1 //===-------- InlineSpiller.cpp - Insert spills and restores inline -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The inline spiller modifies the machine function directly instead of 11 // inserting spills and restores in VirtRegMap. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "Spiller.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/TinyPtrVector.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 21 #include "llvm/CodeGen/LiveRangeEdit.h" 22 #include "llvm/CodeGen/LiveStackAnalysis.h" 23 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 24 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 25 #include "llvm/CodeGen/MachineDominators.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineInstrBundle.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/VirtRegMap.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetInstrInfo.h" 37 38 using namespace llvm; 39 40 #define DEBUG_TYPE "regalloc" 41 42 STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); 43 STATISTIC(NumSnippets, "Number of spilled snippets"); 44 STATISTIC(NumSpills, "Number of spills inserted"); 45 STATISTIC(NumSpillsRemoved, "Number of spills removed"); 46 STATISTIC(NumReloads, "Number of reloads inserted"); 47 STATISTIC(NumReloadsRemoved, "Number of reloads removed"); 48 STATISTIC(NumFolded, "Number of folded stack accesses"); 49 STATISTIC(NumFoldedLoads, "Number of folded loads"); 50 STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); 51 STATISTIC(NumOmitReloadSpill, "Number of omitted spills of reloads"); 52 STATISTIC(NumHoists, "Number of hoisted spills"); 53 54 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden, 55 cl::desc("Disable inline spill hoisting")); 56 57 namespace { 58 class InlineSpiller : public Spiller { 59 MachineFunction &MF; 60 LiveIntervals &LIS; 61 LiveStacks &LSS; 62 AliasAnalysis *AA; 63 MachineDominatorTree &MDT; 64 MachineLoopInfo &Loops; 65 VirtRegMap &VRM; 66 MachineFrameInfo &MFI; 67 MachineRegisterInfo &MRI; 68 const TargetInstrInfo &TII; 69 const TargetRegisterInfo &TRI; 70 const MachineBlockFrequencyInfo &MBFI; 71 72 // Variables that are valid during spill(), but used by multiple methods. 73 LiveRangeEdit *Edit; 74 LiveInterval *StackInt; 75 int StackSlot; 76 unsigned Original; 77 78 // All registers to spill to StackSlot, including the main register. 79 SmallVector<unsigned, 8> RegsToSpill; 80 81 // All COPY instructions to/from snippets. 82 // They are ignored since both operands refer to the same stack slot. 83 SmallPtrSet<MachineInstr*, 8> SnippetCopies; 84 85 // Values that failed to remat at some point. 86 SmallPtrSet<VNInfo*, 8> UsedValues; 87 88 public: 89 // Information about a value that was defined by a copy from a sibling 90 // register. 91 struct SibValueInfo { 92 // True when all reaching defs were reloads: No spill is necessary. 93 bool AllDefsAreReloads; 94 95 // True when value is defined by an original PHI not from splitting. 96 bool DefByOrigPHI; 97 98 // True when the COPY defining this value killed its source. 99 bool KillsSource; 100 101 // The preferred register to spill. 102 unsigned SpillReg; 103 104 // The value of SpillReg that should be spilled. 105 VNInfo *SpillVNI; 106 107 // The block where SpillVNI should be spilled. Currently, this must be the 108 // block containing SpillVNI->def. 109 MachineBasicBlock *SpillMBB; 110 111 // A defining instruction that is not a sibling copy or a reload, or NULL. 112 // This can be used as a template for rematerialization. 113 MachineInstr *DefMI; 114 115 // List of values that depend on this one. These values are actually the 116 // same, but live range splitting has placed them in different registers, 117 // or SSA update needed to insert PHI-defs to preserve SSA form. This is 118 // copies of the current value and phi-kills. Usually only phi-kills cause 119 // more than one dependent value. 120 TinyPtrVector<VNInfo*> Deps; 121 122 SibValueInfo(unsigned Reg, VNInfo *VNI) 123 : AllDefsAreReloads(true), DefByOrigPHI(false), KillsSource(false), 124 SpillReg(Reg), SpillVNI(VNI), SpillMBB(nullptr), DefMI(nullptr) {} 125 126 // Returns true when a def has been found. 127 bool hasDef() const { return DefByOrigPHI || DefMI; } 128 }; 129 130 private: 131 // Values in RegsToSpill defined by sibling copies. 132 typedef DenseMap<VNInfo*, SibValueInfo> SibValueMap; 133 SibValueMap SibValues; 134 135 // Dead defs generated during spilling. 136 SmallVector<MachineInstr*, 8> DeadDefs; 137 138 ~InlineSpiller() override {} 139 140 public: 141 InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm) 142 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 143 LSS(pass.getAnalysis<LiveStacks>()), 144 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 145 MDT(pass.getAnalysis<MachineDominatorTree>()), 146 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 147 MFI(*mf.getFrameInfo()), MRI(mf.getRegInfo()), 148 TII(*mf.getSubtarget().getInstrInfo()), 149 TRI(*mf.getSubtarget().getRegisterInfo()), 150 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()) {} 151 152 void spill(LiveRangeEdit &) override; 153 154 private: 155 bool isSnippet(const LiveInterval &SnipLI); 156 void collectRegsToSpill(); 157 158 bool isRegToSpill(unsigned Reg) { 159 return std::find(RegsToSpill.begin(), 160 RegsToSpill.end(), Reg) != RegsToSpill.end(); 161 } 162 163 bool isSibling(unsigned Reg); 164 MachineInstr *traceSiblingValue(unsigned, VNInfo*, VNInfo*); 165 void propagateSiblingValue(SibValueMap::iterator, VNInfo *VNI = nullptr); 166 void analyzeSiblingValues(); 167 168 bool hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI); 169 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); 170 171 void markValueUsed(LiveInterval*, VNInfo*); 172 bool reMaterializeFor(LiveInterval&, MachineBasicBlock::iterator MI); 173 void reMaterializeAll(); 174 175 bool coalesceStackAccess(MachineInstr *MI, unsigned Reg); 176 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> >, 177 MachineInstr *LoadMI = nullptr); 178 void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI); 179 void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI); 180 181 void spillAroundUses(unsigned Reg); 182 void spillAll(); 183 }; 184 } 185 186 namespace llvm { 187 188 Spiller::~Spiller() { } 189 void Spiller::anchor() { } 190 191 Spiller *createInlineSpiller(MachineFunctionPass &pass, 192 MachineFunction &mf, 193 VirtRegMap &vrm) { 194 return new InlineSpiller(pass, mf, vrm); 195 } 196 197 } 198 199 //===----------------------------------------------------------------------===// 200 // Snippets 201 //===----------------------------------------------------------------------===// 202 203 // When spilling a virtual register, we also spill any snippets it is connected 204 // to. The snippets are small live ranges that only have a single real use, 205 // leftovers from live range splitting. Spilling them enables memory operand 206 // folding or tightens the live range around the single use. 207 // 208 // This minimizes register pressure and maximizes the store-to-load distance for 209 // spill slots which can be important in tight loops. 210 211 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, 212 /// otherwise return 0. 213 static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) { 214 if (!MI->isFullCopy()) 215 return 0; 216 if (MI->getOperand(0).getReg() == Reg) 217 return MI->getOperand(1).getReg(); 218 if (MI->getOperand(1).getReg() == Reg) 219 return MI->getOperand(0).getReg(); 220 return 0; 221 } 222 223 /// isSnippet - Identify if a live interval is a snippet that should be spilled. 224 /// It is assumed that SnipLI is a virtual register with the same original as 225 /// Edit->getReg(). 226 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { 227 unsigned Reg = Edit->getReg(); 228 229 // A snippet is a tiny live range with only a single instruction using it 230 // besides copies to/from Reg or spills/fills. We accept: 231 // 232 // %snip = COPY %Reg / FILL fi# 233 // %snip = USE %snip 234 // %Reg = COPY %snip / SPILL %snip, fi# 235 // 236 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI)) 237 return false; 238 239 MachineInstr *UseMI = nullptr; 240 241 // Check that all uses satisfy our criteria. 242 for (MachineRegisterInfo::reg_instr_nodbg_iterator 243 RI = MRI.reg_instr_nodbg_begin(SnipLI.reg), 244 E = MRI.reg_instr_nodbg_end(); RI != E; ) { 245 MachineInstr *MI = &*(RI++); 246 247 // Allow copies to/from Reg. 248 if (isFullCopyOf(MI, Reg)) 249 continue; 250 251 // Allow stack slot loads. 252 int FI; 253 if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) 254 continue; 255 256 // Allow stack slot stores. 257 if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) 258 continue; 259 260 // Allow a single additional instruction. 261 if (UseMI && MI != UseMI) 262 return false; 263 UseMI = MI; 264 } 265 return true; 266 } 267 268 /// collectRegsToSpill - Collect live range snippets that only have a single 269 /// real use. 270 void InlineSpiller::collectRegsToSpill() { 271 unsigned Reg = Edit->getReg(); 272 273 // Main register always spills. 274 RegsToSpill.assign(1, Reg); 275 SnippetCopies.clear(); 276 277 // Snippets all have the same original, so there can't be any for an original 278 // register. 279 if (Original == Reg) 280 return; 281 282 for (MachineRegisterInfo::reg_instr_iterator 283 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) { 284 MachineInstr *MI = &*(RI++); 285 unsigned SnipReg = isFullCopyOf(MI, Reg); 286 if (!isSibling(SnipReg)) 287 continue; 288 LiveInterval &SnipLI = LIS.getInterval(SnipReg); 289 if (!isSnippet(SnipLI)) 290 continue; 291 SnippetCopies.insert(MI); 292 if (isRegToSpill(SnipReg)) 293 continue; 294 RegsToSpill.push_back(SnipReg); 295 DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); 296 ++NumSnippets; 297 } 298 } 299 300 301 //===----------------------------------------------------------------------===// 302 // Sibling Values 303 //===----------------------------------------------------------------------===// 304 305 // After live range splitting, some values to be spilled may be defined by 306 // copies from sibling registers. We trace the sibling copies back to the 307 // original value if it still exists. We need it for rematerialization. 308 // 309 // Even when the value can't be rematerialized, we still want to determine if 310 // the value has already been spilled, or we may want to hoist the spill from a 311 // loop. 312 313 bool InlineSpiller::isSibling(unsigned Reg) { 314 return TargetRegisterInfo::isVirtualRegister(Reg) && 315 VRM.getOriginal(Reg) == Original; 316 } 317 318 #ifndef NDEBUG 319 static raw_ostream &operator<<(raw_ostream &OS, 320 const InlineSpiller::SibValueInfo &SVI) { 321 OS << "spill " << PrintReg(SVI.SpillReg) << ':' 322 << SVI.SpillVNI->id << '@' << SVI.SpillVNI->def; 323 if (SVI.SpillMBB) 324 OS << " in BB#" << SVI.SpillMBB->getNumber(); 325 if (SVI.AllDefsAreReloads) 326 OS << " all-reloads"; 327 if (SVI.DefByOrigPHI) 328 OS << " orig-phi"; 329 if (SVI.KillsSource) 330 OS << " kill"; 331 OS << " deps["; 332 for (unsigned i = 0, e = SVI.Deps.size(); i != e; ++i) 333 OS << ' ' << SVI.Deps[i]->id << '@' << SVI.Deps[i]->def; 334 OS << " ]"; 335 if (SVI.DefMI) 336 OS << " def: " << *SVI.DefMI; 337 else 338 OS << '\n'; 339 return OS; 340 } 341 #endif 342 343 /// propagateSiblingValue - Propagate the value in SVI to dependents if it is 344 /// known. Otherwise remember the dependency for later. 345 /// 346 /// @param SVIIter SibValues entry to propagate. 347 /// @param VNI Dependent value, or NULL to propagate to all saved dependents. 348 void InlineSpiller::propagateSiblingValue(SibValueMap::iterator SVIIter, 349 VNInfo *VNI) { 350 SibValueMap::value_type *SVI = &*SVIIter; 351 352 // When VNI is non-NULL, add it to SVI's deps, and only propagate to that. 353 TinyPtrVector<VNInfo*> FirstDeps; 354 if (VNI) { 355 FirstDeps.push_back(VNI); 356 SVI->second.Deps.push_back(VNI); 357 } 358 359 // Has the value been completely determined yet? If not, defer propagation. 360 if (!SVI->second.hasDef()) 361 return; 362 363 // Work list of values to propagate. 364 SmallSetVector<SibValueMap::value_type *, 8> WorkList; 365 WorkList.insert(SVI); 366 367 do { 368 SVI = WorkList.pop_back_val(); 369 TinyPtrVector<VNInfo*> *Deps = VNI ? &FirstDeps : &SVI->second.Deps; 370 VNI = nullptr; 371 372 SibValueInfo &SV = SVI->second; 373 if (!SV.SpillMBB) 374 SV.SpillMBB = LIS.getMBBFromIndex(SV.SpillVNI->def); 375 376 DEBUG(dbgs() << " prop to " << Deps->size() << ": " 377 << SVI->first->id << '@' << SVI->first->def << ":\t" << SV); 378 379 assert(SV.hasDef() && "Propagating undefined value"); 380 381 // Should this value be propagated as a preferred spill candidate? We don't 382 // propagate values of registers that are about to spill. 383 bool PropSpill = !DisableHoisting && !isRegToSpill(SV.SpillReg); 384 unsigned SpillDepth = ~0u; 385 386 for (TinyPtrVector<VNInfo*>::iterator DepI = Deps->begin(), 387 DepE = Deps->end(); DepI != DepE; ++DepI) { 388 SibValueMap::iterator DepSVI = SibValues.find(*DepI); 389 assert(DepSVI != SibValues.end() && "Dependent value not in SibValues"); 390 SibValueInfo &DepSV = DepSVI->second; 391 if (!DepSV.SpillMBB) 392 DepSV.SpillMBB = LIS.getMBBFromIndex(DepSV.SpillVNI->def); 393 394 bool Changed = false; 395 396 // Propagate defining instruction. 397 if (!DepSV.hasDef()) { 398 Changed = true; 399 DepSV.DefMI = SV.DefMI; 400 DepSV.DefByOrigPHI = SV.DefByOrigPHI; 401 } 402 403 // Propagate AllDefsAreReloads. For PHI values, this computes an AND of 404 // all predecessors. 405 if (!SV.AllDefsAreReloads && DepSV.AllDefsAreReloads) { 406 Changed = true; 407 DepSV.AllDefsAreReloads = false; 408 } 409 410 // Propagate best spill value. 411 if (PropSpill && SV.SpillVNI != DepSV.SpillVNI) { 412 if (SV.SpillMBB == DepSV.SpillMBB) { 413 // DepSV is in the same block. Hoist when dominated. 414 if (DepSV.KillsSource && SV.SpillVNI->def < DepSV.SpillVNI->def) { 415 // This is an alternative def earlier in the same MBB. 416 // Hoist the spill as far as possible in SpillMBB. This can ease 417 // register pressure: 418 // 419 // x = def 420 // y = use x 421 // s = copy x 422 // 423 // Hoisting the spill of s to immediately after the def removes the 424 // interference between x and y: 425 // 426 // x = def 427 // spill x 428 // y = use x<kill> 429 // 430 // This hoist only helps when the DepSV copy kills its source. 431 Changed = true; 432 DepSV.SpillReg = SV.SpillReg; 433 DepSV.SpillVNI = SV.SpillVNI; 434 DepSV.SpillMBB = SV.SpillMBB; 435 } 436 } else { 437 // DepSV is in a different block. 438 if (SpillDepth == ~0u) 439 SpillDepth = Loops.getLoopDepth(SV.SpillMBB); 440 441 // Also hoist spills to blocks with smaller loop depth, but make sure 442 // that the new value dominates. Non-phi dependents are always 443 // dominated, phis need checking. 444 445 const BranchProbability MarginProb(4, 5); // 80% 446 // Hoist a spill to outer loop if there are multiple dependents (it 447 // can be beneficial if more than one dependents are hoisted) or 448 // if DepSV (the hoisting source) is hotter than SV (the hoisting 449 // destination) (we add a 80% margin to bias a little towards 450 // loop depth). 451 bool HoistCondition = 452 (MBFI.getBlockFreq(DepSV.SpillMBB) >= 453 (MBFI.getBlockFreq(SV.SpillMBB) * MarginProb)) || 454 Deps->size() > 1; 455 456 if ((Loops.getLoopDepth(DepSV.SpillMBB) > SpillDepth) && 457 HoistCondition && 458 (!DepSVI->first->isPHIDef() || 459 MDT.dominates(SV.SpillMBB, DepSV.SpillMBB))) { 460 Changed = true; 461 DepSV.SpillReg = SV.SpillReg; 462 DepSV.SpillVNI = SV.SpillVNI; 463 DepSV.SpillMBB = SV.SpillMBB; 464 } 465 } 466 } 467 468 if (!Changed) 469 continue; 470 471 // Something changed in DepSVI. Propagate to dependents. 472 WorkList.insert(&*DepSVI); 473 474 DEBUG(dbgs() << " update " << DepSVI->first->id << '@' 475 << DepSVI->first->def << " to:\t" << DepSV); 476 } 477 } while (!WorkList.empty()); 478 } 479 480 /// traceSiblingValue - Trace a value that is about to be spilled back to the 481 /// real defining instructions by looking through sibling copies. Always stay 482 /// within the range of OrigVNI so the registers are known to carry the same 483 /// value. 484 /// 485 /// Determine if the value is defined by all reloads, so spilling isn't 486 /// necessary - the value is already in the stack slot. 487 /// 488 /// Return a defining instruction that may be a candidate for rematerialization. 489 /// 490 MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI, 491 VNInfo *OrigVNI) { 492 // Check if a cached value already exists. 493 SibValueMap::iterator SVI; 494 bool Inserted; 495 std::tie(SVI, Inserted) = 496 SibValues.insert(std::make_pair(UseVNI, SibValueInfo(UseReg, UseVNI))); 497 if (!Inserted) { 498 DEBUG(dbgs() << "Cached value " << PrintReg(UseReg) << ':' 499 << UseVNI->id << '@' << UseVNI->def << ' ' << SVI->second); 500 return SVI->second.DefMI; 501 } 502 503 DEBUG(dbgs() << "Tracing value " << PrintReg(UseReg) << ':' 504 << UseVNI->id << '@' << UseVNI->def << '\n'); 505 506 // List of (Reg, VNI) that have been inserted into SibValues, but need to be 507 // processed. 508 SmallVector<std::pair<unsigned, VNInfo*>, 8> WorkList; 509 WorkList.push_back(std::make_pair(UseReg, UseVNI)); 510 511 LiveInterval &OrigLI = LIS.getInterval(Original); 512 do { 513 unsigned Reg; 514 VNInfo *VNI; 515 std::tie(Reg, VNI) = WorkList.pop_back_val(); 516 DEBUG(dbgs() << " " << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def 517 << ":\t"); 518 519 // First check if this value has already been computed. 520 SVI = SibValues.find(VNI); 521 assert(SVI != SibValues.end() && "Missing SibValues entry"); 522 523 // Trace through PHI-defs created by live range splitting. 524 if (VNI->isPHIDef()) { 525 // Stop at original PHIs. We don't know the value at the 526 // predecessors. Look up the VNInfo for the current definition 527 // in OrigLI, to properly determine whether or not this phi was 528 // added by splitting. 529 if (VNI->def == OrigLI.getVNInfoAt(VNI->def)->def) { 530 DEBUG(dbgs() << "orig phi value\n"); 531 SVI->second.DefByOrigPHI = true; 532 SVI->second.AllDefsAreReloads = false; 533 propagateSiblingValue(SVI); 534 continue; 535 } 536 537 // This is a PHI inserted by live range splitting. We could trace the 538 // live-out value from predecessor blocks, but that search can be very 539 // expensive if there are many predecessors and many more PHIs as 540 // generated by tail-dup when it sees an indirectbr. Instead, look at 541 // all the non-PHI defs that have the same value as OrigVNI. They must 542 // jointly dominate VNI->def. This is not optimal since VNI may actually 543 // be jointly dominated by a smaller subset of defs, so there is a change 544 // we will miss a AllDefsAreReloads optimization. 545 546 // Separate all values dominated by OrigVNI into PHIs and non-PHIs. 547 SmallVector<VNInfo*, 8> PHIs, NonPHIs; 548 LiveInterval &LI = LIS.getInterval(Reg); 549 550 for (LiveInterval::vni_iterator VI = LI.vni_begin(), VE = LI.vni_end(); 551 VI != VE; ++VI) { 552 VNInfo *VNI2 = *VI; 553 if (VNI2->isUnused()) 554 continue; 555 if (!OrigLI.containsOneValue() && 556 OrigLI.getVNInfoAt(VNI2->def) != OrigVNI) 557 continue; 558 if (VNI2->isPHIDef() && VNI2->def != OrigVNI->def) 559 PHIs.push_back(VNI2); 560 else 561 NonPHIs.push_back(VNI2); 562 } 563 DEBUG(dbgs() << "split phi value, checking " << PHIs.size() 564 << " phi-defs, and " << NonPHIs.size() 565 << " non-phi/orig defs\n"); 566 567 // Create entries for all the PHIs. Don't add them to the worklist, we 568 // are processing all of them in one go here. 569 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 570 SibValues.insert(std::make_pair(PHIs[i], SibValueInfo(Reg, PHIs[i]))); 571 572 // Add every PHI as a dependent of all the non-PHIs. 573 for (unsigned i = 0, e = NonPHIs.size(); i != e; ++i) { 574 VNInfo *NonPHI = NonPHIs[i]; 575 // Known value? Try an insertion. 576 std::tie(SVI, Inserted) = 577 SibValues.insert(std::make_pair(NonPHI, SibValueInfo(Reg, NonPHI))); 578 // Add all the PHIs as dependents of NonPHI. 579 SVI->second.Deps.insert(SVI->second.Deps.end(), PHIs.begin(), 580 PHIs.end()); 581 // This is the first time we see NonPHI, add it to the worklist. 582 if (Inserted) 583 WorkList.push_back(std::make_pair(Reg, NonPHI)); 584 else 585 // Propagate to all inserted PHIs, not just VNI. 586 propagateSiblingValue(SVI); 587 } 588 589 // Next work list item. 590 continue; 591 } 592 593 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 594 assert(MI && "Missing def"); 595 596 // Trace through sibling copies. 597 if (unsigned SrcReg = isFullCopyOf(MI, Reg)) { 598 if (isSibling(SrcReg)) { 599 LiveInterval &SrcLI = LIS.getInterval(SrcReg); 600 LiveQueryResult SrcQ = SrcLI.Query(VNI->def); 601 assert(SrcQ.valueIn() && "Copy from non-existing value"); 602 // Check if this COPY kills its source. 603 SVI->second.KillsSource = SrcQ.isKill(); 604 VNInfo *SrcVNI = SrcQ.valueIn(); 605 DEBUG(dbgs() << "copy of " << PrintReg(SrcReg) << ':' 606 << SrcVNI->id << '@' << SrcVNI->def 607 << " kill=" << unsigned(SVI->second.KillsSource) << '\n'); 608 // Known sibling source value? Try an insertion. 609 std::tie(SVI, Inserted) = SibValues.insert( 610 std::make_pair(SrcVNI, SibValueInfo(SrcReg, SrcVNI))); 611 // This is the first time we see Src, add it to the worklist. 612 if (Inserted) 613 WorkList.push_back(std::make_pair(SrcReg, SrcVNI)); 614 propagateSiblingValue(SVI, VNI); 615 // Next work list item. 616 continue; 617 } 618 } 619 620 // Track reachable reloads. 621 SVI->second.DefMI = MI; 622 SVI->second.SpillMBB = MI->getParent(); 623 int FI; 624 if (Reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) { 625 DEBUG(dbgs() << "reload\n"); 626 propagateSiblingValue(SVI); 627 // Next work list item. 628 continue; 629 } 630 631 // Potential remat candidate. 632 DEBUG(dbgs() << "def " << *MI); 633 SVI->second.AllDefsAreReloads = false; 634 propagateSiblingValue(SVI); 635 } while (!WorkList.empty()); 636 637 // Look up the value we were looking for. We already did this lookup at the 638 // top of the function, but SibValues may have been invalidated. 639 SVI = SibValues.find(UseVNI); 640 assert(SVI != SibValues.end() && "Didn't compute requested info"); 641 DEBUG(dbgs() << " traced to:\t" << SVI->second); 642 return SVI->second.DefMI; 643 } 644 645 /// analyzeSiblingValues - Trace values defined by sibling copies back to 646 /// something that isn't a sibling copy. 647 /// 648 /// Keep track of values that may be rematerializable. 649 void InlineSpiller::analyzeSiblingValues() { 650 SibValues.clear(); 651 652 // No siblings at all? 653 if (Edit->getReg() == Original) 654 return; 655 656 LiveInterval &OrigLI = LIS.getInterval(Original); 657 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { 658 unsigned Reg = RegsToSpill[i]; 659 LiveInterval &LI = LIS.getInterval(Reg); 660 for (LiveInterval::const_vni_iterator VI = LI.vni_begin(), 661 VE = LI.vni_end(); VI != VE; ++VI) { 662 VNInfo *VNI = *VI; 663 if (VNI->isUnused()) 664 continue; 665 MachineInstr *DefMI = nullptr; 666 if (!VNI->isPHIDef()) { 667 DefMI = LIS.getInstructionFromIndex(VNI->def); 668 assert(DefMI && "No defining instruction"); 669 } 670 // Check possible sibling copies. 671 if (VNI->isPHIDef() || DefMI->isCopy()) { 672 VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def); 673 assert(OrigVNI && "Def outside original live range"); 674 if (OrigVNI->def != VNI->def) 675 DefMI = traceSiblingValue(Reg, VNI, OrigVNI); 676 } 677 if (DefMI && Edit->checkRematerializable(VNI, DefMI, AA)) { 678 DEBUG(dbgs() << "Value " << PrintReg(Reg) << ':' << VNI->id << '@' 679 << VNI->def << " may remat from " << *DefMI); 680 } 681 } 682 } 683 } 684 685 /// hoistSpill - Given a sibling copy that defines a value to be spilled, insert 686 /// a spill at a better location. 687 bool InlineSpiller::hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI) { 688 SlotIndex Idx = LIS.getInstructionIndex(CopyMI); 689 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); 690 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy"); 691 SibValueMap::iterator I = SibValues.find(VNI); 692 if (I == SibValues.end()) 693 return false; 694 695 const SibValueInfo &SVI = I->second; 696 697 // Let the normal folding code deal with the boring case. 698 if (!SVI.AllDefsAreReloads && SVI.SpillVNI == VNI) 699 return false; 700 701 // SpillReg may have been deleted by remat and DCE. 702 if (!LIS.hasInterval(SVI.SpillReg)) { 703 DEBUG(dbgs() << "Stale interval: " << PrintReg(SVI.SpillReg) << '\n'); 704 SibValues.erase(I); 705 return false; 706 } 707 708 LiveInterval &SibLI = LIS.getInterval(SVI.SpillReg); 709 if (!SibLI.containsValue(SVI.SpillVNI)) { 710 DEBUG(dbgs() << "Stale value: " << PrintReg(SVI.SpillReg) << '\n'); 711 SibValues.erase(I); 712 return false; 713 } 714 715 // Conservatively extend the stack slot range to the range of the original 716 // value. We may be able to do better with stack slot coloring by being more 717 // careful here. 718 assert(StackInt && "No stack slot assigned yet."); 719 LiveInterval &OrigLI = LIS.getInterval(Original); 720 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 721 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); 722 DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " 723 << *StackInt << '\n'); 724 725 // Already spilled everywhere. 726 if (SVI.AllDefsAreReloads) { 727 DEBUG(dbgs() << "\tno spill needed: " << SVI); 728 ++NumOmitReloadSpill; 729 return true; 730 } 731 // We are going to spill SVI.SpillVNI immediately after its def, so clear out 732 // any later spills of the same value. 733 eliminateRedundantSpills(SibLI, SVI.SpillVNI); 734 735 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SVI.SpillVNI->def); 736 MachineBasicBlock::iterator MII; 737 if (SVI.SpillVNI->isPHIDef()) 738 MII = MBB->SkipPHIsAndLabels(MBB->begin()); 739 else { 740 MachineInstr *DefMI = LIS.getInstructionFromIndex(SVI.SpillVNI->def); 741 assert(DefMI && "Defining instruction disappeared"); 742 MII = DefMI; 743 ++MII; 744 } 745 // Insert spill without kill flag immediately after def. 746 TII.storeRegToStackSlot(*MBB, MII, SVI.SpillReg, false, StackSlot, 747 MRI.getRegClass(SVI.SpillReg), &TRI); 748 --MII; // Point to store instruction. 749 LIS.InsertMachineInstrInMaps(MII); 750 DEBUG(dbgs() << "\thoisted: " << SVI.SpillVNI->def << '\t' << *MII); 751 752 ++NumSpills; 753 ++NumHoists; 754 return true; 755 } 756 757 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any 758 /// redundant spills of this value in SLI.reg and sibling copies. 759 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { 760 assert(VNI && "Missing value"); 761 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 762 WorkList.push_back(std::make_pair(&SLI, VNI)); 763 assert(StackInt && "No stack slot assigned yet."); 764 765 do { 766 LiveInterval *LI; 767 std::tie(LI, VNI) = WorkList.pop_back_val(); 768 unsigned Reg = LI->reg; 769 DEBUG(dbgs() << "Checking redundant spills for " 770 << VNI->id << '@' << VNI->def << " in " << *LI << '\n'); 771 772 // Regs to spill are taken care of. 773 if (isRegToSpill(Reg)) 774 continue; 775 776 // Add all of VNI's live range to StackInt. 777 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); 778 DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); 779 780 // Find all spills and copies of VNI. 781 for (MachineRegisterInfo::use_instr_nodbg_iterator 782 UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 783 UI != E; ) { 784 MachineInstr *MI = &*(UI++); 785 if (!MI->isCopy() && !MI->mayStore()) 786 continue; 787 SlotIndex Idx = LIS.getInstructionIndex(MI); 788 if (LI->getVNInfoAt(Idx) != VNI) 789 continue; 790 791 // Follow sibling copies down the dominator tree. 792 if (unsigned DstReg = isFullCopyOf(MI, Reg)) { 793 if (isSibling(DstReg)) { 794 LiveInterval &DstLI = LIS.getInterval(DstReg); 795 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); 796 assert(DstVNI && "Missing defined value"); 797 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot"); 798 WorkList.push_back(std::make_pair(&DstLI, DstVNI)); 799 } 800 continue; 801 } 802 803 // Erase spills. 804 int FI; 805 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { 806 DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI); 807 // eliminateDeadDefs won't normally remove stores, so switch opcode. 808 MI->setDesc(TII.get(TargetOpcode::KILL)); 809 DeadDefs.push_back(MI); 810 ++NumSpillsRemoved; 811 --NumSpills; 812 } 813 } 814 } while (!WorkList.empty()); 815 } 816 817 818 //===----------------------------------------------------------------------===// 819 // Rematerialization 820 //===----------------------------------------------------------------------===// 821 822 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining 823 /// instruction cannot be eliminated. See through snippet copies 824 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { 825 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 826 WorkList.push_back(std::make_pair(LI, VNI)); 827 do { 828 std::tie(LI, VNI) = WorkList.pop_back_val(); 829 if (!UsedValues.insert(VNI).second) 830 continue; 831 832 if (VNI->isPHIDef()) { 833 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 834 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 835 PE = MBB->pred_end(); PI != PE; ++PI) { 836 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI)); 837 if (PVNI) 838 WorkList.push_back(std::make_pair(LI, PVNI)); 839 } 840 continue; 841 } 842 843 // Follow snippet copies. 844 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 845 if (!SnippetCopies.count(MI)) 846 continue; 847 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); 848 assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy"); 849 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); 850 assert(SnipVNI && "Snippet undefined before copy"); 851 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); 852 } while (!WorkList.empty()); 853 } 854 855 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. 856 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, 857 MachineBasicBlock::iterator MI) { 858 859 // Analyze instruction 860 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; 861 MIBundleOperands::VirtRegInfo RI = 862 MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops); 863 864 if (!RI.Reads) 865 return false; 866 867 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); 868 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); 869 870 if (!ParentVNI) { 871 DEBUG(dbgs() << "\tadding <undef> flags: "); 872 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 873 MachineOperand &MO = MI->getOperand(i); 874 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) 875 MO.setIsUndef(); 876 } 877 DEBUG(dbgs() << UseIdx << '\t' << *MI); 878 return true; 879 } 880 881 if (SnippetCopies.count(MI)) 882 return false; 883 884 // Use an OrigVNI from traceSiblingValue when ParentVNI is a sibling copy. 885 LiveRangeEdit::Remat RM(ParentVNI); 886 SibValueMap::const_iterator SibI = SibValues.find(ParentVNI); 887 if (SibI != SibValues.end()) 888 RM.OrigMI = SibI->second.DefMI; 889 if (!Edit->canRematerializeAt(RM, UseIdx, false)) { 890 markValueUsed(&VirtReg, ParentVNI); 891 DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI); 892 return false; 893 } 894 895 // If the instruction also writes VirtReg.reg, it had better not require the 896 // same register for uses and defs. 897 if (RI.Tied) { 898 markValueUsed(&VirtReg, ParentVNI); 899 DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI); 900 return false; 901 } 902 903 // Before rematerializing into a register for a single instruction, try to 904 // fold a load into the instruction. That avoids allocating a new register. 905 if (RM.OrigMI->canFoldAsLoad() && 906 foldMemoryOperand(Ops, RM.OrigMI)) { 907 Edit->markRematerialized(RM.ParentVNI); 908 ++NumFoldedLoads; 909 return true; 910 } 911 912 // Alocate a new register for the remat. 913 unsigned NewVReg = Edit->createFrom(Original); 914 915 // Finally we can rematerialize OrigMI before MI. 916 SlotIndex DefIdx = Edit->rematerializeAt(*MI->getParent(), MI, NewVReg, RM, 917 TRI); 918 (void)DefIdx; 919 DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' 920 << *LIS.getInstructionFromIndex(DefIdx)); 921 922 // Replace operands 923 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 924 MachineOperand &MO = Ops[i].first->getOperand(Ops[i].second); 925 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) { 926 MO.setReg(NewVReg); 927 MO.setIsKill(); 928 } 929 } 930 DEBUG(dbgs() << "\t " << UseIdx << '\t' << *MI << '\n'); 931 932 ++NumRemats; 933 return true; 934 } 935 936 /// reMaterializeAll - Try to rematerialize as many uses as possible, 937 /// and trim the live ranges after. 938 void InlineSpiller::reMaterializeAll() { 939 // analyzeSiblingValues has already tested all relevant defining instructions. 940 if (!Edit->anyRematerializable(AA)) 941 return; 942 943 UsedValues.clear(); 944 945 // Try to remat before all uses of snippets. 946 bool anyRemat = false; 947 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { 948 unsigned Reg = RegsToSpill[i]; 949 LiveInterval &LI = LIS.getInterval(Reg); 950 for (MachineRegisterInfo::reg_bundle_iterator 951 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 952 RegI != E; ) { 953 MachineInstr *MI = &*(RegI++); 954 955 // Debug values are not allowed to affect codegen. 956 if (MI->isDebugValue()) 957 continue; 958 959 anyRemat |= reMaterializeFor(LI, MI); 960 } 961 } 962 if (!anyRemat) 963 return; 964 965 // Remove any values that were completely rematted. 966 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { 967 unsigned Reg = RegsToSpill[i]; 968 LiveInterval &LI = LIS.getInterval(Reg); 969 for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 970 I != E; ++I) { 971 VNInfo *VNI = *I; 972 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) 973 continue; 974 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 975 MI->addRegisterDead(Reg, &TRI); 976 if (!MI->allDefsAreDead()) 977 continue; 978 DEBUG(dbgs() << "All defs dead: " << *MI); 979 DeadDefs.push_back(MI); 980 } 981 } 982 983 // Eliminate dead code after remat. Note that some snippet copies may be 984 // deleted here. 985 if (DeadDefs.empty()) 986 return; 987 DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); 988 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill); 989 990 // Get rid of deleted and empty intervals. 991 unsigned ResultPos = 0; 992 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { 993 unsigned Reg = RegsToSpill[i]; 994 if (!LIS.hasInterval(Reg)) 995 continue; 996 997 LiveInterval &LI = LIS.getInterval(Reg); 998 if (LI.empty()) { 999 Edit->eraseVirtReg(Reg); 1000 continue; 1001 } 1002 1003 RegsToSpill[ResultPos++] = Reg; 1004 } 1005 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end()); 1006 DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n"); 1007 } 1008 1009 1010 //===----------------------------------------------------------------------===// 1011 // Spilling 1012 //===----------------------------------------------------------------------===// 1013 1014 /// If MI is a load or store of StackSlot, it can be removed. 1015 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) { 1016 int FI = 0; 1017 unsigned InstrReg = TII.isLoadFromStackSlot(MI, FI); 1018 bool IsLoad = InstrReg; 1019 if (!IsLoad) 1020 InstrReg = TII.isStoreToStackSlot(MI, FI); 1021 1022 // We have a stack access. Is it the right register and slot? 1023 if (InstrReg != Reg || FI != StackSlot) 1024 return false; 1025 1026 DEBUG(dbgs() << "Coalescing stack access: " << *MI); 1027 LIS.RemoveMachineInstrFromMaps(MI); 1028 MI->eraseFromParent(); 1029 1030 if (IsLoad) { 1031 ++NumReloadsRemoved; 1032 --NumReloads; 1033 } else { 1034 ++NumSpillsRemoved; 1035 --NumSpills; 1036 } 1037 1038 return true; 1039 } 1040 1041 #if !defined(NDEBUG) 1042 // Dump the range of instructions from B to E with their slot indexes. 1043 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, 1044 MachineBasicBlock::iterator E, 1045 LiveIntervals const &LIS, 1046 const char *const header, 1047 unsigned VReg =0) { 1048 char NextLine = '\n'; 1049 char SlotIndent = '\t'; 1050 1051 if (std::next(B) == E) { 1052 NextLine = ' '; 1053 SlotIndent = ' '; 1054 } 1055 1056 dbgs() << '\t' << header << ": " << NextLine; 1057 1058 for (MachineBasicBlock::iterator I = B; I != E; ++I) { 1059 SlotIndex Idx = LIS.getInstructionIndex(I).getRegSlot(); 1060 1061 // If a register was passed in and this instruction has it as a 1062 // destination that is marked as an early clobber, print the 1063 // early-clobber slot index. 1064 if (VReg) { 1065 MachineOperand *MO = I->findRegisterDefOperand(VReg); 1066 if (MO && MO->isEarlyClobber()) 1067 Idx = Idx.getRegSlot(true); 1068 } 1069 1070 dbgs() << SlotIndent << Idx << '\t' << *I; 1071 } 1072 } 1073 #endif 1074 1075 /// foldMemoryOperand - Try folding stack slot references in Ops into their 1076 /// instructions. 1077 /// 1078 /// @param Ops Operand indices from analyzeVirtReg(). 1079 /// @param LoadMI Load instruction to use instead of stack slot when non-null. 1080 /// @return True on success. 1081 bool InlineSpiller:: 1082 foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops, 1083 MachineInstr *LoadMI) { 1084 if (Ops.empty()) 1085 return false; 1086 // Don't attempt folding in bundles. 1087 MachineInstr *MI = Ops.front().first; 1088 if (Ops.back().first != MI || MI->isBundled()) 1089 return false; 1090 1091 bool WasCopy = MI->isCopy(); 1092 unsigned ImpReg = 0; 1093 1094 bool SpillSubRegs = (MI->getOpcode() == TargetOpcode::STATEPOINT || 1095 MI->getOpcode() == TargetOpcode::PATCHPOINT || 1096 MI->getOpcode() == TargetOpcode::STACKMAP); 1097 1098 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied 1099 // operands. 1100 SmallVector<unsigned, 8> FoldOps; 1101 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1102 unsigned Idx = Ops[i].second; 1103 assert(MI == Ops[i].first && "Instruction conflict during operand folding"); 1104 MachineOperand &MO = MI->getOperand(Idx); 1105 if (MO.isImplicit()) { 1106 ImpReg = MO.getReg(); 1107 continue; 1108 } 1109 // FIXME: Teach targets to deal with subregs. 1110 if (!SpillSubRegs && MO.getSubReg()) 1111 return false; 1112 // We cannot fold a load instruction into a def. 1113 if (LoadMI && MO.isDef()) 1114 return false; 1115 // Tied use operands should not be passed to foldMemoryOperand. 1116 if (!MI->isRegTiedToDefOperand(Idx)) 1117 FoldOps.push_back(Idx); 1118 } 1119 1120 MachineInstrSpan MIS(MI); 1121 1122 MachineInstr *FoldMI = 1123 LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI) 1124 : TII.foldMemoryOperand(MI, FoldOps, StackSlot); 1125 if (!FoldMI) 1126 return false; 1127 1128 // Remove LIS for any dead defs in the original MI not in FoldMI. 1129 for (MIBundleOperands MO(MI); MO.isValid(); ++MO) { 1130 if (!MO->isReg()) 1131 continue; 1132 unsigned Reg = MO->getReg(); 1133 if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) || 1134 MRI.isReserved(Reg)) { 1135 continue; 1136 } 1137 // Skip non-Defs, including undef uses and internal reads. 1138 if (MO->isUse()) 1139 continue; 1140 MIBundleOperands::PhysRegInfo RI = 1141 MIBundleOperands(FoldMI).analyzePhysReg(Reg, &TRI); 1142 if (RI.FullyDefined) 1143 continue; 1144 // FoldMI does not define this physreg. Remove the LI segment. 1145 assert(MO->isDead() && "Cannot fold physreg def"); 1146 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); 1147 LIS.removePhysRegDefAt(Reg, Idx); 1148 } 1149 1150 LIS.ReplaceMachineInstrInMaps(MI, FoldMI); 1151 MI->eraseFromParent(); 1152 1153 // Insert any new instructions other than FoldMI into the LIS maps. 1154 assert(!MIS.empty() && "Unexpected empty span of instructions!"); 1155 for (MachineBasicBlock::iterator MII = MIS.begin(), End = MIS.end(); 1156 MII != End; ++MII) 1157 if (&*MII != FoldMI) 1158 LIS.InsertMachineInstrInMaps(&*MII); 1159 1160 // TII.foldMemoryOperand may have left some implicit operands on the 1161 // instruction. Strip them. 1162 if (ImpReg) 1163 for (unsigned i = FoldMI->getNumOperands(); i; --i) { 1164 MachineOperand &MO = FoldMI->getOperand(i - 1); 1165 if (!MO.isReg() || !MO.isImplicit()) 1166 break; 1167 if (MO.getReg() == ImpReg) 1168 FoldMI->RemoveOperand(i - 1); 1169 } 1170 1171 DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS, 1172 "folded")); 1173 1174 if (!WasCopy) 1175 ++NumFolded; 1176 else if (Ops.front().second == 0) 1177 ++NumSpills; 1178 else 1179 ++NumReloads; 1180 return true; 1181 } 1182 1183 void InlineSpiller::insertReload(unsigned NewVReg, 1184 SlotIndex Idx, 1185 MachineBasicBlock::iterator MI) { 1186 MachineBasicBlock &MBB = *MI->getParent(); 1187 1188 MachineInstrSpan MIS(MI); 1189 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot, 1190 MRI.getRegClass(NewVReg), &TRI); 1191 1192 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI); 1193 1194 DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload", 1195 NewVReg)); 1196 ++NumReloads; 1197 } 1198 1199 /// insertSpill - Insert a spill of NewVReg after MI. 1200 void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill, 1201 MachineBasicBlock::iterator MI) { 1202 MachineBasicBlock &MBB = *MI->getParent(); 1203 1204 MachineInstrSpan MIS(MI); 1205 TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot, 1206 MRI.getRegClass(NewVReg), &TRI); 1207 1208 LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end()); 1209 1210 DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS, 1211 "spill")); 1212 ++NumSpills; 1213 } 1214 1215 /// spillAroundUses - insert spill code around each use of Reg. 1216 void InlineSpiller::spillAroundUses(unsigned Reg) { 1217 DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n'); 1218 LiveInterval &OldLI = LIS.getInterval(Reg); 1219 1220 // Iterate over instructions using Reg. 1221 for (MachineRegisterInfo::reg_bundle_iterator 1222 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 1223 RegI != E; ) { 1224 MachineInstr *MI = &*(RegI++); 1225 1226 // Debug values are not allowed to affect codegen. 1227 if (MI->isDebugValue()) { 1228 // Modify DBG_VALUE now that the value is in a spill slot. 1229 bool IsIndirect = MI->isIndirectDebugValue(); 1230 uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0; 1231 const MDNode *Var = MI->getDebugVariable(); 1232 const MDNode *Expr = MI->getDebugExpression(); 1233 DebugLoc DL = MI->getDebugLoc(); 1234 DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI); 1235 MachineBasicBlock *MBB = MI->getParent(); 1236 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 1237 "Expected inlined-at fields to agree"); 1238 BuildMI(*MBB, MBB->erase(MI), DL, TII.get(TargetOpcode::DBG_VALUE)) 1239 .addFrameIndex(StackSlot) 1240 .addImm(Offset) 1241 .addMetadata(Var) 1242 .addMetadata(Expr); 1243 continue; 1244 } 1245 1246 // Ignore copies to/from snippets. We'll delete them. 1247 if (SnippetCopies.count(MI)) 1248 continue; 1249 1250 // Stack slot accesses may coalesce away. 1251 if (coalesceStackAccess(MI, Reg)) 1252 continue; 1253 1254 // Analyze instruction. 1255 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; 1256 MIBundleOperands::VirtRegInfo RI = 1257 MIBundleOperands(MI).analyzeVirtReg(Reg, &Ops); 1258 1259 // Find the slot index where this instruction reads and writes OldLI. 1260 // This is usually the def slot, except for tied early clobbers. 1261 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); 1262 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) 1263 if (SlotIndex::isSameInstr(Idx, VNI->def)) 1264 Idx = VNI->def; 1265 1266 // Check for a sibling copy. 1267 unsigned SibReg = isFullCopyOf(MI, Reg); 1268 if (SibReg && isSibling(SibReg)) { 1269 // This may actually be a copy between snippets. 1270 if (isRegToSpill(SibReg)) { 1271 DEBUG(dbgs() << "Found new snippet copy: " << *MI); 1272 SnippetCopies.insert(MI); 1273 continue; 1274 } 1275 if (RI.Writes) { 1276 // Hoist the spill of a sib-reg copy. 1277 if (hoistSpill(OldLI, MI)) { 1278 // This COPY is now dead, the value is already in the stack slot. 1279 MI->getOperand(0).setIsDead(); 1280 DeadDefs.push_back(MI); 1281 continue; 1282 } 1283 } else { 1284 // This is a reload for a sib-reg copy. Drop spills downstream. 1285 LiveInterval &SibLI = LIS.getInterval(SibReg); 1286 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); 1287 // The COPY will fold to a reload below. 1288 } 1289 } 1290 1291 // Attempt to fold memory ops. 1292 if (foldMemoryOperand(Ops)) 1293 continue; 1294 1295 // Create a new virtual register for spill/fill. 1296 // FIXME: Infer regclass from instruction alone. 1297 unsigned NewVReg = Edit->createFrom(Reg); 1298 1299 if (RI.Reads) 1300 insertReload(NewVReg, Idx, MI); 1301 1302 // Rewrite instruction operands. 1303 bool hasLiveDef = false; 1304 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1305 MachineOperand &MO = Ops[i].first->getOperand(Ops[i].second); 1306 MO.setReg(NewVReg); 1307 if (MO.isUse()) { 1308 if (!Ops[i].first->isRegTiedToDefOperand(Ops[i].second)) 1309 MO.setIsKill(); 1310 } else { 1311 if (!MO.isDead()) 1312 hasLiveDef = true; 1313 } 1314 } 1315 DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n'); 1316 1317 // FIXME: Use a second vreg if instruction has no tied ops. 1318 if (RI.Writes) 1319 if (hasLiveDef) 1320 insertSpill(NewVReg, true, MI); 1321 } 1322 } 1323 1324 /// spillAll - Spill all registers remaining after rematerialization. 1325 void InlineSpiller::spillAll() { 1326 // Update LiveStacks now that we are committed to spilling. 1327 if (StackSlot == VirtRegMap::NO_STACK_SLOT) { 1328 StackSlot = VRM.assignVirt2StackSlot(Original); 1329 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); 1330 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); 1331 } else 1332 StackInt = &LSS.getInterval(StackSlot); 1333 1334 if (Original != Edit->getReg()) 1335 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); 1336 1337 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); 1338 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) 1339 StackInt->MergeSegmentsInAsValue(LIS.getInterval(RegsToSpill[i]), 1340 StackInt->getValNumInfo(0)); 1341 DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); 1342 1343 // Spill around uses of all RegsToSpill. 1344 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) 1345 spillAroundUses(RegsToSpill[i]); 1346 1347 // Hoisted spills may cause dead code. 1348 if (!DeadDefs.empty()) { 1349 DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); 1350 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill); 1351 } 1352 1353 // Finally delete the SnippetCopies. 1354 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { 1355 for (MachineRegisterInfo::reg_instr_iterator 1356 RI = MRI.reg_instr_begin(RegsToSpill[i]), E = MRI.reg_instr_end(); 1357 RI != E; ) { 1358 MachineInstr *MI = &*(RI++); 1359 assert(SnippetCopies.count(MI) && "Remaining use wasn't a snippet copy"); 1360 // FIXME: Do this with a LiveRangeEdit callback. 1361 LIS.RemoveMachineInstrFromMaps(MI); 1362 MI->eraseFromParent(); 1363 } 1364 } 1365 1366 // Delete all spilled registers. 1367 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) 1368 Edit->eraseVirtReg(RegsToSpill[i]); 1369 } 1370 1371 void InlineSpiller::spill(LiveRangeEdit &edit) { 1372 ++NumSpilledRanges; 1373 Edit = &edit; 1374 assert(!TargetRegisterInfo::isStackSlot(edit.getReg()) 1375 && "Trying to spill a stack slot."); 1376 // Share a stack slot among all descendants of Original. 1377 Original = VRM.getOriginal(edit.getReg()); 1378 StackSlot = VRM.getStackSlot(Original); 1379 StackInt = nullptr; 1380 1381 DEBUG(dbgs() << "Inline spilling " 1382 << TRI.getRegClassName(MRI.getRegClass(edit.getReg())) 1383 << ':' << edit.getParent() 1384 << "\nFrom original " << PrintReg(Original) << '\n'); 1385 assert(edit.getParent().isSpillable() && 1386 "Attempting to spill already spilled value."); 1387 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); 1388 1389 collectRegsToSpill(); 1390 analyzeSiblingValues(); 1391 reMaterializeAll(); 1392 1393 // Remat may handle everything. 1394 if (!RegsToSpill.empty()) 1395 spillAll(); 1396 1397 Edit->calculateRegClassAndHint(MF, Loops, MBFI); 1398 } 1399