1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities for loops with run-time 11 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time 12 // trip counts. 13 // 14 // The functions in this file are used to generate extra code when the 15 // run-time trip count modulo the unroll factor is not 0. When this is the 16 // case, we need to generate code to execute these 'left over' iterations. 17 // 18 // The current strategy generates an if-then-else sequence prior to the 19 // unrolled loop to execute the 'left over' iterations. Other strategies 20 // include generate a loop before or after the unrolled loop. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/Transforms/Utils/UnrollLoop.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/LoopIterator.h" 28 #include "llvm/Analysis/LoopPass.h" 29 #include "llvm/Analysis/ScalarEvolution.h" 30 #include "llvm/Analysis/ScalarEvolutionExpander.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Metadata.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Scalar.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 #include "llvm/Transforms/Utils/Cloning.h" 40 #include <algorithm> 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "loop-unroll" 45 46 STATISTIC(NumRuntimeUnrolled, 47 "Number of loops unrolled with run-time trip counts"); 48 49 /// Connect the unrolling prolog code to the original loop. 50 /// The unrolling prolog code contains code to execute the 51 /// 'extra' iterations if the run-time trip count modulo the 52 /// unroll count is non-zero. 53 /// 54 /// This function performs the following: 55 /// - Create PHI nodes at prolog end block to combine values 56 /// that exit the prolog code and jump around the prolog. 57 /// - Add a PHI operand to a PHI node at the loop exit block 58 /// for values that exit the prolog and go around the loop. 59 /// - Branch around the original loop if the trip count is less 60 /// than the unroll factor. 61 /// 62 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, 63 BasicBlock *LastPrologBB, BasicBlock *PrologEnd, 64 BasicBlock *OrigPH, BasicBlock *NewPH, 65 ValueToValueMapTy &VMap, DominatorTree *DT, 66 LoopInfo *LI, bool PreserveLCSSA) { 67 BasicBlock *Latch = L->getLoopLatch(); 68 assert(Latch && "Loop must have a latch"); 69 70 // Create a PHI node for each outgoing value from the original loop 71 // (which means it is an outgoing value from the prolog code too). 72 // The new PHI node is inserted in the prolog end basic block. 73 // The new PHI name is added as an operand of a PHI node in either 74 // the loop header or the loop exit block. 75 for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch); 76 SBI != SBE; ++SBI) { 77 for (BasicBlock::iterator BBI = (*SBI)->begin(); 78 PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) { 79 80 // Add a new PHI node to the prolog end block and add the 81 // appropriate incoming values. 82 PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr", 83 PrologEnd->getTerminator()); 84 // Adding a value to the new PHI node from the original loop preheader. 85 // This is the value that skips all the prolog code. 86 if (L->contains(PN)) { 87 NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH); 88 } else { 89 NewPN->addIncoming(UndefValue::get(PN->getType()), OrigPH); 90 } 91 92 Value *V = PN->getIncomingValueForBlock(Latch); 93 if (Instruction *I = dyn_cast<Instruction>(V)) { 94 if (L->contains(I)) { 95 V = VMap[I]; 96 } 97 } 98 // Adding a value to the new PHI node from the last prolog block 99 // that was created. 100 NewPN->addIncoming(V, LastPrologBB); 101 102 // Update the existing PHI node operand with the value from the 103 // new PHI node. How this is done depends on if the existing 104 // PHI node is in the original loop block, or the exit block. 105 if (L->contains(PN)) { 106 PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN); 107 } else { 108 PN->addIncoming(NewPN, PrologEnd); 109 } 110 } 111 } 112 113 // Create a branch around the orignal loop, which is taken if there are no 114 // iterations remaining to be executed after running the prologue. 115 Instruction *InsertPt = PrologEnd->getTerminator(); 116 IRBuilder<> B(InsertPt); 117 118 assert(Count != 0 && "nonsensical Count!"); 119 120 // If BECount <u (Count - 1) then (BECount + 1) & (Count - 1) == (BECount + 1) 121 // (since Count is a power of 2). This means %xtraiter is (BECount + 1) and 122 // and all of the iterations of this loop were executed by the prologue. Note 123 // that if BECount <u (Count - 1) then (BECount + 1) cannot unsigned-overflow. 124 Value *BrLoopExit = 125 B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1)); 126 BasicBlock *Exit = L->getUniqueExitBlock(); 127 assert(Exit && "Loop must have a single exit block only"); 128 // Split the exit to maintain loop canonicalization guarantees 129 SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit)); 130 SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", DT, LI, 131 PreserveLCSSA); 132 // Add the branch to the exit block (around the unrolled loop) 133 B.CreateCondBr(BrLoopExit, Exit, NewPH); 134 InsertPt->eraseFromParent(); 135 } 136 137 /// Create a clone of the blocks in a loop and connect them together. 138 /// If UnrollProlog is true, loop structure will not be cloned, otherwise a new 139 /// loop will be created including all cloned blocks, and the iterator of it 140 /// switches to count NewIter down to 0. 141 /// 142 static void CloneLoopBlocks(Loop *L, Value *NewIter, const bool UnrollProlog, 143 BasicBlock *InsertTop, BasicBlock *InsertBot, 144 std::vector<BasicBlock *> &NewBlocks, 145 LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap, 146 LoopInfo *LI) { 147 BasicBlock *Preheader = L->getLoopPreheader(); 148 BasicBlock *Header = L->getHeader(); 149 BasicBlock *Latch = L->getLoopLatch(); 150 Function *F = Header->getParent(); 151 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 152 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 153 Loop *NewLoop = nullptr; 154 Loop *ParentLoop = L->getParentLoop(); 155 if (!UnrollProlog) { 156 NewLoop = new Loop(); 157 if (ParentLoop) 158 ParentLoop->addChildLoop(NewLoop); 159 else 160 LI->addTopLevelLoop(NewLoop); 161 } 162 163 // For each block in the original loop, create a new copy, 164 // and update the value map with the newly created values. 165 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 166 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".prol", F); 167 NewBlocks.push_back(NewBB); 168 169 if (NewLoop) 170 NewLoop->addBasicBlockToLoop(NewBB, *LI); 171 else if (ParentLoop) 172 ParentLoop->addBasicBlockToLoop(NewBB, *LI); 173 174 VMap[*BB] = NewBB; 175 if (Header == *BB) { 176 // For the first block, add a CFG connection to this newly 177 // created block. 178 InsertTop->getTerminator()->setSuccessor(0, NewBB); 179 180 } 181 if (Latch == *BB) { 182 // For the last block, if UnrollProlog is true, create a direct jump to 183 // InsertBot. If not, create a loop back to cloned head. 184 VMap.erase((*BB)->getTerminator()); 185 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); 186 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); 187 IRBuilder<> Builder(LatchBR); 188 if (UnrollProlog) { 189 Builder.CreateBr(InsertBot); 190 } else { 191 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, "prol.iter", 192 FirstLoopBB->getFirstNonPHI()); 193 Value *IdxSub = 194 Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 195 NewIdx->getName() + ".sub"); 196 Value *IdxCmp = 197 Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp"); 198 Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot); 199 NewIdx->addIncoming(NewIter, InsertTop); 200 NewIdx->addIncoming(IdxSub, NewBB); 201 } 202 LatchBR->eraseFromParent(); 203 } 204 } 205 206 // Change the incoming values to the ones defined in the preheader or 207 // cloned loop. 208 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 209 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 210 if (UnrollProlog) { 211 VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader); 212 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); 213 } else { 214 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 215 NewPHI->setIncomingBlock(idx, InsertTop); 216 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 217 idx = NewPHI->getBasicBlockIndex(Latch); 218 Value *InVal = NewPHI->getIncomingValue(idx); 219 NewPHI->setIncomingBlock(idx, NewLatch); 220 if (VMap[InVal]) 221 NewPHI->setIncomingValue(idx, VMap[InVal]); 222 } 223 } 224 if (NewLoop) { 225 // Add unroll disable metadata to disable future unrolling for this loop. 226 SmallVector<Metadata *, 4> MDs; 227 // Reserve first location for self reference to the LoopID metadata node. 228 MDs.push_back(nullptr); 229 MDNode *LoopID = NewLoop->getLoopID(); 230 if (LoopID) { 231 // First remove any existing loop unrolling metadata. 232 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 233 bool IsUnrollMetadata = false; 234 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 235 if (MD) { 236 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 237 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 238 } 239 if (!IsUnrollMetadata) 240 MDs.push_back(LoopID->getOperand(i)); 241 } 242 } 243 244 LLVMContext &Context = NewLoop->getHeader()->getContext(); 245 SmallVector<Metadata *, 1> DisableOperands; 246 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 247 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 248 MDs.push_back(DisableNode); 249 250 MDNode *NewLoopID = MDNode::get(Context, MDs); 251 // Set operand 0 to refer to the loop id itself. 252 NewLoopID->replaceOperandWith(0, NewLoopID); 253 NewLoop->setLoopID(NewLoopID); 254 } 255 } 256 257 /// Insert code in the prolog code when unrolling a loop with a 258 /// run-time trip-count. 259 /// 260 /// This method assumes that the loop unroll factor is total number 261 /// of loop bodes in the loop after unrolling. (Some folks refer 262 /// to the unroll factor as the number of *extra* copies added). 263 /// We assume also that the loop unroll factor is a power-of-two. So, after 264 /// unrolling the loop, the number of loop bodies executed is 2, 265 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch 266 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for 267 /// the switch instruction is generated. 268 /// 269 /// extraiters = tripcount % loopfactor 270 /// if (extraiters == 0) jump Loop: 271 /// else jump Prol 272 /// Prol: LoopBody; 273 /// extraiters -= 1 // Omitted if unroll factor is 2. 274 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. 275 /// if (tripcount < loopfactor) jump End 276 /// Loop: 277 /// ... 278 /// End: 279 /// 280 bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, 281 bool AllowExpensiveTripCount, LoopInfo *LI, 282 ScalarEvolution *SE, DominatorTree *DT, 283 bool PreserveLCSSA) { 284 // for now, only unroll loops that contain a single exit 285 if (!L->getExitingBlock()) 286 return false; 287 288 // Make sure the loop is in canonical form, and there is a single 289 // exit block only. 290 if (!L->isLoopSimplifyForm() || !L->getUniqueExitBlock()) 291 return false; 292 293 // Use Scalar Evolution to compute the trip count. This allows more 294 // loops to be unrolled than relying on induction var simplification 295 if (!SE) 296 return false; 297 298 // Only unroll loops with a computable trip count and the trip count needs 299 // to be an int value (allowing a pointer type is a TODO item) 300 const SCEV *BECountSC = SE->getBackedgeTakenCount(L); 301 if (isa<SCEVCouldNotCompute>(BECountSC) || 302 !BECountSC->getType()->isIntegerTy()) 303 return false; 304 305 unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth(); 306 307 // Add 1 since the backedge count doesn't include the first loop iteration 308 const SCEV *TripCountSC = 309 SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); 310 if (isa<SCEVCouldNotCompute>(TripCountSC)) 311 return false; 312 313 BasicBlock *Header = L->getHeader(); 314 const DataLayout &DL = Header->getModule()->getDataLayout(); 315 SCEVExpander Expander(*SE, DL, "loop-unroll"); 316 if (!AllowExpensiveTripCount && Expander.isHighCostExpansion(TripCountSC, L)) 317 return false; 318 319 // We only handle cases when the unroll factor is a power of 2. 320 // Count is the loop unroll factor, the number of extra copies added + 1. 321 if (!isPowerOf2_32(Count)) 322 return false; 323 324 // This constraint lets us deal with an overflowing trip count easily; see the 325 // comment on ModVal below. 326 if (Log2_32(Count) > BEWidth) 327 return false; 328 329 // If this loop is nested, then the loop unroller changes the code in 330 // parent loop, so the Scalar Evolution pass needs to be run again 331 if (Loop *ParentLoop = L->getParentLoop()) 332 SE->forgetLoop(ParentLoop); 333 334 BasicBlock *PH = L->getLoopPreheader(); 335 BasicBlock *Latch = L->getLoopLatch(); 336 // It helps to splits the original preheader twice, one for the end of the 337 // prolog code and one for a new loop preheader 338 BasicBlock *PEnd = SplitEdge(PH, Header, DT, LI); 339 BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), DT, LI); 340 BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator()); 341 342 // Compute the number of extra iterations required, which is: 343 // extra iterations = run-time trip count % (loop unroll factor + 1) 344 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), 345 PreHeaderBR); 346 Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(), 347 PreHeaderBR); 348 349 IRBuilder<> B(PreHeaderBR); 350 Value *ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter"); 351 352 // If ModVal is zero, we know that either 353 // 1. there are no iteration to be run in the prologue loop 354 // OR 355 // 2. the addition computing TripCount overflowed 356 // 357 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so the 358 // number of iterations that remain to be run in the original loop is a 359 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we 360 // explicitly check this above). 361 362 Value *BranchVal = B.CreateIsNotNull(ModVal, "lcmp.mod"); 363 364 // Branch to either the extra iterations or the cloned/unrolled loop 365 // We will fix up the true branch label when adding loop body copies 366 B.CreateCondBr(BranchVal, PEnd, PEnd); 367 assert(PreHeaderBR->isUnconditional() && 368 PreHeaderBR->getSuccessor(0) == PEnd && 369 "CFG edges in Preheader are not correct"); 370 PreHeaderBR->eraseFromParent(); 371 Function *F = Header->getParent(); 372 // Get an ordered list of blocks in the loop to help with the ordering of the 373 // cloned blocks in the prolog code 374 LoopBlocksDFS LoopBlocks(L); 375 LoopBlocks.perform(LI); 376 377 // 378 // For each extra loop iteration, create a copy of the loop's basic blocks 379 // and generate a condition that branches to the copy depending on the 380 // number of 'left over' iterations. 381 // 382 std::vector<BasicBlock *> NewBlocks; 383 ValueToValueMapTy VMap; 384 385 bool UnrollPrologue = Count == 2; 386 387 // Clone all the basic blocks in the loop. If Count is 2, we don't clone 388 // the loop, otherwise we create a cloned loop to execute the extra 389 // iterations. This function adds the appropriate CFG connections. 390 CloneLoopBlocks(L, ModVal, UnrollPrologue, PH, PEnd, NewBlocks, LoopBlocks, 391 VMap, LI); 392 393 // Insert the cloned blocks into function just before the original loop 394 F->getBasicBlockList().splice(PEnd->getIterator(), F->getBasicBlockList(), 395 NewBlocks[0]->getIterator(), F->end()); 396 397 // Rewrite the cloned instruction operands to use the values 398 // created when the clone is created. 399 for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) { 400 for (BasicBlock::iterator I = NewBlocks[i]->begin(), 401 E = NewBlocks[i]->end(); 402 I != E; ++I) { 403 RemapInstruction(&*I, VMap, 404 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 405 } 406 } 407 408 // Connect the prolog code to the original loop and update the 409 // PHI functions. 410 BasicBlock *LastLoopBB = cast<BasicBlock>(VMap[Latch]); 411 ConnectProlog(L, BECount, Count, LastLoopBB, PEnd, PH, NewPH, VMap, DT, LI, 412 PreserveLCSSA); 413 NumRuntimeUnrolled++; 414 return true; 415 } 416