Home | History | Annotate | Download | only in Utils
      1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements some loop unrolling utilities for loops with run-time
     11 // trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
     12 // trip counts.
     13 //
     14 // The functions in this file are used to generate extra code when the
     15 // run-time trip count modulo the unroll factor is not 0.  When this is the
     16 // case, we need to generate code to execute these 'left over' iterations.
     17 //
     18 // The current strategy generates an if-then-else sequence prior to the
     19 // unrolled loop to execute the 'left over' iterations.  Other strategies
     20 // include generate a loop before or after the unrolled loop.
     21 //
     22 //===----------------------------------------------------------------------===//
     23 
     24 #include "llvm/Transforms/Utils/UnrollLoop.h"
     25 #include "llvm/ADT/Statistic.h"
     26 #include "llvm/Analysis/AliasAnalysis.h"
     27 #include "llvm/Analysis/LoopIterator.h"
     28 #include "llvm/Analysis/LoopPass.h"
     29 #include "llvm/Analysis/ScalarEvolution.h"
     30 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     31 #include "llvm/IR/BasicBlock.h"
     32 #include "llvm/IR/Dominators.h"
     33 #include "llvm/IR/Metadata.h"
     34 #include "llvm/IR/Module.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Support/raw_ostream.h"
     37 #include "llvm/Transforms/Scalar.h"
     38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     39 #include "llvm/Transforms/Utils/Cloning.h"
     40 #include <algorithm>
     41 
     42 using namespace llvm;
     43 
     44 #define DEBUG_TYPE "loop-unroll"
     45 
     46 STATISTIC(NumRuntimeUnrolled,
     47           "Number of loops unrolled with run-time trip counts");
     48 
     49 /// Connect the unrolling prolog code to the original loop.
     50 /// The unrolling prolog code contains code to execute the
     51 /// 'extra' iterations if the run-time trip count modulo the
     52 /// unroll count is non-zero.
     53 ///
     54 /// This function performs the following:
     55 /// - Create PHI nodes at prolog end block to combine values
     56 ///   that exit the prolog code and jump around the prolog.
     57 /// - Add a PHI operand to a PHI node at the loop exit block
     58 ///   for values that exit the prolog and go around the loop.
     59 /// - Branch around the original loop if the trip count is less
     60 ///   than the unroll factor.
     61 ///
     62 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
     63                           BasicBlock *LastPrologBB, BasicBlock *PrologEnd,
     64                           BasicBlock *OrigPH, BasicBlock *NewPH,
     65                           ValueToValueMapTy &VMap, DominatorTree *DT,
     66                           LoopInfo *LI, bool PreserveLCSSA) {
     67   BasicBlock *Latch = L->getLoopLatch();
     68   assert(Latch && "Loop must have a latch");
     69 
     70   // Create a PHI node for each outgoing value from the original loop
     71   // (which means it is an outgoing value from the prolog code too).
     72   // The new PHI node is inserted in the prolog end basic block.
     73   // The new PHI name is added as an operand of a PHI node in either
     74   // the loop header or the loop exit block.
     75   for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch);
     76        SBI != SBE; ++SBI) {
     77     for (BasicBlock::iterator BBI = (*SBI)->begin();
     78          PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
     79 
     80       // Add a new PHI node to the prolog end block and add the
     81       // appropriate incoming values.
     82       PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr",
     83                                        PrologEnd->getTerminator());
     84       // Adding a value to the new PHI node from the original loop preheader.
     85       // This is the value that skips all the prolog code.
     86       if (L->contains(PN)) {
     87         NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH);
     88       } else {
     89         NewPN->addIncoming(UndefValue::get(PN->getType()), OrigPH);
     90       }
     91 
     92       Value *V = PN->getIncomingValueForBlock(Latch);
     93       if (Instruction *I = dyn_cast<Instruction>(V)) {
     94         if (L->contains(I)) {
     95           V = VMap[I];
     96         }
     97       }
     98       // Adding a value to the new PHI node from the last prolog block
     99       // that was created.
    100       NewPN->addIncoming(V, LastPrologBB);
    101 
    102       // Update the existing PHI node operand with the value from the
    103       // new PHI node.  How this is done depends on if the existing
    104       // PHI node is in the original loop block, or the exit block.
    105       if (L->contains(PN)) {
    106         PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN);
    107       } else {
    108         PN->addIncoming(NewPN, PrologEnd);
    109       }
    110     }
    111   }
    112 
    113   // Create a branch around the orignal loop, which is taken if there are no
    114   // iterations remaining to be executed after running the prologue.
    115   Instruction *InsertPt = PrologEnd->getTerminator();
    116   IRBuilder<> B(InsertPt);
    117 
    118   assert(Count != 0 && "nonsensical Count!");
    119 
    120   // If BECount <u (Count - 1) then (BECount + 1) & (Count - 1) == (BECount + 1)
    121   // (since Count is a power of 2).  This means %xtraiter is (BECount + 1) and
    122   // and all of the iterations of this loop were executed by the prologue.  Note
    123   // that if BECount <u (Count - 1) then (BECount + 1) cannot unsigned-overflow.
    124   Value *BrLoopExit =
    125       B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
    126   BasicBlock *Exit = L->getUniqueExitBlock();
    127   assert(Exit && "Loop must have a single exit block only");
    128   // Split the exit to maintain loop canonicalization guarantees
    129   SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit));
    130   SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", DT, LI,
    131                          PreserveLCSSA);
    132   // Add the branch to the exit block (around the unrolled loop)
    133   B.CreateCondBr(BrLoopExit, Exit, NewPH);
    134   InsertPt->eraseFromParent();
    135 }
    136 
    137 /// Create a clone of the blocks in a loop and connect them together.
    138 /// If UnrollProlog is true, loop structure will not be cloned, otherwise a new
    139 /// loop will be created including all cloned blocks, and the iterator of it
    140 /// switches to count NewIter down to 0.
    141 ///
    142 static void CloneLoopBlocks(Loop *L, Value *NewIter, const bool UnrollProlog,
    143                             BasicBlock *InsertTop, BasicBlock *InsertBot,
    144                             std::vector<BasicBlock *> &NewBlocks,
    145                             LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap,
    146                             LoopInfo *LI) {
    147   BasicBlock *Preheader = L->getLoopPreheader();
    148   BasicBlock *Header = L->getHeader();
    149   BasicBlock *Latch = L->getLoopLatch();
    150   Function *F = Header->getParent();
    151   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
    152   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
    153   Loop *NewLoop = nullptr;
    154   Loop *ParentLoop = L->getParentLoop();
    155   if (!UnrollProlog) {
    156     NewLoop = new Loop();
    157     if (ParentLoop)
    158       ParentLoop->addChildLoop(NewLoop);
    159     else
    160       LI->addTopLevelLoop(NewLoop);
    161   }
    162 
    163   // For each block in the original loop, create a new copy,
    164   // and update the value map with the newly created values.
    165   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
    166     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".prol", F);
    167     NewBlocks.push_back(NewBB);
    168 
    169     if (NewLoop)
    170       NewLoop->addBasicBlockToLoop(NewBB, *LI);
    171     else if (ParentLoop)
    172       ParentLoop->addBasicBlockToLoop(NewBB, *LI);
    173 
    174     VMap[*BB] = NewBB;
    175     if (Header == *BB) {
    176       // For the first block, add a CFG connection to this newly
    177       // created block.
    178       InsertTop->getTerminator()->setSuccessor(0, NewBB);
    179 
    180     }
    181     if (Latch == *BB) {
    182       // For the last block, if UnrollProlog is true, create a direct jump to
    183       // InsertBot. If not, create a loop back to cloned head.
    184       VMap.erase((*BB)->getTerminator());
    185       BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
    186       BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
    187       IRBuilder<> Builder(LatchBR);
    188       if (UnrollProlog) {
    189         Builder.CreateBr(InsertBot);
    190       } else {
    191         PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, "prol.iter",
    192                                           FirstLoopBB->getFirstNonPHI());
    193         Value *IdxSub =
    194             Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
    195                               NewIdx->getName() + ".sub");
    196         Value *IdxCmp =
    197             Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
    198         Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
    199         NewIdx->addIncoming(NewIter, InsertTop);
    200         NewIdx->addIncoming(IdxSub, NewBB);
    201       }
    202       LatchBR->eraseFromParent();
    203     }
    204   }
    205 
    206   // Change the incoming values to the ones defined in the preheader or
    207   // cloned loop.
    208   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    209     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
    210     if (UnrollProlog) {
    211       VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader);
    212       cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
    213     } else {
    214       unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
    215       NewPHI->setIncomingBlock(idx, InsertTop);
    216       BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
    217       idx = NewPHI->getBasicBlockIndex(Latch);
    218       Value *InVal = NewPHI->getIncomingValue(idx);
    219       NewPHI->setIncomingBlock(idx, NewLatch);
    220       if (VMap[InVal])
    221         NewPHI->setIncomingValue(idx, VMap[InVal]);
    222     }
    223   }
    224   if (NewLoop) {
    225     // Add unroll disable metadata to disable future unrolling for this loop.
    226     SmallVector<Metadata *, 4> MDs;
    227     // Reserve first location for self reference to the LoopID metadata node.
    228     MDs.push_back(nullptr);
    229     MDNode *LoopID = NewLoop->getLoopID();
    230     if (LoopID) {
    231       // First remove any existing loop unrolling metadata.
    232       for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
    233         bool IsUnrollMetadata = false;
    234         MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
    235         if (MD) {
    236           const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
    237           IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
    238         }
    239         if (!IsUnrollMetadata)
    240           MDs.push_back(LoopID->getOperand(i));
    241       }
    242     }
    243 
    244     LLVMContext &Context = NewLoop->getHeader()->getContext();
    245     SmallVector<Metadata *, 1> DisableOperands;
    246     DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
    247     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
    248     MDs.push_back(DisableNode);
    249 
    250     MDNode *NewLoopID = MDNode::get(Context, MDs);
    251     // Set operand 0 to refer to the loop id itself.
    252     NewLoopID->replaceOperandWith(0, NewLoopID);
    253     NewLoop->setLoopID(NewLoopID);
    254   }
    255 }
    256 
    257 /// Insert code in the prolog code when unrolling a loop with a
    258 /// run-time trip-count.
    259 ///
    260 /// This method assumes that the loop unroll factor is total number
    261 /// of loop bodes in the loop after unrolling. (Some folks refer
    262 /// to the unroll factor as the number of *extra* copies added).
    263 /// We assume also that the loop unroll factor is a power-of-two. So, after
    264 /// unrolling the loop, the number of loop bodies executed is 2,
    265 /// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
    266 /// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
    267 /// the switch instruction is generated.
    268 ///
    269 ///        extraiters = tripcount % loopfactor
    270 ///        if (extraiters == 0) jump Loop:
    271 ///        else jump Prol
    272 /// Prol:  LoopBody;
    273 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
    274 ///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
    275 ///        if (tripcount < loopfactor) jump End
    276 /// Loop:
    277 /// ...
    278 /// End:
    279 ///
    280 bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count,
    281                                    bool AllowExpensiveTripCount, LoopInfo *LI,
    282                                    ScalarEvolution *SE, DominatorTree *DT,
    283                                    bool PreserveLCSSA) {
    284   // for now, only unroll loops that contain a single exit
    285   if (!L->getExitingBlock())
    286     return false;
    287 
    288   // Make sure the loop is in canonical form, and there is a single
    289   // exit block only.
    290   if (!L->isLoopSimplifyForm() || !L->getUniqueExitBlock())
    291     return false;
    292 
    293   // Use Scalar Evolution to compute the trip count.  This allows more
    294   // loops to be unrolled than relying on induction var simplification
    295   if (!SE)
    296     return false;
    297 
    298   // Only unroll loops with a computable trip count and the trip count needs
    299   // to be an int value (allowing a pointer type is a TODO item)
    300   const SCEV *BECountSC = SE->getBackedgeTakenCount(L);
    301   if (isa<SCEVCouldNotCompute>(BECountSC) ||
    302       !BECountSC->getType()->isIntegerTy())
    303     return false;
    304 
    305   unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
    306 
    307   // Add 1 since the backedge count doesn't include the first loop iteration
    308   const SCEV *TripCountSC =
    309       SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
    310   if (isa<SCEVCouldNotCompute>(TripCountSC))
    311     return false;
    312 
    313   BasicBlock *Header = L->getHeader();
    314   const DataLayout &DL = Header->getModule()->getDataLayout();
    315   SCEVExpander Expander(*SE, DL, "loop-unroll");
    316   if (!AllowExpensiveTripCount && Expander.isHighCostExpansion(TripCountSC, L))
    317     return false;
    318 
    319   // We only handle cases when the unroll factor is a power of 2.
    320   // Count is the loop unroll factor, the number of extra copies added + 1.
    321   if (!isPowerOf2_32(Count))
    322     return false;
    323 
    324   // This constraint lets us deal with an overflowing trip count easily; see the
    325   // comment on ModVal below.
    326   if (Log2_32(Count) > BEWidth)
    327     return false;
    328 
    329   // If this loop is nested, then the loop unroller changes the code in
    330   // parent loop, so the Scalar Evolution pass needs to be run again
    331   if (Loop *ParentLoop = L->getParentLoop())
    332     SE->forgetLoop(ParentLoop);
    333 
    334   BasicBlock *PH = L->getLoopPreheader();
    335   BasicBlock *Latch = L->getLoopLatch();
    336   // It helps to splits the original preheader twice, one for the end of the
    337   // prolog code and one for a new loop preheader
    338   BasicBlock *PEnd = SplitEdge(PH, Header, DT, LI);
    339   BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), DT, LI);
    340   BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());
    341 
    342   // Compute the number of extra iterations required, which is:
    343   //  extra iterations = run-time trip count % (loop unroll factor + 1)
    344   Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
    345                                             PreHeaderBR);
    346   Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
    347                                           PreHeaderBR);
    348 
    349   IRBuilder<> B(PreHeaderBR);
    350   Value *ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
    351 
    352   // If ModVal is zero, we know that either
    353   //  1. there are no iteration to be run in the prologue loop
    354   // OR
    355   //  2. the addition computing TripCount overflowed
    356   //
    357   // If (2) is true, we know that TripCount really is (1 << BEWidth) and so the
    358   // number of iterations that remain to be run in the original loop is a
    359   // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
    360   // explicitly check this above).
    361 
    362   Value *BranchVal = B.CreateIsNotNull(ModVal, "lcmp.mod");
    363 
    364   // Branch to either the extra iterations or the cloned/unrolled loop
    365   // We will fix up the true branch label when adding loop body copies
    366   B.CreateCondBr(BranchVal, PEnd, PEnd);
    367   assert(PreHeaderBR->isUnconditional() &&
    368          PreHeaderBR->getSuccessor(0) == PEnd &&
    369          "CFG edges in Preheader are not correct");
    370   PreHeaderBR->eraseFromParent();
    371   Function *F = Header->getParent();
    372   // Get an ordered list of blocks in the loop to help with the ordering of the
    373   // cloned blocks in the prolog code
    374   LoopBlocksDFS LoopBlocks(L);
    375   LoopBlocks.perform(LI);
    376 
    377   //
    378   // For each extra loop iteration, create a copy of the loop's basic blocks
    379   // and generate a condition that branches to the copy depending on the
    380   // number of 'left over' iterations.
    381   //
    382   std::vector<BasicBlock *> NewBlocks;
    383   ValueToValueMapTy VMap;
    384 
    385   bool UnrollPrologue = Count == 2;
    386 
    387   // Clone all the basic blocks in the loop. If Count is 2, we don't clone
    388   // the loop, otherwise we create a cloned loop to execute the extra
    389   // iterations. This function adds the appropriate CFG connections.
    390   CloneLoopBlocks(L, ModVal, UnrollPrologue, PH, PEnd, NewBlocks, LoopBlocks,
    391                   VMap, LI);
    392 
    393   // Insert the cloned blocks into function just before the original loop
    394   F->getBasicBlockList().splice(PEnd->getIterator(), F->getBasicBlockList(),
    395                                 NewBlocks[0]->getIterator(), F->end());
    396 
    397   // Rewrite the cloned instruction operands to use the values
    398   // created when the clone is created.
    399   for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
    400     for (BasicBlock::iterator I = NewBlocks[i]->begin(),
    401                               E = NewBlocks[i]->end();
    402          I != E; ++I) {
    403       RemapInstruction(&*I, VMap,
    404                        RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
    405     }
    406   }
    407 
    408   // Connect the prolog code to the original loop and update the
    409   // PHI functions.
    410   BasicBlock *LastLoopBB = cast<BasicBlock>(VMap[Latch]);
    411   ConnectProlog(L, BECount, Count, LastLoopBB, PEnd, PH, NewPH, VMap, DT, LI,
    412                 PreserveLCSSA);
    413   NumRuntimeUnrolled++;
    414   return true;
    415 }
    416