Home | History | Annotate | Download | only in eigen2
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra. Eigen itself is part of the KDE project.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <g.gael (at) free.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #include "main.h"
     11 #include <Eigen/QR>
     12 
     13 #ifdef HAS_GSL
     14 #include "gsl_helper.h"
     15 #endif
     16 
     17 template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
     18 {
     19   /* this test covers the following files:
     20      EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h)
     21   */
     22   int rows = m.rows();
     23   int cols = m.cols();
     24 
     25   typedef typename MatrixType::Scalar Scalar;
     26   typedef typename NumTraits<Scalar>::Real RealScalar;
     27   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
     28   typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
     29   typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
     30 
     31   RealScalar largerEps = 10*test_precision<RealScalar>();
     32 
     33   MatrixType a = MatrixType::Random(rows,cols);
     34   MatrixType a1 = MatrixType::Random(rows,cols);
     35   MatrixType symmA =  a.adjoint() * a + a1.adjoint() * a1;
     36 
     37   MatrixType b = MatrixType::Random(rows,cols);
     38   MatrixType b1 = MatrixType::Random(rows,cols);
     39   MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1;
     40 
     41   SelfAdjointEigenSolver<MatrixType> eiSymm(symmA);
     42   // generalized eigen pb
     43   SelfAdjointEigenSolver<MatrixType> eiSymmGen(symmA, symmB);
     44 
     45   #ifdef HAS_GSL
     46   if (ei_is_same_type<RealScalar,double>::ret)
     47   {
     48     typedef GslTraits<Scalar> Gsl;
     49     typename Gsl::Matrix gEvec=0, gSymmA=0, gSymmB=0;
     50     typename GslTraits<RealScalar>::Vector gEval=0;
     51     RealVectorType _eval;
     52     MatrixType _evec;
     53     convert<MatrixType>(symmA, gSymmA);
     54     convert<MatrixType>(symmB, gSymmB);
     55     convert<MatrixType>(symmA, gEvec);
     56     gEval = GslTraits<RealScalar>::createVector(rows);
     57 
     58     Gsl::eigen_symm(gSymmA, gEval, gEvec);
     59     convert(gEval, _eval);
     60     convert(gEvec, _evec);
     61 
     62     // test gsl itself !
     63     VERIFY((symmA * _evec).isApprox(_evec * _eval.asDiagonal(), largerEps));
     64 
     65     // compare with eigen
     66     VERIFY_IS_APPROX(_eval, eiSymm.eigenvalues());
     67     VERIFY_IS_APPROX(_evec.cwise().abs(), eiSymm.eigenvectors().cwise().abs());
     68 
     69     // generalized pb
     70     Gsl::eigen_symm_gen(gSymmA, gSymmB, gEval, gEvec);
     71     convert(gEval, _eval);
     72     convert(gEvec, _evec);
     73     // test GSL itself:
     74     VERIFY((symmA * _evec).isApprox(symmB * (_evec * _eval.asDiagonal()), largerEps));
     75 
     76     // compare with eigen
     77     MatrixType normalized_eivec = eiSymmGen.eigenvectors()*eiSymmGen.eigenvectors().colwise().norm().asDiagonal().inverse();
     78     VERIFY_IS_APPROX(_eval, eiSymmGen.eigenvalues());
     79     VERIFY_IS_APPROX(_evec.cwiseAbs(), normalized_eivec.cwiseAbs());
     80 
     81     Gsl::free(gSymmA);
     82     Gsl::free(gSymmB);
     83     GslTraits<RealScalar>::free(gEval);
     84     Gsl::free(gEvec);
     85   }
     86   #endif
     87 
     88   VERIFY((symmA * eiSymm.eigenvectors()).isApprox(
     89           eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps));
     90 
     91   // generalized eigen problem Ax = lBx
     92   VERIFY((symmA * eiSymmGen.eigenvectors()).isApprox(
     93           symmB * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
     94 
     95   MatrixType sqrtSymmA = eiSymm.operatorSqrt();
     96   VERIFY_IS_APPROX(symmA, sqrtSymmA*sqrtSymmA);
     97   VERIFY_IS_APPROX(sqrtSymmA, symmA*eiSymm.operatorInverseSqrt());
     98 }
     99 
    100 template<typename MatrixType> void eigensolver(const MatrixType& m)
    101 {
    102   /* this test covers the following files:
    103      EigenSolver.h
    104   */
    105   int rows = m.rows();
    106   int cols = m.cols();
    107 
    108   typedef typename MatrixType::Scalar Scalar;
    109   typedef typename NumTraits<Scalar>::Real RealScalar;
    110   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
    111   typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
    112   typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
    113 
    114   // RealScalar largerEps = 10*test_precision<RealScalar>();
    115 
    116   MatrixType a = MatrixType::Random(rows,cols);
    117   MatrixType a1 = MatrixType::Random(rows,cols);
    118   MatrixType symmA =  a.adjoint() * a + a1.adjoint() * a1;
    119 
    120   EigenSolver<MatrixType> ei0(symmA);
    121   VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix());
    122   VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()),
    123     (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal()));
    124 
    125   EigenSolver<MatrixType> ei1(a);
    126   VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix());
    127   VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(),
    128                    ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
    129 
    130 }
    131 
    132 void test_eigen2_eigensolver()
    133 {
    134   for(int i = 0; i < g_repeat; i++) {
    135     // very important to test a 3x3 matrix since we provide a special path for it
    136     CALL_SUBTEST_1( selfadjointeigensolver(Matrix3f()) );
    137     CALL_SUBTEST_2( selfadjointeigensolver(Matrix4d()) );
    138     CALL_SUBTEST_3( selfadjointeigensolver(MatrixXf(7,7)) );
    139     CALL_SUBTEST_4( selfadjointeigensolver(MatrixXcd(5,5)) );
    140     CALL_SUBTEST_5( selfadjointeigensolver(MatrixXd(19,19)) );
    141 
    142     CALL_SUBTEST_6( eigensolver(Matrix4f()) );
    143     CALL_SUBTEST_5( eigensolver(MatrixXd(17,17)) );
    144   }
    145 }
    146 
    147