Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file includes support code use by SelectionDAGBuilder when lowering a
     11 // statepoint sequence in SelectionDAG IR.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "StatepointLowering.h"
     16 #include "SelectionDAGBuilder.h"
     17 #include "llvm/ADT/SmallSet.h"
     18 #include "llvm/ADT/Statistic.h"
     19 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     20 #include "llvm/CodeGen/GCMetadata.h"
     21 #include "llvm/CodeGen/GCStrategy.h"
     22 #include "llvm/CodeGen/SelectionDAG.h"
     23 #include "llvm/CodeGen/StackMaps.h"
     24 #include "llvm/IR/CallingConv.h"
     25 #include "llvm/IR/Instructions.h"
     26 #include "llvm/IR/IntrinsicInst.h"
     27 #include "llvm/IR/Intrinsics.h"
     28 #include "llvm/IR/Statepoint.h"
     29 #include "llvm/Target/TargetLowering.h"
     30 #include <algorithm>
     31 using namespace llvm;
     32 
     33 #define DEBUG_TYPE "statepoint-lowering"
     34 
     35 STATISTIC(NumSlotsAllocatedForStatepoints,
     36           "Number of stack slots allocated for statepoints");
     37 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
     38 STATISTIC(StatepointMaxSlotsRequired,
     39           "Maximum number of stack slots required for a singe statepoint");
     40 
     41 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
     42                                  SelectionDAGBuilder &Builder, uint64_t Value) {
     43   SDLoc L = Builder.getCurSDLoc();
     44   Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
     45                                               MVT::i64));
     46   Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
     47 }
     48 
     49 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
     50   // Consistency check
     51   assert(PendingGCRelocateCalls.empty() &&
     52          "Trying to visit statepoint before finished processing previous one");
     53   Locations.clear();
     54   NextSlotToAllocate = 0;
     55   // Need to resize this on each safepoint - we need the two to stay in
     56   // sync and the clear patterns of a SelectionDAGBuilder have no relation
     57   // to FunctionLoweringInfo.
     58   AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
     59   for (size_t i = 0; i < AllocatedStackSlots.size(); i++) {
     60     AllocatedStackSlots[i] = false;
     61   }
     62 }
     63 
     64 void StatepointLoweringState::clear() {
     65   Locations.clear();
     66   AllocatedStackSlots.clear();
     67   assert(PendingGCRelocateCalls.empty() &&
     68          "cleared before statepoint sequence completed");
     69 }
     70 
     71 SDValue
     72 StatepointLoweringState::allocateStackSlot(EVT ValueType,
     73                                            SelectionDAGBuilder &Builder) {
     74 
     75   NumSlotsAllocatedForStatepoints++;
     76 
     77   // The basic scheme here is to first look for a previously created stack slot
     78   // which is not in use (accounting for the fact arbitrary slots may already
     79   // be reserved), or to create a new stack slot and use it.
     80 
     81   // If this doesn't succeed in 40000 iterations, something is seriously wrong
     82   for (int i = 0; i < 40000; i++) {
     83     assert(Builder.FuncInfo.StatepointStackSlots.size() ==
     84                AllocatedStackSlots.size() &&
     85            "broken invariant");
     86     const size_t NumSlots = AllocatedStackSlots.size();
     87     assert(NextSlotToAllocate <= NumSlots && "broken invariant");
     88 
     89     if (NextSlotToAllocate >= NumSlots) {
     90       assert(NextSlotToAllocate == NumSlots);
     91       // record stats
     92       if (NumSlots + 1 > StatepointMaxSlotsRequired) {
     93         StatepointMaxSlotsRequired = NumSlots + 1;
     94       }
     95 
     96       SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
     97       const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
     98       Builder.FuncInfo.StatepointStackSlots.push_back(FI);
     99       AllocatedStackSlots.push_back(true);
    100       return SpillSlot;
    101     }
    102     if (!AllocatedStackSlots[NextSlotToAllocate]) {
    103       const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
    104       AllocatedStackSlots[NextSlotToAllocate] = true;
    105       return Builder.DAG.getFrameIndex(FI, ValueType);
    106     }
    107     // Note: We deliberately choose to advance this only on the failing path.
    108     // Doing so on the succeeding path involves a bit of complexity that caused
    109     // a minor bug previously.  Unless performance shows this matters, please
    110     // keep this code as simple as possible.
    111     NextSlotToAllocate++;
    112   }
    113   llvm_unreachable("infinite loop?");
    114 }
    115 
    116 /// Utility function for reservePreviousStackSlotForValue. Tries to find
    117 /// stack slot index to which we have spilled value for previous statepoints.
    118 /// LookUpDepth specifies maximum DFS depth this function is allowed to look.
    119 static Optional<int> findPreviousSpillSlot(const Value *Val,
    120                                            SelectionDAGBuilder &Builder,
    121                                            int LookUpDepth) {
    122   // Can not look any further - give up now
    123   if (LookUpDepth <= 0)
    124     return Optional<int>();
    125 
    126   // Spill location is known for gc relocates
    127   if (isGCRelocate(Val)) {
    128     GCRelocateOperands RelocOps(cast<Instruction>(Val));
    129 
    130     FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap =
    131         Builder.FuncInfo.StatepointRelocatedValues[RelocOps.getStatepoint()];
    132 
    133     auto It = SpillMap.find(RelocOps.getDerivedPtr());
    134     if (It == SpillMap.end())
    135       return Optional<int>();
    136 
    137     return It->second;
    138   }
    139 
    140   // Look through bitcast instructions.
    141   if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) {
    142     return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
    143   }
    144 
    145   // Look through phi nodes
    146   // All incoming values should have same known stack slot, otherwise result
    147   // is unknown.
    148   if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
    149     Optional<int> MergedResult = None;
    150 
    151     for (auto &IncomingValue : Phi->incoming_values()) {
    152       Optional<int> SpillSlot =
    153           findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
    154       if (!SpillSlot.hasValue())
    155         return Optional<int>();
    156 
    157       if (MergedResult.hasValue() && *MergedResult != *SpillSlot)
    158         return Optional<int>();
    159 
    160       MergedResult = SpillSlot;
    161     }
    162     return MergedResult;
    163   }
    164 
    165   // TODO: We can do better for PHI nodes. In cases like this:
    166   //   ptr = phi(relocated_pointer, not_relocated_pointer)
    167   //   statepoint(ptr)
    168   // We will return that stack slot for ptr is unknown. And later we might
    169   // assign different stack slots for ptr and relocated_pointer. This limits
    170   // llvm's ability to remove redundant stores.
    171   // Unfortunately it's hard to accomplish in current infrastructure.
    172   // We use this function to eliminate spill store completely, while
    173   // in example we still need to emit store, but instead of any location
    174   // we need to use special "preferred" location.
    175 
    176   // TODO: handle simple updates.  If a value is modified and the original
    177   // value is no longer live, it would be nice to put the modified value in the
    178   // same slot.  This allows folding of the memory accesses for some
    179   // instructions types (like an increment).
    180   //   statepoint (i)
    181   //   i1 = i+1
    182   //   statepoint (i1)
    183   // However we need to be careful for cases like this:
    184   //   statepoint(i)
    185   //   i1 = i+1
    186   //   statepoint(i, i1)
    187   // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
    188   // put handling of simple modifications in this function like it's done
    189   // for bitcasts we might end up reserving i's slot for 'i+1' because order in
    190   // which we visit values is unspecified.
    191 
    192   // Don't know any information about this instruction
    193   return Optional<int>();
    194 }
    195 
    196 /// Try to find existing copies of the incoming values in stack slots used for
    197 /// statepoint spilling.  If we can find a spill slot for the incoming value,
    198 /// mark that slot as allocated, and reuse the same slot for this safepoint.
    199 /// This helps to avoid series of loads and stores that only serve to reshuffle
    200 /// values on the stack between calls.
    201 static void reservePreviousStackSlotForValue(const Value *IncomingValue,
    202                                              SelectionDAGBuilder &Builder) {
    203 
    204   SDValue Incoming = Builder.getValue(IncomingValue);
    205 
    206   if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) {
    207     // We won't need to spill this, so no need to check for previously
    208     // allocated stack slots
    209     return;
    210   }
    211 
    212   SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
    213   if (OldLocation.getNode())
    214     // duplicates in input
    215     return;
    216 
    217   const int LookUpDepth = 6;
    218   Optional<int> Index =
    219       findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
    220   if (!Index.hasValue())
    221     return;
    222 
    223   auto Itr = std::find(Builder.FuncInfo.StatepointStackSlots.begin(),
    224                        Builder.FuncInfo.StatepointStackSlots.end(), *Index);
    225   assert(Itr != Builder.FuncInfo.StatepointStackSlots.end() &&
    226          "value spilled to the unknown stack slot");
    227 
    228   // This is one of our dedicated lowering slots
    229   const int Offset =
    230       std::distance(Builder.FuncInfo.StatepointStackSlots.begin(), Itr);
    231   if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
    232     // stack slot already assigned to someone else, can't use it!
    233     // TODO: currently we reserve space for gc arguments after doing
    234     // normal allocation for deopt arguments.  We should reserve for
    235     // _all_ deopt and gc arguments, then start allocating.  This
    236     // will prevent some moves being inserted when vm state changes,
    237     // but gc state doesn't between two calls.
    238     return;
    239   }
    240   // Reserve this stack slot
    241   Builder.StatepointLowering.reserveStackSlot(Offset);
    242 
    243   // Cache this slot so we find it when going through the normal
    244   // assignment loop.
    245   SDValue Loc = Builder.DAG.getTargetFrameIndex(*Index, Incoming.getValueType());
    246   Builder.StatepointLowering.setLocation(Incoming, Loc);
    247 }
    248 
    249 /// Remove any duplicate (as SDValues) from the derived pointer pairs.  This
    250 /// is not required for correctness.  It's purpose is to reduce the size of
    251 /// StackMap section.  It has no effect on the number of spill slots required
    252 /// or the actual lowering.
    253 static void removeDuplicatesGCPtrs(SmallVectorImpl<const Value *> &Bases,
    254                                    SmallVectorImpl<const Value *> &Ptrs,
    255                                    SmallVectorImpl<const Value *> &Relocs,
    256                                    SelectionDAGBuilder &Builder) {
    257 
    258   // This is horribly inefficient, but I don't care right now
    259   SmallSet<SDValue, 64> Seen;
    260 
    261   SmallVector<const Value *, 64> NewBases, NewPtrs, NewRelocs;
    262   for (size_t i = 0; i < Ptrs.size(); i++) {
    263     SDValue SD = Builder.getValue(Ptrs[i]);
    264     // Only add non-duplicates
    265     if (Seen.count(SD) == 0) {
    266       NewBases.push_back(Bases[i]);
    267       NewPtrs.push_back(Ptrs[i]);
    268       NewRelocs.push_back(Relocs[i]);
    269     }
    270     Seen.insert(SD);
    271   }
    272   assert(Bases.size() >= NewBases.size());
    273   assert(Ptrs.size() >= NewPtrs.size());
    274   assert(Relocs.size() >= NewRelocs.size());
    275   Bases = NewBases;
    276   Ptrs = NewPtrs;
    277   Relocs = NewRelocs;
    278   assert(Ptrs.size() == Bases.size());
    279   assert(Ptrs.size() == Relocs.size());
    280 }
    281 
    282 /// Extract call from statepoint, lower it and return pointer to the
    283 /// call node. Also update NodeMap so that getValue(statepoint) will
    284 /// reference lowered call result
    285 static SDNode *
    286 lowerCallFromStatepoint(ImmutableStatepoint ISP, const BasicBlock *EHPadBB,
    287                         SelectionDAGBuilder &Builder,
    288                         SmallVectorImpl<SDValue> &PendingExports) {
    289 
    290   ImmutableCallSite CS(ISP.getCallSite());
    291 
    292   SDValue ActualCallee;
    293 
    294   if (ISP.getNumPatchBytes() > 0) {
    295     // If we've been asked to emit a nop sequence instead of a call instruction
    296     // for this statepoint then don't lower the call target, but use a constant
    297     // `null` instead.  Not lowering the call target lets statepoint clients get
    298     // away without providing a physical address for the symbolic call target at
    299     // link time.
    300 
    301     const auto &TLI = Builder.DAG.getTargetLoweringInfo();
    302     const auto &DL = Builder.DAG.getDataLayout();
    303 
    304     unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace();
    305     ActualCallee = Builder.DAG.getConstant(0, Builder.getCurSDLoc(),
    306                                            TLI.getPointerTy(DL, AS));
    307   } else
    308     ActualCallee = Builder.getValue(ISP.getCalledValue());
    309 
    310   assert(CS.getCallingConv() != CallingConv::AnyReg &&
    311          "anyregcc is not supported on statepoints!");
    312 
    313   Type *DefTy = ISP.getActualReturnType();
    314   bool HasDef = !DefTy->isVoidTy();
    315 
    316   SDValue ReturnValue, CallEndVal;
    317   std::tie(ReturnValue, CallEndVal) = Builder.lowerCallOperands(
    318       ISP.getCallSite(), ImmutableStatepoint::CallArgsBeginPos,
    319       ISP.getNumCallArgs(), ActualCallee, DefTy, EHPadBB,
    320       false /* IsPatchPoint */);
    321 
    322   SDNode *CallEnd = CallEndVal.getNode();
    323 
    324   // Get a call instruction from the call sequence chain.  Tail calls are not
    325   // allowed.  The following code is essentially reverse engineering X86's
    326   // LowerCallTo.
    327   //
    328   // We are expecting DAG to have the following form:
    329   //
    330   // ch = eh_label (only in case of invoke statepoint)
    331   //   ch, glue = callseq_start ch
    332   //   ch, glue = X86::Call ch, glue
    333   //   ch, glue = callseq_end ch, glue
    334   //   get_return_value ch, glue
    335   //
    336   // get_return_value can either be a sequence of CopyFromReg instructions
    337   // to grab the return value from the return register(s), or it can be a LOAD
    338   // to load a value returned by reference via a stack slot.
    339 
    340   if (HasDef) {
    341     if (CallEnd->getOpcode() == ISD::LOAD)
    342       CallEnd = CallEnd->getOperand(0).getNode();
    343     else
    344       while (CallEnd->getOpcode() == ISD::CopyFromReg)
    345         CallEnd = CallEnd->getOperand(0).getNode();
    346   }
    347 
    348   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
    349 
    350   // Export the result value if needed
    351   const Instruction *GCResult = ISP.getGCResult();
    352   if (HasDef && GCResult) {
    353     if (GCResult->getParent() != CS.getParent()) {
    354       // Result value will be used in a different basic block so we need to
    355       // export it now.
    356       // Default exporting mechanism will not work here because statepoint call
    357       // has a different type than the actual call. It means that by default
    358       // llvm will create export register of the wrong type (always i32 in our
    359       // case). So instead we need to create export register with correct type
    360       // manually.
    361       // TODO: To eliminate this problem we can remove gc.result intrinsics
    362       //       completely and make statepoint call to return a tuple.
    363       unsigned Reg = Builder.FuncInfo.CreateRegs(ISP.getActualReturnType());
    364       RegsForValue RFV(
    365           *Builder.DAG.getContext(), Builder.DAG.getTargetLoweringInfo(),
    366           Builder.DAG.getDataLayout(), Reg, ISP.getActualReturnType());
    367       SDValue Chain = Builder.DAG.getEntryNode();
    368 
    369       RFV.getCopyToRegs(ReturnValue, Builder.DAG, Builder.getCurSDLoc(), Chain,
    370                         nullptr);
    371       PendingExports.push_back(Chain);
    372       Builder.FuncInfo.ValueMap[CS.getInstruction()] = Reg;
    373     } else {
    374       // Result value will be used in a same basic block. Don't export it or
    375       // perform any explicit register copies.
    376       // We'll replace the actuall call node shortly. gc_result will grab
    377       // this value.
    378       Builder.setValue(CS.getInstruction(), ReturnValue);
    379     }
    380   } else {
    381     // The token value is never used from here on, just generate a poison value
    382     Builder.setValue(CS.getInstruction(),
    383                      Builder.DAG.getIntPtrConstant(-1, Builder.getCurSDLoc()));
    384   }
    385 
    386   return CallEnd->getOperand(0).getNode();
    387 }
    388 
    389 /// Callect all gc pointers coming into statepoint intrinsic, clean them up,
    390 /// and return two arrays:
    391 ///   Bases - base pointers incoming to this statepoint
    392 ///   Ptrs - derived pointers incoming to this statepoint
    393 ///   Relocs - the gc_relocate corresponding to each base/ptr pair
    394 /// Elements of this arrays should be in one-to-one correspondence with each
    395 /// other i.e Bases[i], Ptrs[i] are from the same gcrelocate call
    396 static void getIncomingStatepointGCValues(
    397     SmallVectorImpl<const Value *> &Bases, SmallVectorImpl<const Value *> &Ptrs,
    398     SmallVectorImpl<const Value *> &Relocs, ImmutableStatepoint StatepointSite,
    399     SelectionDAGBuilder &Builder) {
    400   for (GCRelocateOperands relocateOpers : StatepointSite.getRelocates()) {
    401     Relocs.push_back(relocateOpers.getUnderlyingCallSite().getInstruction());
    402     Bases.push_back(relocateOpers.getBasePtr());
    403     Ptrs.push_back(relocateOpers.getDerivedPtr());
    404   }
    405 
    406   // Remove any redundant llvm::Values which map to the same SDValue as another
    407   // input.  Also has the effect of removing duplicates in the original
    408   // llvm::Value input list as well.  This is a useful optimization for
    409   // reducing the size of the StackMap section.  It has no other impact.
    410   removeDuplicatesGCPtrs(Bases, Ptrs, Relocs, Builder);
    411 
    412   assert(Bases.size() == Ptrs.size() && Ptrs.size() == Relocs.size());
    413 }
    414 
    415 /// Spill a value incoming to the statepoint. It might be either part of
    416 /// vmstate
    417 /// or gcstate. In both cases unconditionally spill it on the stack unless it
    418 /// is a null constant. Return pair with first element being frame index
    419 /// containing saved value and second element with outgoing chain from the
    420 /// emitted store
    421 static std::pair<SDValue, SDValue>
    422 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
    423                              SelectionDAGBuilder &Builder) {
    424   SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
    425 
    426   // Emit new store if we didn't do it for this ptr before
    427   if (!Loc.getNode()) {
    428     Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
    429                                                        Builder);
    430     assert(isa<FrameIndexSDNode>(Loc));
    431     int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
    432     // We use TargetFrameIndex so that isel will not select it into LEA
    433     Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType());
    434 
    435     // TODO: We can create TokenFactor node instead of
    436     //       chaining stores one after another, this may allow
    437     //       a bit more optimal scheduling for them
    438     Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
    439                                  MachinePointerInfo::getFixedStack(
    440                                      Builder.DAG.getMachineFunction(), Index),
    441                                  false, false, 0);
    442 
    443     Builder.StatepointLowering.setLocation(Incoming, Loc);
    444   }
    445 
    446   assert(Loc.getNode());
    447   return std::make_pair(Loc, Chain);
    448 }
    449 
    450 /// Lower a single value incoming to a statepoint node.  This value can be
    451 /// either a deopt value or a gc value, the handling is the same.  We special
    452 /// case constants and allocas, then fall back to spilling if required.
    453 static void lowerIncomingStatepointValue(SDValue Incoming,
    454                                          SmallVectorImpl<SDValue> &Ops,
    455                                          SelectionDAGBuilder &Builder) {
    456   SDValue Chain = Builder.getRoot();
    457 
    458   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
    459     // If the original value was a constant, make sure it gets recorded as
    460     // such in the stackmap.  This is required so that the consumer can
    461     // parse any internal format to the deopt state.  It also handles null
    462     // pointers and other constant pointers in GC states
    463     pushStackMapConstant(Ops, Builder, C->getSExtValue());
    464   } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
    465     // This handles allocas as arguments to the statepoint (this is only
    466     // really meaningful for a deopt value.  For GC, we'd be trying to
    467     // relocate the address of the alloca itself?)
    468     Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
    469                                                   Incoming.getValueType()));
    470   } else {
    471     // Otherwise, locate a spill slot and explicitly spill it so it
    472     // can be found by the runtime later.  We currently do not support
    473     // tracking values through callee saved registers to their eventual
    474     // spill location.  This would be a useful optimization, but would
    475     // need to be optional since it requires a lot of complexity on the
    476     // runtime side which not all would support.
    477     std::pair<SDValue, SDValue> Res =
    478         spillIncomingStatepointValue(Incoming, Chain, Builder);
    479     Ops.push_back(Res.first);
    480     Chain = Res.second;
    481   }
    482 
    483   Builder.DAG.setRoot(Chain);
    484 }
    485 
    486 /// Lower deopt state and gc pointer arguments of the statepoint.  The actual
    487 /// lowering is described in lowerIncomingStatepointValue.  This function is
    488 /// responsible for lowering everything in the right position and playing some
    489 /// tricks to avoid redundant stack manipulation where possible.  On
    490 /// completion, 'Ops' will contain ready to use operands for machine code
    491 /// statepoint. The chain nodes will have already been created and the DAG root
    492 /// will be set to the last value spilled (if any were).
    493 static void lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
    494                                     ImmutableStatepoint StatepointSite,
    495                                     SelectionDAGBuilder &Builder) {
    496 
    497   // Lower the deopt and gc arguments for this statepoint.  Layout will
    498   // be: deopt argument length, deopt arguments.., gc arguments...
    499 
    500   SmallVector<const Value *, 64> Bases, Ptrs, Relocations;
    501   getIncomingStatepointGCValues(Bases, Ptrs, Relocations, StatepointSite,
    502                                 Builder);
    503 
    504 #ifndef NDEBUG
    505   // Check that each of the gc pointer and bases we've gotten out of the
    506   // safepoint is something the strategy thinks might be a pointer into the GC
    507   // heap.  This is basically just here to help catch errors during statepoint
    508   // insertion. TODO: This should actually be in the Verifier, but we can't get
    509   // to the GCStrategy from there (yet).
    510   GCStrategy &S = Builder.GFI->getStrategy();
    511   for (const Value *V : Bases) {
    512     auto Opt = S.isGCManagedPointer(V);
    513     if (Opt.hasValue()) {
    514       assert(Opt.getValue() &&
    515              "non gc managed base pointer found in statepoint");
    516     }
    517   }
    518   for (const Value *V : Ptrs) {
    519     auto Opt = S.isGCManagedPointer(V);
    520     if (Opt.hasValue()) {
    521       assert(Opt.getValue() &&
    522              "non gc managed derived pointer found in statepoint");
    523     }
    524   }
    525   for (const Value *V : Relocations) {
    526     auto Opt = S.isGCManagedPointer(V);
    527     if (Opt.hasValue()) {
    528       assert(Opt.getValue() && "non gc managed pointer relocated");
    529     }
    530   }
    531 #endif
    532 
    533   // Before we actually start lowering (and allocating spill slots for values),
    534   // reserve any stack slots which we judge to be profitable to reuse for a
    535   // particular value.  This is purely an optimization over the code below and
    536   // doesn't change semantics at all.  It is important for performance that we
    537   // reserve slots for both deopt and gc values before lowering either.
    538   for (const Value *V : StatepointSite.vm_state_args()) {
    539     reservePreviousStackSlotForValue(V, Builder);
    540   }
    541   for (unsigned i = 0; i < Bases.size(); ++i) {
    542     reservePreviousStackSlotForValue(Bases[i], Builder);
    543     reservePreviousStackSlotForValue(Ptrs[i], Builder);
    544   }
    545 
    546   // First, prefix the list with the number of unique values to be
    547   // lowered.  Note that this is the number of *Values* not the
    548   // number of SDValues required to lower them.
    549   const int NumVMSArgs = StatepointSite.getNumTotalVMSArgs();
    550   pushStackMapConstant(Ops, Builder, NumVMSArgs);
    551 
    552   assert(NumVMSArgs == std::distance(StatepointSite.vm_state_begin(),
    553                                      StatepointSite.vm_state_end()));
    554 
    555   // The vm state arguments are lowered in an opaque manner.  We do
    556   // not know what type of values are contained within.  We skip the
    557   // first one since that happens to be the total number we lowered
    558   // explicitly just above.  We could have left it in the loop and
    559   // not done it explicitly, but it's far easier to understand this
    560   // way.
    561   for (const Value *V : StatepointSite.vm_state_args()) {
    562     SDValue Incoming = Builder.getValue(V);
    563     lowerIncomingStatepointValue(Incoming, Ops, Builder);
    564   }
    565 
    566   // Finally, go ahead and lower all the gc arguments.  There's no prefixed
    567   // length for this one.  After lowering, we'll have the base and pointer
    568   // arrays interwoven with each (lowered) base pointer immediately followed by
    569   // it's (lowered) derived pointer.  i.e
    570   // (base[0], ptr[0], base[1], ptr[1], ...)
    571   for (unsigned i = 0; i < Bases.size(); ++i) {
    572     const Value *Base = Bases[i];
    573     lowerIncomingStatepointValue(Builder.getValue(Base), Ops, Builder);
    574 
    575     const Value *Ptr = Ptrs[i];
    576     lowerIncomingStatepointValue(Builder.getValue(Ptr), Ops, Builder);
    577   }
    578 
    579   // If there are any explicit spill slots passed to the statepoint, record
    580   // them, but otherwise do not do anything special.  These are user provided
    581   // allocas and give control over placement to the consumer.  In this case,
    582   // it is the contents of the slot which may get updated, not the pointer to
    583   // the alloca
    584   for (Value *V : StatepointSite.gc_args()) {
    585     SDValue Incoming = Builder.getValue(V);
    586     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
    587       // This handles allocas as arguments to the statepoint
    588       Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
    589                                                     Incoming.getValueType()));
    590     }
    591   }
    592 
    593   // Record computed locations for all lowered values.
    594   // This can not be embedded in lowering loops as we need to record *all*
    595   // values, while previous loops account only values with unique SDValues.
    596   const Instruction *StatepointInstr =
    597     StatepointSite.getCallSite().getInstruction();
    598   FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap =
    599     Builder.FuncInfo.StatepointRelocatedValues[StatepointInstr];
    600 
    601   for (GCRelocateOperands RelocateOpers : StatepointSite.getRelocates()) {
    602     const Value *V = RelocateOpers.getDerivedPtr();
    603     SDValue SDV = Builder.getValue(V);
    604     SDValue Loc = Builder.StatepointLowering.getLocation(SDV);
    605 
    606     if (Loc.getNode()) {
    607       SpillMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex();
    608     } else {
    609       // Record value as visited, but not spilled. This is case for allocas
    610       // and constants. For this values we can avoid emitting spill load while
    611       // visiting corresponding gc_relocate.
    612       // Actually we do not need to record them in this map at all.
    613       // We do this only to check that we are not relocating any unvisited
    614       // value.
    615       SpillMap[V] = None;
    616 
    617       // Default llvm mechanisms for exporting values which are used in
    618       // different basic blocks does not work for gc relocates.
    619       // Note that it would be incorrect to teach llvm that all relocates are
    620       // uses of the corresponding values so that it would automatically
    621       // export them. Relocates of the spilled values does not use original
    622       // value.
    623       if (RelocateOpers.getUnderlyingCallSite().getParent() !=
    624           StatepointInstr->getParent())
    625         Builder.ExportFromCurrentBlock(V);
    626     }
    627   }
    628 }
    629 
    630 void SelectionDAGBuilder::visitStatepoint(const CallInst &CI) {
    631   // Check some preconditions for sanity
    632   assert(isStatepoint(&CI) &&
    633          "function called must be the statepoint function");
    634 
    635   LowerStatepoint(ImmutableStatepoint(&CI));
    636 }
    637 
    638 void SelectionDAGBuilder::LowerStatepoint(
    639     ImmutableStatepoint ISP, const BasicBlock *EHPadBB /*= nullptr*/) {
    640   // The basic scheme here is that information about both the original call and
    641   // the safepoint is encoded in the CallInst.  We create a temporary call and
    642   // lower it, then reverse engineer the calling sequence.
    643 
    644   NumOfStatepoints++;
    645   // Clear state
    646   StatepointLowering.startNewStatepoint(*this);
    647 
    648   ImmutableCallSite CS(ISP.getCallSite());
    649 
    650 #ifndef NDEBUG
    651   // Consistency check. Check only relocates in the same basic block as thier
    652   // statepoint.
    653   for (const User *U : CS->users()) {
    654     const CallInst *Call = cast<CallInst>(U);
    655     if (isGCRelocate(Call) && Call->getParent() == CS.getParent())
    656       StatepointLowering.scheduleRelocCall(*Call);
    657   }
    658 #endif
    659 
    660 #ifndef NDEBUG
    661   // If this is a malformed statepoint, report it early to simplify debugging.
    662   // This should catch any IR level mistake that's made when constructing or
    663   // transforming statepoints.
    664   ISP.verify();
    665 
    666   // Check that the associated GCStrategy expects to encounter statepoints.
    667   assert(GFI->getStrategy().useStatepoints() &&
    668          "GCStrategy does not expect to encounter statepoints");
    669 #endif
    670 
    671   // Lower statepoint vmstate and gcstate arguments
    672   SmallVector<SDValue, 10> LoweredMetaArgs;
    673   lowerStatepointMetaArgs(LoweredMetaArgs, ISP, *this);
    674 
    675   // Get call node, we will replace it later with statepoint
    676   SDNode *CallNode =
    677       lowerCallFromStatepoint(ISP, EHPadBB, *this, PendingExports);
    678 
    679   // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
    680   // nodes with all the appropriate arguments and return values.
    681 
    682   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
    683   SDValue Chain = CallNode->getOperand(0);
    684 
    685   SDValue Glue;
    686   bool CallHasIncomingGlue = CallNode->getGluedNode();
    687   if (CallHasIncomingGlue) {
    688     // Glue is always last operand
    689     Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
    690   }
    691 
    692   // Build the GC_TRANSITION_START node if necessary.
    693   //
    694   // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
    695   // order in which they appear in the call to the statepoint intrinsic. If
    696   // any of the operands is a pointer-typed, that operand is immediately
    697   // followed by a SRCVALUE for the pointer that may be used during lowering
    698   // (e.g. to form MachinePointerInfo values for loads/stores).
    699   const bool IsGCTransition =
    700       (ISP.getFlags() & (uint64_t)StatepointFlags::GCTransition) ==
    701           (uint64_t)StatepointFlags::GCTransition;
    702   if (IsGCTransition) {
    703     SmallVector<SDValue, 8> TSOps;
    704 
    705     // Add chain
    706     TSOps.push_back(Chain);
    707 
    708     // Add GC transition arguments
    709     for (const Value *V : ISP.gc_transition_args()) {
    710       TSOps.push_back(getValue(V));
    711       if (V->getType()->isPointerTy())
    712         TSOps.push_back(DAG.getSrcValue(V));
    713     }
    714 
    715     // Add glue if necessary
    716     if (CallHasIncomingGlue)
    717       TSOps.push_back(Glue);
    718 
    719     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
    720 
    721     SDValue GCTransitionStart =
    722         DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
    723 
    724     Chain = GCTransitionStart.getValue(0);
    725     Glue = GCTransitionStart.getValue(1);
    726   }
    727 
    728   // TODO: Currently, all of these operands are being marked as read/write in
    729   // PrologEpilougeInserter.cpp, we should special case the VMState arguments
    730   // and flags to be read-only.
    731   SmallVector<SDValue, 40> Ops;
    732 
    733   // Add the <id> and <numBytes> constants.
    734   Ops.push_back(DAG.getTargetConstant(ISP.getID(), getCurSDLoc(), MVT::i64));
    735   Ops.push_back(
    736       DAG.getTargetConstant(ISP.getNumPatchBytes(), getCurSDLoc(), MVT::i32));
    737 
    738   // Calculate and push starting position of vmstate arguments
    739   // Get number of arguments incoming directly into call node
    740   unsigned NumCallRegArgs =
    741       CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
    742   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
    743 
    744   // Add call target
    745   SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
    746   Ops.push_back(CallTarget);
    747 
    748   // Add call arguments
    749   // Get position of register mask in the call
    750   SDNode::op_iterator RegMaskIt;
    751   if (CallHasIncomingGlue)
    752     RegMaskIt = CallNode->op_end() - 2;
    753   else
    754     RegMaskIt = CallNode->op_end() - 1;
    755   Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
    756 
    757   // Add a constant argument for the calling convention
    758   pushStackMapConstant(Ops, *this, CS.getCallingConv());
    759 
    760   // Add a constant argument for the flags
    761   uint64_t Flags = ISP.getFlags();
    762   assert(
    763       ((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0)
    764           && "unknown flag used");
    765   pushStackMapConstant(Ops, *this, Flags);
    766 
    767   // Insert all vmstate and gcstate arguments
    768   Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end());
    769 
    770   // Add register mask from call node
    771   Ops.push_back(*RegMaskIt);
    772 
    773   // Add chain
    774   Ops.push_back(Chain);
    775 
    776   // Same for the glue, but we add it only if original call had it
    777   if (Glue.getNode())
    778     Ops.push_back(Glue);
    779 
    780   // Compute return values.  Provide a glue output since we consume one as
    781   // input.  This allows someone else to chain off us as needed.
    782   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
    783 
    784   SDNode *StatepointMCNode =
    785       DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
    786 
    787   SDNode *SinkNode = StatepointMCNode;
    788 
    789   // Build the GC_TRANSITION_END node if necessary.
    790   //
    791   // See the comment above regarding GC_TRANSITION_START for the layout of
    792   // the operands to the GC_TRANSITION_END node.
    793   if (IsGCTransition) {
    794     SmallVector<SDValue, 8> TEOps;
    795 
    796     // Add chain
    797     TEOps.push_back(SDValue(StatepointMCNode, 0));
    798 
    799     // Add GC transition arguments
    800     for (const Value *V : ISP.gc_transition_args()) {
    801       TEOps.push_back(getValue(V));
    802       if (V->getType()->isPointerTy())
    803         TEOps.push_back(DAG.getSrcValue(V));
    804     }
    805 
    806     // Add glue
    807     TEOps.push_back(SDValue(StatepointMCNode, 1));
    808 
    809     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
    810 
    811     SDValue GCTransitionStart =
    812         DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
    813 
    814     SinkNode = GCTransitionStart.getNode();
    815   }
    816 
    817   // Replace original call
    818   DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root
    819   // Remove original call node
    820   DAG.DeleteNode(CallNode);
    821 
    822   // DON'T set the root - under the assumption that it's already set past the
    823   // inserted node we created.
    824 
    825   // TODO: A better future implementation would be to emit a single variable
    826   // argument, variable return value STATEPOINT node here and then hookup the
    827   // return value of each gc.relocate to the respective output of the
    828   // previously emitted STATEPOINT value.  Unfortunately, this doesn't appear
    829   // to actually be possible today.
    830 }
    831 
    832 void SelectionDAGBuilder::visitGCResult(const CallInst &CI) {
    833   // The result value of the gc_result is simply the result of the actual
    834   // call.  We've already emitted this, so just grab the value.
    835   Instruction *I = cast<Instruction>(CI.getArgOperand(0));
    836   assert(isStatepoint(I) && "first argument must be a statepoint token");
    837 
    838   if (I->getParent() != CI.getParent()) {
    839     // Statepoint is in different basic block so we should have stored call
    840     // result in a virtual register.
    841     // We can not use default getValue() functionality to copy value from this
    842     // register because statepoint and actuall call return types can be
    843     // different, and getValue() will use CopyFromReg of the wrong type,
    844     // which is always i32 in our case.
    845     PointerType *CalleeType = cast<PointerType>(
    846         ImmutableStatepoint(I).getCalledValue()->getType());
    847     Type *RetTy =
    848         cast<FunctionType>(CalleeType->getElementType())->getReturnType();
    849     SDValue CopyFromReg = getCopyFromRegs(I, RetTy);
    850 
    851     assert(CopyFromReg.getNode());
    852     setValue(&CI, CopyFromReg);
    853   } else {
    854     setValue(&CI, getValue(I));
    855   }
    856 }
    857 
    858 void SelectionDAGBuilder::visitGCRelocate(const CallInst &CI) {
    859   GCRelocateOperands RelocateOpers(&CI);
    860 
    861 #ifndef NDEBUG
    862   // Consistency check
    863   // We skip this check for relocates not in the same basic block as thier
    864   // statepoint. It would be too expensive to preserve validation info through
    865   // different basic blocks.
    866   if (RelocateOpers.getStatepoint()->getParent() == CI.getParent()) {
    867     StatepointLowering.relocCallVisited(CI);
    868   }
    869 #endif
    870 
    871   const Value *DerivedPtr = RelocateOpers.getDerivedPtr();
    872   SDValue SD = getValue(DerivedPtr);
    873 
    874   FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap =
    875     FuncInfo.StatepointRelocatedValues[RelocateOpers.getStatepoint()];
    876 
    877   // We should have recorded location for this pointer
    878   assert(SpillMap.count(DerivedPtr) && "Relocating not lowered gc value");
    879   Optional<int> DerivedPtrLocation = SpillMap[DerivedPtr];
    880 
    881   // We didn't need to spill these special cases (constants and allocas).
    882   // See the handling in spillIncomingValueForStatepoint for detail.
    883   if (!DerivedPtrLocation) {
    884     setValue(&CI, SD);
    885     return;
    886   }
    887 
    888   SDValue SpillSlot = DAG.getTargetFrameIndex(*DerivedPtrLocation,
    889                                               SD.getValueType());
    890 
    891   // Be conservative: flush all pending loads
    892   // TODO: Probably we can be less restrictive on this,
    893   // it may allow more scheduling opportunities.
    894   SDValue Chain = getRoot();
    895 
    896   SDValue SpillLoad =
    897       DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain, SpillSlot,
    898                   MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
    899                                                     *DerivedPtrLocation),
    900                   false, false, false, 0);
    901 
    902   // Again, be conservative, don't emit pending loads
    903   DAG.setRoot(SpillLoad.getValue(1));
    904 
    905   assert(SpillLoad.getNode());
    906   setValue(&CI, SpillLoad);
    907 }
    908