1 //===--- SemaExprObjC.cpp - Semantic Analysis for ObjC Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements semantic analysis for Objective-C expressions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/SemaInternal.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/DeclObjC.h" 17 #include "clang/AST/ExprObjC.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/AST/TypeLoc.h" 20 #include "clang/Analysis/DomainSpecific/CocoaConventions.h" 21 #include "clang/Edit/Commit.h" 22 #include "clang/Edit/Rewriters.h" 23 #include "clang/Lex/Preprocessor.h" 24 #include "clang/Sema/Initialization.h" 25 #include "clang/Sema/Lookup.h" 26 #include "clang/Sema/Scope.h" 27 #include "clang/Sema/ScopeInfo.h" 28 #include "llvm/ADT/SmallString.h" 29 30 using namespace clang; 31 using namespace sema; 32 using llvm::makeArrayRef; 33 34 ExprResult Sema::ParseObjCStringLiteral(SourceLocation *AtLocs, 35 Expr **strings, 36 unsigned NumStrings) { 37 StringLiteral **Strings = reinterpret_cast<StringLiteral**>(strings); 38 39 // Most ObjC strings are formed out of a single piece. However, we *can* 40 // have strings formed out of multiple @ strings with multiple pptokens in 41 // each one, e.g. @"foo" "bar" @"baz" "qux" which need to be turned into one 42 // StringLiteral for ObjCStringLiteral to hold onto. 43 StringLiteral *S = Strings[0]; 44 45 // If we have a multi-part string, merge it all together. 46 if (NumStrings != 1) { 47 // Concatenate objc strings. 48 SmallString<128> StrBuf; 49 SmallVector<SourceLocation, 8> StrLocs; 50 51 for (unsigned i = 0; i != NumStrings; ++i) { 52 S = Strings[i]; 53 54 // ObjC strings can't be wide or UTF. 55 if (!S->isAscii()) { 56 Diag(S->getLocStart(), diag::err_cfstring_literal_not_string_constant) 57 << S->getSourceRange(); 58 return true; 59 } 60 61 // Append the string. 62 StrBuf += S->getString(); 63 64 // Get the locations of the string tokens. 65 StrLocs.append(S->tokloc_begin(), S->tokloc_end()); 66 } 67 68 // Create the aggregate string with the appropriate content and location 69 // information. 70 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 71 assert(CAT && "String literal not of constant array type!"); 72 QualType StrTy = Context.getConstantArrayType( 73 CAT->getElementType(), llvm::APInt(32, StrBuf.size() + 1), 74 CAT->getSizeModifier(), CAT->getIndexTypeCVRQualifiers()); 75 S = StringLiteral::Create(Context, StrBuf, StringLiteral::Ascii, 76 /*Pascal=*/false, StrTy, &StrLocs[0], 77 StrLocs.size()); 78 } 79 80 return BuildObjCStringLiteral(AtLocs[0], S); 81 } 82 83 ExprResult Sema::BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S){ 84 // Verify that this composite string is acceptable for ObjC strings. 85 if (CheckObjCString(S)) 86 return true; 87 88 // Initialize the constant string interface lazily. This assumes 89 // the NSString interface is seen in this translation unit. Note: We 90 // don't use NSConstantString, since the runtime team considers this 91 // interface private (even though it appears in the header files). 92 QualType Ty = Context.getObjCConstantStringInterface(); 93 if (!Ty.isNull()) { 94 Ty = Context.getObjCObjectPointerType(Ty); 95 } else if (getLangOpts().NoConstantCFStrings) { 96 IdentifierInfo *NSIdent=nullptr; 97 std::string StringClass(getLangOpts().ObjCConstantStringClass); 98 99 if (StringClass.empty()) 100 NSIdent = &Context.Idents.get("NSConstantString"); 101 else 102 NSIdent = &Context.Idents.get(StringClass); 103 104 NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc, 105 LookupOrdinaryName); 106 if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) { 107 Context.setObjCConstantStringInterface(StrIF); 108 Ty = Context.getObjCConstantStringInterface(); 109 Ty = Context.getObjCObjectPointerType(Ty); 110 } else { 111 // If there is no NSConstantString interface defined then treat this 112 // as error and recover from it. 113 Diag(S->getLocStart(), diag::err_no_nsconstant_string_class) << NSIdent 114 << S->getSourceRange(); 115 Ty = Context.getObjCIdType(); 116 } 117 } else { 118 IdentifierInfo *NSIdent = NSAPIObj->getNSClassId(NSAPI::ClassId_NSString); 119 NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc, 120 LookupOrdinaryName); 121 if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) { 122 Context.setObjCConstantStringInterface(StrIF); 123 Ty = Context.getObjCConstantStringInterface(); 124 Ty = Context.getObjCObjectPointerType(Ty); 125 } else { 126 // If there is no NSString interface defined, implicitly declare 127 // a @class NSString; and use that instead. This is to make sure 128 // type of an NSString literal is represented correctly, instead of 129 // being an 'id' type. 130 Ty = Context.getObjCNSStringType(); 131 if (Ty.isNull()) { 132 ObjCInterfaceDecl *NSStringIDecl = 133 ObjCInterfaceDecl::Create (Context, 134 Context.getTranslationUnitDecl(), 135 SourceLocation(), NSIdent, 136 nullptr, nullptr, SourceLocation()); 137 Ty = Context.getObjCInterfaceType(NSStringIDecl); 138 Context.setObjCNSStringType(Ty); 139 } 140 Ty = Context.getObjCObjectPointerType(Ty); 141 } 142 } 143 144 return new (Context) ObjCStringLiteral(S, Ty, AtLoc); 145 } 146 147 /// \brief Emits an error if the given method does not exist, or if the return 148 /// type is not an Objective-C object. 149 static bool validateBoxingMethod(Sema &S, SourceLocation Loc, 150 const ObjCInterfaceDecl *Class, 151 Selector Sel, const ObjCMethodDecl *Method) { 152 if (!Method) { 153 // FIXME: Is there a better way to avoid quotes than using getName()? 154 S.Diag(Loc, diag::err_undeclared_boxing_method) << Sel << Class->getName(); 155 return false; 156 } 157 158 // Make sure the return type is reasonable. 159 QualType ReturnType = Method->getReturnType(); 160 if (!ReturnType->isObjCObjectPointerType()) { 161 S.Diag(Loc, diag::err_objc_literal_method_sig) 162 << Sel; 163 S.Diag(Method->getLocation(), diag::note_objc_literal_method_return) 164 << ReturnType; 165 return false; 166 } 167 168 return true; 169 } 170 171 /// \brief Maps ObjCLiteralKind to NSClassIdKindKind 172 static NSAPI::NSClassIdKindKind ClassKindFromLiteralKind( 173 Sema::ObjCLiteralKind LiteralKind) { 174 switch (LiteralKind) { 175 case Sema::LK_Array: 176 return NSAPI::ClassId_NSArray; 177 case Sema::LK_Dictionary: 178 return NSAPI::ClassId_NSDictionary; 179 case Sema::LK_Numeric: 180 return NSAPI::ClassId_NSNumber; 181 case Sema::LK_String: 182 return NSAPI::ClassId_NSString; 183 case Sema::LK_Boxed: 184 return NSAPI::ClassId_NSValue; 185 186 // there is no corresponding matching 187 // between LK_None/LK_Block and NSClassIdKindKind 188 case Sema::LK_Block: 189 case Sema::LK_None: 190 break; 191 } 192 llvm_unreachable("LiteralKind can't be converted into a ClassKind"); 193 } 194 195 /// \brief Validates ObjCInterfaceDecl availability. 196 /// ObjCInterfaceDecl, used to create ObjC literals, should be defined 197 /// if clang not in a debugger mode. 198 static bool ValidateObjCLiteralInterfaceDecl(Sema &S, ObjCInterfaceDecl *Decl, 199 SourceLocation Loc, 200 Sema::ObjCLiteralKind LiteralKind) { 201 if (!Decl) { 202 NSAPI::NSClassIdKindKind Kind = ClassKindFromLiteralKind(LiteralKind); 203 IdentifierInfo *II = S.NSAPIObj->getNSClassId(Kind); 204 S.Diag(Loc, diag::err_undeclared_objc_literal_class) 205 << II->getName() << LiteralKind; 206 return false; 207 } else if (!Decl->hasDefinition() && !S.getLangOpts().DebuggerObjCLiteral) { 208 S.Diag(Loc, diag::err_undeclared_objc_literal_class) 209 << Decl->getName() << LiteralKind; 210 S.Diag(Decl->getLocation(), diag::note_forward_class); 211 return false; 212 } 213 214 return true; 215 } 216 217 /// \brief Looks up ObjCInterfaceDecl of a given NSClassIdKindKind. 218 /// Used to create ObjC literals, such as NSDictionary (@{}), 219 /// NSArray (@[]) and Boxed Expressions (@()) 220 static ObjCInterfaceDecl *LookupObjCInterfaceDeclForLiteral(Sema &S, 221 SourceLocation Loc, 222 Sema::ObjCLiteralKind LiteralKind) { 223 NSAPI::NSClassIdKindKind ClassKind = ClassKindFromLiteralKind(LiteralKind); 224 IdentifierInfo *II = S.NSAPIObj->getNSClassId(ClassKind); 225 NamedDecl *IF = S.LookupSingleName(S.TUScope, II, Loc, 226 Sema::LookupOrdinaryName); 227 ObjCInterfaceDecl *ID = dyn_cast_or_null<ObjCInterfaceDecl>(IF); 228 if (!ID && S.getLangOpts().DebuggerObjCLiteral) { 229 ASTContext &Context = S.Context; 230 TranslationUnitDecl *TU = Context.getTranslationUnitDecl(); 231 ID = ObjCInterfaceDecl::Create (Context, TU, SourceLocation(), II, 232 nullptr, nullptr, SourceLocation()); 233 } 234 235 if (!ValidateObjCLiteralInterfaceDecl(S, ID, Loc, LiteralKind)) { 236 ID = nullptr; 237 } 238 239 return ID; 240 } 241 242 /// \brief Retrieve the NSNumber factory method that should be used to create 243 /// an Objective-C literal for the given type. 244 static ObjCMethodDecl *getNSNumberFactoryMethod(Sema &S, SourceLocation Loc, 245 QualType NumberType, 246 bool isLiteral = false, 247 SourceRange R = SourceRange()) { 248 Optional<NSAPI::NSNumberLiteralMethodKind> Kind = 249 S.NSAPIObj->getNSNumberFactoryMethodKind(NumberType); 250 251 if (!Kind) { 252 if (isLiteral) { 253 S.Diag(Loc, diag::err_invalid_nsnumber_type) 254 << NumberType << R; 255 } 256 return nullptr; 257 } 258 259 // If we already looked up this method, we're done. 260 if (S.NSNumberLiteralMethods[*Kind]) 261 return S.NSNumberLiteralMethods[*Kind]; 262 263 Selector Sel = S.NSAPIObj->getNSNumberLiteralSelector(*Kind, 264 /*Instance=*/false); 265 266 ASTContext &CX = S.Context; 267 268 // Look up the NSNumber class, if we haven't done so already. It's cached 269 // in the Sema instance. 270 if (!S.NSNumberDecl) { 271 S.NSNumberDecl = LookupObjCInterfaceDeclForLiteral(S, Loc, 272 Sema::LK_Numeric); 273 if (!S.NSNumberDecl) { 274 return nullptr; 275 } 276 } 277 278 if (S.NSNumberPointer.isNull()) { 279 // generate the pointer to NSNumber type. 280 QualType NSNumberObject = CX.getObjCInterfaceType(S.NSNumberDecl); 281 S.NSNumberPointer = CX.getObjCObjectPointerType(NSNumberObject); 282 } 283 284 // Look for the appropriate method within NSNumber. 285 ObjCMethodDecl *Method = S.NSNumberDecl->lookupClassMethod(Sel); 286 if (!Method && S.getLangOpts().DebuggerObjCLiteral) { 287 // create a stub definition this NSNumber factory method. 288 TypeSourceInfo *ReturnTInfo = nullptr; 289 Method = 290 ObjCMethodDecl::Create(CX, SourceLocation(), SourceLocation(), Sel, 291 S.NSNumberPointer, ReturnTInfo, S.NSNumberDecl, 292 /*isInstance=*/false, /*isVariadic=*/false, 293 /*isPropertyAccessor=*/false, 294 /*isImplicitlyDeclared=*/true, 295 /*isDefined=*/false, ObjCMethodDecl::Required, 296 /*HasRelatedResultType=*/false); 297 ParmVarDecl *value = ParmVarDecl::Create(S.Context, Method, 298 SourceLocation(), SourceLocation(), 299 &CX.Idents.get("value"), 300 NumberType, /*TInfo=*/nullptr, 301 SC_None, nullptr); 302 Method->setMethodParams(S.Context, value, None); 303 } 304 305 if (!validateBoxingMethod(S, Loc, S.NSNumberDecl, Sel, Method)) 306 return nullptr; 307 308 // Note: if the parameter type is out-of-line, we'll catch it later in the 309 // implicit conversion. 310 311 S.NSNumberLiteralMethods[*Kind] = Method; 312 return Method; 313 } 314 315 /// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the 316 /// numeric literal expression. Type of the expression will be "NSNumber *". 317 ExprResult Sema::BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number) { 318 // Determine the type of the literal. 319 QualType NumberType = Number->getType(); 320 if (CharacterLiteral *Char = dyn_cast<CharacterLiteral>(Number)) { 321 // In C, character literals have type 'int'. That's not the type we want 322 // to use to determine the Objective-c literal kind. 323 switch (Char->getKind()) { 324 case CharacterLiteral::Ascii: 325 NumberType = Context.CharTy; 326 break; 327 328 case CharacterLiteral::Wide: 329 NumberType = Context.getWideCharType(); 330 break; 331 332 case CharacterLiteral::UTF16: 333 NumberType = Context.Char16Ty; 334 break; 335 336 case CharacterLiteral::UTF32: 337 NumberType = Context.Char32Ty; 338 break; 339 } 340 } 341 342 // Look for the appropriate method within NSNumber. 343 // Construct the literal. 344 SourceRange NR(Number->getSourceRange()); 345 ObjCMethodDecl *Method = getNSNumberFactoryMethod(*this, AtLoc, NumberType, 346 true, NR); 347 if (!Method) 348 return ExprError(); 349 350 // Convert the number to the type that the parameter expects. 351 ParmVarDecl *ParamDecl = Method->parameters()[0]; 352 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 353 ParamDecl); 354 ExprResult ConvertedNumber = PerformCopyInitialization(Entity, 355 SourceLocation(), 356 Number); 357 if (ConvertedNumber.isInvalid()) 358 return ExprError(); 359 Number = ConvertedNumber.get(); 360 361 // Use the effective source range of the literal, including the leading '@'. 362 return MaybeBindToTemporary( 363 new (Context) ObjCBoxedExpr(Number, NSNumberPointer, Method, 364 SourceRange(AtLoc, NR.getEnd()))); 365 } 366 367 ExprResult Sema::ActOnObjCBoolLiteral(SourceLocation AtLoc, 368 SourceLocation ValueLoc, 369 bool Value) { 370 ExprResult Inner; 371 if (getLangOpts().CPlusPlus) { 372 Inner = ActOnCXXBoolLiteral(ValueLoc, Value? tok::kw_true : tok::kw_false); 373 } else { 374 // C doesn't actually have a way to represent literal values of type 375 // _Bool. So, we'll use 0/1 and implicit cast to _Bool. 376 Inner = ActOnIntegerConstant(ValueLoc, Value? 1 : 0); 377 Inner = ImpCastExprToType(Inner.get(), Context.BoolTy, 378 CK_IntegralToBoolean); 379 } 380 381 return BuildObjCNumericLiteral(AtLoc, Inner.get()); 382 } 383 384 /// \brief Check that the given expression is a valid element of an Objective-C 385 /// collection literal. 386 static ExprResult CheckObjCCollectionLiteralElement(Sema &S, Expr *Element, 387 QualType T, 388 bool ArrayLiteral = false) { 389 // If the expression is type-dependent, there's nothing for us to do. 390 if (Element->isTypeDependent()) 391 return Element; 392 393 ExprResult Result = S.CheckPlaceholderExpr(Element); 394 if (Result.isInvalid()) 395 return ExprError(); 396 Element = Result.get(); 397 398 // In C++, check for an implicit conversion to an Objective-C object pointer 399 // type. 400 if (S.getLangOpts().CPlusPlus && Element->getType()->isRecordType()) { 401 InitializedEntity Entity 402 = InitializedEntity::InitializeParameter(S.Context, T, 403 /*Consumed=*/false); 404 InitializationKind Kind 405 = InitializationKind::CreateCopy(Element->getLocStart(), 406 SourceLocation()); 407 InitializationSequence Seq(S, Entity, Kind, Element); 408 if (!Seq.Failed()) 409 return Seq.Perform(S, Entity, Kind, Element); 410 } 411 412 Expr *OrigElement = Element; 413 414 // Perform lvalue-to-rvalue conversion. 415 Result = S.DefaultLvalueConversion(Element); 416 if (Result.isInvalid()) 417 return ExprError(); 418 Element = Result.get(); 419 420 // Make sure that we have an Objective-C pointer type or block. 421 if (!Element->getType()->isObjCObjectPointerType() && 422 !Element->getType()->isBlockPointerType()) { 423 bool Recovered = false; 424 425 // If this is potentially an Objective-C numeric literal, add the '@'. 426 if (isa<IntegerLiteral>(OrigElement) || 427 isa<CharacterLiteral>(OrigElement) || 428 isa<FloatingLiteral>(OrigElement) || 429 isa<ObjCBoolLiteralExpr>(OrigElement) || 430 isa<CXXBoolLiteralExpr>(OrigElement)) { 431 if (S.NSAPIObj->getNSNumberFactoryMethodKind(OrigElement->getType())) { 432 int Which = isa<CharacterLiteral>(OrigElement) ? 1 433 : (isa<CXXBoolLiteralExpr>(OrigElement) || 434 isa<ObjCBoolLiteralExpr>(OrigElement)) ? 2 435 : 3; 436 437 S.Diag(OrigElement->getLocStart(), diag::err_box_literal_collection) 438 << Which << OrigElement->getSourceRange() 439 << FixItHint::CreateInsertion(OrigElement->getLocStart(), "@"); 440 441 Result = S.BuildObjCNumericLiteral(OrigElement->getLocStart(), 442 OrigElement); 443 if (Result.isInvalid()) 444 return ExprError(); 445 446 Element = Result.get(); 447 Recovered = true; 448 } 449 } 450 // If this is potentially an Objective-C string literal, add the '@'. 451 else if (StringLiteral *String = dyn_cast<StringLiteral>(OrigElement)) { 452 if (String->isAscii()) { 453 S.Diag(OrigElement->getLocStart(), diag::err_box_literal_collection) 454 << 0 << OrigElement->getSourceRange() 455 << FixItHint::CreateInsertion(OrigElement->getLocStart(), "@"); 456 457 Result = S.BuildObjCStringLiteral(OrigElement->getLocStart(), String); 458 if (Result.isInvalid()) 459 return ExprError(); 460 461 Element = Result.get(); 462 Recovered = true; 463 } 464 } 465 466 if (!Recovered) { 467 S.Diag(Element->getLocStart(), diag::err_invalid_collection_element) 468 << Element->getType(); 469 return ExprError(); 470 } 471 } 472 if (ArrayLiteral) 473 if (ObjCStringLiteral *getString = 474 dyn_cast<ObjCStringLiteral>(OrigElement)) { 475 if (StringLiteral *SL = getString->getString()) { 476 unsigned numConcat = SL->getNumConcatenated(); 477 if (numConcat > 1) { 478 // Only warn if the concatenated string doesn't come from a macro. 479 bool hasMacro = false; 480 for (unsigned i = 0; i < numConcat ; ++i) 481 if (SL->getStrTokenLoc(i).isMacroID()) { 482 hasMacro = true; 483 break; 484 } 485 if (!hasMacro) 486 S.Diag(Element->getLocStart(), 487 diag::warn_concatenated_nsarray_literal) 488 << Element->getType(); 489 } 490 } 491 } 492 493 // Make sure that the element has the type that the container factory 494 // function expects. 495 return S.PerformCopyInitialization( 496 InitializedEntity::InitializeParameter(S.Context, T, 497 /*Consumed=*/false), 498 Element->getLocStart(), Element); 499 } 500 501 ExprResult Sema::BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) { 502 if (ValueExpr->isTypeDependent()) { 503 ObjCBoxedExpr *BoxedExpr = 504 new (Context) ObjCBoxedExpr(ValueExpr, Context.DependentTy, nullptr, SR); 505 return BoxedExpr; 506 } 507 ObjCMethodDecl *BoxingMethod = nullptr; 508 QualType BoxedType; 509 // Convert the expression to an RValue, so we can check for pointer types... 510 ExprResult RValue = DefaultFunctionArrayLvalueConversion(ValueExpr); 511 if (RValue.isInvalid()) { 512 return ExprError(); 513 } 514 SourceLocation Loc = SR.getBegin(); 515 ValueExpr = RValue.get(); 516 QualType ValueType(ValueExpr->getType()); 517 if (const PointerType *PT = ValueType->getAs<PointerType>()) { 518 QualType PointeeType = PT->getPointeeType(); 519 if (Context.hasSameUnqualifiedType(PointeeType, Context.CharTy)) { 520 521 if (!NSStringDecl) { 522 NSStringDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc, 523 Sema::LK_String); 524 if (!NSStringDecl) { 525 return ExprError(); 526 } 527 QualType NSStringObject = Context.getObjCInterfaceType(NSStringDecl); 528 NSStringPointer = Context.getObjCObjectPointerType(NSStringObject); 529 } 530 531 if (!StringWithUTF8StringMethod) { 532 IdentifierInfo *II = &Context.Idents.get("stringWithUTF8String"); 533 Selector stringWithUTF8String = Context.Selectors.getUnarySelector(II); 534 535 // Look for the appropriate method within NSString. 536 BoxingMethod = NSStringDecl->lookupClassMethod(stringWithUTF8String); 537 if (!BoxingMethod && getLangOpts().DebuggerObjCLiteral) { 538 // Debugger needs to work even if NSString hasn't been defined. 539 TypeSourceInfo *ReturnTInfo = nullptr; 540 ObjCMethodDecl *M = ObjCMethodDecl::Create( 541 Context, SourceLocation(), SourceLocation(), stringWithUTF8String, 542 NSStringPointer, ReturnTInfo, NSStringDecl, 543 /*isInstance=*/false, /*isVariadic=*/false, 544 /*isPropertyAccessor=*/false, 545 /*isImplicitlyDeclared=*/true, 546 /*isDefined=*/false, ObjCMethodDecl::Required, 547 /*HasRelatedResultType=*/false); 548 QualType ConstCharType = Context.CharTy.withConst(); 549 ParmVarDecl *value = 550 ParmVarDecl::Create(Context, M, 551 SourceLocation(), SourceLocation(), 552 &Context.Idents.get("value"), 553 Context.getPointerType(ConstCharType), 554 /*TInfo=*/nullptr, 555 SC_None, nullptr); 556 M->setMethodParams(Context, value, None); 557 BoxingMethod = M; 558 } 559 560 if (!validateBoxingMethod(*this, Loc, NSStringDecl, 561 stringWithUTF8String, BoxingMethod)) 562 return ExprError(); 563 564 StringWithUTF8StringMethod = BoxingMethod; 565 } 566 567 BoxingMethod = StringWithUTF8StringMethod; 568 BoxedType = NSStringPointer; 569 } 570 } else if (ValueType->isBuiltinType()) { 571 // The other types we support are numeric, char and BOOL/bool. We could also 572 // provide limited support for structure types, such as NSRange, NSRect, and 573 // NSSize. See NSValue (NSValueGeometryExtensions) in <Foundation/NSGeometry.h> 574 // for more details. 575 576 // Check for a top-level character literal. 577 if (const CharacterLiteral *Char = 578 dyn_cast<CharacterLiteral>(ValueExpr->IgnoreParens())) { 579 // In C, character literals have type 'int'. That's not the type we want 580 // to use to determine the Objective-c literal kind. 581 switch (Char->getKind()) { 582 case CharacterLiteral::Ascii: 583 ValueType = Context.CharTy; 584 break; 585 586 case CharacterLiteral::Wide: 587 ValueType = Context.getWideCharType(); 588 break; 589 590 case CharacterLiteral::UTF16: 591 ValueType = Context.Char16Ty; 592 break; 593 594 case CharacterLiteral::UTF32: 595 ValueType = Context.Char32Ty; 596 break; 597 } 598 } 599 CheckForIntOverflow(ValueExpr); 600 // FIXME: Do I need to do anything special with BoolTy expressions? 601 602 // Look for the appropriate method within NSNumber. 603 BoxingMethod = getNSNumberFactoryMethod(*this, Loc, ValueType); 604 BoxedType = NSNumberPointer; 605 } else if (const EnumType *ET = ValueType->getAs<EnumType>()) { 606 if (!ET->getDecl()->isComplete()) { 607 Diag(Loc, diag::err_objc_incomplete_boxed_expression_type) 608 << ValueType << ValueExpr->getSourceRange(); 609 return ExprError(); 610 } 611 612 BoxingMethod = getNSNumberFactoryMethod(*this, Loc, 613 ET->getDecl()->getIntegerType()); 614 BoxedType = NSNumberPointer; 615 } else if (ValueType->isObjCBoxableRecordType()) { 616 // Support for structure types, that marked as objc_boxable 617 // struct __attribute__((objc_boxable)) s { ... }; 618 619 // Look up the NSValue class, if we haven't done so already. It's cached 620 // in the Sema instance. 621 if (!NSValueDecl) { 622 NSValueDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc, 623 Sema::LK_Boxed); 624 if (!NSValueDecl) { 625 return ExprError(); 626 } 627 628 // generate the pointer to NSValue type. 629 QualType NSValueObject = Context.getObjCInterfaceType(NSValueDecl); 630 NSValuePointer = Context.getObjCObjectPointerType(NSValueObject); 631 } 632 633 if (!ValueWithBytesObjCTypeMethod) { 634 IdentifierInfo *II[] = { 635 &Context.Idents.get("valueWithBytes"), 636 &Context.Idents.get("objCType") 637 }; 638 Selector ValueWithBytesObjCType = Context.Selectors.getSelector(2, II); 639 640 // Look for the appropriate method within NSValue. 641 BoxingMethod = NSValueDecl->lookupClassMethod(ValueWithBytesObjCType); 642 if (!BoxingMethod && getLangOpts().DebuggerObjCLiteral) { 643 // Debugger needs to work even if NSValue hasn't been defined. 644 TypeSourceInfo *ReturnTInfo = nullptr; 645 ObjCMethodDecl *M = ObjCMethodDecl::Create( 646 Context, 647 SourceLocation(), 648 SourceLocation(), 649 ValueWithBytesObjCType, 650 NSValuePointer, 651 ReturnTInfo, 652 NSValueDecl, 653 /*isInstance=*/false, 654 /*isVariadic=*/false, 655 /*isPropertyAccessor=*/false, 656 /*isImplicitlyDeclared=*/true, 657 /*isDefined=*/false, 658 ObjCMethodDecl::Required, 659 /*HasRelatedResultType=*/false); 660 661 SmallVector<ParmVarDecl *, 2> Params; 662 663 ParmVarDecl *bytes = 664 ParmVarDecl::Create(Context, M, 665 SourceLocation(), SourceLocation(), 666 &Context.Idents.get("bytes"), 667 Context.VoidPtrTy.withConst(), 668 /*TInfo=*/nullptr, 669 SC_None, nullptr); 670 Params.push_back(bytes); 671 672 QualType ConstCharType = Context.CharTy.withConst(); 673 ParmVarDecl *type = 674 ParmVarDecl::Create(Context, M, 675 SourceLocation(), SourceLocation(), 676 &Context.Idents.get("type"), 677 Context.getPointerType(ConstCharType), 678 /*TInfo=*/nullptr, 679 SC_None, nullptr); 680 Params.push_back(type); 681 682 M->setMethodParams(Context, Params, None); 683 BoxingMethod = M; 684 } 685 686 if (!validateBoxingMethod(*this, Loc, NSValueDecl, 687 ValueWithBytesObjCType, BoxingMethod)) 688 return ExprError(); 689 690 ValueWithBytesObjCTypeMethod = BoxingMethod; 691 } 692 693 if (!ValueType.isTriviallyCopyableType(Context)) { 694 Diag(Loc, diag::err_objc_non_trivially_copyable_boxed_expression_type) 695 << ValueType << ValueExpr->getSourceRange(); 696 return ExprError(); 697 } 698 699 BoxingMethod = ValueWithBytesObjCTypeMethod; 700 BoxedType = NSValuePointer; 701 } 702 703 if (!BoxingMethod) { 704 Diag(Loc, diag::err_objc_illegal_boxed_expression_type) 705 << ValueType << ValueExpr->getSourceRange(); 706 return ExprError(); 707 } 708 709 DiagnoseUseOfDecl(BoxingMethod, Loc); 710 711 ExprResult ConvertedValueExpr; 712 if (ValueType->isObjCBoxableRecordType()) { 713 InitializedEntity IE = InitializedEntity::InitializeTemporary(ValueType); 714 ConvertedValueExpr = PerformCopyInitialization(IE, ValueExpr->getExprLoc(), 715 ValueExpr); 716 } else { 717 // Convert the expression to the type that the parameter requires. 718 ParmVarDecl *ParamDecl = BoxingMethod->parameters()[0]; 719 InitializedEntity IE = InitializedEntity::InitializeParameter(Context, 720 ParamDecl); 721 ConvertedValueExpr = PerformCopyInitialization(IE, SourceLocation(), 722 ValueExpr); 723 } 724 725 if (ConvertedValueExpr.isInvalid()) 726 return ExprError(); 727 ValueExpr = ConvertedValueExpr.get(); 728 729 ObjCBoxedExpr *BoxedExpr = 730 new (Context) ObjCBoxedExpr(ValueExpr, BoxedType, 731 BoxingMethod, SR); 732 return MaybeBindToTemporary(BoxedExpr); 733 } 734 735 /// Build an ObjC subscript pseudo-object expression, given that 736 /// that's supported by the runtime. 737 ExprResult Sema::BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr, 738 Expr *IndexExpr, 739 ObjCMethodDecl *getterMethod, 740 ObjCMethodDecl *setterMethod) { 741 assert(!LangOpts.isSubscriptPointerArithmetic()); 742 743 // We can't get dependent types here; our callers should have 744 // filtered them out. 745 assert((!BaseExpr->isTypeDependent() && !IndexExpr->isTypeDependent()) && 746 "base or index cannot have dependent type here"); 747 748 // Filter out placeholders in the index. In theory, overloads could 749 // be preserved here, although that might not actually work correctly. 750 ExprResult Result = CheckPlaceholderExpr(IndexExpr); 751 if (Result.isInvalid()) 752 return ExprError(); 753 IndexExpr = Result.get(); 754 755 // Perform lvalue-to-rvalue conversion on the base. 756 Result = DefaultLvalueConversion(BaseExpr); 757 if (Result.isInvalid()) 758 return ExprError(); 759 BaseExpr = Result.get(); 760 761 // Build the pseudo-object expression. 762 return ObjCSubscriptRefExpr::Create(Context, BaseExpr, IndexExpr, 763 Context.PseudoObjectTy, getterMethod, 764 setterMethod, RB); 765 } 766 767 ExprResult Sema::BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements) { 768 SourceLocation Loc = SR.getBegin(); 769 770 if (!NSArrayDecl) { 771 NSArrayDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc, 772 Sema::LK_Array); 773 if (!NSArrayDecl) { 774 return ExprError(); 775 } 776 } 777 778 // Find the arrayWithObjects:count: method, if we haven't done so already. 779 QualType IdT = Context.getObjCIdType(); 780 if (!ArrayWithObjectsMethod) { 781 Selector 782 Sel = NSAPIObj->getNSArraySelector(NSAPI::NSArr_arrayWithObjectsCount); 783 ObjCMethodDecl *Method = NSArrayDecl->lookupClassMethod(Sel); 784 if (!Method && getLangOpts().DebuggerObjCLiteral) { 785 TypeSourceInfo *ReturnTInfo = nullptr; 786 Method = ObjCMethodDecl::Create( 787 Context, SourceLocation(), SourceLocation(), Sel, IdT, ReturnTInfo, 788 Context.getTranslationUnitDecl(), false /*Instance*/, 789 false /*isVariadic*/, 790 /*isPropertyAccessor=*/false, 791 /*isImplicitlyDeclared=*/true, /*isDefined=*/false, 792 ObjCMethodDecl::Required, false); 793 SmallVector<ParmVarDecl *, 2> Params; 794 ParmVarDecl *objects = ParmVarDecl::Create(Context, Method, 795 SourceLocation(), 796 SourceLocation(), 797 &Context.Idents.get("objects"), 798 Context.getPointerType(IdT), 799 /*TInfo=*/nullptr, 800 SC_None, nullptr); 801 Params.push_back(objects); 802 ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method, 803 SourceLocation(), 804 SourceLocation(), 805 &Context.Idents.get("cnt"), 806 Context.UnsignedLongTy, 807 /*TInfo=*/nullptr, SC_None, 808 nullptr); 809 Params.push_back(cnt); 810 Method->setMethodParams(Context, Params, None); 811 } 812 813 if (!validateBoxingMethod(*this, Loc, NSArrayDecl, Sel, Method)) 814 return ExprError(); 815 816 // Dig out the type that all elements should be converted to. 817 QualType T = Method->parameters()[0]->getType(); 818 const PointerType *PtrT = T->getAs<PointerType>(); 819 if (!PtrT || 820 !Context.hasSameUnqualifiedType(PtrT->getPointeeType(), IdT)) { 821 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 822 << Sel; 823 Diag(Method->parameters()[0]->getLocation(), 824 diag::note_objc_literal_method_param) 825 << 0 << T 826 << Context.getPointerType(IdT.withConst()); 827 return ExprError(); 828 } 829 830 // Check that the 'count' parameter is integral. 831 if (!Method->parameters()[1]->getType()->isIntegerType()) { 832 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 833 << Sel; 834 Diag(Method->parameters()[1]->getLocation(), 835 diag::note_objc_literal_method_param) 836 << 1 837 << Method->parameters()[1]->getType() 838 << "integral"; 839 return ExprError(); 840 } 841 842 // We've found a good +arrayWithObjects:count: method. Save it! 843 ArrayWithObjectsMethod = Method; 844 } 845 846 QualType ObjectsType = ArrayWithObjectsMethod->parameters()[0]->getType(); 847 QualType RequiredType = ObjectsType->castAs<PointerType>()->getPointeeType(); 848 849 // Check that each of the elements provided is valid in a collection literal, 850 // performing conversions as necessary. 851 Expr **ElementsBuffer = Elements.data(); 852 for (unsigned I = 0, N = Elements.size(); I != N; ++I) { 853 ExprResult Converted = CheckObjCCollectionLiteralElement(*this, 854 ElementsBuffer[I], 855 RequiredType, true); 856 if (Converted.isInvalid()) 857 return ExprError(); 858 859 ElementsBuffer[I] = Converted.get(); 860 } 861 862 QualType Ty 863 = Context.getObjCObjectPointerType( 864 Context.getObjCInterfaceType(NSArrayDecl)); 865 866 return MaybeBindToTemporary( 867 ObjCArrayLiteral::Create(Context, Elements, Ty, 868 ArrayWithObjectsMethod, SR)); 869 } 870 871 ExprResult Sema::BuildObjCDictionaryLiteral(SourceRange SR, 872 ObjCDictionaryElement *Elements, 873 unsigned NumElements) { 874 SourceLocation Loc = SR.getBegin(); 875 876 if (!NSDictionaryDecl) { 877 NSDictionaryDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc, 878 Sema::LK_Dictionary); 879 if (!NSDictionaryDecl) { 880 return ExprError(); 881 } 882 } 883 884 // Find the dictionaryWithObjects:forKeys:count: method, if we haven't done 885 // so already. 886 QualType IdT = Context.getObjCIdType(); 887 if (!DictionaryWithObjectsMethod) { 888 Selector Sel = NSAPIObj->getNSDictionarySelector( 889 NSAPI::NSDict_dictionaryWithObjectsForKeysCount); 890 ObjCMethodDecl *Method = NSDictionaryDecl->lookupClassMethod(Sel); 891 if (!Method && getLangOpts().DebuggerObjCLiteral) { 892 Method = ObjCMethodDecl::Create(Context, 893 SourceLocation(), SourceLocation(), Sel, 894 IdT, 895 nullptr /*TypeSourceInfo */, 896 Context.getTranslationUnitDecl(), 897 false /*Instance*/, false/*isVariadic*/, 898 /*isPropertyAccessor=*/false, 899 /*isImplicitlyDeclared=*/true, /*isDefined=*/false, 900 ObjCMethodDecl::Required, 901 false); 902 SmallVector<ParmVarDecl *, 3> Params; 903 ParmVarDecl *objects = ParmVarDecl::Create(Context, Method, 904 SourceLocation(), 905 SourceLocation(), 906 &Context.Idents.get("objects"), 907 Context.getPointerType(IdT), 908 /*TInfo=*/nullptr, SC_None, 909 nullptr); 910 Params.push_back(objects); 911 ParmVarDecl *keys = ParmVarDecl::Create(Context, Method, 912 SourceLocation(), 913 SourceLocation(), 914 &Context.Idents.get("keys"), 915 Context.getPointerType(IdT), 916 /*TInfo=*/nullptr, SC_None, 917 nullptr); 918 Params.push_back(keys); 919 ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method, 920 SourceLocation(), 921 SourceLocation(), 922 &Context.Idents.get("cnt"), 923 Context.UnsignedLongTy, 924 /*TInfo=*/nullptr, SC_None, 925 nullptr); 926 Params.push_back(cnt); 927 Method->setMethodParams(Context, Params, None); 928 } 929 930 if (!validateBoxingMethod(*this, SR.getBegin(), NSDictionaryDecl, Sel, 931 Method)) 932 return ExprError(); 933 934 // Dig out the type that all values should be converted to. 935 QualType ValueT = Method->parameters()[0]->getType(); 936 const PointerType *PtrValue = ValueT->getAs<PointerType>(); 937 if (!PtrValue || 938 !Context.hasSameUnqualifiedType(PtrValue->getPointeeType(), IdT)) { 939 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 940 << Sel; 941 Diag(Method->parameters()[0]->getLocation(), 942 diag::note_objc_literal_method_param) 943 << 0 << ValueT 944 << Context.getPointerType(IdT.withConst()); 945 return ExprError(); 946 } 947 948 // Dig out the type that all keys should be converted to. 949 QualType KeyT = Method->parameters()[1]->getType(); 950 const PointerType *PtrKey = KeyT->getAs<PointerType>(); 951 if (!PtrKey || 952 !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(), 953 IdT)) { 954 bool err = true; 955 if (PtrKey) { 956 if (QIDNSCopying.isNull()) { 957 // key argument of selector is id<NSCopying>? 958 if (ObjCProtocolDecl *NSCopyingPDecl = 959 LookupProtocol(&Context.Idents.get("NSCopying"), SR.getBegin())) { 960 ObjCProtocolDecl *PQ[] = {NSCopyingPDecl}; 961 QIDNSCopying = 962 Context.getObjCObjectType(Context.ObjCBuiltinIdTy, { }, 963 llvm::makeArrayRef( 964 (ObjCProtocolDecl**) PQ, 965 1), 966 false); 967 QIDNSCopying = Context.getObjCObjectPointerType(QIDNSCopying); 968 } 969 } 970 if (!QIDNSCopying.isNull()) 971 err = !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(), 972 QIDNSCopying); 973 } 974 975 if (err) { 976 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 977 << Sel; 978 Diag(Method->parameters()[1]->getLocation(), 979 diag::note_objc_literal_method_param) 980 << 1 << KeyT 981 << Context.getPointerType(IdT.withConst()); 982 return ExprError(); 983 } 984 } 985 986 // Check that the 'count' parameter is integral. 987 QualType CountType = Method->parameters()[2]->getType(); 988 if (!CountType->isIntegerType()) { 989 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 990 << Sel; 991 Diag(Method->parameters()[2]->getLocation(), 992 diag::note_objc_literal_method_param) 993 << 2 << CountType 994 << "integral"; 995 return ExprError(); 996 } 997 998 // We've found a good +dictionaryWithObjects:keys:count: method; save it! 999 DictionaryWithObjectsMethod = Method; 1000 } 1001 1002 QualType ValuesT = DictionaryWithObjectsMethod->parameters()[0]->getType(); 1003 QualType ValueT = ValuesT->castAs<PointerType>()->getPointeeType(); 1004 QualType KeysT = DictionaryWithObjectsMethod->parameters()[1]->getType(); 1005 QualType KeyT = KeysT->castAs<PointerType>()->getPointeeType(); 1006 1007 // Check that each of the keys and values provided is valid in a collection 1008 // literal, performing conversions as necessary. 1009 bool HasPackExpansions = false; 1010 for (unsigned I = 0, N = NumElements; I != N; ++I) { 1011 // Check the key. 1012 ExprResult Key = CheckObjCCollectionLiteralElement(*this, Elements[I].Key, 1013 KeyT); 1014 if (Key.isInvalid()) 1015 return ExprError(); 1016 1017 // Check the value. 1018 ExprResult Value 1019 = CheckObjCCollectionLiteralElement(*this, Elements[I].Value, ValueT); 1020 if (Value.isInvalid()) 1021 return ExprError(); 1022 1023 Elements[I].Key = Key.get(); 1024 Elements[I].Value = Value.get(); 1025 1026 if (Elements[I].EllipsisLoc.isInvalid()) 1027 continue; 1028 1029 if (!Elements[I].Key->containsUnexpandedParameterPack() && 1030 !Elements[I].Value->containsUnexpandedParameterPack()) { 1031 Diag(Elements[I].EllipsisLoc, 1032 diag::err_pack_expansion_without_parameter_packs) 1033 << SourceRange(Elements[I].Key->getLocStart(), 1034 Elements[I].Value->getLocEnd()); 1035 return ExprError(); 1036 } 1037 1038 HasPackExpansions = true; 1039 } 1040 1041 1042 QualType Ty 1043 = Context.getObjCObjectPointerType( 1044 Context.getObjCInterfaceType(NSDictionaryDecl)); 1045 return MaybeBindToTemporary(ObjCDictionaryLiteral::Create( 1046 Context, makeArrayRef(Elements, NumElements), HasPackExpansions, Ty, 1047 DictionaryWithObjectsMethod, SR)); 1048 } 1049 1050 ExprResult Sema::BuildObjCEncodeExpression(SourceLocation AtLoc, 1051 TypeSourceInfo *EncodedTypeInfo, 1052 SourceLocation RParenLoc) { 1053 QualType EncodedType = EncodedTypeInfo->getType(); 1054 QualType StrTy; 1055 if (EncodedType->isDependentType()) 1056 StrTy = Context.DependentTy; 1057 else { 1058 if (!EncodedType->getAsArrayTypeUnsafe() && //// Incomplete array is handled. 1059 !EncodedType->isVoidType()) // void is handled too. 1060 if (RequireCompleteType(AtLoc, EncodedType, 1061 diag::err_incomplete_type_objc_at_encode, 1062 EncodedTypeInfo->getTypeLoc())) 1063 return ExprError(); 1064 1065 std::string Str; 1066 QualType NotEncodedT; 1067 Context.getObjCEncodingForType(EncodedType, Str, nullptr, &NotEncodedT); 1068 if (!NotEncodedT.isNull()) 1069 Diag(AtLoc, diag::warn_incomplete_encoded_type) 1070 << EncodedType << NotEncodedT; 1071 1072 // The type of @encode is the same as the type of the corresponding string, 1073 // which is an array type. 1074 StrTy = Context.CharTy; 1075 // A C++ string literal has a const-qualified element type (C++ 2.13.4p1). 1076 if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings) 1077 StrTy.addConst(); 1078 StrTy = Context.getConstantArrayType(StrTy, llvm::APInt(32, Str.size()+1), 1079 ArrayType::Normal, 0); 1080 } 1081 1082 return new (Context) ObjCEncodeExpr(StrTy, EncodedTypeInfo, AtLoc, RParenLoc); 1083 } 1084 1085 ExprResult Sema::ParseObjCEncodeExpression(SourceLocation AtLoc, 1086 SourceLocation EncodeLoc, 1087 SourceLocation LParenLoc, 1088 ParsedType ty, 1089 SourceLocation RParenLoc) { 1090 // FIXME: Preserve type source info ? 1091 TypeSourceInfo *TInfo; 1092 QualType EncodedType = GetTypeFromParser(ty, &TInfo); 1093 if (!TInfo) 1094 TInfo = Context.getTrivialTypeSourceInfo(EncodedType, 1095 getLocForEndOfToken(LParenLoc)); 1096 1097 return BuildObjCEncodeExpression(AtLoc, TInfo, RParenLoc); 1098 } 1099 1100 static bool HelperToDiagnoseMismatchedMethodsInGlobalPool(Sema &S, 1101 SourceLocation AtLoc, 1102 SourceLocation LParenLoc, 1103 SourceLocation RParenLoc, 1104 ObjCMethodDecl *Method, 1105 ObjCMethodList &MethList) { 1106 ObjCMethodList *M = &MethList; 1107 bool Warned = false; 1108 for (M = M->getNext(); M; M=M->getNext()) { 1109 ObjCMethodDecl *MatchingMethodDecl = M->getMethod(); 1110 if (MatchingMethodDecl == Method || 1111 isa<ObjCImplDecl>(MatchingMethodDecl->getDeclContext()) || 1112 MatchingMethodDecl->getSelector() != Method->getSelector()) 1113 continue; 1114 if (!S.MatchTwoMethodDeclarations(Method, 1115 MatchingMethodDecl, Sema::MMS_loose)) { 1116 if (!Warned) { 1117 Warned = true; 1118 S.Diag(AtLoc, diag::warning_multiple_selectors) 1119 << Method->getSelector() << FixItHint::CreateInsertion(LParenLoc, "(") 1120 << FixItHint::CreateInsertion(RParenLoc, ")"); 1121 S.Diag(Method->getLocation(), diag::note_method_declared_at) 1122 << Method->getDeclName(); 1123 } 1124 S.Diag(MatchingMethodDecl->getLocation(), diag::note_method_declared_at) 1125 << MatchingMethodDecl->getDeclName(); 1126 } 1127 } 1128 return Warned; 1129 } 1130 1131 static void DiagnoseMismatchedSelectors(Sema &S, SourceLocation AtLoc, 1132 ObjCMethodDecl *Method, 1133 SourceLocation LParenLoc, 1134 SourceLocation RParenLoc, 1135 bool WarnMultipleSelectors) { 1136 if (!WarnMultipleSelectors || 1137 S.Diags.isIgnored(diag::warning_multiple_selectors, SourceLocation())) 1138 return; 1139 bool Warned = false; 1140 for (Sema::GlobalMethodPool::iterator b = S.MethodPool.begin(), 1141 e = S.MethodPool.end(); b != e; b++) { 1142 // first, instance methods 1143 ObjCMethodList &InstMethList = b->second.first; 1144 if (HelperToDiagnoseMismatchedMethodsInGlobalPool(S, AtLoc, LParenLoc, RParenLoc, 1145 Method, InstMethList)) 1146 Warned = true; 1147 1148 // second, class methods 1149 ObjCMethodList &ClsMethList = b->second.second; 1150 if (HelperToDiagnoseMismatchedMethodsInGlobalPool(S, AtLoc, LParenLoc, RParenLoc, 1151 Method, ClsMethList) || Warned) 1152 return; 1153 } 1154 } 1155 1156 ExprResult Sema::ParseObjCSelectorExpression(Selector Sel, 1157 SourceLocation AtLoc, 1158 SourceLocation SelLoc, 1159 SourceLocation LParenLoc, 1160 SourceLocation RParenLoc, 1161 bool WarnMultipleSelectors) { 1162 ObjCMethodDecl *Method = LookupInstanceMethodInGlobalPool(Sel, 1163 SourceRange(LParenLoc, RParenLoc)); 1164 if (!Method) 1165 Method = LookupFactoryMethodInGlobalPool(Sel, 1166 SourceRange(LParenLoc, RParenLoc)); 1167 if (!Method) { 1168 if (const ObjCMethodDecl *OM = SelectorsForTypoCorrection(Sel)) { 1169 Selector MatchedSel = OM->getSelector(); 1170 SourceRange SelectorRange(LParenLoc.getLocWithOffset(1), 1171 RParenLoc.getLocWithOffset(-1)); 1172 Diag(SelLoc, diag::warn_undeclared_selector_with_typo) 1173 << Sel << MatchedSel 1174 << FixItHint::CreateReplacement(SelectorRange, MatchedSel.getAsString()); 1175 1176 } else 1177 Diag(SelLoc, diag::warn_undeclared_selector) << Sel; 1178 } else 1179 DiagnoseMismatchedSelectors(*this, AtLoc, Method, LParenLoc, RParenLoc, 1180 WarnMultipleSelectors); 1181 1182 if (Method && 1183 Method->getImplementationControl() != ObjCMethodDecl::Optional && 1184 !getSourceManager().isInSystemHeader(Method->getLocation())) 1185 ReferencedSelectors.insert(std::make_pair(Sel, AtLoc)); 1186 1187 // In ARC, forbid the user from using @selector for 1188 // retain/release/autorelease/dealloc/retainCount. 1189 if (getLangOpts().ObjCAutoRefCount) { 1190 switch (Sel.getMethodFamily()) { 1191 case OMF_retain: 1192 case OMF_release: 1193 case OMF_autorelease: 1194 case OMF_retainCount: 1195 case OMF_dealloc: 1196 Diag(AtLoc, diag::err_arc_illegal_selector) << 1197 Sel << SourceRange(LParenLoc, RParenLoc); 1198 break; 1199 1200 case OMF_None: 1201 case OMF_alloc: 1202 case OMF_copy: 1203 case OMF_finalize: 1204 case OMF_init: 1205 case OMF_mutableCopy: 1206 case OMF_new: 1207 case OMF_self: 1208 case OMF_initialize: 1209 case OMF_performSelector: 1210 break; 1211 } 1212 } 1213 QualType Ty = Context.getObjCSelType(); 1214 return new (Context) ObjCSelectorExpr(Ty, Sel, AtLoc, RParenLoc); 1215 } 1216 1217 ExprResult Sema::ParseObjCProtocolExpression(IdentifierInfo *ProtocolId, 1218 SourceLocation AtLoc, 1219 SourceLocation ProtoLoc, 1220 SourceLocation LParenLoc, 1221 SourceLocation ProtoIdLoc, 1222 SourceLocation RParenLoc) { 1223 ObjCProtocolDecl* PDecl = LookupProtocol(ProtocolId, ProtoIdLoc); 1224 if (!PDecl) { 1225 Diag(ProtoLoc, diag::err_undeclared_protocol) << ProtocolId; 1226 return true; 1227 } 1228 if (PDecl->hasDefinition()) 1229 PDecl = PDecl->getDefinition(); 1230 1231 QualType Ty = Context.getObjCProtoType(); 1232 if (Ty.isNull()) 1233 return true; 1234 Ty = Context.getObjCObjectPointerType(Ty); 1235 return new (Context) ObjCProtocolExpr(Ty, PDecl, AtLoc, ProtoIdLoc, RParenLoc); 1236 } 1237 1238 /// Try to capture an implicit reference to 'self'. 1239 ObjCMethodDecl *Sema::tryCaptureObjCSelf(SourceLocation Loc) { 1240 DeclContext *DC = getFunctionLevelDeclContext(); 1241 1242 // If we're not in an ObjC method, error out. Note that, unlike the 1243 // C++ case, we don't require an instance method --- class methods 1244 // still have a 'self', and we really do still need to capture it! 1245 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(DC); 1246 if (!method) 1247 return nullptr; 1248 1249 tryCaptureVariable(method->getSelfDecl(), Loc); 1250 1251 return method; 1252 } 1253 1254 static QualType stripObjCInstanceType(ASTContext &Context, QualType T) { 1255 QualType origType = T; 1256 if (auto nullability = AttributedType::stripOuterNullability(T)) { 1257 if (T == Context.getObjCInstanceType()) { 1258 return Context.getAttributedType( 1259 AttributedType::getNullabilityAttrKind(*nullability), 1260 Context.getObjCIdType(), 1261 Context.getObjCIdType()); 1262 } 1263 1264 return origType; 1265 } 1266 1267 if (T == Context.getObjCInstanceType()) 1268 return Context.getObjCIdType(); 1269 1270 return origType; 1271 } 1272 1273 /// Determine the result type of a message send based on the receiver type, 1274 /// method, and the kind of message send. 1275 /// 1276 /// This is the "base" result type, which will still need to be adjusted 1277 /// to account for nullability. 1278 static QualType getBaseMessageSendResultType(Sema &S, 1279 QualType ReceiverType, 1280 ObjCMethodDecl *Method, 1281 bool isClassMessage, 1282 bool isSuperMessage) { 1283 assert(Method && "Must have a method"); 1284 if (!Method->hasRelatedResultType()) 1285 return Method->getSendResultType(ReceiverType); 1286 1287 ASTContext &Context = S.Context; 1288 1289 // Local function that transfers the nullability of the method's 1290 // result type to the returned result. 1291 auto transferNullability = [&](QualType type) -> QualType { 1292 // If the method's result type has nullability, extract it. 1293 if (auto nullability = Method->getSendResultType(ReceiverType) 1294 ->getNullability(Context)){ 1295 // Strip off any outer nullability sugar from the provided type. 1296 (void)AttributedType::stripOuterNullability(type); 1297 1298 // Form a new attributed type using the method result type's nullability. 1299 return Context.getAttributedType( 1300 AttributedType::getNullabilityAttrKind(*nullability), 1301 type, 1302 type); 1303 } 1304 1305 return type; 1306 }; 1307 1308 // If a method has a related return type: 1309 // - if the method found is an instance method, but the message send 1310 // was a class message send, T is the declared return type of the method 1311 // found 1312 if (Method->isInstanceMethod() && isClassMessage) 1313 return stripObjCInstanceType(Context, 1314 Method->getSendResultType(ReceiverType)); 1315 1316 // - if the receiver is super, T is a pointer to the class of the 1317 // enclosing method definition 1318 if (isSuperMessage) { 1319 if (ObjCMethodDecl *CurMethod = S.getCurMethodDecl()) 1320 if (ObjCInterfaceDecl *Class = CurMethod->getClassInterface()) { 1321 return transferNullability( 1322 Context.getObjCObjectPointerType( 1323 Context.getObjCInterfaceType(Class))); 1324 } 1325 } 1326 1327 // - if the receiver is the name of a class U, T is a pointer to U 1328 if (ReceiverType->getAsObjCInterfaceType()) 1329 return transferNullability(Context.getObjCObjectPointerType(ReceiverType)); 1330 // - if the receiver is of type Class or qualified Class type, 1331 // T is the declared return type of the method. 1332 if (ReceiverType->isObjCClassType() || 1333 ReceiverType->isObjCQualifiedClassType()) 1334 return stripObjCInstanceType(Context, 1335 Method->getSendResultType(ReceiverType)); 1336 1337 // - if the receiver is id, qualified id, Class, or qualified Class, T 1338 // is the receiver type, otherwise 1339 // - T is the type of the receiver expression. 1340 return transferNullability(ReceiverType); 1341 } 1342 1343 QualType Sema::getMessageSendResultType(QualType ReceiverType, 1344 ObjCMethodDecl *Method, 1345 bool isClassMessage, 1346 bool isSuperMessage) { 1347 // Produce the result type. 1348 QualType resultType = getBaseMessageSendResultType(*this, ReceiverType, 1349 Method, 1350 isClassMessage, 1351 isSuperMessage); 1352 1353 // If this is a class message, ignore the nullability of the receiver. 1354 if (isClassMessage) 1355 return resultType; 1356 1357 // Map the nullability of the result into a table index. 1358 unsigned receiverNullabilityIdx = 0; 1359 if (auto nullability = ReceiverType->getNullability(Context)) 1360 receiverNullabilityIdx = 1 + static_cast<unsigned>(*nullability); 1361 1362 unsigned resultNullabilityIdx = 0; 1363 if (auto nullability = resultType->getNullability(Context)) 1364 resultNullabilityIdx = 1 + static_cast<unsigned>(*nullability); 1365 1366 // The table of nullability mappings, indexed by the receiver's nullability 1367 // and then the result type's nullability. 1368 static const uint8_t None = 0; 1369 static const uint8_t NonNull = 1; 1370 static const uint8_t Nullable = 2; 1371 static const uint8_t Unspecified = 3; 1372 static const uint8_t nullabilityMap[4][4] = { 1373 // None NonNull Nullable Unspecified 1374 /* None */ { None, None, Nullable, None }, 1375 /* NonNull */ { None, NonNull, Nullable, Unspecified }, 1376 /* Nullable */ { Nullable, Nullable, Nullable, Nullable }, 1377 /* Unspecified */ { None, Unspecified, Nullable, Unspecified } 1378 }; 1379 1380 unsigned newResultNullabilityIdx 1381 = nullabilityMap[receiverNullabilityIdx][resultNullabilityIdx]; 1382 if (newResultNullabilityIdx == resultNullabilityIdx) 1383 return resultType; 1384 1385 // Strip off the existing nullability. This removes as little type sugar as 1386 // possible. 1387 do { 1388 if (auto attributed = dyn_cast<AttributedType>(resultType.getTypePtr())) { 1389 resultType = attributed->getModifiedType(); 1390 } else { 1391 resultType = resultType.getDesugaredType(Context); 1392 } 1393 } while (resultType->getNullability(Context)); 1394 1395 // Add nullability back if needed. 1396 if (newResultNullabilityIdx > 0) { 1397 auto newNullability 1398 = static_cast<NullabilityKind>(newResultNullabilityIdx-1); 1399 return Context.getAttributedType( 1400 AttributedType::getNullabilityAttrKind(newNullability), 1401 resultType, resultType); 1402 } 1403 1404 return resultType; 1405 } 1406 1407 /// Look for an ObjC method whose result type exactly matches the given type. 1408 static const ObjCMethodDecl * 1409 findExplicitInstancetypeDeclarer(const ObjCMethodDecl *MD, 1410 QualType instancetype) { 1411 if (MD->getReturnType() == instancetype) 1412 return MD; 1413 1414 // For these purposes, a method in an @implementation overrides a 1415 // declaration in the @interface. 1416 if (const ObjCImplDecl *impl = 1417 dyn_cast<ObjCImplDecl>(MD->getDeclContext())) { 1418 const ObjCContainerDecl *iface; 1419 if (const ObjCCategoryImplDecl *catImpl = 1420 dyn_cast<ObjCCategoryImplDecl>(impl)) { 1421 iface = catImpl->getCategoryDecl(); 1422 } else { 1423 iface = impl->getClassInterface(); 1424 } 1425 1426 const ObjCMethodDecl *ifaceMD = 1427 iface->getMethod(MD->getSelector(), MD->isInstanceMethod()); 1428 if (ifaceMD) return findExplicitInstancetypeDeclarer(ifaceMD, instancetype); 1429 } 1430 1431 SmallVector<const ObjCMethodDecl *, 4> overrides; 1432 MD->getOverriddenMethods(overrides); 1433 for (unsigned i = 0, e = overrides.size(); i != e; ++i) { 1434 if (const ObjCMethodDecl *result = 1435 findExplicitInstancetypeDeclarer(overrides[i], instancetype)) 1436 return result; 1437 } 1438 1439 return nullptr; 1440 } 1441 1442 void Sema::EmitRelatedResultTypeNoteForReturn(QualType destType) { 1443 // Only complain if we're in an ObjC method and the required return 1444 // type doesn't match the method's declared return type. 1445 ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurContext); 1446 if (!MD || !MD->hasRelatedResultType() || 1447 Context.hasSameUnqualifiedType(destType, MD->getReturnType())) 1448 return; 1449 1450 // Look for a method overridden by this method which explicitly uses 1451 // 'instancetype'. 1452 if (const ObjCMethodDecl *overridden = 1453 findExplicitInstancetypeDeclarer(MD, Context.getObjCInstanceType())) { 1454 SourceRange range = overridden->getReturnTypeSourceRange(); 1455 SourceLocation loc = range.getBegin(); 1456 if (loc.isInvalid()) 1457 loc = overridden->getLocation(); 1458 Diag(loc, diag::note_related_result_type_explicit) 1459 << /*current method*/ 1 << range; 1460 return; 1461 } 1462 1463 // Otherwise, if we have an interesting method family, note that. 1464 // This should always trigger if the above didn't. 1465 if (ObjCMethodFamily family = MD->getMethodFamily()) 1466 Diag(MD->getLocation(), diag::note_related_result_type_family) 1467 << /*current method*/ 1 1468 << family; 1469 } 1470 1471 void Sema::EmitRelatedResultTypeNote(const Expr *E) { 1472 E = E->IgnoreParenImpCasts(); 1473 const ObjCMessageExpr *MsgSend = dyn_cast<ObjCMessageExpr>(E); 1474 if (!MsgSend) 1475 return; 1476 1477 const ObjCMethodDecl *Method = MsgSend->getMethodDecl(); 1478 if (!Method) 1479 return; 1480 1481 if (!Method->hasRelatedResultType()) 1482 return; 1483 1484 if (Context.hasSameUnqualifiedType( 1485 Method->getReturnType().getNonReferenceType(), MsgSend->getType())) 1486 return; 1487 1488 if (!Context.hasSameUnqualifiedType(Method->getReturnType(), 1489 Context.getObjCInstanceType())) 1490 return; 1491 1492 Diag(Method->getLocation(), diag::note_related_result_type_inferred) 1493 << Method->isInstanceMethod() << Method->getSelector() 1494 << MsgSend->getType(); 1495 } 1496 1497 bool Sema::CheckMessageArgumentTypes(QualType ReceiverType, 1498 MultiExprArg Args, 1499 Selector Sel, 1500 ArrayRef<SourceLocation> SelectorLocs, 1501 ObjCMethodDecl *Method, 1502 bool isClassMessage, bool isSuperMessage, 1503 SourceLocation lbrac, SourceLocation rbrac, 1504 SourceRange RecRange, 1505 QualType &ReturnType, ExprValueKind &VK) { 1506 SourceLocation SelLoc; 1507 if (!SelectorLocs.empty() && SelectorLocs.front().isValid()) 1508 SelLoc = SelectorLocs.front(); 1509 else 1510 SelLoc = lbrac; 1511 1512 if (!Method) { 1513 // Apply default argument promotion as for (C99 6.5.2.2p6). 1514 for (unsigned i = 0, e = Args.size(); i != e; i++) { 1515 if (Args[i]->isTypeDependent()) 1516 continue; 1517 1518 ExprResult result; 1519 if (getLangOpts().DebuggerSupport) { 1520 QualType paramTy; // ignored 1521 result = checkUnknownAnyArg(SelLoc, Args[i], paramTy); 1522 } else { 1523 result = DefaultArgumentPromotion(Args[i]); 1524 } 1525 if (result.isInvalid()) 1526 return true; 1527 Args[i] = result.get(); 1528 } 1529 1530 unsigned DiagID; 1531 if (getLangOpts().ObjCAutoRefCount) 1532 DiagID = diag::err_arc_method_not_found; 1533 else 1534 DiagID = isClassMessage ? diag::warn_class_method_not_found 1535 : diag::warn_inst_method_not_found; 1536 if (!getLangOpts().DebuggerSupport) { 1537 const ObjCMethodDecl *OMD = SelectorsForTypoCorrection(Sel, ReceiverType); 1538 if (OMD && !OMD->isInvalidDecl()) { 1539 if (getLangOpts().ObjCAutoRefCount) 1540 DiagID = diag::error_method_not_found_with_typo; 1541 else 1542 DiagID = isClassMessage ? diag::warn_class_method_not_found_with_typo 1543 : diag::warn_instance_method_not_found_with_typo; 1544 Selector MatchedSel = OMD->getSelector(); 1545 SourceRange SelectorRange(SelectorLocs.front(), SelectorLocs.back()); 1546 if (MatchedSel.isUnarySelector()) 1547 Diag(SelLoc, DiagID) 1548 << Sel<< isClassMessage << MatchedSel 1549 << FixItHint::CreateReplacement(SelectorRange, MatchedSel.getAsString()); 1550 else 1551 Diag(SelLoc, DiagID) << Sel<< isClassMessage << MatchedSel; 1552 } 1553 else 1554 Diag(SelLoc, DiagID) 1555 << Sel << isClassMessage << SourceRange(SelectorLocs.front(), 1556 SelectorLocs.back()); 1557 // Find the class to which we are sending this message. 1558 if (ReceiverType->isObjCObjectPointerType()) { 1559 if (ObjCInterfaceDecl *ThisClass = 1560 ReceiverType->getAs<ObjCObjectPointerType>()->getInterfaceDecl()) { 1561 Diag(ThisClass->getLocation(), diag::note_receiver_class_declared); 1562 if (!RecRange.isInvalid()) 1563 if (ThisClass->lookupClassMethod(Sel)) 1564 Diag(RecRange.getBegin(),diag::note_receiver_expr_here) 1565 << FixItHint::CreateReplacement(RecRange, 1566 ThisClass->getNameAsString()); 1567 } 1568 } 1569 } 1570 1571 // In debuggers, we want to use __unknown_anytype for these 1572 // results so that clients can cast them. 1573 if (getLangOpts().DebuggerSupport) { 1574 ReturnType = Context.UnknownAnyTy; 1575 } else { 1576 ReturnType = Context.getObjCIdType(); 1577 } 1578 VK = VK_RValue; 1579 return false; 1580 } 1581 1582 ReturnType = getMessageSendResultType(ReceiverType, Method, isClassMessage, 1583 isSuperMessage); 1584 VK = Expr::getValueKindForType(Method->getReturnType()); 1585 1586 unsigned NumNamedArgs = Sel.getNumArgs(); 1587 // Method might have more arguments than selector indicates. This is due 1588 // to addition of c-style arguments in method. 1589 if (Method->param_size() > Sel.getNumArgs()) 1590 NumNamedArgs = Method->param_size(); 1591 // FIXME. This need be cleaned up. 1592 if (Args.size() < NumNamedArgs) { 1593 Diag(SelLoc, diag::err_typecheck_call_too_few_args) 1594 << 2 << NumNamedArgs << static_cast<unsigned>(Args.size()); 1595 return false; 1596 } 1597 1598 // Compute the set of type arguments to be substituted into each parameter 1599 // type. 1600 Optional<ArrayRef<QualType>> typeArgs 1601 = ReceiverType->getObjCSubstitutions(Method->getDeclContext()); 1602 bool IsError = false; 1603 for (unsigned i = 0; i < NumNamedArgs; i++) { 1604 // We can't do any type-checking on a type-dependent argument. 1605 if (Args[i]->isTypeDependent()) 1606 continue; 1607 1608 Expr *argExpr = Args[i]; 1609 1610 ParmVarDecl *param = Method->parameters()[i]; 1611 assert(argExpr && "CheckMessageArgumentTypes(): missing expression"); 1612 1613 // Strip the unbridged-cast placeholder expression off unless it's 1614 // a consumed argument. 1615 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) && 1616 !param->hasAttr<CFConsumedAttr>()) 1617 argExpr = stripARCUnbridgedCast(argExpr); 1618 1619 // If the parameter is __unknown_anytype, infer its type 1620 // from the argument. 1621 if (param->getType() == Context.UnknownAnyTy) { 1622 QualType paramType; 1623 ExprResult argE = checkUnknownAnyArg(SelLoc, argExpr, paramType); 1624 if (argE.isInvalid()) { 1625 IsError = true; 1626 } else { 1627 Args[i] = argE.get(); 1628 1629 // Update the parameter type in-place. 1630 param->setType(paramType); 1631 } 1632 continue; 1633 } 1634 1635 QualType origParamType = param->getType(); 1636 QualType paramType = param->getType(); 1637 if (typeArgs) 1638 paramType = paramType.substObjCTypeArgs( 1639 Context, 1640 *typeArgs, 1641 ObjCSubstitutionContext::Parameter); 1642 1643 if (RequireCompleteType(argExpr->getSourceRange().getBegin(), 1644 paramType, 1645 diag::err_call_incomplete_argument, argExpr)) 1646 return true; 1647 1648 InitializedEntity Entity 1649 = InitializedEntity::InitializeParameter(Context, param, paramType); 1650 ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(), argExpr); 1651 if (ArgE.isInvalid()) 1652 IsError = true; 1653 else { 1654 Args[i] = ArgE.getAs<Expr>(); 1655 1656 // If we are type-erasing a block to a block-compatible 1657 // Objective-C pointer type, we may need to extend the lifetime 1658 // of the block object. 1659 if (typeArgs && Args[i]->isRValue() && paramType->isBlockPointerType() && 1660 Args[i]->getType()->isBlockPointerType() && 1661 origParamType->isObjCObjectPointerType()) { 1662 ExprResult arg = Args[i]; 1663 maybeExtendBlockObject(arg); 1664 Args[i] = arg.get(); 1665 } 1666 } 1667 } 1668 1669 // Promote additional arguments to variadic methods. 1670 if (Method->isVariadic()) { 1671 for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) { 1672 if (Args[i]->isTypeDependent()) 1673 continue; 1674 1675 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 1676 nullptr); 1677 IsError |= Arg.isInvalid(); 1678 Args[i] = Arg.get(); 1679 } 1680 } else { 1681 // Check for extra arguments to non-variadic methods. 1682 if (Args.size() != NumNamedArgs) { 1683 Diag(Args[NumNamedArgs]->getLocStart(), 1684 diag::err_typecheck_call_too_many_args) 1685 << 2 /*method*/ << NumNamedArgs << static_cast<unsigned>(Args.size()) 1686 << Method->getSourceRange() 1687 << SourceRange(Args[NumNamedArgs]->getLocStart(), 1688 Args.back()->getLocEnd()); 1689 } 1690 } 1691 1692 DiagnoseSentinelCalls(Method, SelLoc, Args); 1693 1694 // Do additional checkings on method. 1695 IsError |= CheckObjCMethodCall( 1696 Method, SelLoc, makeArrayRef(Args.data(), Args.size())); 1697 1698 return IsError; 1699 } 1700 1701 bool Sema::isSelfExpr(Expr *RExpr) { 1702 // 'self' is objc 'self' in an objc method only. 1703 ObjCMethodDecl *Method = 1704 dyn_cast_or_null<ObjCMethodDecl>(CurContext->getNonClosureAncestor()); 1705 return isSelfExpr(RExpr, Method); 1706 } 1707 1708 bool Sema::isSelfExpr(Expr *receiver, const ObjCMethodDecl *method) { 1709 if (!method) return false; 1710 1711 receiver = receiver->IgnoreParenLValueCasts(); 1712 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(receiver)) 1713 if (DRE->getDecl() == method->getSelfDecl()) 1714 return true; 1715 return false; 1716 } 1717 1718 /// LookupMethodInType - Look up a method in an ObjCObjectType. 1719 ObjCMethodDecl *Sema::LookupMethodInObjectType(Selector sel, QualType type, 1720 bool isInstance) { 1721 const ObjCObjectType *objType = type->castAs<ObjCObjectType>(); 1722 if (ObjCInterfaceDecl *iface = objType->getInterface()) { 1723 // Look it up in the main interface (and categories, etc.) 1724 if (ObjCMethodDecl *method = iface->lookupMethod(sel, isInstance)) 1725 return method; 1726 1727 // Okay, look for "private" methods declared in any 1728 // @implementations we've seen. 1729 if (ObjCMethodDecl *method = iface->lookupPrivateMethod(sel, isInstance)) 1730 return method; 1731 } 1732 1733 // Check qualifiers. 1734 for (const auto *I : objType->quals()) 1735 if (ObjCMethodDecl *method = I->lookupMethod(sel, isInstance)) 1736 return method; 1737 1738 return nullptr; 1739 } 1740 1741 /// LookupMethodInQualifiedType - Lookups up a method in protocol qualifier 1742 /// list of a qualified objective pointer type. 1743 ObjCMethodDecl *Sema::LookupMethodInQualifiedType(Selector Sel, 1744 const ObjCObjectPointerType *OPT, 1745 bool Instance) 1746 { 1747 ObjCMethodDecl *MD = nullptr; 1748 for (const auto *PROTO : OPT->quals()) { 1749 if ((MD = PROTO->lookupMethod(Sel, Instance))) { 1750 return MD; 1751 } 1752 } 1753 return nullptr; 1754 } 1755 1756 /// HandleExprPropertyRefExpr - Handle foo.bar where foo is a pointer to an 1757 /// objective C interface. This is a property reference expression. 1758 ExprResult Sema:: 1759 HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT, 1760 Expr *BaseExpr, SourceLocation OpLoc, 1761 DeclarationName MemberName, 1762 SourceLocation MemberLoc, 1763 SourceLocation SuperLoc, QualType SuperType, 1764 bool Super) { 1765 const ObjCInterfaceType *IFaceT = OPT->getInterfaceType(); 1766 ObjCInterfaceDecl *IFace = IFaceT->getDecl(); 1767 1768 if (!MemberName.isIdentifier()) { 1769 Diag(MemberLoc, diag::err_invalid_property_name) 1770 << MemberName << QualType(OPT, 0); 1771 return ExprError(); 1772 } 1773 1774 IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); 1775 1776 SourceRange BaseRange = Super? SourceRange(SuperLoc) 1777 : BaseExpr->getSourceRange(); 1778 if (RequireCompleteType(MemberLoc, OPT->getPointeeType(), 1779 diag::err_property_not_found_forward_class, 1780 MemberName, BaseRange)) 1781 return ExprError(); 1782 1783 if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) { 1784 // Check whether we can reference this property. 1785 if (DiagnoseUseOfDecl(PD, MemberLoc)) 1786 return ExprError(); 1787 if (Super) 1788 return new (Context) 1789 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue, 1790 OK_ObjCProperty, MemberLoc, SuperLoc, SuperType); 1791 else 1792 return new (Context) 1793 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue, 1794 OK_ObjCProperty, MemberLoc, BaseExpr); 1795 } 1796 // Check protocols on qualified interfaces. 1797 for (const auto *I : OPT->quals()) 1798 if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(Member)) { 1799 // Check whether we can reference this property. 1800 if (DiagnoseUseOfDecl(PD, MemberLoc)) 1801 return ExprError(); 1802 1803 if (Super) 1804 return new (Context) ObjCPropertyRefExpr( 1805 PD, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, MemberLoc, 1806 SuperLoc, SuperType); 1807 else 1808 return new (Context) 1809 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue, 1810 OK_ObjCProperty, MemberLoc, BaseExpr); 1811 } 1812 // If that failed, look for an "implicit" property by seeing if the nullary 1813 // selector is implemented. 1814 1815 // FIXME: The logic for looking up nullary and unary selectors should be 1816 // shared with the code in ActOnInstanceMessage. 1817 1818 Selector Sel = PP.getSelectorTable().getNullarySelector(Member); 1819 ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel); 1820 1821 // May be founf in property's qualified list. 1822 if (!Getter) 1823 Getter = LookupMethodInQualifiedType(Sel, OPT, true); 1824 1825 // If this reference is in an @implementation, check for 'private' methods. 1826 if (!Getter) 1827 Getter = IFace->lookupPrivateMethod(Sel); 1828 1829 if (Getter) { 1830 // Check if we can reference this property. 1831 if (DiagnoseUseOfDecl(Getter, MemberLoc)) 1832 return ExprError(); 1833 } 1834 // If we found a getter then this may be a valid dot-reference, we 1835 // will look for the matching setter, in case it is needed. 1836 Selector SetterSel = 1837 SelectorTable::constructSetterSelector(PP.getIdentifierTable(), 1838 PP.getSelectorTable(), Member); 1839 ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel); 1840 1841 // May be founf in property's qualified list. 1842 if (!Setter) 1843 Setter = LookupMethodInQualifiedType(SetterSel, OPT, true); 1844 1845 if (!Setter) { 1846 // If this reference is in an @implementation, also check for 'private' 1847 // methods. 1848 Setter = IFace->lookupPrivateMethod(SetterSel); 1849 } 1850 1851 if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc)) 1852 return ExprError(); 1853 1854 // Special warning if member name used in a property-dot for a setter accessor 1855 // does not use a property with same name; e.g. obj.X = ... for a property with 1856 // name 'x'. 1857 if (Setter && Setter->isImplicit() && Setter->isPropertyAccessor() 1858 && !IFace->FindPropertyDeclaration(Member)) { 1859 if (const ObjCPropertyDecl *PDecl = Setter->findPropertyDecl()) { 1860 // Do not warn if user is using property-dot syntax to make call to 1861 // user named setter. 1862 if (!(PDecl->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter)) 1863 Diag(MemberLoc, 1864 diag::warn_property_access_suggest) 1865 << MemberName << QualType(OPT, 0) << PDecl->getName() 1866 << FixItHint::CreateReplacement(MemberLoc, PDecl->getName()); 1867 } 1868 } 1869 1870 if (Getter || Setter) { 1871 if (Super) 1872 return new (Context) 1873 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue, 1874 OK_ObjCProperty, MemberLoc, SuperLoc, SuperType); 1875 else 1876 return new (Context) 1877 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue, 1878 OK_ObjCProperty, MemberLoc, BaseExpr); 1879 1880 } 1881 1882 // Attempt to correct for typos in property names. 1883 if (TypoCorrection Corrected = 1884 CorrectTypo(DeclarationNameInfo(MemberName, MemberLoc), 1885 LookupOrdinaryName, nullptr, nullptr, 1886 llvm::make_unique<DeclFilterCCC<ObjCPropertyDecl>>(), 1887 CTK_ErrorRecovery, IFace, false, OPT)) { 1888 diagnoseTypo(Corrected, PDiag(diag::err_property_not_found_suggest) 1889 << MemberName << QualType(OPT, 0)); 1890 DeclarationName TypoResult = Corrected.getCorrection(); 1891 return HandleExprPropertyRefExpr(OPT, BaseExpr, OpLoc, 1892 TypoResult, MemberLoc, 1893 SuperLoc, SuperType, Super); 1894 } 1895 ObjCInterfaceDecl *ClassDeclared; 1896 if (ObjCIvarDecl *Ivar = 1897 IFace->lookupInstanceVariable(Member, ClassDeclared)) { 1898 QualType T = Ivar->getType(); 1899 if (const ObjCObjectPointerType * OBJPT = 1900 T->getAsObjCInterfacePointerType()) { 1901 if (RequireCompleteType(MemberLoc, OBJPT->getPointeeType(), 1902 diag::err_property_not_as_forward_class, 1903 MemberName, BaseExpr)) 1904 return ExprError(); 1905 } 1906 Diag(MemberLoc, 1907 diag::err_ivar_access_using_property_syntax_suggest) 1908 << MemberName << QualType(OPT, 0) << Ivar->getDeclName() 1909 << FixItHint::CreateReplacement(OpLoc, "->"); 1910 return ExprError(); 1911 } 1912 1913 Diag(MemberLoc, diag::err_property_not_found) 1914 << MemberName << QualType(OPT, 0); 1915 if (Setter) 1916 Diag(Setter->getLocation(), diag::note_getter_unavailable) 1917 << MemberName << BaseExpr->getSourceRange(); 1918 return ExprError(); 1919 } 1920 1921 1922 1923 ExprResult Sema:: 1924 ActOnClassPropertyRefExpr(IdentifierInfo &receiverName, 1925 IdentifierInfo &propertyName, 1926 SourceLocation receiverNameLoc, 1927 SourceLocation propertyNameLoc) { 1928 1929 IdentifierInfo *receiverNamePtr = &receiverName; 1930 ObjCInterfaceDecl *IFace = getObjCInterfaceDecl(receiverNamePtr, 1931 receiverNameLoc); 1932 1933 QualType SuperType; 1934 if (!IFace) { 1935 // If the "receiver" is 'super' in a method, handle it as an expression-like 1936 // property reference. 1937 if (receiverNamePtr->isStr("super")) { 1938 if (ObjCMethodDecl *CurMethod = tryCaptureObjCSelf(receiverNameLoc)) { 1939 if (auto classDecl = CurMethod->getClassInterface()) { 1940 SuperType = QualType(classDecl->getSuperClassType(), 0); 1941 if (CurMethod->isInstanceMethod()) { 1942 if (SuperType.isNull()) { 1943 // The current class does not have a superclass. 1944 Diag(receiverNameLoc, diag::error_root_class_cannot_use_super) 1945 << CurMethod->getClassInterface()->getIdentifier(); 1946 return ExprError(); 1947 } 1948 QualType T = Context.getObjCObjectPointerType(SuperType); 1949 1950 return HandleExprPropertyRefExpr(T->castAs<ObjCObjectPointerType>(), 1951 /*BaseExpr*/nullptr, 1952 SourceLocation()/*OpLoc*/, 1953 &propertyName, 1954 propertyNameLoc, 1955 receiverNameLoc, T, true); 1956 } 1957 1958 // Otherwise, if this is a class method, try dispatching to our 1959 // superclass. 1960 IFace = CurMethod->getClassInterface()->getSuperClass(); 1961 } 1962 } 1963 } 1964 1965 if (!IFace) { 1966 Diag(receiverNameLoc, diag::err_expected_either) << tok::identifier 1967 << tok::l_paren; 1968 return ExprError(); 1969 } 1970 } 1971 1972 // Search for a declared property first. 1973 Selector Sel = PP.getSelectorTable().getNullarySelector(&propertyName); 1974 ObjCMethodDecl *Getter = IFace->lookupClassMethod(Sel); 1975 1976 // If this reference is in an @implementation, check for 'private' methods. 1977 if (!Getter) 1978 Getter = IFace->lookupPrivateClassMethod(Sel); 1979 1980 if (Getter) { 1981 // FIXME: refactor/share with ActOnMemberReference(). 1982 // Check if we can reference this property. 1983 if (DiagnoseUseOfDecl(Getter, propertyNameLoc)) 1984 return ExprError(); 1985 } 1986 1987 // Look for the matching setter, in case it is needed. 1988 Selector SetterSel = 1989 SelectorTable::constructSetterSelector(PP.getIdentifierTable(), 1990 PP.getSelectorTable(), 1991 &propertyName); 1992 1993 ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel); 1994 if (!Setter) { 1995 // If this reference is in an @implementation, also check for 'private' 1996 // methods. 1997 Setter = IFace->lookupPrivateClassMethod(SetterSel); 1998 } 1999 // Look through local category implementations associated with the class. 2000 if (!Setter) 2001 Setter = IFace->getCategoryClassMethod(SetterSel); 2002 2003 if (Setter && DiagnoseUseOfDecl(Setter, propertyNameLoc)) 2004 return ExprError(); 2005 2006 if (Getter || Setter) { 2007 if (!SuperType.isNull()) 2008 return new (Context) 2009 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue, 2010 OK_ObjCProperty, propertyNameLoc, receiverNameLoc, 2011 SuperType); 2012 2013 return new (Context) ObjCPropertyRefExpr( 2014 Getter, Setter, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, 2015 propertyNameLoc, receiverNameLoc, IFace); 2016 } 2017 return ExprError(Diag(propertyNameLoc, diag::err_property_not_found) 2018 << &propertyName << Context.getObjCInterfaceType(IFace)); 2019 } 2020 2021 namespace { 2022 2023 class ObjCInterfaceOrSuperCCC : public CorrectionCandidateCallback { 2024 public: 2025 ObjCInterfaceOrSuperCCC(ObjCMethodDecl *Method) { 2026 // Determine whether "super" is acceptable in the current context. 2027 if (Method && Method->getClassInterface()) 2028 WantObjCSuper = Method->getClassInterface()->getSuperClass(); 2029 } 2030 2031 bool ValidateCandidate(const TypoCorrection &candidate) override { 2032 return candidate.getCorrectionDeclAs<ObjCInterfaceDecl>() || 2033 candidate.isKeyword("super"); 2034 } 2035 }; 2036 2037 } 2038 2039 Sema::ObjCMessageKind Sema::getObjCMessageKind(Scope *S, 2040 IdentifierInfo *Name, 2041 SourceLocation NameLoc, 2042 bool IsSuper, 2043 bool HasTrailingDot, 2044 ParsedType &ReceiverType) { 2045 ReceiverType = ParsedType(); 2046 2047 // If the identifier is "super" and there is no trailing dot, we're 2048 // messaging super. If the identifier is "super" and there is a 2049 // trailing dot, it's an instance message. 2050 if (IsSuper && S->isInObjcMethodScope()) 2051 return HasTrailingDot? ObjCInstanceMessage : ObjCSuperMessage; 2052 2053 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); 2054 LookupName(Result, S); 2055 2056 switch (Result.getResultKind()) { 2057 case LookupResult::NotFound: 2058 // Normal name lookup didn't find anything. If we're in an 2059 // Objective-C method, look for ivars. If we find one, we're done! 2060 // FIXME: This is a hack. Ivar lookup should be part of normal 2061 // lookup. 2062 if (ObjCMethodDecl *Method = getCurMethodDecl()) { 2063 if (!Method->getClassInterface()) { 2064 // Fall back: let the parser try to parse it as an instance message. 2065 return ObjCInstanceMessage; 2066 } 2067 2068 ObjCInterfaceDecl *ClassDeclared; 2069 if (Method->getClassInterface()->lookupInstanceVariable(Name, 2070 ClassDeclared)) 2071 return ObjCInstanceMessage; 2072 } 2073 2074 // Break out; we'll perform typo correction below. 2075 break; 2076 2077 case LookupResult::NotFoundInCurrentInstantiation: 2078 case LookupResult::FoundOverloaded: 2079 case LookupResult::FoundUnresolvedValue: 2080 case LookupResult::Ambiguous: 2081 Result.suppressDiagnostics(); 2082 return ObjCInstanceMessage; 2083 2084 case LookupResult::Found: { 2085 // If the identifier is a class or not, and there is a trailing dot, 2086 // it's an instance message. 2087 if (HasTrailingDot) 2088 return ObjCInstanceMessage; 2089 // We found something. If it's a type, then we have a class 2090 // message. Otherwise, it's an instance message. 2091 NamedDecl *ND = Result.getFoundDecl(); 2092 QualType T; 2093 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(ND)) 2094 T = Context.getObjCInterfaceType(Class); 2095 else if (TypeDecl *Type = dyn_cast<TypeDecl>(ND)) { 2096 T = Context.getTypeDeclType(Type); 2097 DiagnoseUseOfDecl(Type, NameLoc); 2098 } 2099 else 2100 return ObjCInstanceMessage; 2101 2102 // We have a class message, and T is the type we're 2103 // messaging. Build source-location information for it. 2104 TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc); 2105 ReceiverType = CreateParsedType(T, TSInfo); 2106 return ObjCClassMessage; 2107 } 2108 } 2109 2110 if (TypoCorrection Corrected = CorrectTypo( 2111 Result.getLookupNameInfo(), Result.getLookupKind(), S, nullptr, 2112 llvm::make_unique<ObjCInterfaceOrSuperCCC>(getCurMethodDecl()), 2113 CTK_ErrorRecovery, nullptr, false, nullptr, false)) { 2114 if (Corrected.isKeyword()) { 2115 // If we've found the keyword "super" (the only keyword that would be 2116 // returned by CorrectTypo), this is a send to super. 2117 diagnoseTypo(Corrected, 2118 PDiag(diag::err_unknown_receiver_suggest) << Name); 2119 return ObjCSuperMessage; 2120 } else if (ObjCInterfaceDecl *Class = 2121 Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { 2122 // If we found a declaration, correct when it refers to an Objective-C 2123 // class. 2124 diagnoseTypo(Corrected, 2125 PDiag(diag::err_unknown_receiver_suggest) << Name); 2126 QualType T = Context.getObjCInterfaceType(Class); 2127 TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc); 2128 ReceiverType = CreateParsedType(T, TSInfo); 2129 return ObjCClassMessage; 2130 } 2131 } 2132 2133 // Fall back: let the parser try to parse it as an instance message. 2134 return ObjCInstanceMessage; 2135 } 2136 2137 ExprResult Sema::ActOnSuperMessage(Scope *S, 2138 SourceLocation SuperLoc, 2139 Selector Sel, 2140 SourceLocation LBracLoc, 2141 ArrayRef<SourceLocation> SelectorLocs, 2142 SourceLocation RBracLoc, 2143 MultiExprArg Args) { 2144 // Determine whether we are inside a method or not. 2145 ObjCMethodDecl *Method = tryCaptureObjCSelf(SuperLoc); 2146 if (!Method) { 2147 Diag(SuperLoc, diag::err_invalid_receiver_to_message_super); 2148 return ExprError(); 2149 } 2150 2151 ObjCInterfaceDecl *Class = Method->getClassInterface(); 2152 if (!Class) { 2153 Diag(SuperLoc, diag::error_no_super_class_message) 2154 << Method->getDeclName(); 2155 return ExprError(); 2156 } 2157 2158 QualType SuperTy(Class->getSuperClassType(), 0); 2159 if (SuperTy.isNull()) { 2160 // The current class does not have a superclass. 2161 Diag(SuperLoc, diag::error_root_class_cannot_use_super) 2162 << Class->getIdentifier(); 2163 return ExprError(); 2164 } 2165 2166 // We are in a method whose class has a superclass, so 'super' 2167 // is acting as a keyword. 2168 if (Method->getSelector() == Sel) 2169 getCurFunction()->ObjCShouldCallSuper = false; 2170 2171 if (Method->isInstanceMethod()) { 2172 // Since we are in an instance method, this is an instance 2173 // message to the superclass instance. 2174 SuperTy = Context.getObjCObjectPointerType(SuperTy); 2175 return BuildInstanceMessage(nullptr, SuperTy, SuperLoc, 2176 Sel, /*Method=*/nullptr, 2177 LBracLoc, SelectorLocs, RBracLoc, Args); 2178 } 2179 2180 // Since we are in a class method, this is a class message to 2181 // the superclass. 2182 return BuildClassMessage(/*ReceiverTypeInfo=*/nullptr, 2183 SuperTy, 2184 SuperLoc, Sel, /*Method=*/nullptr, 2185 LBracLoc, SelectorLocs, RBracLoc, Args); 2186 } 2187 2188 2189 ExprResult Sema::BuildClassMessageImplicit(QualType ReceiverType, 2190 bool isSuperReceiver, 2191 SourceLocation Loc, 2192 Selector Sel, 2193 ObjCMethodDecl *Method, 2194 MultiExprArg Args) { 2195 TypeSourceInfo *receiverTypeInfo = nullptr; 2196 if (!ReceiverType.isNull()) 2197 receiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType); 2198 2199 return BuildClassMessage(receiverTypeInfo, ReceiverType, 2200 /*SuperLoc=*/isSuperReceiver ? Loc : SourceLocation(), 2201 Sel, Method, Loc, Loc, Loc, Args, 2202 /*isImplicit=*/true); 2203 2204 } 2205 2206 static void applyCocoaAPICheck(Sema &S, const ObjCMessageExpr *Msg, 2207 unsigned DiagID, 2208 bool (*refactor)(const ObjCMessageExpr *, 2209 const NSAPI &, edit::Commit &)) { 2210 SourceLocation MsgLoc = Msg->getExprLoc(); 2211 if (S.Diags.isIgnored(DiagID, MsgLoc)) 2212 return; 2213 2214 SourceManager &SM = S.SourceMgr; 2215 edit::Commit ECommit(SM, S.LangOpts); 2216 if (refactor(Msg,*S.NSAPIObj, ECommit)) { 2217 DiagnosticBuilder Builder = S.Diag(MsgLoc, DiagID) 2218 << Msg->getSelector() << Msg->getSourceRange(); 2219 // FIXME: Don't emit diagnostic at all if fixits are non-commitable. 2220 if (!ECommit.isCommitable()) 2221 return; 2222 for (edit::Commit::edit_iterator 2223 I = ECommit.edit_begin(), E = ECommit.edit_end(); I != E; ++I) { 2224 const edit::Commit::Edit &Edit = *I; 2225 switch (Edit.Kind) { 2226 case edit::Commit::Act_Insert: 2227 Builder.AddFixItHint(FixItHint::CreateInsertion(Edit.OrigLoc, 2228 Edit.Text, 2229 Edit.BeforePrev)); 2230 break; 2231 case edit::Commit::Act_InsertFromRange: 2232 Builder.AddFixItHint( 2233 FixItHint::CreateInsertionFromRange(Edit.OrigLoc, 2234 Edit.getInsertFromRange(SM), 2235 Edit.BeforePrev)); 2236 break; 2237 case edit::Commit::Act_Remove: 2238 Builder.AddFixItHint(FixItHint::CreateRemoval(Edit.getFileRange(SM))); 2239 break; 2240 } 2241 } 2242 } 2243 } 2244 2245 static void checkCocoaAPI(Sema &S, const ObjCMessageExpr *Msg) { 2246 applyCocoaAPICheck(S, Msg, diag::warn_objc_redundant_literal_use, 2247 edit::rewriteObjCRedundantCallWithLiteral); 2248 } 2249 2250 /// \brief Diagnose use of %s directive in an NSString which is being passed 2251 /// as formatting string to formatting method. 2252 static void 2253 DiagnoseCStringFormatDirectiveInObjCAPI(Sema &S, 2254 ObjCMethodDecl *Method, 2255 Selector Sel, 2256 Expr **Args, unsigned NumArgs) { 2257 unsigned Idx = 0; 2258 bool Format = false; 2259 ObjCStringFormatFamily SFFamily = Sel.getStringFormatFamily(); 2260 if (SFFamily == ObjCStringFormatFamily::SFF_NSString) { 2261 Idx = 0; 2262 Format = true; 2263 } 2264 else if (Method) { 2265 for (const auto *I : Method->specific_attrs<FormatAttr>()) { 2266 if (S.GetFormatNSStringIdx(I, Idx)) { 2267 Format = true; 2268 break; 2269 } 2270 } 2271 } 2272 if (!Format || NumArgs <= Idx) 2273 return; 2274 2275 Expr *FormatExpr = Args[Idx]; 2276 if (ObjCStringLiteral *OSL = 2277 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts())) { 2278 StringLiteral *FormatString = OSL->getString(); 2279 if (S.FormatStringHasSArg(FormatString)) { 2280 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string) 2281 << "%s" << 0 << 0; 2282 if (Method) 2283 S.Diag(Method->getLocation(), diag::note_method_declared_at) 2284 << Method->getDeclName(); 2285 } 2286 } 2287 } 2288 2289 /// \brief Build an Objective-C class message expression. 2290 /// 2291 /// This routine takes care of both normal class messages and 2292 /// class messages to the superclass. 2293 /// 2294 /// \param ReceiverTypeInfo Type source information that describes the 2295 /// receiver of this message. This may be NULL, in which case we are 2296 /// sending to the superclass and \p SuperLoc must be a valid source 2297 /// location. 2298 2299 /// \param ReceiverType The type of the object receiving the 2300 /// message. When \p ReceiverTypeInfo is non-NULL, this is the same 2301 /// type as that refers to. For a superclass send, this is the type of 2302 /// the superclass. 2303 /// 2304 /// \param SuperLoc The location of the "super" keyword in a 2305 /// superclass message. 2306 /// 2307 /// \param Sel The selector to which the message is being sent. 2308 /// 2309 /// \param Method The method that this class message is invoking, if 2310 /// already known. 2311 /// 2312 /// \param LBracLoc The location of the opening square bracket ']'. 2313 /// 2314 /// \param RBracLoc The location of the closing square bracket ']'. 2315 /// 2316 /// \param ArgsIn The message arguments. 2317 ExprResult Sema::BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo, 2318 QualType ReceiverType, 2319 SourceLocation SuperLoc, 2320 Selector Sel, 2321 ObjCMethodDecl *Method, 2322 SourceLocation LBracLoc, 2323 ArrayRef<SourceLocation> SelectorLocs, 2324 SourceLocation RBracLoc, 2325 MultiExprArg ArgsIn, 2326 bool isImplicit) { 2327 SourceLocation Loc = SuperLoc.isValid()? SuperLoc 2328 : ReceiverTypeInfo->getTypeLoc().getSourceRange().getBegin(); 2329 if (LBracLoc.isInvalid()) { 2330 Diag(Loc, diag::err_missing_open_square_message_send) 2331 << FixItHint::CreateInsertion(Loc, "["); 2332 LBracLoc = Loc; 2333 } 2334 SourceLocation SelLoc; 2335 if (!SelectorLocs.empty() && SelectorLocs.front().isValid()) 2336 SelLoc = SelectorLocs.front(); 2337 else 2338 SelLoc = Loc; 2339 2340 if (ReceiverType->isDependentType()) { 2341 // If the receiver type is dependent, we can't type-check anything 2342 // at this point. Build a dependent expression. 2343 unsigned NumArgs = ArgsIn.size(); 2344 Expr **Args = ArgsIn.data(); 2345 assert(SuperLoc.isInvalid() && "Message to super with dependent type"); 2346 return ObjCMessageExpr::Create( 2347 Context, ReceiverType, VK_RValue, LBracLoc, ReceiverTypeInfo, Sel, 2348 SelectorLocs, /*Method=*/nullptr, makeArrayRef(Args, NumArgs), RBracLoc, 2349 isImplicit); 2350 } 2351 2352 // Find the class to which we are sending this message. 2353 ObjCInterfaceDecl *Class = nullptr; 2354 const ObjCObjectType *ClassType = ReceiverType->getAs<ObjCObjectType>(); 2355 if (!ClassType || !(Class = ClassType->getInterface())) { 2356 Diag(Loc, diag::err_invalid_receiver_class_message) 2357 << ReceiverType; 2358 return ExprError(); 2359 } 2360 assert(Class && "We don't know which class we're messaging?"); 2361 // objc++ diagnoses during typename annotation. 2362 if (!getLangOpts().CPlusPlus) 2363 (void)DiagnoseUseOfDecl(Class, SelLoc); 2364 // Find the method we are messaging. 2365 if (!Method) { 2366 SourceRange TypeRange 2367 = SuperLoc.isValid()? SourceRange(SuperLoc) 2368 : ReceiverTypeInfo->getTypeLoc().getSourceRange(); 2369 if (RequireCompleteType(Loc, Context.getObjCInterfaceType(Class), 2370 (getLangOpts().ObjCAutoRefCount 2371 ? diag::err_arc_receiver_forward_class 2372 : diag::warn_receiver_forward_class), 2373 TypeRange)) { 2374 // A forward class used in messaging is treated as a 'Class' 2375 Method = LookupFactoryMethodInGlobalPool(Sel, 2376 SourceRange(LBracLoc, RBracLoc)); 2377 if (Method && !getLangOpts().ObjCAutoRefCount) 2378 Diag(Method->getLocation(), diag::note_method_sent_forward_class) 2379 << Method->getDeclName(); 2380 } 2381 if (!Method) 2382 Method = Class->lookupClassMethod(Sel); 2383 2384 // If we have an implementation in scope, check "private" methods. 2385 if (!Method) 2386 Method = Class->lookupPrivateClassMethod(Sel); 2387 2388 if (Method && DiagnoseUseOfDecl(Method, SelLoc)) 2389 return ExprError(); 2390 } 2391 2392 // Check the argument types and determine the result type. 2393 QualType ReturnType; 2394 ExprValueKind VK = VK_RValue; 2395 2396 unsigned NumArgs = ArgsIn.size(); 2397 Expr **Args = ArgsIn.data(); 2398 if (CheckMessageArgumentTypes(ReceiverType, MultiExprArg(Args, NumArgs), 2399 Sel, SelectorLocs, 2400 Method, true, 2401 SuperLoc.isValid(), LBracLoc, RBracLoc, 2402 SourceRange(), 2403 ReturnType, VK)) 2404 return ExprError(); 2405 2406 if (Method && !Method->getReturnType()->isVoidType() && 2407 RequireCompleteType(LBracLoc, Method->getReturnType(), 2408 diag::err_illegal_message_expr_incomplete_type)) 2409 return ExprError(); 2410 2411 // Warn about explicit call of +initialize on its own class. But not on 'super'. 2412 if (Method && Method->getMethodFamily() == OMF_initialize) { 2413 if (!SuperLoc.isValid()) { 2414 const ObjCInterfaceDecl *ID = 2415 dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext()); 2416 if (ID == Class) { 2417 Diag(Loc, diag::warn_direct_initialize_call); 2418 Diag(Method->getLocation(), diag::note_method_declared_at) 2419 << Method->getDeclName(); 2420 } 2421 } 2422 else if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) { 2423 // [super initialize] is allowed only within an +initialize implementation 2424 if (CurMeth->getMethodFamily() != OMF_initialize) { 2425 Diag(Loc, diag::warn_direct_super_initialize_call); 2426 Diag(Method->getLocation(), diag::note_method_declared_at) 2427 << Method->getDeclName(); 2428 Diag(CurMeth->getLocation(), diag::note_method_declared_at) 2429 << CurMeth->getDeclName(); 2430 } 2431 } 2432 } 2433 2434 DiagnoseCStringFormatDirectiveInObjCAPI(*this, Method, Sel, Args, NumArgs); 2435 2436 // Construct the appropriate ObjCMessageExpr. 2437 ObjCMessageExpr *Result; 2438 if (SuperLoc.isValid()) 2439 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 2440 SuperLoc, /*IsInstanceSuper=*/false, 2441 ReceiverType, Sel, SelectorLocs, 2442 Method, makeArrayRef(Args, NumArgs), 2443 RBracLoc, isImplicit); 2444 else { 2445 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 2446 ReceiverTypeInfo, Sel, SelectorLocs, 2447 Method, makeArrayRef(Args, NumArgs), 2448 RBracLoc, isImplicit); 2449 if (!isImplicit) 2450 checkCocoaAPI(*this, Result); 2451 } 2452 return MaybeBindToTemporary(Result); 2453 } 2454 2455 // ActOnClassMessage - used for both unary and keyword messages. 2456 // ArgExprs is optional - if it is present, the number of expressions 2457 // is obtained from Sel.getNumArgs(). 2458 ExprResult Sema::ActOnClassMessage(Scope *S, 2459 ParsedType Receiver, 2460 Selector Sel, 2461 SourceLocation LBracLoc, 2462 ArrayRef<SourceLocation> SelectorLocs, 2463 SourceLocation RBracLoc, 2464 MultiExprArg Args) { 2465 TypeSourceInfo *ReceiverTypeInfo; 2466 QualType ReceiverType = GetTypeFromParser(Receiver, &ReceiverTypeInfo); 2467 if (ReceiverType.isNull()) 2468 return ExprError(); 2469 2470 2471 if (!ReceiverTypeInfo) 2472 ReceiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType, LBracLoc); 2473 2474 return BuildClassMessage(ReceiverTypeInfo, ReceiverType, 2475 /*SuperLoc=*/SourceLocation(), Sel, 2476 /*Method=*/nullptr, LBracLoc, SelectorLocs, RBracLoc, 2477 Args); 2478 } 2479 2480 ExprResult Sema::BuildInstanceMessageImplicit(Expr *Receiver, 2481 QualType ReceiverType, 2482 SourceLocation Loc, 2483 Selector Sel, 2484 ObjCMethodDecl *Method, 2485 MultiExprArg Args) { 2486 return BuildInstanceMessage(Receiver, ReceiverType, 2487 /*SuperLoc=*/!Receiver ? Loc : SourceLocation(), 2488 Sel, Method, Loc, Loc, Loc, Args, 2489 /*isImplicit=*/true); 2490 } 2491 2492 /// \brief Build an Objective-C instance message expression. 2493 /// 2494 /// This routine takes care of both normal instance messages and 2495 /// instance messages to the superclass instance. 2496 /// 2497 /// \param Receiver The expression that computes the object that will 2498 /// receive this message. This may be empty, in which case we are 2499 /// sending to the superclass instance and \p SuperLoc must be a valid 2500 /// source location. 2501 /// 2502 /// \param ReceiverType The (static) type of the object receiving the 2503 /// message. When a \p Receiver expression is provided, this is the 2504 /// same type as that expression. For a superclass instance send, this 2505 /// is a pointer to the type of the superclass. 2506 /// 2507 /// \param SuperLoc The location of the "super" keyword in a 2508 /// superclass instance message. 2509 /// 2510 /// \param Sel The selector to which the message is being sent. 2511 /// 2512 /// \param Method The method that this instance message is invoking, if 2513 /// already known. 2514 /// 2515 /// \param LBracLoc The location of the opening square bracket ']'. 2516 /// 2517 /// \param RBracLoc The location of the closing square bracket ']'. 2518 /// 2519 /// \param ArgsIn The message arguments. 2520 ExprResult Sema::BuildInstanceMessage(Expr *Receiver, 2521 QualType ReceiverType, 2522 SourceLocation SuperLoc, 2523 Selector Sel, 2524 ObjCMethodDecl *Method, 2525 SourceLocation LBracLoc, 2526 ArrayRef<SourceLocation> SelectorLocs, 2527 SourceLocation RBracLoc, 2528 MultiExprArg ArgsIn, 2529 bool isImplicit) { 2530 // The location of the receiver. 2531 SourceLocation Loc = SuperLoc.isValid()? SuperLoc : Receiver->getLocStart(); 2532 SourceRange RecRange = 2533 SuperLoc.isValid()? SuperLoc : Receiver->getSourceRange(); 2534 SourceLocation SelLoc; 2535 if (!SelectorLocs.empty() && SelectorLocs.front().isValid()) 2536 SelLoc = SelectorLocs.front(); 2537 else 2538 SelLoc = Loc; 2539 2540 if (LBracLoc.isInvalid()) { 2541 Diag(Loc, diag::err_missing_open_square_message_send) 2542 << FixItHint::CreateInsertion(Loc, "["); 2543 LBracLoc = Loc; 2544 } 2545 2546 // If we have a receiver expression, perform appropriate promotions 2547 // and determine receiver type. 2548 if (Receiver) { 2549 if (Receiver->hasPlaceholderType()) { 2550 ExprResult Result; 2551 if (Receiver->getType() == Context.UnknownAnyTy) 2552 Result = forceUnknownAnyToType(Receiver, Context.getObjCIdType()); 2553 else 2554 Result = CheckPlaceholderExpr(Receiver); 2555 if (Result.isInvalid()) return ExprError(); 2556 Receiver = Result.get(); 2557 } 2558 2559 if (Receiver->isTypeDependent()) { 2560 // If the receiver is type-dependent, we can't type-check anything 2561 // at this point. Build a dependent expression. 2562 unsigned NumArgs = ArgsIn.size(); 2563 Expr **Args = ArgsIn.data(); 2564 assert(SuperLoc.isInvalid() && "Message to super with dependent type"); 2565 return ObjCMessageExpr::Create( 2566 Context, Context.DependentTy, VK_RValue, LBracLoc, Receiver, Sel, 2567 SelectorLocs, /*Method=*/nullptr, makeArrayRef(Args, NumArgs), 2568 RBracLoc, isImplicit); 2569 } 2570 2571 // If necessary, apply function/array conversion to the receiver. 2572 // C99 6.7.5.3p[7,8]. 2573 ExprResult Result = DefaultFunctionArrayLvalueConversion(Receiver); 2574 if (Result.isInvalid()) 2575 return ExprError(); 2576 Receiver = Result.get(); 2577 ReceiverType = Receiver->getType(); 2578 2579 // If the receiver is an ObjC pointer, a block pointer, or an 2580 // __attribute__((NSObject)) pointer, we don't need to do any 2581 // special conversion in order to look up a receiver. 2582 if (ReceiverType->isObjCRetainableType()) { 2583 // do nothing 2584 } else if (!getLangOpts().ObjCAutoRefCount && 2585 !Context.getObjCIdType().isNull() && 2586 (ReceiverType->isPointerType() || 2587 ReceiverType->isIntegerType())) { 2588 // Implicitly convert integers and pointers to 'id' but emit a warning. 2589 // But not in ARC. 2590 Diag(Loc, diag::warn_bad_receiver_type) 2591 << ReceiverType 2592 << Receiver->getSourceRange(); 2593 if (ReceiverType->isPointerType()) { 2594 Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(), 2595 CK_CPointerToObjCPointerCast).get(); 2596 } else { 2597 // TODO: specialized warning on null receivers? 2598 bool IsNull = Receiver->isNullPointerConstant(Context, 2599 Expr::NPC_ValueDependentIsNull); 2600 CastKind Kind = IsNull ? CK_NullToPointer : CK_IntegralToPointer; 2601 Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(), 2602 Kind).get(); 2603 } 2604 ReceiverType = Receiver->getType(); 2605 } else if (getLangOpts().CPlusPlus) { 2606 // The receiver must be a complete type. 2607 if (RequireCompleteType(Loc, Receiver->getType(), 2608 diag::err_incomplete_receiver_type)) 2609 return ExprError(); 2610 2611 ExprResult result = PerformContextuallyConvertToObjCPointer(Receiver); 2612 if (result.isUsable()) { 2613 Receiver = result.get(); 2614 ReceiverType = Receiver->getType(); 2615 } 2616 } 2617 } 2618 2619 // There's a somewhat weird interaction here where we assume that we 2620 // won't actually have a method unless we also don't need to do some 2621 // of the more detailed type-checking on the receiver. 2622 2623 if (!Method) { 2624 // Handle messages to id and __kindof types (where we use the 2625 // global method pool). 2626 // FIXME: The type bound is currently ignored by lookup in the 2627 // global pool. 2628 const ObjCObjectType *typeBound = nullptr; 2629 bool receiverIsIdLike = ReceiverType->isObjCIdOrObjectKindOfType(Context, 2630 typeBound); 2631 if (receiverIsIdLike || ReceiverType->isBlockPointerType() || 2632 (Receiver && Context.isObjCNSObjectType(Receiver->getType()))) { 2633 Method = LookupInstanceMethodInGlobalPool(Sel, 2634 SourceRange(LBracLoc, RBracLoc), 2635 receiverIsIdLike); 2636 if (!Method) 2637 Method = LookupFactoryMethodInGlobalPool(Sel, 2638 SourceRange(LBracLoc,RBracLoc), 2639 receiverIsIdLike); 2640 if (Method) { 2641 if (ObjCMethodDecl *BestMethod = 2642 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod())) 2643 Method = BestMethod; 2644 if (!AreMultipleMethodsInGlobalPool(Sel, Method, 2645 SourceRange(LBracLoc, RBracLoc), 2646 receiverIsIdLike)) { 2647 DiagnoseUseOfDecl(Method, SelLoc); 2648 } 2649 } 2650 } else if (ReceiverType->isObjCClassOrClassKindOfType() || 2651 ReceiverType->isObjCQualifiedClassType()) { 2652 // Handle messages to Class. 2653 // We allow sending a message to a qualified Class ("Class<foo>"), which 2654 // is ok as long as one of the protocols implements the selector (if not, 2655 // warn). 2656 if (!ReceiverType->isObjCClassOrClassKindOfType()) { 2657 const ObjCObjectPointerType *QClassTy 2658 = ReceiverType->getAsObjCQualifiedClassType(); 2659 // Search protocols for class methods. 2660 Method = LookupMethodInQualifiedType(Sel, QClassTy, false); 2661 if (!Method) { 2662 Method = LookupMethodInQualifiedType(Sel, QClassTy, true); 2663 // warn if instance method found for a Class message. 2664 if (Method) { 2665 Diag(SelLoc, diag::warn_instance_method_on_class_found) 2666 << Method->getSelector() << Sel; 2667 Diag(Method->getLocation(), diag::note_method_declared_at) 2668 << Method->getDeclName(); 2669 } 2670 } 2671 } else { 2672 if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) { 2673 if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) { 2674 // First check the public methods in the class interface. 2675 Method = ClassDecl->lookupClassMethod(Sel); 2676 2677 if (!Method) 2678 Method = ClassDecl->lookupPrivateClassMethod(Sel); 2679 } 2680 if (Method && DiagnoseUseOfDecl(Method, SelLoc)) 2681 return ExprError(); 2682 } 2683 if (!Method) { 2684 // If not messaging 'self', look for any factory method named 'Sel'. 2685 if (!Receiver || !isSelfExpr(Receiver)) { 2686 Method = LookupFactoryMethodInGlobalPool(Sel, 2687 SourceRange(LBracLoc, RBracLoc)); 2688 if (!Method) { 2689 // If no class (factory) method was found, check if an _instance_ 2690 // method of the same name exists in the root class only. 2691 Method = LookupInstanceMethodInGlobalPool(Sel, 2692 SourceRange(LBracLoc, RBracLoc)); 2693 if (Method) 2694 if (const ObjCInterfaceDecl *ID = 2695 dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext())) { 2696 if (ID->getSuperClass()) 2697 Diag(SelLoc, diag::warn_root_inst_method_not_found) 2698 << Sel << SourceRange(LBracLoc, RBracLoc); 2699 } 2700 } 2701 if (Method) 2702 if (ObjCMethodDecl *BestMethod = 2703 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod())) 2704 Method = BestMethod; 2705 } 2706 } 2707 } 2708 } else { 2709 ObjCInterfaceDecl *ClassDecl = nullptr; 2710 2711 // We allow sending a message to a qualified ID ("id<foo>"), which is ok as 2712 // long as one of the protocols implements the selector (if not, warn). 2713 // And as long as message is not deprecated/unavailable (warn if it is). 2714 if (const ObjCObjectPointerType *QIdTy 2715 = ReceiverType->getAsObjCQualifiedIdType()) { 2716 // Search protocols for instance methods. 2717 Method = LookupMethodInQualifiedType(Sel, QIdTy, true); 2718 if (!Method) 2719 Method = LookupMethodInQualifiedType(Sel, QIdTy, false); 2720 if (Method && DiagnoseUseOfDecl(Method, SelLoc)) 2721 return ExprError(); 2722 } else if (const ObjCObjectPointerType *OCIType 2723 = ReceiverType->getAsObjCInterfacePointerType()) { 2724 // We allow sending a message to a pointer to an interface (an object). 2725 ClassDecl = OCIType->getInterfaceDecl(); 2726 2727 // Try to complete the type. Under ARC, this is a hard error from which 2728 // we don't try to recover. 2729 // FIXME: In the non-ARC case, this will still be a hard error if the 2730 // definition is found in a module that's not visible. 2731 const ObjCInterfaceDecl *forwardClass = nullptr; 2732 if (RequireCompleteType(Loc, OCIType->getPointeeType(), 2733 getLangOpts().ObjCAutoRefCount 2734 ? diag::err_arc_receiver_forward_instance 2735 : diag::warn_receiver_forward_instance, 2736 Receiver? Receiver->getSourceRange() 2737 : SourceRange(SuperLoc))) { 2738 if (getLangOpts().ObjCAutoRefCount) 2739 return ExprError(); 2740 2741 forwardClass = OCIType->getInterfaceDecl(); 2742 Diag(Receiver ? Receiver->getLocStart() 2743 : SuperLoc, diag::note_receiver_is_id); 2744 Method = nullptr; 2745 } else { 2746 Method = ClassDecl->lookupInstanceMethod(Sel); 2747 } 2748 2749 if (!Method) 2750 // Search protocol qualifiers. 2751 Method = LookupMethodInQualifiedType(Sel, OCIType, true); 2752 2753 if (!Method) { 2754 // If we have implementations in scope, check "private" methods. 2755 Method = ClassDecl->lookupPrivateMethod(Sel); 2756 2757 if (!Method && getLangOpts().ObjCAutoRefCount) { 2758 Diag(SelLoc, diag::err_arc_may_not_respond) 2759 << OCIType->getPointeeType() << Sel << RecRange 2760 << SourceRange(SelectorLocs.front(), SelectorLocs.back()); 2761 return ExprError(); 2762 } 2763 2764 if (!Method && (!Receiver || !isSelfExpr(Receiver))) { 2765 // If we still haven't found a method, look in the global pool. This 2766 // behavior isn't very desirable, however we need it for GCC 2767 // compatibility. FIXME: should we deviate?? 2768 if (OCIType->qual_empty()) { 2769 Method = LookupInstanceMethodInGlobalPool(Sel, 2770 SourceRange(LBracLoc, RBracLoc)); 2771 if (Method) { 2772 if (auto BestMethod = 2773 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod())) 2774 Method = BestMethod; 2775 AreMultipleMethodsInGlobalPool(Sel, Method, 2776 SourceRange(LBracLoc, RBracLoc), 2777 true); 2778 } 2779 if (Method && !forwardClass) 2780 Diag(SelLoc, diag::warn_maynot_respond) 2781 << OCIType->getInterfaceDecl()->getIdentifier() 2782 << Sel << RecRange; 2783 } 2784 } 2785 } 2786 if (Method && DiagnoseUseOfDecl(Method, SelLoc, forwardClass)) 2787 return ExprError(); 2788 } else { 2789 // Reject other random receiver types (e.g. structs). 2790 Diag(Loc, diag::err_bad_receiver_type) 2791 << ReceiverType << Receiver->getSourceRange(); 2792 return ExprError(); 2793 } 2794 } 2795 } 2796 2797 FunctionScopeInfo *DIFunctionScopeInfo = 2798 (Method && Method->getMethodFamily() == OMF_init) 2799 ? getEnclosingFunction() : nullptr; 2800 2801 if (DIFunctionScopeInfo && 2802 DIFunctionScopeInfo->ObjCIsDesignatedInit && 2803 (SuperLoc.isValid() || isSelfExpr(Receiver))) { 2804 bool isDesignatedInitChain = false; 2805 if (SuperLoc.isValid()) { 2806 if (const ObjCObjectPointerType * 2807 OCIType = ReceiverType->getAsObjCInterfacePointerType()) { 2808 if (const ObjCInterfaceDecl *ID = OCIType->getInterfaceDecl()) { 2809 // Either we know this is a designated initializer or we 2810 // conservatively assume it because we don't know for sure. 2811 if (!ID->declaresOrInheritsDesignatedInitializers() || 2812 ID->isDesignatedInitializer(Sel)) { 2813 isDesignatedInitChain = true; 2814 DIFunctionScopeInfo->ObjCWarnForNoDesignatedInitChain = false; 2815 } 2816 } 2817 } 2818 } 2819 if (!isDesignatedInitChain) { 2820 const ObjCMethodDecl *InitMethod = nullptr; 2821 bool isDesignated = 2822 getCurMethodDecl()->isDesignatedInitializerForTheInterface(&InitMethod); 2823 assert(isDesignated && InitMethod); 2824 (void)isDesignated; 2825 Diag(SelLoc, SuperLoc.isValid() ? 2826 diag::warn_objc_designated_init_non_designated_init_call : 2827 diag::warn_objc_designated_init_non_super_designated_init_call); 2828 Diag(InitMethod->getLocation(), 2829 diag::note_objc_designated_init_marked_here); 2830 } 2831 } 2832 2833 if (DIFunctionScopeInfo && 2834 DIFunctionScopeInfo->ObjCIsSecondaryInit && 2835 (SuperLoc.isValid() || isSelfExpr(Receiver))) { 2836 if (SuperLoc.isValid()) { 2837 Diag(SelLoc, diag::warn_objc_secondary_init_super_init_call); 2838 } else { 2839 DIFunctionScopeInfo->ObjCWarnForNoInitDelegation = false; 2840 } 2841 } 2842 2843 // Check the message arguments. 2844 unsigned NumArgs = ArgsIn.size(); 2845 Expr **Args = ArgsIn.data(); 2846 QualType ReturnType; 2847 ExprValueKind VK = VK_RValue; 2848 bool ClassMessage = (ReceiverType->isObjCClassType() || 2849 ReceiverType->isObjCQualifiedClassType()); 2850 if (CheckMessageArgumentTypes(ReceiverType, MultiExprArg(Args, NumArgs), 2851 Sel, SelectorLocs, Method, 2852 ClassMessage, SuperLoc.isValid(), 2853 LBracLoc, RBracLoc, RecRange, ReturnType, VK)) 2854 return ExprError(); 2855 2856 if (Method && !Method->getReturnType()->isVoidType() && 2857 RequireCompleteType(LBracLoc, Method->getReturnType(), 2858 diag::err_illegal_message_expr_incomplete_type)) 2859 return ExprError(); 2860 2861 // In ARC, forbid the user from sending messages to 2862 // retain/release/autorelease/dealloc/retainCount explicitly. 2863 if (getLangOpts().ObjCAutoRefCount) { 2864 ObjCMethodFamily family = 2865 (Method ? Method->getMethodFamily() : Sel.getMethodFamily()); 2866 switch (family) { 2867 case OMF_init: 2868 if (Method) 2869 checkInitMethod(Method, ReceiverType); 2870 2871 case OMF_None: 2872 case OMF_alloc: 2873 case OMF_copy: 2874 case OMF_finalize: 2875 case OMF_mutableCopy: 2876 case OMF_new: 2877 case OMF_self: 2878 case OMF_initialize: 2879 break; 2880 2881 case OMF_dealloc: 2882 case OMF_retain: 2883 case OMF_release: 2884 case OMF_autorelease: 2885 case OMF_retainCount: 2886 Diag(SelLoc, diag::err_arc_illegal_explicit_message) 2887 << Sel << RecRange; 2888 break; 2889 2890 case OMF_performSelector: 2891 if (Method && NumArgs >= 1) { 2892 if (ObjCSelectorExpr *SelExp = dyn_cast<ObjCSelectorExpr>(Args[0])) { 2893 Selector ArgSel = SelExp->getSelector(); 2894 ObjCMethodDecl *SelMethod = 2895 LookupInstanceMethodInGlobalPool(ArgSel, 2896 SelExp->getSourceRange()); 2897 if (!SelMethod) 2898 SelMethod = 2899 LookupFactoryMethodInGlobalPool(ArgSel, 2900 SelExp->getSourceRange()); 2901 if (SelMethod) { 2902 ObjCMethodFamily SelFamily = SelMethod->getMethodFamily(); 2903 switch (SelFamily) { 2904 case OMF_alloc: 2905 case OMF_copy: 2906 case OMF_mutableCopy: 2907 case OMF_new: 2908 case OMF_self: 2909 case OMF_init: 2910 // Issue error, unless ns_returns_not_retained. 2911 if (!SelMethod->hasAttr<NSReturnsNotRetainedAttr>()) { 2912 // selector names a +1 method 2913 Diag(SelLoc, 2914 diag::err_arc_perform_selector_retains); 2915 Diag(SelMethod->getLocation(), diag::note_method_declared_at) 2916 << SelMethod->getDeclName(); 2917 } 2918 break; 2919 default: 2920 // +0 call. OK. unless ns_returns_retained. 2921 if (SelMethod->hasAttr<NSReturnsRetainedAttr>()) { 2922 // selector names a +1 method 2923 Diag(SelLoc, 2924 diag::err_arc_perform_selector_retains); 2925 Diag(SelMethod->getLocation(), diag::note_method_declared_at) 2926 << SelMethod->getDeclName(); 2927 } 2928 break; 2929 } 2930 } 2931 } else { 2932 // error (may leak). 2933 Diag(SelLoc, diag::warn_arc_perform_selector_leaks); 2934 Diag(Args[0]->getExprLoc(), diag::note_used_here); 2935 } 2936 } 2937 break; 2938 } 2939 } 2940 2941 DiagnoseCStringFormatDirectiveInObjCAPI(*this, Method, Sel, Args, NumArgs); 2942 2943 // Construct the appropriate ObjCMessageExpr instance. 2944 ObjCMessageExpr *Result; 2945 if (SuperLoc.isValid()) 2946 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 2947 SuperLoc, /*IsInstanceSuper=*/true, 2948 ReceiverType, Sel, SelectorLocs, Method, 2949 makeArrayRef(Args, NumArgs), RBracLoc, 2950 isImplicit); 2951 else { 2952 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 2953 Receiver, Sel, SelectorLocs, Method, 2954 makeArrayRef(Args, NumArgs), RBracLoc, 2955 isImplicit); 2956 if (!isImplicit) 2957 checkCocoaAPI(*this, Result); 2958 } 2959 2960 if (getLangOpts().ObjCAutoRefCount) { 2961 // In ARC, annotate delegate init calls. 2962 if (Result->getMethodFamily() == OMF_init && 2963 (SuperLoc.isValid() || isSelfExpr(Receiver))) { 2964 // Only consider init calls *directly* in init implementations, 2965 // not within blocks. 2966 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CurContext); 2967 if (method && method->getMethodFamily() == OMF_init) { 2968 // The implicit assignment to self means we also don't want to 2969 // consume the result. 2970 Result->setDelegateInitCall(true); 2971 return Result; 2972 } 2973 } 2974 2975 // In ARC, check for message sends which are likely to introduce 2976 // retain cycles. 2977 checkRetainCycles(Result); 2978 2979 if (!isImplicit && Method) { 2980 if (const ObjCPropertyDecl *Prop = Method->findPropertyDecl()) { 2981 bool IsWeak = 2982 Prop->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak; 2983 if (!IsWeak && Sel.isUnarySelector()) 2984 IsWeak = ReturnType.getObjCLifetime() & Qualifiers::OCL_Weak; 2985 if (IsWeak && 2986 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, LBracLoc)) 2987 getCurFunction()->recordUseOfWeak(Result, Prop); 2988 } 2989 } 2990 } 2991 2992 CheckObjCCircularContainer(Result); 2993 2994 return MaybeBindToTemporary(Result); 2995 } 2996 2997 static void RemoveSelectorFromWarningCache(Sema &S, Expr* Arg) { 2998 if (ObjCSelectorExpr *OSE = 2999 dyn_cast<ObjCSelectorExpr>(Arg->IgnoreParenCasts())) { 3000 Selector Sel = OSE->getSelector(); 3001 SourceLocation Loc = OSE->getAtLoc(); 3002 auto Pos = S.ReferencedSelectors.find(Sel); 3003 if (Pos != S.ReferencedSelectors.end() && Pos->second == Loc) 3004 S.ReferencedSelectors.erase(Pos); 3005 } 3006 } 3007 3008 // ActOnInstanceMessage - used for both unary and keyword messages. 3009 // ArgExprs is optional - if it is present, the number of expressions 3010 // is obtained from Sel.getNumArgs(). 3011 ExprResult Sema::ActOnInstanceMessage(Scope *S, 3012 Expr *Receiver, 3013 Selector Sel, 3014 SourceLocation LBracLoc, 3015 ArrayRef<SourceLocation> SelectorLocs, 3016 SourceLocation RBracLoc, 3017 MultiExprArg Args) { 3018 if (!Receiver) 3019 return ExprError(); 3020 3021 // A ParenListExpr can show up while doing error recovery with invalid code. 3022 if (isa<ParenListExpr>(Receiver)) { 3023 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Receiver); 3024 if (Result.isInvalid()) return ExprError(); 3025 Receiver = Result.get(); 3026 } 3027 3028 if (RespondsToSelectorSel.isNull()) { 3029 IdentifierInfo *SelectorId = &Context.Idents.get("respondsToSelector"); 3030 RespondsToSelectorSel = Context.Selectors.getUnarySelector(SelectorId); 3031 } 3032 if (Sel == RespondsToSelectorSel) 3033 RemoveSelectorFromWarningCache(*this, Args[0]); 3034 3035 return BuildInstanceMessage(Receiver, Receiver->getType(), 3036 /*SuperLoc=*/SourceLocation(), Sel, 3037 /*Method=*/nullptr, LBracLoc, SelectorLocs, 3038 RBracLoc, Args); 3039 } 3040 3041 enum ARCConversionTypeClass { 3042 /// int, void, struct A 3043 ACTC_none, 3044 3045 /// id, void (^)() 3046 ACTC_retainable, 3047 3048 /// id*, id***, void (^*)(), 3049 ACTC_indirectRetainable, 3050 3051 /// void* might be a normal C type, or it might a CF type. 3052 ACTC_voidPtr, 3053 3054 /// struct A* 3055 ACTC_coreFoundation 3056 }; 3057 static bool isAnyRetainable(ARCConversionTypeClass ACTC) { 3058 return (ACTC == ACTC_retainable || 3059 ACTC == ACTC_coreFoundation || 3060 ACTC == ACTC_voidPtr); 3061 } 3062 static bool isAnyCLike(ARCConversionTypeClass ACTC) { 3063 return ACTC == ACTC_none || 3064 ACTC == ACTC_voidPtr || 3065 ACTC == ACTC_coreFoundation; 3066 } 3067 3068 static ARCConversionTypeClass classifyTypeForARCConversion(QualType type) { 3069 bool isIndirect = false; 3070 3071 // Ignore an outermost reference type. 3072 if (const ReferenceType *ref = type->getAs<ReferenceType>()) { 3073 type = ref->getPointeeType(); 3074 isIndirect = true; 3075 } 3076 3077 // Drill through pointers and arrays recursively. 3078 while (true) { 3079 if (const PointerType *ptr = type->getAs<PointerType>()) { 3080 type = ptr->getPointeeType(); 3081 3082 // The first level of pointer may be the innermost pointer on a CF type. 3083 if (!isIndirect) { 3084 if (type->isVoidType()) return ACTC_voidPtr; 3085 if (type->isRecordType()) return ACTC_coreFoundation; 3086 } 3087 } else if (const ArrayType *array = type->getAsArrayTypeUnsafe()) { 3088 type = QualType(array->getElementType()->getBaseElementTypeUnsafe(), 0); 3089 } else { 3090 break; 3091 } 3092 isIndirect = true; 3093 } 3094 3095 if (isIndirect) { 3096 if (type->isObjCARCBridgableType()) 3097 return ACTC_indirectRetainable; 3098 return ACTC_none; 3099 } 3100 3101 if (type->isObjCARCBridgableType()) 3102 return ACTC_retainable; 3103 3104 return ACTC_none; 3105 } 3106 3107 namespace { 3108 /// A result from the cast checker. 3109 enum ACCResult { 3110 /// Cannot be casted. 3111 ACC_invalid, 3112 3113 /// Can be safely retained or not retained. 3114 ACC_bottom, 3115 3116 /// Can be casted at +0. 3117 ACC_plusZero, 3118 3119 /// Can be casted at +1. 3120 ACC_plusOne 3121 }; 3122 ACCResult merge(ACCResult left, ACCResult right) { 3123 if (left == right) return left; 3124 if (left == ACC_bottom) return right; 3125 if (right == ACC_bottom) return left; 3126 return ACC_invalid; 3127 } 3128 3129 /// A checker which white-lists certain expressions whose conversion 3130 /// to or from retainable type would otherwise be forbidden in ARC. 3131 class ARCCastChecker : public StmtVisitor<ARCCastChecker, ACCResult> { 3132 typedef StmtVisitor<ARCCastChecker, ACCResult> super; 3133 3134 ASTContext &Context; 3135 ARCConversionTypeClass SourceClass; 3136 ARCConversionTypeClass TargetClass; 3137 bool Diagnose; 3138 3139 static bool isCFType(QualType type) { 3140 // Someday this can use ns_bridged. For now, it has to do this. 3141 return type->isCARCBridgableType(); 3142 } 3143 3144 public: 3145 ARCCastChecker(ASTContext &Context, ARCConversionTypeClass source, 3146 ARCConversionTypeClass target, bool diagnose) 3147 : Context(Context), SourceClass(source), TargetClass(target), 3148 Diagnose(diagnose) {} 3149 3150 using super::Visit; 3151 ACCResult Visit(Expr *e) { 3152 return super::Visit(e->IgnoreParens()); 3153 } 3154 3155 ACCResult VisitStmt(Stmt *s) { 3156 return ACC_invalid; 3157 } 3158 3159 /// Null pointer constants can be casted however you please. 3160 ACCResult VisitExpr(Expr *e) { 3161 if (e->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) 3162 return ACC_bottom; 3163 return ACC_invalid; 3164 } 3165 3166 /// Objective-C string literals can be safely casted. 3167 ACCResult VisitObjCStringLiteral(ObjCStringLiteral *e) { 3168 // If we're casting to any retainable type, go ahead. Global 3169 // strings are immune to retains, so this is bottom. 3170 if (isAnyRetainable(TargetClass)) return ACC_bottom; 3171 3172 return ACC_invalid; 3173 } 3174 3175 /// Look through certain implicit and explicit casts. 3176 ACCResult VisitCastExpr(CastExpr *e) { 3177 switch (e->getCastKind()) { 3178 case CK_NullToPointer: 3179 return ACC_bottom; 3180 3181 case CK_NoOp: 3182 case CK_LValueToRValue: 3183 case CK_BitCast: 3184 case CK_CPointerToObjCPointerCast: 3185 case CK_BlockPointerToObjCPointerCast: 3186 case CK_AnyPointerToBlockPointerCast: 3187 return Visit(e->getSubExpr()); 3188 3189 default: 3190 return ACC_invalid; 3191 } 3192 } 3193 3194 /// Look through unary extension. 3195 ACCResult VisitUnaryExtension(UnaryOperator *e) { 3196 return Visit(e->getSubExpr()); 3197 } 3198 3199 /// Ignore the LHS of a comma operator. 3200 ACCResult VisitBinComma(BinaryOperator *e) { 3201 return Visit(e->getRHS()); 3202 } 3203 3204 /// Conditional operators are okay if both sides are okay. 3205 ACCResult VisitConditionalOperator(ConditionalOperator *e) { 3206 ACCResult left = Visit(e->getTrueExpr()); 3207 if (left == ACC_invalid) return ACC_invalid; 3208 return merge(left, Visit(e->getFalseExpr())); 3209 } 3210 3211 /// Look through pseudo-objects. 3212 ACCResult VisitPseudoObjectExpr(PseudoObjectExpr *e) { 3213 // If we're getting here, we should always have a result. 3214 return Visit(e->getResultExpr()); 3215 } 3216 3217 /// Statement expressions are okay if their result expression is okay. 3218 ACCResult VisitStmtExpr(StmtExpr *e) { 3219 return Visit(e->getSubStmt()->body_back()); 3220 } 3221 3222 /// Some declaration references are okay. 3223 ACCResult VisitDeclRefExpr(DeclRefExpr *e) { 3224 VarDecl *var = dyn_cast<VarDecl>(e->getDecl()); 3225 // References to global constants are okay. 3226 if (isAnyRetainable(TargetClass) && 3227 isAnyRetainable(SourceClass) && 3228 var && 3229 var->getStorageClass() == SC_Extern && 3230 var->getType().isConstQualified()) { 3231 3232 // In system headers, they can also be assumed to be immune to retains. 3233 // These are things like 'kCFStringTransformToLatin'. 3234 if (Context.getSourceManager().isInSystemHeader(var->getLocation())) 3235 return ACC_bottom; 3236 3237 return ACC_plusZero; 3238 } 3239 3240 // Nothing else. 3241 return ACC_invalid; 3242 } 3243 3244 /// Some calls are okay. 3245 ACCResult VisitCallExpr(CallExpr *e) { 3246 if (FunctionDecl *fn = e->getDirectCallee()) 3247 if (ACCResult result = checkCallToFunction(fn)) 3248 return result; 3249 3250 return super::VisitCallExpr(e); 3251 } 3252 3253 ACCResult checkCallToFunction(FunctionDecl *fn) { 3254 // Require a CF*Ref return type. 3255 if (!isCFType(fn->getReturnType())) 3256 return ACC_invalid; 3257 3258 if (!isAnyRetainable(TargetClass)) 3259 return ACC_invalid; 3260 3261 // Honor an explicit 'not retained' attribute. 3262 if (fn->hasAttr<CFReturnsNotRetainedAttr>()) 3263 return ACC_plusZero; 3264 3265 // Honor an explicit 'retained' attribute, except that for 3266 // now we're not going to permit implicit handling of +1 results, 3267 // because it's a bit frightening. 3268 if (fn->hasAttr<CFReturnsRetainedAttr>()) 3269 return Diagnose ? ACC_plusOne 3270 : ACC_invalid; // ACC_plusOne if we start accepting this 3271 3272 // Recognize this specific builtin function, which is used by CFSTR. 3273 unsigned builtinID = fn->getBuiltinID(); 3274 if (builtinID == Builtin::BI__builtin___CFStringMakeConstantString) 3275 return ACC_bottom; 3276 3277 // Otherwise, don't do anything implicit with an unaudited function. 3278 if (!fn->hasAttr<CFAuditedTransferAttr>()) 3279 return ACC_invalid; 3280 3281 // Otherwise, it's +0 unless it follows the create convention. 3282 if (ento::coreFoundation::followsCreateRule(fn)) 3283 return Diagnose ? ACC_plusOne 3284 : ACC_invalid; // ACC_plusOne if we start accepting this 3285 3286 return ACC_plusZero; 3287 } 3288 3289 ACCResult VisitObjCMessageExpr(ObjCMessageExpr *e) { 3290 return checkCallToMethod(e->getMethodDecl()); 3291 } 3292 3293 ACCResult VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *e) { 3294 ObjCMethodDecl *method; 3295 if (e->isExplicitProperty()) 3296 method = e->getExplicitProperty()->getGetterMethodDecl(); 3297 else 3298 method = e->getImplicitPropertyGetter(); 3299 return checkCallToMethod(method); 3300 } 3301 3302 ACCResult checkCallToMethod(ObjCMethodDecl *method) { 3303 if (!method) return ACC_invalid; 3304 3305 // Check for message sends to functions returning CF types. We 3306 // just obey the Cocoa conventions with these, even though the 3307 // return type is CF. 3308 if (!isAnyRetainable(TargetClass) || !isCFType(method->getReturnType())) 3309 return ACC_invalid; 3310 3311 // If the method is explicitly marked not-retained, it's +0. 3312 if (method->hasAttr<CFReturnsNotRetainedAttr>()) 3313 return ACC_plusZero; 3314 3315 // If the method is explicitly marked as returning retained, or its 3316 // selector follows a +1 Cocoa convention, treat it as +1. 3317 if (method->hasAttr<CFReturnsRetainedAttr>()) 3318 return ACC_plusOne; 3319 3320 switch (method->getSelector().getMethodFamily()) { 3321 case OMF_alloc: 3322 case OMF_copy: 3323 case OMF_mutableCopy: 3324 case OMF_new: 3325 return ACC_plusOne; 3326 3327 default: 3328 // Otherwise, treat it as +0. 3329 return ACC_plusZero; 3330 } 3331 } 3332 }; 3333 } 3334 3335 bool Sema::isKnownName(StringRef name) { 3336 if (name.empty()) 3337 return false; 3338 LookupResult R(*this, &Context.Idents.get(name), SourceLocation(), 3339 Sema::LookupOrdinaryName); 3340 return LookupName(R, TUScope, false); 3341 } 3342 3343 static void addFixitForObjCARCConversion(Sema &S, 3344 DiagnosticBuilder &DiagB, 3345 Sema::CheckedConversionKind CCK, 3346 SourceLocation afterLParen, 3347 QualType castType, 3348 Expr *castExpr, 3349 Expr *realCast, 3350 const char *bridgeKeyword, 3351 const char *CFBridgeName) { 3352 // We handle C-style and implicit casts here. 3353 switch (CCK) { 3354 case Sema::CCK_ImplicitConversion: 3355 case Sema::CCK_CStyleCast: 3356 case Sema::CCK_OtherCast: 3357 break; 3358 case Sema::CCK_FunctionalCast: 3359 return; 3360 } 3361 3362 if (CFBridgeName) { 3363 if (CCK == Sema::CCK_OtherCast) { 3364 if (const CXXNamedCastExpr *NCE = dyn_cast<CXXNamedCastExpr>(realCast)) { 3365 SourceRange range(NCE->getOperatorLoc(), 3366 NCE->getAngleBrackets().getEnd()); 3367 SmallString<32> BridgeCall; 3368 3369 SourceManager &SM = S.getSourceManager(); 3370 char PrevChar = *SM.getCharacterData(range.getBegin().getLocWithOffset(-1)); 3371 if (Lexer::isIdentifierBodyChar(PrevChar, S.getLangOpts())) 3372 BridgeCall += ' '; 3373 3374 BridgeCall += CFBridgeName; 3375 DiagB.AddFixItHint(FixItHint::CreateReplacement(range, BridgeCall)); 3376 } 3377 return; 3378 } 3379 Expr *castedE = castExpr; 3380 if (CStyleCastExpr *CCE = dyn_cast<CStyleCastExpr>(castedE)) 3381 castedE = CCE->getSubExpr(); 3382 castedE = castedE->IgnoreImpCasts(); 3383 SourceRange range = castedE->getSourceRange(); 3384 3385 SmallString<32> BridgeCall; 3386 3387 SourceManager &SM = S.getSourceManager(); 3388 char PrevChar = *SM.getCharacterData(range.getBegin().getLocWithOffset(-1)); 3389 if (Lexer::isIdentifierBodyChar(PrevChar, S.getLangOpts())) 3390 BridgeCall += ' '; 3391 3392 BridgeCall += CFBridgeName; 3393 3394 if (isa<ParenExpr>(castedE)) { 3395 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 3396 BridgeCall)); 3397 } else { 3398 BridgeCall += '('; 3399 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 3400 BridgeCall)); 3401 DiagB.AddFixItHint(FixItHint::CreateInsertion( 3402 S.getLocForEndOfToken(range.getEnd()), 3403 ")")); 3404 } 3405 return; 3406 } 3407 3408 if (CCK == Sema::CCK_CStyleCast) { 3409 DiagB.AddFixItHint(FixItHint::CreateInsertion(afterLParen, bridgeKeyword)); 3410 } else if (CCK == Sema::CCK_OtherCast) { 3411 if (const CXXNamedCastExpr *NCE = dyn_cast<CXXNamedCastExpr>(realCast)) { 3412 std::string castCode = "("; 3413 castCode += bridgeKeyword; 3414 castCode += castType.getAsString(); 3415 castCode += ")"; 3416 SourceRange Range(NCE->getOperatorLoc(), 3417 NCE->getAngleBrackets().getEnd()); 3418 DiagB.AddFixItHint(FixItHint::CreateReplacement(Range, castCode)); 3419 } 3420 } else { 3421 std::string castCode = "("; 3422 castCode += bridgeKeyword; 3423 castCode += castType.getAsString(); 3424 castCode += ")"; 3425 Expr *castedE = castExpr->IgnoreImpCasts(); 3426 SourceRange range = castedE->getSourceRange(); 3427 if (isa<ParenExpr>(castedE)) { 3428 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 3429 castCode)); 3430 } else { 3431 castCode += "("; 3432 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 3433 castCode)); 3434 DiagB.AddFixItHint(FixItHint::CreateInsertion( 3435 S.getLocForEndOfToken(range.getEnd()), 3436 ")")); 3437 } 3438 } 3439 } 3440 3441 template <typename T> 3442 static inline T *getObjCBridgeAttr(const TypedefType *TD) { 3443 TypedefNameDecl *TDNDecl = TD->getDecl(); 3444 QualType QT = TDNDecl->getUnderlyingType(); 3445 if (QT->isPointerType()) { 3446 QT = QT->getPointeeType(); 3447 if (const RecordType *RT = QT->getAs<RecordType>()) 3448 if (RecordDecl *RD = RT->getDecl()->getMostRecentDecl()) 3449 return RD->getAttr<T>(); 3450 } 3451 return nullptr; 3452 } 3453 3454 static ObjCBridgeRelatedAttr *ObjCBridgeRelatedAttrFromType(QualType T, 3455 TypedefNameDecl *&TDNDecl) { 3456 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) { 3457 TDNDecl = TD->getDecl(); 3458 if (ObjCBridgeRelatedAttr *ObjCBAttr = 3459 getObjCBridgeAttr<ObjCBridgeRelatedAttr>(TD)) 3460 return ObjCBAttr; 3461 T = TDNDecl->getUnderlyingType(); 3462 } 3463 return nullptr; 3464 } 3465 3466 static void 3467 diagnoseObjCARCConversion(Sema &S, SourceRange castRange, 3468 QualType castType, ARCConversionTypeClass castACTC, 3469 Expr *castExpr, Expr *realCast, 3470 ARCConversionTypeClass exprACTC, 3471 Sema::CheckedConversionKind CCK) { 3472 SourceLocation loc = 3473 (castRange.isValid() ? castRange.getBegin() : castExpr->getExprLoc()); 3474 3475 if (S.makeUnavailableInSystemHeader(loc, 3476 UnavailableAttr::IR_ARCForbiddenConversion)) 3477 return; 3478 3479 QualType castExprType = castExpr->getType(); 3480 TypedefNameDecl *TDNDecl = nullptr; 3481 if ((castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable && 3482 ObjCBridgeRelatedAttrFromType(castType, TDNDecl)) || 3483 (exprACTC == ACTC_coreFoundation && castACTC == ACTC_retainable && 3484 ObjCBridgeRelatedAttrFromType(castExprType, TDNDecl))) 3485 return; 3486 3487 unsigned srcKind = 0; 3488 switch (exprACTC) { 3489 case ACTC_none: 3490 case ACTC_coreFoundation: 3491 case ACTC_voidPtr: 3492 srcKind = (castExprType->isPointerType() ? 1 : 0); 3493 break; 3494 case ACTC_retainable: 3495 srcKind = (castExprType->isBlockPointerType() ? 2 : 3); 3496 break; 3497 case ACTC_indirectRetainable: 3498 srcKind = 4; 3499 break; 3500 } 3501 3502 // Check whether this could be fixed with a bridge cast. 3503 SourceLocation afterLParen = S.getLocForEndOfToken(castRange.getBegin()); 3504 SourceLocation noteLoc = afterLParen.isValid() ? afterLParen : loc; 3505 3506 // Bridge from an ARC type to a CF type. 3507 if (castACTC == ACTC_retainable && isAnyRetainable(exprACTC)) { 3508 3509 S.Diag(loc, diag::err_arc_cast_requires_bridge) 3510 << unsigned(CCK == Sema::CCK_ImplicitConversion) // cast|implicit 3511 << 2 // of C pointer type 3512 << castExprType 3513 << unsigned(castType->isBlockPointerType()) // to ObjC|block type 3514 << castType 3515 << castRange 3516 << castExpr->getSourceRange(); 3517 bool br = S.isKnownName("CFBridgingRelease"); 3518 ACCResult CreateRule = 3519 ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr); 3520 assert(CreateRule != ACC_bottom && "This cast should already be accepted."); 3521 if (CreateRule != ACC_plusOne) 3522 { 3523 DiagnosticBuilder DiagB = 3524 (CCK != Sema::CCK_OtherCast) ? S.Diag(noteLoc, diag::note_arc_bridge) 3525 : S.Diag(noteLoc, diag::note_arc_cstyle_bridge); 3526 3527 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 3528 castType, castExpr, realCast, "__bridge ", 3529 nullptr); 3530 } 3531 if (CreateRule != ACC_plusZero) 3532 { 3533 DiagnosticBuilder DiagB = 3534 (CCK == Sema::CCK_OtherCast && !br) ? 3535 S.Diag(noteLoc, diag::note_arc_cstyle_bridge_transfer) << castExprType : 3536 S.Diag(br ? castExpr->getExprLoc() : noteLoc, 3537 diag::note_arc_bridge_transfer) 3538 << castExprType << br; 3539 3540 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 3541 castType, castExpr, realCast, "__bridge_transfer ", 3542 br ? "CFBridgingRelease" : nullptr); 3543 } 3544 3545 return; 3546 } 3547 3548 // Bridge from a CF type to an ARC type. 3549 if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC)) { 3550 bool br = S.isKnownName("CFBridgingRetain"); 3551 S.Diag(loc, diag::err_arc_cast_requires_bridge) 3552 << unsigned(CCK == Sema::CCK_ImplicitConversion) // cast|implicit 3553 << unsigned(castExprType->isBlockPointerType()) // of ObjC|block type 3554 << castExprType 3555 << 2 // to C pointer type 3556 << castType 3557 << castRange 3558 << castExpr->getSourceRange(); 3559 ACCResult CreateRule = 3560 ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr); 3561 assert(CreateRule != ACC_bottom && "This cast should already be accepted."); 3562 if (CreateRule != ACC_plusOne) 3563 { 3564 DiagnosticBuilder DiagB = 3565 (CCK != Sema::CCK_OtherCast) ? S.Diag(noteLoc, diag::note_arc_bridge) 3566 : S.Diag(noteLoc, diag::note_arc_cstyle_bridge); 3567 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 3568 castType, castExpr, realCast, "__bridge ", 3569 nullptr); 3570 } 3571 if (CreateRule != ACC_plusZero) 3572 { 3573 DiagnosticBuilder DiagB = 3574 (CCK == Sema::CCK_OtherCast && !br) ? 3575 S.Diag(noteLoc, diag::note_arc_cstyle_bridge_retained) << castType : 3576 S.Diag(br ? castExpr->getExprLoc() : noteLoc, 3577 diag::note_arc_bridge_retained) 3578 << castType << br; 3579 3580 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 3581 castType, castExpr, realCast, "__bridge_retained ", 3582 br ? "CFBridgingRetain" : nullptr); 3583 } 3584 3585 return; 3586 } 3587 3588 S.Diag(loc, diag::err_arc_mismatched_cast) 3589 << (CCK != Sema::CCK_ImplicitConversion) 3590 << srcKind << castExprType << castType 3591 << castRange << castExpr->getSourceRange(); 3592 } 3593 3594 template <typename TB> 3595 static bool CheckObjCBridgeNSCast(Sema &S, QualType castType, Expr *castExpr, 3596 bool &HadTheAttribute, bool warn) { 3597 QualType T = castExpr->getType(); 3598 HadTheAttribute = false; 3599 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) { 3600 TypedefNameDecl *TDNDecl = TD->getDecl(); 3601 if (TB *ObjCBAttr = getObjCBridgeAttr<TB>(TD)) { 3602 if (IdentifierInfo *Parm = ObjCBAttr->getBridgedType()) { 3603 HadTheAttribute = true; 3604 if (Parm->isStr("id")) 3605 return true; 3606 3607 NamedDecl *Target = nullptr; 3608 // Check for an existing type with this name. 3609 LookupResult R(S, DeclarationName(Parm), SourceLocation(), 3610 Sema::LookupOrdinaryName); 3611 if (S.LookupName(R, S.TUScope)) { 3612 Target = R.getFoundDecl(); 3613 if (Target && isa<ObjCInterfaceDecl>(Target)) { 3614 ObjCInterfaceDecl *ExprClass = cast<ObjCInterfaceDecl>(Target); 3615 if (const ObjCObjectPointerType *InterfacePointerType = 3616 castType->getAsObjCInterfacePointerType()) { 3617 ObjCInterfaceDecl *CastClass 3618 = InterfacePointerType->getObjectType()->getInterface(); 3619 if ((CastClass == ExprClass) || 3620 (CastClass && CastClass->isSuperClassOf(ExprClass))) 3621 return true; 3622 if (warn) 3623 S.Diag(castExpr->getLocStart(), diag::warn_objc_invalid_bridge) 3624 << T << Target->getName() << castType->getPointeeType(); 3625 return false; 3626 } else if (castType->isObjCIdType() || 3627 (S.Context.ObjCObjectAdoptsQTypeProtocols( 3628 castType, ExprClass))) 3629 // ok to cast to 'id'. 3630 // casting to id<p-list> is ok if bridge type adopts all of 3631 // p-list protocols. 3632 return true; 3633 else { 3634 if (warn) { 3635 S.Diag(castExpr->getLocStart(), diag::warn_objc_invalid_bridge) 3636 << T << Target->getName() << castType; 3637 S.Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3638 S.Diag(Target->getLocStart(), diag::note_declared_at); 3639 } 3640 return false; 3641 } 3642 } 3643 } else if (!castType->isObjCIdType()) { 3644 S.Diag(castExpr->getLocStart(), diag::err_objc_cf_bridged_not_interface) 3645 << castExpr->getType() << Parm; 3646 S.Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3647 if (Target) 3648 S.Diag(Target->getLocStart(), diag::note_declared_at); 3649 } 3650 return true; 3651 } 3652 return false; 3653 } 3654 T = TDNDecl->getUnderlyingType(); 3655 } 3656 return true; 3657 } 3658 3659 template <typename TB> 3660 static bool CheckObjCBridgeCFCast(Sema &S, QualType castType, Expr *castExpr, 3661 bool &HadTheAttribute, bool warn) { 3662 QualType T = castType; 3663 HadTheAttribute = false; 3664 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) { 3665 TypedefNameDecl *TDNDecl = TD->getDecl(); 3666 if (TB *ObjCBAttr = getObjCBridgeAttr<TB>(TD)) { 3667 if (IdentifierInfo *Parm = ObjCBAttr->getBridgedType()) { 3668 HadTheAttribute = true; 3669 if (Parm->isStr("id")) 3670 return true; 3671 3672 NamedDecl *Target = nullptr; 3673 // Check for an existing type with this name. 3674 LookupResult R(S, DeclarationName(Parm), SourceLocation(), 3675 Sema::LookupOrdinaryName); 3676 if (S.LookupName(R, S.TUScope)) { 3677 Target = R.getFoundDecl(); 3678 if (Target && isa<ObjCInterfaceDecl>(Target)) { 3679 ObjCInterfaceDecl *CastClass = cast<ObjCInterfaceDecl>(Target); 3680 if (const ObjCObjectPointerType *InterfacePointerType = 3681 castExpr->getType()->getAsObjCInterfacePointerType()) { 3682 ObjCInterfaceDecl *ExprClass 3683 = InterfacePointerType->getObjectType()->getInterface(); 3684 if ((CastClass == ExprClass) || 3685 (ExprClass && CastClass->isSuperClassOf(ExprClass))) 3686 return true; 3687 if (warn) { 3688 S.Diag(castExpr->getLocStart(), diag::warn_objc_invalid_bridge_to_cf) 3689 << castExpr->getType()->getPointeeType() << T; 3690 S.Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3691 } 3692 return false; 3693 } else if (castExpr->getType()->isObjCIdType() || 3694 (S.Context.QIdProtocolsAdoptObjCObjectProtocols( 3695 castExpr->getType(), CastClass))) 3696 // ok to cast an 'id' expression to a CFtype. 3697 // ok to cast an 'id<plist>' expression to CFtype provided plist 3698 // adopts all of CFtype's ObjetiveC's class plist. 3699 return true; 3700 else { 3701 if (warn) { 3702 S.Diag(castExpr->getLocStart(), diag::warn_objc_invalid_bridge_to_cf) 3703 << castExpr->getType() << castType; 3704 S.Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3705 S.Diag(Target->getLocStart(), diag::note_declared_at); 3706 } 3707 return false; 3708 } 3709 } 3710 } 3711 S.Diag(castExpr->getLocStart(), diag::err_objc_ns_bridged_invalid_cfobject) 3712 << castExpr->getType() << castType; 3713 S.Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3714 if (Target) 3715 S.Diag(Target->getLocStart(), diag::note_declared_at); 3716 return true; 3717 } 3718 return false; 3719 } 3720 T = TDNDecl->getUnderlyingType(); 3721 } 3722 return true; 3723 } 3724 3725 void Sema::CheckTollFreeBridgeCast(QualType castType, Expr *castExpr) { 3726 if (!getLangOpts().ObjC1) 3727 return; 3728 // warn in presence of __bridge casting to or from a toll free bridge cast. 3729 ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExpr->getType()); 3730 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(castType); 3731 if (castACTC == ACTC_retainable && exprACTC == ACTC_coreFoundation) { 3732 bool HasObjCBridgeAttr; 3733 bool ObjCBridgeAttrWillNotWarn = 3734 CheckObjCBridgeNSCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr, 3735 false); 3736 if (ObjCBridgeAttrWillNotWarn && HasObjCBridgeAttr) 3737 return; 3738 bool HasObjCBridgeMutableAttr; 3739 bool ObjCBridgeMutableAttrWillNotWarn = 3740 CheckObjCBridgeNSCast<ObjCBridgeMutableAttr>(*this, castType, castExpr, 3741 HasObjCBridgeMutableAttr, false); 3742 if (ObjCBridgeMutableAttrWillNotWarn && HasObjCBridgeMutableAttr) 3743 return; 3744 3745 if (HasObjCBridgeAttr) 3746 CheckObjCBridgeNSCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr, 3747 true); 3748 else if (HasObjCBridgeMutableAttr) 3749 CheckObjCBridgeNSCast<ObjCBridgeMutableAttr>(*this, castType, castExpr, 3750 HasObjCBridgeMutableAttr, true); 3751 } 3752 else if (castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable) { 3753 bool HasObjCBridgeAttr; 3754 bool ObjCBridgeAttrWillNotWarn = 3755 CheckObjCBridgeCFCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr, 3756 false); 3757 if (ObjCBridgeAttrWillNotWarn && HasObjCBridgeAttr) 3758 return; 3759 bool HasObjCBridgeMutableAttr; 3760 bool ObjCBridgeMutableAttrWillNotWarn = 3761 CheckObjCBridgeCFCast<ObjCBridgeMutableAttr>(*this, castType, castExpr, 3762 HasObjCBridgeMutableAttr, false); 3763 if (ObjCBridgeMutableAttrWillNotWarn && HasObjCBridgeMutableAttr) 3764 return; 3765 3766 if (HasObjCBridgeAttr) 3767 CheckObjCBridgeCFCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr, 3768 true); 3769 else if (HasObjCBridgeMutableAttr) 3770 CheckObjCBridgeCFCast<ObjCBridgeMutableAttr>(*this, castType, castExpr, 3771 HasObjCBridgeMutableAttr, true); 3772 } 3773 } 3774 3775 void Sema::CheckObjCBridgeRelatedCast(QualType castType, Expr *castExpr) { 3776 QualType SrcType = castExpr->getType(); 3777 if (ObjCPropertyRefExpr *PRE = dyn_cast<ObjCPropertyRefExpr>(castExpr)) { 3778 if (PRE->isExplicitProperty()) { 3779 if (ObjCPropertyDecl *PDecl = PRE->getExplicitProperty()) 3780 SrcType = PDecl->getType(); 3781 } 3782 else if (PRE->isImplicitProperty()) { 3783 if (ObjCMethodDecl *Getter = PRE->getImplicitPropertyGetter()) 3784 SrcType = Getter->getReturnType(); 3785 3786 } 3787 } 3788 3789 ARCConversionTypeClass srcExprACTC = classifyTypeForARCConversion(SrcType); 3790 ARCConversionTypeClass castExprACTC = classifyTypeForARCConversion(castType); 3791 if (srcExprACTC != ACTC_retainable || castExprACTC != ACTC_coreFoundation) 3792 return; 3793 CheckObjCBridgeRelatedConversions(castExpr->getLocStart(), 3794 castType, SrcType, castExpr); 3795 return; 3796 } 3797 3798 bool Sema::CheckTollFreeBridgeStaticCast(QualType castType, Expr *castExpr, 3799 CastKind &Kind) { 3800 if (!getLangOpts().ObjC1) 3801 return false; 3802 ARCConversionTypeClass exprACTC = 3803 classifyTypeForARCConversion(castExpr->getType()); 3804 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(castType); 3805 if ((castACTC == ACTC_retainable && exprACTC == ACTC_coreFoundation) || 3806 (castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable)) { 3807 CheckTollFreeBridgeCast(castType, castExpr); 3808 Kind = (castACTC == ACTC_coreFoundation) ? CK_BitCast 3809 : CK_CPointerToObjCPointerCast; 3810 return true; 3811 } 3812 return false; 3813 } 3814 3815 bool Sema::checkObjCBridgeRelatedComponents(SourceLocation Loc, 3816 QualType DestType, QualType SrcType, 3817 ObjCInterfaceDecl *&RelatedClass, 3818 ObjCMethodDecl *&ClassMethod, 3819 ObjCMethodDecl *&InstanceMethod, 3820 TypedefNameDecl *&TDNDecl, 3821 bool CfToNs) { 3822 QualType T = CfToNs ? SrcType : DestType; 3823 ObjCBridgeRelatedAttr *ObjCBAttr = ObjCBridgeRelatedAttrFromType(T, TDNDecl); 3824 if (!ObjCBAttr) 3825 return false; 3826 3827 IdentifierInfo *RCId = ObjCBAttr->getRelatedClass(); 3828 IdentifierInfo *CMId = ObjCBAttr->getClassMethod(); 3829 IdentifierInfo *IMId = ObjCBAttr->getInstanceMethod(); 3830 if (!RCId) 3831 return false; 3832 NamedDecl *Target = nullptr; 3833 // Check for an existing type with this name. 3834 LookupResult R(*this, DeclarationName(RCId), SourceLocation(), 3835 Sema::LookupOrdinaryName); 3836 if (!LookupName(R, TUScope)) { 3837 Diag(Loc, diag::err_objc_bridged_related_invalid_class) << RCId 3838 << SrcType << DestType; 3839 Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3840 return false; 3841 } 3842 Target = R.getFoundDecl(); 3843 if (Target && isa<ObjCInterfaceDecl>(Target)) 3844 RelatedClass = cast<ObjCInterfaceDecl>(Target); 3845 else { 3846 Diag(Loc, diag::err_objc_bridged_related_invalid_class_name) << RCId 3847 << SrcType << DestType; 3848 Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3849 if (Target) 3850 Diag(Target->getLocStart(), diag::note_declared_at); 3851 return false; 3852 } 3853 3854 // Check for an existing class method with the given selector name. 3855 if (CfToNs && CMId) { 3856 Selector Sel = Context.Selectors.getUnarySelector(CMId); 3857 ClassMethod = RelatedClass->lookupMethod(Sel, false); 3858 if (!ClassMethod) { 3859 Diag(Loc, diag::err_objc_bridged_related_known_method) 3860 << SrcType << DestType << Sel << false; 3861 Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3862 return false; 3863 } 3864 } 3865 3866 // Check for an existing instance method with the given selector name. 3867 if (!CfToNs && IMId) { 3868 Selector Sel = Context.Selectors.getNullarySelector(IMId); 3869 InstanceMethod = RelatedClass->lookupMethod(Sel, true); 3870 if (!InstanceMethod) { 3871 Diag(Loc, diag::err_objc_bridged_related_known_method) 3872 << SrcType << DestType << Sel << true; 3873 Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3874 return false; 3875 } 3876 } 3877 return true; 3878 } 3879 3880 bool 3881 Sema::CheckObjCBridgeRelatedConversions(SourceLocation Loc, 3882 QualType DestType, QualType SrcType, 3883 Expr *&SrcExpr) { 3884 ARCConversionTypeClass rhsExprACTC = classifyTypeForARCConversion(SrcType); 3885 ARCConversionTypeClass lhsExprACTC = classifyTypeForARCConversion(DestType); 3886 bool CfToNs = (rhsExprACTC == ACTC_coreFoundation && lhsExprACTC == ACTC_retainable); 3887 bool NsToCf = (rhsExprACTC == ACTC_retainable && lhsExprACTC == ACTC_coreFoundation); 3888 if (!CfToNs && !NsToCf) 3889 return false; 3890 3891 ObjCInterfaceDecl *RelatedClass; 3892 ObjCMethodDecl *ClassMethod = nullptr; 3893 ObjCMethodDecl *InstanceMethod = nullptr; 3894 TypedefNameDecl *TDNDecl = nullptr; 3895 if (!checkObjCBridgeRelatedComponents(Loc, DestType, SrcType, RelatedClass, 3896 ClassMethod, InstanceMethod, TDNDecl, CfToNs)) 3897 return false; 3898 3899 if (CfToNs) { 3900 // Implicit conversion from CF to ObjC object is needed. 3901 if (ClassMethod) { 3902 std::string ExpressionString = "["; 3903 ExpressionString += RelatedClass->getNameAsString(); 3904 ExpressionString += " "; 3905 ExpressionString += ClassMethod->getSelector().getAsString(); 3906 SourceLocation SrcExprEndLoc = getLocForEndOfToken(SrcExpr->getLocEnd()); 3907 // Provide a fixit: [RelatedClass ClassMethod SrcExpr] 3908 Diag(Loc, diag::err_objc_bridged_related_known_method) 3909 << SrcType << DestType << ClassMethod->getSelector() << false 3910 << FixItHint::CreateInsertion(SrcExpr->getLocStart(), ExpressionString) 3911 << FixItHint::CreateInsertion(SrcExprEndLoc, "]"); 3912 Diag(RelatedClass->getLocStart(), diag::note_declared_at); 3913 Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3914 3915 QualType receiverType = 3916 Context.getObjCInterfaceType(RelatedClass); 3917 // Argument. 3918 Expr *args[] = { SrcExpr }; 3919 ExprResult msg = BuildClassMessageImplicit(receiverType, false, 3920 ClassMethod->getLocation(), 3921 ClassMethod->getSelector(), ClassMethod, 3922 MultiExprArg(args, 1)); 3923 SrcExpr = msg.get(); 3924 return true; 3925 } 3926 } 3927 else { 3928 // Implicit conversion from ObjC type to CF object is needed. 3929 if (InstanceMethod) { 3930 std::string ExpressionString; 3931 SourceLocation SrcExprEndLoc = getLocForEndOfToken(SrcExpr->getLocEnd()); 3932 if (InstanceMethod->isPropertyAccessor()) 3933 if (const ObjCPropertyDecl *PDecl = InstanceMethod->findPropertyDecl()) { 3934 // fixit: ObjectExpr.propertyname when it is aproperty accessor. 3935 ExpressionString = "."; 3936 ExpressionString += PDecl->getNameAsString(); 3937 Diag(Loc, diag::err_objc_bridged_related_known_method) 3938 << SrcType << DestType << InstanceMethod->getSelector() << true 3939 << FixItHint::CreateInsertion(SrcExprEndLoc, ExpressionString); 3940 } 3941 if (ExpressionString.empty()) { 3942 // Provide a fixit: [ObjectExpr InstanceMethod] 3943 ExpressionString = " "; 3944 ExpressionString += InstanceMethod->getSelector().getAsString(); 3945 ExpressionString += "]"; 3946 3947 Diag(Loc, diag::err_objc_bridged_related_known_method) 3948 << SrcType << DestType << InstanceMethod->getSelector() << true 3949 << FixItHint::CreateInsertion(SrcExpr->getLocStart(), "[") 3950 << FixItHint::CreateInsertion(SrcExprEndLoc, ExpressionString); 3951 } 3952 Diag(RelatedClass->getLocStart(), diag::note_declared_at); 3953 Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3954 3955 ExprResult msg = 3956 BuildInstanceMessageImplicit(SrcExpr, SrcType, 3957 InstanceMethod->getLocation(), 3958 InstanceMethod->getSelector(), 3959 InstanceMethod, None); 3960 SrcExpr = msg.get(); 3961 return true; 3962 } 3963 } 3964 return false; 3965 } 3966 3967 Sema::ARCConversionResult 3968 Sema::CheckObjCARCConversion(SourceRange castRange, QualType castType, 3969 Expr *&castExpr, CheckedConversionKind CCK, 3970 bool DiagnoseCFAudited, 3971 BinaryOperatorKind Opc) { 3972 QualType castExprType = castExpr->getType(); 3973 3974 // For the purposes of the classification, we assume reference types 3975 // will bind to temporaries. 3976 QualType effCastType = castType; 3977 if (const ReferenceType *ref = castType->getAs<ReferenceType>()) 3978 effCastType = ref->getPointeeType(); 3979 3980 ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExprType); 3981 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(effCastType); 3982 if (exprACTC == castACTC) { 3983 // check for viablity and report error if casting an rvalue to a 3984 // life-time qualifier. 3985 if ((castACTC == ACTC_retainable) && 3986 (CCK == CCK_CStyleCast || CCK == CCK_OtherCast) && 3987 (castType != castExprType)) { 3988 const Type *DT = castType.getTypePtr(); 3989 QualType QDT = castType; 3990 // We desugar some types but not others. We ignore those 3991 // that cannot happen in a cast; i.e. auto, and those which 3992 // should not be de-sugared; i.e typedef. 3993 if (const ParenType *PT = dyn_cast<ParenType>(DT)) 3994 QDT = PT->desugar(); 3995 else if (const TypeOfType *TP = dyn_cast<TypeOfType>(DT)) 3996 QDT = TP->desugar(); 3997 else if (const AttributedType *AT = dyn_cast<AttributedType>(DT)) 3998 QDT = AT->desugar(); 3999 if (QDT != castType && 4000 QDT.getObjCLifetime() != Qualifiers::OCL_None) { 4001 SourceLocation loc = 4002 (castRange.isValid() ? castRange.getBegin() 4003 : castExpr->getExprLoc()); 4004 Diag(loc, diag::err_arc_nolifetime_behavior); 4005 } 4006 } 4007 return ACR_okay; 4008 } 4009 4010 if (isAnyCLike(exprACTC) && isAnyCLike(castACTC)) return ACR_okay; 4011 4012 // Allow all of these types to be cast to integer types (but not 4013 // vice-versa). 4014 if (castACTC == ACTC_none && castType->isIntegralType(Context)) 4015 return ACR_okay; 4016 4017 // Allow casts between pointers to lifetime types (e.g., __strong id*) 4018 // and pointers to void (e.g., cv void *). Casting from void* to lifetime* 4019 // must be explicit. 4020 if (exprACTC == ACTC_indirectRetainable && castACTC == ACTC_voidPtr) 4021 return ACR_okay; 4022 if (castACTC == ACTC_indirectRetainable && exprACTC == ACTC_voidPtr && 4023 CCK != CCK_ImplicitConversion) 4024 return ACR_okay; 4025 4026 switch (ARCCastChecker(Context, exprACTC, castACTC, false).Visit(castExpr)) { 4027 // For invalid casts, fall through. 4028 case ACC_invalid: 4029 break; 4030 4031 // Do nothing for both bottom and +0. 4032 case ACC_bottom: 4033 case ACC_plusZero: 4034 return ACR_okay; 4035 4036 // If the result is +1, consume it here. 4037 case ACC_plusOne: 4038 castExpr = ImplicitCastExpr::Create(Context, castExpr->getType(), 4039 CK_ARCConsumeObject, castExpr, 4040 nullptr, VK_RValue); 4041 ExprNeedsCleanups = true; 4042 return ACR_okay; 4043 } 4044 4045 // If this is a non-implicit cast from id or block type to a 4046 // CoreFoundation type, delay complaining in case the cast is used 4047 // in an acceptable context. 4048 if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC) && 4049 CCK != CCK_ImplicitConversion) 4050 return ACR_unbridged; 4051 4052 // Do not issue bridge cast" diagnostic when implicit casting a cstring 4053 // to 'NSString *'. Let caller issue a normal mismatched diagnostic with 4054 // suitable fix-it. 4055 if (castACTC == ACTC_retainable && exprACTC == ACTC_none && 4056 ConversionToObjCStringLiteralCheck(castType, castExpr)) 4057 return ACR_okay; 4058 4059 // Do not issue "bridge cast" diagnostic when implicit casting 4060 // a retainable object to a CF type parameter belonging to an audited 4061 // CF API function. Let caller issue a normal type mismatched diagnostic 4062 // instead. 4063 if (!DiagnoseCFAudited || exprACTC != ACTC_retainable || 4064 castACTC != ACTC_coreFoundation) 4065 if (!(exprACTC == ACTC_voidPtr && castACTC == ACTC_retainable && 4066 (Opc == BO_NE || Opc == BO_EQ))) 4067 diagnoseObjCARCConversion(*this, castRange, castType, castACTC, 4068 castExpr, castExpr, exprACTC, CCK); 4069 return ACR_okay; 4070 } 4071 4072 /// Given that we saw an expression with the ARCUnbridgedCastTy 4073 /// placeholder type, complain bitterly. 4074 void Sema::diagnoseARCUnbridgedCast(Expr *e) { 4075 // We expect the spurious ImplicitCastExpr to already have been stripped. 4076 assert(!e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); 4077 CastExpr *realCast = cast<CastExpr>(e->IgnoreParens()); 4078 4079 SourceRange castRange; 4080 QualType castType; 4081 CheckedConversionKind CCK; 4082 4083 if (CStyleCastExpr *cast = dyn_cast<CStyleCastExpr>(realCast)) { 4084 castRange = SourceRange(cast->getLParenLoc(), cast->getRParenLoc()); 4085 castType = cast->getTypeAsWritten(); 4086 CCK = CCK_CStyleCast; 4087 } else if (ExplicitCastExpr *cast = dyn_cast<ExplicitCastExpr>(realCast)) { 4088 castRange = cast->getTypeInfoAsWritten()->getTypeLoc().getSourceRange(); 4089 castType = cast->getTypeAsWritten(); 4090 CCK = CCK_OtherCast; 4091 } else { 4092 castType = cast->getType(); 4093 CCK = CCK_ImplicitConversion; 4094 } 4095 4096 ARCConversionTypeClass castACTC = 4097 classifyTypeForARCConversion(castType.getNonReferenceType()); 4098 4099 Expr *castExpr = realCast->getSubExpr(); 4100 assert(classifyTypeForARCConversion(castExpr->getType()) == ACTC_retainable); 4101 4102 diagnoseObjCARCConversion(*this, castRange, castType, castACTC, 4103 castExpr, realCast, ACTC_retainable, CCK); 4104 } 4105 4106 /// stripARCUnbridgedCast - Given an expression of ARCUnbridgedCast 4107 /// type, remove the placeholder cast. 4108 Expr *Sema::stripARCUnbridgedCast(Expr *e) { 4109 assert(e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); 4110 4111 if (ParenExpr *pe = dyn_cast<ParenExpr>(e)) { 4112 Expr *sub = stripARCUnbridgedCast(pe->getSubExpr()); 4113 return new (Context) ParenExpr(pe->getLParen(), pe->getRParen(), sub); 4114 } else if (UnaryOperator *uo = dyn_cast<UnaryOperator>(e)) { 4115 assert(uo->getOpcode() == UO_Extension); 4116 Expr *sub = stripARCUnbridgedCast(uo->getSubExpr()); 4117 return new (Context) UnaryOperator(sub, UO_Extension, sub->getType(), 4118 sub->getValueKind(), sub->getObjectKind(), 4119 uo->getOperatorLoc()); 4120 } else if (GenericSelectionExpr *gse = dyn_cast<GenericSelectionExpr>(e)) { 4121 assert(!gse->isResultDependent()); 4122 4123 unsigned n = gse->getNumAssocs(); 4124 SmallVector<Expr*, 4> subExprs(n); 4125 SmallVector<TypeSourceInfo*, 4> subTypes(n); 4126 for (unsigned i = 0; i != n; ++i) { 4127 subTypes[i] = gse->getAssocTypeSourceInfo(i); 4128 Expr *sub = gse->getAssocExpr(i); 4129 if (i == gse->getResultIndex()) 4130 sub = stripARCUnbridgedCast(sub); 4131 subExprs[i] = sub; 4132 } 4133 4134 return new (Context) GenericSelectionExpr(Context, gse->getGenericLoc(), 4135 gse->getControllingExpr(), 4136 subTypes, subExprs, 4137 gse->getDefaultLoc(), 4138 gse->getRParenLoc(), 4139 gse->containsUnexpandedParameterPack(), 4140 gse->getResultIndex()); 4141 } else { 4142 assert(isa<ImplicitCastExpr>(e) && "bad form of unbridged cast!"); 4143 return cast<ImplicitCastExpr>(e)->getSubExpr(); 4144 } 4145 } 4146 4147 bool Sema::CheckObjCARCUnavailableWeakConversion(QualType castType, 4148 QualType exprType) { 4149 QualType canCastType = 4150 Context.getCanonicalType(castType).getUnqualifiedType(); 4151 QualType canExprType = 4152 Context.getCanonicalType(exprType).getUnqualifiedType(); 4153 if (isa<ObjCObjectPointerType>(canCastType) && 4154 castType.getObjCLifetime() == Qualifiers::OCL_Weak && 4155 canExprType->isObjCObjectPointerType()) { 4156 if (const ObjCObjectPointerType *ObjT = 4157 canExprType->getAs<ObjCObjectPointerType>()) 4158 if (const ObjCInterfaceDecl *ObjI = ObjT->getInterfaceDecl()) 4159 return !ObjI->isArcWeakrefUnavailable(); 4160 } 4161 return true; 4162 } 4163 4164 /// Look for an ObjCReclaimReturnedObject cast and destroy it. 4165 static Expr *maybeUndoReclaimObject(Expr *e) { 4166 // For now, we just undo operands that are *immediately* reclaim 4167 // expressions, which prevents the vast majority of potential 4168 // problems here. To catch them all, we'd need to rebuild arbitrary 4169 // value-propagating subexpressions --- we can't reliably rebuild 4170 // in-place because of expression sharing. 4171 if (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) 4172 if (ice->getCastKind() == CK_ARCReclaimReturnedObject) 4173 return ice->getSubExpr(); 4174 4175 return e; 4176 } 4177 4178 ExprResult Sema::BuildObjCBridgedCast(SourceLocation LParenLoc, 4179 ObjCBridgeCastKind Kind, 4180 SourceLocation BridgeKeywordLoc, 4181 TypeSourceInfo *TSInfo, 4182 Expr *SubExpr) { 4183 ExprResult SubResult = UsualUnaryConversions(SubExpr); 4184 if (SubResult.isInvalid()) return ExprError(); 4185 SubExpr = SubResult.get(); 4186 4187 QualType T = TSInfo->getType(); 4188 QualType FromType = SubExpr->getType(); 4189 4190 CastKind CK; 4191 4192 bool MustConsume = false; 4193 if (T->isDependentType() || SubExpr->isTypeDependent()) { 4194 // Okay: we'll build a dependent expression type. 4195 CK = CK_Dependent; 4196 } else if (T->isObjCARCBridgableType() && FromType->isCARCBridgableType()) { 4197 // Casting CF -> id 4198 CK = (T->isBlockPointerType() ? CK_AnyPointerToBlockPointerCast 4199 : CK_CPointerToObjCPointerCast); 4200 switch (Kind) { 4201 case OBC_Bridge: 4202 break; 4203 4204 case OBC_BridgeRetained: { 4205 bool br = isKnownName("CFBridgingRelease"); 4206 Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind) 4207 << 2 4208 << FromType 4209 << (T->isBlockPointerType()? 1 : 0) 4210 << T 4211 << SubExpr->getSourceRange() 4212 << Kind; 4213 Diag(BridgeKeywordLoc, diag::note_arc_bridge) 4214 << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge"); 4215 Diag(BridgeKeywordLoc, diag::note_arc_bridge_transfer) 4216 << FromType << br 4217 << FixItHint::CreateReplacement(BridgeKeywordLoc, 4218 br ? "CFBridgingRelease " 4219 : "__bridge_transfer "); 4220 4221 Kind = OBC_Bridge; 4222 break; 4223 } 4224 4225 case OBC_BridgeTransfer: 4226 // We must consume the Objective-C object produced by the cast. 4227 MustConsume = true; 4228 break; 4229 } 4230 } else if (T->isCARCBridgableType() && FromType->isObjCARCBridgableType()) { 4231 // Okay: id -> CF 4232 CK = CK_BitCast; 4233 switch (Kind) { 4234 case OBC_Bridge: 4235 // Reclaiming a value that's going to be __bridge-casted to CF 4236 // is very dangerous, so we don't do it. 4237 SubExpr = maybeUndoReclaimObject(SubExpr); 4238 break; 4239 4240 case OBC_BridgeRetained: 4241 // Produce the object before casting it. 4242 SubExpr = ImplicitCastExpr::Create(Context, FromType, 4243 CK_ARCProduceObject, 4244 SubExpr, nullptr, VK_RValue); 4245 break; 4246 4247 case OBC_BridgeTransfer: { 4248 bool br = isKnownName("CFBridgingRetain"); 4249 Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind) 4250 << (FromType->isBlockPointerType()? 1 : 0) 4251 << FromType 4252 << 2 4253 << T 4254 << SubExpr->getSourceRange() 4255 << Kind; 4256 4257 Diag(BridgeKeywordLoc, diag::note_arc_bridge) 4258 << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge "); 4259 Diag(BridgeKeywordLoc, diag::note_arc_bridge_retained) 4260 << T << br 4261 << FixItHint::CreateReplacement(BridgeKeywordLoc, 4262 br ? "CFBridgingRetain " : "__bridge_retained"); 4263 4264 Kind = OBC_Bridge; 4265 break; 4266 } 4267 } 4268 } else { 4269 Diag(LParenLoc, diag::err_arc_bridge_cast_incompatible) 4270 << FromType << T << Kind 4271 << SubExpr->getSourceRange() 4272 << TSInfo->getTypeLoc().getSourceRange(); 4273 return ExprError(); 4274 } 4275 4276 Expr *Result = new (Context) ObjCBridgedCastExpr(LParenLoc, Kind, CK, 4277 BridgeKeywordLoc, 4278 TSInfo, SubExpr); 4279 4280 if (MustConsume) { 4281 ExprNeedsCleanups = true; 4282 Result = ImplicitCastExpr::Create(Context, T, CK_ARCConsumeObject, Result, 4283 nullptr, VK_RValue); 4284 } 4285 4286 return Result; 4287 } 4288 4289 ExprResult Sema::ActOnObjCBridgedCast(Scope *S, 4290 SourceLocation LParenLoc, 4291 ObjCBridgeCastKind Kind, 4292 SourceLocation BridgeKeywordLoc, 4293 ParsedType Type, 4294 SourceLocation RParenLoc, 4295 Expr *SubExpr) { 4296 TypeSourceInfo *TSInfo = nullptr; 4297 QualType T = GetTypeFromParser(Type, &TSInfo); 4298 if (Kind == OBC_Bridge) 4299 CheckTollFreeBridgeCast(T, SubExpr); 4300 if (!TSInfo) 4301 TSInfo = Context.getTrivialTypeSourceInfo(T, LParenLoc); 4302 return BuildObjCBridgedCast(LParenLoc, Kind, BridgeKeywordLoc, TSInfo, 4303 SubExpr); 4304 } 4305