Home | History | Annotate | Download | only in audioflinger
      1 /*
      2 **
      3 ** Copyright 2012, The Android Open Source Project
      4 **
      5 ** Licensed under the Apache License, Version 2.0 (the "License");
      6 ** you may not use this file except in compliance with the License.
      7 ** You may obtain a copy of the License at
      8 **
      9 **     http://www.apache.org/licenses/LICENSE-2.0
     10 **
     11 ** Unless required by applicable law or agreed to in writing, software
     12 ** distributed under the License is distributed on an "AS IS" BASIS,
     13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14 ** See the License for the specific language governing permissions and
     15 ** limitations under the License.
     16 */
     17 
     18 
     19 #define LOG_TAG "AudioFlinger"
     20 //#define LOG_NDEBUG 0
     21 #define ATRACE_TAG ATRACE_TAG_AUDIO
     22 
     23 #include "Configuration.h"
     24 #include <math.h>
     25 #include <fcntl.h>
     26 #include <linux/futex.h>
     27 #include <sys/stat.h>
     28 #include <sys/syscall.h>
     29 #include <cutils/properties.h>
     30 #include <media/AudioParameter.h>
     31 #include <media/AudioResamplerPublic.h>
     32 #include <utils/Log.h>
     33 #include <utils/Trace.h>
     34 
     35 #include <private/media/AudioTrackShared.h>
     36 #include <hardware/audio.h>
     37 #include <audio_effects/effect_ns.h>
     38 #include <audio_effects/effect_aec.h>
     39 #include <audio_utils/conversion.h>
     40 #include <audio_utils/primitives.h>
     41 #include <audio_utils/format.h>
     42 #include <audio_utils/minifloat.h>
     43 
     44 // NBAIO implementations
     45 #include <media/nbaio/AudioStreamInSource.h>
     46 #include <media/nbaio/AudioStreamOutSink.h>
     47 #include <media/nbaio/MonoPipe.h>
     48 #include <media/nbaio/MonoPipeReader.h>
     49 #include <media/nbaio/Pipe.h>
     50 #include <media/nbaio/PipeReader.h>
     51 #include <media/nbaio/SourceAudioBufferProvider.h>
     52 #include <mediautils/BatteryNotifier.h>
     53 
     54 #include <powermanager/PowerManager.h>
     55 
     56 #include "AudioFlinger.h"
     57 #include "AudioMixer.h"
     58 #include "BufferProviders.h"
     59 #include "FastMixer.h"
     60 #include "FastCapture.h"
     61 #include "ServiceUtilities.h"
     62 #include "mediautils/SchedulingPolicyService.h"
     63 
     64 #ifdef ADD_BATTERY_DATA
     65 #include <media/IMediaPlayerService.h>
     66 #include <media/IMediaDeathNotifier.h>
     67 #endif
     68 
     69 #ifdef DEBUG_CPU_USAGE
     70 #include <cpustats/CentralTendencyStatistics.h>
     71 #include <cpustats/ThreadCpuUsage.h>
     72 #endif
     73 
     74 #include "AutoPark.h"
     75 
     76 // ----------------------------------------------------------------------------
     77 
     78 // Note: the following macro is used for extremely verbose logging message.  In
     79 // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
     80 // 0; but one side effect of this is to turn all LOGV's as well.  Some messages
     81 // are so verbose that we want to suppress them even when we have ALOG_ASSERT
     82 // turned on.  Do not uncomment the #def below unless you really know what you
     83 // are doing and want to see all of the extremely verbose messages.
     84 //#define VERY_VERY_VERBOSE_LOGGING
     85 #ifdef VERY_VERY_VERBOSE_LOGGING
     86 #define ALOGVV ALOGV
     87 #else
     88 #define ALOGVV(a...) do { } while(0)
     89 #endif
     90 
     91 // TODO: Move these macro/inlines to a header file.
     92 #define max(a, b) ((a) > (b) ? (a) : (b))
     93 template <typename T>
     94 static inline T min(const T& a, const T& b)
     95 {
     96     return a < b ? a : b;
     97 }
     98 
     99 #ifndef ARRAY_SIZE
    100 #define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
    101 #endif
    102 
    103 namespace android {
    104 
    105 // retry counts for buffer fill timeout
    106 // 50 * ~20msecs = 1 second
    107 static const int8_t kMaxTrackRetries = 50;
    108 static const int8_t kMaxTrackStartupRetries = 50;
    109 // allow less retry attempts on direct output thread.
    110 // direct outputs can be a scarce resource in audio hardware and should
    111 // be released as quickly as possible.
    112 static const int8_t kMaxTrackRetriesDirect = 2;
    113 
    114 
    115 
    116 // don't warn about blocked writes or record buffer overflows more often than this
    117 static const nsecs_t kWarningThrottleNs = seconds(5);
    118 
    119 // RecordThread loop sleep time upon application overrun or audio HAL read error
    120 static const int kRecordThreadSleepUs = 5000;
    121 
    122 // maximum time to wait in sendConfigEvent_l() for a status to be received
    123 static const nsecs_t kConfigEventTimeoutNs = seconds(2);
    124 
    125 // minimum sleep time for the mixer thread loop when tracks are active but in underrun
    126 static const uint32_t kMinThreadSleepTimeUs = 5000;
    127 // maximum divider applied to the active sleep time in the mixer thread loop
    128 static const uint32_t kMaxThreadSleepTimeShift = 2;
    129 
    130 // minimum normal sink buffer size, expressed in milliseconds rather than frames
    131 // FIXME This should be based on experimentally observed scheduling jitter
    132 static const uint32_t kMinNormalSinkBufferSizeMs = 20;
    133 // maximum normal sink buffer size
    134 static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
    135 
    136 // minimum capture buffer size in milliseconds to _not_ need a fast capture thread
    137 // FIXME This should be based on experimentally observed scheduling jitter
    138 static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
    139 
    140 // Offloaded output thread standby delay: allows track transition without going to standby
    141 static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
    142 
    143 // Direct output thread minimum sleep time in idle or active(underrun) state
    144 static const nsecs_t kDirectMinSleepTimeUs = 10000;
    145 
    146 
    147 // Whether to use fast mixer
    148 static const enum {
    149     FastMixer_Never,    // never initialize or use: for debugging only
    150     FastMixer_Always,   // always initialize and use, even if not needed: for debugging only
    151                         // normal mixer multiplier is 1
    152     FastMixer_Static,   // initialize if needed, then use all the time if initialized,
    153                         // multiplier is calculated based on min & max normal mixer buffer size
    154     FastMixer_Dynamic,  // initialize if needed, then use dynamically depending on track load,
    155                         // multiplier is calculated based on min & max normal mixer buffer size
    156     // FIXME for FastMixer_Dynamic:
    157     //  Supporting this option will require fixing HALs that can't handle large writes.
    158     //  For example, one HAL implementation returns an error from a large write,
    159     //  and another HAL implementation corrupts memory, possibly in the sample rate converter.
    160     //  We could either fix the HAL implementations, or provide a wrapper that breaks
    161     //  up large writes into smaller ones, and the wrapper would need to deal with scheduler.
    162 } kUseFastMixer = FastMixer_Static;
    163 
    164 // Whether to use fast capture
    165 static const enum {
    166     FastCapture_Never,  // never initialize or use: for debugging only
    167     FastCapture_Always, // always initialize and use, even if not needed: for debugging only
    168     FastCapture_Static, // initialize if needed, then use all the time if initialized
    169 } kUseFastCapture = FastCapture_Static;
    170 
    171 // Priorities for requestPriority
    172 static const int kPriorityAudioApp = 2;
    173 static const int kPriorityFastMixer = 3;
    174 static const int kPriorityFastCapture = 3;
    175 
    176 // IAudioFlinger::createTrack() has an in/out parameter 'pFrameCount' for the total size of the
    177 // track buffer in shared memory.  Zero on input means to use a default value.  For fast tracks,
    178 // AudioFlinger derives the default from HAL buffer size and 'fast track multiplier'.
    179 
    180 // This is the default value, if not specified by property.
    181 static const int kFastTrackMultiplier = 2;
    182 
    183 // The minimum and maximum allowed values
    184 static const int kFastTrackMultiplierMin = 1;
    185 static const int kFastTrackMultiplierMax = 2;
    186 
    187 // The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
    188 static int sFastTrackMultiplier = kFastTrackMultiplier;
    189 
    190 // See Thread::readOnlyHeap().
    191 // Initially this heap is used to allocate client buffers for "fast" AudioRecord.
    192 // Eventually it will be the single buffer that FastCapture writes into via HAL read(),
    193 // and that all "fast" AudioRecord clients read from.  In either case, the size can be small.
    194 static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
    195 
    196 // ----------------------------------------------------------------------------
    197 
    198 static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
    199 
    200 static void sFastTrackMultiplierInit()
    201 {
    202     char value[PROPERTY_VALUE_MAX];
    203     if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
    204         char *endptr;
    205         unsigned long ul = strtoul(value, &endptr, 0);
    206         if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
    207             sFastTrackMultiplier = (int) ul;
    208         }
    209     }
    210 }
    211 
    212 // ----------------------------------------------------------------------------
    213 
    214 #ifdef ADD_BATTERY_DATA
    215 // To collect the amplifier usage
    216 static void addBatteryData(uint32_t params) {
    217     sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
    218     if (service == NULL) {
    219         // it already logged
    220         return;
    221     }
    222 
    223     service->addBatteryData(params);
    224 }
    225 #endif
    226 
    227 // Track the CLOCK_BOOTTIME versus CLOCK_MONOTONIC timebase offset
    228 struct {
    229     // call when you acquire a partial wakelock
    230     void acquire(const sp<IBinder> &wakeLockToken) {
    231         pthread_mutex_lock(&mLock);
    232         if (wakeLockToken.get() == nullptr) {
    233             adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
    234         } else {
    235             if (mCount == 0) {
    236                 adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
    237             }
    238             ++mCount;
    239         }
    240         pthread_mutex_unlock(&mLock);
    241     }
    242 
    243     // call when you release a partial wakelock.
    244     void release(const sp<IBinder> &wakeLockToken) {
    245         if (wakeLockToken.get() == nullptr) {
    246             return;
    247         }
    248         pthread_mutex_lock(&mLock);
    249         if (--mCount < 0) {
    250             ALOGE("negative wakelock count");
    251             mCount = 0;
    252         }
    253         pthread_mutex_unlock(&mLock);
    254     }
    255 
    256     // retrieves the boottime timebase offset from monotonic.
    257     int64_t getBoottimeOffset() {
    258         pthread_mutex_lock(&mLock);
    259         int64_t boottimeOffset = mBoottimeOffset;
    260         pthread_mutex_unlock(&mLock);
    261         return boottimeOffset;
    262     }
    263 
    264     // Adjusts the timebase offset between TIMEBASE_MONOTONIC
    265     // and the selected timebase.
    266     // Currently only TIMEBASE_BOOTTIME is allowed.
    267     //
    268     // This only needs to be called upon acquiring the first partial wakelock
    269     // after all other partial wakelocks are released.
    270     //
    271     // We do an empirical measurement of the offset rather than parsing
    272     // /proc/timer_list since the latter is not a formal kernel ABI.
    273     static void adjustTimebaseOffset(int64_t *offset, ExtendedTimestamp::Timebase timebase) {
    274         int clockbase;
    275         switch (timebase) {
    276         case ExtendedTimestamp::TIMEBASE_BOOTTIME:
    277             clockbase = SYSTEM_TIME_BOOTTIME;
    278             break;
    279         default:
    280             LOG_ALWAYS_FATAL("invalid timebase %d", timebase);
    281             break;
    282         }
    283         // try three times to get the clock offset, choose the one
    284         // with the minimum gap in measurements.
    285         const int tries = 3;
    286         nsecs_t bestGap, measured;
    287         for (int i = 0; i < tries; ++i) {
    288             const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC);
    289             const nsecs_t tbase = systemTime(clockbase);
    290             const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC);
    291             const nsecs_t gap = tmono2 - tmono;
    292             if (i == 0 || gap < bestGap) {
    293                 bestGap = gap;
    294                 measured = tbase - ((tmono + tmono2) >> 1);
    295             }
    296         }
    297 
    298         // to avoid micro-adjusting, we don't change the timebase
    299         // unless it is significantly different.
    300         //
    301         // Assumption: It probably takes more than toleranceNs to
    302         // suspend and resume the device.
    303         static int64_t toleranceNs = 10000; // 10 us
    304         if (llabs(*offset - measured) > toleranceNs) {
    305             ALOGV("Adjusting timebase offset old: %lld  new: %lld",
    306                     (long long)*offset, (long long)measured);
    307             *offset = measured;
    308         }
    309     }
    310 
    311     pthread_mutex_t mLock;
    312     int32_t mCount;
    313     int64_t mBoottimeOffset;
    314 } gBoottime = { PTHREAD_MUTEX_INITIALIZER, 0, 0 }; // static, so use POD initialization
    315 
    316 // ----------------------------------------------------------------------------
    317 //      CPU Stats
    318 // ----------------------------------------------------------------------------
    319 
    320 class CpuStats {
    321 public:
    322     CpuStats();
    323     void sample(const String8 &title);
    324 #ifdef DEBUG_CPU_USAGE
    325 private:
    326     ThreadCpuUsage mCpuUsage;           // instantaneous thread CPU usage in wall clock ns
    327     CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
    328 
    329     CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
    330 
    331     int mCpuNum;                        // thread's current CPU number
    332     int mCpukHz;                        // frequency of thread's current CPU in kHz
    333 #endif
    334 };
    335 
    336 CpuStats::CpuStats()
    337 #ifdef DEBUG_CPU_USAGE
    338     : mCpuNum(-1), mCpukHz(-1)
    339 #endif
    340 {
    341 }
    342 
    343 void CpuStats::sample(const String8 &title
    344 #ifndef DEBUG_CPU_USAGE
    345                 __unused
    346 #endif
    347         ) {
    348 #ifdef DEBUG_CPU_USAGE
    349     // get current thread's delta CPU time in wall clock ns
    350     double wcNs;
    351     bool valid = mCpuUsage.sampleAndEnable(wcNs);
    352 
    353     // record sample for wall clock statistics
    354     if (valid) {
    355         mWcStats.sample(wcNs);
    356     }
    357 
    358     // get the current CPU number
    359     int cpuNum = sched_getcpu();
    360 
    361     // get the current CPU frequency in kHz
    362     int cpukHz = mCpuUsage.getCpukHz(cpuNum);
    363 
    364     // check if either CPU number or frequency changed
    365     if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
    366         mCpuNum = cpuNum;
    367         mCpukHz = cpukHz;
    368         // ignore sample for purposes of cycles
    369         valid = false;
    370     }
    371 
    372     // if no change in CPU number or frequency, then record sample for cycle statistics
    373     if (valid && mCpukHz > 0) {
    374         double cycles = wcNs * cpukHz * 0.000001;
    375         mHzStats.sample(cycles);
    376     }
    377 
    378     unsigned n = mWcStats.n();
    379     // mCpuUsage.elapsed() is expensive, so don't call it every loop
    380     if ((n & 127) == 1) {
    381         long long elapsed = mCpuUsage.elapsed();
    382         if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
    383             double perLoop = elapsed / (double) n;
    384             double perLoop100 = perLoop * 0.01;
    385             double perLoop1k = perLoop * 0.001;
    386             double mean = mWcStats.mean();
    387             double stddev = mWcStats.stddev();
    388             double minimum = mWcStats.minimum();
    389             double maximum = mWcStats.maximum();
    390             double meanCycles = mHzStats.mean();
    391             double stddevCycles = mHzStats.stddev();
    392             double minCycles = mHzStats.minimum();
    393             double maxCycles = mHzStats.maximum();
    394             mCpuUsage.resetElapsed();
    395             mWcStats.reset();
    396             mHzStats.reset();
    397             ALOGD("CPU usage for %s over past %.1f secs\n"
    398                 "  (%u mixer loops at %.1f mean ms per loop):\n"
    399                 "  us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
    400                 "  %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
    401                 "  MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
    402                     title.string(),
    403                     elapsed * .000000001, n, perLoop * .000001,
    404                     mean * .001,
    405                     stddev * .001,
    406                     minimum * .001,
    407                     maximum * .001,
    408                     mean / perLoop100,
    409                     stddev / perLoop100,
    410                     minimum / perLoop100,
    411                     maximum / perLoop100,
    412                     meanCycles / perLoop1k,
    413                     stddevCycles / perLoop1k,
    414                     minCycles / perLoop1k,
    415                     maxCycles / perLoop1k);
    416 
    417         }
    418     }
    419 #endif
    420 };
    421 
    422 // ----------------------------------------------------------------------------
    423 //      ThreadBase
    424 // ----------------------------------------------------------------------------
    425 
    426 // static
    427 const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
    428 {
    429     switch (type) {
    430     case MIXER:
    431         return "MIXER";
    432     case DIRECT:
    433         return "DIRECT";
    434     case DUPLICATING:
    435         return "DUPLICATING";
    436     case RECORD:
    437         return "RECORD";
    438     case OFFLOAD:
    439         return "OFFLOAD";
    440     default:
    441         return "unknown";
    442     }
    443 }
    444 
    445 String8 devicesToString(audio_devices_t devices)
    446 {
    447     static const struct mapping {
    448         audio_devices_t mDevices;
    449         const char *    mString;
    450     } mappingsOut[] = {
    451         {AUDIO_DEVICE_OUT_EARPIECE,         "EARPIECE"},
    452         {AUDIO_DEVICE_OUT_SPEAKER,          "SPEAKER"},
    453         {AUDIO_DEVICE_OUT_WIRED_HEADSET,    "WIRED_HEADSET"},
    454         {AUDIO_DEVICE_OUT_WIRED_HEADPHONE,  "WIRED_HEADPHONE"},
    455         {AUDIO_DEVICE_OUT_BLUETOOTH_SCO,    "BLUETOOTH_SCO"},
    456         {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_HEADSET,    "BLUETOOTH_SCO_HEADSET"},
    457         {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_CARKIT,     "BLUETOOTH_SCO_CARKIT"},
    458         {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP,           "BLUETOOTH_A2DP"},
    459         {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_HEADPHONES,"BLUETOOTH_A2DP_HEADPHONES"},
    460         {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_SPEAKER,   "BLUETOOTH_A2DP_SPEAKER"},
    461         {AUDIO_DEVICE_OUT_AUX_DIGITAL,      "AUX_DIGITAL"},
    462         {AUDIO_DEVICE_OUT_HDMI,             "HDMI"},
    463         {AUDIO_DEVICE_OUT_ANLG_DOCK_HEADSET,"ANLG_DOCK_HEADSET"},
    464         {AUDIO_DEVICE_OUT_DGTL_DOCK_HEADSET,"DGTL_DOCK_HEADSET"},
    465         {AUDIO_DEVICE_OUT_USB_ACCESSORY,    "USB_ACCESSORY"},
    466         {AUDIO_DEVICE_OUT_USB_DEVICE,       "USB_DEVICE"},
    467         {AUDIO_DEVICE_OUT_TELEPHONY_TX,     "TELEPHONY_TX"},
    468         {AUDIO_DEVICE_OUT_LINE,             "LINE"},
    469         {AUDIO_DEVICE_OUT_HDMI_ARC,         "HDMI_ARC"},
    470         {AUDIO_DEVICE_OUT_SPDIF,            "SPDIF"},
    471         {AUDIO_DEVICE_OUT_FM,               "FM"},
    472         {AUDIO_DEVICE_OUT_AUX_LINE,         "AUX_LINE"},
    473         {AUDIO_DEVICE_OUT_SPEAKER_SAFE,     "SPEAKER_SAFE"},
    474         {AUDIO_DEVICE_OUT_IP,               "IP"},
    475         {AUDIO_DEVICE_OUT_BUS,              "BUS"},
    476         {AUDIO_DEVICE_NONE,                 "NONE"},       // must be last
    477     }, mappingsIn[] = {
    478         {AUDIO_DEVICE_IN_COMMUNICATION,     "COMMUNICATION"},
    479         {AUDIO_DEVICE_IN_AMBIENT,           "AMBIENT"},
    480         {AUDIO_DEVICE_IN_BUILTIN_MIC,       "BUILTIN_MIC"},
    481         {AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET"},
    482         {AUDIO_DEVICE_IN_WIRED_HEADSET,     "WIRED_HEADSET"},
    483         {AUDIO_DEVICE_IN_AUX_DIGITAL,       "AUX_DIGITAL"},
    484         {AUDIO_DEVICE_IN_VOICE_CALL,        "VOICE_CALL"},
    485         {AUDIO_DEVICE_IN_TELEPHONY_RX,      "TELEPHONY_RX"},
    486         {AUDIO_DEVICE_IN_BACK_MIC,          "BACK_MIC"},
    487         {AUDIO_DEVICE_IN_REMOTE_SUBMIX,     "REMOTE_SUBMIX"},
    488         {AUDIO_DEVICE_IN_ANLG_DOCK_HEADSET, "ANLG_DOCK_HEADSET"},
    489         {AUDIO_DEVICE_IN_DGTL_DOCK_HEADSET, "DGTL_DOCK_HEADSET"},
    490         {AUDIO_DEVICE_IN_USB_ACCESSORY,     "USB_ACCESSORY"},
    491         {AUDIO_DEVICE_IN_USB_DEVICE,        "USB_DEVICE"},
    492         {AUDIO_DEVICE_IN_FM_TUNER,          "FM_TUNER"},
    493         {AUDIO_DEVICE_IN_TV_TUNER,          "TV_TUNER"},
    494         {AUDIO_DEVICE_IN_LINE,              "LINE"},
    495         {AUDIO_DEVICE_IN_SPDIF,             "SPDIF"},
    496         {AUDIO_DEVICE_IN_BLUETOOTH_A2DP,    "BLUETOOTH_A2DP"},
    497         {AUDIO_DEVICE_IN_LOOPBACK,          "LOOPBACK"},
    498         {AUDIO_DEVICE_IN_IP,                "IP"},
    499         {AUDIO_DEVICE_IN_BUS,               "BUS"},
    500         {AUDIO_DEVICE_NONE,                 "NONE"},        // must be last
    501     };
    502     String8 result;
    503     audio_devices_t allDevices = AUDIO_DEVICE_NONE;
    504     const mapping *entry;
    505     if (devices & AUDIO_DEVICE_BIT_IN) {
    506         devices &= ~AUDIO_DEVICE_BIT_IN;
    507         entry = mappingsIn;
    508     } else {
    509         entry = mappingsOut;
    510     }
    511     for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) {
    512         allDevices = (audio_devices_t) (allDevices | entry->mDevices);
    513         if (devices & entry->mDevices) {
    514             if (!result.isEmpty()) {
    515                 result.append("|");
    516             }
    517             result.append(entry->mString);
    518         }
    519     }
    520     if (devices & ~allDevices) {
    521         if (!result.isEmpty()) {
    522             result.append("|");
    523         }
    524         result.appendFormat("0x%X", devices & ~allDevices);
    525     }
    526     if (result.isEmpty()) {
    527         result.append(entry->mString);
    528     }
    529     return result;
    530 }
    531 
    532 String8 inputFlagsToString(audio_input_flags_t flags)
    533 {
    534     static const struct mapping {
    535         audio_input_flags_t     mFlag;
    536         const char *            mString;
    537     } mappings[] = {
    538         {AUDIO_INPUT_FLAG_FAST,             "FAST"},
    539         {AUDIO_INPUT_FLAG_HW_HOTWORD,       "HW_HOTWORD"},
    540         {AUDIO_INPUT_FLAG_RAW,              "RAW"},
    541         {AUDIO_INPUT_FLAG_SYNC,             "SYNC"},
    542         {AUDIO_INPUT_FLAG_NONE,             "NONE"},        // must be last
    543     };
    544     String8 result;
    545     audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE;
    546     const mapping *entry;
    547     for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) {
    548         allFlags = (audio_input_flags_t) (allFlags | entry->mFlag);
    549         if (flags & entry->mFlag) {
    550             if (!result.isEmpty()) {
    551                 result.append("|");
    552             }
    553             result.append(entry->mString);
    554         }
    555     }
    556     if (flags & ~allFlags) {
    557         if (!result.isEmpty()) {
    558             result.append("|");
    559         }
    560         result.appendFormat("0x%X", flags & ~allFlags);
    561     }
    562     if (result.isEmpty()) {
    563         result.append(entry->mString);
    564     }
    565     return result;
    566 }
    567 
    568 String8 outputFlagsToString(audio_output_flags_t flags)
    569 {
    570     static const struct mapping {
    571         audio_output_flags_t    mFlag;
    572         const char *            mString;
    573     } mappings[] = {
    574         {AUDIO_OUTPUT_FLAG_DIRECT,          "DIRECT"},
    575         {AUDIO_OUTPUT_FLAG_PRIMARY,         "PRIMARY"},
    576         {AUDIO_OUTPUT_FLAG_FAST,            "FAST"},
    577         {AUDIO_OUTPUT_FLAG_DEEP_BUFFER,     "DEEP_BUFFER"},
    578         {AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD,"COMPRESS_OFFLOAD"},
    579         {AUDIO_OUTPUT_FLAG_NON_BLOCKING,    "NON_BLOCKING"},
    580         {AUDIO_OUTPUT_FLAG_HW_AV_SYNC,      "HW_AV_SYNC"},
    581         {AUDIO_OUTPUT_FLAG_RAW,             "RAW"},
    582         {AUDIO_OUTPUT_FLAG_SYNC,            "SYNC"},
    583         {AUDIO_OUTPUT_FLAG_IEC958_NONAUDIO, "IEC958_NONAUDIO"},
    584         {AUDIO_OUTPUT_FLAG_NONE,            "NONE"},        // must be last
    585     };
    586     String8 result;
    587     audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE;
    588     const mapping *entry;
    589     for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) {
    590         allFlags = (audio_output_flags_t) (allFlags | entry->mFlag);
    591         if (flags & entry->mFlag) {
    592             if (!result.isEmpty()) {
    593                 result.append("|");
    594             }
    595             result.append(entry->mString);
    596         }
    597     }
    598     if (flags & ~allFlags) {
    599         if (!result.isEmpty()) {
    600             result.append("|");
    601         }
    602         result.appendFormat("0x%X", flags & ~allFlags);
    603     }
    604     if (result.isEmpty()) {
    605         result.append(entry->mString);
    606     }
    607     return result;
    608 }
    609 
    610 const char *sourceToString(audio_source_t source)
    611 {
    612     switch (source) {
    613     case AUDIO_SOURCE_DEFAULT:              return "default";
    614     case AUDIO_SOURCE_MIC:                  return "mic";
    615     case AUDIO_SOURCE_VOICE_UPLINK:         return "voice uplink";
    616     case AUDIO_SOURCE_VOICE_DOWNLINK:       return "voice downlink";
    617     case AUDIO_SOURCE_VOICE_CALL:           return "voice call";
    618     case AUDIO_SOURCE_CAMCORDER:            return "camcorder";
    619     case AUDIO_SOURCE_VOICE_RECOGNITION:    return "voice recognition";
    620     case AUDIO_SOURCE_VOICE_COMMUNICATION:  return "voice communication";
    621     case AUDIO_SOURCE_REMOTE_SUBMIX:        return "remote submix";
    622     case AUDIO_SOURCE_UNPROCESSED:          return "unprocessed";
    623     case AUDIO_SOURCE_FM_TUNER:             return "FM tuner";
    624     case AUDIO_SOURCE_HOTWORD:              return "hotword";
    625     default:                                return "unknown";
    626     }
    627 }
    628 
    629 AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
    630         audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady)
    631     :   Thread(false /*canCallJava*/),
    632         mType(type),
    633         mAudioFlinger(audioFlinger),
    634         // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
    635         // are set by PlaybackThread::readOutputParameters_l() or
    636         // RecordThread::readInputParameters_l()
    637         //FIXME: mStandby should be true here. Is this some kind of hack?
    638         mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
    639         mPrevOutDevice(AUDIO_DEVICE_NONE), mPrevInDevice(AUDIO_DEVICE_NONE),
    640         mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
    641         // mName will be set by concrete (non-virtual) subclass
    642         mDeathRecipient(new PMDeathRecipient(this)),
    643         mSystemReady(systemReady),
    644         mNotifiedBatteryStart(false)
    645 {
    646     memset(&mPatch, 0, sizeof(struct audio_patch));
    647 }
    648 
    649 AudioFlinger::ThreadBase::~ThreadBase()
    650 {
    651     // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
    652     mConfigEvents.clear();
    653 
    654     // do not lock the mutex in destructor
    655     releaseWakeLock_l();
    656     if (mPowerManager != 0) {
    657         sp<IBinder> binder = IInterface::asBinder(mPowerManager);
    658         binder->unlinkToDeath(mDeathRecipient);
    659     }
    660 }
    661 
    662 status_t AudioFlinger::ThreadBase::readyToRun()
    663 {
    664     status_t status = initCheck();
    665     if (status == NO_ERROR) {
    666         ALOGI("AudioFlinger's thread %p ready to run", this);
    667     } else {
    668         ALOGE("No working audio driver found.");
    669     }
    670     return status;
    671 }
    672 
    673 void AudioFlinger::ThreadBase::exit()
    674 {
    675     ALOGV("ThreadBase::exit");
    676     // do any cleanup required for exit to succeed
    677     preExit();
    678     {
    679         // This lock prevents the following race in thread (uniprocessor for illustration):
    680         //  if (!exitPending()) {
    681         //      // context switch from here to exit()
    682         //      // exit() calls requestExit(), what exitPending() observes
    683         //      // exit() calls signal(), which is dropped since no waiters
    684         //      // context switch back from exit() to here
    685         //      mWaitWorkCV.wait(...);
    686         //      // now thread is hung
    687         //  }
    688         AutoMutex lock(mLock);
    689         requestExit();
    690         mWaitWorkCV.broadcast();
    691     }
    692     // When Thread::requestExitAndWait is made virtual and this method is renamed to
    693     // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
    694     requestExitAndWait();
    695 }
    696 
    697 status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
    698 {
    699     ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
    700     Mutex::Autolock _l(mLock);
    701 
    702     return sendSetParameterConfigEvent_l(keyValuePairs);
    703 }
    704 
    705 // sendConfigEvent_l() must be called with ThreadBase::mLock held
    706 // Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
    707 status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
    708 {
    709     status_t status = NO_ERROR;
    710 
    711     if (event->mRequiresSystemReady && !mSystemReady) {
    712         event->mWaitStatus = false;
    713         mPendingConfigEvents.add(event);
    714         return status;
    715     }
    716     mConfigEvents.add(event);
    717     ALOGV("sendConfigEvent_l() num events %zu event %d", mConfigEvents.size(), event->mType);
    718     mWaitWorkCV.signal();
    719     mLock.unlock();
    720     {
    721         Mutex::Autolock _l(event->mLock);
    722         while (event->mWaitStatus) {
    723             if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
    724                 event->mStatus = TIMED_OUT;
    725                 event->mWaitStatus = false;
    726             }
    727         }
    728         status = event->mStatus;
    729     }
    730     mLock.lock();
    731     return status;
    732 }
    733 
    734 void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid)
    735 {
    736     Mutex::Autolock _l(mLock);
    737     sendIoConfigEvent_l(event, pid);
    738 }
    739 
    740 // sendIoConfigEvent_l() must be called with ThreadBase::mLock held
    741 void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid)
    742 {
    743     sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid);
    744     sendConfigEvent_l(configEvent);
    745 }
    746 
    747 void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio)
    748 {
    749     Mutex::Autolock _l(mLock);
    750     sendPrioConfigEvent_l(pid, tid, prio);
    751 }
    752 
    753 // sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
    754 void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
    755 {
    756     sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio);
    757     sendConfigEvent_l(configEvent);
    758 }
    759 
    760 // sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
    761 status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
    762 {
    763     sp<ConfigEvent> configEvent;
    764     AudioParameter param(keyValuePair);
    765     int value;
    766     if (param.getInt(String8(AUDIO_PARAMETER_MONO_OUTPUT), value) == NO_ERROR) {
    767         setMasterMono_l(value != 0);
    768         if (param.size() == 1) {
    769             return NO_ERROR; // should be a solo parameter - we don't pass down
    770         }
    771         param.remove(String8(AUDIO_PARAMETER_MONO_OUTPUT));
    772         configEvent = new SetParameterConfigEvent(param.toString());
    773     } else {
    774         configEvent = new SetParameterConfigEvent(keyValuePair);
    775     }
    776     return sendConfigEvent_l(configEvent);
    777 }
    778 
    779 status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
    780                                                         const struct audio_patch *patch,
    781                                                         audio_patch_handle_t *handle)
    782 {
    783     Mutex::Autolock _l(mLock);
    784     sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
    785     status_t status = sendConfigEvent_l(configEvent);
    786     if (status == NO_ERROR) {
    787         CreateAudioPatchConfigEventData *data =
    788                                         (CreateAudioPatchConfigEventData *)configEvent->mData.get();
    789         *handle = data->mHandle;
    790     }
    791     return status;
    792 }
    793 
    794 status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
    795                                                                 const audio_patch_handle_t handle)
    796 {
    797     Mutex::Autolock _l(mLock);
    798     sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
    799     return sendConfigEvent_l(configEvent);
    800 }
    801 
    802 
    803 // post condition: mConfigEvents.isEmpty()
    804 void AudioFlinger::ThreadBase::processConfigEvents_l()
    805 {
    806     bool configChanged = false;
    807 
    808     while (!mConfigEvents.isEmpty()) {
    809         ALOGV("processConfigEvents_l() remaining events %zu", mConfigEvents.size());
    810         sp<ConfigEvent> event = mConfigEvents[0];
    811         mConfigEvents.removeAt(0);
    812         switch (event->mType) {
    813         case CFG_EVENT_PRIO: {
    814             PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
    815             // FIXME Need to understand why this has to be done asynchronously
    816             int err = requestPriority(data->mPid, data->mTid, data->mPrio,
    817                     true /*asynchronous*/);
    818             if (err != 0) {
    819                 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
    820                       data->mPrio, data->mPid, data->mTid, err);
    821             }
    822         } break;
    823         case CFG_EVENT_IO: {
    824             IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
    825             ioConfigChanged(data->mEvent, data->mPid);
    826         } break;
    827         case CFG_EVENT_SET_PARAMETER: {
    828             SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
    829             if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
    830                 configChanged = true;
    831             }
    832         } break;
    833         case CFG_EVENT_CREATE_AUDIO_PATCH: {
    834             CreateAudioPatchConfigEventData *data =
    835                                             (CreateAudioPatchConfigEventData *)event->mData.get();
    836             event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
    837         } break;
    838         case CFG_EVENT_RELEASE_AUDIO_PATCH: {
    839             ReleaseAudioPatchConfigEventData *data =
    840                                             (ReleaseAudioPatchConfigEventData *)event->mData.get();
    841             event->mStatus = releaseAudioPatch_l(data->mHandle);
    842         } break;
    843         default:
    844             ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
    845             break;
    846         }
    847         {
    848             Mutex::Autolock _l(event->mLock);
    849             if (event->mWaitStatus) {
    850                 event->mWaitStatus = false;
    851                 event->mCond.signal();
    852             }
    853         }
    854         ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
    855     }
    856 
    857     if (configChanged) {
    858         cacheParameters_l();
    859     }
    860 }
    861 
    862 String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
    863     String8 s;
    864     const audio_channel_representation_t representation =
    865             audio_channel_mask_get_representation(mask);
    866 
    867     switch (representation) {
    868     case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
    869         if (output) {
    870             if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
    871             if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
    872             if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
    873             if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
    874             if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
    875             if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
    876             if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
    877             if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
    878             if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
    879             if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
    880             if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
    881             if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
    882             if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
    883             if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
    884             if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
    885             if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
    886             if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
    887             if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
    888             if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown,  ");
    889         } else {
    890             if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
    891             if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
    892             if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
    893             if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
    894             if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
    895             if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
    896             if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
    897             if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
    898             if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
    899             if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
    900             if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
    901             if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
    902             if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
    903             if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
    904             if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown,  ");
    905         }
    906         const int len = s.length();
    907         if (len > 2) {
    908             (void) s.lockBuffer(len);      // needed?
    909             s.unlockBuffer(len - 2);       // remove trailing ", "
    910         }
    911         return s;
    912     }
    913     case AUDIO_CHANNEL_REPRESENTATION_INDEX:
    914         s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
    915         return s;
    916     default:
    917         s.appendFormat("unknown mask, representation:%d  bits:%#x",
    918                 representation, audio_channel_mask_get_bits(mask));
    919         return s;
    920     }
    921 }
    922 
    923 void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
    924 {
    925     const size_t SIZE = 256;
    926     char buffer[SIZE];
    927     String8 result;
    928 
    929     bool locked = AudioFlinger::dumpTryLock(mLock);
    930     if (!locked) {
    931         dprintf(fd, "thread %p may be deadlocked\n", this);
    932     }
    933 
    934     dprintf(fd, "  Thread name: %s\n", mThreadName);
    935     dprintf(fd, "  I/O handle: %d\n", mId);
    936     dprintf(fd, "  TID: %d\n", getTid());
    937     dprintf(fd, "  Standby: %s\n", mStandby ? "yes" : "no");
    938     dprintf(fd, "  Sample rate: %u Hz\n", mSampleRate);
    939     dprintf(fd, "  HAL frame count: %zu\n", mFrameCount);
    940     dprintf(fd, "  HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat));
    941     dprintf(fd, "  HAL buffer size: %zu bytes\n", mBufferSize);
    942     dprintf(fd, "  Channel count: %u\n", mChannelCount);
    943     dprintf(fd, "  Channel mask: 0x%08x (%s)\n", mChannelMask,
    944             channelMaskToString(mChannelMask, mType != RECORD).string());
    945     dprintf(fd, "  Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat));
    946     dprintf(fd, "  Processing frame size: %zu bytes\n", mFrameSize);
    947     dprintf(fd, "  Pending config events:");
    948     size_t numConfig = mConfigEvents.size();
    949     if (numConfig) {
    950         for (size_t i = 0; i < numConfig; i++) {
    951             mConfigEvents[i]->dump(buffer, SIZE);
    952             dprintf(fd, "\n    %s", buffer);
    953         }
    954         dprintf(fd, "\n");
    955     } else {
    956         dprintf(fd, " none\n");
    957     }
    958     dprintf(fd, "  Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string());
    959     dprintf(fd, "  Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string());
    960     dprintf(fd, "  Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
    961 
    962     if (locked) {
    963         mLock.unlock();
    964     }
    965 }
    966 
    967 void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
    968 {
    969     const size_t SIZE = 256;
    970     char buffer[SIZE];
    971     String8 result;
    972 
    973     size_t numEffectChains = mEffectChains.size();
    974     snprintf(buffer, SIZE, "  %zu Effect Chains\n", numEffectChains);
    975     write(fd, buffer, strlen(buffer));
    976 
    977     for (size_t i = 0; i < numEffectChains; ++i) {
    978         sp<EffectChain> chain = mEffectChains[i];
    979         if (chain != 0) {
    980             chain->dump(fd, args);
    981         }
    982     }
    983 }
    984 
    985 void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
    986 {
    987     Mutex::Autolock _l(mLock);
    988     acquireWakeLock_l(uid);
    989 }
    990 
    991 String16 AudioFlinger::ThreadBase::getWakeLockTag()
    992 {
    993     switch (mType) {
    994     case MIXER:
    995         return String16("AudioMix");
    996     case DIRECT:
    997         return String16("AudioDirectOut");
    998     case DUPLICATING:
    999         return String16("AudioDup");
   1000     case RECORD:
   1001         return String16("AudioIn");
   1002     case OFFLOAD:
   1003         return String16("AudioOffload");
   1004     default:
   1005         ALOG_ASSERT(false);
   1006         return String16("AudioUnknown");
   1007     }
   1008 }
   1009 
   1010 void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
   1011 {
   1012     getPowerManager_l();
   1013     if (mPowerManager != 0) {
   1014         sp<IBinder> binder = new BBinder();
   1015         status_t status;
   1016         if (uid >= 0) {
   1017             status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
   1018                     binder,
   1019                     getWakeLockTag(),
   1020                     String16("audioserver"),
   1021                     uid,
   1022                     true /* FIXME force oneway contrary to .aidl */);
   1023         } else {
   1024             status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
   1025                     binder,
   1026                     getWakeLockTag(),
   1027                     String16("audioserver"),
   1028                     true /* FIXME force oneway contrary to .aidl */);
   1029         }
   1030         if (status == NO_ERROR) {
   1031             mWakeLockToken = binder;
   1032         }
   1033         ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
   1034     }
   1035 
   1036     if (!mNotifiedBatteryStart) {
   1037         BatteryNotifier::getInstance().noteStartAudio();
   1038         mNotifiedBatteryStart = true;
   1039     }
   1040     gBoottime.acquire(mWakeLockToken);
   1041     mTimestamp.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_BOOTTIME] =
   1042             gBoottime.getBoottimeOffset();
   1043 }
   1044 
   1045 void AudioFlinger::ThreadBase::releaseWakeLock()
   1046 {
   1047     Mutex::Autolock _l(mLock);
   1048     releaseWakeLock_l();
   1049 }
   1050 
   1051 void AudioFlinger::ThreadBase::releaseWakeLock_l()
   1052 {
   1053     gBoottime.release(mWakeLockToken);
   1054     if (mWakeLockToken != 0) {
   1055         ALOGV("releaseWakeLock_l() %s", mThreadName);
   1056         if (mPowerManager != 0) {
   1057             mPowerManager->releaseWakeLock(mWakeLockToken, 0,
   1058                     true /* FIXME force oneway contrary to .aidl */);
   1059         }
   1060         mWakeLockToken.clear();
   1061     }
   1062 
   1063     if (mNotifiedBatteryStart) {
   1064         BatteryNotifier::getInstance().noteStopAudio();
   1065         mNotifiedBatteryStart = false;
   1066     }
   1067 }
   1068 
   1069 void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
   1070     Mutex::Autolock _l(mLock);
   1071     updateWakeLockUids_l(uids);
   1072 }
   1073 
   1074 void AudioFlinger::ThreadBase::getPowerManager_l() {
   1075     if (mSystemReady && mPowerManager == 0) {
   1076         // use checkService() to avoid blocking if power service is not up yet
   1077         sp<IBinder> binder =
   1078             defaultServiceManager()->checkService(String16("power"));
   1079         if (binder == 0) {
   1080             ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
   1081         } else {
   1082             mPowerManager = interface_cast<IPowerManager>(binder);
   1083             binder->linkToDeath(mDeathRecipient);
   1084         }
   1085     }
   1086 }
   1087 
   1088 void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
   1089     getPowerManager_l();
   1090     if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called.
   1091         if (mSystemReady) {
   1092             ALOGE("no wake lock to update, but system ready!");
   1093         } else {
   1094             ALOGW("no wake lock to update, system not ready yet");
   1095         }
   1096         return;
   1097     }
   1098     if (mPowerManager != 0) {
   1099         sp<IBinder> binder = new BBinder();
   1100         status_t status;
   1101         status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(),
   1102                     true /* FIXME force oneway contrary to .aidl */);
   1103         ALOGV("updateWakeLockUids_l() %s status %d", mThreadName, status);
   1104     }
   1105 }
   1106 
   1107 void AudioFlinger::ThreadBase::clearPowerManager()
   1108 {
   1109     Mutex::Autolock _l(mLock);
   1110     releaseWakeLock_l();
   1111     mPowerManager.clear();
   1112 }
   1113 
   1114 void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
   1115 {
   1116     sp<ThreadBase> thread = mThread.promote();
   1117     if (thread != 0) {
   1118         thread->clearPowerManager();
   1119     }
   1120     ALOGW("power manager service died !!!");
   1121 }
   1122 
   1123 void AudioFlinger::ThreadBase::setEffectSuspended(
   1124         const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
   1125 {
   1126     Mutex::Autolock _l(mLock);
   1127     setEffectSuspended_l(type, suspend, sessionId);
   1128 }
   1129 
   1130 void AudioFlinger::ThreadBase::setEffectSuspended_l(
   1131         const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
   1132 {
   1133     sp<EffectChain> chain = getEffectChain_l(sessionId);
   1134     if (chain != 0) {
   1135         if (type != NULL) {
   1136             chain->setEffectSuspended_l(type, suspend);
   1137         } else {
   1138             chain->setEffectSuspendedAll_l(suspend);
   1139         }
   1140     }
   1141 
   1142     updateSuspendedSessions_l(type, suspend, sessionId);
   1143 }
   1144 
   1145 void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
   1146 {
   1147     ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
   1148     if (index < 0) {
   1149         return;
   1150     }
   1151 
   1152     const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
   1153             mSuspendedSessions.valueAt(index);
   1154 
   1155     for (size_t i = 0; i < sessionEffects.size(); i++) {
   1156         sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
   1157         for (int j = 0; j < desc->mRefCount; j++) {
   1158             if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
   1159                 chain->setEffectSuspendedAll_l(true);
   1160             } else {
   1161                 ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
   1162                     desc->mType.timeLow);
   1163                 chain->setEffectSuspended_l(&desc->mType, true);
   1164             }
   1165         }
   1166     }
   1167 }
   1168 
   1169 void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
   1170                                                          bool suspend,
   1171                                                          audio_session_t sessionId)
   1172 {
   1173     ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
   1174 
   1175     KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
   1176 
   1177     if (suspend) {
   1178         if (index >= 0) {
   1179             sessionEffects = mSuspendedSessions.valueAt(index);
   1180         } else {
   1181             mSuspendedSessions.add(sessionId, sessionEffects);
   1182         }
   1183     } else {
   1184         if (index < 0) {
   1185             return;
   1186         }
   1187         sessionEffects = mSuspendedSessions.valueAt(index);
   1188     }
   1189 
   1190 
   1191     int key = EffectChain::kKeyForSuspendAll;
   1192     if (type != NULL) {
   1193         key = type->timeLow;
   1194     }
   1195     index = sessionEffects.indexOfKey(key);
   1196 
   1197     sp<SuspendedSessionDesc> desc;
   1198     if (suspend) {
   1199         if (index >= 0) {
   1200             desc = sessionEffects.valueAt(index);
   1201         } else {
   1202             desc = new SuspendedSessionDesc();
   1203             if (type != NULL) {
   1204                 desc->mType = *type;
   1205             }
   1206             sessionEffects.add(key, desc);
   1207             ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
   1208         }
   1209         desc->mRefCount++;
   1210     } else {
   1211         if (index < 0) {
   1212             return;
   1213         }
   1214         desc = sessionEffects.valueAt(index);
   1215         if (--desc->mRefCount == 0) {
   1216             ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
   1217             sessionEffects.removeItemsAt(index);
   1218             if (sessionEffects.isEmpty()) {
   1219                 ALOGV("updateSuspendedSessions_l() restore removing session %d",
   1220                                  sessionId);
   1221                 mSuspendedSessions.removeItem(sessionId);
   1222             }
   1223         }
   1224     }
   1225     if (!sessionEffects.isEmpty()) {
   1226         mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
   1227     }
   1228 }
   1229 
   1230 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
   1231                                                             bool enabled,
   1232                                                             audio_session_t sessionId)
   1233 {
   1234     Mutex::Autolock _l(mLock);
   1235     checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
   1236 }
   1237 
   1238 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
   1239                                                             bool enabled,
   1240                                                             audio_session_t sessionId)
   1241 {
   1242     if (mType != RECORD) {
   1243         // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
   1244         // another session. This gives the priority to well behaved effect control panels
   1245         // and applications not using global effects.
   1246         // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
   1247         // global effects
   1248         if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
   1249             setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
   1250         }
   1251     }
   1252 
   1253     sp<EffectChain> chain = getEffectChain_l(sessionId);
   1254     if (chain != 0) {
   1255         chain->checkSuspendOnEffectEnabled(effect, enabled);
   1256     }
   1257 }
   1258 
   1259 // checkEffectCompatibility_l() must be called with ThreadBase::mLock held
   1260 status_t AudioFlinger::RecordThread::checkEffectCompatibility_l(
   1261         const effect_descriptor_t *desc, audio_session_t sessionId)
   1262 {
   1263     // No global effect sessions on record threads
   1264     if (sessionId == AUDIO_SESSION_OUTPUT_MIX || sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
   1265         ALOGW("checkEffectCompatibility_l(): global effect %s on record thread %s",
   1266                 desc->name, mThreadName);
   1267         return BAD_VALUE;
   1268     }
   1269     // only pre processing effects on record thread
   1270     if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC) {
   1271         ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on record thread %s",
   1272                 desc->name, mThreadName);
   1273         return BAD_VALUE;
   1274     }
   1275     audio_input_flags_t flags = mInput->flags;
   1276     if (hasFastCapture() || (flags & AUDIO_INPUT_FLAG_FAST)) {
   1277         if (flags & AUDIO_INPUT_FLAG_RAW) {
   1278             ALOGW("checkEffectCompatibility_l(): effect %s on record thread %s in raw mode",
   1279                   desc->name, mThreadName);
   1280             return BAD_VALUE;
   1281         }
   1282         if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
   1283             ALOGW("checkEffectCompatibility_l(): non HW effect %s on record thread %s in fast mode",
   1284                   desc->name, mThreadName);
   1285             return BAD_VALUE;
   1286         }
   1287     }
   1288     return NO_ERROR;
   1289 }
   1290 
   1291 // checkEffectCompatibility_l() must be called with ThreadBase::mLock held
   1292 status_t AudioFlinger::PlaybackThread::checkEffectCompatibility_l(
   1293         const effect_descriptor_t *desc, audio_session_t sessionId)
   1294 {
   1295     // no preprocessing on playback threads
   1296     if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC) {
   1297         ALOGW("checkEffectCompatibility_l(): pre processing effect %s created on playback"
   1298                 " thread %s", desc->name, mThreadName);
   1299         return BAD_VALUE;
   1300     }
   1301 
   1302     switch (mType) {
   1303     case MIXER: {
   1304         // Reject any effect on mixer multichannel sinks.
   1305         // TODO: fix both format and multichannel issues with effects.
   1306         if (mChannelCount != FCC_2) {
   1307             ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d) on MIXER"
   1308                     " thread %s", desc->name, mChannelCount, mThreadName);
   1309             return BAD_VALUE;
   1310         }
   1311         audio_output_flags_t flags = mOutput->flags;
   1312         if (hasFastMixer() || (flags & AUDIO_OUTPUT_FLAG_FAST)) {
   1313             if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
   1314                 // global effects are applied only to non fast tracks if they are SW
   1315                 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
   1316                     break;
   1317                 }
   1318             } else if (sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
   1319                 // only post processing on output stage session
   1320                 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) {
   1321                     ALOGW("checkEffectCompatibility_l(): non post processing effect %s not allowed"
   1322                             " on output stage session", desc->name);
   1323                     return BAD_VALUE;
   1324                 }
   1325             } else {
   1326                 // no restriction on effects applied on non fast tracks
   1327                 if ((hasAudioSession_l(sessionId) & ThreadBase::FAST_SESSION) == 0) {
   1328                     break;
   1329                 }
   1330             }
   1331             if (flags & AUDIO_OUTPUT_FLAG_RAW) {
   1332                 ALOGW("checkEffectCompatibility_l(): effect %s on playback thread in raw mode",
   1333                       desc->name);
   1334                 return BAD_VALUE;
   1335             }
   1336             if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
   1337                 ALOGW("checkEffectCompatibility_l(): non HW effect %s on playback thread"
   1338                         " in fast mode", desc->name);
   1339                 return BAD_VALUE;
   1340             }
   1341         }
   1342     } break;
   1343     case OFFLOAD:
   1344         // nothing actionable on offload threads, if the effect:
   1345         //   - is offloadable: the effect can be created
   1346         //   - is NOT offloadable: the effect should still be created, but EffectHandle::enable()
   1347         //     will take care of invalidating the tracks of the thread
   1348         break;
   1349     case DIRECT:
   1350         // Reject any effect on Direct output threads for now, since the format of
   1351         // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
   1352         ALOGW("checkEffectCompatibility_l(): effect %s on DIRECT output thread %s",
   1353                 desc->name, mThreadName);
   1354         return BAD_VALUE;
   1355     case DUPLICATING:
   1356         // Reject any effect on mixer multichannel sinks.
   1357         // TODO: fix both format and multichannel issues with effects.
   1358         if (mChannelCount != FCC_2) {
   1359             ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d)"
   1360                     " on DUPLICATING thread %s", desc->name, mChannelCount, mThreadName);
   1361             return BAD_VALUE;
   1362         }
   1363         if ((sessionId == AUDIO_SESSION_OUTPUT_STAGE) || (sessionId == AUDIO_SESSION_OUTPUT_MIX)) {
   1364             ALOGW("checkEffectCompatibility_l(): global effect %s on DUPLICATING"
   1365                     " thread %s", desc->name, mThreadName);
   1366             return BAD_VALUE;
   1367         }
   1368         if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_POST_PROC) {
   1369             ALOGW("checkEffectCompatibility_l(): post processing effect %s on"
   1370                     " DUPLICATING thread %s", desc->name, mThreadName);
   1371             return BAD_VALUE;
   1372         }
   1373         if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) != 0) {
   1374             ALOGW("checkEffectCompatibility_l(): HW tunneled effect %s on"
   1375                     " DUPLICATING thread %s", desc->name, mThreadName);
   1376             return BAD_VALUE;
   1377         }
   1378         break;
   1379     default:
   1380         LOG_ALWAYS_FATAL("checkEffectCompatibility_l(): wrong thread type %d", mType);
   1381     }
   1382 
   1383     return NO_ERROR;
   1384 }
   1385 
   1386 // ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
   1387 sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
   1388         const sp<AudioFlinger::Client>& client,
   1389         const sp<IEffectClient>& effectClient,
   1390         int32_t priority,
   1391         audio_session_t sessionId,
   1392         effect_descriptor_t *desc,
   1393         int *enabled,
   1394         status_t *status)
   1395 {
   1396     sp<EffectModule> effect;
   1397     sp<EffectHandle> handle;
   1398     status_t lStatus;
   1399     sp<EffectChain> chain;
   1400     bool chainCreated = false;
   1401     bool effectCreated = false;
   1402     bool effectRegistered = false;
   1403 
   1404     lStatus = initCheck();
   1405     if (lStatus != NO_ERROR) {
   1406         ALOGW("createEffect_l() Audio driver not initialized.");
   1407         goto Exit;
   1408     }
   1409 
   1410     ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
   1411 
   1412     { // scope for mLock
   1413         Mutex::Autolock _l(mLock);
   1414 
   1415         lStatus = checkEffectCompatibility_l(desc, sessionId);
   1416         if (lStatus != NO_ERROR) {
   1417             goto Exit;
   1418         }
   1419 
   1420         // check for existing effect chain with the requested audio session
   1421         chain = getEffectChain_l(sessionId);
   1422         if (chain == 0) {
   1423             // create a new chain for this session
   1424             ALOGV("createEffect_l() new effect chain for session %d", sessionId);
   1425             chain = new EffectChain(this, sessionId);
   1426             addEffectChain_l(chain);
   1427             chain->setStrategy(getStrategyForSession_l(sessionId));
   1428             chainCreated = true;
   1429         } else {
   1430             effect = chain->getEffectFromDesc_l(desc);
   1431         }
   1432 
   1433         ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
   1434 
   1435         if (effect == 0) {
   1436             audio_unique_id_t id = mAudioFlinger->nextUniqueId(AUDIO_UNIQUE_ID_USE_EFFECT);
   1437             // Check CPU and memory usage
   1438             lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
   1439             if (lStatus != NO_ERROR) {
   1440                 goto Exit;
   1441             }
   1442             effectRegistered = true;
   1443             // create a new effect module if none present in the chain
   1444             effect = new EffectModule(this, chain, desc, id, sessionId);
   1445             lStatus = effect->status();
   1446             if (lStatus != NO_ERROR) {
   1447                 goto Exit;
   1448             }
   1449             effect->setOffloaded(mType == OFFLOAD, mId);
   1450 
   1451             lStatus = chain->addEffect_l(effect);
   1452             if (lStatus != NO_ERROR) {
   1453                 goto Exit;
   1454             }
   1455             effectCreated = true;
   1456 
   1457             effect->setDevice(mOutDevice);
   1458             effect->setDevice(mInDevice);
   1459             effect->setMode(mAudioFlinger->getMode());
   1460             effect->setAudioSource(mAudioSource);
   1461         }
   1462         // create effect handle and connect it to effect module
   1463         handle = new EffectHandle(effect, client, effectClient, priority);
   1464         lStatus = handle->initCheck();
   1465         if (lStatus == OK) {
   1466             lStatus = effect->addHandle(handle.get());
   1467         }
   1468         if (enabled != NULL) {
   1469             *enabled = (int)effect->isEnabled();
   1470         }
   1471     }
   1472 
   1473 Exit:
   1474     if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
   1475         Mutex::Autolock _l(mLock);
   1476         if (effectCreated) {
   1477             chain->removeEffect_l(effect);
   1478         }
   1479         if (effectRegistered) {
   1480             AudioSystem::unregisterEffect(effect->id());
   1481         }
   1482         if (chainCreated) {
   1483             removeEffectChain_l(chain);
   1484         }
   1485         handle.clear();
   1486     }
   1487 
   1488     *status = lStatus;
   1489     return handle;
   1490 }
   1491 
   1492 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(audio_session_t sessionId,
   1493         int effectId)
   1494 {
   1495     Mutex::Autolock _l(mLock);
   1496     return getEffect_l(sessionId, effectId);
   1497 }
   1498 
   1499 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(audio_session_t sessionId,
   1500         int effectId)
   1501 {
   1502     sp<EffectChain> chain = getEffectChain_l(sessionId);
   1503     return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
   1504 }
   1505 
   1506 // PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
   1507 // PlaybackThread::mLock held
   1508 status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
   1509 {
   1510     // check for existing effect chain with the requested audio session
   1511     audio_session_t sessionId = effect->sessionId();
   1512     sp<EffectChain> chain = getEffectChain_l(sessionId);
   1513     bool chainCreated = false;
   1514 
   1515     ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
   1516              "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
   1517                     this, effect->desc().name, effect->desc().flags);
   1518 
   1519     if (chain == 0) {
   1520         // create a new chain for this session
   1521         ALOGV("addEffect_l() new effect chain for session %d", sessionId);
   1522         chain = new EffectChain(this, sessionId);
   1523         addEffectChain_l(chain);
   1524         chain->setStrategy(getStrategyForSession_l(sessionId));
   1525         chainCreated = true;
   1526     }
   1527     ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
   1528 
   1529     if (chain->getEffectFromId_l(effect->id()) != 0) {
   1530         ALOGW("addEffect_l() %p effect %s already present in chain %p",
   1531                 this, effect->desc().name, chain.get());
   1532         return BAD_VALUE;
   1533     }
   1534 
   1535     effect->setOffloaded(mType == OFFLOAD, mId);
   1536 
   1537     status_t status = chain->addEffect_l(effect);
   1538     if (status != NO_ERROR) {
   1539         if (chainCreated) {
   1540             removeEffectChain_l(chain);
   1541         }
   1542         return status;
   1543     }
   1544 
   1545     effect->setDevice(mOutDevice);
   1546     effect->setDevice(mInDevice);
   1547     effect->setMode(mAudioFlinger->getMode());
   1548     effect->setAudioSource(mAudioSource);
   1549     return NO_ERROR;
   1550 }
   1551 
   1552 void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
   1553 
   1554     ALOGV("removeEffect_l() %p effect %p", this, effect.get());
   1555     effect_descriptor_t desc = effect->desc();
   1556     if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
   1557         detachAuxEffect_l(effect->id());
   1558     }
   1559 
   1560     sp<EffectChain> chain = effect->chain().promote();
   1561     if (chain != 0) {
   1562         // remove effect chain if removing last effect
   1563         if (chain->removeEffect_l(effect) == 0) {
   1564             removeEffectChain_l(chain);
   1565         }
   1566     } else {
   1567         ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
   1568     }
   1569 }
   1570 
   1571 void AudioFlinger::ThreadBase::lockEffectChains_l(
   1572         Vector< sp<AudioFlinger::EffectChain> >& effectChains)
   1573 {
   1574     effectChains = mEffectChains;
   1575     for (size_t i = 0; i < mEffectChains.size(); i++) {
   1576         mEffectChains[i]->lock();
   1577     }
   1578 }
   1579 
   1580 void AudioFlinger::ThreadBase::unlockEffectChains(
   1581         const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
   1582 {
   1583     for (size_t i = 0; i < effectChains.size(); i++) {
   1584         effectChains[i]->unlock();
   1585     }
   1586 }
   1587 
   1588 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(audio_session_t sessionId)
   1589 {
   1590     Mutex::Autolock _l(mLock);
   1591     return getEffectChain_l(sessionId);
   1592 }
   1593 
   1594 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(audio_session_t sessionId)
   1595         const
   1596 {
   1597     size_t size = mEffectChains.size();
   1598     for (size_t i = 0; i < size; i++) {
   1599         if (mEffectChains[i]->sessionId() == sessionId) {
   1600             return mEffectChains[i];
   1601         }
   1602     }
   1603     return 0;
   1604 }
   1605 
   1606 void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
   1607 {
   1608     Mutex::Autolock _l(mLock);
   1609     size_t size = mEffectChains.size();
   1610     for (size_t i = 0; i < size; i++) {
   1611         mEffectChains[i]->setMode_l(mode);
   1612     }
   1613 }
   1614 
   1615 void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
   1616 {
   1617     config->type = AUDIO_PORT_TYPE_MIX;
   1618     config->ext.mix.handle = mId;
   1619     config->sample_rate = mSampleRate;
   1620     config->format = mFormat;
   1621     config->channel_mask = mChannelMask;
   1622     config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
   1623                             AUDIO_PORT_CONFIG_FORMAT;
   1624 }
   1625 
   1626 void AudioFlinger::ThreadBase::systemReady()
   1627 {
   1628     Mutex::Autolock _l(mLock);
   1629     if (mSystemReady) {
   1630         return;
   1631     }
   1632     mSystemReady = true;
   1633 
   1634     for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
   1635         sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
   1636     }
   1637     mPendingConfigEvents.clear();
   1638 }
   1639 
   1640 
   1641 // ----------------------------------------------------------------------------
   1642 //      Playback
   1643 // ----------------------------------------------------------------------------
   1644 
   1645 AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
   1646                                              AudioStreamOut* output,
   1647                                              audio_io_handle_t id,
   1648                                              audio_devices_t device,
   1649                                              type_t type,
   1650                                              bool systemReady)
   1651     :   ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady),
   1652         mNormalFrameCount(0), mSinkBuffer(NULL),
   1653         mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
   1654         mMixerBuffer(NULL),
   1655         mMixerBufferSize(0),
   1656         mMixerBufferFormat(AUDIO_FORMAT_INVALID),
   1657         mMixerBufferValid(false),
   1658         mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
   1659         mEffectBuffer(NULL),
   1660         mEffectBufferSize(0),
   1661         mEffectBufferFormat(AUDIO_FORMAT_INVALID),
   1662         mEffectBufferValid(false),
   1663         mSuspended(0), mBytesWritten(0),
   1664         mFramesWritten(0),
   1665         mSuspendedFrames(0),
   1666         mActiveTracksGeneration(0),
   1667         // mStreamTypes[] initialized in constructor body
   1668         mOutput(output),
   1669         mLastWriteTime(-1), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
   1670         mMixerStatus(MIXER_IDLE),
   1671         mMixerStatusIgnoringFastTracks(MIXER_IDLE),
   1672         mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
   1673         mBytesRemaining(0),
   1674         mCurrentWriteLength(0),
   1675         mUseAsyncWrite(false),
   1676         mWriteAckSequence(0),
   1677         mDrainSequence(0),
   1678         mSignalPending(false),
   1679         mScreenState(AudioFlinger::mScreenState),
   1680         // index 0 is reserved for normal mixer's submix
   1681         mFastTrackAvailMask(((1 << FastMixerState::sMaxFastTracks) - 1) & ~1),
   1682         mHwSupportsPause(false), mHwPaused(false), mFlushPending(false)
   1683 {
   1684     snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
   1685     mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
   1686 
   1687     // Assumes constructor is called by AudioFlinger with it's mLock held, but
   1688     // it would be safer to explicitly pass initial masterVolume/masterMute as
   1689     // parameter.
   1690     //
   1691     // If the HAL we are using has support for master volume or master mute,
   1692     // then do not attenuate or mute during mixing (just leave the volume at 1.0
   1693     // and the mute set to false).
   1694     mMasterVolume = audioFlinger->masterVolume_l();
   1695     mMasterMute = audioFlinger->masterMute_l();
   1696     if (mOutput && mOutput->audioHwDev) {
   1697         if (mOutput->audioHwDev->canSetMasterVolume()) {
   1698             mMasterVolume = 1.0;
   1699         }
   1700 
   1701         if (mOutput->audioHwDev->canSetMasterMute()) {
   1702             mMasterMute = false;
   1703         }
   1704     }
   1705 
   1706     readOutputParameters_l();
   1707 
   1708     // ++ operator does not compile
   1709     for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
   1710             stream = (audio_stream_type_t) (stream + 1)) {
   1711         mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
   1712         mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
   1713     }
   1714 }
   1715 
   1716 AudioFlinger::PlaybackThread::~PlaybackThread()
   1717 {
   1718     mAudioFlinger->unregisterWriter(mNBLogWriter);
   1719     free(mSinkBuffer);
   1720     free(mMixerBuffer);
   1721     free(mEffectBuffer);
   1722 }
   1723 
   1724 void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
   1725 {
   1726     dumpInternals(fd, args);
   1727     dumpTracks(fd, args);
   1728     dumpEffectChains(fd, args);
   1729 }
   1730 
   1731 void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
   1732 {
   1733     const size_t SIZE = 256;
   1734     char buffer[SIZE];
   1735     String8 result;
   1736 
   1737     result.appendFormat("  Stream volumes in dB: ");
   1738     for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
   1739         const stream_type_t *st = &mStreamTypes[i];
   1740         if (i > 0) {
   1741             result.appendFormat(", ");
   1742         }
   1743         result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
   1744         if (st->mute) {
   1745             result.append("M");
   1746         }
   1747     }
   1748     result.append("\n");
   1749     write(fd, result.string(), result.length());
   1750     result.clear();
   1751 
   1752     // These values are "raw"; they will wrap around.  See prepareTracks_l() for a better way.
   1753     FastTrackUnderruns underruns = getFastTrackUnderruns(0);
   1754     dprintf(fd, "  Normal mixer raw underrun counters: partial=%u empty=%u\n",
   1755             underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
   1756 
   1757     size_t numtracks = mTracks.size();
   1758     size_t numactive = mActiveTracks.size();
   1759     dprintf(fd, "  %zu Tracks", numtracks);
   1760     size_t numactiveseen = 0;
   1761     if (numtracks) {
   1762         dprintf(fd, " of which %zu are active\n", numactive);
   1763         Track::appendDumpHeader(result);
   1764         for (size_t i = 0; i < numtracks; ++i) {
   1765             sp<Track> track = mTracks[i];
   1766             if (track != 0) {
   1767                 bool active = mActiveTracks.indexOf(track) >= 0;
   1768                 if (active) {
   1769                     numactiveseen++;
   1770                 }
   1771                 track->dump(buffer, SIZE, active);
   1772                 result.append(buffer);
   1773             }
   1774         }
   1775     } else {
   1776         result.append("\n");
   1777     }
   1778     if (numactiveseen != numactive) {
   1779         // some tracks in the active list were not in the tracks list
   1780         snprintf(buffer, SIZE, "  The following tracks are in the active list but"
   1781                 " not in the track list\n");
   1782         result.append(buffer);
   1783         Track::appendDumpHeader(result);
   1784         for (size_t i = 0; i < numactive; ++i) {
   1785             sp<Track> track = mActiveTracks[i].promote();
   1786             if (track != 0 && mTracks.indexOf(track) < 0) {
   1787                 track->dump(buffer, SIZE, true);
   1788                 result.append(buffer);
   1789             }
   1790         }
   1791     }
   1792 
   1793     write(fd, result.string(), result.size());
   1794 }
   1795 
   1796 void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
   1797 {
   1798     dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type()));
   1799 
   1800     dumpBase(fd, args);
   1801 
   1802     dprintf(fd, "  Normal frame count: %zu\n", mNormalFrameCount);
   1803     dprintf(fd, "  Last write occurred (msecs): %llu\n",
   1804             (unsigned long long) ns2ms(systemTime() - mLastWriteTime));
   1805     dprintf(fd, "  Total writes: %d\n", mNumWrites);
   1806     dprintf(fd, "  Delayed writes: %d\n", mNumDelayedWrites);
   1807     dprintf(fd, "  Blocked in write: %s\n", mInWrite ? "yes" : "no");
   1808     dprintf(fd, "  Suspend count: %d\n", mSuspended);
   1809     dprintf(fd, "  Sink buffer : %p\n", mSinkBuffer);
   1810     dprintf(fd, "  Mixer buffer: %p\n", mMixerBuffer);
   1811     dprintf(fd, "  Effect buffer: %p\n", mEffectBuffer);
   1812     dprintf(fd, "  Fast track availMask=%#x\n", mFastTrackAvailMask);
   1813     dprintf(fd, "  Standby delay ns=%lld\n", (long long)mStandbyDelayNs);
   1814     AudioStreamOut *output = mOutput;
   1815     audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
   1816     String8 flagsAsString = outputFlagsToString(flags);
   1817     dprintf(fd, "  AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string());
   1818 }
   1819 
   1820 // Thread virtuals
   1821 
   1822 void AudioFlinger::PlaybackThread::onFirstRef()
   1823 {
   1824     run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
   1825 }
   1826 
   1827 // ThreadBase virtuals
   1828 void AudioFlinger::PlaybackThread::preExit()
   1829 {
   1830     ALOGV("  preExit()");
   1831     // FIXME this is using hard-coded strings but in the future, this functionality will be
   1832     //       converted to use audio HAL extensions required to support tunneling
   1833     mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
   1834 }
   1835 
   1836 // PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
   1837 sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
   1838         const sp<AudioFlinger::Client>& client,
   1839         audio_stream_type_t streamType,
   1840         uint32_t sampleRate,
   1841         audio_format_t format,
   1842         audio_channel_mask_t channelMask,
   1843         size_t *pFrameCount,
   1844         const sp<IMemory>& sharedBuffer,
   1845         audio_session_t sessionId,
   1846         audio_output_flags_t *flags,
   1847         pid_t tid,
   1848         int uid,
   1849         status_t *status)
   1850 {
   1851     size_t frameCount = *pFrameCount;
   1852     sp<Track> track;
   1853     status_t lStatus;
   1854     audio_output_flags_t outputFlags = mOutput->flags;
   1855 
   1856     // special case for FAST flag considered OK if fast mixer is present
   1857     if (hasFastMixer()) {
   1858         outputFlags = (audio_output_flags_t)(outputFlags | AUDIO_OUTPUT_FLAG_FAST);
   1859     }
   1860 
   1861     // Check if requested flags are compatible with output stream flags
   1862     if ((*flags & outputFlags) != *flags) {
   1863         ALOGW("createTrack_l(): mismatch between requested flags (%08x) and output flags (%08x)",
   1864               *flags, outputFlags);
   1865         *flags = (audio_output_flags_t)(*flags & outputFlags);
   1866     }
   1867 
   1868     // client expresses a preference for FAST, but we get the final say
   1869     if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
   1870       if (
   1871             // PCM data
   1872             audio_is_linear_pcm(format) &&
   1873             // TODO: extract as a data library function that checks that a computationally
   1874             // expensive downmixer is not required: isFastOutputChannelConversion()
   1875             (channelMask == mChannelMask ||
   1876                     mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
   1877                     (channelMask == AUDIO_CHANNEL_OUT_MONO
   1878                             /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
   1879             // hardware sample rate
   1880             (sampleRate == mSampleRate) &&
   1881             // normal mixer has an associated fast mixer
   1882             hasFastMixer() &&
   1883             // there are sufficient fast track slots available
   1884             (mFastTrackAvailMask != 0)
   1885             // FIXME test that MixerThread for this fast track has a capable output HAL
   1886             // FIXME add a permission test also?
   1887         ) {
   1888         // static tracks can have any nonzero framecount, streaming tracks check against minimum.
   1889         if (sharedBuffer == 0) {
   1890             // read the fast track multiplier property the first time it is needed
   1891             int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
   1892             if (ok != 0) {
   1893                 ALOGE("%s pthread_once failed: %d", __func__, ok);
   1894             }
   1895             frameCount = max(frameCount, mFrameCount * sFastTrackMultiplier); // incl framecount 0
   1896         }
   1897 
   1898         // check compatibility with audio effects.
   1899         { // scope for mLock
   1900             Mutex::Autolock _l(mLock);
   1901             // do not accept RAW flag if post processing are present. Note that post processing on
   1902             // a fast mixer are necessarily hardware
   1903             sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_STAGE);
   1904             if (chain != 0) {
   1905                 ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_RAW) != 0,
   1906                         "AUDIO_OUTPUT_FLAG_RAW denied: post processing effect present");
   1907                 *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_RAW);
   1908             }
   1909             // Do not accept FAST flag if software global effects are present
   1910             chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
   1911             if (chain != 0) {
   1912                 ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_RAW) != 0,
   1913                         "AUDIO_OUTPUT_FLAG_RAW denied: global effect present");
   1914                 *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_RAW);
   1915                 if (chain->hasSoftwareEffect()) {
   1916                     ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: software global effect present");
   1917                     *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST);
   1918                 }
   1919             }
   1920             // Do not accept FAST flag if the session has software effects
   1921             chain = getEffectChain_l(sessionId);
   1922             if (chain != 0) {
   1923                 ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_RAW) != 0,
   1924                         "AUDIO_OUTPUT_FLAG_RAW denied: effect present on session");
   1925                 *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_RAW);
   1926                 if (chain->hasSoftwareEffect()) {
   1927                     ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: software effect present on session");
   1928                     *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST);
   1929                 }
   1930             }
   1931         }
   1932         ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_FAST) != 0,
   1933                  "AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
   1934                  frameCount, mFrameCount);
   1935       } else {
   1936         ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: sharedBuffer=%p frameCount=%zu "
   1937                 "mFrameCount=%zu format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
   1938                 "sampleRate=%u mSampleRate=%u "
   1939                 "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
   1940                 sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
   1941                 audio_is_linear_pcm(format),
   1942                 channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
   1943         *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST);
   1944       }
   1945     }
   1946     // For normal PCM streaming tracks, update minimum frame count.
   1947     // For compatibility with AudioTrack calculation, buffer depth is forced
   1948     // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
   1949     // This is probably too conservative, but legacy application code may depend on it.
   1950     // If you change this calculation, also review the start threshold which is related.
   1951     if (!(*flags & AUDIO_OUTPUT_FLAG_FAST)
   1952             && audio_has_proportional_frames(format) && sharedBuffer == 0) {
   1953         // this must match AudioTrack.cpp calculateMinFrameCount().
   1954         // TODO: Move to a common library
   1955         uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
   1956         uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
   1957         if (minBufCount < 2) {
   1958             minBufCount = 2;
   1959         }
   1960         // For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack
   1961         // or the client should compute and pass in a larger buffer request.
   1962         size_t minFrameCount =
   1963                 minBufCount * sourceFramesNeededWithTimestretch(
   1964                         sampleRate, mNormalFrameCount,
   1965                         mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/);
   1966         if (frameCount < minFrameCount) { // including frameCount == 0
   1967             frameCount = minFrameCount;
   1968         }
   1969     }
   1970     *pFrameCount = frameCount;
   1971 
   1972     switch (mType) {
   1973 
   1974     case DIRECT:
   1975         if (audio_is_linear_pcm(format)) { // TODO maybe use audio_has_proportional_frames()?
   1976             if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
   1977                 ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
   1978                         "for output %p with format %#x",
   1979                         sampleRate, format, channelMask, mOutput, mFormat);
   1980                 lStatus = BAD_VALUE;
   1981                 goto Exit;
   1982             }
   1983         }
   1984         break;
   1985 
   1986     case OFFLOAD:
   1987         if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
   1988             ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
   1989                     "for output %p with format %#x",
   1990                     sampleRate, format, channelMask, mOutput, mFormat);
   1991             lStatus = BAD_VALUE;
   1992             goto Exit;
   1993         }
   1994         break;
   1995 
   1996     default:
   1997         if (!audio_is_linear_pcm(format)) {
   1998                 ALOGE("createTrack_l() Bad parameter: format %#x \""
   1999                         "for output %p with format %#x",
   2000                         format, mOutput, mFormat);
   2001                 lStatus = BAD_VALUE;
   2002                 goto Exit;
   2003         }
   2004         if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
   2005             ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
   2006             lStatus = BAD_VALUE;
   2007             goto Exit;
   2008         }
   2009         break;
   2010 
   2011     }
   2012 
   2013     lStatus = initCheck();
   2014     if (lStatus != NO_ERROR) {
   2015         ALOGE("createTrack_l() audio driver not initialized");
   2016         goto Exit;
   2017     }
   2018 
   2019     { // scope for mLock
   2020         Mutex::Autolock _l(mLock);
   2021 
   2022         // all tracks in same audio session must share the same routing strategy otherwise
   2023         // conflicts will happen when tracks are moved from one output to another by audio policy
   2024         // manager
   2025         uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
   2026         for (size_t i = 0; i < mTracks.size(); ++i) {
   2027             sp<Track> t = mTracks[i];
   2028             if (t != 0 && t->isExternalTrack()) {
   2029                 uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
   2030                 if (sessionId == t->sessionId() && strategy != actual) {
   2031                     ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
   2032                             strategy, actual);
   2033                     lStatus = BAD_VALUE;
   2034                     goto Exit;
   2035                 }
   2036             }
   2037         }
   2038 
   2039         track = new Track(this, client, streamType, sampleRate, format,
   2040                           channelMask, frameCount, NULL, sharedBuffer,
   2041                           sessionId, uid, *flags, TrackBase::TYPE_DEFAULT);
   2042 
   2043         lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
   2044         if (lStatus != NO_ERROR) {
   2045             ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
   2046             // track must be cleared from the caller as the caller has the AF lock
   2047             goto Exit;
   2048         }
   2049         mTracks.add(track);
   2050 
   2051         sp<EffectChain> chain = getEffectChain_l(sessionId);
   2052         if (chain != 0) {
   2053             ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
   2054             track->setMainBuffer(chain->inBuffer());
   2055             chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
   2056             chain->incTrackCnt();
   2057         }
   2058 
   2059         if ((*flags & AUDIO_OUTPUT_FLAG_FAST) && (tid != -1)) {
   2060             pid_t callingPid = IPCThreadState::self()->getCallingPid();
   2061             // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
   2062             // so ask activity manager to do this on our behalf
   2063             sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
   2064         }
   2065     }
   2066 
   2067     lStatus = NO_ERROR;
   2068 
   2069 Exit:
   2070     *status = lStatus;
   2071     return track;
   2072 }
   2073 
   2074 uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
   2075 {
   2076     return latency;
   2077 }
   2078 
   2079 uint32_t AudioFlinger::PlaybackThread::latency() const
   2080 {
   2081     Mutex::Autolock _l(mLock);
   2082     return latency_l();
   2083 }
   2084 uint32_t AudioFlinger::PlaybackThread::latency_l() const
   2085 {
   2086     if (initCheck() == NO_ERROR) {
   2087         return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
   2088     } else {
   2089         return 0;
   2090     }
   2091 }
   2092 
   2093 void AudioFlinger::PlaybackThread::setMasterVolume(float value)
   2094 {
   2095     Mutex::Autolock _l(mLock);
   2096     // Don't apply master volume in SW if our HAL can do it for us.
   2097     if (mOutput && mOutput->audioHwDev &&
   2098         mOutput->audioHwDev->canSetMasterVolume()) {
   2099         mMasterVolume = 1.0;
   2100     } else {
   2101         mMasterVolume = value;
   2102     }
   2103 }
   2104 
   2105 void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
   2106 {
   2107     Mutex::Autolock _l(mLock);
   2108     // Don't apply master mute in SW if our HAL can do it for us.
   2109     if (mOutput && mOutput->audioHwDev &&
   2110         mOutput->audioHwDev->canSetMasterMute()) {
   2111         mMasterMute = false;
   2112     } else {
   2113         mMasterMute = muted;
   2114     }
   2115 }
   2116 
   2117 void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
   2118 {
   2119     Mutex::Autolock _l(mLock);
   2120     mStreamTypes[stream].volume = value;
   2121     broadcast_l();
   2122 }
   2123 
   2124 void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
   2125 {
   2126     Mutex::Autolock _l(mLock);
   2127     mStreamTypes[stream].mute = muted;
   2128     broadcast_l();
   2129 }
   2130 
   2131 float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
   2132 {
   2133     Mutex::Autolock _l(mLock);
   2134     return mStreamTypes[stream].volume;
   2135 }
   2136 
   2137 // addTrack_l() must be called with ThreadBase::mLock held
   2138 status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
   2139 {
   2140     status_t status = ALREADY_EXISTS;
   2141 
   2142     if (mActiveTracks.indexOf(track) < 0) {
   2143         // the track is newly added, make sure it fills up all its
   2144         // buffers before playing. This is to ensure the client will
   2145         // effectively get the latency it requested.
   2146         if (track->isExternalTrack()) {
   2147             TrackBase::track_state state = track->mState;
   2148             mLock.unlock();
   2149             status = AudioSystem::startOutput(mId, track->streamType(),
   2150                                               track->sessionId());
   2151             mLock.lock();
   2152             // abort track was stopped/paused while we released the lock
   2153             if (state != track->mState) {
   2154                 if (status == NO_ERROR) {
   2155                     mLock.unlock();
   2156                     AudioSystem::stopOutput(mId, track->streamType(),
   2157                                             track->sessionId());
   2158                     mLock.lock();
   2159                 }
   2160                 return INVALID_OPERATION;
   2161             }
   2162             // abort if start is rejected by audio policy manager
   2163             if (status != NO_ERROR) {
   2164                 return PERMISSION_DENIED;
   2165             }
   2166 #ifdef ADD_BATTERY_DATA
   2167             // to track the speaker usage
   2168             addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
   2169 #endif
   2170         }
   2171 
   2172         // set retry count for buffer fill
   2173         if (track->isOffloaded()) {
   2174             if (track->isStopping_1()) {
   2175                 track->mRetryCount = kMaxTrackStopRetriesOffload;
   2176             } else {
   2177                 track->mRetryCount = kMaxTrackStartupRetriesOffload;
   2178             }
   2179             track->mFillingUpStatus = mStandby ? Track::FS_FILLING : Track::FS_FILLED;
   2180         } else {
   2181             track->mRetryCount = kMaxTrackStartupRetries;
   2182             track->mFillingUpStatus =
   2183                     track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
   2184         }
   2185 
   2186         track->mResetDone = false;
   2187         track->mPresentationCompleteFrames = 0;
   2188         mActiveTracks.add(track);
   2189         mWakeLockUids.add(track->uid());
   2190         mActiveTracksGeneration++;
   2191         mLatestActiveTrack = track;
   2192         sp<EffectChain> chain = getEffectChain_l(track->sessionId());
   2193         if (chain != 0) {
   2194             ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
   2195                     track->sessionId());
   2196             chain->incActiveTrackCnt();
   2197         }
   2198 
   2199         status = NO_ERROR;
   2200     }
   2201 
   2202     onAddNewTrack_l();
   2203     return status;
   2204 }
   2205 
   2206 bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
   2207 {
   2208     track->terminate();
   2209     // active tracks are removed by threadLoop()
   2210     bool trackActive = (mActiveTracks.indexOf(track) >= 0);
   2211     track->mState = TrackBase::STOPPED;
   2212     if (!trackActive) {
   2213         removeTrack_l(track);
   2214     } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
   2215         track->mState = TrackBase::STOPPING_1;
   2216     }
   2217 
   2218     return trackActive;
   2219 }
   2220 
   2221 void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
   2222 {
   2223     track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
   2224     mTracks.remove(track);
   2225     deleteTrackName_l(track->name());
   2226     // redundant as track is about to be destroyed, for dumpsys only
   2227     track->mName = -1;
   2228     if (track->isFastTrack()) {
   2229         int index = track->mFastIndex;
   2230         ALOG_ASSERT(0 < index && index < (int)FastMixerState::sMaxFastTracks);
   2231         ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
   2232         mFastTrackAvailMask |= 1 << index;
   2233         // redundant as track is about to be destroyed, for dumpsys only
   2234         track->mFastIndex = -1;
   2235     }
   2236     sp<EffectChain> chain = getEffectChain_l(track->sessionId());
   2237     if (chain != 0) {
   2238         chain->decTrackCnt();
   2239     }
   2240 }
   2241 
   2242 void AudioFlinger::PlaybackThread::broadcast_l()
   2243 {
   2244     // Thread could be blocked waiting for async
   2245     // so signal it to handle state changes immediately
   2246     // If threadLoop is currently unlocked a signal of mWaitWorkCV will
   2247     // be lost so we also flag to prevent it blocking on mWaitWorkCV
   2248     mSignalPending = true;
   2249     mWaitWorkCV.broadcast();
   2250 }
   2251 
   2252 String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
   2253 {
   2254     Mutex::Autolock _l(mLock);
   2255     if (initCheck() != NO_ERROR) {
   2256         return String8();
   2257     }
   2258 
   2259     char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
   2260     const String8 out_s8(s);
   2261     free(s);
   2262     return out_s8;
   2263 }
   2264 
   2265 void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
   2266     sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
   2267     ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
   2268 
   2269     desc->mIoHandle = mId;
   2270 
   2271     switch (event) {
   2272     case AUDIO_OUTPUT_OPENED:
   2273     case AUDIO_OUTPUT_CONFIG_CHANGED:
   2274         desc->mPatch = mPatch;
   2275         desc->mChannelMask = mChannelMask;
   2276         desc->mSamplingRate = mSampleRate;
   2277         desc->mFormat = mFormat;
   2278         desc->mFrameCount = mNormalFrameCount; // FIXME see
   2279                                              // AudioFlinger::frameCount(audio_io_handle_t)
   2280         desc->mFrameCountHAL = mFrameCount;
   2281         desc->mLatency = latency_l();
   2282         break;
   2283 
   2284     case AUDIO_OUTPUT_CLOSED:
   2285     default:
   2286         break;
   2287     }
   2288     mAudioFlinger->ioConfigChanged(event, desc, pid);
   2289 }
   2290 
   2291 void AudioFlinger::PlaybackThread::writeCallback()
   2292 {
   2293     ALOG_ASSERT(mCallbackThread != 0);
   2294     mCallbackThread->resetWriteBlocked();
   2295 }
   2296 
   2297 void AudioFlinger::PlaybackThread::drainCallback()
   2298 {
   2299     ALOG_ASSERT(mCallbackThread != 0);
   2300     mCallbackThread->resetDraining();
   2301 }
   2302 
   2303 void AudioFlinger::PlaybackThread::errorCallback()
   2304 {
   2305     ALOG_ASSERT(mCallbackThread != 0);
   2306     mCallbackThread->setAsyncError();
   2307 }
   2308 
   2309 void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
   2310 {
   2311     Mutex::Autolock _l(mLock);
   2312     // reject out of sequence requests
   2313     if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
   2314         mWriteAckSequence &= ~1;
   2315         mWaitWorkCV.signal();
   2316     }
   2317 }
   2318 
   2319 void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
   2320 {
   2321     Mutex::Autolock _l(mLock);
   2322     // reject out of sequence requests
   2323     if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
   2324         mDrainSequence &= ~1;
   2325         mWaitWorkCV.signal();
   2326     }
   2327 }
   2328 
   2329 // static
   2330 int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
   2331                                                 void *param __unused,
   2332                                                 void *cookie)
   2333 {
   2334     AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
   2335     ALOGV("asyncCallback() event %d", event);
   2336     switch (event) {
   2337     case STREAM_CBK_EVENT_WRITE_READY:
   2338         me->writeCallback();
   2339         break;
   2340     case STREAM_CBK_EVENT_DRAIN_READY:
   2341         me->drainCallback();
   2342         break;
   2343     case STREAM_CBK_EVENT_ERROR:
   2344         me->errorCallback();
   2345         break;
   2346     default:
   2347         ALOGW("asyncCallback() unknown event %d", event);
   2348         break;
   2349     }
   2350     return 0;
   2351 }
   2352 
   2353 void AudioFlinger::PlaybackThread::readOutputParameters_l()
   2354 {
   2355     // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
   2356     mSampleRate = mOutput->getSampleRate();
   2357     mChannelMask = mOutput->getChannelMask();
   2358     if (!audio_is_output_channel(mChannelMask)) {
   2359         LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
   2360     }
   2361     if ((mType == MIXER || mType == DUPLICATING)
   2362             && !isValidPcmSinkChannelMask(mChannelMask)) {
   2363         LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
   2364                 mChannelMask);
   2365     }
   2366     mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
   2367 
   2368     // Get actual HAL format.
   2369     mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
   2370     // Get format from the shim, which will be different than the HAL format
   2371     // if playing compressed audio over HDMI passthrough.
   2372     mFormat = mOutput->getFormat();
   2373     if (!audio_is_valid_format(mFormat)) {
   2374         LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
   2375     }
   2376     if ((mType == MIXER || mType == DUPLICATING)
   2377             && !isValidPcmSinkFormat(mFormat)) {
   2378         LOG_FATAL("HAL format %#x not supported for mixed output",
   2379                 mFormat);
   2380     }
   2381     mFrameSize = mOutput->getFrameSize();
   2382     mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common);
   2383     mFrameCount = mBufferSize / mFrameSize;
   2384     if (mFrameCount & 15) {
   2385         ALOGW("HAL output buffer size is %zu frames but AudioMixer requires multiples of 16 frames",
   2386                 mFrameCount);
   2387     }
   2388 
   2389     if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
   2390             (mOutput->stream->set_callback != NULL)) {
   2391         if (mOutput->stream->set_callback(mOutput->stream,
   2392                                       AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
   2393             mUseAsyncWrite = true;
   2394             mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
   2395         }
   2396     }
   2397 
   2398     mHwSupportsPause = false;
   2399     if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
   2400         if (mOutput->stream->pause != NULL) {
   2401             if (mOutput->stream->resume != NULL) {
   2402                 mHwSupportsPause = true;
   2403             } else {
   2404                 ALOGW("direct output implements pause but not resume");
   2405             }
   2406         } else if (mOutput->stream->resume != NULL) {
   2407             ALOGW("direct output implements resume but not pause");
   2408         }
   2409     }
   2410     if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
   2411         LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
   2412     }
   2413 
   2414     if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
   2415         // For best precision, we use float instead of the associated output
   2416         // device format (typically PCM 16 bit).
   2417 
   2418         mFormat = AUDIO_FORMAT_PCM_FLOAT;
   2419         mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
   2420         mBufferSize = mFrameSize * mFrameCount;
   2421 
   2422         // TODO: We currently use the associated output device channel mask and sample rate.
   2423         // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
   2424         // (if a valid mask) to avoid premature downmix.
   2425         // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
   2426         // instead of the output device sample rate to avoid loss of high frequency information.
   2427         // This may need to be updated as MixerThread/OutputTracks are added and not here.
   2428     }
   2429 
   2430     // Calculate size of normal sink buffer relative to the HAL output buffer size
   2431     double multiplier = 1.0;
   2432     if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
   2433             kUseFastMixer == FastMixer_Dynamic)) {
   2434         size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
   2435         size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
   2436 
   2437         // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
   2438         minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
   2439         maxNormalFrameCount = maxNormalFrameCount & ~15;
   2440         if (maxNormalFrameCount < minNormalFrameCount) {
   2441             maxNormalFrameCount = minNormalFrameCount;
   2442         }
   2443         multiplier = (double) minNormalFrameCount / (double) mFrameCount;
   2444         if (multiplier <= 1.0) {
   2445             multiplier = 1.0;
   2446         } else if (multiplier <= 2.0) {
   2447             if (2 * mFrameCount <= maxNormalFrameCount) {
   2448                 multiplier = 2.0;
   2449             } else {
   2450                 multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
   2451             }
   2452         } else {
   2453             multiplier = floor(multiplier);
   2454         }
   2455     }
   2456     mNormalFrameCount = multiplier * mFrameCount;
   2457     // round up to nearest 16 frames to satisfy AudioMixer
   2458     if (mType == MIXER || mType == DUPLICATING) {
   2459         mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
   2460     }
   2461     ALOGI("HAL output buffer size %zu frames, normal sink buffer size %zu frames", mFrameCount,
   2462             mNormalFrameCount);
   2463 
   2464     // Check if we want to throttle the processing to no more than 2x normal rate
   2465     mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
   2466     mThreadThrottleTimeMs = 0;
   2467     mThreadThrottleEndMs = 0;
   2468     mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
   2469 
   2470     // mSinkBuffer is the sink buffer.  Size is always multiple-of-16 frames.
   2471     // Originally this was int16_t[] array, need to remove legacy implications.
   2472     free(mSinkBuffer);
   2473     mSinkBuffer = NULL;
   2474     // For sink buffer size, we use the frame size from the downstream sink to avoid problems
   2475     // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
   2476     const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
   2477     (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
   2478 
   2479     // We resize the mMixerBuffer according to the requirements of the sink buffer which
   2480     // drives the output.
   2481     free(mMixerBuffer);
   2482     mMixerBuffer = NULL;
   2483     if (mMixerBufferEnabled) {
   2484         mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
   2485         mMixerBufferSize = mNormalFrameCount * mChannelCount
   2486                 * audio_bytes_per_sample(mMixerBufferFormat);
   2487         (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
   2488     }
   2489     free(mEffectBuffer);
   2490     mEffectBuffer = NULL;
   2491     if (mEffectBufferEnabled) {
   2492         mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
   2493         mEffectBufferSize = mNormalFrameCount * mChannelCount
   2494                 * audio_bytes_per_sample(mEffectBufferFormat);
   2495         (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
   2496     }
   2497 
   2498     // force reconfiguration of effect chains and engines to take new buffer size and audio
   2499     // parameters into account
   2500     // Note that mLock is not held when readOutputParameters_l() is called from the constructor
   2501     // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
   2502     // matter.
   2503     // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
   2504     Vector< sp<EffectChain> > effectChains = mEffectChains;
   2505     for (size_t i = 0; i < effectChains.size(); i ++) {
   2506         mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
   2507     }
   2508 }
   2509 
   2510 
   2511 status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
   2512 {
   2513     if (halFrames == NULL || dspFrames == NULL) {
   2514         return BAD_VALUE;
   2515     }
   2516     Mutex::Autolock _l(mLock);
   2517     if (initCheck() != NO_ERROR) {
   2518         return INVALID_OPERATION;
   2519     }
   2520     int64_t framesWritten = mBytesWritten / mFrameSize;
   2521     *halFrames = framesWritten;
   2522 
   2523     if (isSuspended()) {
   2524         // return an estimation of rendered frames when the output is suspended
   2525         size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
   2526         *dspFrames = (uint32_t)
   2527                 (framesWritten >= (int64_t)latencyFrames ? framesWritten - latencyFrames : 0);
   2528         return NO_ERROR;
   2529     } else {
   2530         status_t status;
   2531         uint32_t frames;
   2532         status = mOutput->getRenderPosition(&frames);
   2533         *dspFrames = (size_t)frames;
   2534         return status;
   2535     }
   2536 }
   2537 
   2538 // hasAudioSession_l() must be called with ThreadBase::mLock held
   2539 uint32_t AudioFlinger::PlaybackThread::hasAudioSession_l(audio_session_t sessionId) const
   2540 {
   2541     uint32_t result = 0;
   2542     if (getEffectChain_l(sessionId) != 0) {
   2543         result = EFFECT_SESSION;
   2544     }
   2545 
   2546     for (size_t i = 0; i < mTracks.size(); ++i) {
   2547         sp<Track> track = mTracks[i];
   2548         if (sessionId == track->sessionId() && !track->isInvalid()) {
   2549             result |= TRACK_SESSION;
   2550             if (track->isFastTrack()) {
   2551                 result |= FAST_SESSION;
   2552             }
   2553             break;
   2554         }
   2555     }
   2556 
   2557     return result;
   2558 }
   2559 
   2560 uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(audio_session_t sessionId)
   2561 {
   2562     // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
   2563     // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
   2564     if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
   2565         return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
   2566     }
   2567     for (size_t i = 0; i < mTracks.size(); i++) {
   2568         sp<Track> track = mTracks[i];
   2569         if (sessionId == track->sessionId() && !track->isInvalid()) {
   2570             return AudioSystem::getStrategyForStream(track->streamType());
   2571         }
   2572     }
   2573     return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
   2574 }
   2575 
   2576 
   2577 AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
   2578 {
   2579     Mutex::Autolock _l(mLock);
   2580     return mOutput;
   2581 }
   2582 
   2583 AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
   2584 {
   2585     Mutex::Autolock _l(mLock);
   2586     AudioStreamOut *output = mOutput;
   2587     mOutput = NULL;
   2588     // FIXME FastMixer might also have a raw ptr to mOutputSink;
   2589     //       must push a NULL and wait for ack
   2590     mOutputSink.clear();
   2591     mPipeSink.clear();
   2592     mNormalSink.clear();
   2593     return output;
   2594 }
   2595 
   2596 // this method must always be called either with ThreadBase mLock held or inside the thread loop
   2597 audio_stream_t* AudioFlinger::PlaybackThread::stream() const
   2598 {
   2599     if (mOutput == NULL) {
   2600         return NULL;
   2601     }
   2602     return &mOutput->stream->common;
   2603 }
   2604 
   2605 uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
   2606 {
   2607     return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
   2608 }
   2609 
   2610 status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
   2611 {
   2612     if (!isValidSyncEvent(event)) {
   2613         return BAD_VALUE;
   2614     }
   2615 
   2616     Mutex::Autolock _l(mLock);
   2617 
   2618     for (size_t i = 0; i < mTracks.size(); ++i) {
   2619         sp<Track> track = mTracks[i];
   2620         if (event->triggerSession() == track->sessionId()) {
   2621             (void) track->setSyncEvent(event);
   2622             return NO_ERROR;
   2623         }
   2624     }
   2625 
   2626     return NAME_NOT_FOUND;
   2627 }
   2628 
   2629 bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
   2630 {
   2631     return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
   2632 }
   2633 
   2634 void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
   2635         const Vector< sp<Track> >& tracksToRemove)
   2636 {
   2637     size_t count = tracksToRemove.size();
   2638     if (count > 0) {
   2639         for (size_t i = 0 ; i < count ; i++) {
   2640             const sp<Track>& track = tracksToRemove.itemAt(i);
   2641             if (track->isExternalTrack()) {
   2642                 AudioSystem::stopOutput(mId, track->streamType(),
   2643                                         track->sessionId());
   2644 #ifdef ADD_BATTERY_DATA
   2645                 // to track the speaker usage
   2646                 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
   2647 #endif
   2648                 if (track->isTerminated()) {
   2649                     AudioSystem::releaseOutput(mId, track->streamType(),
   2650                                                track->sessionId());
   2651                 }
   2652             }
   2653         }
   2654     }
   2655 }
   2656 
   2657 void AudioFlinger::PlaybackThread::checkSilentMode_l()
   2658 {
   2659     if (!mMasterMute) {
   2660         char value[PROPERTY_VALUE_MAX];
   2661         if (mOutDevice == AUDIO_DEVICE_OUT_REMOTE_SUBMIX) {
   2662             ALOGD("ro.audio.silent will be ignored for threads on AUDIO_DEVICE_OUT_REMOTE_SUBMIX");
   2663             return;
   2664         }
   2665         if (property_get("ro.audio.silent", value, "0") > 0) {
   2666             char *endptr;
   2667             unsigned long ul = strtoul(value, &endptr, 0);
   2668             if (*endptr == '\0' && ul != 0) {
   2669                 ALOGD("Silence is golden");
   2670                 // The setprop command will not allow a property to be changed after
   2671                 // the first time it is set, so we don't have to worry about un-muting.
   2672                 setMasterMute_l(true);
   2673             }
   2674         }
   2675     }
   2676 }
   2677 
   2678 // shared by MIXER and DIRECT, overridden by DUPLICATING
   2679 ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
   2680 {
   2681     mInWrite = true;
   2682     ssize_t bytesWritten;
   2683     const size_t offset = mCurrentWriteLength - mBytesRemaining;
   2684 
   2685     // If an NBAIO sink is present, use it to write the normal mixer's submix
   2686     if (mNormalSink != 0) {
   2687 
   2688         const size_t count = mBytesRemaining / mFrameSize;
   2689 
   2690         ATRACE_BEGIN("write");
   2691         // update the setpoint when AudioFlinger::mScreenState changes
   2692         uint32_t screenState = AudioFlinger::mScreenState;
   2693         if (screenState != mScreenState) {
   2694             mScreenState = screenState;
   2695             MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
   2696             if (pipe != NULL) {
   2697                 pipe->setAvgFrames((mScreenState & 1) ?
   2698                         (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
   2699             }
   2700         }
   2701         ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
   2702         ATRACE_END();
   2703         if (framesWritten > 0) {
   2704             bytesWritten = framesWritten * mFrameSize;
   2705         } else {
   2706             bytesWritten = framesWritten;
   2707         }
   2708     // otherwise use the HAL / AudioStreamOut directly
   2709     } else {
   2710         // Direct output and offload threads
   2711 
   2712         if (mUseAsyncWrite) {
   2713             ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
   2714             mWriteAckSequence += 2;
   2715             mWriteAckSequence |= 1;
   2716             ALOG_ASSERT(mCallbackThread != 0);
   2717             mCallbackThread->setWriteBlocked(mWriteAckSequence);
   2718         }
   2719         // FIXME We should have an implementation of timestamps for direct output threads.
   2720         // They are used e.g for multichannel PCM playback over HDMI.
   2721         bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
   2722 
   2723         if (mUseAsyncWrite &&
   2724                 ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
   2725             // do not wait for async callback in case of error of full write
   2726             mWriteAckSequence &= ~1;
   2727             ALOG_ASSERT(mCallbackThread != 0);
   2728             mCallbackThread->setWriteBlocked(mWriteAckSequence);
   2729         }
   2730     }
   2731 
   2732     mNumWrites++;
   2733     mInWrite = false;
   2734     mStandby = false;
   2735     return bytesWritten;
   2736 }
   2737 
   2738 void AudioFlinger::PlaybackThread::threadLoop_drain()
   2739 {
   2740     if (mOutput->stream->drain) {
   2741         ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
   2742         if (mUseAsyncWrite) {
   2743             ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
   2744             mDrainSequence |= 1;
   2745             ALOG_ASSERT(mCallbackThread != 0);
   2746             mCallbackThread->setDraining(mDrainSequence);
   2747         }
   2748         mOutput->stream->drain(mOutput->stream,
   2749             (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
   2750                                                 : AUDIO_DRAIN_ALL);
   2751     }
   2752 }
   2753 
   2754 void AudioFlinger::PlaybackThread::threadLoop_exit()
   2755 {
   2756     {
   2757         Mutex::Autolock _l(mLock);
   2758         for (size_t i = 0; i < mTracks.size(); i++) {
   2759             sp<Track> track = mTracks[i];
   2760             track->invalidate();
   2761         }
   2762     }
   2763 }
   2764 
   2765 /*
   2766 The derived values that are cached:
   2767  - mSinkBufferSize from frame count * frame size
   2768  - mActiveSleepTimeUs from activeSleepTimeUs()
   2769  - mIdleSleepTimeUs from idleSleepTimeUs()
   2770  - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least
   2771    kDefaultStandbyTimeInNsecs when connected to an A2DP device.
   2772  - maxPeriod from frame count and sample rate (MIXER only)
   2773 
   2774 The parameters that affect these derived values are:
   2775  - frame count
   2776  - frame size
   2777  - sample rate
   2778  - device type: A2DP or not
   2779  - device latency
   2780  - format: PCM or not
   2781  - active sleep time
   2782  - idle sleep time
   2783 */
   2784 
   2785 void AudioFlinger::PlaybackThread::cacheParameters_l()
   2786 {
   2787     mSinkBufferSize = mNormalFrameCount * mFrameSize;
   2788     mActiveSleepTimeUs = activeSleepTimeUs();
   2789     mIdleSleepTimeUs = idleSleepTimeUs();
   2790 
   2791     // make sure standby delay is not too short when connected to an A2DP sink to avoid
   2792     // truncating audio when going to standby.
   2793     mStandbyDelayNs = AudioFlinger::mStandbyTimeInNsecs;
   2794     if ((mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != 0) {
   2795         if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) {
   2796             mStandbyDelayNs = kDefaultStandbyTimeInNsecs;
   2797         }
   2798     }
   2799 }
   2800 
   2801 bool AudioFlinger::PlaybackThread::invalidateTracks_l(audio_stream_type_t streamType)
   2802 {
   2803     ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %zu",
   2804             this,  streamType, mTracks.size());
   2805     bool trackMatch = false;
   2806     size_t size = mTracks.size();
   2807     for (size_t i = 0; i < size; i++) {
   2808         sp<Track> t = mTracks[i];
   2809         if (t->streamType() == streamType && t->isExternalTrack()) {
   2810             t->invalidate();
   2811             trackMatch = true;
   2812         }
   2813     }
   2814     return trackMatch;
   2815 }
   2816 
   2817 void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
   2818 {
   2819     Mutex::Autolock _l(mLock);
   2820     invalidateTracks_l(streamType);
   2821 }
   2822 
   2823 status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
   2824 {
   2825     audio_session_t session = chain->sessionId();
   2826     int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled
   2827             ? mEffectBuffer : mSinkBuffer);
   2828     bool ownsBuffer = false;
   2829 
   2830     ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
   2831     if (session > AUDIO_SESSION_OUTPUT_MIX) {
   2832         // Only one effect chain can be present in direct output thread and it uses
   2833         // the sink buffer as input
   2834         if (mType != DIRECT) {
   2835             size_t numSamples = mNormalFrameCount * mChannelCount;
   2836             buffer = new int16_t[numSamples];
   2837             memset(buffer, 0, numSamples * sizeof(int16_t));
   2838             ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
   2839             ownsBuffer = true;
   2840         }
   2841 
   2842         // Attach all tracks with same session ID to this chain.
   2843         for (size_t i = 0; i < mTracks.size(); ++i) {
   2844             sp<Track> track = mTracks[i];
   2845             if (session == track->sessionId()) {
   2846                 ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
   2847                         buffer);
   2848                 track->setMainBuffer(buffer);
   2849                 chain->incTrackCnt();
   2850             }
   2851         }
   2852 
   2853         // indicate all active tracks in the chain
   2854         for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
   2855             sp<Track> track = mActiveTracks[i].promote();
   2856             if (track == 0) {
   2857                 continue;
   2858             }
   2859             if (session == track->sessionId()) {
   2860                 ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
   2861                 chain->incActiveTrackCnt();
   2862             }
   2863         }
   2864     }
   2865     chain->setThread(this);
   2866     chain->setInBuffer(buffer, ownsBuffer);
   2867     chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled
   2868             ? mEffectBuffer : mSinkBuffer));
   2869     // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
   2870     // chains list in order to be processed last as it contains output stage effects.
   2871     // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
   2872     // session AUDIO_SESSION_OUTPUT_STAGE to be processed
   2873     // after track specific effects and before output stage.
   2874     // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
   2875     // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX.
   2876     // Effect chain for other sessions are inserted at beginning of effect
   2877     // chains list to be processed before output mix effects. Relative order between other
   2878     // sessions is not important.
   2879     static_assert(AUDIO_SESSION_OUTPUT_MIX == 0 &&
   2880             AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX,
   2881             "audio_session_t constants misdefined");
   2882     size_t size = mEffectChains.size();
   2883     size_t i = 0;
   2884     for (i = 0; i < size; i++) {
   2885         if (mEffectChains[i]->sessionId() < session) {
   2886             break;
   2887         }
   2888     }
   2889     mEffectChains.insertAt(chain, i);
   2890     checkSuspendOnAddEffectChain_l(chain);
   2891 
   2892     return NO_ERROR;
   2893 }
   2894 
   2895 size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
   2896 {
   2897     audio_session_t session = chain->sessionId();
   2898 
   2899     ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
   2900 
   2901     for (size_t i = 0; i < mEffectChains.size(); i++) {
   2902         if (chain == mEffectChains[i]) {
   2903             mEffectChains.removeAt(i);
   2904             // detach all active tracks from the chain
   2905             for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
   2906                 sp<Track> track = mActiveTracks[i].promote();
   2907                 if (track == 0) {
   2908                     continue;
   2909                 }
   2910                 if (session == track->sessionId()) {
   2911                     ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
   2912                             chain.get(), session);
   2913                     chain->decActiveTrackCnt();
   2914                 }
   2915             }
   2916 
   2917             // detach all tracks with same session ID from this chain
   2918             for (size_t i = 0; i < mTracks.size(); ++i) {
   2919                 sp<Track> track = mTracks[i];
   2920                 if (session == track->sessionId()) {
   2921                     track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
   2922                     chain->decTrackCnt();
   2923                 }
   2924             }
   2925             break;
   2926         }
   2927     }
   2928     return mEffectChains.size();
   2929 }
   2930 
   2931 status_t AudioFlinger::PlaybackThread::attachAuxEffect(
   2932         const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
   2933 {
   2934     Mutex::Autolock _l(mLock);
   2935     return attachAuxEffect_l(track, EffectId);
   2936 }
   2937 
   2938 status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
   2939         const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
   2940 {
   2941     status_t status = NO_ERROR;
   2942 
   2943     if (EffectId == 0) {
   2944         track->setAuxBuffer(0, NULL);
   2945     } else {
   2946         // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
   2947         sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
   2948         if (effect != 0) {
   2949             if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
   2950                 track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
   2951             } else {
   2952                 status = INVALID_OPERATION;
   2953             }
   2954         } else {
   2955             status = BAD_VALUE;
   2956         }
   2957     }
   2958     return status;
   2959 }
   2960 
   2961 void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
   2962 {
   2963     for (size_t i = 0; i < mTracks.size(); ++i) {
   2964         sp<Track> track = mTracks[i];
   2965         if (track->auxEffectId() == effectId) {
   2966             attachAuxEffect_l(track, 0);
   2967         }
   2968     }
   2969 }
   2970 
   2971 bool AudioFlinger::PlaybackThread::threadLoop()
   2972 {
   2973     Vector< sp<Track> > tracksToRemove;
   2974 
   2975     mStandbyTimeNs = systemTime();
   2976     nsecs_t lastWriteFinished = -1; // time last server write completed
   2977     int64_t lastFramesWritten = -1; // track changes in timestamp server frames written
   2978 
   2979     // MIXER
   2980     nsecs_t lastWarning = 0;
   2981 
   2982     // DUPLICATING
   2983     // FIXME could this be made local to while loop?
   2984     writeFrames = 0;
   2985 
   2986     int lastGeneration = 0;
   2987 
   2988     cacheParameters_l();
   2989     mSleepTimeUs = mIdleSleepTimeUs;
   2990 
   2991     if (mType == MIXER) {
   2992         sleepTimeShift = 0;
   2993     }
   2994 
   2995     CpuStats cpuStats;
   2996     const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
   2997 
   2998     acquireWakeLock();
   2999 
   3000     // mNBLogWriter->log can only be called while thread mutex mLock is held.
   3001     // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
   3002     // and then that string will be logged at the next convenient opportunity.
   3003     const char *logString = NULL;
   3004 
   3005     checkSilentMode_l();
   3006 
   3007     while (!exitPending())
   3008     {
   3009         cpuStats.sample(myName);
   3010 
   3011         Vector< sp<EffectChain> > effectChains;
   3012 
   3013         { // scope for mLock
   3014 
   3015             Mutex::Autolock _l(mLock);
   3016 
   3017             processConfigEvents_l();
   3018 
   3019             if (logString != NULL) {
   3020                 mNBLogWriter->logTimestamp();
   3021                 mNBLogWriter->log(logString);
   3022                 logString = NULL;
   3023             }
   3024 
   3025             // Gather the framesReleased counters for all active tracks,
   3026             // and associate with the sink frames written out.  We need
   3027             // this to convert the sink timestamp to the track timestamp.
   3028             bool kernelLocationUpdate = false;
   3029             if (mNormalSink != 0) {
   3030                 // Note: The DuplicatingThread may not have a mNormalSink.
   3031                 // We always fetch the timestamp here because often the downstream
   3032                 // sink will block while writing.
   3033                 ExtendedTimestamp timestamp; // use private copy to fetch
   3034                 (void) mNormalSink->getTimestamp(timestamp);
   3035 
   3036                 // We keep track of the last valid kernel position in case we are in underrun
   3037                 // and the normal mixer period is the same as the fast mixer period, or there
   3038                 // is some error from the HAL.
   3039                 if (mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
   3040                     mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
   3041                             mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
   3042                     mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
   3043                             mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
   3044 
   3045                     mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
   3046                             mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER];
   3047                     mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
   3048                             mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER];
   3049                 }
   3050 
   3051                 if (timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
   3052                     kernelLocationUpdate = true;
   3053                 } else {
   3054                     ALOGVV("getTimestamp error - no valid kernel position");
   3055                 }
   3056 
   3057                 // copy over kernel info
   3058                 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] =
   3059                         timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
   3060                         + mSuspendedFrames; // add frames discarded when suspended
   3061                 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] =
   3062                         timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
   3063             }
   3064             // mFramesWritten for non-offloaded tracks are contiguous
   3065             // even after standby() is called. This is useful for the track frame
   3066             // to sink frame mapping.
   3067             bool serverLocationUpdate = false;
   3068             if (mFramesWritten != lastFramesWritten) {
   3069                 serverLocationUpdate = true;
   3070                 lastFramesWritten = mFramesWritten;
   3071             }
   3072             // Only update timestamps if there is a meaningful change.
   3073             // Either the kernel timestamp must be valid or we have written something.
   3074             if (kernelLocationUpdate || serverLocationUpdate) {
   3075                 if (serverLocationUpdate) {
   3076                     // use the time before we called the HAL write - it is a bit more accurate
   3077                     // to when the server last read data than the current time here.
   3078                     //
   3079                     // If we haven't written anything, mLastWriteTime will be -1
   3080                     // and we use systemTime().
   3081                     mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] = mFramesWritten;
   3082                     mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = mLastWriteTime == -1
   3083                             ? systemTime() : mLastWriteTime;
   3084                 }
   3085                 const size_t size = mActiveTracks.size();
   3086                 for (size_t i = 0; i < size; ++i) {
   3087                     sp<Track> t = mActiveTracks[i].promote();
   3088                     if (t != 0 && !t->isFastTrack()) {
   3089                         t->updateTrackFrameInfo(
   3090                                 t->mAudioTrackServerProxy->framesReleased(),
   3091                                 mFramesWritten,
   3092                                 mTimestamp);
   3093                     }
   3094                 }
   3095             }
   3096 
   3097             saveOutputTracks();
   3098             if (mSignalPending) {
   3099                 // A signal was raised while we were unlocked
   3100                 mSignalPending = false;
   3101             } else if (waitingAsyncCallback_l()) {
   3102                 if (exitPending()) {
   3103                     break;
   3104                 }
   3105                 bool released = false;
   3106                 if (!keepWakeLock()) {
   3107                     releaseWakeLock_l();
   3108                     released = true;
   3109                 }
   3110                 mWakeLockUids.clear();
   3111                 mActiveTracksGeneration++;
   3112                 ALOGV("wait async completion");
   3113                 mWaitWorkCV.wait(mLock);
   3114                 ALOGV("async completion/wake");
   3115                 if (released) {
   3116                     acquireWakeLock_l();
   3117                 }
   3118                 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
   3119                 mSleepTimeUs = 0;
   3120 
   3121                 continue;
   3122             }
   3123             if ((!mActiveTracks.size() && systemTime() > mStandbyTimeNs) ||
   3124                                    isSuspended()) {
   3125                 // put audio hardware into standby after short delay
   3126                 if (shouldStandby_l()) {
   3127 
   3128                     threadLoop_standby();
   3129 
   3130                     mStandby = true;
   3131                 }
   3132 
   3133                 if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
   3134                     // we're about to wait, flush the binder command buffer
   3135                     IPCThreadState::self()->flushCommands();
   3136 
   3137                     clearOutputTracks();
   3138 
   3139                     if (exitPending()) {
   3140                         break;
   3141                     }
   3142 
   3143                     releaseWakeLock_l();
   3144                     mWakeLockUids.clear();
   3145                     mActiveTracksGeneration++;
   3146                     // wait until we have something to do...
   3147                     ALOGV("%s going to sleep", myName.string());
   3148                     mWaitWorkCV.wait(mLock);
   3149                     ALOGV("%s waking up", myName.string());
   3150                     acquireWakeLock_l();
   3151 
   3152                     mMixerStatus = MIXER_IDLE;
   3153                     mMixerStatusIgnoringFastTracks = MIXER_IDLE;
   3154                     mBytesWritten = 0;
   3155                     mBytesRemaining = 0;
   3156                     checkSilentMode_l();
   3157 
   3158                     mStandbyTimeNs = systemTime() + mStandbyDelayNs;
   3159                     mSleepTimeUs = mIdleSleepTimeUs;
   3160                     if (mType == MIXER) {
   3161                         sleepTimeShift = 0;
   3162                     }
   3163 
   3164                     continue;
   3165                 }
   3166             }
   3167             // mMixerStatusIgnoringFastTracks is also updated internally
   3168             mMixerStatus = prepareTracks_l(&tracksToRemove);
   3169 
   3170             // compare with previously applied list
   3171             if (lastGeneration != mActiveTracksGeneration) {
   3172                 // update wakelock
   3173                 updateWakeLockUids_l(mWakeLockUids);
   3174                 lastGeneration = mActiveTracksGeneration;
   3175             }
   3176 
   3177             // prevent any changes in effect chain list and in each effect chain
   3178             // during mixing and effect process as the audio buffers could be deleted
   3179             // or modified if an effect is created or deleted
   3180             lockEffectChains_l(effectChains);
   3181         } // mLock scope ends
   3182 
   3183         if (mBytesRemaining == 0) {
   3184             mCurrentWriteLength = 0;
   3185             if (mMixerStatus == MIXER_TRACKS_READY) {
   3186                 // threadLoop_mix() sets mCurrentWriteLength
   3187                 threadLoop_mix();
   3188             } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
   3189                         && (mMixerStatus != MIXER_DRAIN_ALL)) {
   3190                 // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
   3191                 // must be written to HAL
   3192                 threadLoop_sleepTime();
   3193                 if (mSleepTimeUs == 0) {
   3194                     mCurrentWriteLength = mSinkBufferSize;
   3195                 }
   3196             }
   3197             // Either threadLoop_mix() or threadLoop_sleepTime() should have set
   3198             // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
   3199             // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
   3200             // or mSinkBuffer (if there are no effects).
   3201             //
   3202             // This is done pre-effects computation; if effects change to
   3203             // support higher precision, this needs to move.
   3204             //
   3205             // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
   3206             // TODO use mSleepTimeUs == 0 as an additional condition.
   3207             if (mMixerBufferValid) {
   3208                 void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
   3209                 audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
   3210 
   3211                 // mono blend occurs for mixer threads only (not direct or offloaded)
   3212                 // and is handled here if we're going directly to the sink.
   3213                 if (requireMonoBlend() && !mEffectBufferValid) {
   3214                     mono_blend(mMixerBuffer, mMixerBufferFormat, mChannelCount, mNormalFrameCount,
   3215                                true /*limit*/);
   3216                 }
   3217 
   3218                 memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
   3219                         mNormalFrameCount * mChannelCount);
   3220             }
   3221 
   3222             mBytesRemaining = mCurrentWriteLength;
   3223             if (isSuspended()) {
   3224                 // Simulate write to HAL when suspended (e.g. BT SCO phone call).
   3225                 mSleepTimeUs = suspendSleepTimeUs(); // assumes full buffer.
   3226                 const size_t framesRemaining = mBytesRemaining / mFrameSize;
   3227                 mBytesWritten += mBytesRemaining;
   3228                 mFramesWritten += framesRemaining;
   3229                 mSuspendedFrames += framesRemaining; // to adjust kernel HAL position
   3230                 mBytesRemaining = 0;
   3231             }
   3232 
   3233             // only process effects if we're going to write
   3234             if (mSleepTimeUs == 0 && mType != OFFLOAD) {
   3235                 for (size_t i = 0; i < effectChains.size(); i ++) {
   3236                     effectChains[i]->process_l();
   3237                 }
   3238             }
   3239         }
   3240         // Process effect chains for offloaded thread even if no audio
   3241         // was read from audio track: process only updates effect state
   3242         // and thus does have to be synchronized with audio writes but may have
   3243         // to be called while waiting for async write callback
   3244         if (mType == OFFLOAD) {
   3245             for (size_t i = 0; i < effectChains.size(); i ++) {
   3246                 effectChains[i]->process_l();
   3247             }
   3248         }
   3249 
   3250         // Only if the Effects buffer is enabled and there is data in the
   3251         // Effects buffer (buffer valid), we need to
   3252         // copy into the sink buffer.
   3253         // TODO use mSleepTimeUs == 0 as an additional condition.
   3254         if (mEffectBufferValid) {
   3255             //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
   3256 
   3257             if (requireMonoBlend()) {
   3258                 mono_blend(mEffectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount,
   3259                            true /*limit*/);
   3260             }
   3261 
   3262             memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
   3263                     mNormalFrameCount * mChannelCount);
   3264         }
   3265 
   3266         // enable changes in effect chain
   3267         unlockEffectChains(effectChains);
   3268 
   3269         if (!waitingAsyncCallback()) {
   3270             // mSleepTimeUs == 0 means we must write to audio hardware
   3271             if (mSleepTimeUs == 0) {
   3272                 ssize_t ret = 0;
   3273                 // We save lastWriteFinished here, as previousLastWriteFinished,
   3274                 // for throttling. On thread start, previousLastWriteFinished will be
   3275                 // set to -1, which properly results in no throttling after the first write.
   3276                 nsecs_t previousLastWriteFinished = lastWriteFinished;
   3277                 nsecs_t delta = 0;
   3278                 if (mBytesRemaining) {
   3279                     // FIXME rewrite to reduce number of system calls
   3280                     mLastWriteTime = systemTime();  // also used for dumpsys
   3281                     ret = threadLoop_write();
   3282                     lastWriteFinished = systemTime();
   3283                     delta = lastWriteFinished - mLastWriteTime;
   3284                     if (ret < 0) {
   3285                         mBytesRemaining = 0;
   3286                     } else {
   3287                         mBytesWritten += ret;
   3288                         mBytesRemaining -= ret;
   3289                         mFramesWritten += ret / mFrameSize;
   3290                     }
   3291                 } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
   3292                         (mMixerStatus == MIXER_DRAIN_ALL)) {
   3293                     threadLoop_drain();
   3294                 }
   3295                 if (mType == MIXER && !mStandby) {
   3296                     // write blocked detection
   3297                     if (delta > maxPeriod) {
   3298                         mNumDelayedWrites++;
   3299                         if ((lastWriteFinished - lastWarning) > kWarningThrottleNs) {
   3300                             ATRACE_NAME("underrun");
   3301                             ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
   3302                                     (unsigned long long) ns2ms(delta), mNumDelayedWrites, this);
   3303                             lastWarning = lastWriteFinished;
   3304                         }
   3305                     }
   3306 
   3307                     if (mThreadThrottle
   3308                             && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
   3309                             && ret > 0) {                         // we wrote something
   3310                         // Limit MixerThread data processing to no more than twice the
   3311                         // expected processing rate.
   3312                         //
   3313                         // This helps prevent underruns with NuPlayer and other applications
   3314                         // which may set up buffers that are close to the minimum size, or use
   3315                         // deep buffers, and rely on a double-buffering sleep strategy to fill.
   3316                         //
   3317                         // The throttle smooths out sudden large data drains from the device,
   3318                         // e.g. when it comes out of standby, which often causes problems with
   3319                         // (1) mixer threads without a fast mixer (which has its own warm-up)
   3320                         // (2) minimum buffer sized tracks (even if the track is full,
   3321                         //     the app won't fill fast enough to handle the sudden draw).
   3322                         //
   3323                         // Total time spent in last processing cycle equals time spent in
   3324                         // 1. threadLoop_write, as well as time spent in
   3325                         // 2. threadLoop_mix (significant for heavy mixing, especially
   3326                         //                    on low tier processors)
   3327 
   3328                         // it's OK if deltaMs is an overestimate.
   3329                         const int32_t deltaMs =
   3330                                 (lastWriteFinished - previousLastWriteFinished) / 1000000;
   3331                         const int32_t throttleMs = mHalfBufferMs - deltaMs;
   3332                         if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
   3333                             usleep(throttleMs * 1000);
   3334                             // notify of throttle start on verbose log
   3335                             ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
   3336                                     "mixer(%p) throttle begin:"
   3337                                     " ret(%zd) deltaMs(%d) requires sleep %d ms",
   3338                                     this, ret, deltaMs, throttleMs);
   3339                             mThreadThrottleTimeMs += throttleMs;
   3340                             // Throttle must be attributed to the previous mixer loop's write time
   3341                             // to allow back-to-back throttling.
   3342                             lastWriteFinished += throttleMs * 1000000;
   3343                         } else {
   3344                             uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
   3345                             if (diff > 0) {
   3346                                 // notify of throttle end on debug log
   3347                                 // but prevent spamming for bluetooth
   3348                                 ALOGD_IF(!audio_is_a2dp_out_device(outDevice()),
   3349                                         "mixer(%p) throttle end: throttle time(%u)", this, diff);
   3350                                 mThreadThrottleEndMs = mThreadThrottleTimeMs;
   3351                             }
   3352                         }
   3353                     }
   3354                 }
   3355 
   3356             } else {
   3357                 ATRACE_BEGIN("sleep");
   3358                 Mutex::Autolock _l(mLock);
   3359                 if (!mSignalPending && mConfigEvents.isEmpty() && !exitPending()) {
   3360                     mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)mSleepTimeUs));
   3361                 }
   3362                 ATRACE_END();
   3363             }
   3364         }
   3365 
   3366         // Finally let go of removed track(s), without the lock held
   3367         // since we can't guarantee the destructors won't acquire that
   3368         // same lock.  This will also mutate and push a new fast mixer state.
   3369         threadLoop_removeTracks(tracksToRemove);
   3370         tracksToRemove.clear();
   3371 
   3372         // FIXME I don't understand the need for this here;
   3373         //       it was in the original code but maybe the
   3374         //       assignment in saveOutputTracks() makes this unnecessary?
   3375         clearOutputTracks();
   3376 
   3377         // Effect chains will be actually deleted here if they were removed from
   3378         // mEffectChains list during mixing or effects processing
   3379         effectChains.clear();
   3380 
   3381         // FIXME Note that the above .clear() is no longer necessary since effectChains
   3382         // is now local to this block, but will keep it for now (at least until merge done).
   3383     }
   3384 
   3385     threadLoop_exit();
   3386 
   3387     if (!mStandby) {
   3388         threadLoop_standby();
   3389         mStandby = true;
   3390     }
   3391 
   3392     releaseWakeLock();
   3393     mWakeLockUids.clear();
   3394     mActiveTracksGeneration++;
   3395 
   3396     ALOGV("Thread %p type %d exiting", this, mType);
   3397     return false;
   3398 }
   3399 
   3400 // removeTracks_l() must be called with ThreadBase::mLock held
   3401 void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
   3402 {
   3403     size_t count = tracksToRemove.size();
   3404     if (count > 0) {
   3405         for (size_t i=0 ; i<count ; i++) {
   3406             const sp<Track>& track = tracksToRemove.itemAt(i);
   3407             mActiveTracks.remove(track);
   3408             mWakeLockUids.remove(track->uid());
   3409             mActiveTracksGeneration++;
   3410             ALOGV("removeTracks_l removing track on session %d", track->sessionId());
   3411             sp<EffectChain> chain = getEffectChain_l(track->sessionId());
   3412             if (chain != 0) {
   3413                 ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
   3414                         track->sessionId());
   3415                 chain->decActiveTrackCnt();
   3416             }
   3417             if (track->isTerminated()) {
   3418                 removeTrack_l(track);
   3419             }
   3420         }
   3421     }
   3422 
   3423 }
   3424 
   3425 status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
   3426 {
   3427     if (mNormalSink != 0) {
   3428         ExtendedTimestamp ets;
   3429         status_t status = mNormalSink->getTimestamp(ets);
   3430         if (status == NO_ERROR) {
   3431             status = ets.getBestTimestamp(&timestamp);
   3432         }
   3433         return status;
   3434     }
   3435     if ((mType == OFFLOAD || mType == DIRECT)
   3436             && mOutput != NULL && mOutput->stream->get_presentation_position) {
   3437         uint64_t position64;
   3438         int ret = mOutput->getPresentationPosition(&position64, &timestamp.mTime);
   3439         if (ret == 0) {
   3440             timestamp.mPosition = (uint32_t)position64;
   3441             return NO_ERROR;
   3442         }
   3443     }
   3444     return INVALID_OPERATION;
   3445 }
   3446 
   3447 status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
   3448                                                           audio_patch_handle_t *handle)
   3449 {
   3450     status_t status;
   3451     if (property_get_bool("af.patch_park", false /* default_value */)) {
   3452         // Park FastMixer to avoid potential DOS issues with writing to the HAL
   3453         // or if HAL does not properly lock against access.
   3454         AutoPark<FastMixer> park(mFastMixer);
   3455         status = PlaybackThread::createAudioPatch_l(patch, handle);
   3456     } else {
   3457         status = PlaybackThread::createAudioPatch_l(patch, handle);
   3458     }
   3459     return status;
   3460 }
   3461 
   3462 status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
   3463                                                           audio_patch_handle_t *handle)
   3464 {
   3465     status_t status = NO_ERROR;
   3466 
   3467     // store new device and send to effects
   3468     audio_devices_t type = AUDIO_DEVICE_NONE;
   3469     for (unsigned int i = 0; i < patch->num_sinks; i++) {
   3470         type |= patch->sinks[i].ext.device.type;
   3471     }
   3472 
   3473 #ifdef ADD_BATTERY_DATA
   3474     // when changing the audio output device, call addBatteryData to notify
   3475     // the change
   3476     if (mOutDevice != type) {
   3477         uint32_t params = 0;
   3478         // check whether speaker is on
   3479         if (type & AUDIO_DEVICE_OUT_SPEAKER) {
   3480             params |= IMediaPlayerService::kBatteryDataSpeakerOn;
   3481         }
   3482 
   3483         audio_devices_t deviceWithoutSpeaker
   3484             = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
   3485         // check if any other device (except speaker) is on
   3486         if (type & deviceWithoutSpeaker) {
   3487             params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
   3488         }
   3489 
   3490         if (params != 0) {
   3491             addBatteryData(params);
   3492         }
   3493     }
   3494 #endif
   3495 
   3496     for (size_t i = 0; i < mEffectChains.size(); i++) {
   3497         mEffectChains[i]->setDevice_l(type);
   3498     }
   3499 
   3500     // mPrevOutDevice is the latest device set by createAudioPatch_l(). It is not set when
   3501     // the thread is created so that the first patch creation triggers an ioConfigChanged callback
   3502     bool configChanged = mPrevOutDevice != type;
   3503     mOutDevice = type;
   3504     mPatch = *patch;
   3505 
   3506     if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
   3507         audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
   3508         status = hwDevice->create_audio_patch(hwDevice,
   3509                                                patch->num_sources,
   3510                                                patch->sources,
   3511                                                patch->num_sinks,
   3512                                                patch->sinks,
   3513                                                handle);
   3514     } else {
   3515         char *address;
   3516         if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
   3517             //FIXME: we only support address on first sink with HAL version < 3.0
   3518             address = audio_device_address_to_parameter(
   3519                                                         patch->sinks[0].ext.device.type,
   3520                                                         patch->sinks[0].ext.device.address);
   3521         } else {
   3522             address = (char *)calloc(1, 1);
   3523         }
   3524         AudioParameter param = AudioParameter(String8(address));
   3525         free(address);
   3526         param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), (int)type);
   3527         status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
   3528                 param.toString().string());
   3529         *handle = AUDIO_PATCH_HANDLE_NONE;
   3530     }
   3531     if (configChanged) {
   3532         mPrevOutDevice = type;
   3533         sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
   3534     }
   3535     return status;
   3536 }
   3537 
   3538 status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
   3539 {
   3540     status_t status;
   3541     if (property_get_bool("af.patch_park", false /* default_value */)) {
   3542         // Park FastMixer to avoid potential DOS issues with writing to the HAL
   3543         // or if HAL does not properly lock against access.
   3544         AutoPark<FastMixer> park(mFastMixer);
   3545         status = PlaybackThread::releaseAudioPatch_l(handle);
   3546     } else {
   3547         status = PlaybackThread::releaseAudioPatch_l(handle);
   3548     }
   3549     return status;
   3550 }
   3551 
   3552 status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
   3553 {
   3554     status_t status = NO_ERROR;
   3555 
   3556     mOutDevice = AUDIO_DEVICE_NONE;
   3557 
   3558     if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
   3559         audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
   3560         status = hwDevice->release_audio_patch(hwDevice, handle);
   3561     } else {
   3562         AudioParameter param;
   3563         param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
   3564         status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
   3565                 param.toString().string());
   3566     }
   3567     return status;
   3568 }
   3569 
   3570 void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
   3571 {
   3572     Mutex::Autolock _l(mLock);
   3573     mTracks.add(track);
   3574 }
   3575 
   3576 void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
   3577 {
   3578     Mutex::Autolock _l(mLock);
   3579     destroyTrack_l(track);
   3580 }
   3581 
   3582 void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
   3583 {
   3584     ThreadBase::getAudioPortConfig(config);
   3585     config->role = AUDIO_PORT_ROLE_SOURCE;
   3586     config->ext.mix.hw_module = mOutput->audioHwDev->handle();
   3587     config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
   3588 }
   3589 
   3590 // ----------------------------------------------------------------------------
   3591 
   3592 AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
   3593         audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type)
   3594     :   PlaybackThread(audioFlinger, output, id, device, type, systemReady),
   3595         // mAudioMixer below
   3596         // mFastMixer below
   3597         mFastMixerFutex(0),
   3598         mMasterMono(false)
   3599         // mOutputSink below
   3600         // mPipeSink below
   3601         // mNormalSink below
   3602 {
   3603     ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
   3604     ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%zu, "
   3605             "mFrameCount=%zu, mNormalFrameCount=%zu",
   3606             mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
   3607             mNormalFrameCount);
   3608     mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
   3609 
   3610     if (type == DUPLICATING) {
   3611         // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
   3612         // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
   3613         // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
   3614         return;
   3615     }
   3616     // create an NBAIO sink for the HAL output stream, and negotiate
   3617     mOutputSink = new AudioStreamOutSink(output->stream);
   3618     size_t numCounterOffers = 0;
   3619     const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
   3620 #if !LOG_NDEBUG
   3621     ssize_t index =
   3622 #else
   3623     (void)
   3624 #endif
   3625             mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
   3626     ALOG_ASSERT(index == 0);
   3627 
   3628     // initialize fast mixer depending on configuration
   3629     bool initFastMixer;
   3630     switch (kUseFastMixer) {
   3631     case FastMixer_Never:
   3632         initFastMixer = false;
   3633         break;
   3634     case FastMixer_Always:
   3635         initFastMixer = true;
   3636         break;
   3637     case FastMixer_Static:
   3638     case FastMixer_Dynamic:
   3639         initFastMixer = mFrameCount < mNormalFrameCount;
   3640         break;
   3641     }
   3642     if (initFastMixer) {
   3643         audio_format_t fastMixerFormat;
   3644         if (mMixerBufferEnabled && mEffectBufferEnabled) {
   3645             fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
   3646         } else {
   3647             fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
   3648         }
   3649         if (mFormat != fastMixerFormat) {
   3650             // change our Sink format to accept our intermediate precision
   3651             mFormat = fastMixerFormat;
   3652             free(mSinkBuffer);
   3653             mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
   3654             const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
   3655             (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
   3656         }
   3657 
   3658         // create a MonoPipe to connect our submix to FastMixer
   3659         NBAIO_Format format = mOutputSink->format();
   3660 #ifdef TEE_SINK
   3661         NBAIO_Format origformat = format;
   3662 #endif
   3663         // adjust format to match that of the Fast Mixer
   3664         ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat);
   3665         format.mFormat = fastMixerFormat;
   3666         format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
   3667 
   3668         // This pipe depth compensates for scheduling latency of the normal mixer thread.
   3669         // When it wakes up after a maximum latency, it runs a few cycles quickly before
   3670         // finally blocking.  Note the pipe implementation rounds up the request to a power of 2.
   3671         MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
   3672         const NBAIO_Format offers[1] = {format};
   3673         size_t numCounterOffers = 0;
   3674 #if !LOG_NDEBUG || defined(TEE_SINK)
   3675         ssize_t index =
   3676 #else
   3677         (void)
   3678 #endif
   3679                 monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
   3680         ALOG_ASSERT(index == 0);
   3681         monoPipe->setAvgFrames((mScreenState & 1) ?
   3682                 (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
   3683         mPipeSink = monoPipe;
   3684 
   3685 #ifdef TEE_SINK
   3686         if (mTeeSinkOutputEnabled) {
   3687             // create a Pipe to archive a copy of FastMixer's output for dumpsys
   3688             Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
   3689             const NBAIO_Format offers2[1] = {origformat};
   3690             numCounterOffers = 0;
   3691             index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
   3692             ALOG_ASSERT(index == 0);
   3693             mTeeSink = teeSink;
   3694             PipeReader *teeSource = new PipeReader(*teeSink);
   3695             numCounterOffers = 0;
   3696             index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
   3697             ALOG_ASSERT(index == 0);
   3698             mTeeSource = teeSource;
   3699         }
   3700 #endif
   3701 
   3702         // create fast mixer and configure it initially with just one fast track for our submix
   3703         mFastMixer = new FastMixer();
   3704         FastMixerStateQueue *sq = mFastMixer->sq();
   3705 #ifdef STATE_QUEUE_DUMP
   3706         sq->setObserverDump(&mStateQueueObserverDump);
   3707         sq->setMutatorDump(&mStateQueueMutatorDump);
   3708 #endif
   3709         FastMixerState *state = sq->begin();
   3710         FastTrack *fastTrack = &state->mFastTracks[0];
   3711         // wrap the source side of the MonoPipe to make it an AudioBufferProvider
   3712         fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
   3713         fastTrack->mVolumeProvider = NULL;
   3714         fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
   3715         fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
   3716         fastTrack->mGeneration++;
   3717         state->mFastTracksGen++;
   3718         state->mTrackMask = 1;
   3719         // fast mixer will use the HAL output sink
   3720         state->mOutputSink = mOutputSink.get();
   3721         state->mOutputSinkGen++;
   3722         state->mFrameCount = mFrameCount;
   3723         state->mCommand = FastMixerState::COLD_IDLE;
   3724         // already done in constructor initialization list
   3725         //mFastMixerFutex = 0;
   3726         state->mColdFutexAddr = &mFastMixerFutex;
   3727         state->mColdGen++;
   3728         state->mDumpState = &mFastMixerDumpState;
   3729 #ifdef TEE_SINK
   3730         state->mTeeSink = mTeeSink.get();
   3731 #endif
   3732         mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
   3733         state->mNBLogWriter = mFastMixerNBLogWriter.get();
   3734         sq->end();
   3735         sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
   3736 
   3737         // start the fast mixer
   3738         mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
   3739         pid_t tid = mFastMixer->getTid();
   3740         sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
   3741 
   3742 #ifdef AUDIO_WATCHDOG
   3743         // create and start the watchdog
   3744         mAudioWatchdog = new AudioWatchdog();
   3745         mAudioWatchdog->setDump(&mAudioWatchdogDump);
   3746         mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
   3747         tid = mAudioWatchdog->getTid();
   3748         sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
   3749 #endif
   3750 
   3751     }
   3752 
   3753     switch (kUseFastMixer) {
   3754     case FastMixer_Never:
   3755     case FastMixer_Dynamic:
   3756         mNormalSink = mOutputSink;
   3757         break;
   3758     case FastMixer_Always:
   3759         mNormalSink = mPipeSink;
   3760         break;
   3761     case FastMixer_Static:
   3762         mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
   3763         break;
   3764     }
   3765 }
   3766 
   3767 AudioFlinger::MixerThread::~MixerThread()
   3768 {
   3769     if (mFastMixer != 0) {
   3770         FastMixerStateQueue *sq = mFastMixer->sq();
   3771         FastMixerState *state = sq->begin();
   3772         if (state->mCommand == FastMixerState::COLD_IDLE) {
   3773             int32_t old = android_atomic_inc(&mFastMixerFutex);
   3774             if (old == -1) {
   3775                 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
   3776             }
   3777         }
   3778         state->mCommand = FastMixerState::EXIT;
   3779         sq->end();
   3780         sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
   3781         mFastMixer->join();
   3782         // Though the fast mixer thread has exited, it's state queue is still valid.
   3783         // We'll use that extract the final state which contains one remaining fast track
   3784         // corresponding to our sub-mix.
   3785         state = sq->begin();
   3786         ALOG_ASSERT(state->mTrackMask == 1);
   3787         FastTrack *fastTrack = &state->mFastTracks[0];
   3788         ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
   3789         delete fastTrack->mBufferProvider;
   3790         sq->end(false /*didModify*/);
   3791         mFastMixer.clear();
   3792 #ifdef AUDIO_WATCHDOG
   3793         if (mAudioWatchdog != 0) {
   3794             mAudioWatchdog->requestExit();
   3795             mAudioWatchdog->requestExitAndWait();
   3796             mAudioWatchdog.clear();
   3797         }
   3798 #endif
   3799     }
   3800     mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
   3801     delete mAudioMixer;
   3802 }
   3803 
   3804 
   3805 uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
   3806 {
   3807     if (mFastMixer != 0) {
   3808         MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
   3809         latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
   3810     }
   3811     return latency;
   3812 }
   3813 
   3814 
   3815 void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
   3816 {
   3817     PlaybackThread::threadLoop_removeTracks(tracksToRemove);
   3818 }
   3819 
   3820 ssize_t AudioFlinger::MixerThread::threadLoop_write()
   3821 {
   3822     // FIXME we should only do one push per cycle; confirm this is true
   3823     // Start the fast mixer if it's not already running
   3824     if (mFastMixer != 0) {
   3825         FastMixerStateQueue *sq = mFastMixer->sq();
   3826         FastMixerState *state = sq->begin();
   3827         if (state->mCommand != FastMixerState::MIX_WRITE &&
   3828                 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
   3829             if (state->mCommand == FastMixerState::COLD_IDLE) {
   3830 
   3831                 // FIXME workaround for first HAL write being CPU bound on some devices
   3832                 ATRACE_BEGIN("write");
   3833                 mOutput->write((char *)mSinkBuffer, 0);
   3834                 ATRACE_END();
   3835 
   3836                 int32_t old = android_atomic_inc(&mFastMixerFutex);
   3837                 if (old == -1) {
   3838                     (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
   3839                 }
   3840 #ifdef AUDIO_WATCHDOG
   3841                 if (mAudioWatchdog != 0) {
   3842                     mAudioWatchdog->resume();
   3843                 }
   3844 #endif
   3845             }
   3846             state->mCommand = FastMixerState::MIX_WRITE;
   3847 #ifdef FAST_THREAD_STATISTICS
   3848             mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
   3849                 FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
   3850 #endif
   3851             sq->end();
   3852             sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
   3853             if (kUseFastMixer == FastMixer_Dynamic) {
   3854                 mNormalSink = mPipeSink;
   3855             }
   3856         } else {
   3857             sq->end(false /*didModify*/);
   3858         }
   3859     }
   3860     return PlaybackThread::threadLoop_write();
   3861 }
   3862 
   3863 void AudioFlinger::MixerThread::threadLoop_standby()
   3864 {
   3865     // Idle the fast mixer if it's currently running
   3866     if (mFastMixer != 0) {
   3867         FastMixerStateQueue *sq = mFastMixer->sq();
   3868         FastMixerState *state = sq->begin();
   3869         if (!(state->mCommand & FastMixerState::IDLE)) {
   3870             state->mCommand = FastMixerState::COLD_IDLE;
   3871             state->mColdFutexAddr = &mFastMixerFutex;
   3872             state->mColdGen++;
   3873             mFastMixerFutex = 0;
   3874             sq->end();
   3875             // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
   3876             sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
   3877             if (kUseFastMixer == FastMixer_Dynamic) {
   3878                 mNormalSink = mOutputSink;
   3879             }
   3880 #ifdef AUDIO_WATCHDOG
   3881             if (mAudioWatchdog != 0) {
   3882                 mAudioWatchdog->pause();
   3883             }
   3884 #endif
   3885         } else {
   3886             sq->end(false /*didModify*/);
   3887         }
   3888     }
   3889     PlaybackThread::threadLoop_standby();
   3890 }
   3891 
   3892 bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
   3893 {
   3894     return false;
   3895 }
   3896 
   3897 bool AudioFlinger::PlaybackThread::shouldStandby_l()
   3898 {
   3899     return !mStandby;
   3900 }
   3901 
   3902 bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
   3903 {
   3904     Mutex::Autolock _l(mLock);
   3905     return waitingAsyncCallback_l();
   3906 }
   3907 
   3908 // shared by MIXER and DIRECT, overridden by DUPLICATING
   3909 void AudioFlinger::PlaybackThread::threadLoop_standby()
   3910 {
   3911     ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
   3912     mOutput->standby();
   3913     if (mUseAsyncWrite != 0) {
   3914         // discard any pending drain or write ack by incrementing sequence
   3915         mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
   3916         mDrainSequence = (mDrainSequence + 2) & ~1;
   3917         ALOG_ASSERT(mCallbackThread != 0);
   3918         mCallbackThread->setWriteBlocked(mWriteAckSequence);
   3919         mCallbackThread->setDraining(mDrainSequence);
   3920     }
   3921     mHwPaused = false;
   3922 }
   3923 
   3924 void AudioFlinger::PlaybackThread::onAddNewTrack_l()
   3925 {
   3926     ALOGV("signal playback thread");
   3927     broadcast_l();
   3928 }
   3929 
   3930 void AudioFlinger::PlaybackThread::onAsyncError()
   3931 {
   3932     for (int i = AUDIO_STREAM_SYSTEM; i < (int)AUDIO_STREAM_CNT; i++) {
   3933         invalidateTracks((audio_stream_type_t)i);
   3934     }
   3935 }
   3936 
   3937 void AudioFlinger::MixerThread::threadLoop_mix()
   3938 {
   3939     // mix buffers...
   3940     mAudioMixer->process();
   3941     mCurrentWriteLength = mSinkBufferSize;
   3942     // increase sleep time progressively when application underrun condition clears.
   3943     // Only increase sleep time if the mixer is ready for two consecutive times to avoid
   3944     // that a steady state of alternating ready/not ready conditions keeps the sleep time
   3945     // such that we would underrun the audio HAL.
   3946     if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
   3947         sleepTimeShift--;
   3948     }
   3949     mSleepTimeUs = 0;
   3950     mStandbyTimeNs = systemTime() + mStandbyDelayNs;
   3951     //TODO: delay standby when effects have a tail
   3952 
   3953 }
   3954 
   3955 void AudioFlinger::MixerThread::threadLoop_sleepTime()
   3956 {
   3957     // If no tracks are ready, sleep once for the duration of an output
   3958     // buffer size, then write 0s to the output
   3959     if (mSleepTimeUs == 0) {
   3960         if (mMixerStatus == MIXER_TRACKS_ENABLED) {
   3961             mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
   3962             if (mSleepTimeUs < kMinThreadSleepTimeUs) {
   3963                 mSleepTimeUs = kMinThreadSleepTimeUs;
   3964             }
   3965             // reduce sleep time in case of consecutive application underruns to avoid
   3966             // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
   3967             // duration we would end up writing less data than needed by the audio HAL if
   3968             // the condition persists.
   3969             if (sleepTimeShift < kMaxThreadSleepTimeShift) {
   3970                 sleepTimeShift++;
   3971             }
   3972         } else {
   3973             mSleepTimeUs = mIdleSleepTimeUs;
   3974         }
   3975     } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
   3976         // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
   3977         // before effects processing or output.
   3978         if (mMixerBufferValid) {
   3979             memset(mMixerBuffer, 0, mMixerBufferSize);
   3980         } else {
   3981             memset(mSinkBuffer, 0, mSinkBufferSize);
   3982         }
   3983         mSleepTimeUs = 0;
   3984         ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
   3985                 "anticipated start");
   3986     }
   3987     // TODO add standby time extension fct of effect tail
   3988 }
   3989 
   3990 // prepareTracks_l() must be called with ThreadBase::mLock held
   3991 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
   3992         Vector< sp<Track> > *tracksToRemove)
   3993 {
   3994 
   3995     mixer_state mixerStatus = MIXER_IDLE;
   3996     // find out which tracks need to be processed
   3997     size_t count = mActiveTracks.size();
   3998     size_t mixedTracks = 0;
   3999     size_t tracksWithEffect = 0;
   4000     // counts only _active_ fast tracks
   4001     size_t fastTracks = 0;
   4002     uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
   4003 
   4004     float masterVolume = mMasterVolume;
   4005     bool masterMute = mMasterMute;
   4006 
   4007     if (masterMute) {
   4008         masterVolume = 0;
   4009     }
   4010     // Delegate master volume control to effect in output mix effect chain if needed
   4011     sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
   4012     if (chain != 0) {
   4013         uint32_t v = (uint32_t)(masterVolume * (1 << 24));
   4014         chain->setVolume_l(&v, &v);
   4015         masterVolume = (float)((v + (1 << 23)) >> 24);
   4016         chain.clear();
   4017     }
   4018 
   4019     // prepare a new state to push
   4020     FastMixerStateQueue *sq = NULL;
   4021     FastMixerState *state = NULL;
   4022     bool didModify = false;
   4023     FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
   4024     if (mFastMixer != 0) {
   4025         sq = mFastMixer->sq();
   4026         state = sq->begin();
   4027     }
   4028 
   4029     mMixerBufferValid = false;  // mMixerBuffer has no valid data until appropriate tracks found.
   4030     mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
   4031 
   4032     for (size_t i=0 ; i<count ; i++) {
   4033         const sp<Track> t = mActiveTracks[i].promote();
   4034         if (t == 0) {
   4035             continue;
   4036         }
   4037 
   4038         // this const just means the local variable doesn't change
   4039         Track* const track = t.get();
   4040 
   4041         // process fast tracks
   4042         if (track->isFastTrack()) {
   4043 
   4044             // It's theoretically possible (though unlikely) for a fast track to be created
   4045             // and then removed within the same normal mix cycle.  This is not a problem, as
   4046             // the track never becomes active so it's fast mixer slot is never touched.
   4047             // The converse, of removing an (active) track and then creating a new track
   4048             // at the identical fast mixer slot within the same normal mix cycle,
   4049             // is impossible because the slot isn't marked available until the end of each cycle.
   4050             int j = track->mFastIndex;
   4051             ALOG_ASSERT(0 < j && j < (int)FastMixerState::sMaxFastTracks);
   4052             ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
   4053             FastTrack *fastTrack = &state->mFastTracks[j];
   4054 
   4055             // Determine whether the track is currently in underrun condition,
   4056             // and whether it had a recent underrun.
   4057             FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
   4058             FastTrackUnderruns underruns = ftDump->mUnderruns;
   4059             uint32_t recentFull = (underruns.mBitFields.mFull -
   4060                     track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
   4061             uint32_t recentPartial = (underruns.mBitFields.mPartial -
   4062                     track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
   4063             uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
   4064                     track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
   4065             uint32_t recentUnderruns = recentPartial + recentEmpty;
   4066             track->mObservedUnderruns = underruns;
   4067             // don't count underruns that occur while stopping or pausing
   4068             // or stopped which can occur when flush() is called while active
   4069             if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
   4070                     recentUnderruns > 0) {
   4071                 // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
   4072                 track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
   4073             } else {
   4074                 track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
   4075             }
   4076 
   4077             // This is similar to the state machine for normal tracks,
   4078             // with a few modifications for fast tracks.
   4079             bool isActive = true;
   4080             switch (track->mState) {
   4081             case TrackBase::STOPPING_1:
   4082                 // track stays active in STOPPING_1 state until first underrun
   4083                 if (recentUnderruns > 0 || track->isTerminated()) {
   4084                     track->mState = TrackBase::STOPPING_2;
   4085                 }
   4086                 break;
   4087             case TrackBase::PAUSING:
   4088                 // ramp down is not yet implemented
   4089                 track->setPaused();
   4090                 break;
   4091             case TrackBase::RESUMING:
   4092                 // ramp up is not yet implemented
   4093                 track->mState = TrackBase::ACTIVE;
   4094                 break;
   4095             case TrackBase::ACTIVE:
   4096                 if (recentFull > 0 || recentPartial > 0) {
   4097                     // track has provided at least some frames recently: reset retry count
   4098                     track->mRetryCount = kMaxTrackRetries;
   4099                 }
   4100                 if (recentUnderruns == 0) {
   4101                     // no recent underruns: stay active
   4102                     break;
   4103                 }
   4104                 // there has recently been an underrun of some kind
   4105                 if (track->sharedBuffer() == 0) {
   4106                     // were any of the recent underruns "empty" (no frames available)?
   4107                     if (recentEmpty == 0) {
   4108                         // no, then ignore the partial underruns as they are allowed indefinitely
   4109                         break;
   4110                     }
   4111                     // there has recently been an "empty" underrun: decrement the retry counter
   4112                     if (--(track->mRetryCount) > 0) {
   4113                         break;
   4114                     }
   4115                     // indicate to client process that the track was disabled because of underrun;
   4116                     // it will then automatically call start() when data is available
   4117                     track->disable();
   4118                     // remove from active list, but state remains ACTIVE [confusing but true]
   4119                     isActive = false;
   4120                     break;
   4121                 }
   4122                 // fall through
   4123             case TrackBase::STOPPING_2:
   4124             case TrackBase::PAUSED:
   4125             case TrackBase::STOPPED:
   4126             case TrackBase::FLUSHED:   // flush() while active
   4127                 // Check for presentation complete if track is inactive
   4128                 // We have consumed all the buffers of this track.
   4129                 // This would be incomplete if we auto-paused on underrun
   4130                 {
   4131                     size_t audioHALFrames =
   4132                             (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
   4133                     int64_t framesWritten = mBytesWritten / mFrameSize;
   4134                     if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
   4135                         // track stays in active list until presentation is complete
   4136                         break;
   4137                     }
   4138                 }
   4139                 if (track->isStopping_2()) {
   4140                     track->mState = TrackBase::STOPPED;
   4141                 }
   4142                 if (track->isStopped()) {
   4143                     // Can't reset directly, as fast mixer is still polling this track
   4144                     //   track->reset();
   4145                     // So instead mark this track as needing to be reset after push with ack
   4146                     resetMask |= 1 << i;
   4147                 }
   4148                 isActive = false;
   4149                 break;
   4150             case TrackBase::IDLE:
   4151             default:
   4152                 LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
   4153             }
   4154 
   4155             if (isActive) {
   4156                 // was it previously inactive?
   4157                 if (!(state->mTrackMask & (1 << j))) {
   4158                     ExtendedAudioBufferProvider *eabp = track;
   4159                     VolumeProvider *vp = track;
   4160                     fastTrack->mBufferProvider = eabp;
   4161                     fastTrack->mVolumeProvider = vp;
   4162                     fastTrack->mChannelMask = track->mChannelMask;
   4163                     fastTrack->mFormat = track->mFormat;
   4164                     fastTrack->mGeneration++;
   4165                     state->mTrackMask |= 1 << j;
   4166                     didModify = true;
   4167                     // no acknowledgement required for newly active tracks
   4168                 }
   4169                 // cache the combined master volume and stream type volume for fast mixer; this
   4170                 // lacks any synchronization or barrier so VolumeProvider may read a stale value
   4171                 track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
   4172                 ++fastTracks;
   4173             } else {
   4174                 // was it previously active?
   4175                 if (state->mTrackMask & (1 << j)) {
   4176                     fastTrack->mBufferProvider = NULL;
   4177                     fastTrack->mGeneration++;
   4178                     state->mTrackMask &= ~(1 << j);
   4179                     didModify = true;
   4180                     // If any fast tracks were removed, we must wait for acknowledgement
   4181                     // because we're about to decrement the last sp<> on those tracks.
   4182                     block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
   4183                 } else {
   4184                     LOG_ALWAYS_FATAL("fast track %d should have been active; "
   4185                             "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d",
   4186                             j, track->mState, state->mTrackMask, recentUnderruns,
   4187                             track->sharedBuffer() != 0);
   4188                 }
   4189                 tracksToRemove->add(track);
   4190                 // Avoids a misleading display in dumpsys
   4191                 track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
   4192             }
   4193             continue;
   4194         }
   4195 
   4196         {   // local variable scope to avoid goto warning
   4197 
   4198         audio_track_cblk_t* cblk = track->cblk();
   4199 
   4200         // The first time a track is added we wait
   4201         // for all its buffers to be filled before processing it
   4202         int name = track->name();
   4203         // make sure that we have enough frames to mix one full buffer.
   4204         // enforce this condition only once to enable draining the buffer in case the client
   4205         // app does not call stop() and relies on underrun to stop:
   4206         // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
   4207         // during last round
   4208         size_t desiredFrames;
   4209         const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
   4210         AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
   4211 
   4212         desiredFrames = sourceFramesNeededWithTimestretch(
   4213                 sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
   4214         // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
   4215         // add frames already consumed but not yet released by the resampler
   4216         // because mAudioTrackServerProxy->framesReady() will include these frames
   4217         desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
   4218 
   4219         uint32_t minFrames = 1;
   4220         if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
   4221                 (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
   4222             minFrames = desiredFrames;
   4223         }
   4224 
   4225         size_t framesReady = track->framesReady();
   4226         if (ATRACE_ENABLED()) {
   4227             // I wish we had formatted trace names
   4228             char traceName[16];
   4229             strcpy(traceName, "nRdy");
   4230             int name = track->name();
   4231             if (AudioMixer::TRACK0 <= name &&
   4232                     name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) {
   4233                 name -= AudioMixer::TRACK0;
   4234                 traceName[4] = (name / 10) + '0';
   4235                 traceName[5] = (name % 10) + '0';
   4236             } else {
   4237                 traceName[4] = '?';
   4238                 traceName[5] = '?';
   4239             }
   4240             traceName[6] = '\0';
   4241             ATRACE_INT(traceName, framesReady);
   4242         }
   4243         if ((framesReady >= minFrames) && track->isReady() &&
   4244                 !track->isPaused() && !track->isTerminated())
   4245         {
   4246             ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
   4247 
   4248             mixedTracks++;
   4249 
   4250             // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
   4251             // there is an effect chain connected to the track
   4252             chain.clear();
   4253             if (track->mainBuffer() != mSinkBuffer &&
   4254                     track->mainBuffer() != mMixerBuffer) {
   4255                 if (mEffectBufferEnabled) {
   4256                     mEffectBufferValid = true; // Later can set directly.
   4257                 }
   4258                 chain = getEffectChain_l(track->sessionId());
   4259                 // Delegate volume control to effect in track effect chain if needed
   4260                 if (chain != 0) {
   4261                     tracksWithEffect++;
   4262                 } else {
   4263                     ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
   4264                             "session %d",
   4265                             name, track->sessionId());
   4266                 }
   4267             }
   4268 
   4269 
   4270             int param = AudioMixer::VOLUME;
   4271             if (track->mFillingUpStatus == Track::FS_FILLED) {
   4272                 // no ramp for the first volume setting
   4273                 track->mFillingUpStatus = Track::FS_ACTIVE;
   4274                 if (track->mState == TrackBase::RESUMING) {
   4275                     track->mState = TrackBase::ACTIVE;
   4276                     param = AudioMixer::RAMP_VOLUME;
   4277                 }
   4278                 mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
   4279             // FIXME should not make a decision based on mServer
   4280             } else if (cblk->mServer != 0) {
   4281                 // If the track is stopped before the first frame was mixed,
   4282                 // do not apply ramp
   4283                 param = AudioMixer::RAMP_VOLUME;
   4284             }
   4285 
   4286             // compute volume for this track
   4287             uint32_t vl, vr;       // in U8.24 integer format
   4288             float vlf, vrf, vaf;   // in [0.0, 1.0] float format
   4289             if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
   4290                 vl = vr = 0;
   4291                 vlf = vrf = vaf = 0.;
   4292                 if (track->isPausing()) {
   4293                     track->setPaused();
   4294                 }
   4295             } else {
   4296 
   4297                 // read original volumes with volume control
   4298                 float typeVolume = mStreamTypes[track->streamType()].volume;
   4299                 float v = masterVolume * typeVolume;
   4300                 AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
   4301                 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
   4302                 vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
   4303                 vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
   4304                 // track volumes come from shared memory, so can't be trusted and must be clamped
   4305                 if (vlf > GAIN_FLOAT_UNITY) {
   4306                     ALOGV("Track left volume out of range: %.3g", vlf);
   4307                     vlf = GAIN_FLOAT_UNITY;
   4308                 }
   4309                 if (vrf > GAIN_FLOAT_UNITY) {
   4310                     ALOGV("Track right volume out of range: %.3g", vrf);
   4311                     vrf = GAIN_FLOAT_UNITY;
   4312                 }
   4313                 // now apply the master volume and stream type volume
   4314                 vlf *= v;
   4315                 vrf *= v;
   4316                 // assuming master volume and stream type volume each go up to 1.0,
   4317                 // then derive vl and vr as U8.24 versions for the effect chain
   4318                 const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
   4319                 vl = (uint32_t) (scaleto8_24 * vlf);
   4320                 vr = (uint32_t) (scaleto8_24 * vrf);
   4321                 // vl and vr are now in U8.24 format
   4322                 uint16_t sendLevel = proxy->getSendLevel_U4_12();
   4323                 // send level comes from shared memory and so may be corrupt
   4324                 if (sendLevel > MAX_GAIN_INT) {
   4325                     ALOGV("Track send level out of range: %04X", sendLevel);
   4326                     sendLevel = MAX_GAIN_INT;
   4327                 }
   4328                 // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
   4329                 vaf = v * sendLevel * (1. / MAX_GAIN_INT);
   4330             }
   4331 
   4332             // Delegate volume control to effect in track effect chain if needed
   4333             if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
   4334                 // Do not ramp volume if volume is controlled by effect
   4335                 param = AudioMixer::VOLUME;
   4336                 // Update remaining floating point volume levels
   4337                 vlf = (float)vl / (1 << 24);
   4338                 vrf = (float)vr / (1 << 24);
   4339                 track->mHasVolumeController = true;
   4340             } else {
   4341                 // force no volume ramp when volume controller was just disabled or removed
   4342                 // from effect chain to avoid volume spike
   4343                 if (track->mHasVolumeController) {
   4344                     param = AudioMixer::VOLUME;
   4345                 }
   4346                 track->mHasVolumeController = false;
   4347             }
   4348 
   4349             // XXX: these things DON'T need to be done each time
   4350             mAudioMixer->setBufferProvider(name, track);
   4351             mAudioMixer->enable(name);
   4352 
   4353             mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
   4354             mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
   4355             mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
   4356             mAudioMixer->setParameter(
   4357                 name,
   4358                 AudioMixer::TRACK,
   4359                 AudioMixer::FORMAT, (void *)track->format());
   4360             mAudioMixer->setParameter(
   4361                 name,
   4362                 AudioMixer::TRACK,
   4363                 AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
   4364             mAudioMixer->setParameter(
   4365                 name,
   4366                 AudioMixer::TRACK,
   4367                 AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
   4368             // limit track sample rate to 2 x output sample rate, which changes at re-configuration
   4369             uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
   4370             uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
   4371             if (reqSampleRate == 0) {
   4372                 reqSampleRate = mSampleRate;
   4373             } else if (reqSampleRate > maxSampleRate) {
   4374                 reqSampleRate = maxSampleRate;
   4375             }
   4376             mAudioMixer->setParameter(
   4377                 name,
   4378                 AudioMixer::RESAMPLE,
   4379                 AudioMixer::SAMPLE_RATE,
   4380                 (void *)(uintptr_t)reqSampleRate);
   4381 
   4382             AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
   4383             mAudioMixer->setParameter(
   4384                 name,
   4385                 AudioMixer::TIMESTRETCH,
   4386                 AudioMixer::PLAYBACK_RATE,
   4387                 &playbackRate);
   4388 
   4389             /*
   4390              * Select the appropriate output buffer for the track.
   4391              *
   4392              * Tracks with effects go into their own effects chain buffer
   4393              * and from there into either mEffectBuffer or mSinkBuffer.
   4394              *
   4395              * Other tracks can use mMixerBuffer for higher precision
   4396              * channel accumulation.  If this buffer is enabled
   4397              * (mMixerBufferEnabled true), then selected tracks will accumulate
   4398              * into it.
   4399              *
   4400              */
   4401             if (mMixerBufferEnabled
   4402                     && (track->mainBuffer() == mSinkBuffer
   4403                             || track->mainBuffer() == mMixerBuffer)) {
   4404                 mAudioMixer->setParameter(
   4405                         name,
   4406                         AudioMixer::TRACK,
   4407                         AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
   4408                 mAudioMixer->setParameter(
   4409                         name,
   4410                         AudioMixer::TRACK,
   4411                         AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
   4412                 // TODO: override track->mainBuffer()?
   4413                 mMixerBufferValid = true;
   4414             } else {
   4415                 mAudioMixer->setParameter(
   4416                         name,
   4417                         AudioMixer::TRACK,
   4418                         AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
   4419                 mAudioMixer->setParameter(
   4420                         name,
   4421                         AudioMixer::TRACK,
   4422                         AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
   4423             }
   4424             mAudioMixer->setParameter(
   4425                 name,
   4426                 AudioMixer::TRACK,
   4427                 AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
   4428 
   4429             // reset retry count
   4430             track->mRetryCount = kMaxTrackRetries;
   4431 
   4432             // If one track is ready, set the mixer ready if:
   4433             //  - the mixer was not ready during previous round OR
   4434             //  - no other track is not ready
   4435             if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
   4436                     mixerStatus != MIXER_TRACKS_ENABLED) {
   4437                 mixerStatus = MIXER_TRACKS_READY;
   4438             }
   4439         } else {
   4440             if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
   4441                 ALOGV("track(%p) underrun,  framesReady(%zu) < framesDesired(%zd)",
   4442                         track, framesReady, desiredFrames);
   4443                 track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
   4444             } else {
   4445                 track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
   4446             }
   4447 
   4448             // clear effect chain input buffer if an active track underruns to avoid sending
   4449             // previous audio buffer again to effects
   4450             chain = getEffectChain_l(track->sessionId());
   4451             if (chain != 0) {
   4452                 chain->clearInputBuffer();
   4453             }
   4454 
   4455             ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
   4456             if ((track->sharedBuffer() != 0) || track->isTerminated() ||
   4457                     track->isStopped() || track->isPaused()) {
   4458                 // We have consumed all the buffers of this track.
   4459                 // Remove it from the list of active tracks.
   4460                 // TODO: use actual buffer filling status instead of latency when available from
   4461                 // audio HAL
   4462                 size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
   4463                 int64_t framesWritten = mBytesWritten / mFrameSize;
   4464                 if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
   4465                     if (track->isStopped()) {
   4466                         track->reset();
   4467                     }
   4468                     tracksToRemove->add(track);
   4469                 }
   4470             } else {
   4471                 // No buffers for this track. Give it a few chances to
   4472                 // fill a buffer, then remove it from active list.
   4473                 if (--(track->mRetryCount) <= 0) {
   4474                     ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
   4475                     tracksToRemove->add(track);
   4476                     // indicate to client process that the track was disabled because of underrun;
   4477                     // it will then automatically call start() when data is available
   4478                     track->disable();
   4479                 // If one track is not ready, mark the mixer also not ready if:
   4480                 //  - the mixer was ready during previous round OR
   4481                 //  - no other track is ready
   4482                 } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
   4483                                 mixerStatus != MIXER_TRACKS_READY) {
   4484                     mixerStatus = MIXER_TRACKS_ENABLED;
   4485                 }
   4486             }
   4487             mAudioMixer->disable(name);
   4488         }
   4489 
   4490         }   // local variable scope to avoid goto warning
   4491 
   4492     }
   4493 
   4494     // Push the new FastMixer state if necessary
   4495     bool pauseAudioWatchdog = false;
   4496     if (didModify) {
   4497         state->mFastTracksGen++;
   4498         // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
   4499         if (kUseFastMixer == FastMixer_Dynamic &&
   4500                 state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
   4501             state->mCommand = FastMixerState::COLD_IDLE;
   4502             state->mColdFutexAddr = &mFastMixerFutex;
   4503             state->mColdGen++;
   4504             mFastMixerFutex = 0;
   4505             if (kUseFastMixer == FastMixer_Dynamic) {
   4506                 mNormalSink = mOutputSink;
   4507             }
   4508             // If we go into cold idle, need to wait for acknowledgement
   4509             // so that fast mixer stops doing I/O.
   4510             block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
   4511             pauseAudioWatchdog = true;
   4512         }
   4513     }
   4514     if (sq != NULL) {
   4515         sq->end(didModify);
   4516         sq->push(block);
   4517     }
   4518 #ifdef AUDIO_WATCHDOG
   4519     if (pauseAudioWatchdog && mAudioWatchdog != 0) {
   4520         mAudioWatchdog->pause();
   4521     }
   4522 #endif
   4523 
   4524     // Now perform the deferred reset on fast tracks that have stopped
   4525     while (resetMask != 0) {
   4526         size_t i = __builtin_ctz(resetMask);
   4527         ALOG_ASSERT(i < count);
   4528         resetMask &= ~(1 << i);
   4529         sp<Track> t = mActiveTracks[i].promote();
   4530         if (t == 0) {
   4531             continue;
   4532         }
   4533         Track* track = t.get();
   4534         ALOG_ASSERT(track->isFastTrack() && track->isStopped());
   4535         track->reset();
   4536     }
   4537 
   4538     // remove all the tracks that need to be...
   4539     removeTracks_l(*tracksToRemove);
   4540 
   4541     if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
   4542         mEffectBufferValid = true;
   4543     }
   4544 
   4545     if (mEffectBufferValid) {
   4546         // as long as there are effects we should clear the effects buffer, to avoid
   4547         // passing a non-clean buffer to the effect chain
   4548         memset(mEffectBuffer, 0, mEffectBufferSize);
   4549     }
   4550     // sink or mix buffer must be cleared if all tracks are connected to an
   4551     // effect chain as in this case the mixer will not write to the sink or mix buffer
   4552     // and track effects will accumulate into it
   4553     if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
   4554             (mixedTracks == 0 && fastTracks > 0))) {
   4555         // FIXME as a performance optimization, should remember previous zero status
   4556         if (mMixerBufferValid) {
   4557             memset(mMixerBuffer, 0, mMixerBufferSize);
   4558             // TODO: In testing, mSinkBuffer below need not be cleared because
   4559             // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
   4560             // after mixing.
   4561             //
   4562             // To enforce this guarantee:
   4563             // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
   4564             // (mixedTracks == 0 && fastTracks > 0))
   4565             // must imply MIXER_TRACKS_READY.
   4566             // Later, we may clear buffers regardless, and skip much of this logic.
   4567         }
   4568         // FIXME as a performance optimization, should remember previous zero status
   4569         memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
   4570     }
   4571 
   4572     // if any fast tracks, then status is ready
   4573     mMixerStatusIgnoringFastTracks = mixerStatus;
   4574     if (fastTracks > 0) {
   4575         mixerStatus = MIXER_TRACKS_READY;
   4576     }
   4577     return mixerStatus;
   4578 }
   4579 
   4580 // getTrackName_l() must be called with ThreadBase::mLock held
   4581 int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
   4582         audio_format_t format, audio_session_t sessionId)
   4583 {
   4584     return mAudioMixer->getTrackName(channelMask, format, sessionId);
   4585 }
   4586 
   4587 // deleteTrackName_l() must be called with ThreadBase::mLock held
   4588 void AudioFlinger::MixerThread::deleteTrackName_l(int name)
   4589 {
   4590     ALOGV("remove track (%d) and delete from mixer", name);
   4591     mAudioMixer->deleteTrackName(name);
   4592 }
   4593 
   4594 // checkForNewParameter_l() must be called with ThreadBase::mLock held
   4595 bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
   4596                                                        status_t& status)
   4597 {
   4598     bool reconfig = false;
   4599     bool a2dpDeviceChanged = false;
   4600 
   4601     status = NO_ERROR;
   4602 
   4603     AutoPark<FastMixer> park(mFastMixer);
   4604 
   4605     AudioParameter param = AudioParameter(keyValuePair);
   4606     int value;
   4607     if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
   4608         reconfig = true;
   4609     }
   4610     if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
   4611         if (!isValidPcmSinkFormat((audio_format_t) value)) {
   4612             status = BAD_VALUE;
   4613         } else {
   4614             // no need to save value, since it's constant
   4615             reconfig = true;
   4616         }
   4617     }
   4618     if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
   4619         if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
   4620             status = BAD_VALUE;
   4621         } else {
   4622             // no need to save value, since it's constant
   4623             reconfig = true;
   4624         }
   4625     }
   4626     if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
   4627         // do not accept frame count changes if tracks are open as the track buffer
   4628         // size depends on frame count and correct behavior would not be guaranteed
   4629         // if frame count is changed after track creation
   4630         if (!mTracks.isEmpty()) {
   4631             status = INVALID_OPERATION;
   4632         } else {
   4633             reconfig = true;
   4634         }
   4635     }
   4636     if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
   4637 #ifdef ADD_BATTERY_DATA
   4638         // when changing the audio output device, call addBatteryData to notify
   4639         // the change
   4640         if (mOutDevice != value) {
   4641             uint32_t params = 0;
   4642             // check whether speaker is on
   4643             if (value & AUDIO_DEVICE_OUT_SPEAKER) {
   4644                 params |= IMediaPlayerService::kBatteryDataSpeakerOn;
   4645             }
   4646 
   4647             audio_devices_t deviceWithoutSpeaker
   4648                 = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
   4649             // check if any other device (except speaker) is on
   4650             if (value & deviceWithoutSpeaker) {
   4651                 params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
   4652             }
   4653 
   4654             if (params != 0) {
   4655                 addBatteryData(params);
   4656             }
   4657         }
   4658 #endif
   4659 
   4660         // forward device change to effects that have requested to be
   4661         // aware of attached audio device.
   4662         if (value != AUDIO_DEVICE_NONE) {
   4663             a2dpDeviceChanged =
   4664                     (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
   4665             mOutDevice = value;
   4666             for (size_t i = 0; i < mEffectChains.size(); i++) {
   4667                 mEffectChains[i]->setDevice_l(mOutDevice);
   4668             }
   4669         }
   4670     }
   4671 
   4672     if (status == NO_ERROR) {
   4673         status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
   4674                                                 keyValuePair.string());
   4675         if (!mStandby && status == INVALID_OPERATION) {
   4676             mOutput->standby();
   4677             mStandby = true;
   4678             mBytesWritten = 0;
   4679             status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
   4680                                                    keyValuePair.string());
   4681         }
   4682         if (status == NO_ERROR && reconfig) {
   4683             readOutputParameters_l();
   4684             delete mAudioMixer;
   4685             mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
   4686             for (size_t i = 0; i < mTracks.size() ; i++) {
   4687                 int name = getTrackName_l(mTracks[i]->mChannelMask,
   4688                         mTracks[i]->mFormat, mTracks[i]->mSessionId);
   4689                 if (name < 0) {
   4690                     break;
   4691                 }
   4692                 mTracks[i]->mName = name;
   4693             }
   4694             sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
   4695         }
   4696     }
   4697 
   4698     return reconfig || a2dpDeviceChanged;
   4699 }
   4700 
   4701 
   4702 void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
   4703 {
   4704     PlaybackThread::dumpInternals(fd, args);
   4705     dprintf(fd, "  Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
   4706     dprintf(fd, "  AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
   4707     dprintf(fd, "  Master mono: %s\n", mMasterMono ? "on" : "off");
   4708 
   4709     // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
   4710     // while we are dumping it.  It may be inconsistent, but it won't mutate!
   4711     // This is a large object so we place it on the heap.
   4712     // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
   4713     const FastMixerDumpState *copy = new FastMixerDumpState(mFastMixerDumpState);
   4714     copy->dump(fd);
   4715     delete copy;
   4716 
   4717 #ifdef STATE_QUEUE_DUMP
   4718     // Similar for state queue
   4719     StateQueueObserverDump observerCopy = mStateQueueObserverDump;
   4720     observerCopy.dump(fd);
   4721     StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
   4722     mutatorCopy.dump(fd);
   4723 #endif
   4724 
   4725 #ifdef TEE_SINK
   4726     // Write the tee output to a .wav file
   4727     dumpTee(fd, mTeeSource, mId);
   4728 #endif
   4729 
   4730 #ifdef AUDIO_WATCHDOG
   4731     if (mAudioWatchdog != 0) {
   4732         // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
   4733         AudioWatchdogDump wdCopy = mAudioWatchdogDump;
   4734         wdCopy.dump(fd);
   4735     }
   4736 #endif
   4737 }
   4738 
   4739 uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
   4740 {
   4741     return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
   4742 }
   4743 
   4744 uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
   4745 {
   4746     return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
   4747 }
   4748 
   4749 void AudioFlinger::MixerThread::cacheParameters_l()
   4750 {
   4751     PlaybackThread::cacheParameters_l();
   4752 
   4753     // FIXME: Relaxed timing because of a certain device that can't meet latency
   4754     // Should be reduced to 2x after the vendor fixes the driver issue
   4755     // increase threshold again due to low power audio mode. The way this warning
   4756     // threshold is calculated and its usefulness should be reconsidered anyway.
   4757     maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
   4758 }
   4759 
   4760 // ----------------------------------------------------------------------------
   4761 
   4762 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
   4763         AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady)
   4764     :   PlaybackThread(audioFlinger, output, id, device, DIRECT, systemReady)
   4765         // mLeftVolFloat, mRightVolFloat
   4766 {
   4767 }
   4768 
   4769 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
   4770         AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
   4771         ThreadBase::type_t type, bool systemReady)
   4772     :   PlaybackThread(audioFlinger, output, id, device, type, systemReady)
   4773         // mLeftVolFloat, mRightVolFloat
   4774 {
   4775 }
   4776 
   4777 AudioFlinger::DirectOutputThread::~DirectOutputThread()
   4778 {
   4779 }
   4780 
   4781 void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
   4782 {
   4783     float left, right;
   4784 
   4785     if (mMasterMute || mStreamTypes[track->streamType()].mute) {
   4786         left = right = 0;
   4787     } else {
   4788         float typeVolume = mStreamTypes[track->streamType()].volume;
   4789         float v = mMasterVolume * typeVolume;
   4790         AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
   4791         gain_minifloat_packed_t vlr = proxy->getVolumeLR();
   4792         left = float_from_gain(gain_minifloat_unpack_left(vlr));
   4793         if (left > GAIN_FLOAT_UNITY) {
   4794             left = GAIN_FLOAT_UNITY;
   4795         }
   4796         left *= v;
   4797         right = float_from_gain(gain_minifloat_unpack_right(vlr));
   4798         if (right > GAIN_FLOAT_UNITY) {
   4799             right = GAIN_FLOAT_UNITY;
   4800         }
   4801         right *= v;
   4802     }
   4803 
   4804     if (lastTrack) {
   4805         if (left != mLeftVolFloat || right != mRightVolFloat) {
   4806             mLeftVolFloat = left;
   4807             mRightVolFloat = right;
   4808 
   4809             // Convert volumes from float to 8.24
   4810             uint32_t vl = (uint32_t)(left * (1 << 24));
   4811             uint32_t vr = (uint32_t)(right * (1 << 24));
   4812 
   4813             // Delegate volume control to effect in track effect chain if needed
   4814             // only one effect chain can be present on DirectOutputThread, so if
   4815             // there is one, the track is connected to it
   4816             if (!mEffectChains.isEmpty()) {
   4817                 mEffectChains[0]->setVolume_l(&vl, &vr);
   4818                 left = (float)vl / (1 << 24);
   4819                 right = (float)vr / (1 << 24);
   4820             }
   4821             if (mOutput->stream->set_volume) {
   4822                 mOutput->stream->set_volume(mOutput->stream, left, right);
   4823             }
   4824         }
   4825     }
   4826 }
   4827 
   4828 void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
   4829 {
   4830     sp<Track> previousTrack = mPreviousTrack.promote();
   4831     sp<Track> latestTrack = mLatestActiveTrack.promote();
   4832 
   4833     if (previousTrack != 0 && latestTrack != 0) {
   4834         if (mType == DIRECT) {
   4835             if (previousTrack.get() != latestTrack.get()) {
   4836                 mFlushPending = true;
   4837             }
   4838         } else /* mType == OFFLOAD */ {
   4839             if (previousTrack->sessionId() != latestTrack->sessionId()) {
   4840                 mFlushPending = true;
   4841             }
   4842         }
   4843     }
   4844     PlaybackThread::onAddNewTrack_l();
   4845 }
   4846 
   4847 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
   4848     Vector< sp<Track> > *tracksToRemove
   4849 )
   4850 {
   4851     size_t count = mActiveTracks.size();
   4852     mixer_state mixerStatus = MIXER_IDLE;
   4853     bool doHwPause = false;
   4854     bool doHwResume = false;
   4855 
   4856     // find out which tracks need to be processed
   4857     for (size_t i = 0; i < count; i++) {
   4858         sp<Track> t = mActiveTracks[i].promote();
   4859         // The track died recently
   4860         if (t == 0) {
   4861             continue;
   4862         }
   4863 
   4864         if (t->isInvalid()) {
   4865             ALOGW("An invalidated track shouldn't be in active list");
   4866             tracksToRemove->add(t);
   4867             continue;
   4868         }
   4869 
   4870         Track* const track = t.get();
   4871 #ifdef VERY_VERY_VERBOSE_LOGGING
   4872         audio_track_cblk_t* cblk = track->cblk();
   4873 #endif
   4874         // Only consider last track started for volume and mixer state control.
   4875         // In theory an older track could underrun and restart after the new one starts
   4876         // but as we only care about the transition phase between two tracks on a
   4877         // direct output, it is not a problem to ignore the underrun case.
   4878         sp<Track> l = mLatestActiveTrack.promote();
   4879         bool last = l.get() == track;
   4880 
   4881         if (track->isPausing()) {
   4882             track->setPaused();
   4883             if (mHwSupportsPause && last && !mHwPaused) {
   4884                 doHwPause = true;
   4885                 mHwPaused = true;
   4886             }
   4887             tracksToRemove->add(track);
   4888         } else if (track->isFlushPending()) {
   4889             track->flushAck();
   4890             if (last) {
   4891                 mFlushPending = true;
   4892             }
   4893         } else if (track->isResumePending()) {
   4894             track->resumeAck();
   4895             if (last) {
   4896                 mLeftVolFloat = mRightVolFloat = -1.0;
   4897                 if (mHwPaused) {
   4898                     doHwResume = true;
   4899                     mHwPaused = false;
   4900                 }
   4901             }
   4902         }
   4903 
   4904         // The first time a track is added we wait
   4905         // for all its buffers to be filled before processing it.
   4906         // Allow draining the buffer in case the client
   4907         // app does not call stop() and relies on underrun to stop:
   4908         // hence the test on (track->mRetryCount > 1).
   4909         // If retryCount<=1 then track is about to underrun and be removed.
   4910         // Do not use a high threshold for compressed audio.
   4911         uint32_t minFrames;
   4912         if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
   4913             && (track->mRetryCount > 1) && audio_has_proportional_frames(mFormat)) {
   4914             minFrames = mNormalFrameCount;
   4915         } else {
   4916             minFrames = 1;
   4917         }
   4918 
   4919         if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
   4920                 !track->isStopping_2() && !track->isStopped())
   4921         {
   4922             ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
   4923 
   4924             if (track->mFillingUpStatus == Track::FS_FILLED) {
   4925                 track->mFillingUpStatus = Track::FS_ACTIVE;
   4926                 if (last) {
   4927                     // make sure processVolume_l() will apply new volume even if 0
   4928                     mLeftVolFloat = mRightVolFloat = -1.0;
   4929                 }
   4930                 if (!mHwSupportsPause) {
   4931                     track->resumeAck();
   4932                 }
   4933             }
   4934 
   4935             // compute volume for this track
   4936             processVolume_l(track, last);
   4937             if (last) {
   4938                 sp<Track> previousTrack = mPreviousTrack.promote();
   4939                 if (previousTrack != 0) {
   4940                     if (track != previousTrack.get()) {
   4941                         // Flush any data still being written from last track
   4942                         mBytesRemaining = 0;
   4943                         // Invalidate previous track to force a seek when resuming.
   4944                         previousTrack->invalidate();
   4945                     }
   4946                 }
   4947                 mPreviousTrack = track;
   4948 
   4949                 // reset retry count
   4950                 track->mRetryCount = kMaxTrackRetriesDirect;
   4951                 mActiveTrack = t;
   4952                 mixerStatus = MIXER_TRACKS_READY;
   4953                 if (mHwPaused) {
   4954                     doHwResume = true;
   4955                     mHwPaused = false;
   4956                 }
   4957             }
   4958         } else {
   4959             // clear effect chain input buffer if the last active track started underruns
   4960             // to avoid sending previous audio buffer again to effects
   4961             if (!mEffectChains.isEmpty() && last) {
   4962                 mEffectChains[0]->clearInputBuffer();
   4963             }
   4964             if (track->isStopping_1()) {
   4965                 track->mState = TrackBase::STOPPING_2;
   4966                 if (last && mHwPaused) {
   4967                      doHwResume = true;
   4968                      mHwPaused = false;
   4969                  }
   4970             }
   4971             if ((track->sharedBuffer() != 0) || track->isStopped() ||
   4972                     track->isStopping_2() || track->isPaused()) {
   4973                 // We have consumed all the buffers of this track.
   4974                 // Remove it from the list of active tracks.
   4975                 size_t audioHALFrames;
   4976                 if (audio_has_proportional_frames(mFormat)) {
   4977                     audioHALFrames = (latency_l() * mSampleRate) / 1000;
   4978                 } else {
   4979                     audioHALFrames = 0;
   4980                 }
   4981 
   4982                 int64_t framesWritten = mBytesWritten / mFrameSize;
   4983                 if (mStandby || !last ||
   4984                         track->presentationComplete(framesWritten, audioHALFrames)) {
   4985                     if (track->isStopping_2()) {
   4986                         track->mState = TrackBase::STOPPED;
   4987                     }
   4988                     if (track->isStopped()) {
   4989                         track->reset();
   4990                     }
   4991                     tracksToRemove->add(track);
   4992                 }
   4993             } else {
   4994                 // No buffers for this track. Give it a few chances to
   4995                 // fill a buffer, then remove it from active list.
   4996                 // Only consider last track started for mixer state control
   4997                 if (--(track->mRetryCount) <= 0) {
   4998                     ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
   4999                     tracksToRemove->add(track);
   5000                     // indicate to client process that the track was disabled because of underrun;
   5001                     // it will then automatically call start() when data is available
   5002                     track->disable();
   5003                 } else if (last) {
   5004                     ALOGW("pause because of UNDERRUN, framesReady = %zu,"
   5005                             "minFrames = %u, mFormat = %#x",
   5006                             track->framesReady(), minFrames, mFormat);
   5007                     mixerStatus = MIXER_TRACKS_ENABLED;
   5008                     if (mHwSupportsPause && !mHwPaused && !mStandby) {
   5009                         doHwPause = true;
   5010                         mHwPaused = true;
   5011                     }
   5012                 }
   5013             }
   5014         }
   5015     }
   5016 
   5017     // if an active track did not command a flush, check for pending flush on stopped tracks
   5018     if (!mFlushPending) {
   5019         for (size_t i = 0; i < mTracks.size(); i++) {
   5020             if (mTracks[i]->isFlushPending()) {
   5021                 mTracks[i]->flushAck();
   5022                 mFlushPending = true;
   5023             }
   5024         }
   5025     }
   5026 
   5027     // make sure the pause/flush/resume sequence is executed in the right order.
   5028     // If a flush is pending and a track is active but the HW is not paused, force a HW pause
   5029     // before flush and then resume HW. This can happen in case of pause/flush/resume
   5030     // if resume is received before pause is executed.
   5031     if (mHwSupportsPause && !mStandby &&
   5032             (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
   5033         mOutput->stream->pause(mOutput->stream);
   5034     }
   5035     if (mFlushPending) {
   5036         flushHw_l();
   5037     }
   5038     if (mHwSupportsPause && !mStandby && doHwResume) {
   5039         mOutput->stream->resume(mOutput->stream);
   5040     }
   5041     // remove all the tracks that need to be...
   5042     removeTracks_l(*tracksToRemove);
   5043 
   5044     return mixerStatus;
   5045 }
   5046 
   5047 void AudioFlinger::DirectOutputThread::threadLoop_mix()
   5048 {
   5049     size_t frameCount = mFrameCount;
   5050     int8_t *curBuf = (int8_t *)mSinkBuffer;
   5051     // output audio to hardware
   5052     while (frameCount) {
   5053         AudioBufferProvider::Buffer buffer;
   5054         buffer.frameCount = frameCount;
   5055         status_t status = mActiveTrack->getNextBuffer(&buffer);
   5056         if (status != NO_ERROR || buffer.raw == NULL) {
   5057             // no need to pad with 0 for compressed audio
   5058             if (audio_has_proportional_frames(mFormat)) {
   5059                 memset(curBuf, 0, frameCount * mFrameSize);
   5060             }
   5061             break;
   5062         }
   5063         memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
   5064         frameCount -= buffer.frameCount;
   5065         curBuf += buffer.frameCount * mFrameSize;
   5066         mActiveTrack->releaseBuffer(&buffer);
   5067     }
   5068     mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
   5069     mSleepTimeUs = 0;
   5070     mStandbyTimeNs = systemTime() + mStandbyDelayNs;
   5071     mActiveTrack.clear();
   5072 }
   5073 
   5074 void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
   5075 {
   5076     // do not write to HAL when paused
   5077     if (mHwPaused || (usesHwAvSync() && mStandby)) {
   5078         mSleepTimeUs = mIdleSleepTimeUs;
   5079         return;
   5080     }
   5081     if (mSleepTimeUs == 0) {
   5082         if (mMixerStatus == MIXER_TRACKS_ENABLED) {
   5083             mSleepTimeUs = mActiveSleepTimeUs;
   5084         } else {
   5085             mSleepTimeUs = mIdleSleepTimeUs;
   5086         }
   5087     } else if (mBytesWritten != 0 && audio_has_proportional_frames(mFormat)) {
   5088         memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
   5089         mSleepTimeUs = 0;
   5090     }
   5091 }
   5092 
   5093 void AudioFlinger::DirectOutputThread::threadLoop_exit()
   5094 {
   5095     {
   5096         Mutex::Autolock _l(mLock);
   5097         for (size_t i = 0; i < mTracks.size(); i++) {
   5098             if (mTracks[i]->isFlushPending()) {
   5099                 mTracks[i]->flushAck();
   5100                 mFlushPending = true;
   5101             }
   5102         }
   5103         if (mFlushPending) {
   5104             flushHw_l();
   5105         }
   5106     }
   5107     PlaybackThread::threadLoop_exit();
   5108 }
   5109 
   5110 // must be called with thread mutex locked
   5111 bool AudioFlinger::DirectOutputThread::shouldStandby_l()
   5112 {
   5113     bool trackPaused = false;
   5114     bool trackStopped = false;
   5115 
   5116     if ((mType == DIRECT) && audio_is_linear_pcm(mFormat) && !usesHwAvSync()) {
   5117         return !mStandby;
   5118     }
   5119 
   5120     // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
   5121     // after a timeout and we will enter standby then.
   5122     if (mTracks.size() > 0) {
   5123         trackPaused = mTracks[mTracks.size() - 1]->isPaused();
   5124         trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
   5125                            mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
   5126     }
   5127 
   5128     return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
   5129 }
   5130 
   5131 // getTrackName_l() must be called with ThreadBase::mLock held
   5132 int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
   5133         audio_format_t format __unused, audio_session_t sessionId __unused)
   5134 {
   5135     return 0;
   5136 }
   5137 
   5138 // deleteTrackName_l() must be called with ThreadBase::mLock held
   5139 void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
   5140 {
   5141 }
   5142 
   5143 // checkForNewParameter_l() must be called with ThreadBase::mLock held
   5144 bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
   5145                                                               status_t& status)
   5146 {
   5147     bool reconfig = false;
   5148     bool a2dpDeviceChanged = false;
   5149 
   5150     status = NO_ERROR;
   5151 
   5152     AudioParameter param = AudioParameter(keyValuePair);
   5153     int value;
   5154     if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
   5155         // forward device change to effects that have requested to be
   5156         // aware of attached audio device.
   5157         if (value != AUDIO_DEVICE_NONE) {
   5158             a2dpDeviceChanged =
   5159                     (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
   5160             mOutDevice = value;
   5161             for (size_t i = 0; i < mEffectChains.size(); i++) {
   5162                 mEffectChains[i]->setDevice_l(mOutDevice);
   5163             }
   5164         }
   5165     }
   5166     if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
   5167         // do not accept frame count changes if tracks are open as the track buffer
   5168         // size depends on frame count and correct behavior would not be garantied
   5169         // if frame count is changed after track creation
   5170         if (!mTracks.isEmpty()) {
   5171             status = INVALID_OPERATION;
   5172         } else {
   5173             reconfig = true;
   5174         }
   5175     }
   5176     if (status == NO_ERROR) {
   5177         status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
   5178                                                 keyValuePair.string());
   5179         if (!mStandby && status == INVALID_OPERATION) {
   5180             mOutput->standby();
   5181             mStandby = true;
   5182             mBytesWritten = 0;
   5183             status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
   5184                                                    keyValuePair.string());
   5185         }
   5186         if (status == NO_ERROR && reconfig) {
   5187             readOutputParameters_l();
   5188             sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
   5189         }
   5190     }
   5191 
   5192     return reconfig || a2dpDeviceChanged;
   5193 }
   5194 
   5195 uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
   5196 {
   5197     uint32_t time;
   5198     if (audio_has_proportional_frames(mFormat)) {
   5199         time = PlaybackThread::activeSleepTimeUs();
   5200     } else {
   5201         time = kDirectMinSleepTimeUs;
   5202     }
   5203     return time;
   5204 }
   5205 
   5206 uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
   5207 {
   5208     uint32_t time;
   5209     if (audio_has_proportional_frames(mFormat)) {
   5210         time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
   5211     } else {
   5212         time = kDirectMinSleepTimeUs;
   5213     }
   5214     return time;
   5215 }
   5216 
   5217 uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
   5218 {
   5219     uint32_t time;
   5220     if (audio_has_proportional_frames(mFormat)) {
   5221         time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
   5222     } else {
   5223         time = kDirectMinSleepTimeUs;
   5224     }
   5225     return time;
   5226 }
   5227 
   5228 void AudioFlinger::DirectOutputThread::cacheParameters_l()
   5229 {
   5230     PlaybackThread::cacheParameters_l();
   5231 
   5232     // use shorter standby delay as on normal output to release
   5233     // hardware resources as soon as possible
   5234     // no delay on outputs with HW A/V sync
   5235     if (usesHwAvSync()) {
   5236         mStandbyDelayNs = 0;
   5237     } else if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
   5238         mStandbyDelayNs = kOffloadStandbyDelayNs;
   5239     } else {
   5240         mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
   5241     }
   5242 }
   5243 
   5244 void AudioFlinger::DirectOutputThread::flushHw_l()
   5245 {
   5246     mOutput->flush();
   5247     mHwPaused = false;
   5248     mFlushPending = false;
   5249 }
   5250 
   5251 // ----------------------------------------------------------------------------
   5252 
   5253 AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
   5254         const wp<AudioFlinger::PlaybackThread>& playbackThread)
   5255     :   Thread(false /*canCallJava*/),
   5256         mPlaybackThread(playbackThread),
   5257         mWriteAckSequence(0),
   5258         mDrainSequence(0),
   5259         mAsyncError(false)
   5260 {
   5261 }
   5262 
   5263 AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
   5264 {
   5265 }
   5266 
   5267 void AudioFlinger::AsyncCallbackThread::onFirstRef()
   5268 {
   5269     run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
   5270 }
   5271 
   5272 bool AudioFlinger::AsyncCallbackThread::threadLoop()
   5273 {
   5274     while (!exitPending()) {
   5275         uint32_t writeAckSequence;
   5276         uint32_t drainSequence;
   5277         bool asyncError;
   5278 
   5279         {
   5280             Mutex::Autolock _l(mLock);
   5281             while (!((mWriteAckSequence & 1) ||
   5282                      (mDrainSequence & 1) ||
   5283                      mAsyncError ||
   5284                      exitPending())) {
   5285                 mWaitWorkCV.wait(mLock);
   5286             }
   5287 
   5288             if (exitPending()) {
   5289                 break;
   5290             }
   5291             ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
   5292                   mWriteAckSequence, mDrainSequence);
   5293             writeAckSequence = mWriteAckSequence;
   5294             mWriteAckSequence &= ~1;
   5295             drainSequence = mDrainSequence;
   5296             mDrainSequence &= ~1;
   5297             asyncError = mAsyncError;
   5298             mAsyncError = false;
   5299         }
   5300         {
   5301             sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
   5302             if (playbackThread != 0) {
   5303                 if (writeAckSequence & 1) {
   5304                     playbackThread->resetWriteBlocked(writeAckSequence >> 1);
   5305                 }
   5306                 if (drainSequence & 1) {
   5307                     playbackThread->resetDraining(drainSequence >> 1);
   5308                 }
   5309                 if (asyncError) {
   5310                     playbackThread->onAsyncError();
   5311                 }
   5312             }
   5313         }
   5314     }
   5315     return false;
   5316 }
   5317 
   5318 void AudioFlinger::AsyncCallbackThread::exit()
   5319 {
   5320     ALOGV("AsyncCallbackThread::exit");
   5321     Mutex::Autolock _l(mLock);
   5322     requestExit();
   5323     mWaitWorkCV.broadcast();
   5324 }
   5325 
   5326 void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
   5327 {
   5328     Mutex::Autolock _l(mLock);
   5329     // bit 0 is cleared
   5330     mWriteAckSequence = sequence << 1;
   5331 }
   5332 
   5333 void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
   5334 {
   5335     Mutex::Autolock _l(mLock);
   5336     // ignore unexpected callbacks
   5337     if (mWriteAckSequence & 2) {
   5338         mWriteAckSequence |= 1;
   5339         mWaitWorkCV.signal();
   5340     }
   5341 }
   5342 
   5343 void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
   5344 {
   5345     Mutex::Autolock _l(mLock);
   5346     // bit 0 is cleared
   5347     mDrainSequence = sequence << 1;
   5348 }
   5349 
   5350 void AudioFlinger::AsyncCallbackThread::resetDraining()
   5351 {
   5352     Mutex::Autolock _l(mLock);
   5353     // ignore unexpected callbacks
   5354     if (mDrainSequence & 2) {
   5355         mDrainSequence |= 1;
   5356         mWaitWorkCV.signal();
   5357     }
   5358 }
   5359 
   5360 void AudioFlinger::AsyncCallbackThread::setAsyncError()
   5361 {
   5362     Mutex::Autolock _l(mLock);
   5363     mAsyncError = true;
   5364     mWaitWorkCV.signal();
   5365 }
   5366 
   5367 
   5368 // ----------------------------------------------------------------------------
   5369 AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
   5370         AudioStreamOut* output, audio_io_handle_t id, uint32_t device, bool systemReady)
   5371     :   DirectOutputThread(audioFlinger, output, id, device, OFFLOAD, systemReady),
   5372         mPausedWriteLength(0), mPausedBytesRemaining(0), mKeepWakeLock(true),
   5373         mOffloadUnderrunPosition(~0LL)
   5374 {
   5375     //FIXME: mStandby should be set to true by ThreadBase constructor
   5376     mStandby = true;
   5377     mKeepWakeLock = property_get_bool("ro.audio.offload_wakelock", true /* default_value */);
   5378 }
   5379 
   5380 void AudioFlinger::OffloadThread::threadLoop_exit()
   5381 {
   5382     if (mFlushPending || mHwPaused) {
   5383         // If a flush is pending or track was paused, just discard buffered data
   5384         flushHw_l();
   5385     } else {
   5386         mMixerStatus = MIXER_DRAIN_ALL;
   5387         threadLoop_drain();
   5388     }
   5389     if (mUseAsyncWrite) {
   5390         ALOG_ASSERT(mCallbackThread != 0);
   5391         mCallbackThread->exit();
   5392     }
   5393     PlaybackThread::threadLoop_exit();
   5394 }
   5395 
   5396 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
   5397     Vector< sp<Track> > *tracksToRemove
   5398 )
   5399 {
   5400     size_t count = mActiveTracks.size();
   5401 
   5402     mixer_state mixerStatus = MIXER_IDLE;
   5403     bool doHwPause = false;
   5404     bool doHwResume = false;
   5405 
   5406     ALOGV("OffloadThread::prepareTracks_l active tracks %zu", count);
   5407 
   5408     // find out which tracks need to be processed
   5409     for (size_t i = 0; i < count; i++) {
   5410         sp<Track> t = mActiveTracks[i].promote();
   5411         // The track died recently
   5412         if (t == 0) {
   5413             continue;
   5414         }
   5415         Track* const track = t.get();
   5416 #ifdef VERY_VERY_VERBOSE_LOGGING
   5417         audio_track_cblk_t* cblk = track->cblk();
   5418 #endif
   5419         // Only consider last track started for volume and mixer state control.
   5420         // In theory an older track could underrun and restart after the new one starts
   5421         // but as we only care about the transition phase between two tracks on a
   5422         // direct output, it is not a problem to ignore the underrun case.
   5423         sp<Track> l = mLatestActiveTrack.promote();
   5424         bool last = l.get() == track;
   5425 
   5426         if (track->isInvalid()) {
   5427             ALOGW("An invalidated track shouldn't be in active list");
   5428             tracksToRemove->add(track);
   5429             continue;
   5430         }
   5431 
   5432         if (track->mState == TrackBase::IDLE) {
   5433             ALOGW("An idle track shouldn't be in active list");
   5434             continue;
   5435         }
   5436 
   5437         if (track->isPausing()) {
   5438             track->setPaused();
   5439             if (last) {
   5440                 if (mHwSupportsPause && !mHwPaused) {
   5441                     doHwPause = true;
   5442                     mHwPaused = true;
   5443                 }
   5444                 // If we were part way through writing the mixbuffer to
   5445                 // the HAL we must save this until we resume
   5446                 // BUG - this will be wrong if a different track is made active,
   5447                 // in that case we want to discard the pending data in the
   5448                 // mixbuffer and tell the client to present it again when the
   5449                 // track is resumed
   5450                 mPausedWriteLength = mCurrentWriteLength;
   5451                 mPausedBytesRemaining = mBytesRemaining;
   5452                 mBytesRemaining = 0;    // stop writing
   5453             }
   5454             tracksToRemove->add(track);
   5455         } else if (track->isFlushPending()) {
   5456             if (track->isStopping_1()) {
   5457                 track->mRetryCount = kMaxTrackStopRetriesOffload;
   5458             } else {
   5459                 track->mRetryCount = kMaxTrackRetriesOffload;
   5460             }
   5461             track->flushAck();
   5462             if (last) {
   5463                 mFlushPending = true;
   5464             }
   5465         } else if (track->isResumePending()){
   5466             track->resumeAck();
   5467             if (last) {
   5468                 if (mPausedBytesRemaining) {
   5469                     // Need to continue write that was interrupted
   5470                     mCurrentWriteLength = mPausedWriteLength;
   5471                     mBytesRemaining = mPausedBytesRemaining;
   5472                     mPausedBytesRemaining = 0;
   5473                 }
   5474                 if (mHwPaused) {
   5475                     doHwResume = true;
   5476                     mHwPaused = false;
   5477                     // threadLoop_mix() will handle the case that we need to
   5478                     // resume an interrupted write
   5479                 }
   5480                 // enable write to audio HAL
   5481                 mSleepTimeUs = 0;
   5482 
   5483                 mLeftVolFloat = mRightVolFloat = -1.0;
   5484 
   5485                 // Do not handle new data in this iteration even if track->framesReady()
   5486                 mixerStatus = MIXER_TRACKS_ENABLED;
   5487             }
   5488         }  else if (track->framesReady() && track->isReady() &&
   5489                 !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
   5490             ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
   5491             if (track->mFillingUpStatus == Track::FS_FILLED) {
   5492                 track->mFillingUpStatus = Track::FS_ACTIVE;
   5493                 if (last) {
   5494                     // make sure processVolume_l() will apply new volume even if 0
   5495                     mLeftVolFloat = mRightVolFloat = -1.0;
   5496                 }
   5497             }
   5498 
   5499             if (last) {
   5500                 sp<Track> previousTrack = mPreviousTrack.promote();
   5501                 if (previousTrack != 0) {
   5502                     if (track != previousTrack.get()) {
   5503                         // Flush any data still being written from last track
   5504                         mBytesRemaining = 0;
   5505                         if (mPausedBytesRemaining) {
   5506                             // Last track was paused so we also need to flush saved
   5507                             // mixbuffer state and invalidate track so that it will
   5508                             // re-submit that unwritten data when it is next resumed
   5509                             mPausedBytesRemaining = 0;
   5510                             // Invalidate is a bit drastic - would be more efficient
   5511                             // to have a flag to tell client that some of the
   5512                             // previously written data was lost
   5513                             previousTrack->invalidate();
   5514                         }
   5515                         // flush data already sent to the DSP if changing audio session as audio
   5516                         // comes from a different source. Also invalidate previous track to force a
   5517                         // seek when resuming.
   5518                         if (previousTrack->sessionId() != track->sessionId()) {
   5519                             previousTrack->invalidate();
   5520                         }
   5521                     }
   5522                 }
   5523                 mPreviousTrack = track;
   5524                 // reset retry count
   5525                 if (track->isStopping_1()) {
   5526                     track->mRetryCount = kMaxTrackStopRetriesOffload;
   5527                 } else {
   5528                     track->mRetryCount = kMaxTrackRetriesOffload;
   5529                 }
   5530                 mActiveTrack = t;
   5531                 mixerStatus = MIXER_TRACKS_READY;
   5532             }
   5533         } else {
   5534             ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
   5535             if (track->isStopping_1()) {
   5536                 if (--(track->mRetryCount) <= 0) {
   5537                     // Hardware buffer can hold a large amount of audio so we must
   5538                     // wait for all current track's data to drain before we say
   5539                     // that the track is stopped.
   5540                     if (mBytesRemaining == 0) {
   5541                         // Only start draining when all data in mixbuffer
   5542                         // has been written
   5543                         ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
   5544                         track->mState = TrackBase::STOPPING_2; // so presentation completes after
   5545                         // drain do not drain if no data was ever sent to HAL (mStandby == true)
   5546                         if (last && !mStandby) {
   5547                             // do not modify drain sequence if we are already draining. This happens
   5548                             // when resuming from pause after drain.
   5549                             if ((mDrainSequence & 1) == 0) {
   5550                                 mSleepTimeUs = 0;
   5551                                 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
   5552                                 mixerStatus = MIXER_DRAIN_TRACK;
   5553                                 mDrainSequence += 2;
   5554                             }
   5555                             if (mHwPaused) {
   5556                                 // It is possible to move from PAUSED to STOPPING_1 without
   5557                                 // a resume so we must ensure hardware is running
   5558                                 doHwResume = true;
   5559                                 mHwPaused = false;
   5560                             }
   5561                         }
   5562                     }
   5563                 } else if (last) {
   5564                     ALOGV("stopping1 underrun retries left %d", track->mRetryCount);
   5565                     mixerStatus = MIXER_TRACKS_ENABLED;
   5566                 }
   5567             } else if (track->isStopping_2()) {
   5568                 // Drain has completed or we are in standby, signal presentation complete
   5569                 if (!(mDrainSequence & 1) || !last || mStandby) {
   5570                     track->mState = TrackBase::STOPPED;
   5571                     size_t audioHALFrames =
   5572                             (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
   5573                     int64_t framesWritten =
   5574                             mBytesWritten / mOutput->getFrameSize();
   5575                     track->presentationComplete(framesWritten, audioHALFrames);
   5576                     track->reset();
   5577                     tracksToRemove->add(track);
   5578                 }
   5579             } else {
   5580                 // No buffers for this track. Give it a few chances to
   5581                 // fill a buffer, then remove it from active list.
   5582                 if (--(track->mRetryCount) <= 0) {
   5583                     bool running = false;
   5584                     if (mOutput->stream->get_presentation_position != nullptr) {
   5585                         uint64_t position = 0;
   5586                         struct timespec unused;
   5587                         // The running check restarts the retry counter at least once.
   5588                         int ret = mOutput->stream->get_presentation_position(
   5589                                 mOutput->stream, &position, &unused);
   5590                         if (ret == NO_ERROR && position != mOffloadUnderrunPosition) {
   5591                             running = true;
   5592                             mOffloadUnderrunPosition = position;
   5593                         }
   5594                         ALOGVV("underrun counter, running(%d): %lld vs %lld", running,
   5595                                 (long long)position, (long long)mOffloadUnderrunPosition);
   5596                     }
   5597                     if (running) { // still running, give us more time.
   5598                         track->mRetryCount = kMaxTrackRetriesOffload;
   5599                     } else {
   5600                         ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
   5601                                 track->name());
   5602                         tracksToRemove->add(track);
   5603                         // indicate to client process that the track was disabled because of underrun;
   5604                         // it will then automatically call start() when data is available
   5605                         track->disable();
   5606                     }
   5607                 } else if (last){
   5608                     mixerStatus = MIXER_TRACKS_ENABLED;
   5609                 }
   5610             }
   5611         }
   5612         // compute volume for this track
   5613         processVolume_l(track, last);
   5614     }
   5615 
   5616     // make sure the pause/flush/resume sequence is executed in the right order.
   5617     // If a flush is pending and a track is active but the HW is not paused, force a HW pause
   5618     // before flush and then resume HW. This can happen in case of pause/flush/resume
   5619     // if resume is received before pause is executed.
   5620     if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
   5621         mOutput->stream->pause(mOutput->stream);
   5622     }
   5623     if (mFlushPending) {
   5624         flushHw_l();
   5625     }
   5626     if (!mStandby && doHwResume) {
   5627         mOutput->stream->resume(mOutput->stream);
   5628     }
   5629 
   5630     // remove all the tracks that need to be...
   5631     removeTracks_l(*tracksToRemove);
   5632 
   5633     return mixerStatus;
   5634 }
   5635 
   5636 // must be called with thread mutex locked
   5637 bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
   5638 {
   5639     ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
   5640           mWriteAckSequence, mDrainSequence);
   5641     if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
   5642         return true;
   5643     }
   5644     return false;
   5645 }
   5646 
   5647 bool AudioFlinger::OffloadThread::waitingAsyncCallback()
   5648 {
   5649     Mutex::Autolock _l(mLock);
   5650     return waitingAsyncCallback_l();
   5651 }
   5652 
   5653 void AudioFlinger::OffloadThread::flushHw_l()
   5654 {
   5655     DirectOutputThread::flushHw_l();
   5656     // Flush anything still waiting in the mixbuffer
   5657     mCurrentWriteLength = 0;
   5658     mBytesRemaining = 0;
   5659     mPausedWriteLength = 0;
   5660     mPausedBytesRemaining = 0;
   5661     // reset bytes written count to reflect that DSP buffers are empty after flush.
   5662     mBytesWritten = 0;
   5663     mOffloadUnderrunPosition = ~0LL;
   5664 
   5665     if (mUseAsyncWrite) {
   5666         // discard any pending drain or write ack by incrementing sequence
   5667         mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
   5668         mDrainSequence = (mDrainSequence + 2) & ~1;
   5669         ALOG_ASSERT(mCallbackThread != 0);
   5670         mCallbackThread->setWriteBlocked(mWriteAckSequence);
   5671         mCallbackThread->setDraining(mDrainSequence);
   5672     }
   5673 }
   5674 
   5675 void AudioFlinger::OffloadThread::invalidateTracks(audio_stream_type_t streamType)
   5676 {
   5677     Mutex::Autolock _l(mLock);
   5678     if (PlaybackThread::invalidateTracks_l(streamType)) {
   5679         mFlushPending = true;
   5680     }
   5681 }
   5682 
   5683 // ----------------------------------------------------------------------------
   5684 
   5685 AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
   5686         AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
   5687     :   MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
   5688                     systemReady, DUPLICATING),
   5689         mWaitTimeMs(UINT_MAX)
   5690 {
   5691     addOutputTrack(mainThread);
   5692 }
   5693 
   5694 AudioFlinger::DuplicatingThread::~DuplicatingThread()
   5695 {
   5696     for (size_t i = 0; i < mOutputTracks.size(); i++) {
   5697         mOutputTracks[i]->destroy();
   5698     }
   5699 }
   5700 
   5701 void AudioFlinger::DuplicatingThread::threadLoop_mix()
   5702 {
   5703     // mix buffers...
   5704     if (outputsReady(outputTracks)) {
   5705         mAudioMixer->process();
   5706     } else {
   5707         if (mMixerBufferValid) {
   5708             memset(mMixerBuffer, 0, mMixerBufferSize);
   5709         } else {
   5710             memset(mSinkBuffer, 0, mSinkBufferSize);
   5711         }
   5712     }
   5713     mSleepTimeUs = 0;
   5714     writeFrames = mNormalFrameCount;
   5715     mCurrentWriteLength = mSinkBufferSize;
   5716     mStandbyTimeNs = systemTime() + mStandbyDelayNs;
   5717 }
   5718 
   5719 void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
   5720 {
   5721     if (mSleepTimeUs == 0) {
   5722         if (mMixerStatus == MIXER_TRACKS_ENABLED) {
   5723             mSleepTimeUs = mActiveSleepTimeUs;
   5724         } else {
   5725             mSleepTimeUs = mIdleSleepTimeUs;
   5726         }
   5727     } else if (mBytesWritten != 0) {
   5728         if (mMixerStatus == MIXER_TRACKS_ENABLED) {
   5729             writeFrames = mNormalFrameCount;
   5730             memset(mSinkBuffer, 0, mSinkBufferSize);
   5731         } else {
   5732             // flush remaining overflow buffers in output tracks
   5733             writeFrames = 0;
   5734         }
   5735         mSleepTimeUs = 0;
   5736     }
   5737 }
   5738 
   5739 ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
   5740 {
   5741     for (size_t i = 0; i < outputTracks.size(); i++) {
   5742         outputTracks[i]->write(mSinkBuffer, writeFrames);
   5743     }
   5744     mStandby = false;
   5745     return (ssize_t)mSinkBufferSize;
   5746 }
   5747 
   5748 void AudioFlinger::DuplicatingThread::threadLoop_standby()
   5749 {
   5750     // DuplicatingThread implements standby by stopping all tracks
   5751     for (size_t i = 0; i < outputTracks.size(); i++) {
   5752         outputTracks[i]->stop();
   5753     }
   5754 }
   5755 
   5756 void AudioFlinger::DuplicatingThread::saveOutputTracks()
   5757 {
   5758     outputTracks = mOutputTracks;
   5759 }
   5760 
   5761 void AudioFlinger::DuplicatingThread::clearOutputTracks()
   5762 {
   5763     outputTracks.clear();
   5764 }
   5765 
   5766 void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
   5767 {
   5768     Mutex::Autolock _l(mLock);
   5769     // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
   5770     // Adjust for thread->sampleRate() to determine minimum buffer frame count.
   5771     // Then triple buffer because Threads do not run synchronously and may not be clock locked.
   5772     const size_t frameCount =
   5773             3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
   5774     // TODO: Consider asynchronous sample rate conversion to handle clock disparity
   5775     // from different OutputTracks and their associated MixerThreads (e.g. one may
   5776     // nearly empty and the other may be dropping data).
   5777 
   5778     sp<OutputTrack> outputTrack = new OutputTrack(thread,
   5779                                             this,
   5780                                             mSampleRate,
   5781                                             mFormat,
   5782                                             mChannelMask,
   5783                                             frameCount,
   5784                                             IPCThreadState::self()->getCallingUid());
   5785     status_t status = outputTrack != 0 ? outputTrack->initCheck() : (status_t) NO_MEMORY;
   5786     if (status != NO_ERROR) {
   5787         ALOGE("addOutputTrack() initCheck failed %d", status);
   5788         return;
   5789     }
   5790     thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
   5791     mOutputTracks.add(outputTrack);
   5792     ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
   5793     updateWaitTime_l();
   5794 }
   5795 
   5796 void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
   5797 {
   5798     Mutex::Autolock _l(mLock);
   5799     for (size_t i = 0; i < mOutputTracks.size(); i++) {
   5800         if (mOutputTracks[i]->thread() == thread) {
   5801             mOutputTracks[i]->destroy();
   5802             mOutputTracks.removeAt(i);
   5803             updateWaitTime_l();
   5804             if (thread->getOutput() == mOutput) {
   5805                 mOutput = NULL;
   5806             }
   5807             return;
   5808         }
   5809     }
   5810     ALOGV("removeOutputTrack(): unknown thread: %p", thread);
   5811 }
   5812 
   5813 // caller must hold mLock
   5814 void AudioFlinger::DuplicatingThread::updateWaitTime_l()
   5815 {
   5816     mWaitTimeMs = UINT_MAX;
   5817     for (size_t i = 0; i < mOutputTracks.size(); i++) {
   5818         sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
   5819         if (strong != 0) {
   5820             uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
   5821             if (waitTimeMs < mWaitTimeMs) {
   5822                 mWaitTimeMs = waitTimeMs;
   5823             }
   5824         }
   5825     }
   5826 }
   5827 
   5828 
   5829 bool AudioFlinger::DuplicatingThread::outputsReady(
   5830         const SortedVector< sp<OutputTrack> > &outputTracks)
   5831 {
   5832     for (size_t i = 0; i < outputTracks.size(); i++) {
   5833         sp<ThreadBase> thread = outputTracks[i]->thread().promote();
   5834         if (thread == 0) {
   5835             ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
   5836                     outputTracks[i].get());
   5837             return false;
   5838         }
   5839         PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
   5840         // see note at standby() declaration
   5841         if (playbackThread->standby() && !playbackThread->isSuspended()) {
   5842             ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
   5843                     thread.get());
   5844             return false;
   5845         }
   5846     }
   5847     return true;
   5848 }
   5849 
   5850 uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
   5851 {
   5852     return (mWaitTimeMs * 1000) / 2;
   5853 }
   5854 
   5855 void AudioFlinger::DuplicatingThread::cacheParameters_l()
   5856 {
   5857     // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
   5858     updateWaitTime_l();
   5859 
   5860     MixerThread::cacheParameters_l();
   5861 }
   5862 
   5863 // ----------------------------------------------------------------------------
   5864 //      Record
   5865 // ----------------------------------------------------------------------------
   5866 
   5867 AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
   5868                                          AudioStreamIn *input,
   5869                                          audio_io_handle_t id,
   5870                                          audio_devices_t outDevice,
   5871                                          audio_devices_t inDevice,
   5872                                          bool systemReady
   5873 #ifdef TEE_SINK
   5874                                          , const sp<NBAIO_Sink>& teeSink
   5875 #endif
   5876                                          ) :
   5877     ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD, systemReady),
   5878     mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL),
   5879     // mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l()
   5880     mRsmpInRear(0)
   5881 #ifdef TEE_SINK
   5882     , mTeeSink(teeSink)
   5883 #endif
   5884     , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
   5885             "RecordThreadRO", MemoryHeapBase::READ_ONLY))
   5886     // mFastCapture below
   5887     , mFastCaptureFutex(0)
   5888     // mInputSource
   5889     // mPipeSink
   5890     // mPipeSource
   5891     , mPipeFramesP2(0)
   5892     // mPipeMemory
   5893     // mFastCaptureNBLogWriter
   5894     , mFastTrackAvail(false)
   5895 {
   5896     snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
   5897     mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
   5898 
   5899     readInputParameters_l();
   5900 
   5901     // create an NBAIO source for the HAL input stream, and negotiate
   5902     mInputSource = new AudioStreamInSource(input->stream);
   5903     size_t numCounterOffers = 0;
   5904     const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
   5905 #if !LOG_NDEBUG
   5906     ssize_t index =
   5907 #else
   5908     (void)
   5909 #endif
   5910             mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
   5911     ALOG_ASSERT(index == 0);
   5912 
   5913     // initialize fast capture depending on configuration
   5914     bool initFastCapture;
   5915     switch (kUseFastCapture) {
   5916     case FastCapture_Never:
   5917         initFastCapture = false;
   5918         break;
   5919     case FastCapture_Always:
   5920         initFastCapture = true;
   5921         break;
   5922     case FastCapture_Static:
   5923         initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
   5924         break;
   5925     // case FastCapture_Dynamic:
   5926     }
   5927 
   5928     if (initFastCapture) {
   5929         // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
   5930         NBAIO_Format format = mInputSource->format();
   5931         size_t pipeFramesP2 = roundup(mSampleRate / 25);    // double-buffering of 20 ms each
   5932         size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
   5933         void *pipeBuffer;
   5934         const sp<MemoryDealer> roHeap(readOnlyHeap());
   5935         sp<IMemory> pipeMemory;
   5936         if ((roHeap == 0) ||
   5937                 (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
   5938                 (pipeBuffer = pipeMemory->pointer()) == NULL) {
   5939             ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
   5940             goto failed;
   5941         }
   5942         // pipe will be shared directly with fast clients, so clear to avoid leaking old information
   5943         memset(pipeBuffer, 0, pipeSize);
   5944         Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
   5945         const NBAIO_Format offers[1] = {format};
   5946         size_t numCounterOffers = 0;
   5947         ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
   5948         ALOG_ASSERT(index == 0);
   5949         mPipeSink = pipe;
   5950         PipeReader *pipeReader = new PipeReader(*pipe);
   5951         numCounterOffers = 0;
   5952         index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
   5953         ALOG_ASSERT(index == 0);
   5954         mPipeSource = pipeReader;
   5955         mPipeFramesP2 = pipeFramesP2;
   5956         mPipeMemory = pipeMemory;
   5957 
   5958         // create fast capture
   5959         mFastCapture = new FastCapture();
   5960         FastCaptureStateQueue *sq = mFastCapture->sq();
   5961 #ifdef STATE_QUEUE_DUMP
   5962         // FIXME
   5963 #endif
   5964         FastCaptureState *state = sq->begin();
   5965         state->mCblk = NULL;
   5966         state->mInputSource = mInputSource.get();
   5967         state->mInputSourceGen++;
   5968         state->mPipeSink = pipe;
   5969         state->mPipeSinkGen++;
   5970         state->mFrameCount = mFrameCount;
   5971         state->mCommand = FastCaptureState::COLD_IDLE;
   5972         // already done in constructor initialization list
   5973         //mFastCaptureFutex = 0;
   5974         state->mColdFutexAddr = &mFastCaptureFutex;
   5975         state->mColdGen++;
   5976         state->mDumpState = &mFastCaptureDumpState;
   5977 #ifdef TEE_SINK
   5978         // FIXME
   5979 #endif
   5980         mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
   5981         state->mNBLogWriter = mFastCaptureNBLogWriter.get();
   5982         sq->end();
   5983         sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
   5984 
   5985         // start the fast capture
   5986         mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
   5987         pid_t tid = mFastCapture->getTid();
   5988         sendPrioConfigEvent(getpid_cached, tid, kPriorityFastCapture);
   5989 #ifdef AUDIO_WATCHDOG
   5990         // FIXME
   5991 #endif
   5992 
   5993         mFastTrackAvail = true;
   5994     }
   5995 failed: ;
   5996 
   5997     // FIXME mNormalSource
   5998 }
   5999 
   6000 AudioFlinger::RecordThread::~RecordThread()
   6001 {
   6002     if (mFastCapture != 0) {
   6003         FastCaptureStateQueue *sq = mFastCapture->sq();
   6004         FastCaptureState *state = sq->begin();
   6005         if (state->mCommand == FastCaptureState::COLD_IDLE) {
   6006             int32_t old = android_atomic_inc(&mFastCaptureFutex);
   6007             if (old == -1) {
   6008                 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
   6009             }
   6010         }
   6011         state->mCommand = FastCaptureState::EXIT;
   6012         sq->end();
   6013         sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
   6014         mFastCapture->join();
   6015         mFastCapture.clear();
   6016     }
   6017     mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
   6018     mAudioFlinger->unregisterWriter(mNBLogWriter);
   6019     free(mRsmpInBuffer);
   6020 }
   6021 
   6022 void AudioFlinger::RecordThread::onFirstRef()
   6023 {
   6024     run(mThreadName, PRIORITY_URGENT_AUDIO);
   6025 }
   6026 
   6027 bool AudioFlinger::RecordThread::threadLoop()
   6028 {
   6029     nsecs_t lastWarning = 0;
   6030 
   6031     inputStandBy();
   6032 
   6033 reacquire_wakelock:
   6034     sp<RecordTrack> activeTrack;
   6035     int activeTracksGen;
   6036     {
   6037         Mutex::Autolock _l(mLock);
   6038         size_t size = mActiveTracks.size();
   6039         activeTracksGen = mActiveTracksGen;
   6040         if (size > 0) {
   6041             // FIXME an arbitrary choice
   6042             activeTrack = mActiveTracks[0];
   6043             acquireWakeLock_l(activeTrack->uid());
   6044             if (size > 1) {
   6045                 SortedVector<int> tmp;
   6046                 for (size_t i = 0; i < size; i++) {
   6047                     tmp.add(mActiveTracks[i]->uid());
   6048                 }
   6049                 updateWakeLockUids_l(tmp);
   6050             }
   6051         } else {
   6052             acquireWakeLock_l(-1);
   6053         }
   6054     }
   6055 
   6056     // used to request a deferred sleep, to be executed later while mutex is unlocked
   6057     uint32_t sleepUs = 0;
   6058 
   6059     // loop while there is work to do
   6060     for (;;) {
   6061         Vector< sp<EffectChain> > effectChains;
   6062 
   6063         // activeTracks accumulates a copy of a subset of mActiveTracks
   6064         Vector< sp<RecordTrack> > activeTracks;
   6065 
   6066         // reference to the (first and only) active fast track
   6067         sp<RecordTrack> fastTrack;
   6068 
   6069         // reference to a fast track which is about to be removed
   6070         sp<RecordTrack> fastTrackToRemove;
   6071 
   6072         { // scope for mLock
   6073             Mutex::Autolock _l(mLock);
   6074 
   6075             processConfigEvents_l();
   6076 
   6077             // check exitPending here because checkForNewParameters_l() and
   6078             // checkForNewParameters_l() can temporarily release mLock
   6079             if (exitPending()) {
   6080                 break;
   6081             }
   6082 
   6083             // sleep with mutex unlocked
   6084             if (sleepUs > 0) {
   6085                 ATRACE_BEGIN("sleepC");
   6086                 mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)sleepUs));
   6087                 ATRACE_END();
   6088                 sleepUs = 0;
   6089                 continue;
   6090             }
   6091 
   6092             // if no active track(s), then standby and release wakelock
   6093             size_t size = mActiveTracks.size();
   6094             if (size == 0) {
   6095                 standbyIfNotAlreadyInStandby();
   6096                 // exitPending() can't become true here
   6097                 releaseWakeLock_l();
   6098                 ALOGV("RecordThread: loop stopping");
   6099                 // go to sleep
   6100                 mWaitWorkCV.wait(mLock);
   6101                 ALOGV("RecordThread: loop starting");
   6102                 goto reacquire_wakelock;
   6103             }
   6104 
   6105             if (mActiveTracksGen != activeTracksGen) {
   6106                 activeTracksGen = mActiveTracksGen;
   6107                 SortedVector<int> tmp;
   6108                 for (size_t i = 0; i < size; i++) {
   6109                     tmp.add(mActiveTracks[i]->uid());
   6110                 }
   6111                 updateWakeLockUids_l(tmp);
   6112             }
   6113 
   6114             bool doBroadcast = false;
   6115             bool allStopped = true;
   6116             for (size_t i = 0; i < size; ) {
   6117 
   6118                 activeTrack = mActiveTracks[i];
   6119                 if (activeTrack->isTerminated()) {
   6120                     if (activeTrack->isFastTrack()) {
   6121                         ALOG_ASSERT(fastTrackToRemove == 0);
   6122                         fastTrackToRemove = activeTrack;
   6123                     }
   6124                     removeTrack_l(activeTrack);
   6125                     mActiveTracks.remove(activeTrack);
   6126                     mActiveTracksGen++;
   6127                     size--;
   6128                     continue;
   6129                 }
   6130 
   6131                 TrackBase::track_state activeTrackState = activeTrack->mState;
   6132                 switch (activeTrackState) {
   6133 
   6134                 case TrackBase::PAUSING:
   6135                     mActiveTracks.remove(activeTrack);
   6136                     mActiveTracksGen++;
   6137                     doBroadcast = true;
   6138                     size--;
   6139                     continue;
   6140 
   6141                 case TrackBase::STARTING_1:
   6142                     sleepUs = 10000;
   6143                     i++;
   6144                     allStopped = false;
   6145                     continue;
   6146 
   6147                 case TrackBase::STARTING_2:
   6148                     doBroadcast = true;
   6149                     mStandby = false;
   6150                     activeTrack->mState = TrackBase::ACTIVE;
   6151                     allStopped = false;
   6152                     break;
   6153 
   6154                 case TrackBase::ACTIVE:
   6155                     allStopped = false;
   6156                     break;
   6157 
   6158                 case TrackBase::IDLE:
   6159                     i++;
   6160                     continue;
   6161 
   6162                 default:
   6163                     LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
   6164                 }
   6165 
   6166                 activeTracks.add(activeTrack);
   6167                 i++;
   6168 
   6169                 if (activeTrack->isFastTrack()) {
   6170                     ALOG_ASSERT(!mFastTrackAvail);
   6171                     ALOG_ASSERT(fastTrack == 0);
   6172                     fastTrack = activeTrack;
   6173                 }
   6174             }
   6175 
   6176             if (allStopped) {
   6177                 standbyIfNotAlreadyInStandby();
   6178             }
   6179             if (doBroadcast) {
   6180                 mStartStopCond.broadcast();
   6181             }
   6182 
   6183             // sleep if there are no active tracks to process
   6184             if (activeTracks.size() == 0) {
   6185                 if (sleepUs == 0) {
   6186                     sleepUs = kRecordThreadSleepUs;
   6187                 }
   6188                 continue;
   6189             }
   6190             sleepUs = 0;
   6191 
   6192             lockEffectChains_l(effectChains);
   6193         }
   6194 
   6195         // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
   6196 
   6197         size_t size = effectChains.size();
   6198         for (size_t i = 0; i < size; i++) {
   6199             // thread mutex is not locked, but effect chain is locked
   6200             effectChains[i]->process_l();
   6201         }
   6202 
   6203         // Push a new fast capture state if fast capture is not already running, or cblk change
   6204         if (mFastCapture != 0) {
   6205             FastCaptureStateQueue *sq = mFastCapture->sq();
   6206             FastCaptureState *state = sq->begin();
   6207             bool didModify = false;
   6208             FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
   6209             if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
   6210                     (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
   6211                 if (state->mCommand == FastCaptureState::COLD_IDLE) {
   6212                     int32_t old = android_atomic_inc(&mFastCaptureFutex);
   6213                     if (old == -1) {
   6214                         (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
   6215                     }
   6216                 }
   6217                 state->mCommand = FastCaptureState::READ_WRITE;
   6218 #if 0   // FIXME
   6219                 mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
   6220                         FastThreadDumpState::kSamplingNforLowRamDevice :
   6221                         FastThreadDumpState::kSamplingN);
   6222 #endif
   6223                 didModify = true;
   6224             }
   6225             audio_track_cblk_t *cblkOld = state->mCblk;
   6226             audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
   6227             if (cblkNew != cblkOld) {
   6228                 state->mCblk = cblkNew;
   6229                 // block until acked if removing a fast track
   6230                 if (cblkOld != NULL) {
   6231                     block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
   6232                 }
   6233                 didModify = true;
   6234             }
   6235             sq->end(didModify);
   6236             if (didModify) {
   6237                 sq->push(block);
   6238 #if 0
   6239                 if (kUseFastCapture == FastCapture_Dynamic) {
   6240                     mNormalSource = mPipeSource;
   6241                 }
   6242 #endif
   6243             }
   6244         }
   6245 
   6246         // now run the fast track destructor with thread mutex unlocked
   6247         fastTrackToRemove.clear();
   6248 
   6249         // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
   6250         // Only the client(s) that are too slow will overrun. But if even the fastest client is too
   6251         // slow, then this RecordThread will overrun by not calling HAL read often enough.
   6252         // If destination is non-contiguous, first read past the nominal end of buffer, then
   6253         // copy to the right place.  Permitted because mRsmpInBuffer was over-allocated.
   6254 
   6255         int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
   6256         ssize_t framesRead;
   6257 
   6258         // If an NBAIO source is present, use it to read the normal capture's data
   6259         if (mPipeSource != 0) {
   6260             size_t framesToRead = mBufferSize / mFrameSize;
   6261             framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
   6262                     framesToRead);
   6263             if (framesRead == 0) {
   6264                 // since pipe is non-blocking, simulate blocking input
   6265                 sleepUs = (framesToRead * 1000000LL) / mSampleRate;
   6266             }
   6267         // otherwise use the HAL / AudioStreamIn directly
   6268         } else {
   6269             ATRACE_BEGIN("read");
   6270             ssize_t bytesRead = mInput->stream->read(mInput->stream,
   6271                     (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize);
   6272             ATRACE_END();
   6273             if (bytesRead < 0) {
   6274                 framesRead = bytesRead;
   6275             } else {
   6276                 framesRead = bytesRead / mFrameSize;
   6277             }
   6278         }
   6279 
   6280         // Update server timestamp with server stats
   6281         // systemTime() is optional if the hardware supports timestamps.
   6282         mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += framesRead;
   6283         mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
   6284 
   6285         // Update server timestamp with kernel stats
   6286         if (mInput->stream->get_capture_position != nullptr
   6287                 && mPipeSource.get() == nullptr /* don't obtain for FastCapture, could block */) {
   6288             int64_t position, time;
   6289             int ret = mInput->stream->get_capture_position(mInput->stream, &position, &time);
   6290             if (ret == NO_ERROR) {
   6291                 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = position;
   6292                 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = time;
   6293                 // Note: In general record buffers should tend to be empty in
   6294                 // a properly running pipeline.
   6295                 //
   6296                 // Also, it is not advantageous to call get_presentation_position during the read
   6297                 // as the read obtains a lock, preventing the timestamp call from executing.
   6298             }
   6299         }
   6300         // Use this to track timestamp information
   6301         // ALOGD("%s", mTimestamp.toString().c_str());
   6302 
   6303         if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
   6304             ALOGE("read failed: framesRead=%zd", framesRead);
   6305             // Force input into standby so that it tries to recover at next read attempt
   6306             inputStandBy();
   6307             sleepUs = kRecordThreadSleepUs;
   6308         }
   6309         if (framesRead <= 0) {
   6310             goto unlock;
   6311         }
   6312         ALOG_ASSERT(framesRead > 0);
   6313 
   6314         if (mTeeSink != 0) {
   6315             (void) mTeeSink->write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
   6316         }
   6317         // If destination is non-contiguous, we now correct for reading past end of buffer.
   6318         {
   6319             size_t part1 = mRsmpInFramesP2 - rear;
   6320             if ((size_t) framesRead > part1) {
   6321                 memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
   6322                         (framesRead - part1) * mFrameSize);
   6323             }
   6324         }
   6325         rear = mRsmpInRear += framesRead;
   6326 
   6327         size = activeTracks.size();
   6328         // loop over each active track
   6329         for (size_t i = 0; i < size; i++) {
   6330             activeTrack = activeTracks[i];
   6331 
   6332             // skip fast tracks, as those are handled directly by FastCapture
   6333             if (activeTrack->isFastTrack()) {
   6334                 continue;
   6335             }
   6336 
   6337             // TODO: This code probably should be moved to RecordTrack.
   6338             // TODO: Update the activeTrack buffer converter in case of reconfigure.
   6339 
   6340             enum {
   6341                 OVERRUN_UNKNOWN,
   6342                 OVERRUN_TRUE,
   6343                 OVERRUN_FALSE
   6344             } overrun = OVERRUN_UNKNOWN;
   6345 
   6346             // loop over getNextBuffer to handle circular sink
   6347             for (;;) {
   6348 
   6349                 activeTrack->mSink.frameCount = ~0;
   6350                 status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
   6351                 size_t framesOut = activeTrack->mSink.frameCount;
   6352                 LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
   6353 
   6354                 // check available frames and handle overrun conditions
   6355                 // if the record track isn't draining fast enough.
   6356                 bool hasOverrun;
   6357                 size_t framesIn;
   6358                 activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
   6359                 if (hasOverrun) {
   6360                     overrun = OVERRUN_TRUE;
   6361                 }
   6362                 if (framesOut == 0 || framesIn == 0) {
   6363                     break;
   6364                 }
   6365 
   6366                 // Don't allow framesOut to be larger than what is possible with resampling
   6367                 // from framesIn.
   6368                 // This isn't strictly necessary but helps limit buffer resizing in
   6369                 // RecordBufferConverter.  TODO: remove when no longer needed.
   6370                 framesOut = min(framesOut,
   6371                         destinationFramesPossible(
   6372                                 framesIn, mSampleRate, activeTrack->mSampleRate));
   6373                 // process frames from the RecordThread buffer provider to the RecordTrack buffer
   6374                 framesOut = activeTrack->mRecordBufferConverter->convert(
   6375                         activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut);
   6376 
   6377                 if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
   6378                     overrun = OVERRUN_FALSE;
   6379                 }
   6380 
   6381                 if (activeTrack->mFramesToDrop == 0) {
   6382                     if (framesOut > 0) {
   6383                         activeTrack->mSink.frameCount = framesOut;
   6384                         activeTrack->releaseBuffer(&activeTrack->mSink);
   6385                     }
   6386                 } else {
   6387                     // FIXME could do a partial drop of framesOut
   6388                     if (activeTrack->mFramesToDrop > 0) {
   6389                         activeTrack->mFramesToDrop -= framesOut;
   6390                         if (activeTrack->mFramesToDrop <= 0) {
   6391                             activeTrack->clearSyncStartEvent();
   6392                         }
   6393                     } else {
   6394                         activeTrack->mFramesToDrop += framesOut;
   6395                         if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
   6396                                 activeTrack->mSyncStartEvent->isCancelled()) {
   6397                             ALOGW("Synced record %s, session %d, trigger session %d",
   6398                                   (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
   6399                                   activeTrack->sessionId(),
   6400                                   (activeTrack->mSyncStartEvent != 0) ?
   6401                                           activeTrack->mSyncStartEvent->triggerSession() :
   6402                                           AUDIO_SESSION_NONE);
   6403                             activeTrack->clearSyncStartEvent();
   6404                         }
   6405                     }
   6406                 }
   6407 
   6408                 if (framesOut == 0) {
   6409                     break;
   6410                 }
   6411             }
   6412 
   6413             switch (overrun) {
   6414             case OVERRUN_TRUE:
   6415                 // client isn't retrieving buffers fast enough
   6416                 if (!activeTrack->setOverflow()) {
   6417                     nsecs_t now = systemTime();
   6418                     // FIXME should lastWarning per track?
   6419                     if ((now - lastWarning) > kWarningThrottleNs) {
   6420                         ALOGW("RecordThread: buffer overflow");
   6421                         lastWarning = now;
   6422                     }
   6423                 }
   6424                 break;
   6425             case OVERRUN_FALSE:
   6426                 activeTrack->clearOverflow();
   6427                 break;
   6428             case OVERRUN_UNKNOWN:
   6429                 break;
   6430             }
   6431 
   6432             // update frame information and push timestamp out
   6433             activeTrack->updateTrackFrameInfo(
   6434                     activeTrack->mServerProxy->framesReleased(),
   6435                     mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER],
   6436                     mSampleRate, mTimestamp);
   6437         }
   6438 
   6439 unlock:
   6440         // enable changes in effect chain
   6441         unlockEffectChains(effectChains);
   6442         // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
   6443     }
   6444 
   6445     standbyIfNotAlreadyInStandby();
   6446 
   6447     {
   6448         Mutex::Autolock _l(mLock);
   6449         for (size_t i = 0; i < mTracks.size(); i++) {
   6450             sp<RecordTrack> track = mTracks[i];
   6451             track->invalidate();
   6452         }
   6453         mActiveTracks.clear();
   6454         mActiveTracksGen++;
   6455         mStartStopCond.broadcast();
   6456     }
   6457 
   6458     releaseWakeLock();
   6459 
   6460     ALOGV("RecordThread %p exiting", this);
   6461     return false;
   6462 }
   6463 
   6464 void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
   6465 {
   6466     if (!mStandby) {
   6467         inputStandBy();
   6468         mStandby = true;
   6469     }
   6470 }
   6471 
   6472 void AudioFlinger::RecordThread::inputStandBy()
   6473 {
   6474     // Idle the fast capture if it's currently running
   6475     if (mFastCapture != 0) {
   6476         FastCaptureStateQueue *sq = mFastCapture->sq();
   6477         FastCaptureState *state = sq->begin();
   6478         if (!(state->mCommand & FastCaptureState::IDLE)) {
   6479             state->mCommand = FastCaptureState::COLD_IDLE;
   6480             state->mColdFutexAddr = &mFastCaptureFutex;
   6481             state->mColdGen++;
   6482             mFastCaptureFutex = 0;
   6483             sq->end();
   6484             // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
   6485             sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
   6486 #if 0
   6487             if (kUseFastCapture == FastCapture_Dynamic) {
   6488                 // FIXME
   6489             }
   6490 #endif
   6491 #ifdef AUDIO_WATCHDOG
   6492             // FIXME
   6493 #endif
   6494         } else {
   6495             sq->end(false /*didModify*/);
   6496         }
   6497     }
   6498     mInput->stream->common.standby(&mInput->stream->common);
   6499 }
   6500 
   6501 // RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
   6502 sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
   6503         const sp<AudioFlinger::Client>& client,
   6504         uint32_t sampleRate,
   6505         audio_format_t format,
   6506         audio_channel_mask_t channelMask,
   6507         size_t *pFrameCount,
   6508         audio_session_t sessionId,
   6509         size_t *notificationFrames,
   6510         int uid,
   6511         audio_input_flags_t *flags,
   6512         pid_t tid,
   6513         status_t *status)
   6514 {
   6515     size_t frameCount = *pFrameCount;
   6516     sp<RecordTrack> track;
   6517     status_t lStatus;
   6518     audio_input_flags_t inputFlags = mInput->flags;
   6519 
   6520     // special case for FAST flag considered OK if fast capture is present
   6521     if (hasFastCapture()) {
   6522         inputFlags = (audio_input_flags_t)(inputFlags | AUDIO_INPUT_FLAG_FAST);
   6523     }
   6524 
   6525     // Check if requested flags are compatible with output stream flags
   6526     if ((*flags & inputFlags) != *flags) {
   6527         ALOGW("createRecordTrack_l(): mismatch between requested flags (%08x) and"
   6528                 " input flags (%08x)",
   6529               *flags, inputFlags);
   6530         *flags = (audio_input_flags_t)(*flags & inputFlags);
   6531     }
   6532 
   6533     // client expresses a preference for FAST, but we get the final say
   6534     if (*flags & AUDIO_INPUT_FLAG_FAST) {
   6535       if (
   6536             // we formerly checked for a callback handler (non-0 tid),
   6537             // but that is no longer required for TRANSFER_OBTAIN mode
   6538             //
   6539             // frame count is not specified, or is exactly the pipe depth
   6540             ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
   6541             // PCM data
   6542             audio_is_linear_pcm(format) &&
   6543             // hardware format
   6544             (format == mFormat) &&
   6545             // hardware channel mask
   6546             (channelMask == mChannelMask) &&
   6547             // hardware sample rate
   6548             (sampleRate == mSampleRate) &&
   6549             // record thread has an associated fast capture
   6550             hasFastCapture() &&
   6551             // there are sufficient fast track slots available
   6552             mFastTrackAvail
   6553         ) {
   6554           // check compatibility with audio effects.
   6555           Mutex::Autolock _l(mLock);
   6556           // Do not accept FAST flag if the session has software effects
   6557           sp<EffectChain> chain = getEffectChain_l(sessionId);
   6558           if (chain != 0) {
   6559               ALOGV_IF((*flags & AUDIO_INPUT_FLAG_RAW) != 0,
   6560                       "AUDIO_INPUT_FLAG_RAW denied: effect present on session");
   6561               *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_RAW);
   6562               if (chain->hasSoftwareEffect()) {
   6563                   ALOGV("AUDIO_INPUT_FLAG_FAST denied: software effect present on session");
   6564                   *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_FAST);
   6565               }
   6566           }
   6567           ALOGV_IF((*flags & AUDIO_INPUT_FLAG_FAST) != 0,
   6568                    "AUDIO_INPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
   6569                    frameCount, mFrameCount);
   6570       } else {
   6571         ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%zu mFrameCount=%zu mPipeFramesP2=%zu "
   6572                 "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
   6573                 "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
   6574                 frameCount, mFrameCount, mPipeFramesP2,
   6575                 format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
   6576                 hasFastCapture(), tid, mFastTrackAvail);
   6577         *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_FAST);
   6578       }
   6579     }
   6580 
   6581     // compute track buffer size in frames, and suggest the notification frame count
   6582     if (*flags & AUDIO_INPUT_FLAG_FAST) {
   6583         // fast track: frame count is exactly the pipe depth
   6584         frameCount = mPipeFramesP2;
   6585         // ignore requested notificationFrames, and always notify exactly once every HAL buffer
   6586         *notificationFrames = mFrameCount;
   6587     } else {
   6588         // not fast track: max notification period is resampled equivalent of one HAL buffer time
   6589         //                 or 20 ms if there is a fast capture
   6590         // TODO This could be a roundupRatio inline, and const
   6591         size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
   6592                 * sampleRate + mSampleRate - 1) / mSampleRate;
   6593         // minimum number of notification periods is at least kMinNotifications,
   6594         // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
   6595         static const size_t kMinNotifications = 3;
   6596         static const uint32_t kMinMs = 30;
   6597         // TODO This could be a roundupRatio inline
   6598         const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
   6599         // TODO This could be a roundupRatio inline
   6600         const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
   6601                 maxNotificationFrames;
   6602         const size_t minFrameCount = maxNotificationFrames *
   6603                 max(kMinNotifications, minNotificationsByMs);
   6604         frameCount = max(frameCount, minFrameCount);
   6605         if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
   6606             *notificationFrames = maxNotificationFrames;
   6607         }
   6608     }
   6609     *pFrameCount = frameCount;
   6610 
   6611     lStatus = initCheck();
   6612     if (lStatus != NO_ERROR) {
   6613         ALOGE("createRecordTrack_l() audio driver not initialized");
   6614         goto Exit;
   6615     }
   6616 
   6617     { // scope for mLock
   6618         Mutex::Autolock _l(mLock);
   6619 
   6620         track = new RecordTrack(this, client, sampleRate,
   6621                       format, channelMask, frameCount, NULL, sessionId, uid,
   6622                       *flags, TrackBase::TYPE_DEFAULT);
   6623 
   6624         lStatus = track->initCheck();
   6625         if (lStatus != NO_ERROR) {
   6626             ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
   6627             // track must be cleared from the caller as the caller has the AF lock
   6628             goto Exit;
   6629         }
   6630         mTracks.add(track);
   6631 
   6632         // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
   6633         bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
   6634                         mAudioFlinger->btNrecIsOff();
   6635         setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
   6636         setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
   6637 
   6638         if ((*flags & AUDIO_INPUT_FLAG_FAST) && (tid != -1)) {
   6639             pid_t callingPid = IPCThreadState::self()->getCallingPid();
   6640             // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
   6641             // so ask activity manager to do this on our behalf
   6642             sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
   6643         }
   6644     }
   6645 
   6646     lStatus = NO_ERROR;
   6647 
   6648 Exit:
   6649     *status = lStatus;
   6650     return track;
   6651 }
   6652 
   6653 status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
   6654                                            AudioSystem::sync_event_t event,
   6655                                            audio_session_t triggerSession)
   6656 {
   6657     ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
   6658     sp<ThreadBase> strongMe = this;
   6659     status_t status = NO_ERROR;
   6660 
   6661     if (event == AudioSystem::SYNC_EVENT_NONE) {
   6662         recordTrack->clearSyncStartEvent();
   6663     } else if (event != AudioSystem::SYNC_EVENT_SAME) {
   6664         recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
   6665                                        triggerSession,
   6666                                        recordTrack->sessionId(),
   6667                                        syncStartEventCallback,
   6668                                        recordTrack);
   6669         // Sync event can be cancelled by the trigger session if the track is not in a
   6670         // compatible state in which case we start record immediately
   6671         if (recordTrack->mSyncStartEvent->isCancelled()) {
   6672             recordTrack->clearSyncStartEvent();
   6673         } else {
   6674             // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
   6675             recordTrack->mFramesToDrop = -
   6676                     ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
   6677         }
   6678     }
   6679 
   6680     {
   6681         // This section is a rendezvous between binder thread executing start() and RecordThread
   6682         AutoMutex lock(mLock);
   6683         if (mActiveTracks.indexOf(recordTrack) >= 0) {
   6684             if (recordTrack->mState == TrackBase::PAUSING) {
   6685                 ALOGV("active record track PAUSING -> ACTIVE");
   6686                 recordTrack->mState = TrackBase::ACTIVE;
   6687             } else {
   6688                 ALOGV("active record track state %d", recordTrack->mState);
   6689             }
   6690             return status;
   6691         }
   6692 
   6693         // TODO consider other ways of handling this, such as changing the state to :STARTING and
   6694         //      adding the track to mActiveTracks after returning from AudioSystem::startInput(),
   6695         //      or using a separate command thread
   6696         recordTrack->mState = TrackBase::STARTING_1;
   6697         mActiveTracks.add(recordTrack);
   6698         mActiveTracksGen++;
   6699         status_t status = NO_ERROR;
   6700         if (recordTrack->isExternalTrack()) {
   6701             mLock.unlock();
   6702             status = AudioSystem::startInput(mId, recordTrack->sessionId());
   6703             mLock.lock();
   6704             // FIXME should verify that recordTrack is still in mActiveTracks
   6705             if (status != NO_ERROR) {
   6706                 mActiveTracks.remove(recordTrack);
   6707                 mActiveTracksGen++;
   6708                 recordTrack->clearSyncStartEvent();
   6709                 ALOGV("RecordThread::start error %d", status);
   6710                 return status;
   6711             }
   6712         }
   6713         // Catch up with current buffer indices if thread is already running.
   6714         // This is what makes a new client discard all buffered data.  If the track's mRsmpInFront
   6715         // was initialized to some value closer to the thread's mRsmpInFront, then the track could
   6716         // see previously buffered data before it called start(), but with greater risk of overrun.
   6717 
   6718         recordTrack->mResamplerBufferProvider->reset();
   6719         // clear any converter state as new data will be discontinuous
   6720         recordTrack->mRecordBufferConverter->reset();
   6721         recordTrack->mState = TrackBase::STARTING_2;
   6722         // signal thread to start
   6723         mWaitWorkCV.broadcast();
   6724         if (mActiveTracks.indexOf(recordTrack) < 0) {
   6725             ALOGV("Record failed to start");
   6726             status = BAD_VALUE;
   6727             goto startError;
   6728         }
   6729         return status;
   6730     }
   6731 
   6732 startError:
   6733     if (recordTrack->isExternalTrack()) {
   6734         AudioSystem::stopInput(mId, recordTrack->sessionId());
   6735     }
   6736     recordTrack->clearSyncStartEvent();
   6737     // FIXME I wonder why we do not reset the state here?
   6738     return status;
   6739 }
   6740 
   6741 void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
   6742 {
   6743     sp<SyncEvent> strongEvent = event.promote();
   6744 
   6745     if (strongEvent != 0) {
   6746         sp<RefBase> ptr = strongEvent->cookie().promote();
   6747         if (ptr != 0) {
   6748             RecordTrack *recordTrack = (RecordTrack *)ptr.get();
   6749             recordTrack->handleSyncStartEvent(strongEvent);
   6750         }
   6751     }
   6752 }
   6753 
   6754 bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
   6755     ALOGV("RecordThread::stop");
   6756     AutoMutex _l(mLock);
   6757     if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) {
   6758         return false;
   6759     }
   6760     // note that threadLoop may still be processing the track at this point [without lock]
   6761     recordTrack->mState = TrackBase::PAUSING;
   6762     // signal thread to stop
   6763     mWaitWorkCV.broadcast();
   6764     // do not wait for mStartStopCond if exiting
   6765     if (exitPending()) {
   6766         return true;
   6767     }
   6768     // FIXME incorrect usage of wait: no explicit predicate or loop
   6769     mStartStopCond.wait(mLock);
   6770     // if we have been restarted, recordTrack is in mActiveTracks here
   6771     if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) {
   6772         ALOGV("Record stopped OK");
   6773         return true;
   6774     }
   6775     return false;
   6776 }
   6777 
   6778 bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
   6779 {
   6780     return false;
   6781 }
   6782 
   6783 status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
   6784 {
   6785 #if 0   // This branch is currently dead code, but is preserved in case it will be needed in future
   6786     if (!isValidSyncEvent(event)) {
   6787         return BAD_VALUE;
   6788     }
   6789 
   6790     audio_session_t eventSession = event->triggerSession();
   6791     status_t ret = NAME_NOT_FOUND;
   6792 
   6793     Mutex::Autolock _l(mLock);
   6794 
   6795     for (size_t i = 0; i < mTracks.size(); i++) {
   6796         sp<RecordTrack> track = mTracks[i];
   6797         if (eventSession == track->sessionId()) {
   6798             (void) track->setSyncEvent(event);
   6799             ret = NO_ERROR;
   6800         }
   6801     }
   6802     return ret;
   6803 #else
   6804     return BAD_VALUE;
   6805 #endif
   6806 }
   6807 
   6808 // destroyTrack_l() must be called with ThreadBase::mLock held
   6809 void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
   6810 {
   6811     track->terminate();
   6812     track->mState = TrackBase::STOPPED;
   6813     // active tracks are removed by threadLoop()
   6814     if (mActiveTracks.indexOf(track) < 0) {
   6815         removeTrack_l(track);
   6816     }
   6817 }
   6818 
   6819 void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
   6820 {
   6821     mTracks.remove(track);
   6822     // need anything related to effects here?
   6823     if (track->isFastTrack()) {
   6824         ALOG_ASSERT(!mFastTrackAvail);
   6825         mFastTrackAvail = true;
   6826     }
   6827 }
   6828 
   6829 void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
   6830 {
   6831     dumpInternals(fd, args);
   6832     dumpTracks(fd, args);
   6833     dumpEffectChains(fd, args);
   6834 }
   6835 
   6836 void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
   6837 {
   6838     dprintf(fd, "\nInput thread %p:\n", this);
   6839 
   6840     dumpBase(fd, args);
   6841 
   6842     if (mActiveTracks.size() == 0) {
   6843         dprintf(fd, "  No active record clients\n");
   6844     }
   6845     dprintf(fd, "  Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
   6846     dprintf(fd, "  Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
   6847 
   6848     // Make a non-atomic copy of fast capture dump state so it won't change underneath us
   6849     // while we are dumping it.  It may be inconsistent, but it won't mutate!
   6850     // This is a large object so we place it on the heap.
   6851     // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
   6852     const FastCaptureDumpState *copy = new FastCaptureDumpState(mFastCaptureDumpState);
   6853     copy->dump(fd);
   6854     delete copy;
   6855 }
   6856 
   6857 void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
   6858 {
   6859     const size_t SIZE = 256;
   6860     char buffer[SIZE];
   6861     String8 result;
   6862 
   6863     size_t numtracks = mTracks.size();
   6864     size_t numactive = mActiveTracks.size();
   6865     size_t numactiveseen = 0;
   6866     dprintf(fd, "  %zu Tracks", numtracks);
   6867     if (numtracks) {
   6868         dprintf(fd, " of which %zu are active\n", numactive);
   6869         RecordTrack::appendDumpHeader(result);
   6870         for (size_t i = 0; i < numtracks ; ++i) {
   6871             sp<RecordTrack> track = mTracks[i];
   6872             if (track != 0) {
   6873                 bool active = mActiveTracks.indexOf(track) >= 0;
   6874                 if (active) {
   6875                     numactiveseen++;
   6876                 }
   6877                 track->dump(buffer, SIZE, active);
   6878                 result.append(buffer);
   6879             }
   6880         }
   6881     } else {
   6882         dprintf(fd, "\n");
   6883     }
   6884 
   6885     if (numactiveseen != numactive) {
   6886         snprintf(buffer, SIZE, "  The following tracks are in the active list but"
   6887                 " not in the track list\n");
   6888         result.append(buffer);
   6889         RecordTrack::appendDumpHeader(result);
   6890         for (size_t i = 0; i < numactive; ++i) {
   6891             sp<RecordTrack> track = mActiveTracks[i];
   6892             if (mTracks.indexOf(track) < 0) {
   6893                 track->dump(buffer, SIZE, true);
   6894                 result.append(buffer);
   6895             }
   6896         }
   6897 
   6898     }
   6899     write(fd, result.string(), result.size());
   6900 }
   6901 
   6902 
   6903 void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
   6904 {
   6905     sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
   6906     RecordThread *recordThread = (RecordThread *) threadBase.get();
   6907     mRsmpInFront = recordThread->mRsmpInRear;
   6908     mRsmpInUnrel = 0;
   6909 }
   6910 
   6911 void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
   6912         size_t *framesAvailable, bool *hasOverrun)
   6913 {
   6914     sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
   6915     RecordThread *recordThread = (RecordThread *) threadBase.get();
   6916     const int32_t rear = recordThread->mRsmpInRear;
   6917     const int32_t front = mRsmpInFront;
   6918     const ssize_t filled = rear - front;
   6919 
   6920     size_t framesIn;
   6921     bool overrun = false;
   6922     if (filled < 0) {
   6923         // should not happen, but treat like a massive overrun and re-sync
   6924         framesIn = 0;
   6925         mRsmpInFront = rear;
   6926         overrun = true;
   6927     } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
   6928         framesIn = (size_t) filled;
   6929     } else {
   6930         // client is not keeping up with server, but give it latest data
   6931         framesIn = recordThread->mRsmpInFrames;
   6932         mRsmpInFront = /* front = */ rear - framesIn;
   6933         overrun = true;
   6934     }
   6935     if (framesAvailable != NULL) {
   6936         *framesAvailable = framesIn;
   6937     }
   6938     if (hasOverrun != NULL) {
   6939         *hasOverrun = overrun;
   6940     }
   6941 }
   6942 
   6943 // AudioBufferProvider interface
   6944 status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
   6945         AudioBufferProvider::Buffer* buffer)
   6946 {
   6947     sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
   6948     if (threadBase == 0) {
   6949         buffer->frameCount = 0;
   6950         buffer->raw = NULL;
   6951         return NOT_ENOUGH_DATA;
   6952     }
   6953     RecordThread *recordThread = (RecordThread *) threadBase.get();
   6954     int32_t rear = recordThread->mRsmpInRear;
   6955     int32_t front = mRsmpInFront;
   6956     ssize_t filled = rear - front;
   6957     // FIXME should not be P2 (don't want to increase latency)
   6958     // FIXME if client not keeping up, discard
   6959     LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
   6960     // 'filled' may be non-contiguous, so return only the first contiguous chunk
   6961     front &= recordThread->mRsmpInFramesP2 - 1;
   6962     size_t part1 = recordThread->mRsmpInFramesP2 - front;
   6963     if (part1 > (size_t) filled) {
   6964         part1 = filled;
   6965     }
   6966     size_t ask = buffer->frameCount;
   6967     ALOG_ASSERT(ask > 0);
   6968     if (part1 > ask) {
   6969         part1 = ask;
   6970     }
   6971     if (part1 == 0) {
   6972         // out of data is fine since the resampler will return a short-count.
   6973         buffer->raw = NULL;
   6974         buffer->frameCount = 0;
   6975         mRsmpInUnrel = 0;
   6976         return NOT_ENOUGH_DATA;
   6977     }
   6978 
   6979     buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
   6980     buffer->frameCount = part1;
   6981     mRsmpInUnrel = part1;
   6982     return NO_ERROR;
   6983 }
   6984 
   6985 // AudioBufferProvider interface
   6986 void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
   6987         AudioBufferProvider::Buffer* buffer)
   6988 {
   6989     size_t stepCount = buffer->frameCount;
   6990     if (stepCount == 0) {
   6991         return;
   6992     }
   6993     ALOG_ASSERT(stepCount <= mRsmpInUnrel);
   6994     mRsmpInUnrel -= stepCount;
   6995     mRsmpInFront += stepCount;
   6996     buffer->raw = NULL;
   6997     buffer->frameCount = 0;
   6998 }
   6999 
   7000 AudioFlinger::RecordThread::RecordBufferConverter::RecordBufferConverter(
   7001         audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
   7002         uint32_t srcSampleRate,
   7003         audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
   7004         uint32_t dstSampleRate) :
   7005             mSrcChannelMask(AUDIO_CHANNEL_INVALID), // updateParameters will set following vars
   7006             // mSrcFormat
   7007             // mSrcSampleRate
   7008             // mDstChannelMask
   7009             // mDstFormat
   7010             // mDstSampleRate
   7011             // mSrcChannelCount
   7012             // mDstChannelCount
   7013             // mDstFrameSize
   7014             mBuf(NULL), mBufFrames(0), mBufFrameSize(0),
   7015             mResampler(NULL),
   7016             mIsLegacyDownmix(false),
   7017             mIsLegacyUpmix(false),
   7018             mRequiresFloat(false),
   7019             mInputConverterProvider(NULL)
   7020 {
   7021     (void)updateParameters(srcChannelMask, srcFormat, srcSampleRate,
   7022             dstChannelMask, dstFormat, dstSampleRate);
   7023 }
   7024 
   7025 AudioFlinger::RecordThread::RecordBufferConverter::~RecordBufferConverter() {
   7026     free(mBuf);
   7027     delete mResampler;
   7028     delete mInputConverterProvider;
   7029 }
   7030 
   7031 size_t AudioFlinger::RecordThread::RecordBufferConverter::convert(void *dst,
   7032         AudioBufferProvider *provider, size_t frames)
   7033 {
   7034     if (mInputConverterProvider != NULL) {
   7035         mInputConverterProvider->setBufferProvider(provider);
   7036         provider = mInputConverterProvider;
   7037     }
   7038 
   7039     if (mResampler == NULL) {
   7040         ALOGVV("NO RESAMPLING sampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
   7041                 mSrcSampleRate, mSrcFormat, mDstFormat);
   7042 
   7043         AudioBufferProvider::Buffer buffer;
   7044         for (size_t i = frames; i > 0; ) {
   7045             buffer.frameCount = i;
   7046             status_t status = provider->getNextBuffer(&buffer);
   7047             if (status != OK || buffer.frameCount == 0) {
   7048                 frames -= i; // cannot fill request.
   7049                 break;
   7050             }
   7051             // format convert to destination buffer
   7052             convertNoResampler(dst, buffer.raw, buffer.frameCount);
   7053 
   7054             dst = (int8_t*)dst + buffer.frameCount * mDstFrameSize;
   7055             i -= buffer.frameCount;
   7056             provider->releaseBuffer(&buffer);
   7057         }
   7058     } else {
   7059          ALOGVV("RESAMPLING mSrcSampleRate:%u mDstSampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
   7060                  mSrcSampleRate, mDstSampleRate, mSrcFormat, mDstFormat);
   7061 
   7062          // reallocate buffer if needed
   7063          if (mBufFrameSize != 0 && mBufFrames < frames) {
   7064              free(mBuf);
   7065              mBufFrames = frames;
   7066              (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
   7067          }
   7068         // resampler accumulates, but we only have one source track
   7069         memset(mBuf, 0, frames * mBufFrameSize);
   7070         frames = mResampler->resample((int32_t*)mBuf, frames, provider);
   7071         // format convert to destination buffer
   7072         convertResampler(dst, mBuf, frames);
   7073     }
   7074     return frames;
   7075 }
   7076 
   7077 status_t AudioFlinger::RecordThread::RecordBufferConverter::updateParameters(
   7078         audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
   7079         uint32_t srcSampleRate,
   7080         audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
   7081         uint32_t dstSampleRate)
   7082 {
   7083     // quick evaluation if there is any change.
   7084     if (mSrcFormat == srcFormat
   7085             && mSrcChannelMask == srcChannelMask
   7086             && mSrcSampleRate == srcSampleRate
   7087             && mDstFormat == dstFormat
   7088             && mDstChannelMask == dstChannelMask
   7089             && mDstSampleRate == dstSampleRate) {
   7090         return NO_ERROR;
   7091     }
   7092 
   7093     ALOGV("RecordBufferConverter updateParameters srcMask:%#x dstMask:%#x"
   7094             "  srcFormat:%#x dstFormat:%#x  srcRate:%u dstRate:%u",
   7095             srcChannelMask, dstChannelMask, srcFormat, dstFormat, srcSampleRate, dstSampleRate);
   7096     const bool valid =
   7097             audio_is_input_channel(srcChannelMask)
   7098             && audio_is_input_channel(dstChannelMask)
   7099             && audio_is_valid_format(srcFormat) && audio_is_linear_pcm(srcFormat)
   7100             && audio_is_valid_format(dstFormat) && audio_is_linear_pcm(dstFormat)
   7101             && (srcSampleRate <= dstSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX)
   7102             ; // no upsampling checks for now
   7103     if (!valid) {
   7104         return BAD_VALUE;
   7105     }
   7106 
   7107     mSrcFormat = srcFormat;
   7108     mSrcChannelMask = srcChannelMask;
   7109     mSrcSampleRate = srcSampleRate;
   7110     mDstFormat = dstFormat;
   7111     mDstChannelMask = dstChannelMask;
   7112     mDstSampleRate = dstSampleRate;
   7113 
   7114     // compute derived parameters
   7115     mSrcChannelCount = audio_channel_count_from_in_mask(srcChannelMask);
   7116     mDstChannelCount = audio_channel_count_from_in_mask(dstChannelMask);
   7117     mDstFrameSize = mDstChannelCount * audio_bytes_per_sample(mDstFormat);
   7118 
   7119     // do we need to resample?
   7120     delete mResampler;
   7121     mResampler = NULL;
   7122     if (mSrcSampleRate != mDstSampleRate) {
   7123         mResampler = AudioResampler::create(AUDIO_FORMAT_PCM_FLOAT,
   7124                 mSrcChannelCount, mDstSampleRate);
   7125         mResampler->setSampleRate(mSrcSampleRate);
   7126         mResampler->setVolume(AudioMixer::UNITY_GAIN_FLOAT, AudioMixer::UNITY_GAIN_FLOAT);
   7127     }
   7128 
   7129     // are we running legacy channel conversion modes?
   7130     mIsLegacyDownmix = (mSrcChannelMask == AUDIO_CHANNEL_IN_STEREO
   7131                             || mSrcChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK)
   7132                    && mDstChannelMask == AUDIO_CHANNEL_IN_MONO;
   7133     mIsLegacyUpmix = mSrcChannelMask == AUDIO_CHANNEL_IN_MONO
   7134                    && (mDstChannelMask == AUDIO_CHANNEL_IN_STEREO
   7135                             || mDstChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK);
   7136 
   7137     // do we need to process in float?
   7138     mRequiresFloat = mResampler != NULL || mIsLegacyDownmix || mIsLegacyUpmix;
   7139 
   7140     // do we need a staging buffer to convert for destination (we can still optimize this)?
   7141     // we use mBufFrameSize > 0 to indicate both frame size as well as buffer necessity
   7142     if (mResampler != NULL) {
   7143         mBufFrameSize = max(mSrcChannelCount, FCC_2)
   7144                 * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
   7145     } else if (mIsLegacyUpmix || mIsLegacyDownmix) { // legacy modes always float
   7146         mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
   7147     } else if (mSrcChannelMask != mDstChannelMask && mDstFormat != mSrcFormat) {
   7148         mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(mSrcFormat);
   7149     } else {
   7150         mBufFrameSize = 0;
   7151     }
   7152     mBufFrames = 0; // force the buffer to be resized.
   7153 
   7154     // do we need an input converter buffer provider to give us float?
   7155     delete mInputConverterProvider;
   7156     mInputConverterProvider = NULL;
   7157     if (mRequiresFloat && mSrcFormat != AUDIO_FORMAT_PCM_FLOAT) {
   7158         mInputConverterProvider = new ReformatBufferProvider(
   7159                 audio_channel_count_from_in_mask(mSrcChannelMask),
   7160                 mSrcFormat,
   7161                 AUDIO_FORMAT_PCM_FLOAT,
   7162                 256 /* provider buffer frame count */);
   7163     }
   7164 
   7165     // do we need a remixer to do channel mask conversion
   7166     if (!mIsLegacyDownmix && !mIsLegacyUpmix && mSrcChannelMask != mDstChannelMask) {
   7167         (void) memcpy_by_index_array_initialization_from_channel_mask(
   7168                 mIdxAry, ARRAY_SIZE(mIdxAry), mDstChannelMask, mSrcChannelMask);
   7169     }
   7170     return NO_ERROR;
   7171 }
   7172 
   7173 void AudioFlinger::RecordThread::RecordBufferConverter::convertNoResampler(
   7174         void *dst, const void *src, size_t frames)
   7175 {
   7176     // src is native type unless there is legacy upmix or downmix, whereupon it is float.
   7177     if (mBufFrameSize != 0 && mBufFrames < frames) {
   7178         free(mBuf);
   7179         mBufFrames = frames;
   7180         (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
   7181     }
   7182     // do we need to do legacy upmix and downmix?
   7183     if (mIsLegacyUpmix || mIsLegacyDownmix) {
   7184         void *dstBuf = mBuf != NULL ? mBuf : dst;
   7185         if (mIsLegacyUpmix) {
   7186             upmix_to_stereo_float_from_mono_float((float *)dstBuf,
   7187                     (const float *)src, frames);
   7188         } else /*mIsLegacyDownmix */ {
   7189             downmix_to_mono_float_from_stereo_float((float *)dstBuf,
   7190                     (const float *)src, frames);
   7191         }
   7192         if (mBuf != NULL) {
   7193             memcpy_by_audio_format(dst, mDstFormat, mBuf, AUDIO_FORMAT_PCM_FLOAT,
   7194                     frames * mDstChannelCount);
   7195         }
   7196         return;
   7197     }
   7198     // do we need to do channel mask conversion?
   7199     if (mSrcChannelMask != mDstChannelMask) {
   7200         void *dstBuf = mBuf != NULL ? mBuf : dst;
   7201         memcpy_by_index_array(dstBuf, mDstChannelCount,
   7202                 src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mSrcFormat), frames);
   7203         if (dstBuf == dst) {
   7204             return; // format is the same
   7205         }
   7206     }
   7207     // convert to destination buffer
   7208     const void *convertBuf = mBuf != NULL ? mBuf : src;
   7209     memcpy_by_audio_format(dst, mDstFormat, convertBuf, mSrcFormat,
   7210             frames * mDstChannelCount);
   7211 }
   7212 
   7213 void AudioFlinger::RecordThread::RecordBufferConverter::convertResampler(
   7214         void *dst, /*not-a-const*/ void *src, size_t frames)
   7215 {
   7216     // src buffer format is ALWAYS float when entering this routine
   7217     if (mIsLegacyUpmix) {
   7218         ; // mono to stereo already handled by resampler
   7219     } else if (mIsLegacyDownmix
   7220             || (mSrcChannelMask == mDstChannelMask && mSrcChannelCount == 1)) {
   7221         // the resampler outputs stereo for mono input channel (a feature?)
   7222         // must convert to mono
   7223         downmix_to_mono_float_from_stereo_float((float *)src,
   7224                 (const float *)src, frames);
   7225     } else if (mSrcChannelMask != mDstChannelMask) {
   7226         // convert to mono channel again for channel mask conversion (could be skipped
   7227         // with further optimization).
   7228         if (mSrcChannelCount == 1) {
   7229             downmix_to_mono_float_from_stereo_float((float *)src,
   7230                 (const float *)src, frames);
   7231         }
   7232         // convert to destination format (in place, OK as float is larger than other types)
   7233         if (mDstFormat != AUDIO_FORMAT_PCM_FLOAT) {
   7234             memcpy_by_audio_format(src, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
   7235                     frames * mSrcChannelCount);
   7236         }
   7237         // channel convert and save to dst
   7238         memcpy_by_index_array(dst, mDstChannelCount,
   7239                 src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mDstFormat), frames);
   7240         return;
   7241     }
   7242     // convert to destination format and save to dst
   7243     memcpy_by_audio_format(dst, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
   7244             frames * mDstChannelCount);
   7245 }
   7246 
   7247 bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
   7248                                                         status_t& status)
   7249 {
   7250     bool reconfig = false;
   7251 
   7252     status = NO_ERROR;
   7253 
   7254     audio_format_t reqFormat = mFormat;
   7255     uint32_t samplingRate = mSampleRate;
   7256     // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
   7257     audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
   7258 
   7259     AudioParameter param = AudioParameter(keyValuePair);
   7260     int value;
   7261 
   7262     // scope for AutoPark extends to end of method
   7263     AutoPark<FastCapture> park(mFastCapture);
   7264 
   7265     // TODO Investigate when this code runs. Check with audio policy when a sample rate and
   7266     //      channel count change can be requested. Do we mandate the first client defines the
   7267     //      HAL sampling rate and channel count or do we allow changes on the fly?
   7268     if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
   7269         samplingRate = value;
   7270         reconfig = true;
   7271     }
   7272     if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
   7273         if (!audio_is_linear_pcm((audio_format_t) value)) {
   7274             status = BAD_VALUE;
   7275         } else {
   7276             reqFormat = (audio_format_t) value;
   7277             reconfig = true;
   7278         }
   7279     }
   7280     if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
   7281         audio_channel_mask_t mask = (audio_channel_mask_t) value;
   7282         if (!audio_is_input_channel(mask) ||
   7283                 audio_channel_count_from_in_mask(mask) > FCC_8) {
   7284             status = BAD_VALUE;
   7285         } else {
   7286             channelMask = mask;
   7287             reconfig = true;
   7288         }
   7289     }
   7290     if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
   7291         // do not accept frame count changes if tracks are open as the track buffer
   7292         // size depends on frame count and correct behavior would not be guaranteed
   7293         // if frame count is changed after track creation
   7294         if (mActiveTracks.size() > 0) {
   7295             status = INVALID_OPERATION;
   7296         } else {
   7297             reconfig = true;
   7298         }
   7299     }
   7300     if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
   7301         // forward device change to effects that have requested to be
   7302         // aware of attached audio device.
   7303         for (size_t i = 0; i < mEffectChains.size(); i++) {
   7304             mEffectChains[i]->setDevice_l(value);
   7305         }
   7306 
   7307         // store input device and output device but do not forward output device to audio HAL.
   7308         // Note that status is ignored by the caller for output device
   7309         // (see AudioFlinger::setParameters()
   7310         if (audio_is_output_devices(value)) {
   7311             mOutDevice = value;
   7312             status = BAD_VALUE;
   7313         } else {
   7314             mInDevice = value;
   7315             if (value != AUDIO_DEVICE_NONE) {
   7316                 mPrevInDevice = value;
   7317             }
   7318             // disable AEC and NS if the device is a BT SCO headset supporting those
   7319             // pre processings
   7320             if (mTracks.size() > 0) {
   7321                 bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
   7322                                     mAudioFlinger->btNrecIsOff();
   7323                 for (size_t i = 0; i < mTracks.size(); i++) {
   7324                     sp<RecordTrack> track = mTracks[i];
   7325                     setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
   7326                     setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
   7327                 }
   7328             }
   7329         }
   7330     }
   7331     if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
   7332             mAudioSource != (audio_source_t)value) {
   7333         // forward device change to effects that have requested to be
   7334         // aware of attached audio device.
   7335         for (size_t i = 0; i < mEffectChains.size(); i++) {
   7336             mEffectChains[i]->setAudioSource_l((audio_source_t)value);
   7337         }
   7338         mAudioSource = (audio_source_t)value;
   7339     }
   7340 
   7341     if (status == NO_ERROR) {
   7342         status = mInput->stream->common.set_parameters(&mInput->stream->common,
   7343                 keyValuePair.string());
   7344         if (status == INVALID_OPERATION) {
   7345             inputStandBy();
   7346             status = mInput->stream->common.set_parameters(&mInput->stream->common,
   7347                     keyValuePair.string());
   7348         }
   7349         if (reconfig) {
   7350             if (status == BAD_VALUE &&
   7351                 audio_is_linear_pcm(mInput->stream->common.get_format(&mInput->stream->common)) &&
   7352                 audio_is_linear_pcm(reqFormat) &&
   7353                 (mInput->stream->common.get_sample_rate(&mInput->stream->common)
   7354                         <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate)) &&
   7355                 audio_channel_count_from_in_mask(
   7356                         mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_8) {
   7357                 status = NO_ERROR;
   7358             }
   7359             if (status == NO_ERROR) {
   7360                 readInputParameters_l();
   7361                 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
   7362             }
   7363         }
   7364     }
   7365 
   7366     return reconfig;
   7367 }
   7368 
   7369 String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
   7370 {
   7371     Mutex::Autolock _l(mLock);
   7372     if (initCheck() != NO_ERROR) {
   7373         return String8();
   7374     }
   7375 
   7376     char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
   7377     const String8 out_s8(s);
   7378     free(s);
   7379     return out_s8;
   7380 }
   7381 
   7382 void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
   7383     sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
   7384 
   7385     desc->mIoHandle = mId;
   7386 
   7387     switch (event) {
   7388     case AUDIO_INPUT_OPENED:
   7389     case AUDIO_INPUT_CONFIG_CHANGED:
   7390         desc->mPatch = mPatch;
   7391         desc->mChannelMask = mChannelMask;
   7392         desc->mSamplingRate = mSampleRate;
   7393         desc->mFormat = mFormat;
   7394         desc->mFrameCount = mFrameCount;
   7395         desc->mFrameCountHAL = mFrameCount;
   7396         desc->mLatency = 0;
   7397         break;
   7398 
   7399     case AUDIO_INPUT_CLOSED:
   7400     default:
   7401         break;
   7402     }
   7403     mAudioFlinger->ioConfigChanged(event, desc, pid);
   7404 }
   7405 
   7406 void AudioFlinger::RecordThread::readInputParameters_l()
   7407 {
   7408     mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
   7409     mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
   7410     mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
   7411     if (mChannelCount > FCC_8) {
   7412         ALOGE("HAL channel count %d > %d", mChannelCount, FCC_8);
   7413     }
   7414     mHALFormat = mInput->stream->common.get_format(&mInput->stream->common);
   7415     mFormat = mHALFormat;
   7416     if (!audio_is_linear_pcm(mFormat)) {
   7417         ALOGE("HAL format %#x is not linear pcm", mFormat);
   7418     }
   7419     mFrameSize = audio_stream_in_frame_size(mInput->stream);
   7420     mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
   7421     mFrameCount = mBufferSize / mFrameSize;
   7422     // This is the formula for calculating the temporary buffer size.
   7423     // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
   7424     // 1 full output buffer, regardless of the alignment of the available input.
   7425     // The value is somewhat arbitrary, and could probably be even larger.
   7426     // A larger value should allow more old data to be read after a track calls start(),
   7427     // without increasing latency.
   7428     //
   7429     // Note this is independent of the maximum downsampling ratio permitted for capture.
   7430     mRsmpInFrames = mFrameCount * 7;
   7431     mRsmpInFramesP2 = roundup(mRsmpInFrames);
   7432     free(mRsmpInBuffer);
   7433     mRsmpInBuffer = NULL;
   7434 
   7435     // TODO optimize audio capture buffer sizes ...
   7436     // Here we calculate the size of the sliding buffer used as a source
   7437     // for resampling.  mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
   7438     // For current HAL frame counts, this is usually 2048 = 40 ms.  It would
   7439     // be better to have it derived from the pipe depth in the long term.
   7440     // The current value is higher than necessary.  However it should not add to latency.
   7441 
   7442     // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
   7443     size_t bufferSize = (mRsmpInFramesP2 + mFrameCount - 1) * mFrameSize;
   7444     (void)posix_memalign(&mRsmpInBuffer, 32, bufferSize);
   7445     memset(mRsmpInBuffer, 0, bufferSize); // if posix_memalign fails, will segv here.
   7446 
   7447     // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
   7448     // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
   7449 }
   7450 
   7451 uint32_t AudioFlinger::RecordThread::getInputFramesLost()
   7452 {
   7453     Mutex::Autolock _l(mLock);
   7454     if (initCheck() != NO_ERROR) {
   7455         return 0;
   7456     }
   7457 
   7458     return mInput->stream->get_input_frames_lost(mInput->stream);
   7459 }
   7460 
   7461 // hasAudioSession_l() must be called with ThreadBase::mLock held
   7462 uint32_t AudioFlinger::RecordThread::hasAudioSession_l(audio_session_t sessionId) const
   7463 {
   7464     uint32_t result = 0;
   7465     if (getEffectChain_l(sessionId) != 0) {
   7466         result = EFFECT_SESSION;
   7467     }
   7468 
   7469     for (size_t i = 0; i < mTracks.size(); ++i) {
   7470         if (sessionId == mTracks[i]->sessionId()) {
   7471             result |= TRACK_SESSION;
   7472             if (mTracks[i]->isFastTrack()) {
   7473                 result |= FAST_SESSION;
   7474             }
   7475             break;
   7476         }
   7477     }
   7478 
   7479     return result;
   7480 }
   7481 
   7482 KeyedVector<audio_session_t, bool> AudioFlinger::RecordThread::sessionIds() const
   7483 {
   7484     KeyedVector<audio_session_t, bool> ids;
   7485     Mutex::Autolock _l(mLock);
   7486     for (size_t j = 0; j < mTracks.size(); ++j) {
   7487         sp<RecordThread::RecordTrack> track = mTracks[j];
   7488         audio_session_t sessionId = track->sessionId();
   7489         if (ids.indexOfKey(sessionId) < 0) {
   7490             ids.add(sessionId, true);
   7491         }
   7492     }
   7493     return ids;
   7494 }
   7495 
   7496 AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
   7497 {
   7498     Mutex::Autolock _l(mLock);
   7499     AudioStreamIn *input = mInput;
   7500     mInput = NULL;
   7501     return input;
   7502 }
   7503 
   7504 // this method must always be called either with ThreadBase mLock held or inside the thread loop
   7505 audio_stream_t* AudioFlinger::RecordThread::stream() const
   7506 {
   7507     if (mInput == NULL) {
   7508         return NULL;
   7509     }
   7510     return &mInput->stream->common;
   7511 }
   7512 
   7513 status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
   7514 {
   7515     // only one chain per input thread
   7516     if (mEffectChains.size() != 0) {
   7517         ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
   7518         return INVALID_OPERATION;
   7519     }
   7520     ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
   7521     chain->setThread(this);
   7522     chain->setInBuffer(NULL);
   7523     chain->setOutBuffer(NULL);
   7524 
   7525     checkSuspendOnAddEffectChain_l(chain);
   7526 
   7527     // make sure enabled pre processing effects state is communicated to the HAL as we
   7528     // just moved them to a new input stream.
   7529     chain->syncHalEffectsState();
   7530 
   7531     mEffectChains.add(chain);
   7532 
   7533     return NO_ERROR;
   7534 }
   7535 
   7536 size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
   7537 {
   7538     ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
   7539     ALOGW_IF(mEffectChains.size() != 1,
   7540             "removeEffectChain_l() %p invalid chain size %zu on thread %p",
   7541             chain.get(), mEffectChains.size(), this);
   7542     if (mEffectChains.size() == 1) {
   7543         mEffectChains.removeAt(0);
   7544     }
   7545     return 0;
   7546 }
   7547 
   7548 status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
   7549                                                           audio_patch_handle_t *handle)
   7550 {
   7551     status_t status = NO_ERROR;
   7552 
   7553     // store new device and send to effects
   7554     mInDevice = patch->sources[0].ext.device.type;
   7555     mPatch = *patch;
   7556     for (size_t i = 0; i < mEffectChains.size(); i++) {
   7557         mEffectChains[i]->setDevice_l(mInDevice);
   7558     }
   7559 
   7560     // disable AEC and NS if the device is a BT SCO headset supporting those
   7561     // pre processings
   7562     if (mTracks.size() > 0) {
   7563         bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
   7564                             mAudioFlinger->btNrecIsOff();
   7565         for (size_t i = 0; i < mTracks.size(); i++) {
   7566             sp<RecordTrack> track = mTracks[i];
   7567             setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
   7568             setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
   7569         }
   7570     }
   7571 
   7572     // store new source and send to effects
   7573     if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
   7574         mAudioSource = patch->sinks[0].ext.mix.usecase.source;
   7575         for (size_t i = 0; i < mEffectChains.size(); i++) {
   7576             mEffectChains[i]->setAudioSource_l(mAudioSource);
   7577         }
   7578     }
   7579 
   7580     if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
   7581         audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
   7582         status = hwDevice->create_audio_patch(hwDevice,
   7583                                                patch->num_sources,
   7584                                                patch->sources,
   7585                                                patch->num_sinks,
   7586                                                patch->sinks,
   7587                                                handle);
   7588     } else {
   7589         char *address;
   7590         if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
   7591             address = audio_device_address_to_parameter(
   7592                                                 patch->sources[0].ext.device.type,
   7593                                                 patch->sources[0].ext.device.address);
   7594         } else {
   7595             address = (char *)calloc(1, 1);
   7596         }
   7597         AudioParameter param = AudioParameter(String8(address));
   7598         free(address);
   7599         param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING),
   7600                      (int)patch->sources[0].ext.device.type);
   7601         param.addInt(String8(AUDIO_PARAMETER_STREAM_INPUT_SOURCE),
   7602                                          (int)patch->sinks[0].ext.mix.usecase.source);
   7603         status = mInput->stream->common.set_parameters(&mInput->stream->common,
   7604                 param.toString().string());
   7605         *handle = AUDIO_PATCH_HANDLE_NONE;
   7606     }
   7607 
   7608     if (mInDevice != mPrevInDevice) {
   7609         sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
   7610         mPrevInDevice = mInDevice;
   7611     }
   7612 
   7613     return status;
   7614 }
   7615 
   7616 status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
   7617 {
   7618     status_t status = NO_ERROR;
   7619 
   7620     mInDevice = AUDIO_DEVICE_NONE;
   7621 
   7622     if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
   7623         audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
   7624         status = hwDevice->release_audio_patch(hwDevice, handle);
   7625     } else {
   7626         AudioParameter param;
   7627         param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
   7628         status = mInput->stream->common.set_parameters(&mInput->stream->common,
   7629                 param.toString().string());
   7630     }
   7631     return status;
   7632 }
   7633 
   7634 void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
   7635 {
   7636     Mutex::Autolock _l(mLock);
   7637     mTracks.add(record);
   7638 }
   7639 
   7640 void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
   7641 {
   7642     Mutex::Autolock _l(mLock);
   7643     destroyTrack_l(record);
   7644 }
   7645 
   7646 void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
   7647 {
   7648     ThreadBase::getAudioPortConfig(config);
   7649     config->role = AUDIO_PORT_ROLE_SINK;
   7650     config->ext.mix.hw_module = mInput->audioHwDev->handle();
   7651     config->ext.mix.usecase.source = mAudioSource;
   7652 }
   7653 
   7654 } // namespace android
   7655