1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a DAG pattern matching instruction selector for X86, 11 // converting from a legalized dag to a X86 dag. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "X86.h" 16 #include "X86InstrBuilder.h" 17 #include "X86MachineFunctionInfo.h" 18 #include "X86RegisterInfo.h" 19 #include "X86Subtarget.h" 20 #include "X86TargetMachine.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/SelectionDAGISel.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/Type.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include "llvm/Target/TargetOptions.h" 37 #include <stdint.h> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "x86-isel" 41 42 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor"); 43 44 //===----------------------------------------------------------------------===// 45 // Pattern Matcher Implementation 46 //===----------------------------------------------------------------------===// 47 48 namespace { 49 /// This corresponds to X86AddressMode, but uses SDValue's instead of register 50 /// numbers for the leaves of the matched tree. 51 struct X86ISelAddressMode { 52 enum { 53 RegBase, 54 FrameIndexBase 55 } BaseType; 56 57 // This is really a union, discriminated by BaseType! 58 SDValue Base_Reg; 59 int Base_FrameIndex; 60 61 unsigned Scale; 62 SDValue IndexReg; 63 int32_t Disp; 64 SDValue Segment; 65 const GlobalValue *GV; 66 const Constant *CP; 67 const BlockAddress *BlockAddr; 68 const char *ES; 69 MCSymbol *MCSym; 70 int JT; 71 unsigned Align; // CP alignment. 72 unsigned char SymbolFlags; // X86II::MO_* 73 74 X86ISelAddressMode() 75 : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0), 76 Segment(), GV(nullptr), CP(nullptr), BlockAddr(nullptr), ES(nullptr), 77 MCSym(nullptr), JT(-1), Align(0), SymbolFlags(X86II::MO_NO_FLAG) {} 78 79 bool hasSymbolicDisplacement() const { 80 return GV != nullptr || CP != nullptr || ES != nullptr || 81 MCSym != nullptr || JT != -1 || BlockAddr != nullptr; 82 } 83 84 bool hasBaseOrIndexReg() const { 85 return BaseType == FrameIndexBase || 86 IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr; 87 } 88 89 /// Return true if this addressing mode is already RIP-relative. 90 bool isRIPRelative() const { 91 if (BaseType != RegBase) return false; 92 if (RegisterSDNode *RegNode = 93 dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode())) 94 return RegNode->getReg() == X86::RIP; 95 return false; 96 } 97 98 void setBaseReg(SDValue Reg) { 99 BaseType = RegBase; 100 Base_Reg = Reg; 101 } 102 103 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 104 void dump() { 105 dbgs() << "X86ISelAddressMode " << this << '\n'; 106 dbgs() << "Base_Reg "; 107 if (Base_Reg.getNode()) 108 Base_Reg.getNode()->dump(); 109 else 110 dbgs() << "nul"; 111 dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n' 112 << " Scale" << Scale << '\n' 113 << "IndexReg "; 114 if (IndexReg.getNode()) 115 IndexReg.getNode()->dump(); 116 else 117 dbgs() << "nul"; 118 dbgs() << " Disp " << Disp << '\n' 119 << "GV "; 120 if (GV) 121 GV->dump(); 122 else 123 dbgs() << "nul"; 124 dbgs() << " CP "; 125 if (CP) 126 CP->dump(); 127 else 128 dbgs() << "nul"; 129 dbgs() << '\n' 130 << "ES "; 131 if (ES) 132 dbgs() << ES; 133 else 134 dbgs() << "nul"; 135 dbgs() << " MCSym "; 136 if (MCSym) 137 dbgs() << MCSym; 138 else 139 dbgs() << "nul"; 140 dbgs() << " JT" << JT << " Align" << Align << '\n'; 141 } 142 #endif 143 }; 144 } 145 146 namespace { 147 //===--------------------------------------------------------------------===// 148 /// ISel - X86-specific code to select X86 machine instructions for 149 /// SelectionDAG operations. 150 /// 151 class X86DAGToDAGISel final : public SelectionDAGISel { 152 /// Keep a pointer to the X86Subtarget around so that we can 153 /// make the right decision when generating code for different targets. 154 const X86Subtarget *Subtarget; 155 156 /// If true, selector should try to optimize for code size instead of 157 /// performance. 158 bool OptForSize; 159 160 /// If true, selector should try to optimize for minimum code size. 161 bool OptForMinSize; 162 163 public: 164 explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel) 165 : SelectionDAGISel(tm, OptLevel), OptForSize(false), 166 OptForMinSize(false) {} 167 168 const char *getPassName() const override { 169 return "X86 DAG->DAG Instruction Selection"; 170 } 171 172 bool runOnMachineFunction(MachineFunction &MF) override { 173 // Reset the subtarget each time through. 174 Subtarget = &MF.getSubtarget<X86Subtarget>(); 175 SelectionDAGISel::runOnMachineFunction(MF); 176 return true; 177 } 178 179 void EmitFunctionEntryCode() override; 180 181 bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override; 182 183 void PreprocessISelDAG() override; 184 185 inline bool immSext8(SDNode *N) const { 186 return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue()); 187 } 188 189 // True if the 64-bit immediate fits in a 32-bit sign-extended field. 190 inline bool i64immSExt32(SDNode *N) const { 191 uint64_t v = cast<ConstantSDNode>(N)->getZExtValue(); 192 return (int64_t)v == (int32_t)v; 193 } 194 195 // Include the pieces autogenerated from the target description. 196 #include "X86GenDAGISel.inc" 197 198 private: 199 SDNode *Select(SDNode *N) override; 200 SDNode *selectGather(SDNode *N, unsigned Opc); 201 SDNode *selectAtomicLoadArith(SDNode *Node, MVT NVT); 202 203 bool foldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM); 204 bool matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM); 205 bool matchWrapper(SDValue N, X86ISelAddressMode &AM); 206 bool matchAddress(SDValue N, X86ISelAddressMode &AM); 207 bool matchAdd(SDValue N, X86ISelAddressMode &AM, unsigned Depth); 208 bool matchAddressRecursively(SDValue N, X86ISelAddressMode &AM, 209 unsigned Depth); 210 bool matchAddressBase(SDValue N, X86ISelAddressMode &AM); 211 bool selectAddr(SDNode *Parent, SDValue N, SDValue &Base, 212 SDValue &Scale, SDValue &Index, SDValue &Disp, 213 SDValue &Segment); 214 bool selectVectorAddr(SDNode *Parent, SDValue N, SDValue &Base, 215 SDValue &Scale, SDValue &Index, SDValue &Disp, 216 SDValue &Segment); 217 bool selectMOV64Imm32(SDValue N, SDValue &Imm); 218 bool selectLEAAddr(SDValue N, SDValue &Base, 219 SDValue &Scale, SDValue &Index, SDValue &Disp, 220 SDValue &Segment); 221 bool selectLEA64_32Addr(SDValue N, SDValue &Base, 222 SDValue &Scale, SDValue &Index, SDValue &Disp, 223 SDValue &Segment); 224 bool selectTLSADDRAddr(SDValue N, SDValue &Base, 225 SDValue &Scale, SDValue &Index, SDValue &Disp, 226 SDValue &Segment); 227 bool selectScalarSSELoad(SDNode *Root, SDValue N, 228 SDValue &Base, SDValue &Scale, 229 SDValue &Index, SDValue &Disp, 230 SDValue &Segment, 231 SDValue &NodeWithChain); 232 233 bool tryFoldLoad(SDNode *P, SDValue N, 234 SDValue &Base, SDValue &Scale, 235 SDValue &Index, SDValue &Disp, 236 SDValue &Segment); 237 238 /// Implement addressing mode selection for inline asm expressions. 239 bool SelectInlineAsmMemoryOperand(const SDValue &Op, 240 unsigned ConstraintID, 241 std::vector<SDValue> &OutOps) override; 242 243 void emitSpecialCodeForMain(); 244 245 inline void getAddressOperands(X86ISelAddressMode &AM, SDLoc DL, 246 SDValue &Base, SDValue &Scale, 247 SDValue &Index, SDValue &Disp, 248 SDValue &Segment) { 249 Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) 250 ? CurDAG->getTargetFrameIndex( 251 AM.Base_FrameIndex, 252 TLI->getPointerTy(CurDAG->getDataLayout())) 253 : AM.Base_Reg; 254 Scale = getI8Imm(AM.Scale, DL); 255 Index = AM.IndexReg; 256 // These are 32-bit even in 64-bit mode since RIP-relative offset 257 // is 32-bit. 258 if (AM.GV) 259 Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(), 260 MVT::i32, AM.Disp, 261 AM.SymbolFlags); 262 else if (AM.CP) 263 Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, 264 AM.Align, AM.Disp, AM.SymbolFlags); 265 else if (AM.ES) { 266 assert(!AM.Disp && "Non-zero displacement is ignored with ES."); 267 Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags); 268 } else if (AM.MCSym) { 269 assert(!AM.Disp && "Non-zero displacement is ignored with MCSym."); 270 assert(AM.SymbolFlags == 0 && "oo"); 271 Disp = CurDAG->getMCSymbol(AM.MCSym, MVT::i32); 272 } else if (AM.JT != -1) { 273 assert(!AM.Disp && "Non-zero displacement is ignored with JT."); 274 Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags); 275 } else if (AM.BlockAddr) 276 Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp, 277 AM.SymbolFlags); 278 else 279 Disp = CurDAG->getTargetConstant(AM.Disp, DL, MVT::i32); 280 281 if (AM.Segment.getNode()) 282 Segment = AM.Segment; 283 else 284 Segment = CurDAG->getRegister(0, MVT::i32); 285 } 286 287 // Utility function to determine whether we should avoid selecting 288 // immediate forms of instructions for better code size or not. 289 // At a high level, we'd like to avoid such instructions when 290 // we have similar constants used within the same basic block 291 // that can be kept in a register. 292 // 293 bool shouldAvoidImmediateInstFormsForSize(SDNode *N) const { 294 uint32_t UseCount = 0; 295 296 // Do not want to hoist if we're not optimizing for size. 297 // TODO: We'd like to remove this restriction. 298 // See the comment in X86InstrInfo.td for more info. 299 if (!OptForSize) 300 return false; 301 302 // Walk all the users of the immediate. 303 for (SDNode::use_iterator UI = N->use_begin(), 304 UE = N->use_end(); (UI != UE) && (UseCount < 2); ++UI) { 305 306 SDNode *User = *UI; 307 308 // This user is already selected. Count it as a legitimate use and 309 // move on. 310 if (User->isMachineOpcode()) { 311 UseCount++; 312 continue; 313 } 314 315 // We want to count stores of immediates as real uses. 316 if (User->getOpcode() == ISD::STORE && 317 User->getOperand(1).getNode() == N) { 318 UseCount++; 319 continue; 320 } 321 322 // We don't currently match users that have > 2 operands (except 323 // for stores, which are handled above) 324 // Those instruction won't match in ISEL, for now, and would 325 // be counted incorrectly. 326 // This may change in the future as we add additional instruction 327 // types. 328 if (User->getNumOperands() != 2) 329 continue; 330 331 // Immediates that are used for offsets as part of stack 332 // manipulation should be left alone. These are typically 333 // used to indicate SP offsets for argument passing and 334 // will get pulled into stores/pushes (implicitly). 335 if (User->getOpcode() == X86ISD::ADD || 336 User->getOpcode() == ISD::ADD || 337 User->getOpcode() == X86ISD::SUB || 338 User->getOpcode() == ISD::SUB) { 339 340 // Find the other operand of the add/sub. 341 SDValue OtherOp = User->getOperand(0); 342 if (OtherOp.getNode() == N) 343 OtherOp = User->getOperand(1); 344 345 // Don't count if the other operand is SP. 346 RegisterSDNode *RegNode; 347 if (OtherOp->getOpcode() == ISD::CopyFromReg && 348 (RegNode = dyn_cast_or_null<RegisterSDNode>( 349 OtherOp->getOperand(1).getNode()))) 350 if ((RegNode->getReg() == X86::ESP) || 351 (RegNode->getReg() == X86::RSP)) 352 continue; 353 } 354 355 // ... otherwise, count this and move on. 356 UseCount++; 357 } 358 359 // If we have more than 1 use, then recommend for hoisting. 360 return (UseCount > 1); 361 } 362 363 /// Return a target constant with the specified value of type i8. 364 inline SDValue getI8Imm(unsigned Imm, SDLoc DL) { 365 return CurDAG->getTargetConstant(Imm, DL, MVT::i8); 366 } 367 368 /// Return a target constant with the specified value, of type i32. 369 inline SDValue getI32Imm(unsigned Imm, SDLoc DL) { 370 return CurDAG->getTargetConstant(Imm, DL, MVT::i32); 371 } 372 373 /// Return an SDNode that returns the value of the global base register. 374 /// Output instructions required to initialize the global base register, 375 /// if necessary. 376 SDNode *getGlobalBaseReg(); 377 378 /// Return a reference to the TargetMachine, casted to the target-specific 379 /// type. 380 const X86TargetMachine &getTargetMachine() const { 381 return static_cast<const X86TargetMachine &>(TM); 382 } 383 384 /// Return a reference to the TargetInstrInfo, casted to the target-specific 385 /// type. 386 const X86InstrInfo *getInstrInfo() const { 387 return Subtarget->getInstrInfo(); 388 } 389 390 /// \brief Address-mode matching performs shift-of-and to and-of-shift 391 /// reassociation in order to expose more scaled addressing 392 /// opportunities. 393 bool ComplexPatternFuncMutatesDAG() const override { 394 return true; 395 } 396 }; 397 } 398 399 400 bool 401 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const { 402 if (OptLevel == CodeGenOpt::None) return false; 403 404 if (!N.hasOneUse()) 405 return false; 406 407 if (N.getOpcode() != ISD::LOAD) 408 return true; 409 410 // If N is a load, do additional profitability checks. 411 if (U == Root) { 412 switch (U->getOpcode()) { 413 default: break; 414 case X86ISD::ADD: 415 case X86ISD::SUB: 416 case X86ISD::AND: 417 case X86ISD::XOR: 418 case X86ISD::OR: 419 case ISD::ADD: 420 case ISD::ADDC: 421 case ISD::ADDE: 422 case ISD::AND: 423 case ISD::OR: 424 case ISD::XOR: { 425 SDValue Op1 = U->getOperand(1); 426 427 // If the other operand is a 8-bit immediate we should fold the immediate 428 // instead. This reduces code size. 429 // e.g. 430 // movl 4(%esp), %eax 431 // addl $4, %eax 432 // vs. 433 // movl $4, %eax 434 // addl 4(%esp), %eax 435 // The former is 2 bytes shorter. In case where the increment is 1, then 436 // the saving can be 4 bytes (by using incl %eax). 437 if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1)) 438 if (Imm->getAPIntValue().isSignedIntN(8)) 439 return false; 440 441 // If the other operand is a TLS address, we should fold it instead. 442 // This produces 443 // movl %gs:0, %eax 444 // leal i@NTPOFF(%eax), %eax 445 // instead of 446 // movl $i@NTPOFF, %eax 447 // addl %gs:0, %eax 448 // if the block also has an access to a second TLS address this will save 449 // a load. 450 // FIXME: This is probably also true for non-TLS addresses. 451 if (Op1.getOpcode() == X86ISD::Wrapper) { 452 SDValue Val = Op1.getOperand(0); 453 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress) 454 return false; 455 } 456 } 457 } 458 } 459 460 return true; 461 } 462 463 /// Replace the original chain operand of the call with 464 /// load's chain operand and move load below the call's chain operand. 465 static void moveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load, 466 SDValue Call, SDValue OrigChain) { 467 SmallVector<SDValue, 8> Ops; 468 SDValue Chain = OrigChain.getOperand(0); 469 if (Chain.getNode() == Load.getNode()) 470 Ops.push_back(Load.getOperand(0)); 471 else { 472 assert(Chain.getOpcode() == ISD::TokenFactor && 473 "Unexpected chain operand"); 474 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) 475 if (Chain.getOperand(i).getNode() == Load.getNode()) 476 Ops.push_back(Load.getOperand(0)); 477 else 478 Ops.push_back(Chain.getOperand(i)); 479 SDValue NewChain = 480 CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops); 481 Ops.clear(); 482 Ops.push_back(NewChain); 483 } 484 Ops.append(OrigChain->op_begin() + 1, OrigChain->op_end()); 485 CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops); 486 CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0), 487 Load.getOperand(1), Load.getOperand(2)); 488 489 Ops.clear(); 490 Ops.push_back(SDValue(Load.getNode(), 1)); 491 Ops.append(Call->op_begin() + 1, Call->op_end()); 492 CurDAG->UpdateNodeOperands(Call.getNode(), Ops); 493 } 494 495 /// Return true if call address is a load and it can be 496 /// moved below CALLSEQ_START and the chains leading up to the call. 497 /// Return the CALLSEQ_START by reference as a second output. 498 /// In the case of a tail call, there isn't a callseq node between the call 499 /// chain and the load. 500 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) { 501 // The transformation is somewhat dangerous if the call's chain was glued to 502 // the call. After MoveBelowOrigChain the load is moved between the call and 503 // the chain, this can create a cycle if the load is not folded. So it is 504 // *really* important that we are sure the load will be folded. 505 if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse()) 506 return false; 507 LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode()); 508 if (!LD || 509 LD->isVolatile() || 510 LD->getAddressingMode() != ISD::UNINDEXED || 511 LD->getExtensionType() != ISD::NON_EXTLOAD) 512 return false; 513 514 // Now let's find the callseq_start. 515 while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) { 516 if (!Chain.hasOneUse()) 517 return false; 518 Chain = Chain.getOperand(0); 519 } 520 521 if (!Chain.getNumOperands()) 522 return false; 523 // Since we are not checking for AA here, conservatively abort if the chain 524 // writes to memory. It's not safe to move the callee (a load) across a store. 525 if (isa<MemSDNode>(Chain.getNode()) && 526 cast<MemSDNode>(Chain.getNode())->writeMem()) 527 return false; 528 if (Chain.getOperand(0).getNode() == Callee.getNode()) 529 return true; 530 if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor && 531 Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) && 532 Callee.getValue(1).hasOneUse()) 533 return true; 534 return false; 535 } 536 537 void X86DAGToDAGISel::PreprocessISelDAG() { 538 // OptFor[Min]Size are used in pattern predicates that isel is matching. 539 OptForSize = MF->getFunction()->optForSize(); 540 OptForMinSize = MF->getFunction()->optForMinSize(); 541 assert((!OptForMinSize || OptForSize) && "OptForMinSize implies OptForSize"); 542 543 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), 544 E = CurDAG->allnodes_end(); I != E; ) { 545 SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues. 546 547 if (OptLevel != CodeGenOpt::None && 548 // Only does this when target favors doesn't favor register indirect 549 // call. 550 ((N->getOpcode() == X86ISD::CALL && !Subtarget->callRegIndirect()) || 551 (N->getOpcode() == X86ISD::TC_RETURN && 552 // Only does this if load can be folded into TC_RETURN. 553 (Subtarget->is64Bit() || 554 getTargetMachine().getRelocationModel() != Reloc::PIC_)))) { 555 /// Also try moving call address load from outside callseq_start to just 556 /// before the call to allow it to be folded. 557 /// 558 /// [Load chain] 559 /// ^ 560 /// | 561 /// [Load] 562 /// ^ ^ 563 /// | | 564 /// / \-- 565 /// / | 566 ///[CALLSEQ_START] | 567 /// ^ | 568 /// | | 569 /// [LOAD/C2Reg] | 570 /// | | 571 /// \ / 572 /// \ / 573 /// [CALL] 574 bool HasCallSeq = N->getOpcode() == X86ISD::CALL; 575 SDValue Chain = N->getOperand(0); 576 SDValue Load = N->getOperand(1); 577 if (!isCalleeLoad(Load, Chain, HasCallSeq)) 578 continue; 579 moveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain); 580 ++NumLoadMoved; 581 continue; 582 } 583 584 // Lower fpround and fpextend nodes that target the FP stack to be store and 585 // load to the stack. This is a gross hack. We would like to simply mark 586 // these as being illegal, but when we do that, legalize produces these when 587 // it expands calls, then expands these in the same legalize pass. We would 588 // like dag combine to be able to hack on these between the call expansion 589 // and the node legalization. As such this pass basically does "really 590 // late" legalization of these inline with the X86 isel pass. 591 // FIXME: This should only happen when not compiled with -O0. 592 if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND) 593 continue; 594 595 MVT SrcVT = N->getOperand(0).getSimpleValueType(); 596 MVT DstVT = N->getSimpleValueType(0); 597 598 // If any of the sources are vectors, no fp stack involved. 599 if (SrcVT.isVector() || DstVT.isVector()) 600 continue; 601 602 // If the source and destination are SSE registers, then this is a legal 603 // conversion that should not be lowered. 604 const X86TargetLowering *X86Lowering = 605 static_cast<const X86TargetLowering *>(TLI); 606 bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT); 607 bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT); 608 if (SrcIsSSE && DstIsSSE) 609 continue; 610 611 if (!SrcIsSSE && !DstIsSSE) { 612 // If this is an FPStack extension, it is a noop. 613 if (N->getOpcode() == ISD::FP_EXTEND) 614 continue; 615 // If this is a value-preserving FPStack truncation, it is a noop. 616 if (N->getConstantOperandVal(1)) 617 continue; 618 } 619 620 // Here we could have an FP stack truncation or an FPStack <-> SSE convert. 621 // FPStack has extload and truncstore. SSE can fold direct loads into other 622 // operations. Based on this, decide what we want to do. 623 MVT MemVT; 624 if (N->getOpcode() == ISD::FP_ROUND) 625 MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'. 626 else 627 MemVT = SrcIsSSE ? SrcVT : DstVT; 628 629 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT); 630 SDLoc dl(N); 631 632 // FIXME: optimize the case where the src/dest is a load or store? 633 SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl, 634 N->getOperand(0), 635 MemTmp, MachinePointerInfo(), MemVT, 636 false, false, 0); 637 SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp, 638 MachinePointerInfo(), 639 MemVT, false, false, false, 0); 640 641 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the 642 // extload we created. This will cause general havok on the dag because 643 // anything below the conversion could be folded into other existing nodes. 644 // To avoid invalidating 'I', back it up to the convert node. 645 --I; 646 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 647 648 // Now that we did that, the node is dead. Increment the iterator to the 649 // next node to process, then delete N. 650 ++I; 651 CurDAG->DeleteNode(N); 652 } 653 } 654 655 656 /// Emit any code that needs to be executed only in the main function. 657 void X86DAGToDAGISel::emitSpecialCodeForMain() { 658 if (Subtarget->isTargetCygMing()) { 659 TargetLowering::ArgListTy Args; 660 auto &DL = CurDAG->getDataLayout(); 661 662 TargetLowering::CallLoweringInfo CLI(*CurDAG); 663 CLI.setChain(CurDAG->getRoot()) 664 .setCallee(CallingConv::C, Type::getVoidTy(*CurDAG->getContext()), 665 CurDAG->getExternalSymbol("__main", TLI->getPointerTy(DL)), 666 std::move(Args), 0); 667 const TargetLowering &TLI = CurDAG->getTargetLoweringInfo(); 668 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 669 CurDAG->setRoot(Result.second); 670 } 671 } 672 673 void X86DAGToDAGISel::EmitFunctionEntryCode() { 674 // If this is main, emit special code for main. 675 if (const Function *Fn = MF->getFunction()) 676 if (Fn->hasExternalLinkage() && Fn->getName() == "main") 677 emitSpecialCodeForMain(); 678 } 679 680 static bool isDispSafeForFrameIndex(int64_t Val) { 681 // On 64-bit platforms, we can run into an issue where a frame index 682 // includes a displacement that, when added to the explicit displacement, 683 // will overflow the displacement field. Assuming that the frame index 684 // displacement fits into a 31-bit integer (which is only slightly more 685 // aggressive than the current fundamental assumption that it fits into 686 // a 32-bit integer), a 31-bit disp should always be safe. 687 return isInt<31>(Val); 688 } 689 690 bool X86DAGToDAGISel::foldOffsetIntoAddress(uint64_t Offset, 691 X86ISelAddressMode &AM) { 692 // Cannot combine ExternalSymbol displacements with integer offsets. 693 if (Offset != 0 && (AM.ES || AM.MCSym)) 694 return true; 695 int64_t Val = AM.Disp + Offset; 696 CodeModel::Model M = TM.getCodeModel(); 697 if (Subtarget->is64Bit()) { 698 if (!X86::isOffsetSuitableForCodeModel(Val, M, 699 AM.hasSymbolicDisplacement())) 700 return true; 701 // In addition to the checks required for a register base, check that 702 // we do not try to use an unsafe Disp with a frame index. 703 if (AM.BaseType == X86ISelAddressMode::FrameIndexBase && 704 !isDispSafeForFrameIndex(Val)) 705 return true; 706 } 707 AM.Disp = Val; 708 return false; 709 710 } 711 712 bool X86DAGToDAGISel::matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){ 713 SDValue Address = N->getOperand(1); 714 715 // load gs:0 -> GS segment register. 716 // load fs:0 -> FS segment register. 717 // 718 // This optimization is valid because the GNU TLS model defines that 719 // gs:0 (or fs:0 on X86-64) contains its own address. 720 // For more information see http://people.redhat.com/drepper/tls.pdf 721 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address)) 722 if (C->getSExtValue() == 0 && AM.Segment.getNode() == nullptr && 723 Subtarget->isTargetLinux()) 724 switch (N->getPointerInfo().getAddrSpace()) { 725 case 256: 726 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); 727 return false; 728 case 257: 729 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); 730 return false; 731 } 732 733 return true; 734 } 735 736 /// Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes into an addressing 737 /// mode. These wrap things that will resolve down into a symbol reference. 738 /// If no match is possible, this returns true, otherwise it returns false. 739 bool X86DAGToDAGISel::matchWrapper(SDValue N, X86ISelAddressMode &AM) { 740 // If the addressing mode already has a symbol as the displacement, we can 741 // never match another symbol. 742 if (AM.hasSymbolicDisplacement()) 743 return true; 744 745 SDValue N0 = N.getOperand(0); 746 CodeModel::Model M = TM.getCodeModel(); 747 748 // Handle X86-64 rip-relative addresses. We check this before checking direct 749 // folding because RIP is preferable to non-RIP accesses. 750 if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP && 751 // Under X86-64 non-small code model, GV (and friends) are 64-bits, so 752 // they cannot be folded into immediate fields. 753 // FIXME: This can be improved for kernel and other models? 754 (M == CodeModel::Small || M == CodeModel::Kernel)) { 755 // Base and index reg must be 0 in order to use %rip as base. 756 if (AM.hasBaseOrIndexReg()) 757 return true; 758 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) { 759 X86ISelAddressMode Backup = AM; 760 AM.GV = G->getGlobal(); 761 AM.SymbolFlags = G->getTargetFlags(); 762 if (foldOffsetIntoAddress(G->getOffset(), AM)) { 763 AM = Backup; 764 return true; 765 } 766 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) { 767 X86ISelAddressMode Backup = AM; 768 AM.CP = CP->getConstVal(); 769 AM.Align = CP->getAlignment(); 770 AM.SymbolFlags = CP->getTargetFlags(); 771 if (foldOffsetIntoAddress(CP->getOffset(), AM)) { 772 AM = Backup; 773 return true; 774 } 775 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) { 776 AM.ES = S->getSymbol(); 777 AM.SymbolFlags = S->getTargetFlags(); 778 } else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) { 779 AM.MCSym = S->getMCSymbol(); 780 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) { 781 AM.JT = J->getIndex(); 782 AM.SymbolFlags = J->getTargetFlags(); 783 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) { 784 X86ISelAddressMode Backup = AM; 785 AM.BlockAddr = BA->getBlockAddress(); 786 AM.SymbolFlags = BA->getTargetFlags(); 787 if (foldOffsetIntoAddress(BA->getOffset(), AM)) { 788 AM = Backup; 789 return true; 790 } 791 } else 792 llvm_unreachable("Unhandled symbol reference node."); 793 794 if (N.getOpcode() == X86ISD::WrapperRIP) 795 AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64)); 796 return false; 797 } 798 799 // Handle the case when globals fit in our immediate field: This is true for 800 // X86-32 always and X86-64 when in -mcmodel=small mode. In 64-bit 801 // mode, this only applies to a non-RIP-relative computation. 802 if (!Subtarget->is64Bit() || 803 M == CodeModel::Small || M == CodeModel::Kernel) { 804 assert(N.getOpcode() != X86ISD::WrapperRIP && 805 "RIP-relative addressing already handled"); 806 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) { 807 AM.GV = G->getGlobal(); 808 AM.Disp += G->getOffset(); 809 AM.SymbolFlags = G->getTargetFlags(); 810 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) { 811 AM.CP = CP->getConstVal(); 812 AM.Align = CP->getAlignment(); 813 AM.Disp += CP->getOffset(); 814 AM.SymbolFlags = CP->getTargetFlags(); 815 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) { 816 AM.ES = S->getSymbol(); 817 AM.SymbolFlags = S->getTargetFlags(); 818 } else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) { 819 AM.MCSym = S->getMCSymbol(); 820 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) { 821 AM.JT = J->getIndex(); 822 AM.SymbolFlags = J->getTargetFlags(); 823 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) { 824 AM.BlockAddr = BA->getBlockAddress(); 825 AM.Disp += BA->getOffset(); 826 AM.SymbolFlags = BA->getTargetFlags(); 827 } else 828 llvm_unreachable("Unhandled symbol reference node."); 829 return false; 830 } 831 832 return true; 833 } 834 835 /// Add the specified node to the specified addressing mode, returning true if 836 /// it cannot be done. This just pattern matches for the addressing mode. 837 bool X86DAGToDAGISel::matchAddress(SDValue N, X86ISelAddressMode &AM) { 838 if (matchAddressRecursively(N, AM, 0)) 839 return true; 840 841 // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has 842 // a smaller encoding and avoids a scaled-index. 843 if (AM.Scale == 2 && 844 AM.BaseType == X86ISelAddressMode::RegBase && 845 AM.Base_Reg.getNode() == nullptr) { 846 AM.Base_Reg = AM.IndexReg; 847 AM.Scale = 1; 848 } 849 850 // Post-processing: Convert foo to foo(%rip), even in non-PIC mode, 851 // because it has a smaller encoding. 852 // TODO: Which other code models can use this? 853 if (TM.getCodeModel() == CodeModel::Small && 854 Subtarget->is64Bit() && 855 AM.Scale == 1 && 856 AM.BaseType == X86ISelAddressMode::RegBase && 857 AM.Base_Reg.getNode() == nullptr && 858 AM.IndexReg.getNode() == nullptr && 859 AM.SymbolFlags == X86II::MO_NO_FLAG && 860 AM.hasSymbolicDisplacement()) 861 AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64); 862 863 return false; 864 } 865 866 bool X86DAGToDAGISel::matchAdd(SDValue N, X86ISelAddressMode &AM, 867 unsigned Depth) { 868 // Add an artificial use to this node so that we can keep track of 869 // it if it gets CSE'd with a different node. 870 HandleSDNode Handle(N); 871 872 X86ISelAddressMode Backup = AM; 873 if (!matchAddressRecursively(N.getOperand(0), AM, Depth+1) && 874 !matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)) 875 return false; 876 AM = Backup; 877 878 // Try again after commuting the operands. 879 if (!matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1) && 880 !matchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1)) 881 return false; 882 AM = Backup; 883 884 // If we couldn't fold both operands into the address at the same time, 885 // see if we can just put each operand into a register and fold at least 886 // the add. 887 if (AM.BaseType == X86ISelAddressMode::RegBase && 888 !AM.Base_Reg.getNode() && 889 !AM.IndexReg.getNode()) { 890 N = Handle.getValue(); 891 AM.Base_Reg = N.getOperand(0); 892 AM.IndexReg = N.getOperand(1); 893 AM.Scale = 1; 894 return false; 895 } 896 N = Handle.getValue(); 897 return true; 898 } 899 900 // Insert a node into the DAG at least before the Pos node's position. This 901 // will reposition the node as needed, and will assign it a node ID that is <= 902 // the Pos node's ID. Note that this does *not* preserve the uniqueness of node 903 // IDs! The selection DAG must no longer depend on their uniqueness when this 904 // is used. 905 static void insertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) { 906 if (N.getNode()->getNodeId() == -1 || 907 N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) { 908 DAG.RepositionNode(Pos.getNode()->getIterator(), N.getNode()); 909 N.getNode()->setNodeId(Pos.getNode()->getNodeId()); 910 } 911 } 912 913 // Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if 914 // safe. This allows us to convert the shift and and into an h-register 915 // extract and a scaled index. Returns false if the simplification is 916 // performed. 917 static bool foldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N, 918 uint64_t Mask, 919 SDValue Shift, SDValue X, 920 X86ISelAddressMode &AM) { 921 if (Shift.getOpcode() != ISD::SRL || 922 !isa<ConstantSDNode>(Shift.getOperand(1)) || 923 !Shift.hasOneUse()) 924 return true; 925 926 int ScaleLog = 8 - Shift.getConstantOperandVal(1); 927 if (ScaleLog <= 0 || ScaleLog >= 4 || 928 Mask != (0xffu << ScaleLog)) 929 return true; 930 931 MVT VT = N.getSimpleValueType(); 932 SDLoc DL(N); 933 SDValue Eight = DAG.getConstant(8, DL, MVT::i8); 934 SDValue NewMask = DAG.getConstant(0xff, DL, VT); 935 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight); 936 SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask); 937 SDValue ShlCount = DAG.getConstant(ScaleLog, DL, MVT::i8); 938 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount); 939 940 // Insert the new nodes into the topological ordering. We must do this in 941 // a valid topological ordering as nothing is going to go back and re-sort 942 // these nodes. We continually insert before 'N' in sequence as this is 943 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no 944 // hierarchy left to express. 945 insertDAGNode(DAG, N, Eight); 946 insertDAGNode(DAG, N, Srl); 947 insertDAGNode(DAG, N, NewMask); 948 insertDAGNode(DAG, N, And); 949 insertDAGNode(DAG, N, ShlCount); 950 insertDAGNode(DAG, N, Shl); 951 DAG.ReplaceAllUsesWith(N, Shl); 952 AM.IndexReg = And; 953 AM.Scale = (1 << ScaleLog); 954 return false; 955 } 956 957 // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this 958 // allows us to fold the shift into this addressing mode. Returns false if the 959 // transform succeeded. 960 static bool foldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N, 961 uint64_t Mask, 962 SDValue Shift, SDValue X, 963 X86ISelAddressMode &AM) { 964 if (Shift.getOpcode() != ISD::SHL || 965 !isa<ConstantSDNode>(Shift.getOperand(1))) 966 return true; 967 968 // Not likely to be profitable if either the AND or SHIFT node has more 969 // than one use (unless all uses are for address computation). Besides, 970 // isel mechanism requires their node ids to be reused. 971 if (!N.hasOneUse() || !Shift.hasOneUse()) 972 return true; 973 974 // Verify that the shift amount is something we can fold. 975 unsigned ShiftAmt = Shift.getConstantOperandVal(1); 976 if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3) 977 return true; 978 979 MVT VT = N.getSimpleValueType(); 980 SDLoc DL(N); 981 SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, DL, VT); 982 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask); 983 SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1)); 984 985 // Insert the new nodes into the topological ordering. We must do this in 986 // a valid topological ordering as nothing is going to go back and re-sort 987 // these nodes. We continually insert before 'N' in sequence as this is 988 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no 989 // hierarchy left to express. 990 insertDAGNode(DAG, N, NewMask); 991 insertDAGNode(DAG, N, NewAnd); 992 insertDAGNode(DAG, N, NewShift); 993 DAG.ReplaceAllUsesWith(N, NewShift); 994 995 AM.Scale = 1 << ShiftAmt; 996 AM.IndexReg = NewAnd; 997 return false; 998 } 999 1000 // Implement some heroics to detect shifts of masked values where the mask can 1001 // be replaced by extending the shift and undoing that in the addressing mode 1002 // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and 1003 // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in 1004 // the addressing mode. This results in code such as: 1005 // 1006 // int f(short *y, int *lookup_table) { 1007 // ... 1008 // return *y + lookup_table[*y >> 11]; 1009 // } 1010 // 1011 // Turning into: 1012 // movzwl (%rdi), %eax 1013 // movl %eax, %ecx 1014 // shrl $11, %ecx 1015 // addl (%rsi,%rcx,4), %eax 1016 // 1017 // Instead of: 1018 // movzwl (%rdi), %eax 1019 // movl %eax, %ecx 1020 // shrl $9, %ecx 1021 // andl $124, %rcx 1022 // addl (%rsi,%rcx), %eax 1023 // 1024 // Note that this function assumes the mask is provided as a mask *after* the 1025 // value is shifted. The input chain may or may not match that, but computing 1026 // such a mask is trivial. 1027 static bool foldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N, 1028 uint64_t Mask, 1029 SDValue Shift, SDValue X, 1030 X86ISelAddressMode &AM) { 1031 if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() || 1032 !isa<ConstantSDNode>(Shift.getOperand(1))) 1033 return true; 1034 1035 unsigned ShiftAmt = Shift.getConstantOperandVal(1); 1036 unsigned MaskLZ = countLeadingZeros(Mask); 1037 unsigned MaskTZ = countTrailingZeros(Mask); 1038 1039 // The amount of shift we're trying to fit into the addressing mode is taken 1040 // from the trailing zeros of the mask. 1041 unsigned AMShiftAmt = MaskTZ; 1042 1043 // There is nothing we can do here unless the mask is removing some bits. 1044 // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits. 1045 if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true; 1046 1047 // We also need to ensure that mask is a continuous run of bits. 1048 if (countTrailingOnes(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true; 1049 1050 // Scale the leading zero count down based on the actual size of the value. 1051 // Also scale it down based on the size of the shift. 1052 MaskLZ -= (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt; 1053 1054 // The final check is to ensure that any masked out high bits of X are 1055 // already known to be zero. Otherwise, the mask has a semantic impact 1056 // other than masking out a couple of low bits. Unfortunately, because of 1057 // the mask, zero extensions will be removed from operands in some cases. 1058 // This code works extra hard to look through extensions because we can 1059 // replace them with zero extensions cheaply if necessary. 1060 bool ReplacingAnyExtend = false; 1061 if (X.getOpcode() == ISD::ANY_EXTEND) { 1062 unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() - 1063 X.getOperand(0).getSimpleValueType().getSizeInBits(); 1064 // Assume that we'll replace the any-extend with a zero-extend, and 1065 // narrow the search to the extended value. 1066 X = X.getOperand(0); 1067 MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits; 1068 ReplacingAnyExtend = true; 1069 } 1070 APInt MaskedHighBits = 1071 APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ); 1072 APInt KnownZero, KnownOne; 1073 DAG.computeKnownBits(X, KnownZero, KnownOne); 1074 if (MaskedHighBits != KnownZero) return true; 1075 1076 // We've identified a pattern that can be transformed into a single shift 1077 // and an addressing mode. Make it so. 1078 MVT VT = N.getSimpleValueType(); 1079 if (ReplacingAnyExtend) { 1080 assert(X.getValueType() != VT); 1081 // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND. 1082 SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X); 1083 insertDAGNode(DAG, N, NewX); 1084 X = NewX; 1085 } 1086 SDLoc DL(N); 1087 SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8); 1088 SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt); 1089 SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8); 1090 SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt); 1091 1092 // Insert the new nodes into the topological ordering. We must do this in 1093 // a valid topological ordering as nothing is going to go back and re-sort 1094 // these nodes. We continually insert before 'N' in sequence as this is 1095 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no 1096 // hierarchy left to express. 1097 insertDAGNode(DAG, N, NewSRLAmt); 1098 insertDAGNode(DAG, N, NewSRL); 1099 insertDAGNode(DAG, N, NewSHLAmt); 1100 insertDAGNode(DAG, N, NewSHL); 1101 DAG.ReplaceAllUsesWith(N, NewSHL); 1102 1103 AM.Scale = 1 << AMShiftAmt; 1104 AM.IndexReg = NewSRL; 1105 return false; 1106 } 1107 1108 bool X86DAGToDAGISel::matchAddressRecursively(SDValue N, X86ISelAddressMode &AM, 1109 unsigned Depth) { 1110 SDLoc dl(N); 1111 DEBUG({ 1112 dbgs() << "MatchAddress: "; 1113 AM.dump(); 1114 }); 1115 // Limit recursion. 1116 if (Depth > 5) 1117 return matchAddressBase(N, AM); 1118 1119 // If this is already a %rip relative address, we can only merge immediates 1120 // into it. Instead of handling this in every case, we handle it here. 1121 // RIP relative addressing: %rip + 32-bit displacement! 1122 if (AM.isRIPRelative()) { 1123 // FIXME: JumpTable and ExternalSymbol address currently don't like 1124 // displacements. It isn't very important, but this should be fixed for 1125 // consistency. 1126 if (!(AM.ES || AM.MCSym) && AM.JT != -1) 1127 return true; 1128 1129 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) 1130 if (!foldOffsetIntoAddress(Cst->getSExtValue(), AM)) 1131 return false; 1132 return true; 1133 } 1134 1135 switch (N.getOpcode()) { 1136 default: break; 1137 case ISD::LOCAL_RECOVER: { 1138 if (!AM.hasSymbolicDisplacement() && AM.Disp == 0) 1139 if (const auto *ESNode = dyn_cast<MCSymbolSDNode>(N.getOperand(0))) { 1140 // Use the symbol and don't prefix it. 1141 AM.MCSym = ESNode->getMCSymbol(); 1142 return false; 1143 } 1144 break; 1145 } 1146 case ISD::Constant: { 1147 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue(); 1148 if (!foldOffsetIntoAddress(Val, AM)) 1149 return false; 1150 break; 1151 } 1152 1153 case X86ISD::Wrapper: 1154 case X86ISD::WrapperRIP: 1155 if (!matchWrapper(N, AM)) 1156 return false; 1157 break; 1158 1159 case ISD::LOAD: 1160 if (!matchLoadInAddress(cast<LoadSDNode>(N), AM)) 1161 return false; 1162 break; 1163 1164 case ISD::FrameIndex: 1165 if (AM.BaseType == X86ISelAddressMode::RegBase && 1166 AM.Base_Reg.getNode() == nullptr && 1167 (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) { 1168 AM.BaseType = X86ISelAddressMode::FrameIndexBase; 1169 AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex(); 1170 return false; 1171 } 1172 break; 1173 1174 case ISD::SHL: 1175 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) 1176 break; 1177 1178 if (ConstantSDNode 1179 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) { 1180 unsigned Val = CN->getZExtValue(); 1181 // Note that we handle x<<1 as (,x,2) rather than (x,x) here so 1182 // that the base operand remains free for further matching. If 1183 // the base doesn't end up getting used, a post-processing step 1184 // in MatchAddress turns (,x,2) into (x,x), which is cheaper. 1185 if (Val == 1 || Val == 2 || Val == 3) { 1186 AM.Scale = 1 << Val; 1187 SDValue ShVal = N.getNode()->getOperand(0); 1188 1189 // Okay, we know that we have a scale by now. However, if the scaled 1190 // value is an add of something and a constant, we can fold the 1191 // constant into the disp field here. 1192 if (CurDAG->isBaseWithConstantOffset(ShVal)) { 1193 AM.IndexReg = ShVal.getNode()->getOperand(0); 1194 ConstantSDNode *AddVal = 1195 cast<ConstantSDNode>(ShVal.getNode()->getOperand(1)); 1196 uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val; 1197 if (!foldOffsetIntoAddress(Disp, AM)) 1198 return false; 1199 } 1200 1201 AM.IndexReg = ShVal; 1202 return false; 1203 } 1204 } 1205 break; 1206 1207 case ISD::SRL: { 1208 // Scale must not be used already. 1209 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break; 1210 1211 SDValue And = N.getOperand(0); 1212 if (And.getOpcode() != ISD::AND) break; 1213 SDValue X = And.getOperand(0); 1214 1215 // We only handle up to 64-bit values here as those are what matter for 1216 // addressing mode optimizations. 1217 if (X.getSimpleValueType().getSizeInBits() > 64) break; 1218 1219 // The mask used for the transform is expected to be post-shift, but we 1220 // found the shift first so just apply the shift to the mask before passing 1221 // it down. 1222 if (!isa<ConstantSDNode>(N.getOperand(1)) || 1223 !isa<ConstantSDNode>(And.getOperand(1))) 1224 break; 1225 uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1); 1226 1227 // Try to fold the mask and shift into the scale, and return false if we 1228 // succeed. 1229 if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM)) 1230 return false; 1231 break; 1232 } 1233 1234 case ISD::SMUL_LOHI: 1235 case ISD::UMUL_LOHI: 1236 // A mul_lohi where we need the low part can be folded as a plain multiply. 1237 if (N.getResNo() != 0) break; 1238 // FALL THROUGH 1239 case ISD::MUL: 1240 case X86ISD::MUL_IMM: 1241 // X*[3,5,9] -> X+X*[2,4,8] 1242 if (AM.BaseType == X86ISelAddressMode::RegBase && 1243 AM.Base_Reg.getNode() == nullptr && 1244 AM.IndexReg.getNode() == nullptr) { 1245 if (ConstantSDNode 1246 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) 1247 if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 || 1248 CN->getZExtValue() == 9) { 1249 AM.Scale = unsigned(CN->getZExtValue())-1; 1250 1251 SDValue MulVal = N.getNode()->getOperand(0); 1252 SDValue Reg; 1253 1254 // Okay, we know that we have a scale by now. However, if the scaled 1255 // value is an add of something and a constant, we can fold the 1256 // constant into the disp field here. 1257 if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() && 1258 isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) { 1259 Reg = MulVal.getNode()->getOperand(0); 1260 ConstantSDNode *AddVal = 1261 cast<ConstantSDNode>(MulVal.getNode()->getOperand(1)); 1262 uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue(); 1263 if (foldOffsetIntoAddress(Disp, AM)) 1264 Reg = N.getNode()->getOperand(0); 1265 } else { 1266 Reg = N.getNode()->getOperand(0); 1267 } 1268 1269 AM.IndexReg = AM.Base_Reg = Reg; 1270 return false; 1271 } 1272 } 1273 break; 1274 1275 case ISD::SUB: { 1276 // Given A-B, if A can be completely folded into the address and 1277 // the index field with the index field unused, use -B as the index. 1278 // This is a win if a has multiple parts that can be folded into 1279 // the address. Also, this saves a mov if the base register has 1280 // other uses, since it avoids a two-address sub instruction, however 1281 // it costs an additional mov if the index register has other uses. 1282 1283 // Add an artificial use to this node so that we can keep track of 1284 // it if it gets CSE'd with a different node. 1285 HandleSDNode Handle(N); 1286 1287 // Test if the LHS of the sub can be folded. 1288 X86ISelAddressMode Backup = AM; 1289 if (matchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) { 1290 AM = Backup; 1291 break; 1292 } 1293 // Test if the index field is free for use. 1294 if (AM.IndexReg.getNode() || AM.isRIPRelative()) { 1295 AM = Backup; 1296 break; 1297 } 1298 1299 int Cost = 0; 1300 SDValue RHS = Handle.getValue().getNode()->getOperand(1); 1301 // If the RHS involves a register with multiple uses, this 1302 // transformation incurs an extra mov, due to the neg instruction 1303 // clobbering its operand. 1304 if (!RHS.getNode()->hasOneUse() || 1305 RHS.getNode()->getOpcode() == ISD::CopyFromReg || 1306 RHS.getNode()->getOpcode() == ISD::TRUNCATE || 1307 RHS.getNode()->getOpcode() == ISD::ANY_EXTEND || 1308 (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND && 1309 RHS.getNode()->getOperand(0).getValueType() == MVT::i32)) 1310 ++Cost; 1311 // If the base is a register with multiple uses, this 1312 // transformation may save a mov. 1313 if ((AM.BaseType == X86ISelAddressMode::RegBase && 1314 AM.Base_Reg.getNode() && 1315 !AM.Base_Reg.getNode()->hasOneUse()) || 1316 AM.BaseType == X86ISelAddressMode::FrameIndexBase) 1317 --Cost; 1318 // If the folded LHS was interesting, this transformation saves 1319 // address arithmetic. 1320 if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) + 1321 ((AM.Disp != 0) && (Backup.Disp == 0)) + 1322 (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2) 1323 --Cost; 1324 // If it doesn't look like it may be an overall win, don't do it. 1325 if (Cost >= 0) { 1326 AM = Backup; 1327 break; 1328 } 1329 1330 // Ok, the transformation is legal and appears profitable. Go for it. 1331 SDValue Zero = CurDAG->getConstant(0, dl, N.getValueType()); 1332 SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS); 1333 AM.IndexReg = Neg; 1334 AM.Scale = 1; 1335 1336 // Insert the new nodes into the topological ordering. 1337 insertDAGNode(*CurDAG, N, Zero); 1338 insertDAGNode(*CurDAG, N, Neg); 1339 return false; 1340 } 1341 1342 case ISD::ADD: 1343 if (!matchAdd(N, AM, Depth)) 1344 return false; 1345 break; 1346 1347 case ISD::OR: 1348 // We want to look through a transform in InstCombine and DAGCombiner that 1349 // turns 'add' into 'or', so we can treat this 'or' exactly like an 'add'. 1350 // Example: (or (and x, 1), (shl y, 3)) --> (add (and x, 1), (shl y, 3)) 1351 // An 'lea' can then be used to match the shift (multiply) and add: 1352 // and $1, %esi 1353 // lea (%rsi, %rdi, 8), %rax 1354 if (CurDAG->haveNoCommonBitsSet(N.getOperand(0), N.getOperand(1)) && 1355 !matchAdd(N, AM, Depth)) 1356 return false; 1357 break; 1358 1359 case ISD::AND: { 1360 // Perform some heroic transforms on an and of a constant-count shift 1361 // with a constant to enable use of the scaled offset field. 1362 1363 // Scale must not be used already. 1364 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break; 1365 1366 SDValue Shift = N.getOperand(0); 1367 if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break; 1368 SDValue X = Shift.getOperand(0); 1369 1370 // We only handle up to 64-bit values here as those are what matter for 1371 // addressing mode optimizations. 1372 if (X.getSimpleValueType().getSizeInBits() > 64) break; 1373 1374 if (!isa<ConstantSDNode>(N.getOperand(1))) 1375 break; 1376 uint64_t Mask = N.getConstantOperandVal(1); 1377 1378 // Try to fold the mask and shift into an extract and scale. 1379 if (!foldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM)) 1380 return false; 1381 1382 // Try to fold the mask and shift directly into the scale. 1383 if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM)) 1384 return false; 1385 1386 // Try to swap the mask and shift to place shifts which can be done as 1387 // a scale on the outside of the mask. 1388 if (!foldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM)) 1389 return false; 1390 break; 1391 } 1392 } 1393 1394 return matchAddressBase(N, AM); 1395 } 1396 1397 /// Helper for MatchAddress. Add the specified node to the 1398 /// specified addressing mode without any further recursion. 1399 bool X86DAGToDAGISel::matchAddressBase(SDValue N, X86ISelAddressMode &AM) { 1400 // Is the base register already occupied? 1401 if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) { 1402 // If so, check to see if the scale index register is set. 1403 if (!AM.IndexReg.getNode()) { 1404 AM.IndexReg = N; 1405 AM.Scale = 1; 1406 return false; 1407 } 1408 1409 // Otherwise, we cannot select it. 1410 return true; 1411 } 1412 1413 // Default, generate it as a register. 1414 AM.BaseType = X86ISelAddressMode::RegBase; 1415 AM.Base_Reg = N; 1416 return false; 1417 } 1418 1419 bool X86DAGToDAGISel::selectVectorAddr(SDNode *Parent, SDValue N, SDValue &Base, 1420 SDValue &Scale, SDValue &Index, 1421 SDValue &Disp, SDValue &Segment) { 1422 1423 MaskedGatherScatterSDNode *Mgs = dyn_cast<MaskedGatherScatterSDNode>(Parent); 1424 if (!Mgs) 1425 return false; 1426 X86ISelAddressMode AM; 1427 unsigned AddrSpace = Mgs->getPointerInfo().getAddrSpace(); 1428 // AddrSpace 256 -> GS, 257 -> FS. 1429 if (AddrSpace == 256) 1430 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); 1431 if (AddrSpace == 257) 1432 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); 1433 1434 SDLoc DL(N); 1435 Base = Mgs->getBasePtr(); 1436 Index = Mgs->getIndex(); 1437 unsigned ScalarSize = Mgs->getValue().getValueType().getScalarSizeInBits(); 1438 Scale = getI8Imm(ScalarSize/8, DL); 1439 1440 // If Base is 0, the whole address is in index and the Scale is 1 1441 if (isa<ConstantSDNode>(Base)) { 1442 assert(cast<ConstantSDNode>(Base)->isNullValue() && 1443 "Unexpected base in gather/scatter"); 1444 Scale = getI8Imm(1, DL); 1445 Base = CurDAG->getRegister(0, MVT::i32); 1446 } 1447 if (AM.Segment.getNode()) 1448 Segment = AM.Segment; 1449 else 1450 Segment = CurDAG->getRegister(0, MVT::i32); 1451 Disp = CurDAG->getTargetConstant(0, DL, MVT::i32); 1452 return true; 1453 } 1454 1455 /// Returns true if it is able to pattern match an addressing mode. 1456 /// It returns the operands which make up the maximal addressing mode it can 1457 /// match by reference. 1458 /// 1459 /// Parent is the parent node of the addr operand that is being matched. It 1460 /// is always a load, store, atomic node, or null. It is only null when 1461 /// checking memory operands for inline asm nodes. 1462 bool X86DAGToDAGISel::selectAddr(SDNode *Parent, SDValue N, SDValue &Base, 1463 SDValue &Scale, SDValue &Index, 1464 SDValue &Disp, SDValue &Segment) { 1465 X86ISelAddressMode AM; 1466 1467 if (Parent && 1468 // This list of opcodes are all the nodes that have an "addr:$ptr" operand 1469 // that are not a MemSDNode, and thus don't have proper addrspace info. 1470 Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme 1471 Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores 1472 Parent->getOpcode() != X86ISD::TLSCALL && // Fixme 1473 Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp 1474 Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp 1475 unsigned AddrSpace = 1476 cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace(); 1477 // AddrSpace 256 -> GS, 257 -> FS. 1478 if (AddrSpace == 256) 1479 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); 1480 if (AddrSpace == 257) 1481 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); 1482 } 1483 1484 if (matchAddress(N, AM)) 1485 return false; 1486 1487 MVT VT = N.getSimpleValueType(); 1488 if (AM.BaseType == X86ISelAddressMode::RegBase) { 1489 if (!AM.Base_Reg.getNode()) 1490 AM.Base_Reg = CurDAG->getRegister(0, VT); 1491 } 1492 1493 if (!AM.IndexReg.getNode()) 1494 AM.IndexReg = CurDAG->getRegister(0, VT); 1495 1496 getAddressOperands(AM, SDLoc(N), Base, Scale, Index, Disp, Segment); 1497 return true; 1498 } 1499 1500 /// Match a scalar SSE load. In particular, we want to match a load whose top 1501 /// elements are either undef or zeros. The load flavor is derived from the 1502 /// type of N, which is either v4f32 or v2f64. 1503 /// 1504 /// We also return: 1505 /// PatternChainNode: this is the matched node that has a chain input and 1506 /// output. 1507 bool X86DAGToDAGISel::selectScalarSSELoad(SDNode *Root, 1508 SDValue N, SDValue &Base, 1509 SDValue &Scale, SDValue &Index, 1510 SDValue &Disp, SDValue &Segment, 1511 SDValue &PatternNodeWithChain) { 1512 if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) { 1513 PatternNodeWithChain = N.getOperand(0); 1514 if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) && 1515 PatternNodeWithChain.hasOneUse() && 1516 IsProfitableToFold(N.getOperand(0), N.getNode(), Root) && 1517 IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) { 1518 LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain); 1519 if (!selectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment)) 1520 return false; 1521 return true; 1522 } 1523 } 1524 1525 // Also handle the case where we explicitly require zeros in the top 1526 // elements. This is a vector shuffle from the zero vector. 1527 if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() && 1528 // Check to see if the top elements are all zeros (or bitcast of zeros). 1529 N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR && 1530 N.getOperand(0).getNode()->hasOneUse() && 1531 ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) && 1532 N.getOperand(0).getOperand(0).hasOneUse() && 1533 IsProfitableToFold(N.getOperand(0), N.getNode(), Root) && 1534 IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) { 1535 // Okay, this is a zero extending load. Fold it. 1536 LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0)); 1537 if (!selectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment)) 1538 return false; 1539 PatternNodeWithChain = SDValue(LD, 0); 1540 return true; 1541 } 1542 return false; 1543 } 1544 1545 1546 bool X86DAGToDAGISel::selectMOV64Imm32(SDValue N, SDValue &Imm) { 1547 if (const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1548 uint64_t ImmVal = CN->getZExtValue(); 1549 if ((uint32_t)ImmVal != (uint64_t)ImmVal) 1550 return false; 1551 1552 Imm = CurDAG->getTargetConstant(ImmVal, SDLoc(N), MVT::i64); 1553 return true; 1554 } 1555 1556 // In static codegen with small code model, we can get the address of a label 1557 // into a register with 'movl'. TableGen has already made sure we're looking 1558 // at a label of some kind. 1559 assert(N->getOpcode() == X86ISD::Wrapper && 1560 "Unexpected node type for MOV32ri64"); 1561 N = N.getOperand(0); 1562 1563 if (N->getOpcode() != ISD::TargetConstantPool && 1564 N->getOpcode() != ISD::TargetJumpTable && 1565 N->getOpcode() != ISD::TargetGlobalAddress && 1566 N->getOpcode() != ISD::TargetExternalSymbol && 1567 N->getOpcode() != ISD::MCSymbol && 1568 N->getOpcode() != ISD::TargetBlockAddress) 1569 return false; 1570 1571 Imm = N; 1572 return TM.getCodeModel() == CodeModel::Small; 1573 } 1574 1575 bool X86DAGToDAGISel::selectLEA64_32Addr(SDValue N, SDValue &Base, 1576 SDValue &Scale, SDValue &Index, 1577 SDValue &Disp, SDValue &Segment) { 1578 if (!selectLEAAddr(N, Base, Scale, Index, Disp, Segment)) 1579 return false; 1580 1581 SDLoc DL(N); 1582 RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base); 1583 if (RN && RN->getReg() == 0) 1584 Base = CurDAG->getRegister(0, MVT::i64); 1585 else if (Base.getValueType() == MVT::i32 && !dyn_cast<FrameIndexSDNode>(Base)) { 1586 // Base could already be %rip, particularly in the x32 ABI. 1587 Base = SDValue(CurDAG->getMachineNode( 1588 TargetOpcode::SUBREG_TO_REG, DL, MVT::i64, 1589 CurDAG->getTargetConstant(0, DL, MVT::i64), 1590 Base, 1591 CurDAG->getTargetConstant(X86::sub_32bit, DL, MVT::i32)), 1592 0); 1593 } 1594 1595 RN = dyn_cast<RegisterSDNode>(Index); 1596 if (RN && RN->getReg() == 0) 1597 Index = CurDAG->getRegister(0, MVT::i64); 1598 else { 1599 assert(Index.getValueType() == MVT::i32 && 1600 "Expect to be extending 32-bit registers for use in LEA"); 1601 Index = SDValue(CurDAG->getMachineNode( 1602 TargetOpcode::SUBREG_TO_REG, DL, MVT::i64, 1603 CurDAG->getTargetConstant(0, DL, MVT::i64), 1604 Index, 1605 CurDAG->getTargetConstant(X86::sub_32bit, DL, 1606 MVT::i32)), 1607 0); 1608 } 1609 1610 return true; 1611 } 1612 1613 /// Calls SelectAddr and determines if the maximal addressing 1614 /// mode it matches can be cost effectively emitted as an LEA instruction. 1615 bool X86DAGToDAGISel::selectLEAAddr(SDValue N, 1616 SDValue &Base, SDValue &Scale, 1617 SDValue &Index, SDValue &Disp, 1618 SDValue &Segment) { 1619 X86ISelAddressMode AM; 1620 1621 // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support 1622 // segments. 1623 SDValue Copy = AM.Segment; 1624 SDValue T = CurDAG->getRegister(0, MVT::i32); 1625 AM.Segment = T; 1626 if (matchAddress(N, AM)) 1627 return false; 1628 assert (T == AM.Segment); 1629 AM.Segment = Copy; 1630 1631 MVT VT = N.getSimpleValueType(); 1632 unsigned Complexity = 0; 1633 if (AM.BaseType == X86ISelAddressMode::RegBase) 1634 if (AM.Base_Reg.getNode()) 1635 Complexity = 1; 1636 else 1637 AM.Base_Reg = CurDAG->getRegister(0, VT); 1638 else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase) 1639 Complexity = 4; 1640 1641 if (AM.IndexReg.getNode()) 1642 Complexity++; 1643 else 1644 AM.IndexReg = CurDAG->getRegister(0, VT); 1645 1646 // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with 1647 // a simple shift. 1648 if (AM.Scale > 1) 1649 Complexity++; 1650 1651 // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA 1652 // to a LEA. This is determined with some experimentation but is by no means 1653 // optimal (especially for code size consideration). LEA is nice because of 1654 // its three-address nature. Tweak the cost function again when we can run 1655 // convertToThreeAddress() at register allocation time. 1656 if (AM.hasSymbolicDisplacement()) { 1657 // For X86-64, always use LEA to materialize RIP-relative addresses. 1658 if (Subtarget->is64Bit()) 1659 Complexity = 4; 1660 else 1661 Complexity += 2; 1662 } 1663 1664 if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode())) 1665 Complexity++; 1666 1667 // If it isn't worth using an LEA, reject it. 1668 if (Complexity <= 2) 1669 return false; 1670 1671 getAddressOperands(AM, SDLoc(N), Base, Scale, Index, Disp, Segment); 1672 return true; 1673 } 1674 1675 /// This is only run on TargetGlobalTLSAddress nodes. 1676 bool X86DAGToDAGISel::selectTLSADDRAddr(SDValue N, SDValue &Base, 1677 SDValue &Scale, SDValue &Index, 1678 SDValue &Disp, SDValue &Segment) { 1679 assert(N.getOpcode() == ISD::TargetGlobalTLSAddress); 1680 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 1681 1682 X86ISelAddressMode AM; 1683 AM.GV = GA->getGlobal(); 1684 AM.Disp += GA->getOffset(); 1685 AM.Base_Reg = CurDAG->getRegister(0, N.getValueType()); 1686 AM.SymbolFlags = GA->getTargetFlags(); 1687 1688 if (N.getValueType() == MVT::i32) { 1689 AM.Scale = 1; 1690 AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32); 1691 } else { 1692 AM.IndexReg = CurDAG->getRegister(0, MVT::i64); 1693 } 1694 1695 getAddressOperands(AM, SDLoc(N), Base, Scale, Index, Disp, Segment); 1696 return true; 1697 } 1698 1699 1700 bool X86DAGToDAGISel::tryFoldLoad(SDNode *P, SDValue N, 1701 SDValue &Base, SDValue &Scale, 1702 SDValue &Index, SDValue &Disp, 1703 SDValue &Segment) { 1704 if (!ISD::isNON_EXTLoad(N.getNode()) || 1705 !IsProfitableToFold(N, P, P) || 1706 !IsLegalToFold(N, P, P, OptLevel)) 1707 return false; 1708 1709 return selectAddr(N.getNode(), 1710 N.getOperand(1), Base, Scale, Index, Disp, Segment); 1711 } 1712 1713 /// Return an SDNode that returns the value of the global base register. 1714 /// Output instructions required to initialize the global base register, 1715 /// if necessary. 1716 SDNode *X86DAGToDAGISel::getGlobalBaseReg() { 1717 unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF); 1718 auto &DL = MF->getDataLayout(); 1719 return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy(DL)).getNode(); 1720 } 1721 1722 /// Atomic opcode table 1723 /// 1724 enum AtomicOpc { 1725 ADD, 1726 SUB, 1727 INC, 1728 DEC, 1729 OR, 1730 AND, 1731 XOR, 1732 AtomicOpcEnd 1733 }; 1734 1735 enum AtomicSz { 1736 ConstantI8, 1737 I8, 1738 SextConstantI16, 1739 ConstantI16, 1740 I16, 1741 SextConstantI32, 1742 ConstantI32, 1743 I32, 1744 SextConstantI64, 1745 ConstantI64, 1746 I64, 1747 AtomicSzEnd 1748 }; 1749 1750 static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = { 1751 { 1752 X86::LOCK_ADD8mi, 1753 X86::LOCK_ADD8mr, 1754 X86::LOCK_ADD16mi8, 1755 X86::LOCK_ADD16mi, 1756 X86::LOCK_ADD16mr, 1757 X86::LOCK_ADD32mi8, 1758 X86::LOCK_ADD32mi, 1759 X86::LOCK_ADD32mr, 1760 X86::LOCK_ADD64mi8, 1761 X86::LOCK_ADD64mi32, 1762 X86::LOCK_ADD64mr, 1763 }, 1764 { 1765 X86::LOCK_SUB8mi, 1766 X86::LOCK_SUB8mr, 1767 X86::LOCK_SUB16mi8, 1768 X86::LOCK_SUB16mi, 1769 X86::LOCK_SUB16mr, 1770 X86::LOCK_SUB32mi8, 1771 X86::LOCK_SUB32mi, 1772 X86::LOCK_SUB32mr, 1773 X86::LOCK_SUB64mi8, 1774 X86::LOCK_SUB64mi32, 1775 X86::LOCK_SUB64mr, 1776 }, 1777 { 1778 0, 1779 X86::LOCK_INC8m, 1780 0, 1781 0, 1782 X86::LOCK_INC16m, 1783 0, 1784 0, 1785 X86::LOCK_INC32m, 1786 0, 1787 0, 1788 X86::LOCK_INC64m, 1789 }, 1790 { 1791 0, 1792 X86::LOCK_DEC8m, 1793 0, 1794 0, 1795 X86::LOCK_DEC16m, 1796 0, 1797 0, 1798 X86::LOCK_DEC32m, 1799 0, 1800 0, 1801 X86::LOCK_DEC64m, 1802 }, 1803 { 1804 X86::LOCK_OR8mi, 1805 X86::LOCK_OR8mr, 1806 X86::LOCK_OR16mi8, 1807 X86::LOCK_OR16mi, 1808 X86::LOCK_OR16mr, 1809 X86::LOCK_OR32mi8, 1810 X86::LOCK_OR32mi, 1811 X86::LOCK_OR32mr, 1812 X86::LOCK_OR64mi8, 1813 X86::LOCK_OR64mi32, 1814 X86::LOCK_OR64mr, 1815 }, 1816 { 1817 X86::LOCK_AND8mi, 1818 X86::LOCK_AND8mr, 1819 X86::LOCK_AND16mi8, 1820 X86::LOCK_AND16mi, 1821 X86::LOCK_AND16mr, 1822 X86::LOCK_AND32mi8, 1823 X86::LOCK_AND32mi, 1824 X86::LOCK_AND32mr, 1825 X86::LOCK_AND64mi8, 1826 X86::LOCK_AND64mi32, 1827 X86::LOCK_AND64mr, 1828 }, 1829 { 1830 X86::LOCK_XOR8mi, 1831 X86::LOCK_XOR8mr, 1832 X86::LOCK_XOR16mi8, 1833 X86::LOCK_XOR16mi, 1834 X86::LOCK_XOR16mr, 1835 X86::LOCK_XOR32mi8, 1836 X86::LOCK_XOR32mi, 1837 X86::LOCK_XOR32mr, 1838 X86::LOCK_XOR64mi8, 1839 X86::LOCK_XOR64mi32, 1840 X86::LOCK_XOR64mr, 1841 } 1842 }; 1843 1844 // Return the target constant operand for atomic-load-op and do simple 1845 // translations, such as from atomic-load-add to lock-sub. The return value is 1846 // one of the following 3 cases: 1847 // + target-constant, the operand could be supported as a target constant. 1848 // + empty, the operand is not needed any more with the new op selected. 1849 // + non-empty, otherwise. 1850 static SDValue getAtomicLoadArithTargetConstant(SelectionDAG *CurDAG, 1851 SDLoc dl, 1852 enum AtomicOpc &Op, MVT NVT, 1853 SDValue Val, 1854 const X86Subtarget *Subtarget) { 1855 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val)) { 1856 int64_t CNVal = CN->getSExtValue(); 1857 // Quit if not 32-bit imm. 1858 if ((int32_t)CNVal != CNVal) 1859 return Val; 1860 // Quit if INT32_MIN: it would be negated as it is negative and overflow, 1861 // producing an immediate that does not fit in the 32 bits available for 1862 // an immediate operand to sub. However, it still fits in 32 bits for the 1863 // add (since it is not negated) so we can return target-constant. 1864 if (CNVal == INT32_MIN) 1865 return CurDAG->getTargetConstant(CNVal, dl, NVT); 1866 // For atomic-load-add, we could do some optimizations. 1867 if (Op == ADD) { 1868 // Translate to INC/DEC if ADD by 1 or -1. 1869 if (((CNVal == 1) || (CNVal == -1)) && !Subtarget->slowIncDec()) { 1870 Op = (CNVal == 1) ? INC : DEC; 1871 // No more constant operand after being translated into INC/DEC. 1872 return SDValue(); 1873 } 1874 // Translate to SUB if ADD by negative value. 1875 if (CNVal < 0) { 1876 Op = SUB; 1877 CNVal = -CNVal; 1878 } 1879 } 1880 return CurDAG->getTargetConstant(CNVal, dl, NVT); 1881 } 1882 1883 // If the value operand is single-used, try to optimize it. 1884 if (Op == ADD && Val.hasOneUse()) { 1885 // Translate (atomic-load-add ptr (sub 0 x)) back to (lock-sub x). 1886 if (Val.getOpcode() == ISD::SUB && X86::isZeroNode(Val.getOperand(0))) { 1887 Op = SUB; 1888 return Val.getOperand(1); 1889 } 1890 // A special case for i16, which needs truncating as, in most cases, it's 1891 // promoted to i32. We will translate 1892 // (atomic-load-add (truncate (sub 0 x))) to (lock-sub (EXTRACT_SUBREG x)) 1893 if (Val.getOpcode() == ISD::TRUNCATE && NVT == MVT::i16 && 1894 Val.getOperand(0).getOpcode() == ISD::SUB && 1895 X86::isZeroNode(Val.getOperand(0).getOperand(0))) { 1896 Op = SUB; 1897 Val = Val.getOperand(0); 1898 return CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, NVT, 1899 Val.getOperand(1)); 1900 } 1901 } 1902 1903 return Val; 1904 } 1905 1906 SDNode *X86DAGToDAGISel::selectAtomicLoadArith(SDNode *Node, MVT NVT) { 1907 if (Node->hasAnyUseOfValue(0)) 1908 return nullptr; 1909 1910 SDLoc dl(Node); 1911 1912 // Optimize common patterns for __sync_or_and_fetch and similar arith 1913 // operations where the result is not used. This allows us to use the "lock" 1914 // version of the arithmetic instruction. 1915 SDValue Chain = Node->getOperand(0); 1916 SDValue Ptr = Node->getOperand(1); 1917 SDValue Val = Node->getOperand(2); 1918 SDValue Base, Scale, Index, Disp, Segment; 1919 if (!selectAddr(Node, Ptr, Base, Scale, Index, Disp, Segment)) 1920 return nullptr; 1921 1922 // Which index into the table. 1923 enum AtomicOpc Op; 1924 switch (Node->getOpcode()) { 1925 default: 1926 return nullptr; 1927 case ISD::ATOMIC_LOAD_OR: 1928 Op = OR; 1929 break; 1930 case ISD::ATOMIC_LOAD_AND: 1931 Op = AND; 1932 break; 1933 case ISD::ATOMIC_LOAD_XOR: 1934 Op = XOR; 1935 break; 1936 case ISD::ATOMIC_LOAD_ADD: 1937 Op = ADD; 1938 break; 1939 } 1940 1941 Val = getAtomicLoadArithTargetConstant(CurDAG, dl, Op, NVT, Val, Subtarget); 1942 bool isUnOp = !Val.getNode(); 1943 bool isCN = Val.getNode() && (Val.getOpcode() == ISD::TargetConstant); 1944 1945 unsigned Opc = 0; 1946 switch (NVT.SimpleTy) { 1947 default: return nullptr; 1948 case MVT::i8: 1949 if (isCN) 1950 Opc = AtomicOpcTbl[Op][ConstantI8]; 1951 else 1952 Opc = AtomicOpcTbl[Op][I8]; 1953 break; 1954 case MVT::i16: 1955 if (isCN) { 1956 if (immSext8(Val.getNode())) 1957 Opc = AtomicOpcTbl[Op][SextConstantI16]; 1958 else 1959 Opc = AtomicOpcTbl[Op][ConstantI16]; 1960 } else 1961 Opc = AtomicOpcTbl[Op][I16]; 1962 break; 1963 case MVT::i32: 1964 if (isCN) { 1965 if (immSext8(Val.getNode())) 1966 Opc = AtomicOpcTbl[Op][SextConstantI32]; 1967 else 1968 Opc = AtomicOpcTbl[Op][ConstantI32]; 1969 } else 1970 Opc = AtomicOpcTbl[Op][I32]; 1971 break; 1972 case MVT::i64: 1973 if (isCN) { 1974 if (immSext8(Val.getNode())) 1975 Opc = AtomicOpcTbl[Op][SextConstantI64]; 1976 else if (i64immSExt32(Val.getNode())) 1977 Opc = AtomicOpcTbl[Op][ConstantI64]; 1978 else 1979 llvm_unreachable("True 64 bits constant in SelectAtomicLoadArith"); 1980 } else 1981 Opc = AtomicOpcTbl[Op][I64]; 1982 break; 1983 } 1984 1985 assert(Opc != 0 && "Invalid arith lock transform!"); 1986 1987 // Building the new node. 1988 SDValue Ret; 1989 if (isUnOp) { 1990 SDValue Ops[] = { Base, Scale, Index, Disp, Segment, Chain }; 1991 Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0); 1992 } else { 1993 SDValue Ops[] = { Base, Scale, Index, Disp, Segment, Val, Chain }; 1994 Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0); 1995 } 1996 1997 // Copying the MachineMemOperand. 1998 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); 1999 MemOp[0] = cast<MemSDNode>(Node)->getMemOperand(); 2000 cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1); 2001 2002 // We need to have two outputs as that is what the original instruction had. 2003 // So we add a dummy, undefined output. This is safe as we checked first 2004 // that no-one uses our output anyway. 2005 SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, 2006 dl, NVT), 0); 2007 SDValue RetVals[] = { Undef, Ret }; 2008 return CurDAG->getMergeValues(RetVals, dl).getNode(); 2009 } 2010 2011 /// Test whether the given X86ISD::CMP node has any uses which require the SF 2012 /// or OF bits to be accurate. 2013 static bool hasNoSignedComparisonUses(SDNode *N) { 2014 // Examine each user of the node. 2015 for (SDNode::use_iterator UI = N->use_begin(), 2016 UE = N->use_end(); UI != UE; ++UI) { 2017 // Only examine CopyToReg uses. 2018 if (UI->getOpcode() != ISD::CopyToReg) 2019 return false; 2020 // Only examine CopyToReg uses that copy to EFLAGS. 2021 if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != 2022 X86::EFLAGS) 2023 return false; 2024 // Examine each user of the CopyToReg use. 2025 for (SDNode::use_iterator FlagUI = UI->use_begin(), 2026 FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) { 2027 // Only examine the Flag result. 2028 if (FlagUI.getUse().getResNo() != 1) continue; 2029 // Anything unusual: assume conservatively. 2030 if (!FlagUI->isMachineOpcode()) return false; 2031 // Examine the opcode of the user. 2032 switch (FlagUI->getMachineOpcode()) { 2033 // These comparisons don't treat the most significant bit specially. 2034 case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr: 2035 case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr: 2036 case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm: 2037 case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm: 2038 case X86::JA_1: case X86::JAE_1: case X86::JB_1: case X86::JBE_1: 2039 case X86::JE_1: case X86::JNE_1: case X86::JP_1: case X86::JNP_1: 2040 case X86::CMOVA16rr: case X86::CMOVA16rm: 2041 case X86::CMOVA32rr: case X86::CMOVA32rm: 2042 case X86::CMOVA64rr: case X86::CMOVA64rm: 2043 case X86::CMOVAE16rr: case X86::CMOVAE16rm: 2044 case X86::CMOVAE32rr: case X86::CMOVAE32rm: 2045 case X86::CMOVAE64rr: case X86::CMOVAE64rm: 2046 case X86::CMOVB16rr: case X86::CMOVB16rm: 2047 case X86::CMOVB32rr: case X86::CMOVB32rm: 2048 case X86::CMOVB64rr: case X86::CMOVB64rm: 2049 case X86::CMOVBE16rr: case X86::CMOVBE16rm: 2050 case X86::CMOVBE32rr: case X86::CMOVBE32rm: 2051 case X86::CMOVBE64rr: case X86::CMOVBE64rm: 2052 case X86::CMOVE16rr: case X86::CMOVE16rm: 2053 case X86::CMOVE32rr: case X86::CMOVE32rm: 2054 case X86::CMOVE64rr: case X86::CMOVE64rm: 2055 case X86::CMOVNE16rr: case X86::CMOVNE16rm: 2056 case X86::CMOVNE32rr: case X86::CMOVNE32rm: 2057 case X86::CMOVNE64rr: case X86::CMOVNE64rm: 2058 case X86::CMOVNP16rr: case X86::CMOVNP16rm: 2059 case X86::CMOVNP32rr: case X86::CMOVNP32rm: 2060 case X86::CMOVNP64rr: case X86::CMOVNP64rm: 2061 case X86::CMOVP16rr: case X86::CMOVP16rm: 2062 case X86::CMOVP32rr: case X86::CMOVP32rm: 2063 case X86::CMOVP64rr: case X86::CMOVP64rm: 2064 continue; 2065 // Anything else: assume conservatively. 2066 default: return false; 2067 } 2068 } 2069 } 2070 return true; 2071 } 2072 2073 /// Check whether or not the chain ending in StoreNode is suitable for doing 2074 /// the {load; increment or decrement; store} to modify transformation. 2075 static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc, 2076 SDValue StoredVal, SelectionDAG *CurDAG, 2077 LoadSDNode* &LoadNode, SDValue &InputChain) { 2078 2079 // is the value stored the result of a DEC or INC? 2080 if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false; 2081 2082 // is the stored value result 0 of the load? 2083 if (StoredVal.getResNo() != 0) return false; 2084 2085 // are there other uses of the loaded value than the inc or dec? 2086 if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false; 2087 2088 // is the store non-extending and non-indexed? 2089 if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal()) 2090 return false; 2091 2092 SDValue Load = StoredVal->getOperand(0); 2093 // Is the stored value a non-extending and non-indexed load? 2094 if (!ISD::isNormalLoad(Load.getNode())) return false; 2095 2096 // Return LoadNode by reference. 2097 LoadNode = cast<LoadSDNode>(Load); 2098 // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8) 2099 EVT LdVT = LoadNode->getMemoryVT(); 2100 if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 && 2101 LdVT != MVT::i8) 2102 return false; 2103 2104 // Is store the only read of the loaded value? 2105 if (!Load.hasOneUse()) 2106 return false; 2107 2108 // Is the address of the store the same as the load? 2109 if (LoadNode->getBasePtr() != StoreNode->getBasePtr() || 2110 LoadNode->getOffset() != StoreNode->getOffset()) 2111 return false; 2112 2113 // Check if the chain is produced by the load or is a TokenFactor with 2114 // the load output chain as an operand. Return InputChain by reference. 2115 SDValue Chain = StoreNode->getChain(); 2116 2117 bool ChainCheck = false; 2118 if (Chain == Load.getValue(1)) { 2119 ChainCheck = true; 2120 InputChain = LoadNode->getChain(); 2121 } else if (Chain.getOpcode() == ISD::TokenFactor) { 2122 SmallVector<SDValue, 4> ChainOps; 2123 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) { 2124 SDValue Op = Chain.getOperand(i); 2125 if (Op == Load.getValue(1)) { 2126 ChainCheck = true; 2127 continue; 2128 } 2129 2130 // Make sure using Op as part of the chain would not cause a cycle here. 2131 // In theory, we could check whether the chain node is a predecessor of 2132 // the load. But that can be very expensive. Instead visit the uses and 2133 // make sure they all have smaller node id than the load. 2134 int LoadId = LoadNode->getNodeId(); 2135 for (SDNode::use_iterator UI = Op.getNode()->use_begin(), 2136 UE = UI->use_end(); UI != UE; ++UI) { 2137 if (UI.getUse().getResNo() != 0) 2138 continue; 2139 if (UI->getNodeId() > LoadId) 2140 return false; 2141 } 2142 2143 ChainOps.push_back(Op); 2144 } 2145 2146 if (ChainCheck) 2147 // Make a new TokenFactor with all the other input chains except 2148 // for the load. 2149 InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), 2150 MVT::Other, ChainOps); 2151 } 2152 if (!ChainCheck) 2153 return false; 2154 2155 return true; 2156 } 2157 2158 /// Get the appropriate X86 opcode for an in-memory increment or decrement. 2159 /// Opc should be X86ISD::DEC or X86ISD::INC. 2160 static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) { 2161 if (Opc == X86ISD::DEC) { 2162 if (LdVT == MVT::i64) return X86::DEC64m; 2163 if (LdVT == MVT::i32) return X86::DEC32m; 2164 if (LdVT == MVT::i16) return X86::DEC16m; 2165 if (LdVT == MVT::i8) return X86::DEC8m; 2166 } else { 2167 assert(Opc == X86ISD::INC && "unrecognized opcode"); 2168 if (LdVT == MVT::i64) return X86::INC64m; 2169 if (LdVT == MVT::i32) return X86::INC32m; 2170 if (LdVT == MVT::i16) return X86::INC16m; 2171 if (LdVT == MVT::i8) return X86::INC8m; 2172 } 2173 llvm_unreachable("unrecognized size for LdVT"); 2174 } 2175 2176 /// Customized ISel for GATHER operations. 2177 SDNode *X86DAGToDAGISel::selectGather(SDNode *Node, unsigned Opc) { 2178 // Operands of Gather: VSrc, Base, VIdx, VMask, Scale 2179 SDValue Chain = Node->getOperand(0); 2180 SDValue VSrc = Node->getOperand(2); 2181 SDValue Base = Node->getOperand(3); 2182 SDValue VIdx = Node->getOperand(4); 2183 SDValue VMask = Node->getOperand(5); 2184 ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6)); 2185 if (!Scale) 2186 return nullptr; 2187 2188 SDVTList VTs = CurDAG->getVTList(VSrc.getValueType(), VSrc.getValueType(), 2189 MVT::Other); 2190 2191 SDLoc DL(Node); 2192 2193 // Memory Operands: Base, Scale, Index, Disp, Segment 2194 SDValue Disp = CurDAG->getTargetConstant(0, DL, MVT::i32); 2195 SDValue Segment = CurDAG->getRegister(0, MVT::i32); 2196 const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue(), DL), VIdx, 2197 Disp, Segment, VMask, Chain}; 2198 SDNode *ResNode = CurDAG->getMachineNode(Opc, DL, VTs, Ops); 2199 // Node has 2 outputs: VDst and MVT::Other. 2200 // ResNode has 3 outputs: VDst, VMask_wb, and MVT::Other. 2201 // We replace VDst of Node with VDst of ResNode, and Other of Node with Other 2202 // of ResNode. 2203 ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0)); 2204 ReplaceUses(SDValue(Node, 1), SDValue(ResNode, 2)); 2205 return ResNode; 2206 } 2207 2208 SDNode *X86DAGToDAGISel::Select(SDNode *Node) { 2209 MVT NVT = Node->getSimpleValueType(0); 2210 unsigned Opc, MOpc; 2211 unsigned Opcode = Node->getOpcode(); 2212 SDLoc dl(Node); 2213 2214 DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n'); 2215 2216 if (Node->isMachineOpcode()) { 2217 DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n'); 2218 Node->setNodeId(-1); 2219 return nullptr; // Already selected. 2220 } 2221 2222 switch (Opcode) { 2223 default: break; 2224 case ISD::BRIND: { 2225 if (Subtarget->isTargetNaCl()) 2226 // NaCl has its own pass where jmp %r32 are converted to jmp %r64. We 2227 // leave the instruction alone. 2228 break; 2229 if (Subtarget->isTarget64BitILP32()) { 2230 // Converts a 32-bit register to a 64-bit, zero-extended version of 2231 // it. This is needed because x86-64 can do many things, but jmp %r32 2232 // ain't one of them. 2233 const SDValue &Target = Node->getOperand(1); 2234 assert(Target.getSimpleValueType() == llvm::MVT::i32); 2235 SDValue ZextTarget = CurDAG->getZExtOrTrunc(Target, dl, EVT(MVT::i64)); 2236 SDValue Brind = CurDAG->getNode(ISD::BRIND, dl, MVT::Other, 2237 Node->getOperand(0), ZextTarget); 2238 ReplaceUses(SDValue(Node, 0), Brind); 2239 SelectCode(ZextTarget.getNode()); 2240 SelectCode(Brind.getNode()); 2241 return nullptr; 2242 } 2243 break; 2244 } 2245 case ISD::INTRINSIC_W_CHAIN: { 2246 unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); 2247 switch (IntNo) { 2248 default: break; 2249 case Intrinsic::x86_avx2_gather_d_pd: 2250 case Intrinsic::x86_avx2_gather_d_pd_256: 2251 case Intrinsic::x86_avx2_gather_q_pd: 2252 case Intrinsic::x86_avx2_gather_q_pd_256: 2253 case Intrinsic::x86_avx2_gather_d_ps: 2254 case Intrinsic::x86_avx2_gather_d_ps_256: 2255 case Intrinsic::x86_avx2_gather_q_ps: 2256 case Intrinsic::x86_avx2_gather_q_ps_256: 2257 case Intrinsic::x86_avx2_gather_d_q: 2258 case Intrinsic::x86_avx2_gather_d_q_256: 2259 case Intrinsic::x86_avx2_gather_q_q: 2260 case Intrinsic::x86_avx2_gather_q_q_256: 2261 case Intrinsic::x86_avx2_gather_d_d: 2262 case Intrinsic::x86_avx2_gather_d_d_256: 2263 case Intrinsic::x86_avx2_gather_q_d: 2264 case Intrinsic::x86_avx2_gather_q_d_256: { 2265 if (!Subtarget->hasAVX2()) 2266 break; 2267 unsigned Opc; 2268 switch (IntNo) { 2269 default: llvm_unreachable("Impossible intrinsic"); 2270 case Intrinsic::x86_avx2_gather_d_pd: Opc = X86::VGATHERDPDrm; break; 2271 case Intrinsic::x86_avx2_gather_d_pd_256: Opc = X86::VGATHERDPDYrm; break; 2272 case Intrinsic::x86_avx2_gather_q_pd: Opc = X86::VGATHERQPDrm; break; 2273 case Intrinsic::x86_avx2_gather_q_pd_256: Opc = X86::VGATHERQPDYrm; break; 2274 case Intrinsic::x86_avx2_gather_d_ps: Opc = X86::VGATHERDPSrm; break; 2275 case Intrinsic::x86_avx2_gather_d_ps_256: Opc = X86::VGATHERDPSYrm; break; 2276 case Intrinsic::x86_avx2_gather_q_ps: Opc = X86::VGATHERQPSrm; break; 2277 case Intrinsic::x86_avx2_gather_q_ps_256: Opc = X86::VGATHERQPSYrm; break; 2278 case Intrinsic::x86_avx2_gather_d_q: Opc = X86::VPGATHERDQrm; break; 2279 case Intrinsic::x86_avx2_gather_d_q_256: Opc = X86::VPGATHERDQYrm; break; 2280 case Intrinsic::x86_avx2_gather_q_q: Opc = X86::VPGATHERQQrm; break; 2281 case Intrinsic::x86_avx2_gather_q_q_256: Opc = X86::VPGATHERQQYrm; break; 2282 case Intrinsic::x86_avx2_gather_d_d: Opc = X86::VPGATHERDDrm; break; 2283 case Intrinsic::x86_avx2_gather_d_d_256: Opc = X86::VPGATHERDDYrm; break; 2284 case Intrinsic::x86_avx2_gather_q_d: Opc = X86::VPGATHERQDrm; break; 2285 case Intrinsic::x86_avx2_gather_q_d_256: Opc = X86::VPGATHERQDYrm; break; 2286 } 2287 SDNode *RetVal = selectGather(Node, Opc); 2288 if (RetVal) 2289 // We already called ReplaceUses inside SelectGather. 2290 return nullptr; 2291 break; 2292 } 2293 } 2294 break; 2295 } 2296 case X86ISD::GlobalBaseReg: 2297 return getGlobalBaseReg(); 2298 2299 case X86ISD::SHRUNKBLEND: { 2300 // SHRUNKBLEND selects like a regular VSELECT. 2301 SDValue VSelect = CurDAG->getNode( 2302 ISD::VSELECT, SDLoc(Node), Node->getValueType(0), Node->getOperand(0), 2303 Node->getOperand(1), Node->getOperand(2)); 2304 ReplaceUses(SDValue(Node, 0), VSelect); 2305 SelectCode(VSelect.getNode()); 2306 // We already called ReplaceUses. 2307 return nullptr; 2308 } 2309 2310 case ISD::ATOMIC_LOAD_XOR: 2311 case ISD::ATOMIC_LOAD_AND: 2312 case ISD::ATOMIC_LOAD_OR: 2313 case ISD::ATOMIC_LOAD_ADD: { 2314 SDNode *RetVal = selectAtomicLoadArith(Node, NVT); 2315 if (RetVal) 2316 return RetVal; 2317 break; 2318 } 2319 case ISD::AND: 2320 case ISD::OR: 2321 case ISD::XOR: { 2322 // For operations of the form (x << C1) op C2, check if we can use a smaller 2323 // encoding for C2 by transforming it into (x op (C2>>C1)) << C1. 2324 SDValue N0 = Node->getOperand(0); 2325 SDValue N1 = Node->getOperand(1); 2326 2327 if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse()) 2328 break; 2329 2330 // i8 is unshrinkable, i16 should be promoted to i32. 2331 if (NVT != MVT::i32 && NVT != MVT::i64) 2332 break; 2333 2334 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1); 2335 ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 2336 if (!Cst || !ShlCst) 2337 break; 2338 2339 int64_t Val = Cst->getSExtValue(); 2340 uint64_t ShlVal = ShlCst->getZExtValue(); 2341 2342 // Make sure that we don't change the operation by removing bits. 2343 // This only matters for OR and XOR, AND is unaffected. 2344 uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1; 2345 if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0) 2346 break; 2347 2348 unsigned ShlOp, AddOp, Op; 2349 MVT CstVT = NVT; 2350 2351 // Check the minimum bitwidth for the new constant. 2352 // TODO: AND32ri is the same as AND64ri32 with zext imm. 2353 // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr 2354 // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32. 2355 if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal)) 2356 CstVT = MVT::i8; 2357 else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal)) 2358 CstVT = MVT::i32; 2359 2360 // Bail if there is no smaller encoding. 2361 if (NVT == CstVT) 2362 break; 2363 2364 switch (NVT.SimpleTy) { 2365 default: llvm_unreachable("Unsupported VT!"); 2366 case MVT::i32: 2367 assert(CstVT == MVT::i8); 2368 ShlOp = X86::SHL32ri; 2369 AddOp = X86::ADD32rr; 2370 2371 switch (Opcode) { 2372 default: llvm_unreachable("Impossible opcode"); 2373 case ISD::AND: Op = X86::AND32ri8; break; 2374 case ISD::OR: Op = X86::OR32ri8; break; 2375 case ISD::XOR: Op = X86::XOR32ri8; break; 2376 } 2377 break; 2378 case MVT::i64: 2379 assert(CstVT == MVT::i8 || CstVT == MVT::i32); 2380 ShlOp = X86::SHL64ri; 2381 AddOp = X86::ADD64rr; 2382 2383 switch (Opcode) { 2384 default: llvm_unreachable("Impossible opcode"); 2385 case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break; 2386 case ISD::OR: Op = CstVT==MVT::i8? X86::OR64ri8 : X86::OR64ri32; break; 2387 case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break; 2388 } 2389 break; 2390 } 2391 2392 // Emit the smaller op and the shift. 2393 SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, dl, CstVT); 2394 SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst); 2395 if (ShlVal == 1) 2396 return CurDAG->SelectNodeTo(Node, AddOp, NVT, SDValue(New, 0), 2397 SDValue(New, 0)); 2398 return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0), 2399 getI8Imm(ShlVal, dl)); 2400 } 2401 case X86ISD::UMUL8: 2402 case X86ISD::SMUL8: { 2403 SDValue N0 = Node->getOperand(0); 2404 SDValue N1 = Node->getOperand(1); 2405 2406 Opc = (Opcode == X86ISD::SMUL8 ? X86::IMUL8r : X86::MUL8r); 2407 2408 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::AL, 2409 N0, SDValue()).getValue(1); 2410 2411 SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32); 2412 SDValue Ops[] = {N1, InFlag}; 2413 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); 2414 2415 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0)); 2416 ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1)); 2417 return nullptr; 2418 } 2419 2420 case X86ISD::UMUL: { 2421 SDValue N0 = Node->getOperand(0); 2422 SDValue N1 = Node->getOperand(1); 2423 2424 unsigned LoReg; 2425 switch (NVT.SimpleTy) { 2426 default: llvm_unreachable("Unsupported VT!"); 2427 case MVT::i8: LoReg = X86::AL; Opc = X86::MUL8r; break; 2428 case MVT::i16: LoReg = X86::AX; Opc = X86::MUL16r; break; 2429 case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break; 2430 case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break; 2431 } 2432 2433 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg, 2434 N0, SDValue()).getValue(1); 2435 2436 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32); 2437 SDValue Ops[] = {N1, InFlag}; 2438 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); 2439 2440 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0)); 2441 ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1)); 2442 ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2)); 2443 return nullptr; 2444 } 2445 2446 case ISD::SMUL_LOHI: 2447 case ISD::UMUL_LOHI: { 2448 SDValue N0 = Node->getOperand(0); 2449 SDValue N1 = Node->getOperand(1); 2450 2451 bool isSigned = Opcode == ISD::SMUL_LOHI; 2452 bool hasBMI2 = Subtarget->hasBMI2(); 2453 if (!isSigned) { 2454 switch (NVT.SimpleTy) { 2455 default: llvm_unreachable("Unsupported VT!"); 2456 case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break; 2457 case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break; 2458 case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r; 2459 MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break; 2460 case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r; 2461 MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break; 2462 } 2463 } else { 2464 switch (NVT.SimpleTy) { 2465 default: llvm_unreachable("Unsupported VT!"); 2466 case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break; 2467 case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break; 2468 case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break; 2469 case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break; 2470 } 2471 } 2472 2473 unsigned SrcReg, LoReg, HiReg; 2474 switch (Opc) { 2475 default: llvm_unreachable("Unknown MUL opcode!"); 2476 case X86::IMUL8r: 2477 case X86::MUL8r: 2478 SrcReg = LoReg = X86::AL; HiReg = X86::AH; 2479 break; 2480 case X86::IMUL16r: 2481 case X86::MUL16r: 2482 SrcReg = LoReg = X86::AX; HiReg = X86::DX; 2483 break; 2484 case X86::IMUL32r: 2485 case X86::MUL32r: 2486 SrcReg = LoReg = X86::EAX; HiReg = X86::EDX; 2487 break; 2488 case X86::IMUL64r: 2489 case X86::MUL64r: 2490 SrcReg = LoReg = X86::RAX; HiReg = X86::RDX; 2491 break; 2492 case X86::MULX32rr: 2493 SrcReg = X86::EDX; LoReg = HiReg = 0; 2494 break; 2495 case X86::MULX64rr: 2496 SrcReg = X86::RDX; LoReg = HiReg = 0; 2497 break; 2498 } 2499 2500 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 2501 bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 2502 // Multiply is commmutative. 2503 if (!foldedLoad) { 2504 foldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 2505 if (foldedLoad) 2506 std::swap(N0, N1); 2507 } 2508 2509 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg, 2510 N0, SDValue()).getValue(1); 2511 SDValue ResHi, ResLo; 2512 2513 if (foldedLoad) { 2514 SDValue Chain; 2515 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), 2516 InFlag }; 2517 if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) { 2518 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue); 2519 SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); 2520 ResHi = SDValue(CNode, 0); 2521 ResLo = SDValue(CNode, 1); 2522 Chain = SDValue(CNode, 2); 2523 InFlag = SDValue(CNode, 3); 2524 } else { 2525 SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue); 2526 SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); 2527 Chain = SDValue(CNode, 0); 2528 InFlag = SDValue(CNode, 1); 2529 } 2530 2531 // Update the chain. 2532 ReplaceUses(N1.getValue(1), Chain); 2533 } else { 2534 SDValue Ops[] = { N1, InFlag }; 2535 if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) { 2536 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue); 2537 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); 2538 ResHi = SDValue(CNode, 0); 2539 ResLo = SDValue(CNode, 1); 2540 InFlag = SDValue(CNode, 2); 2541 } else { 2542 SDVTList VTs = CurDAG->getVTList(MVT::Glue); 2543 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); 2544 InFlag = SDValue(CNode, 0); 2545 } 2546 } 2547 2548 // Prevent use of AH in a REX instruction by referencing AX instead. 2549 if (HiReg == X86::AH && Subtarget->is64Bit() && 2550 !SDValue(Node, 1).use_empty()) { 2551 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 2552 X86::AX, MVT::i16, InFlag); 2553 InFlag = Result.getValue(2); 2554 // Get the low part if needed. Don't use getCopyFromReg for aliasing 2555 // registers. 2556 if (!SDValue(Node, 0).use_empty()) 2557 ReplaceUses(SDValue(Node, 1), 2558 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); 2559 2560 // Shift AX down 8 bits. 2561 Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16, 2562 Result, 2563 CurDAG->getTargetConstant(8, dl, MVT::i8)), 2564 0); 2565 // Then truncate it down to i8. 2566 ReplaceUses(SDValue(Node, 1), 2567 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); 2568 } 2569 // Copy the low half of the result, if it is needed. 2570 if (!SDValue(Node, 0).use_empty()) { 2571 if (!ResLo.getNode()) { 2572 assert(LoReg && "Register for low half is not defined!"); 2573 ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT, 2574 InFlag); 2575 InFlag = ResLo.getValue(2); 2576 } 2577 ReplaceUses(SDValue(Node, 0), ResLo); 2578 DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n'); 2579 } 2580 // Copy the high half of the result, if it is needed. 2581 if (!SDValue(Node, 1).use_empty()) { 2582 if (!ResHi.getNode()) { 2583 assert(HiReg && "Register for high half is not defined!"); 2584 ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT, 2585 InFlag); 2586 InFlag = ResHi.getValue(2); 2587 } 2588 ReplaceUses(SDValue(Node, 1), ResHi); 2589 DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n'); 2590 } 2591 2592 return nullptr; 2593 } 2594 2595 case ISD::SDIVREM: 2596 case ISD::UDIVREM: 2597 case X86ISD::SDIVREM8_SEXT_HREG: 2598 case X86ISD::UDIVREM8_ZEXT_HREG: { 2599 SDValue N0 = Node->getOperand(0); 2600 SDValue N1 = Node->getOperand(1); 2601 2602 bool isSigned = (Opcode == ISD::SDIVREM || 2603 Opcode == X86ISD::SDIVREM8_SEXT_HREG); 2604 if (!isSigned) { 2605 switch (NVT.SimpleTy) { 2606 default: llvm_unreachable("Unsupported VT!"); 2607 case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break; 2608 case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break; 2609 case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break; 2610 case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break; 2611 } 2612 } else { 2613 switch (NVT.SimpleTy) { 2614 default: llvm_unreachable("Unsupported VT!"); 2615 case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break; 2616 case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break; 2617 case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break; 2618 case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break; 2619 } 2620 } 2621 2622 unsigned LoReg, HiReg, ClrReg; 2623 unsigned SExtOpcode; 2624 switch (NVT.SimpleTy) { 2625 default: llvm_unreachable("Unsupported VT!"); 2626 case MVT::i8: 2627 LoReg = X86::AL; ClrReg = HiReg = X86::AH; 2628 SExtOpcode = X86::CBW; 2629 break; 2630 case MVT::i16: 2631 LoReg = X86::AX; HiReg = X86::DX; 2632 ClrReg = X86::DX; 2633 SExtOpcode = X86::CWD; 2634 break; 2635 case MVT::i32: 2636 LoReg = X86::EAX; ClrReg = HiReg = X86::EDX; 2637 SExtOpcode = X86::CDQ; 2638 break; 2639 case MVT::i64: 2640 LoReg = X86::RAX; ClrReg = HiReg = X86::RDX; 2641 SExtOpcode = X86::CQO; 2642 break; 2643 } 2644 2645 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 2646 bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 2647 bool signBitIsZero = CurDAG->SignBitIsZero(N0); 2648 2649 SDValue InFlag; 2650 if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) { 2651 // Special case for div8, just use a move with zero extension to AX to 2652 // clear the upper 8 bits (AH). 2653 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain; 2654 if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { 2655 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) }; 2656 Move = 2657 SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32, 2658 MVT::Other, Ops), 0); 2659 Chain = Move.getValue(1); 2660 ReplaceUses(N0.getValue(1), Chain); 2661 } else { 2662 Move = 2663 SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0); 2664 Chain = CurDAG->getEntryNode(); 2665 } 2666 Chain = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue()); 2667 InFlag = Chain.getValue(1); 2668 } else { 2669 InFlag = 2670 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, 2671 LoReg, N0, SDValue()).getValue(1); 2672 if (isSigned && !signBitIsZero) { 2673 // Sign extend the low part into the high part. 2674 InFlag = 2675 SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0); 2676 } else { 2677 // Zero out the high part, effectively zero extending the input. 2678 SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0); 2679 switch (NVT.SimpleTy) { 2680 case MVT::i16: 2681 ClrNode = 2682 SDValue(CurDAG->getMachineNode( 2683 TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode, 2684 CurDAG->getTargetConstant(X86::sub_16bit, dl, 2685 MVT::i32)), 2686 0); 2687 break; 2688 case MVT::i32: 2689 break; 2690 case MVT::i64: 2691 ClrNode = 2692 SDValue(CurDAG->getMachineNode( 2693 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64, 2694 CurDAG->getTargetConstant(0, dl, MVT::i64), ClrNode, 2695 CurDAG->getTargetConstant(X86::sub_32bit, dl, 2696 MVT::i32)), 2697 0); 2698 break; 2699 default: 2700 llvm_unreachable("Unexpected division source"); 2701 } 2702 2703 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg, 2704 ClrNode, InFlag).getValue(1); 2705 } 2706 } 2707 2708 if (foldedLoad) { 2709 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), 2710 InFlag }; 2711 SDNode *CNode = 2712 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops); 2713 InFlag = SDValue(CNode, 1); 2714 // Update the chain. 2715 ReplaceUses(N1.getValue(1), SDValue(CNode, 0)); 2716 } else { 2717 InFlag = 2718 SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0); 2719 } 2720 2721 // Prevent use of AH in a REX instruction by explicitly copying it to 2722 // an ABCD_L register. 2723 // 2724 // The current assumption of the register allocator is that isel 2725 // won't generate explicit references to the GR8_ABCD_H registers. If 2726 // the allocator and/or the backend get enhanced to be more robust in 2727 // that regard, this can be, and should be, removed. 2728 if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) { 2729 SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8); 2730 unsigned AHExtOpcode = 2731 isSigned ? X86::MOVSX32_NOREXrr8 : X86::MOVZX32_NOREXrr8; 2732 2733 SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32, 2734 MVT::Glue, AHCopy, InFlag); 2735 SDValue Result(RNode, 0); 2736 InFlag = SDValue(RNode, 1); 2737 2738 if (Opcode == X86ISD::UDIVREM8_ZEXT_HREG || 2739 Opcode == X86ISD::SDIVREM8_SEXT_HREG) { 2740 if (Node->getValueType(1) == MVT::i64) { 2741 // It's not possible to directly movsx AH to a 64bit register, because 2742 // the latter needs the REX prefix, but the former can't have it. 2743 assert(Opcode != X86ISD::SDIVREM8_SEXT_HREG && 2744 "Unexpected i64 sext of h-register"); 2745 Result = 2746 SDValue(CurDAG->getMachineNode( 2747 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64, 2748 CurDAG->getTargetConstant(0, dl, MVT::i64), Result, 2749 CurDAG->getTargetConstant(X86::sub_32bit, dl, 2750 MVT::i32)), 2751 0); 2752 } 2753 } else { 2754 Result = 2755 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result); 2756 } 2757 ReplaceUses(SDValue(Node, 1), Result); 2758 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); 2759 } 2760 // Copy the division (low) result, if it is needed. 2761 if (!SDValue(Node, 0).use_empty()) { 2762 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 2763 LoReg, NVT, InFlag); 2764 InFlag = Result.getValue(2); 2765 ReplaceUses(SDValue(Node, 0), Result); 2766 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); 2767 } 2768 // Copy the remainder (high) result, if it is needed. 2769 if (!SDValue(Node, 1).use_empty()) { 2770 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 2771 HiReg, NVT, InFlag); 2772 InFlag = Result.getValue(2); 2773 ReplaceUses(SDValue(Node, 1), Result); 2774 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); 2775 } 2776 return nullptr; 2777 } 2778 2779 case X86ISD::CMP: 2780 case X86ISD::SUB: { 2781 // Sometimes a SUB is used to perform comparison. 2782 if (Opcode == X86ISD::SUB && Node->hasAnyUseOfValue(0)) 2783 // This node is not a CMP. 2784 break; 2785 SDValue N0 = Node->getOperand(0); 2786 SDValue N1 = Node->getOperand(1); 2787 2788 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && 2789 hasNoSignedComparisonUses(Node)) 2790 N0 = N0.getOperand(0); 2791 2792 // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to 2793 // use a smaller encoding. 2794 // Look past the truncate if CMP is the only use of it. 2795 if ((N0.getNode()->getOpcode() == ISD::AND || 2796 (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) && 2797 N0.getNode()->hasOneUse() && 2798 N0.getValueType() != MVT::i8 && 2799 X86::isZeroNode(N1)) { 2800 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1)); 2801 if (!C) break; 2802 2803 // For example, convert "testl %eax, $8" to "testb %al, $8" 2804 if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 && 2805 (!(C->getZExtValue() & 0x80) || 2806 hasNoSignedComparisonUses(Node))) { 2807 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), dl, MVT::i8); 2808 SDValue Reg = N0.getNode()->getOperand(0); 2809 2810 // On x86-32, only the ABCD registers have 8-bit subregisters. 2811 if (!Subtarget->is64Bit()) { 2812 const TargetRegisterClass *TRC; 2813 switch (N0.getSimpleValueType().SimpleTy) { 2814 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break; 2815 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break; 2816 default: llvm_unreachable("Unsupported TEST operand type!"); 2817 } 2818 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32); 2819 Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl, 2820 Reg.getValueType(), Reg, RC), 0); 2821 } 2822 2823 // Extract the l-register. 2824 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, 2825 MVT::i8, Reg); 2826 2827 // Emit a testb. 2828 SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, 2829 Subreg, Imm); 2830 // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has 2831 // one, do not call ReplaceAllUsesWith. 2832 ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)), 2833 SDValue(NewNode, 0)); 2834 return nullptr; 2835 } 2836 2837 // For example, "testl %eax, $2048" to "testb %ah, $8". 2838 if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 && 2839 (!(C->getZExtValue() & 0x8000) || 2840 hasNoSignedComparisonUses(Node))) { 2841 // Shift the immediate right by 8 bits. 2842 SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8, 2843 dl, MVT::i8); 2844 SDValue Reg = N0.getNode()->getOperand(0); 2845 2846 // Put the value in an ABCD register. 2847 const TargetRegisterClass *TRC; 2848 switch (N0.getSimpleValueType().SimpleTy) { 2849 case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break; 2850 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break; 2851 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break; 2852 default: llvm_unreachable("Unsupported TEST operand type!"); 2853 } 2854 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32); 2855 Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl, 2856 Reg.getValueType(), Reg, RC), 0); 2857 2858 // Extract the h-register. 2859 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl, 2860 MVT::i8, Reg); 2861 2862 // Emit a testb. The EXTRACT_SUBREG becomes a COPY that can only 2863 // target GR8_NOREX registers, so make sure the register class is 2864 // forced. 2865 SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl, 2866 MVT::i32, Subreg, ShiftedImm); 2867 // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has 2868 // one, do not call ReplaceAllUsesWith. 2869 ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)), 2870 SDValue(NewNode, 0)); 2871 return nullptr; 2872 } 2873 2874 // For example, "testl %eax, $32776" to "testw %ax, $32776". 2875 if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 && 2876 N0.getValueType() != MVT::i16 && 2877 (!(C->getZExtValue() & 0x8000) || 2878 hasNoSignedComparisonUses(Node))) { 2879 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), dl, 2880 MVT::i16); 2881 SDValue Reg = N0.getNode()->getOperand(0); 2882 2883 // Extract the 16-bit subregister. 2884 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, 2885 MVT::i16, Reg); 2886 2887 // Emit a testw. 2888 SDNode *NewNode = CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, 2889 Subreg, Imm); 2890 // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has 2891 // one, do not call ReplaceAllUsesWith. 2892 ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)), 2893 SDValue(NewNode, 0)); 2894 return nullptr; 2895 } 2896 2897 // For example, "testq %rax, $268468232" to "testl %eax, $268468232". 2898 if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 && 2899 N0.getValueType() == MVT::i64 && 2900 (!(C->getZExtValue() & 0x80000000) || 2901 hasNoSignedComparisonUses(Node))) { 2902 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), dl, 2903 MVT::i32); 2904 SDValue Reg = N0.getNode()->getOperand(0); 2905 2906 // Extract the 32-bit subregister. 2907 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl, 2908 MVT::i32, Reg); 2909 2910 // Emit a testl. 2911 SDNode *NewNode = CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, 2912 Subreg, Imm); 2913 // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has 2914 // one, do not call ReplaceAllUsesWith. 2915 ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)), 2916 SDValue(NewNode, 0)); 2917 return nullptr; 2918 } 2919 } 2920 break; 2921 } 2922 case ISD::STORE: { 2923 // Change a chain of {load; incr or dec; store} of the same value into 2924 // a simple increment or decrement through memory of that value, if the 2925 // uses of the modified value and its address are suitable. 2926 // The DEC64m tablegen pattern is currently not able to match the case where 2927 // the EFLAGS on the original DEC are used. (This also applies to 2928 // {INC,DEC}X{64,32,16,8}.) 2929 // We'll need to improve tablegen to allow flags to be transferred from a 2930 // node in the pattern to the result node. probably with a new keyword 2931 // for example, we have this 2932 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", 2933 // [(store (add (loadi64 addr:$dst), -1), addr:$dst), 2934 // (implicit EFLAGS)]>; 2935 // but maybe need something like this 2936 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", 2937 // [(store (add (loadi64 addr:$dst), -1), addr:$dst), 2938 // (transferrable EFLAGS)]>; 2939 2940 StoreSDNode *StoreNode = cast<StoreSDNode>(Node); 2941 SDValue StoredVal = StoreNode->getOperand(1); 2942 unsigned Opc = StoredVal->getOpcode(); 2943 2944 LoadSDNode *LoadNode = nullptr; 2945 SDValue InputChain; 2946 if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG, 2947 LoadNode, InputChain)) 2948 break; 2949 2950 SDValue Base, Scale, Index, Disp, Segment; 2951 if (!selectAddr(LoadNode, LoadNode->getBasePtr(), 2952 Base, Scale, Index, Disp, Segment)) 2953 break; 2954 2955 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2); 2956 MemOp[0] = StoreNode->getMemOperand(); 2957 MemOp[1] = LoadNode->getMemOperand(); 2958 const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain }; 2959 EVT LdVT = LoadNode->getMemoryVT(); 2960 unsigned newOpc = getFusedLdStOpcode(LdVT, Opc); 2961 MachineSDNode *Result = CurDAG->getMachineNode(newOpc, 2962 SDLoc(Node), 2963 MVT::i32, MVT::Other, Ops); 2964 Result->setMemRefs(MemOp, MemOp + 2); 2965 2966 ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1)); 2967 ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0)); 2968 2969 return Result; 2970 } 2971 } 2972 2973 SDNode *ResNode = SelectCode(Node); 2974 2975 DEBUG(dbgs() << "=> "; 2976 if (ResNode == nullptr || ResNode == Node) 2977 Node->dump(CurDAG); 2978 else 2979 ResNode->dump(CurDAG); 2980 dbgs() << '\n'); 2981 2982 return ResNode; 2983 } 2984 2985 bool X86DAGToDAGISel:: 2986 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID, 2987 std::vector<SDValue> &OutOps) { 2988 SDValue Op0, Op1, Op2, Op3, Op4; 2989 switch (ConstraintID) { 2990 default: 2991 llvm_unreachable("Unexpected asm memory constraint"); 2992 case InlineAsm::Constraint_i: 2993 // FIXME: It seems strange that 'i' is needed here since it's supposed to 2994 // be an immediate and not a memory constraint. 2995 // Fallthrough. 2996 case InlineAsm::Constraint_o: // offsetable ?? 2997 case InlineAsm::Constraint_v: // not offsetable ?? 2998 case InlineAsm::Constraint_m: // memory 2999 case InlineAsm::Constraint_X: 3000 if (!selectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4)) 3001 return true; 3002 break; 3003 } 3004 3005 OutOps.push_back(Op0); 3006 OutOps.push_back(Op1); 3007 OutOps.push_back(Op2); 3008 OutOps.push_back(Op3); 3009 OutOps.push_back(Op4); 3010 return false; 3011 } 3012 3013 /// This pass converts a legalized DAG into a X86-specific DAG, 3014 /// ready for instruction scheduling. 3015 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, 3016 CodeGenOpt::Level OptLevel) { 3017 return new X86DAGToDAGISel(TM, OptLevel); 3018 } 3019