    195 
    196     typedef ListTy::const_iterator const_iterator;
    197 
    198     const_iterator begin() const { return list.begin(); }
    199     const_iterator end() const { return list.end(); }
    200 
    201     llvm::iterator_range<const_iterator>
    202     getNamespacesFor(DeclContext *DC) const {
    203       return llvm::make_range(std::equal_range(begin(), end(),
    204                                                DC->getPrimaryContext(),
    205                                                UnqualUsingEntry::Comparator()));
    206     }
    207   };
    208 } // end anonymous namespace
    209 
    210 // Retrieve the set of identifier namespaces that correspond to a
    211 // specific kind of name lookup.
    212 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
    213                                bool CPlusPlus,
    214                                bool Redeclaration) {
    215   unsigned IDNS = 0;
    216   switch (NameKind) {
    217   case Sema::LookupObjCImplicitSelfParam:
    218   case Sema::LookupOrdinaryName:
    219   case Sema::LookupRedeclarationWithLinkage:
    220   case Sema::LookupLocalFriendName:
    221     IDNS = Decl::IDNS_Ordinary;
    222     if (CPlusPlus) {
    223       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
    224       if (Redeclaration)
    225         IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
    226     }
    227     if (Redeclaration)
    228       IDNS |= Decl::IDNS_LocalExtern;
    229     break;
    230 
    231   case Sema::LookupOperatorName:
    232     // Operator lookup is its own crazy thing;  it is not the same
    233     // as (e.g.) looking up an operator name for redeclaration.
    234     assert(!Redeclaration && "cannot do redeclaration operator lookup");
    235     IDNS = Decl::IDNS_NonMemberOperator;
    236     break;
    237 
    238   case Sema::LookupTagName:
    239     if (CPlusPlus) {
    240       IDNS = Decl::IDNS_Type;
    241 
    242       // When looking for a redeclaration of a tag name, we add:
    243       // 1) TagFriend to find undeclared friend decls
    244       // 2) Namespace because they can't "overload" with tag decls.
    245       // 3) Tag because it includes class templates, which can't
    246       //    "overload" with tag decls.
    247       if (Redeclaration)
    248         IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
    249     } else {
    250       IDNS = Decl::IDNS_Tag;
    251     }
    252     break;
    253 
    254   case Sema::LookupLabel:
    255     IDNS = Decl::IDNS_Label;
    256     break;
    257 
    258   case Sema::LookupMemberName:
    259     IDNS = Decl::IDNS_Member;
    260     if (CPlusPlus)
    261       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
    262     break;
    263 
    264   case Sema::LookupNestedNameSpecifierName:
    265     IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
    266     break;
    267 
    268   case Sema::LookupNamespaceName:
    269     IDNS = Decl::IDNS_Namespace;
    270     break;
    271 
    272   case Sema::LookupUsingDeclName:
    273     assert(Redeclaration && "should only be used for redecl lookup");
    274     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
    275            Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
    276            Decl::IDNS_LocalExtern;
    277     break;
    278 
    279   case Sema::LookupObjCProtocolName:
    280     IDNS = Decl::IDNS_ObjCProtocol;
    281     break;
    282 
    283   case Sema::LookupAnyName:
    284     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
    285       | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
    286       | Decl::IDNS_Type;
    287     break;
    288   }
    289   return IDNS;
    290 }
    291 
    292 void LookupResult::configure() {
    293   IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
    294                  isForRedeclaration());
    295 
    296   // If we're looking for one of the allocation or deallocation
    297   // operators, make sure that the implicitly-declared new and delete
    298   // operators can be found.
    299   switch (NameInfo.getName().getCXXOverloadedOperator()) {
    300   case OO_New:
    301   case OO_Delete:
    302   case OO_Array_New:
    303   case OO_Array_Delete:
    304     getSema().DeclareGlobalNewDelete();
    305     break;
    306 
    307   default:
    308     break;
    309   }
    310 
    311   // Compiler builtins are always visible, regardless of where they end
    312   // up being declared.
    313   if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
    314     if (unsigned BuiltinID = Id->getBuiltinID()) {
    315       if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
    316         AllowHidden = true;
    317     }
    318   }
    319 }
    320 
    321 bool LookupResult::sanity() const {
    322   // This function is never called by NDEBUG builds.
    323   assert(ResultKind != NotFound || Decls.size() == 0);
    324   assert(ResultKind != Found || Decls.size() == 1);
    325   assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
    326          (Decls.size() == 1 &&
    327           isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
    328   assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
    329   assert(ResultKind != Ambiguous || Decls.size() > 1 ||
    330          (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
    331                                 Ambiguity == AmbiguousBaseSubobjectTypes)));
    332   assert((Paths != nullptr) == (ResultKind == Ambiguous &&
    333                                 (Ambiguity == AmbiguousBaseSubobjectTypes ||
    334                                  Ambiguity == AmbiguousBaseSubobjects)));
    335   return true;
    336 }
    337 
    338 // Necessary because CXXBasePaths is not complete in Sema.h
    339 void LookupResult::deletePaths(CXXBasePaths *Paths) {
    340   delete Paths;
    341 }
    342 
    343 /// Get a representative context for a declaration such that two declarations
    344 /// will have the same context if they were found within the same scope.
    345 static DeclContext *getContextForScopeMatching(Decl *D) {
    346   // For function-local declarations, use that function as the context. This
    347   // doesn't account for scopes within the function; the caller must deal with
    348   // those.
    349   DeclContext *DC = D->getLexicalDeclContext();
    350   if (DC->isFunctionOrMethod())
    351     return DC;
    352 
    353   // Otherwise, look at the semantic context of the declaration. The
    354   // declaration must have been found there.
    355   return D->getDeclContext()->getRedeclContext();
    356 }
    357 
    358 /// \brief Determine whether \p D is a better lookup result than \p Existing,
    359 /// given that they declare the same entity.
    360 static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
    361                                     NamedDecl *D, NamedDecl *Existing) {
    362   // When looking up redeclarations of a using declaration, prefer a using
    363   // shadow declaration over any other declaration of the same entity.
    364   if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
    365       !isa<UsingShadowDecl>(Existing))
    366     return true;
    367 
    368   auto *DUnderlying = D->getUnderlyingDecl();
    369   auto *EUnderlying = Existing->getUnderlyingDecl();
    370 
    371   // If they have different underlying declarations, prefer a typedef over the
    372   // original type (this happens when two type declarations denote the same
    373   // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
    374   // might carry additional semantic information, such as an alignment override.
    375   // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
    376   // declaration over a typedef.
    377   if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
    378     assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
    379     bool HaveTag = isa<TagDecl>(EUnderlying);
    380     bool WantTag = Kind == Sema::LookupTagName;
    381     return HaveTag != WantTag;
    382   }
    383 
    384   // Pick the function with more default arguments.
    385   // FIXME: In the presence of ambiguous default arguments, we should keep both,
    386   //        so we can diagnose the ambiguity if the default argument is needed.
    387   //        See C++ [over.match.best]p3.
    388   if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
    389     auto *EFD = cast<FunctionDecl>(EUnderlying);
    390     unsigned DMin = DFD->getMinRequiredArguments();
    391     unsigned EMin = EFD->getMinRequiredArguments();
    392     // If D has more default arguments, it is preferred.
    393     if (DMin != EMin)
    394       return DMin < EMin;
    395     // FIXME: When we track visibility for default function arguments, check
    396     // that we pick the declaration with more visible default arguments.
    397   }
    398 
    399   // Pick the template with more default template arguments.
    400   if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
    401     auto *ETD = cast<TemplateDecl>(EUnderlying);
    402     unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
    403     unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
    404     // If D has more default arguments, it is preferred. Note that default
    405     // arguments (and their visibility) is monotonically increasing across the
    406     // redeclaration chain, so this is a quick proxy for "is more recent".
    407     if (DMin != EMin)
    408       return DMin < EMin;
    409     // If D has more *visible* default arguments, it is preferred. Note, an
    410     // earlier default argument being visible does not imply that a later
    411     // default argument is visible, so we can't just check the first one.
    412     for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
    413         I != N; ++I) {
    414       if (!S.hasVisibleDefaultArgument(
    415               ETD->getTemplateParameters()->getParam(I)) &&
    416           S.hasVisibleDefaultArgument(
    417               DTD->getTemplateParameters()->getParam(I)))
    418         return true;
    419     }
    420   }
    421 
    422   // For most kinds of declaration, it doesn't really matter which one we pick.
    423   if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
    424     // If the existing declaration is hidden, prefer the new one. Otherwise,
    425     // keep what we've got.
    426     return !S.isVisible(Existing);
    427   }
    428 
    429   // Pick the newer declaration; it might have a more precise type.
    430   for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
    431        Prev = Prev->getPreviousDecl())
    432     if (Prev == EUnderlying)
    433       return true;
    434   return false;
    435 
    436   // If the existing declaration is hidden, prefer the new one. Otherwise,
    437   // keep what we've got.
    438   return !S.isVisible(Existing);
    439 }
    440 
    441 /// Determine whether \p D can hide a tag declaration.
    442 static bool canHideTag(NamedDecl *D) {
    443   // C++ [basic.scope.declarative]p4:
    444   //   Given a set of declarations in a single declarative region [...]
    445   //   exactly one declaration shall declare a class name or enumeration name
    446   //   that is not a typedef name and the other declarations shall all refer to
    447   //   the same variable or enumerator, or all refer to functions and function
    448   //   templates; in this case the class name or enumeration name is hidden.
    449   // C++ [basic.scope.hiding]p2:
    450   //   A class name or enumeration name can be hidden by the name of a
    451   //   variable, data member, function, or enumerator declared in the same
    452   //   scope.
    453   D = D->getUnderlyingDecl();
    454   return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
    455          isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D);
    456 }
    457 
    458 /// Resolves the result kind of this lookup.
    459 void LookupResult::resolveKind() {
    460   unsigned N = Decls.size();
    461 
    462   // Fast case: no possible ambiguity.
    463   if (N == 0) {
    464     assert(ResultKind == NotFound ||
    465            ResultKind == NotFoundInCurrentInstantiation);
    466     return;
    467   }
    468 
    469   // If there's a single decl, we need to examine it to decide what
    470   // kind of lookup this is.
    471   if (N == 1) {
    472     NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
    473     if (isa<FunctionTemplateDecl>(D))
    474       ResultKind = FoundOverloaded;
    475     else if (isa<UnresolvedUsingValueDecl>(D))
    476       ResultKind = FoundUnresolvedValue;
    477     return;
    478   }
    479 
    480   // Don't do any extra resolution if we've already resolved as ambiguous.
    481   if (ResultKind == Ambiguous) return;
    482 
    483   llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
    484   llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
    485 
    486   bool Ambiguous = false;
    487   bool HasTag = false, HasFunction = false;
    488   bool HasFunctionTemplate = false, HasUnresolved = false;
    489   NamedDecl *HasNonFunction = nullptr;
    490 
    491   llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
    492 
    493   unsigned UniqueTagIndex = 0;
    494 
    495   unsigned I = 0;
    496   while (I < N) {
    497     NamedDecl *D = Decls[I]->getUnderlyingDecl();
    498     D = cast<NamedDecl>(D->getCanonicalDecl());
    499 
    500     // Ignore an invalid declaration unless it's the only one left.
    501     if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
    502       Decls[I] = Decls[--N];
    503       continue;
    504     }
    505 
    506     llvm::Optional<unsigned> ExistingI;
    507 
    508     // Redeclarations of types via typedef can occur both within a scope
    509     // and, through using declarations and directives, across scopes. There is
    510     // no ambiguity if they all refer to the same type, so unique based on the
    511     // canonical type.
    512     if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
    513       QualType T = getSema().Context.getTypeDeclType(TD);
    514       auto UniqueResult = UniqueTypes.insert(
    515           std::make_pair(getSema().Context.getCanonicalType(T), I));
    516       if (!UniqueResult.second) {
    517         // The type is not unique.
    518         ExistingI = UniqueResult.first->second;
    519       }
    520     }
    521 
    522     // For non-type declarations, check for a prior lookup result naming this
    523     // canonical declaration.
    524     if (!ExistingI) {
    525       auto UniqueResult = Unique.insert(std::make_pair(D, I));
    526       if (!UniqueResult.second) {
    527         // We've seen this entity before.
    528         ExistingI = UniqueResult.first->second;
    529       }
    530     }
    531 
    532     if (ExistingI) {
    533       // This is not a unique lookup result. Pick one of the results and
    534       // discard the other.
    535       if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
    536                                   Decls[*ExistingI]))
    537         Decls[*ExistingI] = Decls[I];
    538       Decls[I] = Decls[--N];
    539       continue;
    540     }
    541 
    542     // Otherwise, do some decl type analysis and then continue.
    543 
    544     if (isa<UnresolvedUsingValueDecl>(D)) {
    545       HasUnresolved = true;
    546     } else if (isa<TagDecl>(D)) {
    547       if (HasTag)
    548         Ambiguous = true;
    549       UniqueTagIndex = I;
    550       HasTag = true;
    551     } else if (isa<FunctionTemplateDecl>(D)) {
    552       HasFunction = true;
    553       HasFunctionTemplate = true;
    554     } else if (isa<FunctionDecl>(D)) {
    555       HasFunction = true;
    556     } else {
    557       if (HasNonFunction) {
    558         // If we're about to create an ambiguity between two declarations that
    559         // are equivalent, but one is an internal linkage declaration from one
    560         // module and the other is an internal linkage declaration from another
    561         // module, just skip it.
    562         if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
    563                                                              D)) {
    564           EquivalentNonFunctions.push_back(D);
    565           Decls[I] = Decls[--N];
    566           continue;
    567         }
    568 
    569         Ambiguous = true;
    570       }
    571       HasNonFunction = D;
    572     }
    573     I++;
    574   }
    575 
    576   // C++ [basic.scope.hiding]p2:
    577   //   A class name or enumeration name can be hidden by the name of
    578   //   an object, function, or enumerator declared in the same
    579   //   scope. If a class or enumeration name and an object, function,
    580   //   or enumerator are declared in the same scope (in any order)
    581   //   with the same name, the class or enumeration name is hidden
    582   //   wherever the object, function, or enumerator name is visible.
    583   // But it's still an error if there are distinct tag types found,
    584   // even if they're not visible. (ref?)
    585   if (N > 1 && HideTags && HasTag && !Ambiguous &&
    586       (HasFunction || HasNonFunction || HasUnresolved)) {
    587     NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
    588     if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
    589         getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
    590             getContextForScopeMatching(OtherDecl)) &&
    591         canHideTag(OtherDecl))
    592       Decls[UniqueTagIndex] = Decls[--N];
    593     else
    594       Ambiguous = true;
    595   }
    596 
    597   // FIXME: This diagnostic should really be delayed until we're done with
    598   // the lookup result, in case the ambiguity is resolved by the caller.
    599   if (!EquivalentNonFunctions.empty() && !Ambiguous)
    600     getSema().diagnoseEquivalentInternalLinkageDeclarations(
    601         getNameLoc(), HasNonFunction, EquivalentNonFunctions);
    602 
    603   Decls.set_size(N);
    604 
    605   if (HasNonFunction && (HasFunction || HasUnresolved))
    606     Ambiguous = true;
    607 
    608   if (Ambiguous)
    609     setAmbiguous(LookupResult::AmbiguousReference);
    610   else if (HasUnresolved)
    611     ResultKind = LookupResult::FoundUnresolvedValue;
    612   else if (N > 1 || HasFunctionTemplate)
    613     ResultKind = LookupResult::FoundOverloaded;
    614   else
    615     ResultKind = LookupResult::Found;
    616 }
    617 
    618 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
    619   CXXBasePaths::const_paths_iterator I, E;
    620   for (I = P.begin(), E = P.end(); I != E; ++I)
    621     for (DeclContext::lookup_iterator DI = I->Decls.begin(),
    622          DE = I->Decls.end(); DI != DE; ++DI)
    623       addDecl(*DI);
    624 }
    625 
    626 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
    627   Paths = new CXXBasePaths;
    628   Paths->swap(P);
    629   addDeclsFromBasePaths(*Paths);
    630   resolveKind();
    631   setAmbiguous(AmbiguousBaseSubobjects);
    632 }
    633 
    634 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
    635   Paths = new CXXBasePaths;
    636   Paths->swap(P);
    637   addDeclsFromBasePaths(*Paths);
    638   resolveKind();
    639   setAmbiguous(AmbiguousBaseSubobjectTypes);
    640 }
    641 
    642 void LookupResult::print(raw_ostream &Out) {
    643   Out << Decls.size() << " result(s)";
    644   if (isAmbiguous()) Out << ", ambiguous";
    645   if (Paths) Out << ", base paths present";
    646 
    647   for (iterator I = begin(), E = end(); I != E; ++I) {
    648     Out << "\n";
    649     (*I)->print(Out, 2);
    650   }
    651 }
    652 
    653 /// \brief Lookup a builtin function, when name lookup would otherwise
    654 /// fail.
    655 static bool LookupBuiltin(Sema &S, LookupResult &R) {
    656   Sema::LookupNameKind NameKind = R.getLookupKind();
    657 
    658   // If we didn't find a use of this identifier, and if the identifier
    659   // corresponds to a compiler builtin, create the decl object for the builtin
    660   // now, injecting it into translation unit scope, and return it.
    661   if (NameKind == Sema::LookupOrdinaryName ||
    662       NameKind == Sema::LookupRedeclarationWithLinkage) {
    663     IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
    664     if (II) {
    665       if (S.getLangOpts().CPlusPlus11 && S.getLangOpts().GNUMode &&
    666           II == S.getFloat128Identifier()) {
    667         // libstdc++4.7's type_traits expects type __float128 to exist, so
    668         // insert a dummy type to make that header build in gnu++11 mode.
    669         R.addDecl(S.getASTContext().getFloat128StubType());
    670         return true;
    671       }
    672       if (S.getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName &&
    673           II == S.getASTContext().getMakeIntegerSeqName()) {
    674         R.addDecl(S.getASTContext().getMakeIntegerSeqDecl());
    675         return true;
    676       }
    677 
    678       // If this is a builtin on this (or all) targets, create the decl.
    679       if (unsigned BuiltinID = II->getBuiltinID()) {
    680         // In C++, we don't have any predefined library functions like
    681         // 'malloc'. Instead, we'll just error.
    682         if (S.getLangOpts().CPlusPlus &&
    683             S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
    684           return false;
    685 
    686         if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
    687                                                  BuiltinID, S.TUScope,
    688                                                  R.isForRedeclaration(),
    689                                                  R.getNameLoc())) {
    690           R.addDecl(D);
    691           return true;
    692         }
    693       }
    694     }
    695   }
    696 
    697   return false;
    698 }
    699 
    700 /// \brief Determine whether we can declare a special member function within
    701 /// the class at this point.
    702 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
    703   // We need to have a definition for the class.
    704   if (!Class->getDefinition() || Class->isDependentContext())
    705     return false;
    706 
    707   // We can't be in the middle of defining the class.
    708   return !Class->isBeingDefined();
    709 }
    710 
    711 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
    712   if (!CanDeclareSpecialMemberFunction(Class))
    713     return;
    714 
    715   // If the default constructor has not yet been declared, do so now.
    716   if (Class->needsImplicitDefaultConstructor())
    717     DeclareImplicitDefaultConstructor(Class);
    718 
    719   // If the copy constructor has not yet been declared, do so now.
    720   if (Class->needsImplicitCopyConstructor())
    721     DeclareImplicitCopyConstructor(Class);
    722 
    723   // If the copy assignment operator has not yet been declared, do so now.
    724   if (Class->needsImplicitCopyAssignment())
    725     DeclareImplicitCopyAssignment(Class);
    726 
    727   if (getLangOpts().CPlusPlus11) {
    728     // If the move constructor has not yet been declared, do so now.
    729     if (Class->needsImplicitMoveConstructor())
    730       DeclareImplicitMoveConstructor(Class); // might not actually do it
    731 
    732     // If the move assignment operator has not yet been declared, do so now.
    733     if (Class->needsImplicitMoveAssignment())
    734       DeclareImplicitMoveAssignment(Class); // might not actually do it
    735   }
    736 
    737   // If the destructor has not yet been declared, do so now.
    738   if (Class->needsImplicitDestructor())
    739     DeclareImplicitDestructor(Class);
    740 }
    741 
    742 /// \brief Determine whether this is the name of an implicitly-declared
    743 /// special member function.
    744 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
    745   switch (Name.getNameKind()) {
    746   case DeclarationName::CXXConstructorName:
    747   case DeclarationName::CXXDestructorName:
    748     return true;
    749 
    750   case DeclarationName::CXXOperatorName:
    751     return Name.getCXXOverloadedOperator() == OO_Equal;
    752 
    753   default:
    754     break;
    755   }
    756 
    757   return false;
    758 }
    759 
    760 /// \brief If there are any implicit member functions with the given name
    761 /// that need to be declared in the given declaration context, do so.
    762 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
    763                                                    DeclarationName Name,
    764                                                    const DeclContext *DC) {
    765   if (!DC)
    766     return;
    767 
    768   switch (Name.getNameKind()) {
    769   case DeclarationName::CXXConstructorName:
    770     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
    771       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
    772         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
    773         if (Record->needsImplicitDefaultConstructor())
    774           S.DeclareImplicitDefaultConstructor(Class);
    775         if (Record->needsImplicitCopyConstructor())
    776           S.DeclareImplicitCopyConstructor(Class);
    777         if (S.getLangOpts().CPlusPlus11 &&
    778             Record->needsImplicitMoveConstructor())
    779           S.DeclareImplicitMoveConstructor(Class);
    780       }
    781     break;
    782 
    783   case DeclarationName::CXXDestructorName:
    784     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
    785       if (Record->getDefinition() && Record->needsImplicitDestructor() &&
    786           CanDeclareSpecialMemberFunction(Record))
    787         S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
    788     break;
    789 
    790   case DeclarationName::CXXOperatorName:
    791     if (Name.getCXXOverloadedOperator() != OO_Equal)
    792       break;
    793 
    794     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
    795       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
    796         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
    797         if (Record->needsImplicitCopyAssignment())
    798           S.DeclareImplicitCopyAssignment(Class);
    799         if (S.getLangOpts().CPlusPlus11 &&
    800             Record->needsImplicitMoveAssignment())
    801           S.DeclareImplicitMoveAssignment(Class);
    802       }
    803     }
    804     break;
    805 
    806   default:
    807     break;
    808   }
    809 }
    810 
    811 // Adds all qualifying matches for a name within a decl context to the
    812 // given lookup result.  Returns true if any matches were found.
    813 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
    814   bool Found = false;
    815 
    816   // Lazily declare C++ special member functions.
    817   if (S.getLangOpts().CPlusPlus)
    818     DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
    819 
    820   // Perform lookup into this declaration context.
    821   DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
    822   for (DeclContext::lookup_iterator I = DR.begin(), E = DR.end(); I != E;
    823        ++I) {
    824     NamedDecl *D = *I;
    825     if ((D = R.getAcceptableDecl(D))) {
    826       R.addDecl(D);
    827       Found = true;
    828     }
    829   }
    830 
    831   if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
    832     return true;
    833 
    834   if (R.getLookupName().getNameKind()
    835         != DeclarationName::CXXConversionFunctionName ||
    836       R.getLookupName().getCXXNameType()->isDependentType() ||
    837       !isa<CXXRecordDecl>(DC))
    838     return Found;
    839 
    840   // C++ [temp.mem]p6:
    841   //   A specialization of a conversion function template is not found by
    842   //   name lookup. Instead, any conversion function templates visible in the
    843   //   context of the use are considered. [...]
    844   const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
    845   if (!Record->isCompleteDefinition())
    846     return Found;
    847 
    848   for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
    849          UEnd = Record->conversion_end(); U != UEnd; ++U) {
    850     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
    851     if (!ConvTemplate)
    852       continue;
    853 
    854     // When we're performing lookup for the purposes of redeclaration, just
    855     // add the conversion function template. When we deduce template
    856     // arguments for specializations, we'll end up unifying the return
    857     // type of the new declaration with the type of the function template.
    858     if (R.isForRedeclaration()) {
    859       R.addDecl(ConvTemplate);
    860       Found = true;
    861       continue;
    862     }
    863 
    864     // C++ [temp.mem]p6:
    865     //   [...] For each such operator, if argument deduction succeeds
    866     //   (14.9.2.3), the resulting specialization is used as if found by
    867     //   name lookup.
    868     //
    869     // When referencing a conversion function for any purpose other than
    870     // a redeclaration (such that we'll be building an expression with the
    871     // result), perform template argument deduction and place the
    872     // specialization into the result set. We do this to avoid forcing all
    873     // callers to perform special deduction for conversion functions.
    874     TemplateDeductionInfo Info(R.getNameLoc());
    875     FunctionDecl *Specialization = nullptr;
    876 
    877     const FunctionProtoType *ConvProto
    878       = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
    879     assert(ConvProto && "Nonsensical conversion function template type");
    880 
    881     // Compute the type of the function that we would expect the conversion
    882     // function to have, if it were to match the name given.
    883     // FIXME: Calling convention!
    884     FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
    885     EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
    886     EPI.ExceptionSpec = EST_None;
    887     QualType ExpectedType
    888       = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
    889                                             None, EPI);
    890 
    891     // Perform template argument deduction against the type that we would
    892     // expect the function to have.
    893     if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
    894                                             Specialization, Info)
    895           == Sema::TDK_Success) {
    896       R.addDecl(Specialization);
    897       Found = true;
    898     }
    899   }
    900 
    901   return Found;
    902 }
    903 
    904 // Performs C++ unqualified lookup into the given file context.
    905 static bool
    906 CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
    907                    DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
    908 
    909   assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
    910 
    911   // Perform direct name lookup into the LookupCtx.
    912   bool Found = LookupDirect(S, R, NS);
    913 
    914   // Perform direct name lookup into the namespaces nominated by the
    915   // using directives whose common ancestor is this namespace.
    916   for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
    917     if (LookupDirect(S, R, UUE.getNominatedNamespace()))
    918       Found = true;
    919 
    920   R.resolveKind();
    921 
    922   return Found;
    923 }
    924 
    925 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
    926   if (DeclContext *Ctx = S->getEntity())
    927     return Ctx->isFileContext();
    928   return false;
    929 }
    930 
    931 // Find the next outer declaration context from this scope. This
    932 // routine actually returns the semantic outer context, which may
    933 // differ from the lexical context (encoded directly in the Scope
    934 // stack) when we are parsing a member of a class template. In this
    935 // case, the second element of the pair will be true, to indicate that
    936 // name lookup should continue searching in this semantic context when
    937 // it leaves the current template parameter scope.
    938 static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
    939   DeclContext *DC = S->getEntity();
    940   DeclContext *Lexical = nullptr;
    941   for (Scope *OuterS = S->getParent(); OuterS;
    942        OuterS = OuterS->getParent()) {
    943     if (OuterS->getEntity()) {
    944       Lexical = OuterS->getEntity();
    945       break;
    946     }
    947   }
    948 
    949   // C++ [temp.local]p8:
    950   //   In the definition of a member of a class template that appears
    951   //   outside of the namespace containing the class template
    952   //   definition, the name of a template-parameter hides the name of
    953   //   a member of this namespace.
    954   //
    955   // Example:
    956   //
    957   //   namespace N {
    958   //     class C { };
    959   //
    960   //     template<class T> class B {
    961   //       void f(T);
    962   //     };
    963   //   }
    964   //
    965   //   template<class C> void N::B<C>::f(C) {
    966   //     C b;  // C is the template parameter, not N::C
    967   //   }
    968   //
    969   // In this example, the lexical context we return is the
    970   // TranslationUnit, while the semantic context is the namespace N.
    971   if (!Lexical || !DC || !S->getParent() ||
    972       !S->getParent()->isTemplateParamScope())
    973     return std::make_pair(Lexical, false);
    974 
    975   // Find the outermost template parameter scope.
    976   // For the example, this is the scope for the template parameters of
    977   // template<class C>.
    978   Scope *OutermostTemplateScope = S->getParent();
    979   while (OutermostTemplateScope->getParent() &&
    980          OutermostTemplateScope->getParent()->isTemplateParamScope())
    981     OutermostTemplateScope = OutermostTemplateScope->getParent();
    982 
    983   // Find the namespace context in which the original scope occurs. In
    984   // the example, this is namespace N.
    985   DeclContext *Semantic = DC;
    986   while (!Semantic->isFileContext())
    987     Semantic = Semantic->getParent();
    988 
    989   // Find the declaration context just outside of the template
    990   // parameter scope. This is the context in which the template is
    991   // being lexically declaration (a namespace context). In the
    992   // example, this is the global scope.
    993   if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
    994       Lexical->Encloses(Semantic))
    995     return std::make_pair(Semantic, true);
    996 
    997   return std::make_pair(Lexical, false);
    998 }
    999 
   1000 namespace {
   1001 /// An RAII object to specify that we want to find block scope extern
   1002 /// declarations.
   1003 struct FindLocalExternScope {
   1004   FindLocalExternScope(LookupResult &R)
   1005       : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
   1006                                  Decl::IDNS_LocalExtern) {
   1007     R.setFindLocalExtern(R.getIdentifierNamespace() & Decl::IDNS_Ordinary);
   1008   }
   1009   void restore() {
   1010     R.setFindLocalExtern(OldFindLocalExtern);
   1011   }
   1012   ~FindLocalExternScope() {
   1013     restore();
   1014   }
   1015   LookupResult &R;
   1016   bool OldFindLocalExtern;
   1017 };
   1018 } // end anonymous namespace
   1019 
   1020 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
   1021   assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
   1022 
   1023   DeclarationName Name = R.getLookupName();
   1024   Sema::LookupNameKind NameKind = R.getLookupKind();
   1025 
   1026   // If this is the name of an implicitly-declared special member function,
   1027   // go through the scope stack to implicitly declare
   1028   if (isImplicitlyDeclaredMemberFunctionName(Name)) {
   1029     for (Scope *PreS = S; PreS; PreS = PreS->getParent())
   1030       if (DeclContext *DC = PreS->getEntity())
   1031         DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
   1032   }
   1033 
   1034   // Implicitly declare member functions with the name we're looking for, if in
   1035   // fact we are in a scope where it matters.
   1036 
   1037   Scope *Initial = S;
   1038   IdentifierResolver::iterator
   1039     I = IdResolver.begin(Name),
   1040     IEnd = IdResolver.end();
   1041 
   1042   // First we lookup local scope.
   1043   // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
   1044   // ...During unqualified name lookup (3.4.1), the names appear as if
   1045   // they were declared in the nearest enclosing namespace which contains
   1046   // both the using-directive and the nominated namespace.
   1047   // [Note: in this context, "contains" means "contains directly or
   1048   // indirectly".
   1049   //
   1050   // For example:
   1051   // namespace A { int i; }
   1052   // void foo() {
   1053   //   int i;
   1054   //   {
   1055   //     using namespace A;
   1056   //     ++i; // finds local 'i', A::i appears at global scope
   1057   //   }
   1058   // }
   1059   //
   1060   UnqualUsingDirectiveSet UDirs;
   1061   bool VisitedUsingDirectives = false;
   1062   bool LeftStartingScope = false;
   1063   DeclContext *OutsideOfTemplateParamDC = nullptr;
   1064 
   1065   // When performing a scope lookup, we want to find local extern decls.
   1066   FindLocalExternScope FindLocals(R);
   1067 
   1068   for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
   1069     DeclContext *Ctx = S->getEntity();
   1070 
   1071     // Check whether the IdResolver has anything in this scope.
   1072     bool Found = false;
   1073     for (; I != IEnd && S->isDeclScope(*I); ++I) {
   1074       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
   1075         if (NameKind == LookupRedeclarationWithLinkage) {
   1076           // Determine whether this (or a previous) declaration is
   1077           // out-of-scope.
   1078           if (!LeftStartingScope && !Initial->isDeclScope(*I))
   1079             LeftStartingScope = true;
   1080 
   1081           // If we found something outside of our starting scope that
   1082           // does not have linkage, skip it. If it's a template parameter,
   1083           // we still find it, so we can diagnose the invalid redeclaration.
   1084           if (LeftStartingScope && !((*I)->hasLinkage()) &&
   1085               !(*I)->isTemplateParameter()) {
   1086             R.setShadowed();
   1087             continue;
   1088           }
   1089         }
   1090 
   1091         Found = true;
   1092         R.addDecl(ND);
   1093       }
   1094     }
   1095     if (Found) {
   1096       R.resolveKind();
   1097       if (S->isClassScope())
   1098         if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
   1099           R.setNamingClass(Record);
   1100       return true;
   1101     }
   1102 
   1103     if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
   1104       // C++11 [class.friend]p11:
   1105       //   If a friend declaration appears in a local class and the name
   1106       //   specified is an unqualified name, a prior declaration is
   1107       //   looked up without considering scopes that are outside the
   1108       //   innermost enclosing non-class scope.
   1109       return false;
   1110     }
   1111 
   1112     if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
   1113         S->getParent() && !S->getParent()->isTemplateParamScope()) {
   1114       // We've just searched the last template parameter scope and
   1115       // found nothing, so look into the contexts between the
   1116       // lexical and semantic declaration contexts returned by
   1117       // findOuterContext(). This implements the name lookup behavior
   1118       // of C++ [temp.local]p8.
   1119       Ctx = OutsideOfTemplateParamDC;
   1120       OutsideOfTemplateParamDC = nullptr;
   1121     }
   1122 
   1123     if (Ctx) {
   1124       DeclContext *OuterCtx;
   1125       bool SearchAfterTemplateScope;
   1126       std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
   1127       if (SearchAfterTemplateScope)
   1128         OutsideOfTemplateParamDC = OuterCtx;
   1129 
   1130       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
   1131         // We do not directly look into transparent contexts, since
   1132         // those entities will be found in the nearest enclosing
   1133         // non-transparent context.
   1134         if (Ctx->isTransparentContext())
   1135           continue;
   1136 
   1137         // We do not look directly into function or method contexts,
   1138         // since all of the local variables and parameters of the
   1139         // function/method are present within the Scope.
   1140         if (Ctx->isFunctionOrMethod()) {
   1141           // If we have an Objective-C instance method, look for ivars
   1142           // in the corresponding interface.
   1143           if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
   1144             if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
   1145               if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
   1146                 ObjCInterfaceDecl *ClassDeclared;
   1147                 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
   1148                                                  Name.getAsIdentifierInfo(),
   1149                                                              ClassDeclared)) {
   1150                   if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
   1151                     R.addDecl(ND);
   1152                     R.resolveKind();
   1153                     return true;
   1154                   }
   1155                 }
   1156               }
   1157           }
   1158 
   1159           continue;
   1160         }
   1161 
   1162         // If this is a file context, we need to perform unqualified name
   1163         // lookup considering using directives.
   1164         if (Ctx->isFileContext()) {
   1165           // If we haven't handled using directives yet, do so now.
   1166           if (!VisitedUsingDirectives) {
   1167             // Add using directives from this context up to the top level.
   1168             for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
   1169               if (UCtx->isTransparentContext())
   1170                 continue;
   1171 
   1172               UDirs.visit(UCtx, UCtx);
   1173             }
   1174 
   1175             // Find the innermost file scope, so we can add using directives
   1176             // from local scopes.
   1177             Scope *InnermostFileScope = S;
   1178             while (InnermostFileScope &&
   1179                    !isNamespaceOrTranslationUnitScope(InnermostFileScope))
   1180               InnermostFileScope = InnermostFileScope->getParent();
   1181             UDirs.visitScopeChain(Initial, InnermostFileScope);
   1182 
   1183             UDirs.done();
   1184 
   1185             VisitedUsingDirectives = true;
   1186           }
   1187 
   1188           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
   1189             R.resolveKind();
   1190             return true;
   1191           }
   1192 
   1193           continue;
   1194         }
   1195 
   1196         // Perform qualified name lookup into this context.
   1197         // FIXME: In some cases, we know that every name that could be found by
   1198         // this qualified name lookup will also be on the identifier chain. For
   1199         // example, inside a class without any base classes, we never need to
   1200         // perform qualified lookup because all of the members are on top of the
   1201         // identifier chain.
   1202         if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
   1203           return true;
   1204       }
   1205     }
   1206   }
   1207 
   1208   // Stop if we ran out of scopes.
   1209   // FIXME:  This really, really shouldn't be happening.
   1210   if (!S) return false;
   1211 
   1212   // If we are looking for members, no need to look into global/namespace scope.
   1213   if (NameKind == LookupMemberName)
   1214     return false;
   1215 
   1216   // Collect UsingDirectiveDecls in all scopes, and recursively all
   1217   // nominated namespaces by those using-directives.
   1218   //
   1219   // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
   1220   // don't build it for each lookup!
   1221   if (!VisitedUsingDirectives) {
   1222     UDirs.visitScopeChain(Initial, S);
   1223     UDirs.done();
   1224   }
   1225 
   1226   // If we're not performing redeclaration lookup, do not look for local
   1227   // extern declarations outside of a function scope.
   1228   if (!R.isForRedeclaration())
   1229     FindLocals.restore();
   1230 
   1231   // Lookup namespace scope, and global scope.
   1232   // Unqualified name lookup in C++ requires looking into scopes
   1233   // that aren't strictly lexical, and therefore we walk through the
   1234   // context as well as walking through the scopes.
   1235   for (; S; S = S->getParent()) {
   1236     // Check whether the IdResolver has anything in this scope.
   1237     bool Found = false;
   1238     for (; I != IEnd && S->isDeclScope(*I); ++I) {
   1239       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
   1240         // We found something.  Look for anything else in our scope
   1241         // with this same name and in an acceptable identifier
   1242         // namespace, so that we can construct an overload set if we
   1243         // need to.
   1244         Found = true;
   1245         R.addDecl(ND);
   1246       }
   1247     }
   1248 
   1249     if (Found && S->isTemplateParamScope()) {
   1250       R.resolveKind();
   1251       return true;
   1252     }
   1253 
   1254     DeclContext *Ctx = S->getEntity();
   1255     if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
   1256         S->getParent() && !S->getParent()->isTemplateParamScope()) {
   1257       // We've just searched the last template parameter scope and
   1258       // found nothing, so look into the contexts between the
   1259       // lexical and semantic declaration contexts returned by
   1260       // findOuterContext(). This implements the name lookup behavior
   1261       // of C++ [temp.local]p8.
   1262       Ctx = OutsideOfTemplateParamDC;
   1263       OutsideOfTemplateParamDC = nullptr;
   1264     }
   1265 
   1266     if (Ctx) {
   1267       DeclContext *OuterCtx;
   1268       bool SearchAfterTemplateScope;
   1269       std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
   1270       if (SearchAfterTemplateScope)
   1271         OutsideOfTemplateParamDC = OuterCtx;
   1272 
   1273       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
   1274         // We do not directly look into transparent contexts, since
   1275         // those entities will be found in the nearest enclosing
   1276         // non-transparent context.
   1277         if (Ctx->isTransparentContext())
   1278           continue;
   1279 
   1280         // If we have a context, and it's not a context stashed in the
   1281         // template parameter scope for an out-of-line definition, also
   1282         // look into that context.
   1283         if (!(Found && S && S->isTemplateParamScope())) {
   1284           assert(Ctx->isFileContext() &&
   1285               "We should have been looking only at file context here already.");
   1286 
   1287           // Look into context considering using-directives.
   1288           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
   1289             Found = true;
   1290         }
   1291 
   1292         if (Found) {
   1293           R.resolveKind();
   1294           return true;
   1295         }
   1296 
   1297         if (R.isForRedeclaration() && !Ctx->isTransparentContext())
   1298           return false;
   1299       }
   1300     }
   1301 
   1302     if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
   1303       return false;
   1304   }
   1305 
   1306   return !R.empty();
   1307 }
   1308 
   1309 /// \brief Find the declaration that a class temploid member specialization was
   1310 /// instantiated from, or the member itself if it is an explicit specialization.
   1311 static Decl *getInstantiatedFrom(Decl *D, MemberSpecializationInfo *MSInfo) {
   1312   return MSInfo->isExplicitSpecialization() ? D : MSInfo->getInstantiatedFrom();
   1313 }
   1314 
   1315 Module *Sema::getOwningModule(Decl *Entity) {
   1316   // If it's imported, grab its owning module.
   1317   Module *M = Entity->getImportedOwningModule();
   1318   if (M || !isa<NamedDecl>(Entity) || !cast<NamedDecl>(Entity)->isHidden())
   1319     return M;
   1320   assert(!Entity->isFromASTFile() &&
   1321          "hidden entity from AST file has no owning module");
   1322 
   1323   if (!getLangOpts().ModulesLocalVisibility) {
   1324     // If we're not tracking visibility locally, the only way a declaration
   1325     // can be hidden and local is if it's hidden because it's parent is (for
   1326     // instance, maybe this is a lazily-declared special member of an imported
   1327     // class).
   1328     auto *Parent = cast<NamedDecl>(Entity->getDeclContext());
   1329     assert(Parent->isHidden() && "unexpectedly hidden decl");
   1330     return getOwningModule(Parent);
   1331   }
   1332 
   1333   // It's local and hidden; grab or compute its owning module.
   1334   M = Entity->getLocalOwningModule();
   1335   if (M)
   1336     return M;
   1337 
   1338   if (auto *Containing =
   1339           PP.getModuleContainingLocation(Entity->getLocation())) {
   1340     M = Containing;
   1341   } else if (Entity->isInvalidDecl() || Entity->getLocation().isInvalid()) {
   1342     // Don't bother tracking visibility for invalid declarations with broken
   1343     // locations.
   1344     cast<NamedDecl>(Entity)->setHidden(false);
   1345   } else {
   1346     // We need to assign a module to an entity that exists outside of any
   1347     // module, so that we can hide it from modules that we textually enter.
   1348     // Invent a fake module for all such entities.
   1349     if (!CachedFakeTopLevelModule) {
   1350       CachedFakeTopLevelModule =
   1351           PP.getHeaderSearchInfo().getModuleMap().findOrCreateModule(
   1352               "<top-level>", nullptr, false, false).first;
   1353 
   1354       auto &SrcMgr = PP.getSourceManager();
   1355       SourceLocation StartLoc =
   1356           SrcMgr.getLocForStartOfFile(SrcMgr.getMainFileID());
   1357       auto &TopLevel =
   1358           VisibleModulesStack.empty() ? VisibleModules : VisibleModulesStack[0];
   1359       TopLevel.setVisible(CachedFakeTopLevelModule, StartLoc);
   1360     }
   1361 
   1362     M = CachedFakeTopLevelModule;
   1363   }
   1364 
   1365   if (M)
   1366     Entity->setLocalOwningModule(M);
   1367   return M;
   1368 }
   1369 
   1370 void Sema::makeMergedDefinitionVisible(NamedDecl *ND, SourceLocation Loc) {
   1371   if (auto *M = PP.getModuleContainingLocation(Loc))
   1372     Context.mergeDefinitionIntoModule(ND, M);
   1373   else
   1374     // We're not building a module; just make the definition visible.
   1375     ND->setHidden(false);
   1376 
   1377   // If ND is a template declaration, make the template parameters
   1378   // visible too. They're not (necessarily) within a mergeable DeclContext.
   1379   if (auto *TD = dyn_cast<TemplateDecl>(ND))
   1380     for (auto *Param : *TD->getTemplateParameters())
   1381       makeMergedDefinitionVisible(Param, Loc);
   1382 }
   1383 
   1384 /// \brief Find the module in which the given declaration was defined.
   1385 static Module *getDefiningModule(Sema &S, Decl *Entity) {
   1386   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
   1387     // If this function was instantiated from a template, the defining module is
   1388     // the module containing the pattern.
   1389     if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
   1390       Entity = Pattern;
   1391   } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
   1392     if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
   1393       Entity = Pattern;
   1394   } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
   1395     if (MemberSpecializationInfo *MSInfo = ED->getMemberSpecializationInfo())
   1396       Entity = getInstantiatedFrom(ED, MSInfo);
   1397   } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
   1398     // FIXME: Map from variable template specializations back to the template.
   1399     if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo())
   1400       Entity = getInstantiatedFrom(VD, MSInfo);
   1401   }
   1402 
   1403   // Walk up to the containing context. That might also have been instantiated
   1404   // from a template.
   1405   DeclContext *Context = Entity->getDeclContext();
   1406   if (Context->isFileContext())
   1407     return S.getOwningModule(Entity);
   1408   return getDefiningModule(S, cast<Decl>(Context));
   1409 }
   1410 
   1411 llvm::DenseSet<Module*> &Sema::getLookupModules() {
   1412   unsigned N = ActiveTemplateInstantiations.size();
   1413   for (unsigned I = ActiveTemplateInstantiationLookupModules.size();
   1414        I != N; ++I) {
   1415     Module *M =
   1416         getDefiningModule(*this, ActiveTemplateInstantiations[I].Entity);
   1417     if (M && !LookupModulesCache.insert(M).second)
   1418       M = nullptr;
   1419     ActiveTemplateInstantiationLookupModules.push_back(M);
   1420   }
   1421   return LookupModulesCache;
   1422 }
   1423 
   1424 bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
   1425   for (Module *Merged : Context.getModulesWithMergedDefinition(Def))
   1426     if (isModuleVisible(Merged))
   1427       return true;
   1428   return false;
   1429 }
   1430 
   1431 template<typename ParmDecl>
   1432 static bool
   1433 hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
   1434                           llvm::SmallVectorImpl<Module *> *Modules) {
   1435   if (!D->hasDefaultArgument())
   1436     return false;
   1437 
   1438   while (D) {
   1439     auto &DefaultArg = D->getDefaultArgStorage();
   1440     if (!DefaultArg.isInherited() && S.isVisible(D))
   1441       return true;
   1442 
   1443     if (!DefaultArg.isInherited() && Modules) {
   1444       auto *NonConstD = const_cast<ParmDecl*>(D);
   1445       Modules->push_back(S.getOwningModule(NonConstD));
   1446       const auto &Merged = S.Context.getModulesWithMergedDefinition(NonConstD);
   1447       Modules->insert(Modules->end(), Merged.begin(), Merged.end());
   1448     }
   1449 
   1450     // If there was a previous default argument, maybe its parameter is visible.
   1451     D = DefaultArg.getInheritedFrom();
   1452   }
   1453   return false;
   1454 }
   1455 
   1456 bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
   1457                                      llvm::SmallVectorImpl<Module *> *Modules) {
   1458   if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
   1459     return ::hasVisibleDefaultArgument(*this, P, Modules);
   1460   if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
   1461     return ::hasVisibleDefaultArgument(*this, P, Modules);
   1462   return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
   1463                                      Modules);
   1464 }
   1465 
   1466 /// \brief Determine whether a declaration is visible to name lookup.
   1467 ///
   1468 /// This routine determines whether the declaration D is visible in the current
   1469 /// lookup context, taking into account the current template instantiation
   1470 /// stack. During template instantiation, a declaration is visible if it is
   1471 /// visible from a module containing any entity on the template instantiation
   1472 /// path (by instantiating a template, you allow it to see the declarations that
   1473 /// your module can see, including those later on in your module).
   1474 bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
   1475   assert(D->isHidden() && "should not call this: not in slow case");
   1476   Module *DeclModule = nullptr;
   1477 
   1478   if (SemaRef.getLangOpts().ModulesLocalVisibility) {
   1479     DeclModule = SemaRef.getOwningModule(D);
   1480     if (!DeclModule) {
   1481       // getOwningModule() may have decided the declaration should not be hidden.
   1482       assert(!D->isHidden() && "hidden decl not from a module");
   1483       return true;
   1484     }
   1485 
   1486     // If the owning module is visible, and the decl is not module private,
   1487     // then the decl is visible too. (Module private is ignored within the same
   1488     // top-level module.)
   1489     if ((!D->isFromASTFile() || !D->isModulePrivate()) &&
   1490         (SemaRef.isModuleVisible(DeclModule) ||
   1491          SemaRef.hasVisibleMergedDefinition(D)))
   1492       return true;
   1493   }
   1494 
   1495   // If this declaration is not at namespace scope nor module-private,
   1496   // then it is visible if its lexical parent has a visible definition.
   1497   DeclContext *DC = D->getLexicalDeclContext();
   1498   if (!D->isModulePrivate() &&
   1499       DC && !DC->isFileContext() && !isa<LinkageSpecDecl>(DC)) {
   1500     // For a parameter, check whether our current template declaration's
   1501     // lexical context is visible, not whether there's some other visible
   1502     // definition of it, because parameters aren't "within" the definition.
   1503     if ((D->isTemplateParameter() || isa<ParmVarDecl>(D))
   1504             ? isVisible(SemaRef, cast<NamedDecl>(DC))
   1505             : SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC))) {
   1506       if (SemaRef.ActiveTemplateInstantiations.empty() &&
   1507           // FIXME: Do something better in this case.
   1508           !SemaRef.getLangOpts().ModulesLocalVisibility) {
   1509         // Cache the fact that this declaration is implicitly visible because
   1510         // its parent has a visible definition.
   1511         D->setHidden(false);
   1512       }
   1513       return true;
   1514     }
   1515     return false;
   1516   }
   1517 
   1518   // Find the extra places where we need to look.
   1519   llvm::DenseSet<Module*> &LookupModules = SemaRef.getLookupModules();
   1520   if (LookupModules.empty())
   1521     return false;
   1522 
   1523   if (!DeclModule) {
   1524     DeclModule = SemaRef.getOwningModule(D);
   1525     assert(DeclModule && "hidden decl not from a module");
   1526   }
   1527 
   1528   // If our lookup set contains the decl's module, it's visible.
   1529   if (LookupModules.count(DeclModule))
   1530     return true;
   1531 
   1532   // If the declaration isn't exported, it's not visible in any other module.
   1533   if (D->isModulePrivate())
   1534     return false;
   1535 
   1536   // Check whether DeclModule is transitively exported to an import of
   1537   // the lookup set.
   1538   return std::any_of(LookupModules.begin(), LookupModules.end(),
   1539                      [&](Module *M) { return M->isModuleVisible(DeclModule); });
   1540 }
   1541 
   1542 bool Sema::isVisibleSlow(const NamedDecl *D) {
   1543   return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
   1544 }
   1545 
   1546 bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
   1547   for (auto *D : R) {
   1548     if (isVisible(D))
   1549       return true;
   1550   }
   1551   return New->isExternallyVisible();
   1552 }
   1553 
   1554 /// \brief Retrieve the visible declaration corresponding to D, if any.
   1555 ///
   1556 /// This routine determines whether the declaration D is visible in the current
   1557 /// module, with the current imports. If not, it checks whether any
   1558 /// redeclaration of D is visible, and if so, returns that declaration.
   1559 ///
   1560 /// \returns D, or a visible previous declaration of D, whichever is more recent
   1561 /// and visible. If no declaration of D is visible, returns null.
   1562 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D) {
   1563   assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
   1564 
   1565   for (auto RD : D->redecls()) {
   1566     if (auto ND = dyn_cast<NamedDecl>(RD)) {
   1567       // FIXME: This is wrong in the case where the previous declaration is not
   1568       // visible in the same scope as D. This needs to be done much more
   1569       // carefully.
   1570       if (LookupResult::isVisible(SemaRef, ND))
   1571         return ND;
   1572     }
   1573   }
   1574 
   1575   return nullptr;
   1576 }
   1577 
   1578 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
   1579   return findAcceptableDecl(getSema(), D);
   1580 }
   1581 
   1582 /// @brief Perform unqualified name lookup starting from a given
   1583 /// scope.
   1584 ///
   1585 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
   1586 /// used to find names within the current scope. For example, 'x' in
   1587 /// @code
   1588 /// int x;
   1589 /// int f() {
   1590 ///   return x; // unqualified name look finds 'x' in the global scope
   1591 /// }
   1592 /// @endcode
   1593 ///
   1594 /// Different lookup criteria can find different names. For example, a
   1595 /// particular scope can have both a struct and a function of the same
   1596 /// name, and each can be found by certain lookup criteria. For more
   1597 /// information about lookup criteria, see the documentation for the
   1598 /// class LookupCriteria.
   1599 ///
   1600 /// @param S        The scope from which unqualified name lookup will
   1601 /// begin. If the lookup criteria permits, name lookup may also search
   1602 /// in the parent scopes.
   1603 ///
   1604 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
   1605 /// look up and the lookup kind), and is updated with the results of lookup
   1606 /// including zero or more declarations and possibly additional information
   1607 /// used to diagnose ambiguities.
   1608 ///
   1609 /// @returns \c true if lookup succeeded and false otherwise.
   1610 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
   1611   DeclarationName Name = R.getLookupName();
   1612   if (!Name) return false;
   1613 
   1614   LookupNameKind NameKind = R.getLookupKind();
   1615 
   1616   if (!getLangOpts().CPlusPlus) {
   1617     // Unqualified name lookup in C/Objective-C is purely lexical, so
   1618     // search in the declarations attached to the name.
   1619     if (NameKind == Sema::LookupRedeclarationWithLinkage) {
   1620       // Find the nearest non-transparent declaration scope.
   1621       while (!(S->getFlags() & Scope::DeclScope) ||
   1622              (S->getEntity() && S->getEntity()->isTransparentContext()))
   1623         S = S->getParent();
   1624     }
   1625 
   1626     // When performing a scope lookup, we want to find local extern decls.
   1627     FindLocalExternScope FindLocals(R);
   1628 
   1629     // Scan up the scope chain looking for a decl that matches this
   1630     // identifier that is in the appropriate namespace.  This search
   1631     // should not take long, as shadowing of names is uncommon, and
   1632     // deep shadowing is extremely uncommon.
   1633     bool LeftStartingScope = false;
   1634 
   1635     for (IdentifierResolver::iterator I = IdResolver.begin(Name),
   1636                                    IEnd = IdResolver.end();
   1637          I != IEnd; ++I)
   1638       if (NamedDecl *D = R.getAcceptableDecl(*I)) {
   1639         if (NameKind == LookupRedeclarationWithLinkage) {
   1640           // Determine whether this (or a previous) declaration is
   1641           // out-of-scope.
   1642           if (!LeftStartingScope && !S->isDeclScope(*I))
   1643             LeftStartingScope = true;
   1644 
   1645           // If we found something outside of our starting scope that
   1646           // does not have linkage, skip it.
   1647           if (LeftStartingScope && !((*I)->hasLinkage())) {
   1648             R.setShadowed();
   1649             continue;
   1650           }
   1651         }
   1652         else if (NameKind == LookupObjCImplicitSelfParam &&
   1653                  !isa<ImplicitParamDecl>(*I))
   1654           continue;
   1655 
   1656         R.addDecl(D);
   1657 
   1658         // Check whether there are any other declarations with the same name
   1659         // and in the same scope.
   1660         if (I != IEnd) {
   1661           // Find the scope in which this declaration was declared (if it
   1662           // actually exists in a Scope).
   1663           while (S && !S->isDeclScope(D))
   1664             S = S->getParent();
   1665 
   1666           // If the scope containing the declaration is the translation unit,
   1667           // then we'll need to perform our checks based on the matching
   1668           // DeclContexts rather than matching scopes.
   1669           if (S && isNamespaceOrTranslationUnitScope(S))
   1670             S = nullptr;
   1671 
   1672           // Compute the DeclContext, if we need it.
   1673           DeclContext *DC = nullptr;
   1674           if (!S)
   1675             DC = (*I)->getDeclContext()->getRedeclContext();
   1676 
   1677           IdentifierResolver::iterator LastI = I;
   1678           for (++LastI; LastI != IEnd; ++LastI) {
   1679             if (S) {
   1680               // Match based on scope.
   1681               if (!S->isDeclScope(*LastI))
   1682                 break;
   1683             } else {
   1684               // Match based on DeclContext.
   1685               DeclContext *LastDC
   1686                 = (*LastI)->getDeclContext()->getRedeclContext();
   1687               if (!LastDC->Equals(DC))
   1688                 break;
   1689             }
   1690 
   1691             // If the declaration is in the right namespace and visible, add it.
   1692             if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
   1693               R.addDecl(LastD);
   1694           }
   1695 
   1696           R.resolveKind();
   1697         }
   1698 
   1699         return true;
   1700       }
   1701   } else {
   1702     // Perform C++ unqualified name lookup.
   1703     if (CppLookupName(R, S))
   1704       return true;
   1705   }
   1706 
   1707   // If we didn't find a use of this identifier, and if the identifier
   1708   // corresponds to a compiler builtin, create the decl object for the builtin
   1709   // now, injecting it into translation unit scope, and return it.
   1710   if (AllowBuiltinCreation && LookupBuiltin(*this, R))
   1711     return true;
   1712 
   1713   // If we didn't find a use of this identifier, the ExternalSource
   1714   // may be able to handle the situation.
   1715   // Note: some lookup failures are expected!
   1716   // See e.g. R.isForRedeclaration().
   1717   return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
   1718 }
   1719 
   1720 /// @brief Perform qualified name lookup in the namespaces nominated by
   1721 /// using directives by the given context.
   1722 ///
   1723 /// C++98 [namespace.qual]p2:
   1724 ///   Given X::m (where X is a user-declared namespace), or given \::m
   1725 ///   (where X is the global namespace), let S be the set of all
   1726 ///   declarations of m in X and in the transitive closure of all
   1727 ///   namespaces nominated by using-directives in X and its used
   1728 ///   namespaces, except that using-directives are ignored in any
   1729 ///   namespace, including X, directly containing one or more
   1730 ///   declarations of m. No namespace is searched more than once in
   1731 ///   the lookup of a name. If S is the empty set, the program is
   1732 ///   ill-formed. Otherwise, if S has exactly one member, or if the
   1733 ///   context of the reference is a using-declaration
   1734 ///   (namespace.udecl), S is the required set of declarations of
   1735 ///   m. Otherwise if the use of m is not one that allows a unique
   1736 ///   declaration to be chosen from S, the program is ill-formed.
   1737 ///
   1738 /// C++98 [namespace.qual]p5:
   1739 ///   During the lookup of a qualified namespace member name, if the
   1740 ///   lookup finds more than one declaration of the member, and if one
   1741 ///   declaration introduces a class name or enumeration name and the
   1742 ///   other declarations either introduce the same object, the same
   1743 ///   enumerator or a set of functions, the non-type name hides the
   1744 ///   class or enumeration name if and only if the declarations are
   1745 ///   from the same namespace; otherwise (the declarations are from
   1746 ///   different namespaces), the program is ill-formed.
   1747 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
   1748                                                  DeclContext *StartDC) {
   1749   assert(StartDC->isFileContext() && "start context is not a file context");
   1750 
   1751   DeclContext::udir_range UsingDirectives = StartDC->using_directives();
   1752   if (UsingDirectives.begin() == UsingDirectives.end()) return false;
   1753 
   1754   // We have at least added all these contexts to the queue.
   1755   llvm::SmallPtrSet<DeclContext*, 8> Visited;
   1756   Visited.insert(StartDC);
   1757 
   1758   // We have not yet looked into these namespaces, much less added
   1759   // their "using-children" to the queue.
   1760   SmallVector<NamespaceDecl*, 8> Queue;
   1761 
   1762   // We have already looked into the initial namespace; seed the queue
   1763   // with its using-children.
   1764   for (auto *I : UsingDirectives) {
   1765     NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
   1766     if (Visited.insert(ND).second)
   1767       Queue.push_back(ND);
   1768   }
   1769 
   1770   // The easiest way to implement the restriction in [namespace.qual]p5
   1771   // is to check whether any of the individual results found a tag
   1772   // and, if so, to declare an ambiguity if the final result is not
   1773   // a tag.
   1774   bool FoundTag = false;
   1775   bool FoundNonTag = false;
   1776 
   1777   LookupResult LocalR(LookupResult::Temporary, R);
   1778 
   1779   bool Found = false;
   1780   while (!Queue.empty()) {
   1781     NamespaceDecl *ND = Queue.pop_back_val();
   1782 
   1783     // We go through some convolutions here to avoid copying results
   1784     // between LookupResults.
   1785     bool UseLocal = !R.empty();
   1786     LookupResult &DirectR = UseLocal ? LocalR : R;
   1787     bool FoundDirect = LookupDirect(S, DirectR, ND);
   1788 
   1789     if (FoundDirect) {
   1790       // First do any local hiding.
   1791       DirectR.resolveKind();
   1792 
   1793       // If the local result is a tag, remember that.
   1794       if (DirectR.isSingleTagDecl())
   1795         FoundTag = true;
   1796       else
   1797         FoundNonTag = true;
   1798 
   1799       // Append the local results to the total results if necessary.
   1800       if (UseLocal) {
   1801         R.addAllDecls(LocalR);
   1802         LocalR.clear();
   1803       }
   1804     }
   1805 
   1806     // If we find names in this namespace, ignore its using directives.
   1807     if (FoundDirect) {
   1808       Found = true;
   1809       continue;
   1810     }
   1811 
   1812     for (auto I : ND->using_directives()) {
   1813       NamespaceDecl *Nom = I->getNominatedNamespace();
   1814       if (Visited.insert(Nom).second)
   1815         Queue.push_back(Nom);
   1816     }
   1817   }
   1818 
   1819   if (Found) {
   1820     if (FoundTag && FoundNonTag)
   1821       R.setAmbiguousQualifiedTagHiding();
   1822     else
   1823       R.resolveKind();
   1824   }
   1825 
   1826   return Found;
   1827 }
   1828 
   1829 /// \brief Callback that looks for any member of a class with the given name.
   1830 static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
   1831                             CXXBasePath &Path, DeclarationName Name) {
   1832   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
   1833 
   1834   Path.Decls = BaseRecord->lookup(Name);
   1835   return !Path.Decls.empty();
   1836 }
   1837 
   1838 /// \brief Determine whether the given set of member declarations contains only
   1839 /// static members, nested types, and enumerators.
   1840 template<typename InputIterator>
   1841 static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
   1842   Decl *D = (*First)->getUnderlyingDecl();
   1843   if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
   1844     return true;
   1845 
   1846   if (isa<CXXMethodDecl>(D)) {
   1847     // Determine whether all of the methods are static.
   1848     bool AllMethodsAreStatic = true;
   1849     for(; First != Last; ++First) {
   1850       D = (*First)->getUnderlyingDecl();
   1851 
   1852       if (!isa<CXXMethodDecl>(D)) {
   1853         assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
   1854         break;
   1855       }
   1856 
   1857       if (!cast<CXXMethodDecl>(D)->isStatic()) {
   1858         AllMethodsAreStatic = false;
   1859         break;
   1860       }
   1861     }
   1862 
   1863     if (AllMethodsAreStatic)
   1864       return true;
   1865   }
   1866 
   1867   return false;
   1868 }
   1869 
   1870 /// \brief Perform qualified name lookup into a given context.
   1871 ///
   1872 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
   1873 /// names when the context of those names is explicit specified, e.g.,
   1874 /// "std::vector" or "x->member", or as part of unqualified name lookup.
   1875 ///
   1876 /// Different lookup criteria can find different names. For example, a
   1877 /// particular scope can have both a struct and a function of the same
   1878 /// name, and each can be found by certain lookup criteria. For more
   1879 /// information about lookup criteria, see the documentation for the
   1880 /// class LookupCriteria.
   1881 ///
   1882 /// \param R captures both the lookup criteria and any lookup results found.
   1883 ///
   1884 /// \param LookupCtx The context in which qualified name lookup will
   1885 /// search. If the lookup criteria permits, name lookup may also search
   1886 /// in the parent contexts or (for C++ classes) base classes.
   1887 ///
   1888 /// \param InUnqualifiedLookup true if this is qualified name lookup that
   1889 /// occurs as part of unqualified name lookup.
   1890 ///
   1891 /// \returns true if lookup succeeded, false if it failed.
   1892 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
   1893                                bool InUnqualifiedLookup) {
   1894   assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
   1895 
   1896   if (!R.getLookupName())
   1897     return false;
   1898 
   1899   // Make sure that the declaration context is complete.
   1900   assert((!isa<TagDecl>(LookupCtx) ||
   1901           LookupCtx->isDependentContext() ||
   1902           cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
   1903           cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
   1904          "Declaration context must already be complete!");
   1905 
   1906   struct QualifiedLookupInScope {
   1907     bool oldVal;
   1908     DeclContext *Context;
   1909     // Set flag in DeclContext informing debugger that we're looking for qualified name
   1910     QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
   1911       oldVal = ctx->setUseQualifiedLookup();
   1912     }
   1913     ~QualifiedLookupInScope() {
   1914       Context->setUseQualifiedLookup(oldVal);
   1915     }
   1916   } QL(LookupCtx);
   1917 
   1918   if (LookupDirect(*this, R, LookupCtx)) {
   1919     R.resolveKind();
   1920     if (isa<CXXRecordDecl>(LookupCtx))
   1921       R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
   1922     return true;
   1923   }
   1924 
   1925   // Don't descend into implied contexts for redeclarations.
   1926   // C++98 [namespace.qual]p6:
   1927   //   In a declaration for a namespace member in which the
   1928   //   declarator-id is a qualified-id, given that the qualified-id
   1929   //   for the namespace member has the form
   1930   //     nested-name-specifier unqualified-id
   1931   //   the unqualified-id shall name a member of the namespace
   1932   //   designated by the nested-name-specifier.
   1933   // See also [class.mfct]p5 and [class.static.data]p2.
   1934   if (R.isForRedeclaration())
   1935     return false;
   1936 
   1937   // If this is a namespace, look it up in the implied namespaces.
   1938   if (LookupCtx->isFileContext())
   1939     return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
   1940 
   1941   // If this isn't a C++ class, we aren't allowed to look into base
   1942   // classes, we're done.
   1943   CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
   1944   if (!LookupRec || !LookupRec->getDefinition())
   1945     return false;
   1946 
   1947   // If we're performing qualified name lookup into a dependent class,
   1948   // then we are actually looking into a current instantiation. If we have any
   1949   // dependent base classes, then we either have to delay lookup until
   1950   // template instantiation time (at which point all bases will be available)
   1951   // or we have to fail.
   1952   if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
   1953       LookupRec->hasAnyDependentBases()) {
   1954     R.setNotFoundInCurrentInstantiation();
   1955     return false;
   1956   }
   1957 
   1958   // Perform lookup into our base classes.
   1959   CXXBasePaths Paths;
   1960   Paths.setOrigin(LookupRec);
   1961 
   1962   // Look for this member in our base classes
   1963   bool (*BaseCallback)(const CXXBaseSpecifier *Specifier, CXXBasePath &Path,
   1964                        DeclarationName Name) = nullptr;
   1965   switch (R.getLookupKind()) {
   1966     case LookupObjCImplicitSelfParam:
   1967     case LookupOrdinaryName:
   1968     case LookupMemberName:
   1969     case LookupRedeclarationWithLinkage:
   1970     case LookupLocalFriendName:
   1971       BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
   1972       break;
   1973 
   1974     case LookupTagName:
   1975       BaseCallback = &CXXRecordDecl::FindTagMember;
   1976       break;
   1977 
   1978     case LookupAnyName:
   1979       BaseCallback = &LookupAnyMember;
   1980       break;
   1981 
   1982     case LookupUsingDeclName:
   1983       // This lookup is for redeclarations only.
   1984 
   1985     case LookupOperatorName:
   1986     case LookupNamespaceName:
   1987     case LookupObjCProtocolName:
   1988     case LookupLabel:
   1989       // These lookups will never find a member in a C++ class (or base class).
   1990       return false;
   1991 
   1992     case LookupNestedNameSpecifierName:
   1993       BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
   1994       break;
   1995   }
   1996 
   1997   DeclarationName Name = R.getLookupName();
   1998   if (!LookupRec->lookupInBases(
   1999           [=](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
   2000             return BaseCallback(Specifier, Path, Name);
   2001           },
   2002           Paths))
   2003     return false;
   2004 
   2005   R.setNamingClass(LookupRec);
   2006 
   2007   // C++ [class.member.lookup]p2:
   2008   //   [...] If the resulting set of declarations are not all from
   2009   //   sub-objects of the same type, or the set has a nonstatic member
   2010   //   and includes members from distinct sub-objects, there is an
   2011   //   ambiguity and the program is ill-formed. Otherwise that set is
   2012   //   the result of the lookup.
   2013   QualType SubobjectType;
   2014   int SubobjectNumber = 0;
   2015   AccessSpecifier SubobjectAccess = AS_none;
   2016 
   2017   for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
   2018        Path != PathEnd; ++Path) {
   2019     const CXXBasePathElement &PathElement = Path->back();
   2020 
   2021     // Pick the best (i.e. most permissive i.e. numerically lowest) access
   2022     // across all paths.
   2023     SubobjectAccess = std::min(SubobjectAccess, Path->Access);
   2024 
   2025     // Determine whether we're looking at a distinct sub-object or not.
   2026     if (SubobjectType.isNull()) {
   2027       // This is the first subobject we've looked at. Record its type.
   2028       SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
   2029       SubobjectNumber = PathElement.SubobjectNumber;
   2030       continue;
   2031     }
   2032 
   2033     if (SubobjectType
   2034                  != Context.getCanonicalType(PathElement.Base->getType())) {
   2035       // We found members of the given name in two subobjects of
   2036       // different types. If the declaration sets aren't the same, this
   2037       // lookup is ambiguous.
   2038       if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
   2039         CXXBasePaths::paths_iterator FirstPath = Paths.begin();
   2040         DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
   2041         DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
   2042 
   2043         while (FirstD != FirstPath->Decls.end() &&
   2044                CurrentD != Path->Decls.end()) {
   2045          if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
   2046              (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
   2047            break;
   2048 
   2049           ++FirstD;
   2050           ++CurrentD;
   2051         }
   2052 
   2053         if (FirstD == FirstPath->Decls.end() &&
   2054             CurrentD == Path->Decls.end())
   2055           continue;
   2056       }
   2057 
   2058       R.setAmbiguousBaseSubobjectTypes(Paths);
   2059       return true;
   2060     }
   2061 
   2062     if (SubobjectNumber != PathElement.SubobjectNumber) {
   2063       // We have a different subobject of the same type.
   2064 
   2065       // C++ [class.member.lookup]p5:
   2066       //   A static member, a nested type or an enumerator defined in
   2067       //   a base class T can unambiguously be found even if an object
   2068       //   has more than one base class subobject of type T.
   2069       if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
   2070         continue;
   2071 
   2072       // We have found a nonstatic member name in multiple, distinct
   2073       // subobjects. Name lookup is ambiguous.
   2074       R.setAmbiguousBaseSubobjects(Paths);
   2075       return true;
   2076     }
   2077   }
   2078 
   2079   // Lookup in a base class succeeded; return these results.
   2080 
   2081   for (auto *D : Paths.front().Decls) {
   2082     AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
   2083                                                     D->getAccess());
   2084     R.addDecl(D, AS);
   2085   }
   2086   R.resolveKind();
   2087   return true;
   2088 }
   2089 
   2090 /// \brief Performs qualified name lookup or special type of lookup for
   2091 /// "__super::" scope specifier.
   2092 ///
   2093 /// This routine is a convenience overload meant to be called from contexts
   2094 /// that need to perform a qualified name lookup with an optional C++ scope
   2095 /// specifier that might require special kind of lookup.
   2096 ///
   2097 /// \param R captures both the lookup criteria and any lookup results found.
   2098 ///
   2099 /// \param LookupCtx The context in which qualified name lookup will
   2100 /// search.
   2101 ///
   2102 /// \param SS An optional C++ scope-specifier.
   2103 ///
   2104 /// \returns true if lookup succeeded, false if it failed.
   2105 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
   2106                                CXXScopeSpec &SS) {
   2107   auto *NNS = SS.getScopeRep();
   2108   if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
   2109     return LookupInSuper(R, NNS->getAsRecordDecl());
   2110   else
   2111 
   2112     return LookupQualifiedName(R, LookupCtx);
   2113 }
   2114 
   2115 /// @brief Performs name lookup for a name that was parsed in the
   2116 /// source code, and may contain a C++ scope specifier.
   2117 ///
   2118 /// This routine is a convenience routine meant to be called from
   2119 /// contexts that receive a name and an optional C++ scope specifier
   2120 /// (e.g., "N::M::x"). It will then perform either qualified or
   2121 /// unqualified name lookup (with LookupQualifiedName or LookupName,
   2122 /// respectively) on the given name and return those results. It will
   2123 /// perform a special type of lookup for "__super::" scope specifier.
   2124 ///
   2125 /// @param S        The scope from which unqualified name lookup will
   2126 /// begin.
   2127 ///
   2128 /// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
   2129 ///
   2130 /// @param EnteringContext Indicates whether we are going to enter the
   2131 /// context of the scope-specifier SS (if present).
   2132 ///
   2133 /// @returns True if any decls were found (but possibly ambiguous)
   2134 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
   2135                             bool AllowBuiltinCreation, bool EnteringContext) {
   2136   if (SS && SS->isInvalid()) {
   2137     // When the scope specifier is invalid, don't even look for
   2138     // anything.
   2139     return false;
   2140   }
   2141 
   2142   if (SS && SS->isSet()) {
   2143     NestedNameSpecifier *NNS = SS->getScopeRep();
   2144     if (NNS->getKind() == NestedNameSpecifier::Super)
   2145       return LookupInSuper(R, NNS->getAsRecordDecl());
   2146 
   2147     if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
   2148       // We have resolved the scope specifier to a particular declaration
   2149       // contex, and will perform name lookup in that context.
   2150       if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
   2151         return false;
   2152 
   2153       R.setContextRange(SS->getRange());
   2154       return LookupQualifiedName(R, DC);
   2155     }
   2156 
   2157     // We could not resolve the scope specified to a specific declaration
   2158     // context, which means that SS refers to an unknown specialization.
   2159     // Name lookup can't find anything in this case.
   2160     R.setNotFoundInCurrentInstantiation();
   2161     R.setContextRange(SS->getRange());
   2162     return false;
   2163   }
   2164 
   2165   // Perform unqualified name lookup starting in the given scope.
   2166   return LookupName(R, S, AllowBuiltinCreation);
   2167 }
   2168 
   2169 /// \brief Perform qualified name lookup into all base classes of the given
   2170 /// class.
   2171 ///
   2172 /// \param R captures both the lookup criteria and any lookup results found.
   2173 ///
   2174 /// \param Class The context in which qualified name lookup will
   2175 /// search. Name lookup will search in all base classes merging the results.
   2176 ///
   2177 /// @returns True if any decls were found (but possibly ambiguous)
   2178 bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
   2179   // The access-control rules we use here are essentially the rules for
   2180   // doing a lookup in Class that just magically skipped the direct
   2181   // members of Class itself.  That is, the naming class is Class, and the
   2182   // access includes the access of the base.
   2183   for (const auto &BaseSpec : Class->bases()) {
   2184     CXXRecordDecl *RD = cast<CXXRecordDecl>(
   2185         BaseSpec.getType()->castAs<RecordType>()->getDecl());
   2186     LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
   2187 	Result.setBaseObjectType(Context.getRecordType(Class));
   2188     LookupQualifiedName(Result, RD);
   2189 
   2190     // Copy the lookup results into the target, merging the base's access into
   2191     // the path access.
   2192     for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
   2193       R.addDecl(I.getDecl(),
   2194                 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
   2195                                            I.getAccess()));
   2196     }
   2197 
   2198     Result.suppressDiagnostics();
   2199   }
   2200 
   2201   R.resolveKind();
   2202   R.setNamingClass(Class);
   2203 
   2204   return !R.empty();
   2205 }
   2206 
   2207 /// \brief Produce a diagnostic describing the ambiguity that resulted
   2208 /// from name lookup.
   2209 ///
   2210 /// \param Result The result of the ambiguous lookup to be diagnosed.
   2211 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
   2212   assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
   2213 
   2214   DeclarationName Name = Result.getLookupName();
   2215   SourceLocation NameLoc = Result.getNameLoc();
   2216   SourceRange LookupRange = Result.getContextRange();
   2217 
   2218   switch (Result.getAmbiguityKind()) {
   2219   case LookupResult::AmbiguousBaseSubobjects: {
   2220     CXXBasePaths *Paths = Result.getBasePaths();
   2221     QualType SubobjectType = Paths->front().back().Base->getType();
   2222     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
   2223       << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
   2224       << LookupRange;
   2225 
   2226     DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
   2227     while (isa<CXXMethodDecl>(*Found) &&
   2228            cast<CXXMethodDecl>(*Found)->isStatic())
   2229       ++Found;
   2230 
   2231     Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
   2232     break;
   2233   }
   2234 
   2235   case LookupResult::AmbiguousBaseSubobjectTypes: {
   2236     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
   2237       << Name << LookupRange;
   2238 
   2239     CXXBasePaths *Paths = Result.getBasePaths();
   2240     std::set<Decl *> DeclsPrinted;
   2241     for (CXXBasePaths::paths_iterator Path = Paths->begin(),
   2242                                       PathEnd = Paths->end();
   2243          Path != PathEnd; ++Path) {
   2244       Decl *D = Path->Decls.front();
   2245       if (DeclsPrinted.insert(D).second)
   2246         Diag(D->getLocation(), diag::note_ambiguous_member_found);
   2247     }
   2248     break;
   2249   }
   2250 
   2251   case LookupResult::AmbiguousTagHiding: {
   2252     Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
   2253 
   2254     llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
   2255 
   2256     for (auto *D : Result)
   2257       if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
   2258         TagDecls.insert(TD);
   2259         Diag(TD->getLocation(), diag::note_hidden_tag);
   2260       }
   2261 
   2262     for (auto *D : Result)
   2263       if (!isa<TagDecl>(D))
   2264         Diag(D->getLocation(), diag::note_hiding_object);
   2265 
   2266     // For recovery purposes, go ahead and implement the hiding.
   2267     LookupResult::Filter F = Result.makeFilter();
   2268     while (F.hasNext()) {
   2269       if (TagDecls.count(F.next()))
   2270         F.erase();
   2271     }
   2272     F.done();
   2273     break;
   2274   }
   2275 
   2276   case LookupResult::AmbiguousReference: {
   2277     Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
   2278 
   2279     for (auto *D : Result)
   2280       Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
   2281     break;
   2282   }
   2283   }
   2284 }
   2285 
   2286 namespace {
   2287   struct AssociatedLookup {
   2288     AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
   2289                      Sema::AssociatedNamespaceSet &Namespaces,
   2290                      Sema::AssociatedClassSet &Classes)
   2291       : S(S), Namespaces(Namespaces), Classes(Classes),
   2292         InstantiationLoc(InstantiationLoc) {
   2293     }
   2294 
   2295     Sema &S;
   2296     Sema::AssociatedNamespaceSet &Namespaces;
   2297     Sema::AssociatedClassSet &Classes;
   2298     SourceLocation InstantiationLoc;
   2299   };
   2300 } // end anonymous namespace
   2301 
   2302 static void
   2303 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
   2304 
   2305 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
   2306                                       DeclContext *Ctx) {
   2307   // Add the associated namespace for this class.
   2308 
   2309   // We don't use DeclContext::getEnclosingNamespaceContext() as this may
   2310   // be a locally scoped record.
   2311 
   2312   // We skip out of inline namespaces. The innermost non-inline namespace
   2313   // contains all names of all its nested inline namespaces anyway, so we can
   2314   // replace the entire inline namespace tree with its root.
   2315   while (Ctx->isRecord() || Ctx->isTransparentContext() ||
   2316          Ctx->isInlineNamespace())
   2317     Ctx = Ctx->getParent();
   2318 
   2319   if (Ctx->isFileContext())
   2320     Namespaces.insert(Ctx->getPrimaryContext());
   2321 }
   2322 
   2323 // \brief Add the associated classes and namespaces for argument-dependent
   2324 // lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
   2325 static void
   2326 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
   2327                                   const TemplateArgument &Arg) {
   2328   // C++ [basic.lookup.koenig]p2, last bullet:
   2329   //   -- [...] ;
   2330   switch (Arg.getKind()) {
   2331     case TemplateArgument::Null:
   2332       break;
   2333 
   2334     case TemplateArgument::Type:
   2335       // [...] the namespaces and classes associated with the types of the
   2336       // template arguments provided for template type parameters (excluding
   2337       // template template parameters)
   2338       addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
   2339       break;
   2340 
   2341     case TemplateArgument::Template:
   2342     case TemplateArgument::TemplateExpansion: {
   2343       // [...] the namespaces in which any template template arguments are
   2344       // defined; and the classes in which any member templates used as
   2345       // template template arguments are defined.
   2346       TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
   2347       if (ClassTemplateDecl *ClassTemplate
   2348                  = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
   2349         DeclContext *Ctx = ClassTemplate->getDeclContext();
   2350         if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
   2351           Result.Classes.insert(EnclosingClass);
   2352         // Add the associated namespace for this class.
   2353         CollectEnclosingNamespace(Result.Namespaces, Ctx);
   2354       }
   2355       break;
   2356     }
   2357 
   2358     case TemplateArgument::Declaration:
   2359     case TemplateArgument::Integral:
   2360     case TemplateArgument::Expression:
   2361     case TemplateArgument::NullPtr:
   2362       // [Note: non-type template arguments do not contribute to the set of
   2363       //  associated namespaces. ]
   2364       break;
   2365 
   2366     case TemplateArgument::Pack:
   2367       for (const auto &P : Arg.pack_elements())
   2368         addAssociatedClassesAndNamespaces(Result, P);
   2369       break;
   2370   }
   2371 }
   2372 
   2373 // \brief Add the associated classes and namespaces for
   2374 // argument-dependent lookup with an argument of class type
   2375 // (C++ [basic.lookup.koenig]p2).
   2376 static void
   2377 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
   2378                                   CXXRecordDecl *Class) {
   2379 
   2380   // Just silently ignore anything whose name is __va_list_tag.
   2381   if (Class->getDeclName() == Result.S.VAListTagName)
   2382     return;
   2383 
   2384   // C++ [basic.lookup.koenig]p2:
   2385   //   [...]
   2386   //     -- If T is a class type (including unions), its associated
   2387   //        classes are: the class itself; the class of which it is a
   2388   //        member, if any; and its direct and indirect base
   2389   //        classes. Its associated namespaces are the namespaces in
   2390   //        which its associated classes are defined.
   2391 
   2392   // Add the class of which it is a member, if any.
   2393   DeclContext *Ctx = Class->getDeclContext();
   2394   if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
   2395     Result.Classes.insert(EnclosingClass);
   2396   // Add the associated namespace for this class.
   2397   CollectEnclosingNamespace(Result.Namespaces, Ctx);
   2398 
   2399   // Add the class itself. If we've already seen this class, we don't
   2400   // need to visit base classes.
   2401   //
   2402   // FIXME: That's not correct, we may have added this class only because it
   2403   // was the enclosing class of another class, and in that case we won't have
   2404   // added its base classes yet.
   2405   if (!Result.Classes.insert(Class).second)
   2406     return;
   2407 
   2408   // -- If T is a template-id, its associated namespaces and classes are
   2409   //    the namespace in which the template is defined; for member
   2410   //    templates, the member template's class; the namespaces and classes
   2411   //    associated with the types of the template arguments provided for
   2412   //    template type parameters (excluding template template parameters); the
   2413   //    namespaces in which any template template arguments are defined; and
   2414   //    the classes in which any member templates used as template template
   2415   //    arguments are defined. [Note: non-type template arguments do not
   2416   //    contribute to the set of associated namespaces. ]
   2417   if (ClassTemplateSpecializationDecl *Spec
   2418         = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
   2419     DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
   2420     if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
   2421       Result.Classes.insert(EnclosingClass);
   2422     // Add the associated namespace for this class.
   2423     CollectEnclosingNamespace(Result.Namespaces, Ctx);
   2424 
   2425     const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
   2426     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
   2427       addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
   2428   }
   2429 
   2430   // Only recurse into base classes for complete types.
   2431   if (!Result.S.isCompleteType(Result.InstantiationLoc,
   2432                                Result.S.Context.getRecordType(Class)))
   2433     return;
   2434 
   2435   // Add direct and indirect base classes along with their associated
   2436   // namespaces.
   2437   SmallVector<CXXRecordDecl *, 32> Bases;
   2438   Bases.push_back(Class);
   2439   while (!Bases.empty()) {
   2440     // Pop this class off the stack.
   2441     Class = Bases.pop_back_val();
   2442 
   2443     // Visit the base classes.
   2444     for (const auto &Base : Class->bases()) {
   2445       const RecordType *BaseType = Base.getType()->getAs<RecordType>();
   2446       // In dependent contexts, we do ADL twice, and the first time around,
   2447       // the base type might be a dependent TemplateSpecializationType, or a
   2448       // TemplateTypeParmType. If that happens, simply ignore it.
   2449       // FIXME: If we want to support export, we probably need to add the
   2450       // namespace of the template in a TemplateSpecializationType, or even
   2451       // the classes and namespaces of known non-dependent arguments.
   2452       if (!BaseType)
   2453         continue;
   2454       CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
   2455       if (Result.Classes.insert(BaseDecl).second) {
   2456         // Find the associated namespace for this base class.
   2457         DeclContext *BaseCtx = BaseDecl->getDeclContext();
   2458         CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
   2459 
   2460         // Make sure we visit the bases of this base class.
   2461         if (BaseDecl->bases_begin() != BaseDecl->bases_end())
   2462           Bases.push_back(BaseDecl);
   2463       }
   2464     }
   2465   }
   2466 }
   2467 
   2468 // \brief Add the associated classes and namespaces for
   2469 // argument-dependent lookup with an argument of type T
   2470 // (C++ [basic.lookup.koenig]p2).
   2471 static void
   2472 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
   2473   // C++ [basic.lookup.koenig]p2:
   2474   //
   2475   //   For each argument type T in the function call, there is a set
   2476   //   of zero or more associated namespaces and a set of zero or more
   2477   //   associated classes to be considered. The sets of namespaces and
   2478   //   classes is determined entirely by the types of the function
   2479   //   arguments (and the namespace of any template template
   2480   //   argument). Typedef names and using-declarations used to specify
   2481   //   the types do not contribute to this set. The sets of namespaces
   2482   //   and classes are determined in the following way:
   2483 
   2484   SmallVector<const Type *, 16> Queue;
   2485   const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
   2486 
   2487   while (true) {
   2488     switch (T->getTypeClass()) {
   2489 
   2490 #define TYPE(Class, Base)
   2491 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
   2492 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
   2493 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
   2494 #define ABSTRACT_TYPE(Class, Base)
   2495 #include "clang/AST/TypeNodes.def"
   2496       // T is canonical.  We can also ignore dependent types because
   2497       // we don't need to do ADL at the definition point, but if we
   2498       // wanted to implement template export (or if we find some other
   2499       // use for associated classes and namespaces...) this would be
   2500       // wrong.
   2501       break;
   2502 
   2503     //    -- If T is a pointer to U or an array of U, its associated
   2504     //       namespaces and classes are those associated with U.
   2505     case Type::Pointer:
   2506       T = cast<PointerType>(T)->getPointeeType().getTypePtr();
   2507       continue;
   2508     case Type::ConstantArray:
   2509     case Type::IncompleteArray:
   2510     case Type::VariableArray:
   2511       T = cast<ArrayType>(T)->getElementType().getTypePtr();
   2512       continue;
   2513 
   2514     //     -- If T is a fundamental type, its associated sets of
   2515     //        namespaces and classes are both empty.
   2516     case Type::Builtin:
   2517       break;
   2518 
   2519     //     -- If T is a class type (including unions), its associated
   2520     //        classes are: the class itself; the class of which it is a
   2521     //        member, if any; and its direct and indirect base
   2522     //        classes. Its associated namespaces are the namespaces in
   2523     //        which its associated classes are defined.
   2524     case Type::Record: {
   2525       CXXRecordDecl *Class =
   2526           cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
   2527       addAssociatedClassesAndNamespaces(Result, Class);
   2528       break;
   2529     }
   2530 
   2531     //     -- If T is an enumeration type, its associated namespace is
   2532     //        the namespace in which it is defined. If it is class
   2533     //        member, its associated class is the member's class; else
   2534     //        it has no associated class.
   2535     case Type::Enum: {
   2536       EnumDecl *Enum = cast<EnumType>(T)->getDecl();
   2537 
   2538       DeclContext *Ctx = Enum->getDeclContext();
   2539       if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
   2540         Result.Classes.insert(EnclosingClass);
   2541 
   2542       // Add the associated namespace for this class.
   2543       CollectEnclosingNamespace(Result.Namespaces, Ctx);
   2544 
   2545       break;
   2546     }
   2547 
   2548     //     -- If T is a function type, its associated namespaces and
   2549     //        classes are those associated with the function parameter
   2550     //        types and those associated with the return type.
   2551     case Type::FunctionProto: {
   2552       const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
   2553       for (const auto &Arg : Proto->param_types())
   2554         Queue.push_back(Arg.getTypePtr());
   2555       // fallthrough
   2556     }
   2557     case Type::FunctionNoProto: {
   2558       const FunctionType *FnType = cast<FunctionType>(T);
   2559       T = FnType->getReturnType().getTypePtr();
   2560       continue;
   2561     }
   2562 
   2563     //     -- If T is a pointer to a member function of a class X, its
   2564     //        associated namespaces and classes are those associated
   2565     //        with the function parameter types and return type,
   2566     //        together with those associated with X.
   2567     //
   2568     //     -- If T is a pointer to a data member of class X, its
   2569     //        associated namespaces and classes are those associated
   2570     //        with the member type together with those associated with
   2571     //        X.
   2572     case Type::MemberPointer: {
   2573       const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
   2574 
   2575       // Queue up the class type into which this points.
   2576       Queue.push_back(MemberPtr->getClass());
   2577 
   2578       // And directly continue with the pointee type.
   2579       T = MemberPtr->getPointeeType().getTypePtr();
   2580       continue;
   2581     }
   2582 
   2583     // As an extension, treat this like a normal pointer.
   2584     case Type::BlockPointer:
   2585       T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
   2586       continue;
   2587 
   2588     // References aren't covered by the standard, but that's such an
   2589     // obvious defect that we cover them anyway.
   2590     case Type::LValueReference:
   2591     case Type::RValueReference:
   2592       T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
   2593       continue;
   2594 
   2595     // These are fundamental types.
   2596     case Type::Vector:
   2597     case Type::ExtVector:
   2598     case Type::Complex:
   2599       break;
   2600 
   2601     // Non-deduced auto types only get here for error cases.
   2602     case Type::Auto:
   2603       break;
   2604 
   2605     // If T is an Objective-C object or interface type, or a pointer to an
   2606     // object or interface type, the associated namespace is the global
   2607     // namespace.
   2608     case Type::ObjCObject:
   2609     case Type::ObjCInterface:
   2610     case Type::ObjCObjectPointer:
   2611       Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
   2612       break;
   2613 
   2614     // Atomic types are just wrappers; use the associations of the
   2615     // contained type.
   2616     case Type::Atomic:
   2617       T = cast<AtomicType>(T)->getValueType().getTypePtr();
   2618       continue;
   2619     }
   2620 
   2621     if (Queue.empty())
   2622       break;
   2623     T = Queue.pop_back_val();
   2624   }
   2625 }
   2626 
   2627 /// \brief Find the associated classes and namespaces for
   2628 /// argument-dependent lookup for a call with the given set of
   2629 /// arguments.
   2630 ///
   2631 /// This routine computes the sets of associated classes and associated
   2632 /// namespaces searched by argument-dependent lookup
   2633 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
   2634 void Sema::FindAssociatedClassesAndNamespaces(
   2635     SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
   2636     AssociatedNamespaceSet &AssociatedNamespaces,
   2637     AssociatedClassSet &AssociatedClasses) {
   2638   AssociatedNamespaces.clear();
   2639   AssociatedClasses.clear();
   2640 
   2641   AssociatedLookup Result(*this, InstantiationLoc,
   2642                           AssociatedNamespaces, AssociatedClasses);
   2643 
   2644   // C++ [basic.lookup.koenig]p2:
   2645   //   For each argument type T in the function call, there is a set
   2646   //   of zero or more associated namespaces and a set of zero or more
   2647   //   associated classes to be considered. The sets of namespaces and
   2648   //   classes is determined entirely by the types of the function
   2649   //   arguments (and the namespace of any template template
   2650   //   argument).
   2651   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
   2652     Expr *Arg = Args[ArgIdx];
   2653 
   2654     if (Arg->getType() != Context.OverloadTy) {
   2655       addAssociatedClassesAndNamespaces(Result, Arg->getType());
   2656       continue;
   2657     }
   2658 
   2659     // [...] In addition, if the argument is the name or address of a
   2660     // set of overloaded functions and/or function templates, its
   2661     // associated classes and namespaces are the union of those
   2662     // associated with each of the members of the set: the namespace
   2663     // in which the function or function template is defined and the
   2664     // classes and namespaces associated with its (non-dependent)
   2665     // parameter types and return type.
   2666     Arg = Arg->IgnoreParens();
   2667     if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
   2668       if (unaryOp->getOpcode() == UO_AddrOf)
   2669         Arg = unaryOp->getSubExpr();
   2670 
   2671     UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
   2672     if (!ULE) continue;
   2673 
   2674     for (const auto *D : ULE->decls()) {
   2675       // Look through any using declarations to find the underlying function.
   2676       const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
   2677 
   2678       // Add the classes and namespaces associated with the parameter
   2679       // types and return type of this function.
   2680       addAssociatedClassesAndNamespaces(Result, FDecl->getType());
   2681     }
   2682   }
   2683 }
   2684 
   2685 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
   2686                                   SourceLocation Loc,
   2687                                   LookupNameKind NameKind,
   2688                                   RedeclarationKind Redecl) {
   2689   LookupResult R(*this, Name, Loc, NameKind, Redecl);
   2690   LookupName(R, S);
   2691   return R.getAsSingle<NamedDecl>();
   2692 }
   2693 
   2694 /// \brief Find the protocol with the given name, if any.
   2695 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
   2696                                        SourceLocation IdLoc,
   2697                                        RedeclarationKind Redecl) {
   2698   Decl *D = LookupSingleName(TUScope, II, IdLoc,
   2699                              LookupObjCProtocolName, Redecl);
   2700   return cast_or_null<ObjCProtocolDecl>(D);
   2701 }
   2702 
   2703 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
   2704                                         QualType T1, QualType T2,
   2705                                         UnresolvedSetImpl &Functions) {
   2706   // C++ [over.match.oper]p3:
   2707   //     -- The set of non-member candidates is the result of the
   2708   //        unqualified lookup of operator@ in the context of the
   2709   //        expression according to the usual rules for name lookup in
   2710   //        unqualified function calls (3.4.2) except that all member
   2711   //        functions are ignored.
   2712   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
   2713   LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
   2714   LookupName(Operators, S);
   2715 
   2716   assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
   2717   Functions.append(Operators.begin(), Operators.end());
   2718 }
   2719 
   2720 Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD,
   2721                                                             CXXSpecialMember SM,
   2722                                                             bool ConstArg,
   2723                                                             bool VolatileArg,
   2724                                                             bool RValueThis,
   2725                                                             bool ConstThis,
   2726                                                             bool VolatileThis) {
   2727   assert(CanDeclareSpecialMemberFunction(RD) &&
   2728          "doing special member lookup into record that isn't fully complete");
   2729   RD = RD->getDefinition();
   2730   if (RValueThis || ConstThis || VolatileThis)
   2731     assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
   2732            "constructors and destructors always have unqualified lvalue this");
   2733   if (ConstArg || VolatileArg)
   2734     assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
   2735            "parameter-less special members can't have qualified arguments");
   2736 
   2737   llvm::FoldingSetNodeID ID;
   2738   ID.AddPointer(RD);
   2739   ID.AddInteger(SM);
   2740   ID.AddInteger(ConstArg);
   2741   ID.AddInteger(VolatileArg);
   2742   ID.AddInteger(RValueThis);
   2743   ID.AddInteger(ConstThis);
   2744   ID.AddInteger(VolatileThis);
   2745 
   2746   void *InsertPoint;
   2747   SpecialMemberOverloadResult *Result =
   2748     SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
   2749 
   2750   // This was already cached
   2751   if (Result)
   2752     return Result;
   2753 
   2754   Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>();
   2755   Result = new (Result) SpecialMemberOverloadResult(ID);
   2756   SpecialMemberCache.InsertNode(Result, InsertPoint);
   2757 
   2758   if (SM == CXXDestructor) {
   2759     if (RD->needsImplicitDestructor())
   2760       DeclareImplicitDestructor(RD);
   2761     CXXDestructorDecl *DD = RD->getDestructor();
   2762     assert(DD && "record without a destructor");
   2763     Result->setMethod(DD);
   2764     Result->setKind(DD->isDeleted() ?
   2765                     SpecialMemberOverloadResult::NoMemberOrDeleted :
   2766                     SpecialMemberOverloadResult::Success);
   2767     return Result;
   2768   }
   2769 
   2770   // Prepare for overload resolution. Here we construct a synthetic argument
   2771   // if necessary and make sure that implicit functions are declared.
   2772   CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
   2773   DeclarationName Name;
   2774   Expr *Arg = nullptr;
   2775   unsigned NumArgs;
   2776 
   2777   QualType ArgType = CanTy;
   2778   ExprValueKind VK = VK_LValue;
   2779 
   2780   if (SM == CXXDefaultConstructor) {
   2781     Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
   2782     NumArgs = 0;
   2783     if (RD->needsImplicitDefaultConstructor())
   2784       DeclareImplicitDefaultConstructor(RD);
   2785   } else {
   2786     if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
   2787       Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
   2788       if (RD->needsImplicitCopyConstructor())
   2789         DeclareImplicitCopyConstructor(RD);
   2790       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor())
   2791         DeclareImplicitMoveConstructor(RD);
   2792     } else {
   2793       Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
   2794       if (RD->needsImplicitCopyAssignment())
   2795         DeclareImplicitCopyAssignment(RD);
   2796       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment())
   2797         DeclareImplicitMoveAssignment(RD);
   2798     }
   2799 
   2800     if (ConstArg)
   2801       ArgType.addConst();
   2802     if (VolatileArg)
   2803       ArgType.addVolatile();
   2804 
   2805     // This isn't /really/ specified by the standard, but it's implied
   2806     // we should be working from an RValue in the case of move to ensure
   2807     // that we prefer to bind to rvalue references, and an LValue in the
   2808     // case of copy to ensure we don't bind to rvalue references.
   2809     // Possibly an XValue is actually correct in the case of move, but
   2810     // there is no semantic difference for class types in this restricted
   2811     // case.
   2812     if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
   2813       VK = VK_LValue;
   2814     else
   2815       VK = VK_RValue;
   2816   }
   2817 
   2818   OpaqueValueExpr FakeArg(SourceLocation(), ArgType, VK);
   2819 
   2820   if (SM != CXXDefaultConstructor) {
   2821     NumArgs = 1;
   2822     Arg = &FakeArg;
   2823   }
   2824 
   2825   // Create the object argument
   2826   QualType ThisTy = CanTy;
   2827   if (ConstThis)
   2828     ThisTy.addConst();
   2829   if (VolatileThis)
   2830     ThisTy.addVolatile();
   2831   Expr::Classification Classification =
   2832     OpaqueValueExpr(SourceLocation(), ThisTy,
   2833                     RValueThis ? VK_RValue : VK_LValue).Classify(Context);
   2834 
   2835   // Now we perform lookup on the name we computed earlier and do overload
   2836   // resolution. Lookup is only performed directly into the class since there
   2837   // will always be a (possibly implicit) declaration to shadow any others.
   2838   OverloadCandidateSet OCS(RD->getLocation(), OverloadCandidateSet::CSK_Normal);
   2839   DeclContext::lookup_result R = RD->lookup(Name);
   2840 
   2841   if (R.empty()) {
   2842     // We might have no default constructor because we have a lambda's closure
   2843     // type, rather than because there's some other declared constructor.
   2844     // Every class has a copy/move constructor, copy/move assignment, and
   2845     // destructor.
   2846     assert(SM == CXXDefaultConstructor &&
   2847            "lookup for a constructor or assignment operator was empty");
   2848     Result->setMethod(nullptr);
   2849     Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
   2850     return Result;
   2851   }
   2852 
   2853   // Copy the candidates as our processing of them may load new declarations
   2854   // from an external source and invalidate lookup_result.
   2855   SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
   2856 
   2857   for (auto *Cand : Candidates) {
   2858     if (Cand->isInvalidDecl())
   2859       continue;
   2860 
   2861     if (UsingShadowDecl *U = dyn_cast<UsingShadowDecl>(Cand)) {
   2862       // FIXME: [namespace.udecl]p15 says that we should only consider a
   2863       // using declaration here if it does not match a declaration in the
   2864       // derived class. We do not implement this correctly in other cases
   2865       // either.
   2866       Cand = U->getTargetDecl();
   2867 
   2868       if (Cand->isInvalidDecl())
   2869         continue;
   2870     }
   2871 
   2872     if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand)) {
   2873       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
   2874         AddMethodCandidate(M, DeclAccessPair::make(M, AS_public), RD, ThisTy,
   2875                            Classification, llvm::makeArrayRef(&Arg, NumArgs),
   2876                            OCS, true);
   2877       else
   2878         AddOverloadCandidate(M, DeclAccessPair::make(M, AS_public),
   2879                              llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
   2880     } else if (FunctionTemplateDecl *Tmpl =
   2881                  dyn_cast<FunctionTemplateDecl>(Cand)) {
   2882       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
   2883         AddMethodTemplateCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
   2884                                    RD, nullptr, ThisTy, Classification,
   2885                                    llvm::makeArrayRef(&Arg, NumArgs),
   2886                                    OCS, true);
   2887       else
   2888         AddTemplateOverloadCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
   2889                                      nullptr, llvm::makeArrayRef(&Arg, NumArgs),
   2890                                      OCS, true);
   2891     } else {
   2892       assert(isa<UsingDecl>(Cand) && "illegal Kind of operator = Decl");
   2893     }
   2894   }
   2895 
   2896   OverloadCandidateSet::iterator Best;
   2897   switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) {
   2898     case OR_Success:
   2899       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
   2900       Result->setKind(SpecialMemberOverloadResult::Success);
   2901       break;
   2902 
   2903     case OR_Deleted:
   2904       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
   2905       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
   2906       break;
   2907 
   2908     case OR_Ambiguous:
   2909       Result->setMethod(nullptr);
   2910       Result->setKind(SpecialMemberOverloadResult::Ambiguous);
   2911       break;
   2912 
   2913     case OR_No_Viable_Function:
   2914       Result->setMethod(nullptr);
   2915       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
   2916       break;
   2917   }
   2918 
   2919   return Result;
   2920 }
   2921 
   2922 /// \brief Look up the default constructor for the given class.
   2923 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
   2924   SpecialMemberOverloadResult *Result =
   2925     LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
   2926                         false, false);
   2927 
   2928   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
   2929 }
   2930 
   2931 /// \brief Look up the copying constructor for the given class.
   2932 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
   2933                                                    unsigned Quals) {
   2934   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
   2935          "non-const, non-volatile qualifiers for copy ctor arg");
   2936   SpecialMemberOverloadResult *Result =
   2937     LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
   2938                         Quals & Qualifiers::Volatile, false, false, false);
   2939 
   2940   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
   2941 }
   2942 
   2943 /// \brief Look up the moving constructor for the given class.
   2944 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
   2945                                                   unsigned Quals) {
   2946   SpecialMemberOverloadResult *Result =
   2947     LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
   2948                         Quals & Qualifiers::Volatile, false, false, false);
   2949 
   2950   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
   2951 }
   2952 
   2953 /// \brief Look up the constructors for the given class.
   2954 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
   2955   // If the implicit constructors have not yet been declared, do so now.
   2956   if (CanDeclareSpecialMemberFunction(Class)) {
   2957     if (Class->needsImplicitDefaultConstructor())
   2958       DeclareImplicitDefaultConstructor(Class);
   2959     if (Class->needsImplicitCopyConstructor())
   2960       DeclareImplicitCopyConstructor(Class);
   2961     if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
   2962       DeclareImplicitMoveConstructor(Class);
   2963   }
   2964 
   2965   CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
   2966   DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
   2967   return Class->lookup(Name);
   2968 }
   2969 
   2970 /// \brief Look up the copying assignment operator for the given class.
   2971 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
   2972                                              unsigned Quals, bool RValueThis,
   2973                                              unsigned ThisQuals) {
   2974   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
   2975          "non-const, non-volatile qualifiers for copy assignment arg");
   2976   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
   2977          "non-const, non-volatile qualifiers for copy assignment this");
   2978   SpecialMemberOverloadResult *Result =
   2979     LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
   2980                         Quals & Qualifiers::Volatile, RValueThis,
   2981                         ThisQuals & Qualifiers::Const,
   2982                         ThisQuals & Qualifiers::Volatile);
   2983 
   2984   return Result->getMethod();
   2985 }
   2986 
   2987 /// \brief Look up the moving assignment operator for the given class.
   2988 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
   2989                                             unsigned Quals,
   2990                                             bool RValueThis,
   2991                                             unsigned ThisQuals) {
   2992   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
   2993          "non-const, non-volatile qualifiers for copy assignment this");
   2994   SpecialMemberOverloadResult *Result =
   2995     LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
   2996                         Quals & Qualifiers::Volatile, RValueThis,
   2997                         ThisQuals & Qualifiers::Const,
   2998                         ThisQuals & Qualifiers::Volatile);
   2999 
   3000   return Result->getMethod();
   3001 }
   3002 
   3003 /// \brief Look for the destructor of the given class.
   3004 ///
   3005 /// During semantic analysis, this routine should be used in lieu of
   3006 /// CXXRecordDecl::getDestructor().
   3007 ///
   3008 /// \returns The destructor for this class.
   3009 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
   3010   return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
   3011                                                      false, false, false,
   3012                                                      false, false)->getMethod());
   3013 }
   3014 
   3015 /// LookupLiteralOperator - Determine which literal operator should be used for
   3016 /// a user-defined literal, per C++11 [lex.ext].
   3017 ///
   3018 /// Normal overload resolution is not used to select which literal operator to
   3019 /// call for a user-defined literal. Look up the provided literal operator name,
   3020 /// and filter the results to the appropriate set for the given argument types.
   3021 Sema::LiteralOperatorLookupResult
   3022 Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
   3023                             ArrayRef<QualType> ArgTys,
   3024                             bool AllowRaw, bool AllowTemplate,
   3025                             bool AllowStringTemplate) {
   3026   LookupName(R, S);
   3027   assert(R.getResultKind() != LookupResult::Ambiguous &&
   3028          "literal operator lookup can't be ambiguous");
   3029 
   3030   // Filter the lookup results appropriately.
   3031   LookupResult::Filter F = R.makeFilter();
   3032 
   3033   bool FoundRaw = false;
   3034   bool FoundTemplate = false;
   3035   bool FoundStringTemplate = false;
   3036   bool FoundExactMatch = false;
   3037 
   3038   while (F.hasNext()) {
   3039     Decl *D = F.next();
   3040     if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
   3041       D = USD->getTargetDecl();
   3042 
   3043     // If the declaration we found is invalid, skip it.
   3044     if (D->isInvalidDecl()) {
   3045       F.erase();
   3046       continue;
   3047     }
   3048 
   3049     bool IsRaw = false;
   3050     bool IsTemplate = false;
   3051     bool IsStringTemplate = false;
   3052     bool IsExactMatch = false;
   3053 
   3054     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   3055       if (FD->getNumParams() == 1 &&
   3056           FD->getParamDecl(0)->getType()->getAs<PointerType>())
   3057         IsRaw = true;
   3058       else if (FD->getNumParams() == ArgTys.size()) {
   3059         IsExactMatch = true;
   3060         for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
   3061           QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
   3062           if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
   3063             IsExactMatch = false;
   3064             break;
   3065           }
   3066         }
   3067       }
   3068     }
   3069     if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
   3070       TemplateParameterList *Params = FD->getTemplateParameters();
   3071       if (Params->size() == 1)
   3072         IsTemplate = true;
   3073       else
   3074         IsStringTemplate = true;
   3075     }
   3076 
   3077     if (IsExactMatch) {
   3078       FoundExactMatch = true;
   3079       AllowRaw = false;
   3080       AllowTemplate = false;
   3081       AllowStringTemplate = false;
   3082       if (FoundRaw || FoundTemplate || FoundStringTemplate) {
   3083         // Go through again and remove the raw and template decls we've
   3084         // already found.
   3085         F.restart();
   3086         FoundRaw = FoundTemplate = FoundStringTemplate = false;
   3087       }
   3088     } else if (AllowRaw && IsRaw) {
   3089       FoundRaw = true;
   3090     } else if (AllowTemplate && IsTemplate) {
   3091       FoundTemplate = true;
   3092     } else if (AllowStringTemplate && IsStringTemplate) {
   3093       FoundStringTemplate = true;
   3094     } else {
   3095       F.erase();
   3096     }
   3097   }
   3098 
   3099   F.done();
   3100 
   3101   // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
   3102   // parameter type, that is used in preference to a raw literal operator
   3103   // or literal operator template.
   3104   if (FoundExactMatch)
   3105     return LOLR_Cooked;
   3106 
   3107   // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
   3108   // operator template, but not both.
   3109   if (FoundRaw && FoundTemplate) {
   3110     Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
   3111     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
   3112       NoteOverloadCandidate((*I)->getUnderlyingDecl()->getAsFunction());
   3113     return LOLR_Error;
   3114   }
   3115 
   3116   if (FoundRaw)
   3117     return LOLR_Raw;
   3118 
   3119   if (FoundTemplate)
   3120     return LOLR_Template;
   3121 
   3122   if (FoundStringTemplate)
   3123     return LOLR_StringTemplate;
   3124 
   3125   // Didn't find anything we could use.
   3126   Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
   3127     << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
   3128     << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
   3129     << (AllowTemplate || AllowStringTemplate);
   3130   return LOLR_Error;
   3131 }
   3132 
   3133 void ADLResult::insert(NamedDecl *New) {
   3134   NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
   3135 
   3136   // If we haven't yet seen a decl for this key, or the last decl
   3137   // was exactly this one, we're done.
   3138   if (Old == nullptr || Old == New) {
   3139     Old = New;
   3140     return;
   3141   }
   3142 
   3143   // Otherwise, decide which is a more recent redeclaration.
   3144   FunctionDecl *OldFD = Old->getAsFunction();
   3145   FunctionDecl *NewFD = New->getAsFunction();
   3146 
   3147   FunctionDecl *Cursor = NewFD;
   3148   while (true) {
   3149     Cursor = Cursor->getPreviousDecl();
   3150 
   3151     // If we got to the end without finding OldFD, OldFD is the newer
   3152     // declaration;  leave things as they are.
   3153     if (!Cursor) return;
   3154 
   3155     // If we do find OldFD, then NewFD is newer.
   3156     if (Cursor == OldFD) break;
   3157 
   3158     // Otherwise, keep looking.
   3159   }
   3160 
   3161   Old = New;
   3162 }
   3163 
   3164 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
   3165                                    ArrayRef<Expr *> Args, ADLResult &Result) {
   3166   // Find all of the associated namespaces and classes based on the
   3167   // arguments we have.
   3168   AssociatedNamespaceSet AssociatedNamespaces;
   3169   AssociatedClassSet AssociatedClasses;
   3170   FindAssociatedClassesAndNamespaces(Loc, Args,
   3171                                      AssociatedNamespaces,
   3172                                      AssociatedClasses);
   3173 
   3174   // C++ [basic.lookup.argdep]p3:
   3175   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
   3176   //   and let Y be the lookup set produced by argument dependent
   3177   //   lookup (defined as follows). If X contains [...] then Y is
   3178   //   empty. Otherwise Y is the set of declarations found in the
   3179   //   namespaces associated with the argument types as described
   3180   //   below. The set of declarations found by the lookup of the name
   3181   //   is the union of X and Y.
   3182   //
   3183   // Here, we compute Y and add its members to the overloaded
   3184   // candidate set.
   3185   for (auto *NS : AssociatedNamespaces) {
   3186     //   When considering an associated namespace, the lookup is the
   3187     //   same as the lookup performed when the associated namespace is
   3188     //   used as a qualifier (3.4.3.2) except that:
   3189     //
   3190     //     -- Any using-directives in the associated namespace are
   3191     //        ignored.
   3192     //
   3193     //     -- Any namespace-scope friend functions declared in
   3194     //        associated classes are visible within their respective
   3195     //        namespaces even if they are not visible during an ordinary
   3196     //        lookup (11.4).
   3197     DeclContext::lookup_result R = NS->lookup(Name);
   3198     for (auto *D : R) {
   3199       // If the only declaration here is an ordinary friend, consider
   3200       // it only if it was declared in an associated classes.
   3201       if ((D->getIdentifierNamespace() & Decl::IDNS_Ordinary) == 0) {
   3202         // If it's neither ordinarily visible nor a friend, we can't find it.
   3203         if ((D->getIdentifierNamespace() & Decl::IDNS_OrdinaryFriend) == 0)
   3204           continue;
   3205 
   3206         bool DeclaredInAssociatedClass = false;
   3207         for (Decl *DI = D; DI; DI = DI->getPreviousDecl()) {
   3208           DeclContext *LexDC = DI->getLexicalDeclContext();
   3209           if (isa<CXXRecordDecl>(LexDC) &&
   3210               AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)) &&
   3211               isVisible(cast<NamedDecl>(DI))) {
   3212             DeclaredInAssociatedClass = true;
   3213             break;
   3214           }
   3215         }
   3216         if (!DeclaredInAssociatedClass)
   3217           continue;
   3218       }
   3219 
   3220       if (isa<UsingShadowDecl>(D))
   3221         D = cast<UsingShadowDecl>(D)->getTargetDecl();
   3222 
   3223       if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D))
   3224         continue;
   3225 
   3226       if (!isVisible(D) && !(D = findAcceptableDecl(*this, D)))
   3227         continue;
   3228 
   3229       Result.insert(D);
   3230     }
   3231   }
   3232 }
   3233 
   3234 //----------------------------------------------------------------------------
   3235 // Search for all visible declarations.
   3236 //----------------------------------------------------------------------------
   3237 VisibleDeclConsumer::~VisibleDeclConsumer() { }
   3238 
   3239 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
   3240 
   3241 namespace {
   3242 
   3243 class ShadowContextRAII;
   3244 
   3245 class VisibleDeclsRecord {
   3246 public:
   3247   /// \brief An entry in the shadow map, which is optimized to store a
   3248   /// single declaration (the common case) but can also store a list
   3249   /// of declarations.
   3250   typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
   3251 
   3252 private:
   3253   /// \brief A mapping from declaration names to the declarations that have
   3254   /// this name within a particular scope.
   3255   typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
   3256 
   3257   /// \brief A list of shadow maps, which is used to model name hiding.
   3258   std::list<ShadowMap> ShadowMaps;
   3259 
   3260   /// \brief The declaration contexts we have already visited.
   3261   llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
   3262 
   3263   friend class ShadowContextRAII;
   3264 
   3265 public:
   3266   /// \brief Determine whether we have already visited this context
   3267   /// (and, if not, note that we are going to visit that context now).
   3268   bool visitedContext(DeclContext *Ctx) {
   3269     return !VisitedContexts.insert(Ctx).second;
   3270   }
   3271 
   3272   bool alreadyVisitedContext(DeclContext *Ctx) {
   3273     return VisitedContexts.count(Ctx);
   3274   }
   3275 
   3276   /// \brief Determine whether the given declaration is hidden in the
   3277   /// current scope.
   3278   ///
   3279   /// \returns the declaration that hides the given declaration, or
   3280   /// NULL if no such declaration exists.
   3281   NamedDecl *checkHidden(NamedDecl *ND);
   3282 
   3283   /// \brief Add a declaration to the current shadow map.
   3284   void add(NamedDecl *ND) {
   3285     ShadowMaps.back()[ND->getDeclName()].push_back(ND);
   3286   }
   3287 };
   3288 
   3289 /// \brief RAII object that records when we've entered a shadow context.
   3290 class ShadowContextRAII {
   3291   VisibleDeclsRecord &Visible;
   3292 
   3293   typedef VisibleDeclsRecord::ShadowMap ShadowMap;
   3294 
   3295 public:
   3296   ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
   3297     Visible.ShadowMaps.emplace_back();
   3298   }
   3299 
   3300   ~ShadowContextRAII() {
   3301     Visible.ShadowMaps.pop_back();
   3302   }
   3303 };
   3304 
   3305 } // end anonymous namespace
   3306 
   3307 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
   3308   // Look through using declarations.
   3309   ND = ND->getUnderlyingDecl();
   3310 
   3311   unsigned IDNS = ND->getIdentifierNamespace();
   3312   std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
   3313   for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
   3314        SM != SMEnd; ++SM) {
   3315     ShadowMap::iterator Pos = SM->find(ND->getDeclName());
   3316     if (Pos == SM->end())
   3317       continue;
   3318 
   3319     for (auto *D : Pos->second) {
   3320       // A tag declaration does not hide a non-tag declaration.
   3321       if (D->hasTagIdentifierNamespace() &&
   3322           (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
   3323                    Decl::IDNS_ObjCProtocol)))
   3324         continue;
   3325 
   3326       // Protocols are in distinct namespaces from everything else.
   3327       if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
   3328            || (IDNS & Decl::IDNS_ObjCProtocol)) &&
   3329           D->getIdentifierNamespace() != IDNS)
   3330         continue;
   3331 
   3332       // Functions and function templates in the same scope overload
   3333       // rather than hide.  FIXME: Look for hiding based on function
   3334       // signatures!
   3335       if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
   3336           ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
   3337           SM == ShadowMaps.rbegin())
   3338         continue;
   3339 
   3340       // We've found a declaration that hides this one.
   3341       return D;
   3342     }
   3343   }
   3344 
   3345   return nullptr;
   3346 }
   3347 
   3348 static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
   3349                                bool QualifiedNameLookup,
   3350                                bool InBaseClass,
   3351                                VisibleDeclConsumer &Consumer,
   3352                                VisibleDeclsRecord &Visited) {
   3353   if (!Ctx)
   3354     return;
   3355 
   3356   // Make sure we don't visit the same context twice.
   3357   if (Visited.visitedContext(Ctx->getPrimaryContext()))
   3358     return;
   3359 
   3360   // Outside C++, lookup results for the TU live on identifiers.
   3361   if (isa<TranslationUnitDecl>(Ctx) &&
   3362       !Result.getSema().getLangOpts().CPlusPlus) {
   3363     auto &S = Result.getSema();
   3364     auto &Idents = S.Context.Idents;
   3365 
   3366     // Ensure all external identifiers are in the identifier table.
   3367     if (IdentifierInfoLookup *External = Idents.getExternalIdentifierLookup()) {
   3368       std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
   3369       for (StringRef Name = Iter->Next(); !Name.empty(); Name = Iter->Next())
   3370         Idents.get(Name);
   3371     }
   3372 
   3373     // Walk all lookup results in the TU for each identifier.
   3374     for (const auto &Ident : Idents) {
   3375       for (auto I = S.IdResolver.begin(Ident.getValue()),
   3376                 E = S.IdResolver.end();
   3377            I != E; ++I) {
   3378         if (S.IdResolver.isDeclInScope(*I, Ctx)) {
   3379           if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
   3380             Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
   3381             Visited.add(ND);
   3382           }
   3383         }
   3384       }
   3385     }
   3386 
   3387     return;
   3388   }
   3389 
   3390   if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
   3391     Result.getSema().ForceDeclarationOfImplicitMembers(Class);
   3392 
   3393   // Enumerate all of the results in this context.
   3394   for (DeclContextLookupResult R : Ctx->lookups()) {
   3395     for (auto *D : R) {
   3396       if (auto *ND = Result.getAcceptableDecl(D)) {
   3397         Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
   3398         Visited.add(ND);
   3399       }
   3400     }
   3401   }
   3402 
   3403   // Traverse using directives for qualified name lookup.
   3404   if (QualifiedNameLookup) {
   3405     ShadowContextRAII Shadow(Visited);
   3406     for (auto I : Ctx->using_directives()) {
   3407       LookupVisibleDecls(I->getNominatedNamespace(), Result,
   3408                          QualifiedNameLookup, InBaseClass, Consumer, Visited);
   3409     }
   3410   }
   3411 
   3412   // Traverse the contexts of inherited C++ classes.
   3413   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
   3414     if (!Record->hasDefinition())
   3415       return;
   3416 
   3417     for (const auto &B : Record->bases()) {
   3418       QualType BaseType = B.getType();
   3419 
   3420       // Don't look into dependent bases, because name lookup can't look
   3421       // there anyway.
   3422       if (BaseType->isDependentType())
   3423         continue;
   3424 
   3425       const RecordType *Record = BaseType->getAs<RecordType>();
   3426       if (!Record)
   3427         continue;
   3428 
   3429       // FIXME: It would be nice to be able to determine whether referencing
   3430       // a particular member would be ambiguous. For example, given
   3431       //
   3432       //   struct A { int member; };
   3433       //   struct B { int member; };
   3434       //   struct C : A, B { };
   3435       //
   3436       //   void f(C *c) { c->### }
   3437       //
   3438       // accessing 'member' would result in an ambiguity. However, we
   3439       // could be smart enough to qualify the member with the base
   3440       // class, e.g.,
   3441       //
   3442       //   c->B::member
   3443       //
   3444       // or
   3445       //
   3446       //   c->A::member
   3447 
   3448       // Find results in this base class (and its bases).
   3449       ShadowContextRAII Shadow(Visited);
   3450       LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
   3451                          true, Consumer, Visited);
   3452     }
   3453   }
   3454 
   3455   // Traverse the contexts of Objective-C classes.
   3456   if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
   3457     // Traverse categories.
   3458     for (auto *Cat : IFace->visible_categories()) {
   3459       ShadowContextRAII Shadow(Visited);
   3460       LookupVisibleDecls(Cat, Result, QualifiedNameLookup, false,
   3461                          Consumer, Visited);
   3462     }
   3463 
   3464     // Traverse protocols.
   3465     for (auto *I : IFace->all_referenced_protocols()) {
   3466       ShadowContextRAII Shadow(Visited);
   3467       LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
   3468                          Visited);
   3469     }
   3470 
   3471     // Traverse the superclass.
   3472     if (IFace->getSuperClass()) {
   3473       ShadowContextRAII Shadow(Visited);
   3474       LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
   3475                          true, Consumer, Visited);
   3476     }
   3477 
   3478     // If there is an implementation, traverse it. We do this to find
   3479     // synthesized ivars.
   3480     if (IFace->getImplementation()) {
   3481       ShadowContextRAII Shadow(Visited);
   3482       LookupVisibleDecls(IFace->getImplementation(), Result,
   3483                          QualifiedNameLookup, InBaseClass, Consumer, Visited);
   3484     }
   3485   } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
   3486     for (auto *I : Protocol->protocols()) {
   3487       ShadowContextRAII Shadow(Visited);
   3488       LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
   3489                          Visited);
   3490     }
   3491   } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
   3492     for (auto *I : Category->protocols()) {
   3493       ShadowContextRAII Shadow(Visited);
   3494       LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
   3495                          Visited);
   3496     }
   3497 
   3498     // If there is an implementation, traverse it.
   3499     if (Category->getImplementation()) {
   3500       ShadowContextRAII Shadow(Visited);
   3501       LookupVisibleDecls(Category->getImplementation(), Result,
   3502                          QualifiedNameLookup, true, Consumer, Visited);
   3503     }
   3504   }
   3505 }
   3506 
   3507 static void LookupVisibleDecls(Scope *S, LookupResult &Result,
   3508                                UnqualUsingDirectiveSet &UDirs,
   3509                                VisibleDeclConsumer &Consumer,
   3510                                VisibleDeclsRecord &Visited) {
   3511   if (!S)
   3512     return;
   3513 
   3514   if (!S->getEntity() ||
   3515       (!S->getParent() &&
   3516        !Visited.alreadyVisitedContext(S->getEntity())) ||
   3517       (S->getEntity())->isFunctionOrMethod()) {
   3518     FindLocalExternScope FindLocals(Result);
   3519     // Walk through the declarations in this Scope.
   3520     for (auto *D : S->decls()) {
   3521       if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
   3522         if ((ND = Result.getAcceptableDecl(ND))) {
   3523           Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
   3524           Visited.add(ND);
   3525         }
   3526     }
   3527   }
   3528 
   3529   // FIXME: C++ [temp.local]p8
   3530   DeclContext *Entity = nullptr;
   3531   if (S->getEntity()) {
   3532     // Look into this scope's declaration context, along with any of its
   3533     // parent lookup contexts (e.g., enclosing classes), up to the point
   3534     // where we hit the context stored in the next outer scope.
   3535     Entity = S->getEntity();
   3536     DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
   3537 
   3538     for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
   3539          Ctx = Ctx->getLookupParent()) {
   3540       if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
   3541         if (Method->isInstanceMethod()) {
   3542           // For instance methods, look for ivars in the method's interface.
   3543           LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
   3544                                   Result.getNameLoc(), Sema::LookupMemberName);
   3545           if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
   3546             LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
   3547                                /*InBaseClass=*/false, Consumer, Visited);
   3548           }
   3549         }
   3550 
   3551         // We've already performed all of the name lookup that we need
   3552         // to for Objective-C methods; the next context will be the
   3553         // outer scope.
   3554         break;
   3555       }
   3556 
   3557       if (Ctx->isFunctionOrMethod())
   3558         continue;
   3559 
   3560       LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
   3561                          /*InBaseClass=*/false, Consumer, Visited);
   3562     }
   3563   } else if (!S->getParent()) {
   3564     // Look into the translation unit scope. We walk through the translation
   3565     // unit's declaration context, because the Scope itself won't have all of
   3566     // the declarations if we loaded a precompiled header.
   3567     // FIXME: We would like the translation unit's Scope object to point to the
   3568     // translation unit, so we don't need this special "if" branch. However,
   3569     // doing so would force the normal C++ name-lookup code to look into the
   3570     // translation unit decl when the IdentifierInfo chains would suffice.
   3571     // Once we fix that problem (which is part of a more general "don't look
   3572     // in DeclContexts unless we have to" optimization), we can eliminate this.
   3573     Entity = Result.getSema().Context.getTranslationUnitDecl();
   3574     LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
   3575                        /*InBaseClass=*/false, Consumer, Visited);
   3576   }
   3577 
   3578   if (Entity) {
   3579     // Lookup visible declarations in any namespaces found by using
   3580     // directives.
   3581     for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
   3582       LookupVisibleDecls(const_cast<DeclContext *>(UUE.getNominatedNamespace()),
   3583                          Result, /*QualifiedNameLookup=*/false,
   3584                          /*InBaseClass=*/false, Consumer, Visited);
   3585   }
   3586 
   3587   // Lookup names in the parent scope.
   3588   ShadowContextRAII Shadow(Visited);
   3589   LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
   3590 }
   3591 
   3592 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
   3593                               VisibleDeclConsumer &Consumer,
   3594                               bool IncludeGlobalScope) {
   3595   // Determine the set of using directives available during
   3596   // unqualified name lookup.
   3597   Scope *Initial = S;
   3598   UnqualUsingDirectiveSet UDirs;
   3599   if (getLangOpts().CPlusPlus) {
   3600     // Find the first namespace or translation-unit scope.
   3601     while (S && !isNamespaceOrTranslationUnitScope(S))
   3602       S = S->getParent();
   3603 
   3604     UDirs.visitScopeChain(Initial, S);
   3605   }
   3606   UDirs.done();
   3607 
   3608   // Look for visible declarations.
   3609   LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
   3610   Result.setAllowHidden(Consumer.includeHiddenDecls());
   3611   VisibleDeclsRecord Visited;
   3612   if (!IncludeGlobalScope)
   3613     Visited.visitedContext(Context.getTranslationUnitDecl());
   3614   ShadowContextRAII Shadow(Visited);
   3615   ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
   3616 }
   3617 
   3618 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
   3619                               VisibleDeclConsumer &Consumer,
   3620                               bool IncludeGlobalScope) {
   3621   LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
   3622   Result.setAllowHidden(Consumer.includeHiddenDecls());
   3623   VisibleDeclsRecord Visited;
   3624   if (!IncludeGlobalScope)
   3625     Visited.visitedContext(Context.getTranslationUnitDecl());
   3626   ShadowContextRAII Shadow(Visited);
   3627   ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
   3628                        /*InBaseClass=*/false, Consumer, Visited);
   3629 }
   3630 
   3631 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
   3632 /// If GnuLabelLoc is a valid source location, then this is a definition
   3633 /// of an __label__ label name, otherwise it is a normal label definition
   3634 /// or use.
   3635 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
   3636                                      SourceLocation GnuLabelLoc) {
   3637   // Do a lookup to see if we have a label with this name already.
   3638   NamedDecl *Res = nullptr;
   3639 
   3640   if (GnuLabelLoc.isValid()) {
   3641     // Local label definitions always shadow existing labels.
   3642     Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
   3643     Scope *S = CurScope;
   3644     PushOnScopeChains(Res, S, true);
   3645     return cast<LabelDecl>(Res);
   3646   }
   3647 
   3648   // Not a GNU local label.
   3649   Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
   3650   // If we found a label, check to see if it is in the same context as us.
   3651   // When in a Block, we don't want to reuse a label in an enclosing function.
   3652   if (Res && Res->getDeclContext() != CurContext)
   3653     Res = nullptr;
   3654   if (!Res) {
   3655     // If not forward referenced or defined already, create the backing decl.
   3656     Res = LabelDecl::Create(Context, CurContext, Loc, II);
   3657     Scope *S = CurScope->getFnParent();
   3658     assert(S && "Not in a function?");
   3659     PushOnScopeChains(Res, S, true);
   3660   }
   3661   return cast<LabelDecl>(Res);
   3662 }
   3663 
   3664 //===----------------------------------------------------------------------===//
   3665 // Typo correction
   3666 //===----------------------------------------------------------------------===//
   3667 
   3668 static bool isCandidateViable(CorrectionCandidateCallback &CCC,
   3669                               TypoCorrection &Candidate) {
   3670   Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
   3671   return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
   3672 }
   3673 
   3674 static void LookupPotentialTypoResult(Sema &SemaRef,
   3675                                       LookupResult &Res,
   3676                                       IdentifierInfo *Name,
   3677                                       Scope *S, CXXScopeSpec *SS,
   3678                                       DeclContext *MemberContext,
   3679                                       bool EnteringContext,
   3680                                       bool isObjCIvarLookup,
   3681                                       bool FindHidden);
   3682 
   3683 /// \brief Check whether the declarations found for a typo correction are
   3684 /// visible, and if none of them are, convert the correction to an 'import
   3685 /// a module' correction.
   3686 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
   3687   if (TC.begin() == TC.end())
   3688     return;
   3689 
   3690   TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
   3691 
   3692   for (/**/; DI != DE; ++DI)
   3693     if (!LookupResult::isVisible(SemaRef, *DI))
   3694       break;
   3695   // Nothing to do if all decls are visible.
   3696   if (DI == DE)
   3697     return;
   3698 
   3699   llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
   3700   bool AnyVisibleDecls = !NewDecls.empty();
   3701 
   3702   for (/**/; DI != DE; ++DI) {
   3703     NamedDecl *VisibleDecl = *DI;
   3704     if (!LookupResult::isVisible(SemaRef, *DI))
   3705       VisibleDecl = findAcceptableDecl(SemaRef, *DI);
   3706 
   3707     if (VisibleDecl) {
   3708       if (!AnyVisibleDecls) {
   3709         // Found a visible decl, discard all hidden ones.
   3710         AnyVisibleDecls = true;
   3711         NewDecls.clear();
   3712       }
   3713       NewDecls.push_back(VisibleDecl);
   3714     } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
   3715       NewDecls.push_back(*DI);
   3716   }
   3717 
   3718   if (NewDecls.empty())
   3719     TC = TypoCorrection();
   3720   else {
   3721     TC.setCorrectionDecls(NewDecls);
   3722     TC.setRequiresImport(!AnyVisibleDecls);
   3723   }
   3724 }
   3725 
   3726 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
   3727 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
   3728 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
   3729 static void getNestedNameSpecifierIdentifiers(
   3730     NestedNameSpecifier *NNS,
   3731     SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
   3732   if (NestedNameSpecifier *Prefix = NNS->getPrefix())
   3733     getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
   3734   else
   3735     Identifiers.clear();
   3736 
   3737   const IdentifierInfo *II = nullptr;
   3738 
   3739   switch (NNS->getKind()) {
   3740   case NestedNameSpecifier::Identifier:
   3741     II = NNS->getAsIdentifier();
   3742     break;
   3743 
   3744   case NestedNameSpecifier::Namespace:
   3745     if (NNS->getAsNamespace()->isAnonymousNamespace())
   3746       return;
   3747     II = NNS->getAsNamespace()->getIdentifier();
   3748     break;
   3749 
   3750   case NestedNameSpecifier::NamespaceAlias:
   3751     II = NNS->getAsNamespaceAlias()->getIdentifier();
   3752     break;
   3753 
   3754   case NestedNameSpecifier::TypeSpecWithTemplate:
   3755   case NestedNameSpecifier::TypeSpec:
   3756     II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
   3757     break;
   3758 
   3759   case NestedNameSpecifier::Global:
   3760   case NestedNameSpecifier::Super:
   3761     return;
   3762   }
   3763 
   3764   if (II)
   3765     Identifiers.push_back(II);
   3766 }
   3767 
   3768 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
   3769                                        DeclContext *Ctx, bool InBaseClass) {
   3770   // Don't consider hidden names for typo correction.
   3771   if (Hiding)
   3772     return;
   3773 
   3774   // Only consider entities with identifiers for names, ignoring
   3775   // special names (constructors, overloaded operators, selectors,
   3776   // etc.).
   3777   IdentifierInfo *Name = ND->getIdentifier();
   3778   if (!Name)
   3779     return;
   3780 
   3781   // Only consider visible declarations and declarations from modules with
   3782   // names that exactly match.
   3783   if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo &&
   3784       !findAcceptableDecl(SemaRef, ND))
   3785     return;
   3786 
   3787   FoundName(Name->getName());
   3788 }
   3789 
   3790 void TypoCorrectionConsumer::FoundName(StringRef Name) {
   3791   // Compute the edit distance between the typo and the name of this
   3792   // entity, and add the identifier to the list of results.
   3793   addName(Name, nullptr);
   3794 }
   3795 
   3796 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
   3797   // Compute the edit distance between the typo and this keyword,
   3798   // and add the keyword to the list of results.
   3799   addName(Keyword, nullptr, nullptr, true);
   3800 }
   3801 
   3802 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
   3803                                      NestedNameSpecifier *NNS, bool isKeyword) {
   3804   // Use a simple length-based heuristic to determine the minimum possible
   3805   // edit distance. If the minimum isn't good enough, bail out early.
   3806   StringRef TypoStr = Typo->getName();
   3807   unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
   3808   if (MinED && TypoStr.size() / MinED < 3)
   3809     return;
   3810 
   3811   // Compute an upper bound on the allowable edit distance, so that the
   3812   // edit-distance algorithm can short-circuit.
   3813   unsigned UpperBound = (TypoStr.size() + 2) / 3 + 1;
   3814   unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
   3815   if (ED >= UpperBound) return;
   3816 
   3817   TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
   3818   if (isKeyword) TC.makeKeyword();
   3819   TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
   3820   addCorrection(TC);
   3821 }
   3822 
   3823 static const unsigned MaxTypoDistanceResultSets = 5;
   3824 
   3825 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
   3826   StringRef TypoStr = Typo->getName();
   3827   StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
   3828 
   3829   // For very short typos, ignore potential corrections that have a different
   3830   // base identifier from the typo or which have a normalized edit distance
   3831   // longer than the typo itself.
   3832   if (TypoStr.size() < 3 &&
   3833       (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
   3834     return;
   3835 
   3836   // If the correction is resolved but is not viable, ignore it.
   3837   if (Correction.isResolved()) {
   3838     checkCorrectionVisibility(SemaRef, Correction);
   3839     if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
   3840       return;
   3841   }
   3842 
   3843   TypoResultList &CList =
   3844       CorrectionResults[Correction.getEditDistance(false)][Name];
   3845 
   3846   if (!CList.empty() && !CList.back().isResolved())
   3847     CList.pop_back();
   3848   if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
   3849     std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
   3850     for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
   3851          RI != RIEnd; ++RI) {
   3852       // If the Correction refers to a decl already in the result list,
   3853       // replace the existing result if the string representation of Correction
   3854       // comes before the current result alphabetically, then stop as there is
   3855       // nothing more to be done to add Correction to the candidate set.
   3856       if (RI->getCorrectionDecl() == NewND) {
   3857         if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
   3858           *RI = Correction;
   3859         return;
   3860       }
   3861     }
   3862   }
   3863   if (CList.empty() || Correction.isResolved())
   3864     CList.push_back(Correction);
   3865 
   3866   while (CorrectionResults.size() > MaxTypoDistanceResultSets)
   3867     CorrectionResults.erase(std::prev(CorrectionResults.end()));
   3868 }
   3869 
   3870 void TypoCorrectionConsumer::addNamespaces(
   3871     const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
   3872   SearchNamespaces = true;
   3873 
   3874   for (auto KNPair : KnownNamespaces)
   3875     Namespaces.addNameSpecifier(KNPair.first);
   3876 
   3877   bool SSIsTemplate = false;
   3878   if (NestedNameSpecifier *NNS =
   3879           (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
   3880     if (const Type *T = NNS->getAsType())
   3881       SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
   3882   }
   3883   // Do not transform this into an iterator-based loop. The loop body can
   3884   // trigger the creation of further types (through lazy deserialization) and
   3885   // invalide iterators into this list.
   3886   auto &Types = SemaRef.getASTContext().getTypes();
   3887   for (unsigned I = 0; I != Types.size(); ++I) {
   3888     const auto *TI = Types[I];
   3889     if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
   3890       CD = CD->getCanonicalDecl();
   3891       if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
   3892           !CD->isUnion() && CD->getIdentifier() &&
   3893           (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
   3894           (CD->isBeingDefined() || CD->isCompleteDefinition()))
   3895         Namespaces.addNameSpecifier(CD);
   3896     }
   3897   }
   3898 }
   3899 
   3900 const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
   3901   if (++CurrentTCIndex < ValidatedCorrections.size())
   3902     return ValidatedCorrections[CurrentTCIndex];
   3903 
   3904   CurrentTCIndex = ValidatedCorrections.size();
   3905   while (!CorrectionResults.empty()) {
   3906     auto DI = CorrectionResults.begin();
   3907     if (DI->second.empty()) {
   3908       CorrectionResults.erase(DI);
   3909       continue;
   3910     }
   3911 
   3912     auto RI = DI->second.begin();
   3913     if (RI->second.empty()) {
   3914       DI->second.erase(RI);
   3915       performQualifiedLookups();
   3916       continue;
   3917     }
   3918 
   3919     TypoCorrection TC = RI->second.pop_back_val();
   3920     if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
   3921       ValidatedCorrections.push_back(TC);
   3922       return ValidatedCorrections[CurrentTCIndex];
   3923     }
   3924   }
   3925   return ValidatedCorrections[0];  // The empty correction.
   3926 }
   3927 
   3928 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
   3929   IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
   3930   DeclContext *TempMemberContext = MemberContext;
   3931   CXXScopeSpec *TempSS = SS.get();
   3932 retry_lookup:
   3933   LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
   3934                             EnteringContext,
   3935                             CorrectionValidator->IsObjCIvarLookup,
   3936                             Name == Typo && !Candidate.WillReplaceSpecifier());
   3937   switch (Result.getResultKind()) {
   3938   case LookupResult::NotFound:
   3939   case LookupResult::NotFoundInCurrentInstantiation:
   3940   case LookupResult::FoundUnresolvedValue:
   3941     if (TempSS) {
   3942       // Immediately retry the lookup without the given CXXScopeSpec
   3943       TempSS = nullptr;
   3944       Candidate.WillReplaceSpecifier(true);
   3945       goto retry_lookup;
   3946     }
   3947     if (TempMemberContext) {
   3948       if (SS && !TempSS)
   3949         TempSS = SS.get();
   3950       TempMemberContext = nullptr;
   3951       goto retry_lookup;
   3952     }
   3953     if (SearchNamespaces)
   3954       QualifiedResults.push_back(Candidate);
   3955     break;
   3956 
   3957   case LookupResult::Ambiguous:
   3958     // We don't deal with ambiguities.
   3959     break;
   3960 
   3961   case LookupResult::Found:
   3962   case LookupResult::FoundOverloaded:
   3963     // Store all of the Decls for overloaded symbols
   3964     for (auto *TRD : Result)
   3965       Candidate.addCorrectionDecl(TRD);
   3966     checkCorrectionVisibility(SemaRef, Candidate);
   3967     if (!isCandidateViable(*CorrectionValidator, Candidate)) {
   3968       if (SearchNamespaces)
   3969         QualifiedResults.push_back(Candidate);
   3970       break;
   3971     }
   3972     Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
   3973     return true;
   3974   }
   3975   return false;
   3976 }
   3977 
   3978 void TypoCorrectionConsumer::performQualifiedLookups() {
   3979   unsigned TypoLen = Typo->getName().size();
   3980   for (auto QR : QualifiedResults) {
   3981     for (auto NSI : Namespaces) {
   3982       DeclContext *Ctx = NSI.DeclCtx;
   3983       const Type *NSType = NSI.NameSpecifier->getAsType();
   3984 
   3985       // If the current NestedNameSpecifier refers to a class and the
   3986       // current correction candidate is the name of that class, then skip
   3987       // it as it is unlikely a qualified version of the class' constructor
   3988       // is an appropriate correction.
   3989       if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
   3990                                            nullptr) {
   3991         if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
   3992           continue;
   3993       }
   3994 
   3995       TypoCorrection TC(QR);
   3996       TC.ClearCorrectionDecls();
   3997       TC.setCorrectionSpecifier(NSI.NameSpecifier);
   3998       TC.setQualifierDistance(NSI.EditDistance);
   3999       TC.setCallbackDistance(0); // Reset the callback distance
   4000 
   4001       // If the current correction candidate and namespace combination are
   4002       // too far away from the original typo based on the normalized edit
   4003       // distance, then skip performing a qualified name lookup.
   4004       unsigned TmpED = TC.getEditDistance(true);
   4005       if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
   4006           TypoLen / TmpED < 3)
   4007         continue;
   4008 
   4009       Result.clear();
   4010       Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
   4011       if (!SemaRef.LookupQualifiedName(Result, Ctx))
   4012         continue;
   4013 
   4014       // Any corrections added below will be validated in subsequent
   4015       // iterations of the main while() loop over the Consumer's contents.
   4016       switch (Result.getResultKind()) {
   4017       case LookupResult::Found:
   4018       case LookupResult::FoundOverloaded: {
   4019         if (SS && SS->isValid()) {
   4020           std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
   4021           std::string OldQualified;
   4022           llvm::raw_string_ostream OldOStream(OldQualified);
   4023           SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
   4024           OldOStream << Typo->getName();
   4025           // If correction candidate would be an identical written qualified
   4026           // identifer, then the existing CXXScopeSpec probably included a
   4027           // typedef that didn't get accounted for properly.
   4028           if (OldOStream.str() == NewQualified)
   4029             break;
   4030         }
   4031         for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
   4032              TRD != TRDEnd; ++TRD) {
   4033           if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
   4034                                         NSType ? NSType->getAsCXXRecordDecl()
   4035                                                : nullptr,
   4036                                         TRD.getPair()) == Sema::AR_accessible)
   4037             TC.addCorrectionDecl(*TRD);
   4038         }
   4039         if (TC.isResolved()) {
   4040           TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
   4041           addCorrection(TC);
   4042         }
   4043         break;
   4044       }
   4045       case LookupResult::NotFound:
   4046       case LookupResult::NotFoundInCurrentInstantiation:
   4047       case LookupResult::Ambiguous:
   4048       case LookupResult::FoundUnresolvedValue:
   4049         break;
   4050       }
   4051     }
   4052   }
   4053   QualifiedResults.clear();
   4054 }
   4055 
   4056 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
   4057     ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
   4058     : Context(Context), CurContextChain(buildContextChain(CurContext)) {
   4059   if (NestedNameSpecifier *NNS =
   4060           CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
   4061     llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
   4062     NNS->print(SpecifierOStream, Context.getPrintingPolicy());
   4063 
   4064     getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
   4065   }
   4066   // Build the list of identifiers that would be used for an absolute
   4067   // (from the global context) NestedNameSpecifier referring to the current
   4068   // context.
   4069   for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
   4070                                          CEnd = CurContextChain.rend();
   4071        C != CEnd; ++C) {
   4072     if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C))
   4073       CurContextIdentifiers.push_back(ND->getIdentifier());
   4074   }
   4075 
   4076   // Add the global context as a NestedNameSpecifier
   4077   SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
   4078                       NestedNameSpecifier::GlobalSpecifier(Context), 1};
   4079   DistanceMap[1].push_back(SI);
   4080 }
   4081 
   4082 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
   4083     DeclContext *Start) -> DeclContextList {
   4084   assert(Start && "Building a context chain from a null context");
   4085   DeclContextList Chain;
   4086   for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
   4087        DC = DC->getLookupParent()) {
   4088     NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
   4089     if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
   4090         !(ND && ND->isAnonymousNamespace()))
   4091       Chain.push_back(DC->getPrimaryContext());
   4092   }
   4093   return Chain;
   4094 }
   4095 
   4096 unsigned
   4097 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
   4098     DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
   4099   unsigned NumSpecifiers = 0;
   4100   for (DeclContextList::reverse_iterator C = DeclChain.rbegin(),
   4101                                       CEnd = DeclChain.rend();
   4102        C != CEnd; ++C) {
   4103     if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C)) {
   4104       NNS = NestedNameSpecifier::Create(Context, NNS, ND);
   4105       ++NumSpecifiers;
   4106     } else if (RecordDecl *RD = dyn_cast_or_null<RecordDecl>(*C)) {
   4107       NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
   4108                                         RD->getTypeForDecl());
   4109       ++NumSpecifiers;
   4110     }
   4111   }
   4112   return NumSpecifiers;
   4113 }
   4114 
   4115 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
   4116     DeclContext *Ctx) {
   4117   NestedNameSpecifier *NNS = nullptr;
   4118   unsigned NumSpecifiers = 0;
   4119   DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
   4120   DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
   4121 
   4122   // Eliminate common elements from the two DeclContext chains.
   4123   for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
   4124                                       CEnd = CurContextChain.rend();
   4125        C != CEnd && !NamespaceDeclChain.empty() &&
   4126        NamespaceDeclChain.back() == *C; ++C) {
   4127     NamespaceDeclChain.pop_back();
   4128   }
   4129 
   4130   // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
   4131   NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
   4132 
   4133   // Add an explicit leading '::' specifier if needed.
   4134   if (NamespaceDeclChain.empty()) {
   4135     // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
   4136     NNS = NestedNameSpecifier::GlobalSpecifier(Context);
   4137     NumSpecifiers =
   4138         buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
   4139   } else if (NamedDecl *ND =
   4140                  dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
   4141     IdentifierInfo *Name = ND->getIdentifier();
   4142     bool SameNameSpecifier = false;
   4143     if (std::find(CurNameSpecifierIdentifiers.begin(),
   4144                   CurNameSpecifierIdentifiers.end(),
   4145                   Name) != CurNameSpecifierIdentifiers.end()) {
   4146       std::string NewNameSpecifier;
   4147       llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
   4148       SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
   4149       getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
   4150       NNS->print(SpecifierOStream, Context.getPrintingPolicy());
   4151       SpecifierOStream.flush();
   4152       SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
   4153     }
   4154     if (SameNameSpecifier ||
   4155         std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
   4156                   Name) != CurContextIdentifiers.end()) {
   4157       // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
   4158       NNS = NestedNameSpecifier::GlobalSpecifier(Context);
   4159       NumSpecifiers =
   4160           buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
   4161     }
   4162   }
   4163 
   4164   // If the built NestedNameSpecifier would be replacing an existing
   4165   // NestedNameSpecifier, use the number of component identifiers that
   4166   // would need to be changed as the edit distance instead of the number
   4167   // of components in the built NestedNameSpecifier.
   4168   if (NNS && !CurNameSpecifierIdentifiers.empty()) {
   4169     SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
   4170     getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
   4171     NumSpecifiers = llvm::ComputeEditDistance(
   4172         llvm::makeArrayRef(CurNameSpecifierIdentifiers),
   4173         llvm::makeArrayRef(NewNameSpecifierIdentifiers));
   4174   }
   4175 
   4176   SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
   4177   DistanceMap[NumSpecifiers].push_back(SI);
   4178 }
   4179 
   4180 /// \brief Perform name lookup for a possible result for typo correction.
   4181 static void LookupPotentialTypoResult(Sema &SemaRef,
   4182                                       LookupResult &Res,
   4183                                       IdentifierInfo *Name,
   4184                                       Scope *S, CXXScopeSpec *SS,
   4185                                       DeclContext *MemberContext,
   4186                                       bool EnteringContext,
   4187                                       bool isObjCIvarLookup,
   4188                                       bool FindHidden) {
   4189   Res.suppressDiagnostics();
   4190   Res.clear();
   4191   Res.setLookupName(Name);
   4192   Res.setAllowHidden(FindHidden);
   4193   if (MemberContext) {
   4194     if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
   4195       if (isObjCIvarLookup) {
   4196         if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
   4197           Res.addDecl(Ivar);
   4198           Res.resolveKind();
   4199           return;
   4200         }
   4201       }
   4202 
   4203       if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
   4204         Res.addDecl(Prop);
   4205         Res.resolveKind();
   4206         return;
   4207       }
   4208     }
   4209 
   4210     SemaRef.LookupQualifiedName(Res, MemberContext);
   4211     return;
   4212   }
   4213 
   4214   SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
   4215                            EnteringContext);
   4216 
   4217   // Fake ivar lookup; this should really be part of
   4218   // LookupParsedName.
   4219   if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
   4220     if (Method->isInstanceMethod() && Method->getClassInterface() &&
   4221         (Res.empty() ||
   4222          (Res.isSingleResult() &&
   4223           Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
   4224        if (ObjCIvarDecl *IV
   4225              = Method->getClassInterface()->lookupInstanceVariable(Name)) {
   4226          Res.addDecl(IV);
   4227          Res.resolveKind();
   4228        }
   4229      }
   4230   }
   4231 }
   4232 
   4233 /// \brief Add keywords to the consumer as possible typo corrections.
   4234 static void AddKeywordsToConsumer(Sema &SemaRef,
   4235                                   TypoCorrectionConsumer &Consumer,
   4236                                   Scope *S, CorrectionCandidateCallback &CCC,
   4237                                   bool AfterNestedNameSpecifier) {
   4238   if (AfterNestedNameSpecifier) {
   4239     // For 'X::', we know exactly which keywords can appear next.
   4240     Consumer.addKeywordResult("template");
   4241     if (CCC.WantExpressionKeywords)
   4242       Consumer.addKeywordResult("operator");
   4243     return;
   4244   }
   4245 
   4246   if (CCC.WantObjCSuper)
   4247     Consumer.addKeywordResult("super");
   4248 
   4249   if (CCC.WantTypeSpecifiers) {
   4250     // Add type-specifier keywords to the set of results.
   4251     static const char *const CTypeSpecs[] = {
   4252       "char", "const", "double", "enum", "float", "int", "long", "short",
   4253       "signed", "struct", "union", "unsigned", "void", "volatile",
   4254       "_Complex", "_Imaginary",
   4255       // storage-specifiers as well
   4256       "extern", "inline", "static", "typedef"
   4257     };
   4258 
   4259     const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
   4260     for (unsigned I = 0; I != NumCTypeSpecs; ++I)
   4261       Consumer.addKeywordResult(CTypeSpecs[I]);
   4262 
   4263     if (SemaRef.getLangOpts().C99)
   4264       Consumer.addKeywordResult("restrict");
   4265     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
   4266       Consumer.addKeywordResult("bool");
   4267     else if (SemaRef.getLangOpts().C99)
   4268       Consumer.addKeywordResult("_Bool");
   4269 
   4270     if (SemaRef.getLangOpts().CPlusPlus) {
   4271       Consumer.addKeywordResult("class");
   4272       Consumer.addKeywordResult("typename");
   4273       Consumer.addKeywordResult("wchar_t");
   4274 
   4275       if (SemaRef.getLangOpts().CPlusPlus11) {
   4276         Consumer.addKeywordResult("char16_t");
   4277         Consumer.addKeywordResult("char32_t");
   4278         Consumer.addKeywordResult("constexpr");
   4279         Consumer.addKeywordResult("decltype");
   4280         Consumer.addKeywordResult("thread_local");
   4281       }
   4282     }
   4283 
   4284     if (SemaRef.getLangOpts().GNUMode)
   4285       Consumer.addKeywordResult("typeof");
   4286   } else if (CCC.WantFunctionLikeCasts) {
   4287     static const char *const CastableTypeSpecs[] = {
   4288       "char", "double", "float", "int", "long", "short",
   4289       "signed", "unsigned", "void"
   4290     };
   4291     for (auto *kw : CastableTypeSpecs)
   4292       Consumer.addKeywordResult(kw);
   4293   }
   4294 
   4295   if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
   4296     Consumer.addKeywordResult("const_cast");
   4297     Consumer.addKeywordResult("dynamic_cast");
   4298     Consumer.addKeywordResult("reinterpret_cast");
   4299     Consumer.addKeywordResult("static_cast");
   4300   }
   4301 
   4302   if (CCC.WantExpressionKeywords) {
   4303     Consumer.addKeywordResult("sizeof");
   4304     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
   4305       Consumer.addKeywordResult("false");
   4306       Consumer.addKeywordResult("true");
   4307     }
   4308 
   4309     if (SemaRef.getLangOpts().CPlusPlus) {
   4310       static const char *const CXXExprs[] = {
   4311         "delete", "new", "operator", "throw", "typeid"
   4312       };
   4313       const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
   4314       for (unsigned I = 0; I != NumCXXExprs; ++I)
   4315         Consumer.addKeywordResult(CXXExprs[I]);
   4316 
   4317       if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
   4318           cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
   4319         Consumer.addKeywordResult("this");
   4320 
   4321       if (SemaRef.getLangOpts().CPlusPlus11) {
   4322         Consumer.addKeywordResult("alignof");
   4323         Consumer.addKeywordResult("nullptr");
   4324       }
   4325     }
   4326 
   4327     if (SemaRef.getLangOpts().C11) {
   4328       // FIXME: We should not suggest _Alignof if the alignof macro
   4329       // is present.
   4330       Consumer.addKeywordResult("_Alignof");
   4331     }
   4332   }
   4333 
   4334   if (CCC.WantRemainingKeywords) {
   4335     if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
   4336       // Statements.
   4337       static const char *const CStmts[] = {
   4338         "do", "else", "for", "goto", "if", "return", "switch", "while" };
   4339       const unsigned NumCStmts = llvm::array_lengthof(CStmts);
   4340       for (unsigned I = 0; I != NumCStmts; ++I)
   4341         Consumer.addKeywordResult(CStmts[I]);
   4342 
   4343       if (SemaRef.getLangOpts().CPlusPlus) {
   4344         Consumer.addKeywordResult("catch");
   4345         Consumer.addKeywordResult("try");
   4346       }
   4347 
   4348       if (S && S->getBreakParent())
   4349         Consumer.addKeywordResult("break");
   4350 
   4351       if (S && S->getContinueParent())
   4352         Consumer.addKeywordResult("continue");
   4353 
   4354       if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
   4355         Consumer.addKeywordResult("case");
   4356         Consumer.addKeywordResult("default");
   4357       }
   4358     } else {
   4359       if (SemaRef.getLangOpts().CPlusPlus) {
   4360         Consumer.addKeywordResult("namespace");
   4361         Consumer.addKeywordResult("template");
   4362       }
   4363 
   4364       if (S && S->isClassScope()) {
   4365         Consumer.addKeywordResult("explicit");
   4366         Consumer.addKeywordResult("friend");
   4367         Consumer.addKeywordResult("mutable");
   4368         Consumer.addKeywordResult("private");
   4369         Consumer.addKeywordResult("protected");
   4370         Consumer.addKeywordResult("public");
   4371         Consumer.addKeywordResult("virtual");
   4372       }
   4373     }
   4374 
   4375     if (SemaRef.getLangOpts().CPlusPlus) {
   4376       Consumer.addKeywordResult("using");
   4377 
   4378       if (SemaRef.getLangOpts().CPlusPlus11)
   4379         Consumer.addKeywordResult("static_assert");
   4380     }
   4381   }
   4382 }
   4383 
   4384 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
   4385     const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
   4386     Scope *S, CXXScopeSpec *SS,
   4387     std::unique_ptr<CorrectionCandidateCallback> CCC,
   4388     DeclContext *MemberContext, bool EnteringContext,
   4389     const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
   4390 
   4391   if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
   4392       DisableTypoCorrection)
   4393     return nullptr;
   4394 
   4395   // In Microsoft mode, don't perform typo correction in a template member
   4396   // function dependent context because it interferes with the "lookup into
   4397   // dependent bases of class templates" feature.
   4398   if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
   4399       isa<CXXMethodDecl>(CurContext))
   4400     return nullptr;
   4401 
   4402   // We only attempt to correct typos for identifiers.
   4403   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
   4404   if (!Typo)
   4405     return nullptr;
   4406 
   4407   // If the scope specifier itself was invalid, don't try to correct
   4408   // typos.
   4409   if (SS && SS->isInvalid())
   4410     return nullptr;
   4411 
   4412   // Never try to correct typos during template deduction or
   4413   // instantiation.
   4414   if (!ActiveTemplateInstantiations.empty())
   4415     return nullptr;
   4416 
   4417   // Don't try to correct 'super'.
   4418   if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
   4419     return nullptr;
   4420 
   4421   // Abort if typo correction already failed for this specific typo.
   4422   IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
   4423   if (locs != TypoCorrectionFailures.end() &&
   4424       locs->second.count(TypoName.getLoc()))
   4425     return nullptr;
   4426 
   4427   // Don't try to correct the identifier "vector" when in AltiVec mode.
   4428   // TODO: Figure out why typo correction misbehaves in this case, fix it, and
   4429   // remove this workaround.
   4430   if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
   4431     return nullptr;
   4432 
   4433   // Provide a stop gap for files that are just seriously broken.  Trying
   4434   // to correct all typos can turn into a HUGE performance penalty, causing
   4435   // some files to take minutes to get rejected by the parser.
   4436   unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
   4437   if (Limit && TyposCorrected >= Limit)
   4438     return nullptr;
   4439   ++TyposCorrected;
   4440 
   4441   // If we're handling a missing symbol error, using modules, and the
   4442   // special search all modules option is used, look for a missing import.
   4443   if (ErrorRecovery && getLangOpts().Modules &&
   4444       getLangOpts().ModulesSearchAll) {
   4445     // The following has the side effect of loading the missing module.
   4446     getModuleLoader().lookupMissingImports(Typo->getName(),
   4447                                            TypoName.getLocStart());
   4448   }
   4449 
   4450   CorrectionCandidateCallback &CCCRef = *CCC;
   4451   auto Consumer = llvm::make_unique<TypoCorrectionConsumer>(
   4452       *this, TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
   4453       EnteringContext);
   4454 
   4455   // Perform name lookup to find visible, similarly-named entities.
   4456   bool IsUnqualifiedLookup = false;
   4457   DeclContext *QualifiedDC = MemberContext;
   4458   if (MemberContext) {
   4459     LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
   4460 
   4461     // Look in qualified interfaces.
   4462     if (OPT) {
   4463       for (auto *I : OPT->quals())
   4464         LookupVisibleDecls(I, LookupKind, *Consumer);
   4465     }
   4466   } else if (SS && SS->isSet()) {
   4467     QualifiedDC = computeDeclContext(*SS, EnteringContext);
   4468     if (!QualifiedDC)
   4469       return nullptr;
   4470 
   4471     LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
   4472   } else {
   4473     IsUnqualifiedLookup = true;
   4474   }
   4475 
   4476   // Determine whether we are going to search in the various namespaces for
   4477   // corrections.
   4478   bool SearchNamespaces
   4479     = getLangOpts().CPlusPlus &&
   4480       (IsUnqualifiedLookup || (SS && SS->isSet()));
   4481 
   4482   if (IsUnqualifiedLookup || SearchNamespaces) {
   4483     // For unqualified lookup, look through all of the names that we have
   4484     // seen in this translation unit.
   4485     // FIXME: Re-add the ability to skip very unlikely potential corrections.
   4486     for (const auto &I : Context.Idents)
   4487       Consumer->FoundName(I.getKey());
   4488 
   4489     // Walk through identifiers in external identifier sources.
   4490     // FIXME: Re-add the ability to skip very unlikely potential corrections.
   4491     if (IdentifierInfoLookup *External
   4492                             = Context.Idents.getExternalIdentifierLookup()) {
   4493       std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
   4494       do {
   4495         StringRef Name = Iter->Next();
   4496         if (Name.empty())
   4497           break;
   4498 
   4499         Consumer->FoundName(Name);
   4500       } while (true);
   4501     }
   4502   }
   4503 
   4504   AddKeywordsToConsumer(*this, *Consumer, S, CCCRef, SS && SS->isNotEmpty());
   4505 
   4506   // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
   4507   // to search those namespaces.
   4508   if (SearchNamespaces) {
   4509     // Load any externally-known namespaces.
   4510     if (ExternalSource && !LoadedExternalKnownNamespaces) {
   4511       SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
   4512       LoadedExternalKnownNamespaces = true;
   4513       ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
   4514       for (auto *N : ExternalKnownNamespaces)
   4515         KnownNamespaces[N] = true;
   4516     }
   4517 
   4518     Consumer->addNamespaces(KnownNamespaces);
   4519   }
   4520 
   4521   return Consumer;
   4522 }
   4523 
   4524 /// \brief Try to "correct" a typo in the source code by finding
   4525 /// visible declarations whose names are similar to the name that was
   4526 /// present in the source code.
   4527 ///
   4528 /// \param TypoName the \c DeclarationNameInfo structure that contains
   4529 /// the name that was present in the source code along with its location.
   4530 ///
   4531 /// \param LookupKind the name-lookup criteria used to search for the name.
   4532 ///
   4533 /// \param S the scope in which name lookup occurs.
   4534 ///
   4535 /// \param SS the nested-name-specifier that precedes the name we're
   4536 /// looking for, if present.
   4537 ///
   4538 /// \param CCC A CorrectionCandidateCallback object that provides further
   4539 /// validation of typo correction candidates. It also provides flags for
   4540 /// determining the set of keywords permitted.
   4541 ///
   4542 /// \param MemberContext if non-NULL, the context in which to look for
   4543 /// a member access expression.
   4544 ///
   4545 /// \param EnteringContext whether we're entering the context described by
   4546 /// the nested-name-specifier SS.
   4547 ///
   4548 /// \param OPT when non-NULL, the search for visible declarations will
   4549 /// also walk the protocols in the qualified interfaces of \p OPT.
   4550 ///
   4551 /// \returns a \c TypoCorrection containing the corrected name if the typo
   4552 /// along with information such as the \c NamedDecl where the corrected name
   4553 /// was declared, and any additional \c NestedNameSpecifier needed to access
   4554 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
   4555 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
   4556                                  Sema::LookupNameKind LookupKind,
   4557                                  Scope *S, CXXScopeSpec *SS,
   4558                                  std::unique_ptr<CorrectionCandidateCallback> CCC,
   4559                                  CorrectTypoKind Mode,
   4560                                  DeclContext *MemberContext,
   4561                                  bool EnteringContext,
   4562                                  const ObjCObjectPointerType *OPT,
   4563                                  bool RecordFailure) {
   4564   assert(CCC && "CorrectTypo requires a CorrectionCandidateCallback");
   4565 
   4566   // Always let the ExternalSource have the first chance at correction, even
   4567   // if we would otherwise have given up.
   4568   if (ExternalSource) {
   4569     if (TypoCorrection Correction = ExternalSource->CorrectTypo(
   4570         TypoName, LookupKind, S, SS, *CCC, MemberContext, EnteringContext, OPT))
   4571       return Correction;
   4572   }
   4573 
   4574   // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
   4575   // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
   4576   // some instances of CTC_Unknown, while WantRemainingKeywords is true
   4577   // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
   4578   bool ObjCMessageReceiver = CCC->WantObjCSuper && !CCC->WantRemainingKeywords;
   4579 
   4580   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
   4581   auto Consumer = makeTypoCorrectionConsumer(
   4582       TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
   4583       EnteringContext, OPT, Mode == CTK_ErrorRecovery);
   4584 
   4585   if (!Consumer)
   4586     return TypoCorrection();
   4587 
   4588   // If we haven't found anything, we're done.
   4589   if (Consumer->empty())
   4590     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
   4591 
   4592   // Make sure the best edit distance (prior to adding any namespace qualifiers)
   4593   // is not more that about a third of the length of the typo's identifier.
   4594   unsigned ED = Consumer->getBestEditDistance(true);
   4595   unsigned TypoLen = Typo->getName().size();
   4596   if (ED > 0 && TypoLen / ED < 3)
   4597     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
   4598 
   4599   TypoCorrection BestTC = Consumer->getNextCorrection();
   4600   TypoCorrection SecondBestTC = Consumer->getNextCorrection();
   4601   if (!BestTC)
   4602     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
   4603 
   4604   ED = BestTC.getEditDistance();
   4605 
   4606   if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
   4607     // If this was an unqualified lookup and we believe the callback
   4608     // object wouldn't have filtered out possible corrections, note
   4609     // that no correction was found.
   4610     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
   4611   }
   4612 
   4613   // If only a single name remains, return that result.
   4614   if (!SecondBestTC ||
   4615       SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
   4616     const TypoCorrection &Result = BestTC;
   4617 
   4618     // Don't correct to a keyword that's the same as the typo; the keyword
   4619     // wasn't actually in scope.
   4620     if (ED == 0 && Result.isKeyword())
   4621       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
   4622 
   4623     TypoCorrection TC = Result;
   4624     TC.setCorrectionRange(SS, TypoName);
   4625     checkCorrectionVisibility(*this, TC);
   4626     return TC;
   4627   } else if (SecondBestTC && ObjCMessageReceiver) {
   4628     // Prefer 'super' when we're completing in a message-receiver
   4629     // context.
   4630 
   4631     if (BestTC.getCorrection().getAsString() != "super") {
   4632       if (SecondBestTC.getCorrection().getAsString() == "super")
   4633         BestTC = SecondBestTC;
   4634       else if ((*Consumer)["super"].front().isKeyword())
   4635         BestTC = (*Consumer)["super"].front();
   4636     }
   4637     // Don't correct to a keyword that's the same as the typo; the keyword
   4638     // wasn't actually in scope.
   4639     if (BestTC.getEditDistance() == 0 ||
   4640         BestTC.getCorrection().getAsString() != "super")
   4641       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
   4642 
   4643     BestTC.setCorrectionRange(SS, TypoName);
   4644     return BestTC;
   4645   }
   4646 
   4647   // Record the failure's location if needed and return an empty correction. If
   4648   // this was an unqualified lookup and we believe the callback object did not
   4649   // filter out possible corrections, also cache the failure for the typo.
   4650   return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
   4651 }
   4652 
   4653 /// \brief Try to "correct" a typo in the source code by finding
   4654 /// visible declarations whose names are similar to the name that was
   4655 /// present in the source code.
   4656 ///
   4657 /// \param TypoName the \c DeclarationNameInfo structure that contains
   4658 /// the name that was present in the source code along with its location.
   4659 ///
   4660 /// \param LookupKind the name-lookup criteria used to search for the name.
   4661 ///
   4662 /// \param S the scope in which name lookup occurs.
   4663 ///
   4664 /// \param SS the nested-name-specifier that precedes the name we're
   4665 /// looking for, if present.
   4666 ///
   4667 /// \param CCC A CorrectionCandidateCallback object that provides further
   4668 /// validation of typo correction candidates. It also provides flags for
   4669 /// determining the set of keywords permitted.
   4670 ///
   4671 /// \param TDG A TypoDiagnosticGenerator functor that will be used to print
   4672 /// diagnostics when the actual typo correction is attempted.
   4673 ///
   4674 /// \param TRC A TypoRecoveryCallback functor that will be used to build an
   4675 /// Expr from a typo correction candidate.
   4676 ///
   4677 /// \param MemberContext if non-NULL, the context in which to look for
   4678 /// a member access expression.
   4679 ///
   4680 /// \param EnteringContext whether we're entering the context described by
   4681 /// the nested-name-specifier SS.
   4682 ///
   4683 /// \param OPT when non-NULL, the search for visible declarations will
   4684 /// also walk the protocols in the qualified interfaces of \p OPT.
   4685 ///
   4686 /// \returns a new \c TypoExpr that will later be replaced in the AST with an
   4687 /// Expr representing the result of performing typo correction, or nullptr if
   4688 /// typo correction is not possible. If nullptr is returned, no diagnostics will
   4689 /// be emitted and it is the responsibility of the caller to emit any that are
   4690 /// needed.
   4691 TypoExpr *Sema::CorrectTypoDelayed(
   4692     const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
   4693     Scope *S, CXXScopeSpec *SS,
   4694     std::unique_ptr<CorrectionCandidateCallback> CCC,
   4695     TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
   4696     DeclContext *MemberContext, bool EnteringContext,
   4697     const ObjCObjectPointerType *OPT) {
   4698   assert(CCC && "CorrectTypoDelayed requires a CorrectionCandidateCallback");
   4699 
   4700   TypoCorrection Empty;
   4701   auto Consumer = makeTypoCorrectionConsumer(
   4702       TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
   4703       EnteringContext, OPT, Mode == CTK_ErrorRecovery);
   4704 
   4705   if (!Consumer || Consumer->empty())
   4706     return nullptr;
   4707 
   4708   // Make sure the best edit distance (prior to adding any namespace qualifiers)
   4709   // is not more that about a third of the length of the typo's identifier.
   4710   unsigned ED = Consumer->getBestEditDistance(true);
   4711   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
   4712   if (ED > 0 && Typo->getName().size() / ED < 3)
   4713     return nullptr;
   4714 
   4715   ExprEvalContexts.back().NumTypos++;
   4716   return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC));
   4717 }
   4718 
   4719 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
   4720   if (!CDecl) return;
   4721 
   4722   if (isKeyword())
   4723     CorrectionDecls.clear();
   4724 
   4725   CorrectionDecls.push_back(CDecl->getUnderlyingDecl());
   4726 
   4727   if (!CorrectionName)
   4728     CorrectionName = CDecl->getDeclName();
   4729 }
   4730 
   4731 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
   4732   if (CorrectionNameSpec) {
   4733     std::string tmpBuffer;
   4734     llvm::raw_string_ostream PrefixOStream(tmpBuffer);
   4735     CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
   4736     PrefixOStream << CorrectionName;
   4737     return PrefixOStream.str();
   4738   }
   4739 
   4740   return CorrectionName.getAsString();
   4741 }
   4742 
   4743 bool CorrectionCandidateCallback::ValidateCandidate(
   4744     const TypoCorrection &candidate) {
   4745   if (!candidate.isResolved())
   4746     return true;
   4747 
   4748   if (candidate.isKeyword())
   4749     return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
   4750            WantRemainingKeywords || WantObjCSuper;
   4751 
   4752   bool HasNonType = false;
   4753   bool HasStaticMethod = false;
   4754   bool HasNonStaticMethod = false;
   4755   for (Decl *D : candidate) {
   4756     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
   4757       D = FTD->getTemplatedDecl();
   4758     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
   4759       if (Method->isStatic())
   4760         HasStaticMethod = true;
   4761       else
   4762         HasNonStaticMethod = true;
   4763     }
   4764     if (!isa<TypeDecl>(D))
   4765       HasNonType = true;
   4766   }
   4767 
   4768   if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
   4769       !candidate.getCorrectionSpecifier())
   4770     return false;
   4771 
   4772   return WantTypeSpecifiers || HasNonType;
   4773 }
   4774 
   4775 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
   4776                                              bool HasExplicitTemplateArgs,
   4777                                              MemberExpr *ME)
   4778     : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
   4779       CurContext(SemaRef.CurContext), MemberFn(ME) {
   4780   WantTypeSpecifiers = false;
   4781   WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && NumArgs == 1;
   4782   WantRemainingKeywords = false;
   4783 }
   4784 
   4785 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
   4786   if (!candidate.getCorrectionDecl())
   4787     return candidate.isKeyword();
   4788 
   4789   for (auto *C : candidate) {
   4790     FunctionDecl *FD = nullptr;
   4791     NamedDecl *ND = C->getUnderlyingDecl();
   4792     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
   4793       FD = FTD->getTemplatedDecl();
   4794     if (!HasExplicitTemplateArgs && !FD) {
   4795       if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
   4796         // If the Decl is neither a function nor a template function,
   4797         // determine if it is a pointer or reference to a function. If so,
   4798         // check against the number of arguments expected for the pointee.
   4799         QualType ValType = cast<ValueDecl>(ND)->getType();
   4800         if (ValType->isAnyPointerType() || ValType->isReferenceType())
   4801           ValType = ValType->getPointeeType();
   4802         if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
   4803           if (FPT->getNumParams() == NumArgs)
   4804             return true;
   4805       }
   4806     }
   4807 
   4808     // Skip the current candidate if it is not a FunctionDecl or does not accept
   4809     // the current number of arguments.
   4810     if (!FD || !(FD->getNumParams() >= NumArgs &&
   4811                  FD->getMinRequiredArguments() <= NumArgs))
   4812       continue;
   4813 
   4814     // If the current candidate is a non-static C++ method, skip the candidate
   4815     // unless the method being corrected--or the current DeclContext, if the
   4816     // function being corrected is not a method--is a method in the same class
   4817     // or a descendent class of the candidate's parent class.
   4818     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
   4819       if (MemberFn || !MD->isStatic()) {
   4820         CXXMethodDecl *CurMD =
   4821             MemberFn
   4822                 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
   4823                 : dyn_cast_or_null<CXXMethodDecl>(CurContext);
   4824         CXXRecordDecl *CurRD =
   4825             CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
   4826         CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
   4827         if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
   4828           continue;
   4829       }
   4830     }
   4831     return true;
   4832   }
   4833   return false;
   4834 }
   4835 
   4836 void Sema::diagnoseTypo(const TypoCorrection &Correction,
   4837                         const PartialDiagnostic &TypoDiag,
   4838                         bool ErrorRecovery) {
   4839   diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
   4840                ErrorRecovery);
   4841 }
   4842 
   4843 /// Find which declaration we should import to provide the definition of
   4844 /// the given declaration.
   4845 static NamedDecl *getDefinitionToImport(NamedDecl *D) {
   4846   if (VarDecl *VD = dyn_cast<VarDecl>(D))
   4847     return VD->getDefinition();
   4848   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
   4849     return FD->isDefined(FD) ? const_cast<FunctionDecl*>(FD) : nullptr;
   4850   if (TagDecl *TD = dyn_cast<TagDecl>(D))
   4851     return TD->getDefinition();
   4852   if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
   4853     return ID->getDefinition();
   4854   if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
   4855     return PD->getDefinition();
   4856   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
   4857     return getDefinitionToImport(TD->getTemplatedDecl());
   4858   return nullptr;
   4859 }
   4860 
   4861 void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
   4862                                  bool NeedDefinition, bool Recover) {
   4863   assert(!isVisible(Decl) && "missing import for non-hidden decl?");
   4864 
   4865   // Suggest importing a module providing the definition of this entity, if
   4866   // possible.
   4867   NamedDecl *Def = getDefinitionToImport(Decl);
   4868   if (!Def)
   4869     Def = Decl;
   4870 
   4871   // FIXME: Add a Fix-It that imports the corresponding module or includes
   4872   // the header.
   4873   Module *Owner = getOwningModule(Decl);
   4874   assert(Owner && "definition of hidden declaration is not in a module");
   4875 
   4876   llvm::SmallVector<Module*, 8> OwningModules;
   4877   OwningModules.push_back(Owner);
   4878   auto Merged = Context.getModulesWithMergedDefinition(Decl);
   4879   OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
   4880 
   4881   diagnoseMissingImport(Loc, Decl, Decl->getLocation(), OwningModules,
   4882                         NeedDefinition ? MissingImportKind::Definition
   4883                                        : MissingImportKind::Declaration,
   4884                         Recover);
   4885 }
   4886 
   4887 void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
   4888                                  SourceLocation DeclLoc,
   4889                                  ArrayRef<Module *> Modules,
   4890                                  MissingImportKind MIK, bool Recover) {
   4891   assert(!Modules.empty());
   4892 
   4893   if (Modules.size() > 1) {
   4894     std::string ModuleList;
   4895     unsigned N = 0;
   4896     for (Module *M : Modules) {
   4897       ModuleList += "\n        ";
   4898       if (++N == 5 && N != Modules.size()) {
   4899         ModuleList += "[...]";
   4900         break;
   4901       }
   4902       ModuleList += M->getFullModuleName();
   4903     }
   4904 
   4905     Diag(UseLoc, diag::err_module_unimported_use_multiple)
   4906       << (int)MIK << Decl << ModuleList;
   4907   } else {
   4908     Diag(UseLoc, diag::err_module_unimported_use)
   4909       << (int)MIK << Decl << Modules[0]->getFullModuleName();
   4910   }
   4911 
   4912   unsigned DiagID;
   4913   switch (MIK) {
   4914   case MissingImportKind::Declaration:
   4915     DiagID = diag::note_previous_declaration;
   4916     break;
   4917   case MissingImportKind::Definition:
   4918     DiagID = diag::note_previous_definition;
   4919     break;
   4920   case MissingImportKind::DefaultArgument:
   4921     DiagID = diag::note_default_argument_declared_here;
   4922     break;
   4923   }
   4924   Diag(DeclLoc, DiagID);
   4925 
   4926   // Try to recover by implicitly importing this module.
   4927   if (Recover)
   4928     createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
   4929 }
   4930 
   4931 /// \brief Diagnose a successfully-corrected typo. Separated from the correction
   4932 /// itself to allow external validation of the result, etc.
   4933 ///
   4934 /// \param Correction The result of performing typo correction.
   4935 /// \param TypoDiag The diagnostic to produce. This will have the corrected
   4936 ///        string added to it (and usually also a fixit).
   4937 /// \param PrevNote A note to use when indicating the location of the entity to
   4938 ///        which we are correcting. Will have the correction string added to it.
   4939 /// \param ErrorRecovery If \c true (the default), the caller is going to
   4940 ///        recover from the typo as if the corrected string had been typed.
   4941 ///        In this case, \c PDiag must be an error, and we will attach a fixit
   4942 ///        to it.
   4943 void Sema::diagnoseTypo(const TypoCorrection &Correction,
   4944                         const PartialDiagnostic &TypoDiag,
   4945                         const PartialDiagnostic &PrevNote,
   4946                         bool ErrorRecovery) {
   4947   std::string CorrectedStr = Correction.getAsString(getLangOpts());
   4948   std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
   4949   FixItHint FixTypo = FixItHint::CreateReplacement(
   4950       Correction.getCorrectionRange(), CorrectedStr);
   4951 
   4952   // Maybe we're just missing a module import.
   4953   if (Correction.requiresImport()) {
   4954     NamedDecl *Decl = Correction.getCorrectionDecl();
   4955     assert(Decl && "import required but no declaration to import");
   4956 
   4957     diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
   4958                           /*NeedDefinition*/ false, ErrorRecovery);
   4959     return;
   4960   }
   4961 
   4962   Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
   4963     << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
   4964 
   4965   NamedDecl *ChosenDecl =
   4966       Correction.isKeyword() ? nullptr : Correction.getCorrectionDecl();
   4967   if (PrevNote.getDiagID() && ChosenDecl)
   4968     Diag(ChosenDecl->getLocation(), PrevNote)
   4969       << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
   4970 }
   4971 
   4972 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
   4973                                   TypoDiagnosticGenerator TDG,
   4974                                   TypoRecoveryCallback TRC) {
   4975   assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
   4976   auto TE = new (Context) TypoExpr(Context.DependentTy);
   4977   auto &State = DelayedTypos[TE];
   4978   State.Consumer = std::move(TCC);
   4979   State.DiagHandler = std::move(TDG);
   4980   State.RecoveryHandler = std::move(TRC);
   4981   return TE;
   4982 }
   4983 
   4984 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
   4985   auto Entry = DelayedTypos.find(TE);
   4986   assert(Entry != DelayedTypos.end() &&
   4987          "Failed to get the state for a TypoExpr!");
   4988   return Entry->second;
   4989 }
   4990 
   4991 void Sema::clearDelayedTypo(TypoExpr *TE) {
   4992   DelayedTypos.erase(TE);
   4993 }
   4994