1 /* BFD back-end for HP PA-RISC ELF files. 2 Copyright (C) 1990-2014 Free Software Foundation, Inc. 3 4 Original code by 5 Center for Software Science 6 Department of Computer Science 7 University of Utah 8 Largely rewritten by Alan Modra <alan (at) linuxcare.com.au> 9 Naming cleanup by Carlos O'Donell <carlos (at) systemhalted.org> 10 TLS support written by Randolph Chung <tausq (at) debian.org> 11 12 This file is part of BFD, the Binary File Descriptor library. 13 14 This program is free software; you can redistribute it and/or modify 15 it under the terms of the GNU General Public License as published by 16 the Free Software Foundation; either version 3 of the License, or 17 (at your option) any later version. 18 19 This program is distributed in the hope that it will be useful, 20 but WITHOUT ANY WARRANTY; without even the implied warranty of 21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 22 GNU General Public License for more details. 23 24 You should have received a copy of the GNU General Public License 25 along with this program; if not, write to the Free Software 26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 27 MA 02110-1301, USA. */ 28 29 #include "sysdep.h" 30 #include "bfd.h" 31 #include "libbfd.h" 32 #include "elf-bfd.h" 33 #include "elf/hppa.h" 34 #include "libhppa.h" 35 #include "elf32-hppa.h" 36 #define ARCH_SIZE 32 37 #include "elf32-hppa.h" 38 #include "elf-hppa.h" 39 40 /* In order to gain some understanding of code in this file without 41 knowing all the intricate details of the linker, note the 42 following: 43 44 Functions named elf32_hppa_* are called by external routines, other 45 functions are only called locally. elf32_hppa_* functions appear 46 in this file more or less in the order in which they are called 47 from external routines. eg. elf32_hppa_check_relocs is called 48 early in the link process, elf32_hppa_finish_dynamic_sections is 49 one of the last functions. */ 50 51 /* We use two hash tables to hold information for linking PA ELF objects. 52 53 The first is the elf32_hppa_link_hash_table which is derived 54 from the standard ELF linker hash table. We use this as a place to 55 attach other hash tables and static information. 56 57 The second is the stub hash table which is derived from the 58 base BFD hash table. The stub hash table holds the information 59 necessary to build the linker stubs during a link. 60 61 There are a number of different stubs generated by the linker. 62 63 Long branch stub: 64 : ldil LR'X,%r1 65 : be,n RR'X(%sr4,%r1) 66 67 PIC long branch stub: 68 : b,l .+8,%r1 69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1 70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1) 71 72 Import stub to call shared library routine from normal object file 73 (single sub-space version) 74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point 75 : ldw RR'lt_ptr+ltoff(%r1),%r21 76 : bv %r0(%r21) 77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value. 78 79 Import stub to call shared library routine from shared library 80 (single sub-space version) 81 : addil LR'ltoff,%r19 ; get procedure entry point 82 : ldw RR'ltoff(%r1),%r21 83 : bv %r0(%r21) 84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value. 85 86 Import stub to call shared library routine from normal object file 87 (multiple sub-space support) 88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point 89 : ldw RR'lt_ptr+ltoff(%r1),%r21 90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value. 91 : ldsid (%r21),%r1 92 : mtsp %r1,%sr0 93 : be 0(%sr0,%r21) ; branch to target 94 : stw %rp,-24(%sp) ; save rp 95 96 Import stub to call shared library routine from shared library 97 (multiple sub-space support) 98 : addil LR'ltoff,%r19 ; get procedure entry point 99 : ldw RR'ltoff(%r1),%r21 100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value. 101 : ldsid (%r21),%r1 102 : mtsp %r1,%sr0 103 : be 0(%sr0,%r21) ; branch to target 104 : stw %rp,-24(%sp) ; save rp 105 106 Export stub to return from shared lib routine (multiple sub-space support) 107 One of these is created for each exported procedure in a shared 108 library (and stored in the shared lib). Shared lib routines are 109 called via the first instruction in the export stub so that we can 110 do an inter-space return. Not required for single sub-space. 111 : bl,n X,%rp ; trap the return 112 : nop 113 : ldw -24(%sp),%rp ; restore the original rp 114 : ldsid (%rp),%r1 115 : mtsp %r1,%sr0 116 : be,n 0(%sr0,%rp) ; inter-space return. */ 117 118 119 /* Variable names follow a coding style. 120 Please follow this (Apps Hungarian) style: 121 122 Structure/Variable Prefix 123 elf_link_hash_table "etab" 124 elf_link_hash_entry "eh" 125 126 elf32_hppa_link_hash_table "htab" 127 elf32_hppa_link_hash_entry "hh" 128 129 bfd_hash_table "btab" 130 bfd_hash_entry "bh" 131 132 bfd_hash_table containing stubs "bstab" 133 elf32_hppa_stub_hash_entry "hsh" 134 135 elf32_hppa_dyn_reloc_entry "hdh" 136 137 Always remember to use GNU Coding Style. */ 138 139 #define PLT_ENTRY_SIZE 8 140 #define GOT_ENTRY_SIZE 4 141 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1" 142 143 static const bfd_byte plt_stub[] = 144 { 145 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */ 146 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */ 147 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */ 148 #define PLT_STUB_ENTRY (3*4) 149 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */ 150 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */ 151 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */ 152 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */ 153 }; 154 155 /* Section name for stubs is the associated section name plus this 156 string. */ 157 #define STUB_SUFFIX ".stub" 158 159 /* We don't need to copy certain PC- or GP-relative dynamic relocs 160 into a shared object's dynamic section. All the relocs of the 161 limited class we are interested in, are absolute. */ 162 #ifndef RELATIVE_DYNRELOCS 163 #define RELATIVE_DYNRELOCS 0 164 #define IS_ABSOLUTE_RELOC(r_type) 1 165 #endif 166 167 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid 168 copying dynamic variables from a shared lib into an app's dynbss 169 section, and instead use a dynamic relocation to point into the 170 shared lib. */ 171 #define ELIMINATE_COPY_RELOCS 1 172 173 enum elf32_hppa_stub_type 174 { 175 hppa_stub_long_branch, 176 hppa_stub_long_branch_shared, 177 hppa_stub_import, 178 hppa_stub_import_shared, 179 hppa_stub_export, 180 hppa_stub_none 181 }; 182 183 struct elf32_hppa_stub_hash_entry 184 { 185 /* Base hash table entry structure. */ 186 struct bfd_hash_entry bh_root; 187 188 /* The stub section. */ 189 asection *stub_sec; 190 191 /* Offset within stub_sec of the beginning of this stub. */ 192 bfd_vma stub_offset; 193 194 /* Given the symbol's value and its section we can determine its final 195 value when building the stubs (so the stub knows where to jump. */ 196 bfd_vma target_value; 197 asection *target_section; 198 199 enum elf32_hppa_stub_type stub_type; 200 201 /* The symbol table entry, if any, that this was derived from. */ 202 struct elf32_hppa_link_hash_entry *hh; 203 204 /* Where this stub is being called from, or, in the case of combined 205 stub sections, the first input section in the group. */ 206 asection *id_sec; 207 }; 208 209 struct elf32_hppa_link_hash_entry 210 { 211 struct elf_link_hash_entry eh; 212 213 /* A pointer to the most recently used stub hash entry against this 214 symbol. */ 215 struct elf32_hppa_stub_hash_entry *hsh_cache; 216 217 /* Used to count relocations for delayed sizing of relocation 218 sections. */ 219 struct elf32_hppa_dyn_reloc_entry 220 { 221 /* Next relocation in the chain. */ 222 struct elf32_hppa_dyn_reloc_entry *hdh_next; 223 224 /* The input section of the reloc. */ 225 asection *sec; 226 227 /* Number of relocs copied in this section. */ 228 bfd_size_type count; 229 230 #if RELATIVE_DYNRELOCS 231 /* Number of relative relocs copied for the input section. */ 232 bfd_size_type relative_count; 233 #endif 234 } *dyn_relocs; 235 236 enum 237 { 238 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8 239 } tls_type; 240 241 /* Set if this symbol is used by a plabel reloc. */ 242 unsigned int plabel:1; 243 }; 244 245 struct elf32_hppa_link_hash_table 246 { 247 /* The main hash table. */ 248 struct elf_link_hash_table etab; 249 250 /* The stub hash table. */ 251 struct bfd_hash_table bstab; 252 253 /* Linker stub bfd. */ 254 bfd *stub_bfd; 255 256 /* Linker call-backs. */ 257 asection * (*add_stub_section) (const char *, asection *); 258 void (*layout_sections_again) (void); 259 260 /* Array to keep track of which stub sections have been created, and 261 information on stub grouping. */ 262 struct map_stub 263 { 264 /* This is the section to which stubs in the group will be 265 attached. */ 266 asection *link_sec; 267 /* The stub section. */ 268 asection *stub_sec; 269 } *stub_group; 270 271 /* Assorted information used by elf32_hppa_size_stubs. */ 272 unsigned int bfd_count; 273 int top_index; 274 asection **input_list; 275 Elf_Internal_Sym **all_local_syms; 276 277 /* Short-cuts to get to dynamic linker sections. */ 278 asection *sgot; 279 asection *srelgot; 280 asection *splt; 281 asection *srelplt; 282 asection *sdynbss; 283 asection *srelbss; 284 285 /* Used during a final link to store the base of the text and data 286 segments so that we can perform SEGREL relocations. */ 287 bfd_vma text_segment_base; 288 bfd_vma data_segment_base; 289 290 /* Whether we support multiple sub-spaces for shared libs. */ 291 unsigned int multi_subspace:1; 292 293 /* Flags set when various size branches are detected. Used to 294 select suitable defaults for the stub group size. */ 295 unsigned int has_12bit_branch:1; 296 unsigned int has_17bit_branch:1; 297 unsigned int has_22bit_branch:1; 298 299 /* Set if we need a .plt stub to support lazy dynamic linking. */ 300 unsigned int need_plt_stub:1; 301 302 /* Small local sym cache. */ 303 struct sym_cache sym_cache; 304 305 /* Data for LDM relocations. */ 306 union 307 { 308 bfd_signed_vma refcount; 309 bfd_vma offset; 310 } tls_ldm_got; 311 }; 312 313 /* Various hash macros and functions. */ 314 #define hppa_link_hash_table(p) \ 315 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ 316 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL) 317 318 #define hppa_elf_hash_entry(ent) \ 319 ((struct elf32_hppa_link_hash_entry *)(ent)) 320 321 #define hppa_stub_hash_entry(ent) \ 322 ((struct elf32_hppa_stub_hash_entry *)(ent)) 323 324 #define hppa_stub_hash_lookup(table, string, create, copy) \ 325 ((struct elf32_hppa_stub_hash_entry *) \ 326 bfd_hash_lookup ((table), (string), (create), (copy))) 327 328 #define hppa_elf_local_got_tls_type(abfd) \ 329 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2))) 330 331 #define hh_name(hh) \ 332 (hh ? hh->eh.root.root.string : "<undef>") 333 334 #define eh_name(eh) \ 335 (eh ? eh->root.root.string : "<undef>") 336 337 /* Assorted hash table functions. */ 338 339 /* Initialize an entry in the stub hash table. */ 340 341 static struct bfd_hash_entry * 342 stub_hash_newfunc (struct bfd_hash_entry *entry, 343 struct bfd_hash_table *table, 344 const char *string) 345 { 346 /* Allocate the structure if it has not already been allocated by a 347 subclass. */ 348 if (entry == NULL) 349 { 350 entry = bfd_hash_allocate (table, 351 sizeof (struct elf32_hppa_stub_hash_entry)); 352 if (entry == NULL) 353 return entry; 354 } 355 356 /* Call the allocation method of the superclass. */ 357 entry = bfd_hash_newfunc (entry, table, string); 358 if (entry != NULL) 359 { 360 struct elf32_hppa_stub_hash_entry *hsh; 361 362 /* Initialize the local fields. */ 363 hsh = hppa_stub_hash_entry (entry); 364 hsh->stub_sec = NULL; 365 hsh->stub_offset = 0; 366 hsh->target_value = 0; 367 hsh->target_section = NULL; 368 hsh->stub_type = hppa_stub_long_branch; 369 hsh->hh = NULL; 370 hsh->id_sec = NULL; 371 } 372 373 return entry; 374 } 375 376 /* Initialize an entry in the link hash table. */ 377 378 static struct bfd_hash_entry * 379 hppa_link_hash_newfunc (struct bfd_hash_entry *entry, 380 struct bfd_hash_table *table, 381 const char *string) 382 { 383 /* Allocate the structure if it has not already been allocated by a 384 subclass. */ 385 if (entry == NULL) 386 { 387 entry = bfd_hash_allocate (table, 388 sizeof (struct elf32_hppa_link_hash_entry)); 389 if (entry == NULL) 390 return entry; 391 } 392 393 /* Call the allocation method of the superclass. */ 394 entry = _bfd_elf_link_hash_newfunc (entry, table, string); 395 if (entry != NULL) 396 { 397 struct elf32_hppa_link_hash_entry *hh; 398 399 /* Initialize the local fields. */ 400 hh = hppa_elf_hash_entry (entry); 401 hh->hsh_cache = NULL; 402 hh->dyn_relocs = NULL; 403 hh->plabel = 0; 404 hh->tls_type = GOT_UNKNOWN; 405 } 406 407 return entry; 408 } 409 410 /* Free the derived linker hash table. */ 411 412 static void 413 elf32_hppa_link_hash_table_free (bfd *obfd) 414 { 415 struct elf32_hppa_link_hash_table *htab 416 = (struct elf32_hppa_link_hash_table *) obfd->link.hash; 417 418 bfd_hash_table_free (&htab->bstab); 419 _bfd_elf_link_hash_table_free (obfd); 420 } 421 422 /* Create the derived linker hash table. The PA ELF port uses the derived 423 hash table to keep information specific to the PA ELF linker (without 424 using static variables). */ 425 426 static struct bfd_link_hash_table * 427 elf32_hppa_link_hash_table_create (bfd *abfd) 428 { 429 struct elf32_hppa_link_hash_table *htab; 430 bfd_size_type amt = sizeof (*htab); 431 432 htab = bfd_zmalloc (amt); 433 if (htab == NULL) 434 return NULL; 435 436 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc, 437 sizeof (struct elf32_hppa_link_hash_entry), 438 HPPA32_ELF_DATA)) 439 { 440 free (htab); 441 return NULL; 442 } 443 444 /* Init the stub hash table too. */ 445 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc, 446 sizeof (struct elf32_hppa_stub_hash_entry))) 447 { 448 _bfd_elf_link_hash_table_free (abfd); 449 return NULL; 450 } 451 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free; 452 453 htab->text_segment_base = (bfd_vma) -1; 454 htab->data_segment_base = (bfd_vma) -1; 455 return &htab->etab.root; 456 } 457 458 /* Build a name for an entry in the stub hash table. */ 459 460 static char * 461 hppa_stub_name (const asection *input_section, 462 const asection *sym_sec, 463 const struct elf32_hppa_link_hash_entry *hh, 464 const Elf_Internal_Rela *rela) 465 { 466 char *stub_name; 467 bfd_size_type len; 468 469 if (hh) 470 { 471 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1; 472 stub_name = bfd_malloc (len); 473 if (stub_name != NULL) 474 sprintf (stub_name, "%08x_%s+%x", 475 input_section->id & 0xffffffff, 476 hh_name (hh), 477 (int) rela->r_addend & 0xffffffff); 478 } 479 else 480 { 481 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1; 482 stub_name = bfd_malloc (len); 483 if (stub_name != NULL) 484 sprintf (stub_name, "%08x_%x:%x+%x", 485 input_section->id & 0xffffffff, 486 sym_sec->id & 0xffffffff, 487 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff, 488 (int) rela->r_addend & 0xffffffff); 489 } 490 return stub_name; 491 } 492 493 /* Look up an entry in the stub hash. Stub entries are cached because 494 creating the stub name takes a bit of time. */ 495 496 static struct elf32_hppa_stub_hash_entry * 497 hppa_get_stub_entry (const asection *input_section, 498 const asection *sym_sec, 499 struct elf32_hppa_link_hash_entry *hh, 500 const Elf_Internal_Rela *rela, 501 struct elf32_hppa_link_hash_table *htab) 502 { 503 struct elf32_hppa_stub_hash_entry *hsh_entry; 504 const asection *id_sec; 505 506 /* If this input section is part of a group of sections sharing one 507 stub section, then use the id of the first section in the group. 508 Stub names need to include a section id, as there may well be 509 more than one stub used to reach say, printf, and we need to 510 distinguish between them. */ 511 id_sec = htab->stub_group[input_section->id].link_sec; 512 513 if (hh != NULL && hh->hsh_cache != NULL 514 && hh->hsh_cache->hh == hh 515 && hh->hsh_cache->id_sec == id_sec) 516 { 517 hsh_entry = hh->hsh_cache; 518 } 519 else 520 { 521 char *stub_name; 522 523 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela); 524 if (stub_name == NULL) 525 return NULL; 526 527 hsh_entry = hppa_stub_hash_lookup (&htab->bstab, 528 stub_name, FALSE, FALSE); 529 if (hh != NULL) 530 hh->hsh_cache = hsh_entry; 531 532 free (stub_name); 533 } 534 535 return hsh_entry; 536 } 537 538 /* Add a new stub entry to the stub hash. Not all fields of the new 539 stub entry are initialised. */ 540 541 static struct elf32_hppa_stub_hash_entry * 542 hppa_add_stub (const char *stub_name, 543 asection *section, 544 struct elf32_hppa_link_hash_table *htab) 545 { 546 asection *link_sec; 547 asection *stub_sec; 548 struct elf32_hppa_stub_hash_entry *hsh; 549 550 link_sec = htab->stub_group[section->id].link_sec; 551 stub_sec = htab->stub_group[section->id].stub_sec; 552 if (stub_sec == NULL) 553 { 554 stub_sec = htab->stub_group[link_sec->id].stub_sec; 555 if (stub_sec == NULL) 556 { 557 size_t namelen; 558 bfd_size_type len; 559 char *s_name; 560 561 namelen = strlen (link_sec->name); 562 len = namelen + sizeof (STUB_SUFFIX); 563 s_name = bfd_alloc (htab->stub_bfd, len); 564 if (s_name == NULL) 565 return NULL; 566 567 memcpy (s_name, link_sec->name, namelen); 568 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX)); 569 stub_sec = (*htab->add_stub_section) (s_name, link_sec); 570 if (stub_sec == NULL) 571 return NULL; 572 htab->stub_group[link_sec->id].stub_sec = stub_sec; 573 } 574 htab->stub_group[section->id].stub_sec = stub_sec; 575 } 576 577 /* Enter this entry into the linker stub hash table. */ 578 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name, 579 TRUE, FALSE); 580 if (hsh == NULL) 581 { 582 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"), 583 section->owner, 584 stub_name); 585 return NULL; 586 } 587 588 hsh->stub_sec = stub_sec; 589 hsh->stub_offset = 0; 590 hsh->id_sec = link_sec; 591 return hsh; 592 } 593 594 /* Determine the type of stub needed, if any, for a call. */ 595 596 static enum elf32_hppa_stub_type 597 hppa_type_of_stub (asection *input_sec, 598 const Elf_Internal_Rela *rela, 599 struct elf32_hppa_link_hash_entry *hh, 600 bfd_vma destination, 601 struct bfd_link_info *info) 602 { 603 bfd_vma location; 604 bfd_vma branch_offset; 605 bfd_vma max_branch_offset; 606 unsigned int r_type; 607 608 if (hh != NULL 609 && hh->eh.plt.offset != (bfd_vma) -1 610 && hh->eh.dynindx != -1 611 && !hh->plabel 612 && (info->shared 613 || !hh->eh.def_regular 614 || hh->eh.root.type == bfd_link_hash_defweak)) 615 { 616 /* We need an import stub. Decide between hppa_stub_import 617 and hppa_stub_import_shared later. */ 618 return hppa_stub_import; 619 } 620 621 /* Determine where the call point is. */ 622 location = (input_sec->output_offset 623 + input_sec->output_section->vma 624 + rela->r_offset); 625 626 branch_offset = destination - location - 8; 627 r_type = ELF32_R_TYPE (rela->r_info); 628 629 /* Determine if a long branch stub is needed. parisc branch offsets 630 are relative to the second instruction past the branch, ie. +8 631 bytes on from the branch instruction location. The offset is 632 signed and counts in units of 4 bytes. */ 633 if (r_type == (unsigned int) R_PARISC_PCREL17F) 634 max_branch_offset = (1 << (17 - 1)) << 2; 635 636 else if (r_type == (unsigned int) R_PARISC_PCREL12F) 637 max_branch_offset = (1 << (12 - 1)) << 2; 638 639 else /* R_PARISC_PCREL22F. */ 640 max_branch_offset = (1 << (22 - 1)) << 2; 641 642 if (branch_offset + max_branch_offset >= 2*max_branch_offset) 643 return hppa_stub_long_branch; 644 645 return hppa_stub_none; 646 } 647 648 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY. 649 IN_ARG contains the link info pointer. */ 650 651 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */ 652 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */ 653 654 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */ 655 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */ 656 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */ 657 658 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */ 659 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */ 660 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */ 661 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */ 662 663 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */ 664 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */ 665 666 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */ 667 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */ 668 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */ 669 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */ 670 671 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */ 672 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */ 673 #define NOP 0x08000240 /* nop */ 674 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */ 675 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */ 676 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */ 677 678 #ifndef R19_STUBS 679 #define R19_STUBS 1 680 #endif 681 682 #if R19_STUBS 683 #define LDW_R1_DLT LDW_R1_R19 684 #else 685 #define LDW_R1_DLT LDW_R1_DP 686 #endif 687 688 static bfd_boolean 689 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg) 690 { 691 struct elf32_hppa_stub_hash_entry *hsh; 692 struct bfd_link_info *info; 693 struct elf32_hppa_link_hash_table *htab; 694 asection *stub_sec; 695 bfd *stub_bfd; 696 bfd_byte *loc; 697 bfd_vma sym_value; 698 bfd_vma insn; 699 bfd_vma off; 700 int val; 701 int size; 702 703 /* Massage our args to the form they really have. */ 704 hsh = hppa_stub_hash_entry (bh); 705 info = (struct bfd_link_info *)in_arg; 706 707 htab = hppa_link_hash_table (info); 708 if (htab == NULL) 709 return FALSE; 710 711 stub_sec = hsh->stub_sec; 712 713 /* Make a note of the offset within the stubs for this entry. */ 714 hsh->stub_offset = stub_sec->size; 715 loc = stub_sec->contents + hsh->stub_offset; 716 717 stub_bfd = stub_sec->owner; 718 719 switch (hsh->stub_type) 720 { 721 case hppa_stub_long_branch: 722 /* Create the long branch. A long branch is formed with "ldil" 723 loading the upper bits of the target address into a register, 724 then branching with "be" which adds in the lower bits. 725 The "be" has its delay slot nullified. */ 726 sym_value = (hsh->target_value 727 + hsh->target_section->output_offset 728 + hsh->target_section->output_section->vma); 729 730 val = hppa_field_adjust (sym_value, 0, e_lrsel); 731 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21); 732 bfd_put_32 (stub_bfd, insn, loc); 733 734 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2; 735 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17); 736 bfd_put_32 (stub_bfd, insn, loc + 4); 737 738 size = 8; 739 break; 740 741 case hppa_stub_long_branch_shared: 742 /* Branches are relative. This is where we are going to. */ 743 sym_value = (hsh->target_value 744 + hsh->target_section->output_offset 745 + hsh->target_section->output_section->vma); 746 747 /* And this is where we are coming from, more or less. */ 748 sym_value -= (hsh->stub_offset 749 + stub_sec->output_offset 750 + stub_sec->output_section->vma); 751 752 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc); 753 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel); 754 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21); 755 bfd_put_32 (stub_bfd, insn, loc + 4); 756 757 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2; 758 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17); 759 bfd_put_32 (stub_bfd, insn, loc + 8); 760 size = 12; 761 break; 762 763 case hppa_stub_import: 764 case hppa_stub_import_shared: 765 off = hsh->hh->eh.plt.offset; 766 if (off >= (bfd_vma) -2) 767 abort (); 768 769 off &= ~ (bfd_vma) 1; 770 sym_value = (off 771 + htab->splt->output_offset 772 + htab->splt->output_section->vma 773 - elf_gp (htab->splt->output_section->owner)); 774 775 insn = ADDIL_DP; 776 #if R19_STUBS 777 if (hsh->stub_type == hppa_stub_import_shared) 778 insn = ADDIL_R19; 779 #endif 780 val = hppa_field_adjust (sym_value, 0, e_lrsel), 781 insn = hppa_rebuild_insn ((int) insn, val, 21); 782 bfd_put_32 (stub_bfd, insn, loc); 783 784 /* It is critical to use lrsel/rrsel here because we are using 785 two different offsets (+0 and +4) from sym_value. If we use 786 lsel/rsel then with unfortunate sym_values we will round 787 sym_value+4 up to the next 2k block leading to a mis-match 788 between the lsel and rsel value. */ 789 val = hppa_field_adjust (sym_value, 0, e_rrsel); 790 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14); 791 bfd_put_32 (stub_bfd, insn, loc + 4); 792 793 if (htab->multi_subspace) 794 { 795 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel); 796 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14); 797 bfd_put_32 (stub_bfd, insn, loc + 8); 798 799 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12); 800 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16); 801 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20); 802 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24); 803 804 size = 28; 805 } 806 else 807 { 808 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8); 809 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel); 810 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14); 811 bfd_put_32 (stub_bfd, insn, loc + 12); 812 813 size = 16; 814 } 815 816 break; 817 818 case hppa_stub_export: 819 /* Branches are relative. This is where we are going to. */ 820 sym_value = (hsh->target_value 821 + hsh->target_section->output_offset 822 + hsh->target_section->output_section->vma); 823 824 /* And this is where we are coming from. */ 825 sym_value -= (hsh->stub_offset 826 + stub_sec->output_offset 827 + stub_sec->output_section->vma); 828 829 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2)) 830 && (!htab->has_22bit_branch 831 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2)))) 832 { 833 (*_bfd_error_handler) 834 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"), 835 hsh->target_section->owner, 836 stub_sec, 837 (long) hsh->stub_offset, 838 hsh->bh_root.string); 839 bfd_set_error (bfd_error_bad_value); 840 return FALSE; 841 } 842 843 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2; 844 if (!htab->has_22bit_branch) 845 insn = hppa_rebuild_insn ((int) BL_RP, val, 17); 846 else 847 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22); 848 bfd_put_32 (stub_bfd, insn, loc); 849 850 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4); 851 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8); 852 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12); 853 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16); 854 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20); 855 856 /* Point the function symbol at the stub. */ 857 hsh->hh->eh.root.u.def.section = stub_sec; 858 hsh->hh->eh.root.u.def.value = stub_sec->size; 859 860 size = 24; 861 break; 862 863 default: 864 BFD_FAIL (); 865 return FALSE; 866 } 867 868 stub_sec->size += size; 869 return TRUE; 870 } 871 872 #undef LDIL_R1 873 #undef BE_SR4_R1 874 #undef BL_R1 875 #undef ADDIL_R1 876 #undef DEPI_R1 877 #undef LDW_R1_R21 878 #undef LDW_R1_DLT 879 #undef LDW_R1_R19 880 #undef ADDIL_R19 881 #undef LDW_R1_DP 882 #undef LDSID_R21_R1 883 #undef MTSP_R1 884 #undef BE_SR0_R21 885 #undef STW_RP 886 #undef BV_R0_R21 887 #undef BL_RP 888 #undef NOP 889 #undef LDW_RP 890 #undef LDSID_RP_R1 891 #undef BE_SR0_RP 892 893 /* As above, but don't actually build the stub. Just bump offset so 894 we know stub section sizes. */ 895 896 static bfd_boolean 897 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg) 898 { 899 struct elf32_hppa_stub_hash_entry *hsh; 900 struct elf32_hppa_link_hash_table *htab; 901 int size; 902 903 /* Massage our args to the form they really have. */ 904 hsh = hppa_stub_hash_entry (bh); 905 htab = in_arg; 906 907 if (hsh->stub_type == hppa_stub_long_branch) 908 size = 8; 909 else if (hsh->stub_type == hppa_stub_long_branch_shared) 910 size = 12; 911 else if (hsh->stub_type == hppa_stub_export) 912 size = 24; 913 else /* hppa_stub_import or hppa_stub_import_shared. */ 914 { 915 if (htab->multi_subspace) 916 size = 28; 917 else 918 size = 16; 919 } 920 921 hsh->stub_sec->size += size; 922 return TRUE; 923 } 924 925 /* Return nonzero if ABFD represents an HPPA ELF32 file. 926 Additionally we set the default architecture and machine. */ 927 928 static bfd_boolean 929 elf32_hppa_object_p (bfd *abfd) 930 { 931 Elf_Internal_Ehdr * i_ehdrp; 932 unsigned int flags; 933 934 i_ehdrp = elf_elfheader (abfd); 935 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0) 936 { 937 /* GCC on hppa-linux produces binaries with OSABI=GNU, 938 but the kernel produces corefiles with OSABI=SysV. */ 939 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU && 940 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */ 941 return FALSE; 942 } 943 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0) 944 { 945 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD, 946 but the kernel produces corefiles with OSABI=SysV. */ 947 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD && 948 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */ 949 return FALSE; 950 } 951 else 952 { 953 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX) 954 return FALSE; 955 } 956 957 flags = i_ehdrp->e_flags; 958 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE)) 959 { 960 case EFA_PARISC_1_0: 961 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10); 962 case EFA_PARISC_1_1: 963 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11); 964 case EFA_PARISC_2_0: 965 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20); 966 case EFA_PARISC_2_0 | EF_PARISC_WIDE: 967 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25); 968 } 969 return TRUE; 970 } 971 972 /* Create the .plt and .got sections, and set up our hash table 973 short-cuts to various dynamic sections. */ 974 975 static bfd_boolean 976 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) 977 { 978 struct elf32_hppa_link_hash_table *htab; 979 struct elf_link_hash_entry *eh; 980 981 /* Don't try to create the .plt and .got twice. */ 982 htab = hppa_link_hash_table (info); 983 if (htab == NULL) 984 return FALSE; 985 if (htab->splt != NULL) 986 return TRUE; 987 988 /* Call the generic code to do most of the work. */ 989 if (! _bfd_elf_create_dynamic_sections (abfd, info)) 990 return FALSE; 991 992 htab->splt = bfd_get_linker_section (abfd, ".plt"); 993 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt"); 994 995 htab->sgot = bfd_get_linker_section (abfd, ".got"); 996 htab->srelgot = bfd_get_linker_section (abfd, ".rela.got"); 997 998 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss"); 999 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss"); 1000 1001 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main 1002 application, because __canonicalize_funcptr_for_compare needs it. */ 1003 eh = elf_hash_table (info)->hgot; 1004 eh->forced_local = 0; 1005 eh->other = STV_DEFAULT; 1006 return bfd_elf_link_record_dynamic_symbol (info, eh); 1007 } 1008 1009 /* Copy the extra info we tack onto an elf_link_hash_entry. */ 1010 1011 static void 1012 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info, 1013 struct elf_link_hash_entry *eh_dir, 1014 struct elf_link_hash_entry *eh_ind) 1015 { 1016 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind; 1017 1018 hh_dir = hppa_elf_hash_entry (eh_dir); 1019 hh_ind = hppa_elf_hash_entry (eh_ind); 1020 1021 if (hh_ind->dyn_relocs != NULL) 1022 { 1023 if (hh_dir->dyn_relocs != NULL) 1024 { 1025 struct elf32_hppa_dyn_reloc_entry **hdh_pp; 1026 struct elf32_hppa_dyn_reloc_entry *hdh_p; 1027 1028 /* Add reloc counts against the indirect sym to the direct sym 1029 list. Merge any entries against the same section. */ 1030 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; ) 1031 { 1032 struct elf32_hppa_dyn_reloc_entry *hdh_q; 1033 1034 for (hdh_q = hh_dir->dyn_relocs; 1035 hdh_q != NULL; 1036 hdh_q = hdh_q->hdh_next) 1037 if (hdh_q->sec == hdh_p->sec) 1038 { 1039 #if RELATIVE_DYNRELOCS 1040 hdh_q->relative_count += hdh_p->relative_count; 1041 #endif 1042 hdh_q->count += hdh_p->count; 1043 *hdh_pp = hdh_p->hdh_next; 1044 break; 1045 } 1046 if (hdh_q == NULL) 1047 hdh_pp = &hdh_p->hdh_next; 1048 } 1049 *hdh_pp = hh_dir->dyn_relocs; 1050 } 1051 1052 hh_dir->dyn_relocs = hh_ind->dyn_relocs; 1053 hh_ind->dyn_relocs = NULL; 1054 } 1055 1056 if (ELIMINATE_COPY_RELOCS 1057 && eh_ind->root.type != bfd_link_hash_indirect 1058 && eh_dir->dynamic_adjusted) 1059 { 1060 /* If called to transfer flags for a weakdef during processing 1061 of elf_adjust_dynamic_symbol, don't copy non_got_ref. 1062 We clear it ourselves for ELIMINATE_COPY_RELOCS. */ 1063 eh_dir->ref_dynamic |= eh_ind->ref_dynamic; 1064 eh_dir->ref_regular |= eh_ind->ref_regular; 1065 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak; 1066 eh_dir->needs_plt |= eh_ind->needs_plt; 1067 } 1068 else 1069 { 1070 if (eh_ind->root.type == bfd_link_hash_indirect 1071 && eh_dir->got.refcount <= 0) 1072 { 1073 hh_dir->tls_type = hh_ind->tls_type; 1074 hh_ind->tls_type = GOT_UNKNOWN; 1075 } 1076 1077 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind); 1078 } 1079 } 1080 1081 static int 1082 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED, 1083 int r_type, int is_local ATTRIBUTE_UNUSED) 1084 { 1085 /* For now we don't support linker optimizations. */ 1086 return r_type; 1087 } 1088 1089 /* Return a pointer to the local GOT, PLT and TLS reference counts 1090 for ABFD. Returns NULL if the storage allocation fails. */ 1091 1092 static bfd_signed_vma * 1093 hppa32_elf_local_refcounts (bfd *abfd) 1094 { 1095 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 1096 bfd_signed_vma *local_refcounts; 1097 1098 local_refcounts = elf_local_got_refcounts (abfd); 1099 if (local_refcounts == NULL) 1100 { 1101 bfd_size_type size; 1102 1103 /* Allocate space for local GOT and PLT reference 1104 counts. Done this way to save polluting elf_obj_tdata 1105 with another target specific pointer. */ 1106 size = symtab_hdr->sh_info; 1107 size *= 2 * sizeof (bfd_signed_vma); 1108 /* Add in space to store the local GOT TLS types. */ 1109 size += symtab_hdr->sh_info; 1110 local_refcounts = bfd_zalloc (abfd, size); 1111 if (local_refcounts == NULL) 1112 return NULL; 1113 elf_local_got_refcounts (abfd) = local_refcounts; 1114 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN, 1115 symtab_hdr->sh_info); 1116 } 1117 return local_refcounts; 1118 } 1119 1120 1121 /* Look through the relocs for a section during the first phase, and 1122 calculate needed space in the global offset table, procedure linkage 1123 table, and dynamic reloc sections. At this point we haven't 1124 necessarily read all the input files. */ 1125 1126 static bfd_boolean 1127 elf32_hppa_check_relocs (bfd *abfd, 1128 struct bfd_link_info *info, 1129 asection *sec, 1130 const Elf_Internal_Rela *relocs) 1131 { 1132 Elf_Internal_Shdr *symtab_hdr; 1133 struct elf_link_hash_entry **eh_syms; 1134 const Elf_Internal_Rela *rela; 1135 const Elf_Internal_Rela *rela_end; 1136 struct elf32_hppa_link_hash_table *htab; 1137 asection *sreloc; 1138 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN; 1139 1140 if (info->relocatable) 1141 return TRUE; 1142 1143 htab = hppa_link_hash_table (info); 1144 if (htab == NULL) 1145 return FALSE; 1146 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 1147 eh_syms = elf_sym_hashes (abfd); 1148 sreloc = NULL; 1149 1150 rela_end = relocs + sec->reloc_count; 1151 for (rela = relocs; rela < rela_end; rela++) 1152 { 1153 enum { 1154 NEED_GOT = 1, 1155 NEED_PLT = 2, 1156 NEED_DYNREL = 4, 1157 PLT_PLABEL = 8 1158 }; 1159 1160 unsigned int r_symndx, r_type; 1161 struct elf32_hppa_link_hash_entry *hh; 1162 int need_entry = 0; 1163 1164 r_symndx = ELF32_R_SYM (rela->r_info); 1165 1166 if (r_symndx < symtab_hdr->sh_info) 1167 hh = NULL; 1168 else 1169 { 1170 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]); 1171 while (hh->eh.root.type == bfd_link_hash_indirect 1172 || hh->eh.root.type == bfd_link_hash_warning) 1173 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link); 1174 1175 /* PR15323, ref flags aren't set for references in the same 1176 object. */ 1177 hh->eh.root.non_ir_ref = 1; 1178 } 1179 1180 r_type = ELF32_R_TYPE (rela->r_info); 1181 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL); 1182 1183 switch (r_type) 1184 { 1185 case R_PARISC_DLTIND14F: 1186 case R_PARISC_DLTIND14R: 1187 case R_PARISC_DLTIND21L: 1188 /* This symbol requires a global offset table entry. */ 1189 need_entry = NEED_GOT; 1190 break; 1191 1192 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */ 1193 case R_PARISC_PLABEL21L: 1194 case R_PARISC_PLABEL32: 1195 /* If the addend is non-zero, we break badly. */ 1196 if (rela->r_addend != 0) 1197 abort (); 1198 1199 /* If we are creating a shared library, then we need to 1200 create a PLT entry for all PLABELs, because PLABELs with 1201 local symbols may be passed via a pointer to another 1202 object. Additionally, output a dynamic relocation 1203 pointing to the PLT entry. 1204 1205 For executables, the original 32-bit ABI allowed two 1206 different styles of PLABELs (function pointers): For 1207 global functions, the PLABEL word points into the .plt 1208 two bytes past a (function address, gp) pair, and for 1209 local functions the PLABEL points directly at the 1210 function. The magic +2 for the first type allows us to 1211 differentiate between the two. As you can imagine, this 1212 is a real pain when it comes to generating code to call 1213 functions indirectly or to compare function pointers. 1214 We avoid the mess by always pointing a PLABEL into the 1215 .plt, even for local functions. */ 1216 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL; 1217 break; 1218 1219 case R_PARISC_PCREL12F: 1220 htab->has_12bit_branch = 1; 1221 goto branch_common; 1222 1223 case R_PARISC_PCREL17C: 1224 case R_PARISC_PCREL17F: 1225 htab->has_17bit_branch = 1; 1226 goto branch_common; 1227 1228 case R_PARISC_PCREL22F: 1229 htab->has_22bit_branch = 1; 1230 branch_common: 1231 /* Function calls might need to go through the .plt, and 1232 might require long branch stubs. */ 1233 if (hh == NULL) 1234 { 1235 /* We know local syms won't need a .plt entry, and if 1236 they need a long branch stub we can't guarantee that 1237 we can reach the stub. So just flag an error later 1238 if we're doing a shared link and find we need a long 1239 branch stub. */ 1240 continue; 1241 } 1242 else 1243 { 1244 /* Global symbols will need a .plt entry if they remain 1245 global, and in most cases won't need a long branch 1246 stub. Unfortunately, we have to cater for the case 1247 where a symbol is forced local by versioning, or due 1248 to symbolic linking, and we lose the .plt entry. */ 1249 need_entry = NEED_PLT; 1250 if (hh->eh.type == STT_PARISC_MILLI) 1251 need_entry = 0; 1252 } 1253 break; 1254 1255 case R_PARISC_SEGBASE: /* Used to set segment base. */ 1256 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */ 1257 case R_PARISC_PCREL14F: /* PC relative load/store. */ 1258 case R_PARISC_PCREL14R: 1259 case R_PARISC_PCREL17R: /* External branches. */ 1260 case R_PARISC_PCREL21L: /* As above, and for load/store too. */ 1261 case R_PARISC_PCREL32: 1262 /* We don't need to propagate the relocation if linking a 1263 shared object since these are section relative. */ 1264 continue; 1265 1266 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */ 1267 case R_PARISC_DPREL14R: 1268 case R_PARISC_DPREL21L: 1269 if (info->shared) 1270 { 1271 (*_bfd_error_handler) 1272 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"), 1273 abfd, 1274 elf_hppa_howto_table[r_type].name); 1275 bfd_set_error (bfd_error_bad_value); 1276 return FALSE; 1277 } 1278 /* Fall through. */ 1279 1280 case R_PARISC_DIR17F: /* Used for external branches. */ 1281 case R_PARISC_DIR17R: 1282 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */ 1283 case R_PARISC_DIR14R: 1284 case R_PARISC_DIR21L: /* As above, and for ext branches too. */ 1285 case R_PARISC_DIR32: /* .word relocs. */ 1286 /* We may want to output a dynamic relocation later. */ 1287 need_entry = NEED_DYNREL; 1288 break; 1289 1290 /* This relocation describes the C++ object vtable hierarchy. 1291 Reconstruct it for later use during GC. */ 1292 case R_PARISC_GNU_VTINHERIT: 1293 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset)) 1294 return FALSE; 1295 continue; 1296 1297 /* This relocation describes which C++ vtable entries are actually 1298 used. Record for later use during GC. */ 1299 case R_PARISC_GNU_VTENTRY: 1300 BFD_ASSERT (hh != NULL); 1301 if (hh != NULL 1302 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend)) 1303 return FALSE; 1304 continue; 1305 1306 case R_PARISC_TLS_GD21L: 1307 case R_PARISC_TLS_GD14R: 1308 case R_PARISC_TLS_LDM21L: 1309 case R_PARISC_TLS_LDM14R: 1310 need_entry = NEED_GOT; 1311 break; 1312 1313 case R_PARISC_TLS_IE21L: 1314 case R_PARISC_TLS_IE14R: 1315 if (info->shared) 1316 info->flags |= DF_STATIC_TLS; 1317 need_entry = NEED_GOT; 1318 break; 1319 1320 default: 1321 continue; 1322 } 1323 1324 /* Now carry out our orders. */ 1325 if (need_entry & NEED_GOT) 1326 { 1327 switch (r_type) 1328 { 1329 default: 1330 tls_type = GOT_NORMAL; 1331 break; 1332 case R_PARISC_TLS_GD21L: 1333 case R_PARISC_TLS_GD14R: 1334 tls_type |= GOT_TLS_GD; 1335 break; 1336 case R_PARISC_TLS_LDM21L: 1337 case R_PARISC_TLS_LDM14R: 1338 tls_type |= GOT_TLS_LDM; 1339 break; 1340 case R_PARISC_TLS_IE21L: 1341 case R_PARISC_TLS_IE14R: 1342 tls_type |= GOT_TLS_IE; 1343 break; 1344 } 1345 1346 /* Allocate space for a GOT entry, as well as a dynamic 1347 relocation for this entry. */ 1348 if (htab->sgot == NULL) 1349 { 1350 if (htab->etab.dynobj == NULL) 1351 htab->etab.dynobj = abfd; 1352 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info)) 1353 return FALSE; 1354 } 1355 1356 if (r_type == R_PARISC_TLS_LDM21L 1357 || r_type == R_PARISC_TLS_LDM14R) 1358 htab->tls_ldm_got.refcount += 1; 1359 else 1360 { 1361 if (hh != NULL) 1362 { 1363 hh->eh.got.refcount += 1; 1364 old_tls_type = hh->tls_type; 1365 } 1366 else 1367 { 1368 bfd_signed_vma *local_got_refcounts; 1369 1370 /* This is a global offset table entry for a local symbol. */ 1371 local_got_refcounts = hppa32_elf_local_refcounts (abfd); 1372 if (local_got_refcounts == NULL) 1373 return FALSE; 1374 local_got_refcounts[r_symndx] += 1; 1375 1376 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx]; 1377 } 1378 1379 tls_type |= old_tls_type; 1380 1381 if (old_tls_type != tls_type) 1382 { 1383 if (hh != NULL) 1384 hh->tls_type = tls_type; 1385 else 1386 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type; 1387 } 1388 1389 } 1390 } 1391 1392 if (need_entry & NEED_PLT) 1393 { 1394 /* If we are creating a shared library, and this is a reloc 1395 against a weak symbol or a global symbol in a dynamic 1396 object, then we will be creating an import stub and a 1397 .plt entry for the symbol. Similarly, on a normal link 1398 to symbols defined in a dynamic object we'll need the 1399 import stub and a .plt entry. We don't know yet whether 1400 the symbol is defined or not, so make an entry anyway and 1401 clean up later in adjust_dynamic_symbol. */ 1402 if ((sec->flags & SEC_ALLOC) != 0) 1403 { 1404 if (hh != NULL) 1405 { 1406 hh->eh.needs_plt = 1; 1407 hh->eh.plt.refcount += 1; 1408 1409 /* If this .plt entry is for a plabel, mark it so 1410 that adjust_dynamic_symbol will keep the entry 1411 even if it appears to be local. */ 1412 if (need_entry & PLT_PLABEL) 1413 hh->plabel = 1; 1414 } 1415 else if (need_entry & PLT_PLABEL) 1416 { 1417 bfd_signed_vma *local_got_refcounts; 1418 bfd_signed_vma *local_plt_refcounts; 1419 1420 local_got_refcounts = hppa32_elf_local_refcounts (abfd); 1421 if (local_got_refcounts == NULL) 1422 return FALSE; 1423 local_plt_refcounts = (local_got_refcounts 1424 + symtab_hdr->sh_info); 1425 local_plt_refcounts[r_symndx] += 1; 1426 } 1427 } 1428 } 1429 1430 if (need_entry & NEED_DYNREL) 1431 { 1432 /* Flag this symbol as having a non-got, non-plt reference 1433 so that we generate copy relocs if it turns out to be 1434 dynamic. */ 1435 if (hh != NULL && !info->shared) 1436 hh->eh.non_got_ref = 1; 1437 1438 /* If we are creating a shared library then we need to copy 1439 the reloc into the shared library. However, if we are 1440 linking with -Bsymbolic, we need only copy absolute 1441 relocs or relocs against symbols that are not defined in 1442 an object we are including in the link. PC- or DP- or 1443 DLT-relative relocs against any local sym or global sym 1444 with DEF_REGULAR set, can be discarded. At this point we 1445 have not seen all the input files, so it is possible that 1446 DEF_REGULAR is not set now but will be set later (it is 1447 never cleared). We account for that possibility below by 1448 storing information in the dyn_relocs field of the 1449 hash table entry. 1450 1451 A similar situation to the -Bsymbolic case occurs when 1452 creating shared libraries and symbol visibility changes 1453 render the symbol local. 1454 1455 As it turns out, all the relocs we will be creating here 1456 are absolute, so we cannot remove them on -Bsymbolic 1457 links or visibility changes anyway. A STUB_REL reloc 1458 is absolute too, as in that case it is the reloc in the 1459 stub we will be creating, rather than copying the PCREL 1460 reloc in the branch. 1461 1462 If on the other hand, we are creating an executable, we 1463 may need to keep relocations for symbols satisfied by a 1464 dynamic library if we manage to avoid copy relocs for the 1465 symbol. */ 1466 if ((info->shared 1467 && (sec->flags & SEC_ALLOC) != 0 1468 && (IS_ABSOLUTE_RELOC (r_type) 1469 || (hh != NULL 1470 && (!info->symbolic 1471 || hh->eh.root.type == bfd_link_hash_defweak 1472 || !hh->eh.def_regular)))) 1473 || (ELIMINATE_COPY_RELOCS 1474 && !info->shared 1475 && (sec->flags & SEC_ALLOC) != 0 1476 && hh != NULL 1477 && (hh->eh.root.type == bfd_link_hash_defweak 1478 || !hh->eh.def_regular))) 1479 { 1480 struct elf32_hppa_dyn_reloc_entry *hdh_p; 1481 struct elf32_hppa_dyn_reloc_entry **hdh_head; 1482 1483 /* Create a reloc section in dynobj and make room for 1484 this reloc. */ 1485 if (sreloc == NULL) 1486 { 1487 if (htab->etab.dynobj == NULL) 1488 htab->etab.dynobj = abfd; 1489 1490 sreloc = _bfd_elf_make_dynamic_reloc_section 1491 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE); 1492 1493 if (sreloc == NULL) 1494 { 1495 bfd_set_error (bfd_error_bad_value); 1496 return FALSE; 1497 } 1498 } 1499 1500 /* If this is a global symbol, we count the number of 1501 relocations we need for this symbol. */ 1502 if (hh != NULL) 1503 { 1504 hdh_head = &hh->dyn_relocs; 1505 } 1506 else 1507 { 1508 /* Track dynamic relocs needed for local syms too. 1509 We really need local syms available to do this 1510 easily. Oh well. */ 1511 asection *sr; 1512 void *vpp; 1513 Elf_Internal_Sym *isym; 1514 1515 isym = bfd_sym_from_r_symndx (&htab->sym_cache, 1516 abfd, r_symndx); 1517 if (isym == NULL) 1518 return FALSE; 1519 1520 sr = bfd_section_from_elf_index (abfd, isym->st_shndx); 1521 if (sr == NULL) 1522 sr = sec; 1523 1524 vpp = &elf_section_data (sr)->local_dynrel; 1525 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp; 1526 } 1527 1528 hdh_p = *hdh_head; 1529 if (hdh_p == NULL || hdh_p->sec != sec) 1530 { 1531 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p); 1532 if (hdh_p == NULL) 1533 return FALSE; 1534 hdh_p->hdh_next = *hdh_head; 1535 *hdh_head = hdh_p; 1536 hdh_p->sec = sec; 1537 hdh_p->count = 0; 1538 #if RELATIVE_DYNRELOCS 1539 hdh_p->relative_count = 0; 1540 #endif 1541 } 1542 1543 hdh_p->count += 1; 1544 #if RELATIVE_DYNRELOCS 1545 if (!IS_ABSOLUTE_RELOC (rtype)) 1546 hdh_p->relative_count += 1; 1547 #endif 1548 } 1549 } 1550 } 1551 1552 return TRUE; 1553 } 1554 1555 /* Return the section that should be marked against garbage collection 1556 for a given relocation. */ 1557 1558 static asection * 1559 elf32_hppa_gc_mark_hook (asection *sec, 1560 struct bfd_link_info *info, 1561 Elf_Internal_Rela *rela, 1562 struct elf_link_hash_entry *hh, 1563 Elf_Internal_Sym *sym) 1564 { 1565 if (hh != NULL) 1566 switch ((unsigned int) ELF32_R_TYPE (rela->r_info)) 1567 { 1568 case R_PARISC_GNU_VTINHERIT: 1569 case R_PARISC_GNU_VTENTRY: 1570 return NULL; 1571 } 1572 1573 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym); 1574 } 1575 1576 /* Update the got and plt entry reference counts for the section being 1577 removed. */ 1578 1579 static bfd_boolean 1580 elf32_hppa_gc_sweep_hook (bfd *abfd, 1581 struct bfd_link_info *info ATTRIBUTE_UNUSED, 1582 asection *sec, 1583 const Elf_Internal_Rela *relocs) 1584 { 1585 Elf_Internal_Shdr *symtab_hdr; 1586 struct elf_link_hash_entry **eh_syms; 1587 bfd_signed_vma *local_got_refcounts; 1588 bfd_signed_vma *local_plt_refcounts; 1589 const Elf_Internal_Rela *rela, *relend; 1590 struct elf32_hppa_link_hash_table *htab; 1591 1592 if (info->relocatable) 1593 return TRUE; 1594 1595 htab = hppa_link_hash_table (info); 1596 if (htab == NULL) 1597 return FALSE; 1598 1599 elf_section_data (sec)->local_dynrel = NULL; 1600 1601 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 1602 eh_syms = elf_sym_hashes (abfd); 1603 local_got_refcounts = elf_local_got_refcounts (abfd); 1604 local_plt_refcounts = local_got_refcounts; 1605 if (local_plt_refcounts != NULL) 1606 local_plt_refcounts += symtab_hdr->sh_info; 1607 1608 relend = relocs + sec->reloc_count; 1609 for (rela = relocs; rela < relend; rela++) 1610 { 1611 unsigned long r_symndx; 1612 unsigned int r_type; 1613 struct elf_link_hash_entry *eh = NULL; 1614 1615 r_symndx = ELF32_R_SYM (rela->r_info); 1616 if (r_symndx >= symtab_hdr->sh_info) 1617 { 1618 struct elf32_hppa_link_hash_entry *hh; 1619 struct elf32_hppa_dyn_reloc_entry **hdh_pp; 1620 struct elf32_hppa_dyn_reloc_entry *hdh_p; 1621 1622 eh = eh_syms[r_symndx - symtab_hdr->sh_info]; 1623 while (eh->root.type == bfd_link_hash_indirect 1624 || eh->root.type == bfd_link_hash_warning) 1625 eh = (struct elf_link_hash_entry *) eh->root.u.i.link; 1626 hh = hppa_elf_hash_entry (eh); 1627 1628 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next) 1629 if (hdh_p->sec == sec) 1630 { 1631 /* Everything must go for SEC. */ 1632 *hdh_pp = hdh_p->hdh_next; 1633 break; 1634 } 1635 } 1636 1637 r_type = ELF32_R_TYPE (rela->r_info); 1638 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL); 1639 1640 switch (r_type) 1641 { 1642 case R_PARISC_DLTIND14F: 1643 case R_PARISC_DLTIND14R: 1644 case R_PARISC_DLTIND21L: 1645 case R_PARISC_TLS_GD21L: 1646 case R_PARISC_TLS_GD14R: 1647 case R_PARISC_TLS_IE21L: 1648 case R_PARISC_TLS_IE14R: 1649 if (eh != NULL) 1650 { 1651 if (eh->got.refcount > 0) 1652 eh->got.refcount -= 1; 1653 } 1654 else if (local_got_refcounts != NULL) 1655 { 1656 if (local_got_refcounts[r_symndx] > 0) 1657 local_got_refcounts[r_symndx] -= 1; 1658 } 1659 break; 1660 1661 case R_PARISC_TLS_LDM21L: 1662 case R_PARISC_TLS_LDM14R: 1663 htab->tls_ldm_got.refcount -= 1; 1664 break; 1665 1666 case R_PARISC_PCREL12F: 1667 case R_PARISC_PCREL17C: 1668 case R_PARISC_PCREL17F: 1669 case R_PARISC_PCREL22F: 1670 if (eh != NULL) 1671 { 1672 if (eh->plt.refcount > 0) 1673 eh->plt.refcount -= 1; 1674 } 1675 break; 1676 1677 case R_PARISC_PLABEL14R: 1678 case R_PARISC_PLABEL21L: 1679 case R_PARISC_PLABEL32: 1680 if (eh != NULL) 1681 { 1682 if (eh->plt.refcount > 0) 1683 eh->plt.refcount -= 1; 1684 } 1685 else if (local_plt_refcounts != NULL) 1686 { 1687 if (local_plt_refcounts[r_symndx] > 0) 1688 local_plt_refcounts[r_symndx] -= 1; 1689 } 1690 break; 1691 1692 default: 1693 break; 1694 } 1695 } 1696 1697 return TRUE; 1698 } 1699 1700 /* Support for core dump NOTE sections. */ 1701 1702 static bfd_boolean 1703 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) 1704 { 1705 int offset; 1706 size_t size; 1707 1708 switch (note->descsz) 1709 { 1710 default: 1711 return FALSE; 1712 1713 case 396: /* Linux/hppa */ 1714 /* pr_cursig */ 1715 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); 1716 1717 /* pr_pid */ 1718 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24); 1719 1720 /* pr_reg */ 1721 offset = 72; 1722 size = 320; 1723 1724 break; 1725 } 1726 1727 /* Make a ".reg/999" section. */ 1728 return _bfd_elfcore_make_pseudosection (abfd, ".reg", 1729 size, note->descpos + offset); 1730 } 1731 1732 static bfd_boolean 1733 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) 1734 { 1735 switch (note->descsz) 1736 { 1737 default: 1738 return FALSE; 1739 1740 case 124: /* Linux/hppa elf_prpsinfo. */ 1741 elf_tdata (abfd)->core->program 1742 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16); 1743 elf_tdata (abfd)->core->command 1744 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80); 1745 } 1746 1747 /* Note that for some reason, a spurious space is tacked 1748 onto the end of the args in some (at least one anyway) 1749 implementations, so strip it off if it exists. */ 1750 { 1751 char *command = elf_tdata (abfd)->core->command; 1752 int n = strlen (command); 1753 1754 if (0 < n && command[n - 1] == ' ') 1755 command[n - 1] = '\0'; 1756 } 1757 1758 return TRUE; 1759 } 1760 1761 /* Our own version of hide_symbol, so that we can keep plt entries for 1762 plabels. */ 1763 1764 static void 1765 elf32_hppa_hide_symbol (struct bfd_link_info *info, 1766 struct elf_link_hash_entry *eh, 1767 bfd_boolean force_local) 1768 { 1769 if (force_local) 1770 { 1771 eh->forced_local = 1; 1772 if (eh->dynindx != -1) 1773 { 1774 eh->dynindx = -1; 1775 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, 1776 eh->dynstr_index); 1777 } 1778 1779 /* PR 16082: Remove version information from hidden symbol. */ 1780 eh->verinfo.verdef = NULL; 1781 eh->verinfo.vertree = NULL; 1782 } 1783 1784 /* STT_GNU_IFUNC symbol must go through PLT. */ 1785 if (! hppa_elf_hash_entry (eh)->plabel 1786 && eh->type != STT_GNU_IFUNC) 1787 { 1788 eh->needs_plt = 0; 1789 eh->plt = elf_hash_table (info)->init_plt_offset; 1790 } 1791 } 1792 1793 /* Adjust a symbol defined by a dynamic object and referenced by a 1794 regular object. The current definition is in some section of the 1795 dynamic object, but we're not including those sections. We have to 1796 change the definition to something the rest of the link can 1797 understand. */ 1798 1799 static bfd_boolean 1800 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info, 1801 struct elf_link_hash_entry *eh) 1802 { 1803 struct elf32_hppa_link_hash_table *htab; 1804 asection *sec; 1805 1806 /* If this is a function, put it in the procedure linkage table. We 1807 will fill in the contents of the procedure linkage table later. */ 1808 if (eh->type == STT_FUNC 1809 || eh->needs_plt) 1810 { 1811 /* If the symbol is used by a plabel, we must allocate a PLT slot. 1812 The refcounts are not reliable when it has been hidden since 1813 hide_symbol can be called before the plabel flag is set. */ 1814 if (hppa_elf_hash_entry (eh)->plabel 1815 && eh->plt.refcount <= 0) 1816 eh->plt.refcount = 1; 1817 1818 if (eh->plt.refcount <= 0 1819 || (eh->def_regular 1820 && eh->root.type != bfd_link_hash_defweak 1821 && ! hppa_elf_hash_entry (eh)->plabel 1822 && (!info->shared || info->symbolic))) 1823 { 1824 /* The .plt entry is not needed when: 1825 a) Garbage collection has removed all references to the 1826 symbol, or 1827 b) We know for certain the symbol is defined in this 1828 object, and it's not a weak definition, nor is the symbol 1829 used by a plabel relocation. Either this object is the 1830 application or we are doing a shared symbolic link. */ 1831 1832 eh->plt.offset = (bfd_vma) -1; 1833 eh->needs_plt = 0; 1834 } 1835 1836 return TRUE; 1837 } 1838 else 1839 eh->plt.offset = (bfd_vma) -1; 1840 1841 /* If this is a weak symbol, and there is a real definition, the 1842 processor independent code will have arranged for us to see the 1843 real definition first, and we can just use the same value. */ 1844 if (eh->u.weakdef != NULL) 1845 { 1846 if (eh->u.weakdef->root.type != bfd_link_hash_defined 1847 && eh->u.weakdef->root.type != bfd_link_hash_defweak) 1848 abort (); 1849 eh->root.u.def.section = eh->u.weakdef->root.u.def.section; 1850 eh->root.u.def.value = eh->u.weakdef->root.u.def.value; 1851 if (ELIMINATE_COPY_RELOCS) 1852 eh->non_got_ref = eh->u.weakdef->non_got_ref; 1853 return TRUE; 1854 } 1855 1856 /* This is a reference to a symbol defined by a dynamic object which 1857 is not a function. */ 1858 1859 /* If we are creating a shared library, we must presume that the 1860 only references to the symbol are via the global offset table. 1861 For such cases we need not do anything here; the relocations will 1862 be handled correctly by relocate_section. */ 1863 if (info->shared) 1864 return TRUE; 1865 1866 /* If there are no references to this symbol that do not use the 1867 GOT, we don't need to generate a copy reloc. */ 1868 if (!eh->non_got_ref) 1869 return TRUE; 1870 1871 if (ELIMINATE_COPY_RELOCS) 1872 { 1873 struct elf32_hppa_link_hash_entry *hh; 1874 struct elf32_hppa_dyn_reloc_entry *hdh_p; 1875 1876 hh = hppa_elf_hash_entry (eh); 1877 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next) 1878 { 1879 sec = hdh_p->sec->output_section; 1880 if (sec != NULL && (sec->flags & SEC_READONLY) != 0) 1881 break; 1882 } 1883 1884 /* If we didn't find any dynamic relocs in read-only sections, then 1885 we'll be keeping the dynamic relocs and avoiding the copy reloc. */ 1886 if (hdh_p == NULL) 1887 { 1888 eh->non_got_ref = 0; 1889 return TRUE; 1890 } 1891 } 1892 1893 /* We must allocate the symbol in our .dynbss section, which will 1894 become part of the .bss section of the executable. There will be 1895 an entry for this symbol in the .dynsym section. The dynamic 1896 object will contain position independent code, so all references 1897 from the dynamic object to this symbol will go through the global 1898 offset table. The dynamic linker will use the .dynsym entry to 1899 determine the address it must put in the global offset table, so 1900 both the dynamic object and the regular object will refer to the 1901 same memory location for the variable. */ 1902 1903 htab = hppa_link_hash_table (info); 1904 if (htab == NULL) 1905 return FALSE; 1906 1907 /* We must generate a COPY reloc to tell the dynamic linker to 1908 copy the initial value out of the dynamic object and into the 1909 runtime process image. */ 1910 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0) 1911 { 1912 htab->srelbss->size += sizeof (Elf32_External_Rela); 1913 eh->needs_copy = 1; 1914 } 1915 1916 sec = htab->sdynbss; 1917 1918 return _bfd_elf_adjust_dynamic_copy (eh, sec); 1919 } 1920 1921 /* Allocate space in the .plt for entries that won't have relocations. 1922 ie. plabel entries. */ 1923 1924 static bfd_boolean 1925 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf) 1926 { 1927 struct bfd_link_info *info; 1928 struct elf32_hppa_link_hash_table *htab; 1929 struct elf32_hppa_link_hash_entry *hh; 1930 asection *sec; 1931 1932 if (eh->root.type == bfd_link_hash_indirect) 1933 return TRUE; 1934 1935 info = (struct bfd_link_info *) inf; 1936 hh = hppa_elf_hash_entry (eh); 1937 htab = hppa_link_hash_table (info); 1938 if (htab == NULL) 1939 return FALSE; 1940 1941 if (htab->etab.dynamic_sections_created 1942 && eh->plt.refcount > 0) 1943 { 1944 /* Make sure this symbol is output as a dynamic symbol. 1945 Undefined weak syms won't yet be marked as dynamic. */ 1946 if (eh->dynindx == -1 1947 && !eh->forced_local 1948 && eh->type != STT_PARISC_MILLI) 1949 { 1950 if (! bfd_elf_link_record_dynamic_symbol (info, eh)) 1951 return FALSE; 1952 } 1953 1954 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh)) 1955 { 1956 /* Allocate these later. From this point on, h->plabel 1957 means that the plt entry is only used by a plabel. 1958 We'll be using a normal plt entry for this symbol, so 1959 clear the plabel indicator. */ 1960 1961 hh->plabel = 0; 1962 } 1963 else if (hh->plabel) 1964 { 1965 /* Make an entry in the .plt section for plabel references 1966 that won't have a .plt entry for other reasons. */ 1967 sec = htab->splt; 1968 eh->plt.offset = sec->size; 1969 sec->size += PLT_ENTRY_SIZE; 1970 } 1971 else 1972 { 1973 /* No .plt entry needed. */ 1974 eh->plt.offset = (bfd_vma) -1; 1975 eh->needs_plt = 0; 1976 } 1977 } 1978 else 1979 { 1980 eh->plt.offset = (bfd_vma) -1; 1981 eh->needs_plt = 0; 1982 } 1983 1984 return TRUE; 1985 } 1986 1987 /* Allocate space in .plt, .got and associated reloc sections for 1988 global syms. */ 1989 1990 static bfd_boolean 1991 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf) 1992 { 1993 struct bfd_link_info *info; 1994 struct elf32_hppa_link_hash_table *htab; 1995 asection *sec; 1996 struct elf32_hppa_link_hash_entry *hh; 1997 struct elf32_hppa_dyn_reloc_entry *hdh_p; 1998 1999 if (eh->root.type == bfd_link_hash_indirect) 2000 return TRUE; 2001 2002 info = inf; 2003 htab = hppa_link_hash_table (info); 2004 if (htab == NULL) 2005 return FALSE; 2006 2007 hh = hppa_elf_hash_entry (eh); 2008 2009 if (htab->etab.dynamic_sections_created 2010 && eh->plt.offset != (bfd_vma) -1 2011 && !hh->plabel 2012 && eh->plt.refcount > 0) 2013 { 2014 /* Make an entry in the .plt section. */ 2015 sec = htab->splt; 2016 eh->plt.offset = sec->size; 2017 sec->size += PLT_ENTRY_SIZE; 2018 2019 /* We also need to make an entry in the .rela.plt section. */ 2020 htab->srelplt->size += sizeof (Elf32_External_Rela); 2021 htab->need_plt_stub = 1; 2022 } 2023 2024 if (eh->got.refcount > 0) 2025 { 2026 /* Make sure this symbol is output as a dynamic symbol. 2027 Undefined weak syms won't yet be marked as dynamic. */ 2028 if (eh->dynindx == -1 2029 && !eh->forced_local 2030 && eh->type != STT_PARISC_MILLI) 2031 { 2032 if (! bfd_elf_link_record_dynamic_symbol (info, eh)) 2033 return FALSE; 2034 } 2035 2036 sec = htab->sgot; 2037 eh->got.offset = sec->size; 2038 sec->size += GOT_ENTRY_SIZE; 2039 /* R_PARISC_TLS_GD* needs two GOT entries */ 2040 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE)) 2041 sec->size += GOT_ENTRY_SIZE * 2; 2042 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD) 2043 sec->size += GOT_ENTRY_SIZE; 2044 if (htab->etab.dynamic_sections_created 2045 && (info->shared 2046 || (eh->dynindx != -1 2047 && !eh->forced_local))) 2048 { 2049 htab->srelgot->size += sizeof (Elf32_External_Rela); 2050 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE)) 2051 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela); 2052 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD) 2053 htab->srelgot->size += sizeof (Elf32_External_Rela); 2054 } 2055 } 2056 else 2057 eh->got.offset = (bfd_vma) -1; 2058 2059 if (hh->dyn_relocs == NULL) 2060 return TRUE; 2061 2062 /* If this is a -Bsymbolic shared link, then we need to discard all 2063 space allocated for dynamic pc-relative relocs against symbols 2064 defined in a regular object. For the normal shared case, discard 2065 space for relocs that have become local due to symbol visibility 2066 changes. */ 2067 if (info->shared) 2068 { 2069 #if RELATIVE_DYNRELOCS 2070 if (SYMBOL_CALLS_LOCAL (info, eh)) 2071 { 2072 struct elf32_hppa_dyn_reloc_entry **hdh_pp; 2073 2074 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; ) 2075 { 2076 hdh_p->count -= hdh_p->relative_count; 2077 hdh_p->relative_count = 0; 2078 if (hdh_p->count == 0) 2079 *hdh_pp = hdh_p->hdh_next; 2080 else 2081 hdh_pp = &hdh_p->hdh_next; 2082 } 2083 } 2084 #endif 2085 2086 /* Also discard relocs on undefined weak syms with non-default 2087 visibility. */ 2088 if (hh->dyn_relocs != NULL 2089 && eh->root.type == bfd_link_hash_undefweak) 2090 { 2091 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT) 2092 hh->dyn_relocs = NULL; 2093 2094 /* Make sure undefined weak symbols are output as a dynamic 2095 symbol in PIEs. */ 2096 else if (eh->dynindx == -1 2097 && !eh->forced_local) 2098 { 2099 if (! bfd_elf_link_record_dynamic_symbol (info, eh)) 2100 return FALSE; 2101 } 2102 } 2103 } 2104 else 2105 { 2106 /* For the non-shared case, discard space for relocs against 2107 symbols which turn out to need copy relocs or are not 2108 dynamic. */ 2109 2110 if (!eh->non_got_ref 2111 && ((ELIMINATE_COPY_RELOCS 2112 && eh->def_dynamic 2113 && !eh->def_regular) 2114 || (htab->etab.dynamic_sections_created 2115 && (eh->root.type == bfd_link_hash_undefweak 2116 || eh->root.type == bfd_link_hash_undefined)))) 2117 { 2118 /* Make sure this symbol is output as a dynamic symbol. 2119 Undefined weak syms won't yet be marked as dynamic. */ 2120 if (eh->dynindx == -1 2121 && !eh->forced_local 2122 && eh->type != STT_PARISC_MILLI) 2123 { 2124 if (! bfd_elf_link_record_dynamic_symbol (info, eh)) 2125 return FALSE; 2126 } 2127 2128 /* If that succeeded, we know we'll be keeping all the 2129 relocs. */ 2130 if (eh->dynindx != -1) 2131 goto keep; 2132 } 2133 2134 hh->dyn_relocs = NULL; 2135 return TRUE; 2136 2137 keep: ; 2138 } 2139 2140 /* Finally, allocate space. */ 2141 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next) 2142 { 2143 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc; 2144 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela); 2145 } 2146 2147 return TRUE; 2148 } 2149 2150 /* This function is called via elf_link_hash_traverse to force 2151 millicode symbols local so they do not end up as globals in the 2152 dynamic symbol table. We ought to be able to do this in 2153 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called 2154 for all dynamic symbols. Arguably, this is a bug in 2155 elf_adjust_dynamic_symbol. */ 2156 2157 static bfd_boolean 2158 clobber_millicode_symbols (struct elf_link_hash_entry *eh, 2159 struct bfd_link_info *info) 2160 { 2161 if (eh->type == STT_PARISC_MILLI 2162 && !eh->forced_local) 2163 { 2164 elf32_hppa_hide_symbol (info, eh, TRUE); 2165 } 2166 return TRUE; 2167 } 2168 2169 /* Find any dynamic relocs that apply to read-only sections. */ 2170 2171 static bfd_boolean 2172 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf) 2173 { 2174 struct elf32_hppa_link_hash_entry *hh; 2175 struct elf32_hppa_dyn_reloc_entry *hdh_p; 2176 2177 hh = hppa_elf_hash_entry (eh); 2178 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next) 2179 { 2180 asection *sec = hdh_p->sec->output_section; 2181 2182 if (sec != NULL && (sec->flags & SEC_READONLY) != 0) 2183 { 2184 struct bfd_link_info *info = inf; 2185 2186 info->flags |= DF_TEXTREL; 2187 2188 /* Not an error, just cut short the traversal. */ 2189 return FALSE; 2190 } 2191 } 2192 return TRUE; 2193 } 2194 2195 /* Set the sizes of the dynamic sections. */ 2196 2197 static bfd_boolean 2198 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, 2199 struct bfd_link_info *info) 2200 { 2201 struct elf32_hppa_link_hash_table *htab; 2202 bfd *dynobj; 2203 bfd *ibfd; 2204 asection *sec; 2205 bfd_boolean relocs; 2206 2207 htab = hppa_link_hash_table (info); 2208 if (htab == NULL) 2209 return FALSE; 2210 2211 dynobj = htab->etab.dynobj; 2212 if (dynobj == NULL) 2213 abort (); 2214 2215 if (htab->etab.dynamic_sections_created) 2216 { 2217 /* Set the contents of the .interp section to the interpreter. */ 2218 if (info->executable) 2219 { 2220 sec = bfd_get_linker_section (dynobj, ".interp"); 2221 if (sec == NULL) 2222 abort (); 2223 sec->size = sizeof ELF_DYNAMIC_INTERPRETER; 2224 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; 2225 } 2226 2227 /* Force millicode symbols local. */ 2228 elf_link_hash_traverse (&htab->etab, 2229 clobber_millicode_symbols, 2230 info); 2231 } 2232 2233 /* Set up .got and .plt offsets for local syms, and space for local 2234 dynamic relocs. */ 2235 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 2236 { 2237 bfd_signed_vma *local_got; 2238 bfd_signed_vma *end_local_got; 2239 bfd_signed_vma *local_plt; 2240 bfd_signed_vma *end_local_plt; 2241 bfd_size_type locsymcount; 2242 Elf_Internal_Shdr *symtab_hdr; 2243 asection *srel; 2244 char *local_tls_type; 2245 2246 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) 2247 continue; 2248 2249 for (sec = ibfd->sections; sec != NULL; sec = sec->next) 2250 { 2251 struct elf32_hppa_dyn_reloc_entry *hdh_p; 2252 2253 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *) 2254 elf_section_data (sec)->local_dynrel); 2255 hdh_p != NULL; 2256 hdh_p = hdh_p->hdh_next) 2257 { 2258 if (!bfd_is_abs_section (hdh_p->sec) 2259 && bfd_is_abs_section (hdh_p->sec->output_section)) 2260 { 2261 /* Input section has been discarded, either because 2262 it is a copy of a linkonce section or due to 2263 linker script /DISCARD/, so we'll be discarding 2264 the relocs too. */ 2265 } 2266 else if (hdh_p->count != 0) 2267 { 2268 srel = elf_section_data (hdh_p->sec)->sreloc; 2269 srel->size += hdh_p->count * sizeof (Elf32_External_Rela); 2270 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0) 2271 info->flags |= DF_TEXTREL; 2272 } 2273 } 2274 } 2275 2276 local_got = elf_local_got_refcounts (ibfd); 2277 if (!local_got) 2278 continue; 2279 2280 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; 2281 locsymcount = symtab_hdr->sh_info; 2282 end_local_got = local_got + locsymcount; 2283 local_tls_type = hppa_elf_local_got_tls_type (ibfd); 2284 sec = htab->sgot; 2285 srel = htab->srelgot; 2286 for (; local_got < end_local_got; ++local_got) 2287 { 2288 if (*local_got > 0) 2289 { 2290 *local_got = sec->size; 2291 sec->size += GOT_ENTRY_SIZE; 2292 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE)) 2293 sec->size += 2 * GOT_ENTRY_SIZE; 2294 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD) 2295 sec->size += GOT_ENTRY_SIZE; 2296 if (info->shared) 2297 { 2298 srel->size += sizeof (Elf32_External_Rela); 2299 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE)) 2300 srel->size += 2 * sizeof (Elf32_External_Rela); 2301 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD) 2302 srel->size += sizeof (Elf32_External_Rela); 2303 } 2304 } 2305 else 2306 *local_got = (bfd_vma) -1; 2307 2308 ++local_tls_type; 2309 } 2310 2311 local_plt = end_local_got; 2312 end_local_plt = local_plt + locsymcount; 2313 if (! htab->etab.dynamic_sections_created) 2314 { 2315 /* Won't be used, but be safe. */ 2316 for (; local_plt < end_local_plt; ++local_plt) 2317 *local_plt = (bfd_vma) -1; 2318 } 2319 else 2320 { 2321 sec = htab->splt; 2322 srel = htab->srelplt; 2323 for (; local_plt < end_local_plt; ++local_plt) 2324 { 2325 if (*local_plt > 0) 2326 { 2327 *local_plt = sec->size; 2328 sec->size += PLT_ENTRY_SIZE; 2329 if (info->shared) 2330 srel->size += sizeof (Elf32_External_Rela); 2331 } 2332 else 2333 *local_plt = (bfd_vma) -1; 2334 } 2335 } 2336 } 2337 2338 if (htab->tls_ldm_got.refcount > 0) 2339 { 2340 /* Allocate 2 got entries and 1 dynamic reloc for 2341 R_PARISC_TLS_DTPMOD32 relocs. */ 2342 htab->tls_ldm_got.offset = htab->sgot->size; 2343 htab->sgot->size += (GOT_ENTRY_SIZE * 2); 2344 htab->srelgot->size += sizeof (Elf32_External_Rela); 2345 } 2346 else 2347 htab->tls_ldm_got.offset = -1; 2348 2349 /* Do all the .plt entries without relocs first. The dynamic linker 2350 uses the last .plt reloc to find the end of the .plt (and hence 2351 the start of the .got) for lazy linking. */ 2352 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info); 2353 2354 /* Allocate global sym .plt and .got entries, and space for global 2355 sym dynamic relocs. */ 2356 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info); 2357 2358 /* The check_relocs and adjust_dynamic_symbol entry points have 2359 determined the sizes of the various dynamic sections. Allocate 2360 memory for them. */ 2361 relocs = FALSE; 2362 for (sec = dynobj->sections; sec != NULL; sec = sec->next) 2363 { 2364 if ((sec->flags & SEC_LINKER_CREATED) == 0) 2365 continue; 2366 2367 if (sec == htab->splt) 2368 { 2369 if (htab->need_plt_stub) 2370 { 2371 /* Make space for the plt stub at the end of the .plt 2372 section. We want this stub right at the end, up 2373 against the .got section. */ 2374 int gotalign = bfd_section_alignment (dynobj, htab->sgot); 2375 int pltalign = bfd_section_alignment (dynobj, sec); 2376 bfd_size_type mask; 2377 2378 if (gotalign > pltalign) 2379 (void) bfd_set_section_alignment (dynobj, sec, gotalign); 2380 mask = ((bfd_size_type) 1 << gotalign) - 1; 2381 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask; 2382 } 2383 } 2384 else if (sec == htab->sgot 2385 || sec == htab->sdynbss) 2386 ; 2387 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela")) 2388 { 2389 if (sec->size != 0) 2390 { 2391 /* Remember whether there are any reloc sections other 2392 than .rela.plt. */ 2393 if (sec != htab->srelplt) 2394 relocs = TRUE; 2395 2396 /* We use the reloc_count field as a counter if we need 2397 to copy relocs into the output file. */ 2398 sec->reloc_count = 0; 2399 } 2400 } 2401 else 2402 { 2403 /* It's not one of our sections, so don't allocate space. */ 2404 continue; 2405 } 2406 2407 if (sec->size == 0) 2408 { 2409 /* If we don't need this section, strip it from the 2410 output file. This is mostly to handle .rela.bss and 2411 .rela.plt. We must create both sections in 2412 create_dynamic_sections, because they must be created 2413 before the linker maps input sections to output 2414 sections. The linker does that before 2415 adjust_dynamic_symbol is called, and it is that 2416 function which decides whether anything needs to go 2417 into these sections. */ 2418 sec->flags |= SEC_EXCLUDE; 2419 continue; 2420 } 2421 2422 if ((sec->flags & SEC_HAS_CONTENTS) == 0) 2423 continue; 2424 2425 /* Allocate memory for the section contents. Zero it, because 2426 we may not fill in all the reloc sections. */ 2427 sec->contents = bfd_zalloc (dynobj, sec->size); 2428 if (sec->contents == NULL) 2429 return FALSE; 2430 } 2431 2432 if (htab->etab.dynamic_sections_created) 2433 { 2434 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It 2435 actually has nothing to do with the PLT, it is how we 2436 communicate the LTP value of a load module to the dynamic 2437 linker. */ 2438 #define add_dynamic_entry(TAG, VAL) \ 2439 _bfd_elf_add_dynamic_entry (info, TAG, VAL) 2440 2441 if (!add_dynamic_entry (DT_PLTGOT, 0)) 2442 return FALSE; 2443 2444 /* Add some entries to the .dynamic section. We fill in the 2445 values later, in elf32_hppa_finish_dynamic_sections, but we 2446 must add the entries now so that we get the correct size for 2447 the .dynamic section. The DT_DEBUG entry is filled in by the 2448 dynamic linker and used by the debugger. */ 2449 if (info->executable) 2450 { 2451 if (!add_dynamic_entry (DT_DEBUG, 0)) 2452 return FALSE; 2453 } 2454 2455 if (htab->srelplt->size != 0) 2456 { 2457 if (!add_dynamic_entry (DT_PLTRELSZ, 0) 2458 || !add_dynamic_entry (DT_PLTREL, DT_RELA) 2459 || !add_dynamic_entry (DT_JMPREL, 0)) 2460 return FALSE; 2461 } 2462 2463 if (relocs) 2464 { 2465 if (!add_dynamic_entry (DT_RELA, 0) 2466 || !add_dynamic_entry (DT_RELASZ, 0) 2467 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) 2468 return FALSE; 2469 2470 /* If any dynamic relocs apply to a read-only section, 2471 then we need a DT_TEXTREL entry. */ 2472 if ((info->flags & DF_TEXTREL) == 0) 2473 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info); 2474 2475 if ((info->flags & DF_TEXTREL) != 0) 2476 { 2477 if (!add_dynamic_entry (DT_TEXTREL, 0)) 2478 return FALSE; 2479 } 2480 } 2481 } 2482 #undef add_dynamic_entry 2483 2484 return TRUE; 2485 } 2486 2487 /* External entry points for sizing and building linker stubs. */ 2488 2489 /* Set up various things so that we can make a list of input sections 2490 for each output section included in the link. Returns -1 on error, 2491 0 when no stubs will be needed, and 1 on success. */ 2492 2493 int 2494 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info) 2495 { 2496 bfd *input_bfd; 2497 unsigned int bfd_count; 2498 int top_id, top_index; 2499 asection *section; 2500 asection **input_list, **list; 2501 bfd_size_type amt; 2502 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); 2503 2504 if (htab == NULL) 2505 return -1; 2506 2507 /* Count the number of input BFDs and find the top input section id. */ 2508 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0; 2509 input_bfd != NULL; 2510 input_bfd = input_bfd->link.next) 2511 { 2512 bfd_count += 1; 2513 for (section = input_bfd->sections; 2514 section != NULL; 2515 section = section->next) 2516 { 2517 if (top_id < section->id) 2518 top_id = section->id; 2519 } 2520 } 2521 htab->bfd_count = bfd_count; 2522 2523 amt = sizeof (struct map_stub) * (top_id + 1); 2524 htab->stub_group = bfd_zmalloc (amt); 2525 if (htab->stub_group == NULL) 2526 return -1; 2527 2528 /* We can't use output_bfd->section_count here to find the top output 2529 section index as some sections may have been removed, and 2530 strip_excluded_output_sections doesn't renumber the indices. */ 2531 for (section = output_bfd->sections, top_index = 0; 2532 section != NULL; 2533 section = section->next) 2534 { 2535 if (top_index < section->index) 2536 top_index = section->index; 2537 } 2538 2539 htab->top_index = top_index; 2540 amt = sizeof (asection *) * (top_index + 1); 2541 input_list = bfd_malloc (amt); 2542 htab->input_list = input_list; 2543 if (input_list == NULL) 2544 return -1; 2545 2546 /* For sections we aren't interested in, mark their entries with a 2547 value we can check later. */ 2548 list = input_list + top_index; 2549 do 2550 *list = bfd_abs_section_ptr; 2551 while (list-- != input_list); 2552 2553 for (section = output_bfd->sections; 2554 section != NULL; 2555 section = section->next) 2556 { 2557 if ((section->flags & SEC_CODE) != 0) 2558 input_list[section->index] = NULL; 2559 } 2560 2561 return 1; 2562 } 2563 2564 /* The linker repeatedly calls this function for each input section, 2565 in the order that input sections are linked into output sections. 2566 Build lists of input sections to determine groupings between which 2567 we may insert linker stubs. */ 2568 2569 void 2570 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec) 2571 { 2572 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); 2573 2574 if (htab == NULL) 2575 return; 2576 2577 if (isec->output_section->index <= htab->top_index) 2578 { 2579 asection **list = htab->input_list + isec->output_section->index; 2580 if (*list != bfd_abs_section_ptr) 2581 { 2582 /* Steal the link_sec pointer for our list. */ 2583 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec) 2584 /* This happens to make the list in reverse order, 2585 which is what we want. */ 2586 PREV_SEC (isec) = *list; 2587 *list = isec; 2588 } 2589 } 2590 } 2591 2592 /* See whether we can group stub sections together. Grouping stub 2593 sections may result in fewer stubs. More importantly, we need to 2594 put all .init* and .fini* stubs at the beginning of the .init or 2595 .fini output sections respectively, because glibc splits the 2596 _init and _fini functions into multiple parts. Putting a stub in 2597 the middle of a function is not a good idea. */ 2598 2599 static void 2600 group_sections (struct elf32_hppa_link_hash_table *htab, 2601 bfd_size_type stub_group_size, 2602 bfd_boolean stubs_always_before_branch) 2603 { 2604 asection **list = htab->input_list + htab->top_index; 2605 do 2606 { 2607 asection *tail = *list; 2608 if (tail == bfd_abs_section_ptr) 2609 continue; 2610 while (tail != NULL) 2611 { 2612 asection *curr; 2613 asection *prev; 2614 bfd_size_type total; 2615 bfd_boolean big_sec; 2616 2617 curr = tail; 2618 total = tail->size; 2619 big_sec = total >= stub_group_size; 2620 2621 while ((prev = PREV_SEC (curr)) != NULL 2622 && ((total += curr->output_offset - prev->output_offset) 2623 < stub_group_size)) 2624 curr = prev; 2625 2626 /* OK, the size from the start of CURR to the end is less 2627 than 240000 bytes and thus can be handled by one stub 2628 section. (or the tail section is itself larger than 2629 240000 bytes, in which case we may be toast.) 2630 We should really be keeping track of the total size of 2631 stubs added here, as stubs contribute to the final output 2632 section size. That's a little tricky, and this way will 2633 only break if stubs added total more than 22144 bytes, or 2634 2768 long branch stubs. It seems unlikely for more than 2635 2768 different functions to be called, especially from 2636 code only 240000 bytes long. This limit used to be 2637 250000, but c++ code tends to generate lots of little 2638 functions, and sometimes violated the assumption. */ 2639 do 2640 { 2641 prev = PREV_SEC (tail); 2642 /* Set up this stub group. */ 2643 htab->stub_group[tail->id].link_sec = curr; 2644 } 2645 while (tail != curr && (tail = prev) != NULL); 2646 2647 /* But wait, there's more! Input sections up to 240000 2648 bytes before the stub section can be handled by it too. 2649 Don't do this if we have a really large section after the 2650 stubs, as adding more stubs increases the chance that 2651 branches may not reach into the stub section. */ 2652 if (!stubs_always_before_branch && !big_sec) 2653 { 2654 total = 0; 2655 while (prev != NULL 2656 && ((total += tail->output_offset - prev->output_offset) 2657 < stub_group_size)) 2658 { 2659 tail = prev; 2660 prev = PREV_SEC (tail); 2661 htab->stub_group[tail->id].link_sec = curr; 2662 } 2663 } 2664 tail = prev; 2665 } 2666 } 2667 while (list-- != htab->input_list); 2668 free (htab->input_list); 2669 #undef PREV_SEC 2670 } 2671 2672 /* Read in all local syms for all input bfds, and create hash entries 2673 for export stubs if we are building a multi-subspace shared lib. 2674 Returns -1 on error, 1 if export stubs created, 0 otherwise. */ 2675 2676 static int 2677 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info) 2678 { 2679 unsigned int bfd_indx; 2680 Elf_Internal_Sym *local_syms, **all_local_syms; 2681 int stub_changed = 0; 2682 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); 2683 2684 if (htab == NULL) 2685 return -1; 2686 2687 /* We want to read in symbol extension records only once. To do this 2688 we need to read in the local symbols in parallel and save them for 2689 later use; so hold pointers to the local symbols in an array. */ 2690 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count; 2691 all_local_syms = bfd_zmalloc (amt); 2692 htab->all_local_syms = all_local_syms; 2693 if (all_local_syms == NULL) 2694 return -1; 2695 2696 /* Walk over all the input BFDs, swapping in local symbols. 2697 If we are creating a shared library, create hash entries for the 2698 export stubs. */ 2699 for (bfd_indx = 0; 2700 input_bfd != NULL; 2701 input_bfd = input_bfd->link.next, bfd_indx++) 2702 { 2703 Elf_Internal_Shdr *symtab_hdr; 2704 2705 /* We'll need the symbol table in a second. */ 2706 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 2707 if (symtab_hdr->sh_info == 0) 2708 continue; 2709 2710 /* We need an array of the local symbols attached to the input bfd. */ 2711 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; 2712 if (local_syms == NULL) 2713 { 2714 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, 2715 symtab_hdr->sh_info, 0, 2716 NULL, NULL, NULL); 2717 /* Cache them for elf_link_input_bfd. */ 2718 symtab_hdr->contents = (unsigned char *) local_syms; 2719 } 2720 if (local_syms == NULL) 2721 return -1; 2722 2723 all_local_syms[bfd_indx] = local_syms; 2724 2725 if (info->shared && htab->multi_subspace) 2726 { 2727 struct elf_link_hash_entry **eh_syms; 2728 struct elf_link_hash_entry **eh_symend; 2729 unsigned int symcount; 2730 2731 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) 2732 - symtab_hdr->sh_info); 2733 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd); 2734 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount); 2735 2736 /* Look through the global syms for functions; We need to 2737 build export stubs for all globally visible functions. */ 2738 for (; eh_syms < eh_symend; eh_syms++) 2739 { 2740 struct elf32_hppa_link_hash_entry *hh; 2741 2742 hh = hppa_elf_hash_entry (*eh_syms); 2743 2744 while (hh->eh.root.type == bfd_link_hash_indirect 2745 || hh->eh.root.type == bfd_link_hash_warning) 2746 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link); 2747 2748 /* At this point in the link, undefined syms have been 2749 resolved, so we need to check that the symbol was 2750 defined in this BFD. */ 2751 if ((hh->eh.root.type == bfd_link_hash_defined 2752 || hh->eh.root.type == bfd_link_hash_defweak) 2753 && hh->eh.type == STT_FUNC 2754 && hh->eh.root.u.def.section->output_section != NULL 2755 && (hh->eh.root.u.def.section->output_section->owner 2756 == output_bfd) 2757 && hh->eh.root.u.def.section->owner == input_bfd 2758 && hh->eh.def_regular 2759 && !hh->eh.forced_local 2760 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT) 2761 { 2762 asection *sec; 2763 const char *stub_name; 2764 struct elf32_hppa_stub_hash_entry *hsh; 2765 2766 sec = hh->eh.root.u.def.section; 2767 stub_name = hh_name (hh); 2768 hsh = hppa_stub_hash_lookup (&htab->bstab, 2769 stub_name, 2770 FALSE, FALSE); 2771 if (hsh == NULL) 2772 { 2773 hsh = hppa_add_stub (stub_name, sec, htab); 2774 if (!hsh) 2775 return -1; 2776 2777 hsh->target_value = hh->eh.root.u.def.value; 2778 hsh->target_section = hh->eh.root.u.def.section; 2779 hsh->stub_type = hppa_stub_export; 2780 hsh->hh = hh; 2781 stub_changed = 1; 2782 } 2783 else 2784 { 2785 (*_bfd_error_handler) (_("%B: duplicate export stub %s"), 2786 input_bfd, 2787 stub_name); 2788 } 2789 } 2790 } 2791 } 2792 } 2793 2794 return stub_changed; 2795 } 2796 2797 /* Determine and set the size of the stub section for a final link. 2798 2799 The basic idea here is to examine all the relocations looking for 2800 PC-relative calls to a target that is unreachable with a "bl" 2801 instruction. */ 2802 2803 bfd_boolean 2804 elf32_hppa_size_stubs 2805 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info, 2806 bfd_boolean multi_subspace, bfd_signed_vma group_size, 2807 asection * (*add_stub_section) (const char *, asection *), 2808 void (*layout_sections_again) (void)) 2809 { 2810 bfd_size_type stub_group_size; 2811 bfd_boolean stubs_always_before_branch; 2812 bfd_boolean stub_changed; 2813 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); 2814 2815 if (htab == NULL) 2816 return FALSE; 2817 2818 /* Stash our params away. */ 2819 htab->stub_bfd = stub_bfd; 2820 htab->multi_subspace = multi_subspace; 2821 htab->add_stub_section = add_stub_section; 2822 htab->layout_sections_again = layout_sections_again; 2823 stubs_always_before_branch = group_size < 0; 2824 if (group_size < 0) 2825 stub_group_size = -group_size; 2826 else 2827 stub_group_size = group_size; 2828 if (stub_group_size == 1) 2829 { 2830 /* Default values. */ 2831 if (stubs_always_before_branch) 2832 { 2833 stub_group_size = 7680000; 2834 if (htab->has_17bit_branch || htab->multi_subspace) 2835 stub_group_size = 240000; 2836 if (htab->has_12bit_branch) 2837 stub_group_size = 7500; 2838 } 2839 else 2840 { 2841 stub_group_size = 6971392; 2842 if (htab->has_17bit_branch || htab->multi_subspace) 2843 stub_group_size = 217856; 2844 if (htab->has_12bit_branch) 2845 stub_group_size = 6808; 2846 } 2847 } 2848 2849 group_sections (htab, stub_group_size, stubs_always_before_branch); 2850 2851 switch (get_local_syms (output_bfd, info->input_bfds, info)) 2852 { 2853 default: 2854 if (htab->all_local_syms) 2855 goto error_ret_free_local; 2856 return FALSE; 2857 2858 case 0: 2859 stub_changed = FALSE; 2860 break; 2861 2862 case 1: 2863 stub_changed = TRUE; 2864 break; 2865 } 2866 2867 while (1) 2868 { 2869 bfd *input_bfd; 2870 unsigned int bfd_indx; 2871 asection *stub_sec; 2872 2873 for (input_bfd = info->input_bfds, bfd_indx = 0; 2874 input_bfd != NULL; 2875 input_bfd = input_bfd->link.next, bfd_indx++) 2876 { 2877 Elf_Internal_Shdr *symtab_hdr; 2878 asection *section; 2879 Elf_Internal_Sym *local_syms; 2880 2881 /* We'll need the symbol table in a second. */ 2882 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 2883 if (symtab_hdr->sh_info == 0) 2884 continue; 2885 2886 local_syms = htab->all_local_syms[bfd_indx]; 2887 2888 /* Walk over each section attached to the input bfd. */ 2889 for (section = input_bfd->sections; 2890 section != NULL; 2891 section = section->next) 2892 { 2893 Elf_Internal_Rela *internal_relocs, *irelaend, *irela; 2894 2895 /* If there aren't any relocs, then there's nothing more 2896 to do. */ 2897 if ((section->flags & SEC_RELOC) == 0 2898 || section->reloc_count == 0) 2899 continue; 2900 2901 /* If this section is a link-once section that will be 2902 discarded, then don't create any stubs. */ 2903 if (section->output_section == NULL 2904 || section->output_section->owner != output_bfd) 2905 continue; 2906 2907 /* Get the relocs. */ 2908 internal_relocs 2909 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL, 2910 info->keep_memory); 2911 if (internal_relocs == NULL) 2912 goto error_ret_free_local; 2913 2914 /* Now examine each relocation. */ 2915 irela = internal_relocs; 2916 irelaend = irela + section->reloc_count; 2917 for (; irela < irelaend; irela++) 2918 { 2919 unsigned int r_type, r_indx; 2920 enum elf32_hppa_stub_type stub_type; 2921 struct elf32_hppa_stub_hash_entry *hsh; 2922 asection *sym_sec; 2923 bfd_vma sym_value; 2924 bfd_vma destination; 2925 struct elf32_hppa_link_hash_entry *hh; 2926 char *stub_name; 2927 const asection *id_sec; 2928 2929 r_type = ELF32_R_TYPE (irela->r_info); 2930 r_indx = ELF32_R_SYM (irela->r_info); 2931 2932 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED) 2933 { 2934 bfd_set_error (bfd_error_bad_value); 2935 error_ret_free_internal: 2936 if (elf_section_data (section)->relocs == NULL) 2937 free (internal_relocs); 2938 goto error_ret_free_local; 2939 } 2940 2941 /* Only look for stubs on call instructions. */ 2942 if (r_type != (unsigned int) R_PARISC_PCREL12F 2943 && r_type != (unsigned int) R_PARISC_PCREL17F 2944 && r_type != (unsigned int) R_PARISC_PCREL22F) 2945 continue; 2946 2947 /* Now determine the call target, its name, value, 2948 section. */ 2949 sym_sec = NULL; 2950 sym_value = 0; 2951 destination = 0; 2952 hh = NULL; 2953 if (r_indx < symtab_hdr->sh_info) 2954 { 2955 /* It's a local symbol. */ 2956 Elf_Internal_Sym *sym; 2957 Elf_Internal_Shdr *hdr; 2958 unsigned int shndx; 2959 2960 sym = local_syms + r_indx; 2961 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION) 2962 sym_value = sym->st_value; 2963 shndx = sym->st_shndx; 2964 if (shndx < elf_numsections (input_bfd)) 2965 { 2966 hdr = elf_elfsections (input_bfd)[shndx]; 2967 sym_sec = hdr->bfd_section; 2968 destination = (sym_value + irela->r_addend 2969 + sym_sec->output_offset 2970 + sym_sec->output_section->vma); 2971 } 2972 } 2973 else 2974 { 2975 /* It's an external symbol. */ 2976 int e_indx; 2977 2978 e_indx = r_indx - symtab_hdr->sh_info; 2979 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]); 2980 2981 while (hh->eh.root.type == bfd_link_hash_indirect 2982 || hh->eh.root.type == bfd_link_hash_warning) 2983 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link); 2984 2985 if (hh->eh.root.type == bfd_link_hash_defined 2986 || hh->eh.root.type == bfd_link_hash_defweak) 2987 { 2988 sym_sec = hh->eh.root.u.def.section; 2989 sym_value = hh->eh.root.u.def.value; 2990 if (sym_sec->output_section != NULL) 2991 destination = (sym_value + irela->r_addend 2992 + sym_sec->output_offset 2993 + sym_sec->output_section->vma); 2994 } 2995 else if (hh->eh.root.type == bfd_link_hash_undefweak) 2996 { 2997 if (! info->shared) 2998 continue; 2999 } 3000 else if (hh->eh.root.type == bfd_link_hash_undefined) 3001 { 3002 if (! (info->unresolved_syms_in_objects == RM_IGNORE 3003 && (ELF_ST_VISIBILITY (hh->eh.other) 3004 == STV_DEFAULT) 3005 && hh->eh.type != STT_PARISC_MILLI)) 3006 continue; 3007 } 3008 else 3009 { 3010 bfd_set_error (bfd_error_bad_value); 3011 goto error_ret_free_internal; 3012 } 3013 } 3014 3015 /* Determine what (if any) linker stub is needed. */ 3016 stub_type = hppa_type_of_stub (section, irela, hh, 3017 destination, info); 3018 if (stub_type == hppa_stub_none) 3019 continue; 3020 3021 /* Support for grouping stub sections. */ 3022 id_sec = htab->stub_group[section->id].link_sec; 3023 3024 /* Get the name of this stub. */ 3025 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela); 3026 if (!stub_name) 3027 goto error_ret_free_internal; 3028 3029 hsh = hppa_stub_hash_lookup (&htab->bstab, 3030 stub_name, 3031 FALSE, FALSE); 3032 if (hsh != NULL) 3033 { 3034 /* The proper stub has already been created. */ 3035 free (stub_name); 3036 continue; 3037 } 3038 3039 hsh = hppa_add_stub (stub_name, section, htab); 3040 if (hsh == NULL) 3041 { 3042 free (stub_name); 3043 goto error_ret_free_internal; 3044 } 3045 3046 hsh->target_value = sym_value; 3047 hsh->target_section = sym_sec; 3048 hsh->stub_type = stub_type; 3049 if (info->shared) 3050 { 3051 if (stub_type == hppa_stub_import) 3052 hsh->stub_type = hppa_stub_import_shared; 3053 else if (stub_type == hppa_stub_long_branch) 3054 hsh->stub_type = hppa_stub_long_branch_shared; 3055 } 3056 hsh->hh = hh; 3057 stub_changed = TRUE; 3058 } 3059 3060 /* We're done with the internal relocs, free them. */ 3061 if (elf_section_data (section)->relocs == NULL) 3062 free (internal_relocs); 3063 } 3064 } 3065 3066 if (!stub_changed) 3067 break; 3068 3069 /* OK, we've added some stubs. Find out the new size of the 3070 stub sections. */ 3071 for (stub_sec = htab->stub_bfd->sections; 3072 stub_sec != NULL; 3073 stub_sec = stub_sec->next) 3074 stub_sec->size = 0; 3075 3076 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab); 3077 3078 /* Ask the linker to do its stuff. */ 3079 (*htab->layout_sections_again) (); 3080 stub_changed = FALSE; 3081 } 3082 3083 free (htab->all_local_syms); 3084 return TRUE; 3085 3086 error_ret_free_local: 3087 free (htab->all_local_syms); 3088 return FALSE; 3089 } 3090 3091 /* For a final link, this function is called after we have sized the 3092 stubs to provide a value for __gp. */ 3093 3094 bfd_boolean 3095 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info) 3096 { 3097 struct bfd_link_hash_entry *h; 3098 asection *sec = NULL; 3099 bfd_vma gp_val = 0; 3100 struct elf32_hppa_link_hash_table *htab; 3101 3102 htab = hppa_link_hash_table (info); 3103 if (htab == NULL) 3104 return FALSE; 3105 3106 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE); 3107 3108 if (h != NULL 3109 && (h->type == bfd_link_hash_defined 3110 || h->type == bfd_link_hash_defweak)) 3111 { 3112 gp_val = h->u.def.value; 3113 sec = h->u.def.section; 3114 } 3115 else 3116 { 3117 asection *splt = bfd_get_section_by_name (abfd, ".plt"); 3118 asection *sgot = bfd_get_section_by_name (abfd, ".got"); 3119 3120 /* Choose to point our LTP at, in this order, one of .plt, .got, 3121 or .data, if these sections exist. In the case of choosing 3122 .plt try to make the LTP ideal for addressing anywhere in the 3123 .plt or .got with a 14 bit signed offset. Typically, the end 3124 of the .plt is the start of the .got, so choose .plt + 0x2000 3125 if either the .plt or .got is larger than 0x2000. If both 3126 the .plt and .got are smaller than 0x2000, choose the end of 3127 the .plt section. */ 3128 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0 3129 ? NULL : splt; 3130 if (sec != NULL) 3131 { 3132 gp_val = sec->size; 3133 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000)) 3134 { 3135 gp_val = 0x2000; 3136 } 3137 } 3138 else 3139 { 3140 sec = sgot; 3141 if (sec != NULL) 3142 { 3143 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0) 3144 { 3145 /* We know we don't have a .plt. If .got is large, 3146 offset our LTP. */ 3147 if (sec->size > 0x2000) 3148 gp_val = 0x2000; 3149 } 3150 } 3151 else 3152 { 3153 /* No .plt or .got. Who cares what the LTP is? */ 3154 sec = bfd_get_section_by_name (abfd, ".data"); 3155 } 3156 } 3157 3158 if (h != NULL) 3159 { 3160 h->type = bfd_link_hash_defined; 3161 h->u.def.value = gp_val; 3162 if (sec != NULL) 3163 h->u.def.section = sec; 3164 else 3165 h->u.def.section = bfd_abs_section_ptr; 3166 } 3167 } 3168 3169 if (sec != NULL && sec->output_section != NULL) 3170 gp_val += sec->output_section->vma + sec->output_offset; 3171 3172 elf_gp (abfd) = gp_val; 3173 return TRUE; 3174 } 3175 3176 /* Build all the stubs associated with the current output file. The 3177 stubs are kept in a hash table attached to the main linker hash 3178 table. We also set up the .plt entries for statically linked PIC 3179 functions here. This function is called via hppaelf_finish in the 3180 linker. */ 3181 3182 bfd_boolean 3183 elf32_hppa_build_stubs (struct bfd_link_info *info) 3184 { 3185 asection *stub_sec; 3186 struct bfd_hash_table *table; 3187 struct elf32_hppa_link_hash_table *htab; 3188 3189 htab = hppa_link_hash_table (info); 3190 if (htab == NULL) 3191 return FALSE; 3192 3193 for (stub_sec = htab->stub_bfd->sections; 3194 stub_sec != NULL; 3195 stub_sec = stub_sec->next) 3196 { 3197 bfd_size_type size; 3198 3199 /* Allocate memory to hold the linker stubs. */ 3200 size = stub_sec->size; 3201 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size); 3202 if (stub_sec->contents == NULL && size != 0) 3203 return FALSE; 3204 stub_sec->size = 0; 3205 } 3206 3207 /* Build the stubs as directed by the stub hash table. */ 3208 table = &htab->bstab; 3209 bfd_hash_traverse (table, hppa_build_one_stub, info); 3210 3211 return TRUE; 3212 } 3213 3214 /* Return the base vma address which should be subtracted from the real 3215 address when resolving a dtpoff relocation. 3216 This is PT_TLS segment p_vaddr. */ 3217 3218 static bfd_vma 3219 dtpoff_base (struct bfd_link_info *info) 3220 { 3221 /* If tls_sec is NULL, we should have signalled an error already. */ 3222 if (elf_hash_table (info)->tls_sec == NULL) 3223 return 0; 3224 return elf_hash_table (info)->tls_sec->vma; 3225 } 3226 3227 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */ 3228 3229 static bfd_vma 3230 tpoff (struct bfd_link_info *info, bfd_vma address) 3231 { 3232 struct elf_link_hash_table *htab = elf_hash_table (info); 3233 3234 /* If tls_sec is NULL, we should have signalled an error already. */ 3235 if (htab->tls_sec == NULL) 3236 return 0; 3237 /* hppa TLS ABI is variant I and static TLS block start just after 3238 tcbhead structure which has 2 pointer fields. */ 3239 return (address - htab->tls_sec->vma 3240 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power)); 3241 } 3242 3243 /* Perform a final link. */ 3244 3245 static bfd_boolean 3246 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info) 3247 { 3248 /* Invoke the regular ELF linker to do all the work. */ 3249 if (!bfd_elf_final_link (abfd, info)) 3250 return FALSE; 3251 3252 /* If we're producing a final executable, sort the contents of the 3253 unwind section. */ 3254 if (info->relocatable) 3255 return TRUE; 3256 3257 return elf_hppa_sort_unwind (abfd); 3258 } 3259 3260 /* Record the lowest address for the data and text segments. */ 3261 3262 static void 3263 hppa_record_segment_addr (bfd *abfd, asection *section, void *data) 3264 { 3265 struct elf32_hppa_link_hash_table *htab; 3266 3267 htab = (struct elf32_hppa_link_hash_table*) data; 3268 if (htab == NULL) 3269 return; 3270 3271 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD)) 3272 { 3273 bfd_vma value; 3274 Elf_Internal_Phdr *p; 3275 3276 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section); 3277 BFD_ASSERT (p != NULL); 3278 value = p->p_vaddr; 3279 3280 if ((section->flags & SEC_READONLY) != 0) 3281 { 3282 if (value < htab->text_segment_base) 3283 htab->text_segment_base = value; 3284 } 3285 else 3286 { 3287 if (value < htab->data_segment_base) 3288 htab->data_segment_base = value; 3289 } 3290 } 3291 } 3292 3293 /* Perform a relocation as part of a final link. */ 3294 3295 static bfd_reloc_status_type 3296 final_link_relocate (asection *input_section, 3297 bfd_byte *contents, 3298 const Elf_Internal_Rela *rela, 3299 bfd_vma value, 3300 struct elf32_hppa_link_hash_table *htab, 3301 asection *sym_sec, 3302 struct elf32_hppa_link_hash_entry *hh, 3303 struct bfd_link_info *info) 3304 { 3305 int insn; 3306 unsigned int r_type = ELF32_R_TYPE (rela->r_info); 3307 unsigned int orig_r_type = r_type; 3308 reloc_howto_type *howto = elf_hppa_howto_table + r_type; 3309 int r_format = howto->bitsize; 3310 enum hppa_reloc_field_selector_type_alt r_field; 3311 bfd *input_bfd = input_section->owner; 3312 bfd_vma offset = rela->r_offset; 3313 bfd_vma max_branch_offset = 0; 3314 bfd_byte *hit_data = contents + offset; 3315 bfd_signed_vma addend = rela->r_addend; 3316 bfd_vma location; 3317 struct elf32_hppa_stub_hash_entry *hsh = NULL; 3318 int val; 3319 3320 if (r_type == R_PARISC_NONE) 3321 return bfd_reloc_ok; 3322 3323 insn = bfd_get_32 (input_bfd, hit_data); 3324 3325 /* Find out where we are and where we're going. */ 3326 location = (offset + 3327 input_section->output_offset + 3328 input_section->output_section->vma); 3329 3330 /* If we are not building a shared library, convert DLTIND relocs to 3331 DPREL relocs. */ 3332 if (!info->shared) 3333 { 3334 switch (r_type) 3335 { 3336 case R_PARISC_DLTIND21L: 3337 case R_PARISC_TLS_GD21L: 3338 case R_PARISC_TLS_LDM21L: 3339 case R_PARISC_TLS_IE21L: 3340 r_type = R_PARISC_DPREL21L; 3341 break; 3342 3343 case R_PARISC_DLTIND14R: 3344 case R_PARISC_TLS_GD14R: 3345 case R_PARISC_TLS_LDM14R: 3346 case R_PARISC_TLS_IE14R: 3347 r_type = R_PARISC_DPREL14R; 3348 break; 3349 3350 case R_PARISC_DLTIND14F: 3351 r_type = R_PARISC_DPREL14F; 3352 break; 3353 } 3354 } 3355 3356 switch (r_type) 3357 { 3358 case R_PARISC_PCREL12F: 3359 case R_PARISC_PCREL17F: 3360 case R_PARISC_PCREL22F: 3361 /* If this call should go via the plt, find the import stub in 3362 the stub hash. */ 3363 if (sym_sec == NULL 3364 || sym_sec->output_section == NULL 3365 || (hh != NULL 3366 && hh->eh.plt.offset != (bfd_vma) -1 3367 && hh->eh.dynindx != -1 3368 && !hh->plabel 3369 && (info->shared 3370 || !hh->eh.def_regular 3371 || hh->eh.root.type == bfd_link_hash_defweak))) 3372 { 3373 hsh = hppa_get_stub_entry (input_section, sym_sec, 3374 hh, rela, htab); 3375 if (hsh != NULL) 3376 { 3377 value = (hsh->stub_offset 3378 + hsh->stub_sec->output_offset 3379 + hsh->stub_sec->output_section->vma); 3380 addend = 0; 3381 } 3382 else if (sym_sec == NULL && hh != NULL 3383 && hh->eh.root.type == bfd_link_hash_undefweak) 3384 { 3385 /* It's OK if undefined weak. Calls to undefined weak 3386 symbols behave as if the "called" function 3387 immediately returns. We can thus call to a weak 3388 function without first checking whether the function 3389 is defined. */ 3390 value = location; 3391 addend = 8; 3392 } 3393 else 3394 return bfd_reloc_undefined; 3395 } 3396 /* Fall thru. */ 3397 3398 case R_PARISC_PCREL21L: 3399 case R_PARISC_PCREL17C: 3400 case R_PARISC_PCREL17R: 3401 case R_PARISC_PCREL14R: 3402 case R_PARISC_PCREL14F: 3403 case R_PARISC_PCREL32: 3404 /* Make it a pc relative offset. */ 3405 value -= location; 3406 addend -= 8; 3407 break; 3408 3409 case R_PARISC_DPREL21L: 3410 case R_PARISC_DPREL14R: 3411 case R_PARISC_DPREL14F: 3412 /* Convert instructions that use the linkage table pointer (r19) to 3413 instructions that use the global data pointer (dp). This is the 3414 most efficient way of using PIC code in an incomplete executable, 3415 but the user must follow the standard runtime conventions for 3416 accessing data for this to work. */ 3417 if (orig_r_type != r_type) 3418 { 3419 if (r_type == R_PARISC_DPREL21L) 3420 { 3421 /* GCC sometimes uses a register other than r19 for the 3422 operation, so we must convert any addil instruction 3423 that uses this relocation. */ 3424 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26)) 3425 insn = ADDIL_DP; 3426 else 3427 /* We must have a ldil instruction. It's too hard to find 3428 and convert the associated add instruction, so issue an 3429 error. */ 3430 (*_bfd_error_handler) 3431 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"), 3432 input_bfd, 3433 input_section, 3434 (long) offset, 3435 howto->name, 3436 insn); 3437 } 3438 else if (r_type == R_PARISC_DPREL14F) 3439 { 3440 /* This must be a format 1 load/store. Change the base 3441 register to dp. */ 3442 insn = (insn & 0xfc1ffff) | (27 << 21); 3443 } 3444 } 3445 3446 /* For all the DP relative relocations, we need to examine the symbol's 3447 section. If it has no section or if it's a code section, then 3448 "data pointer relative" makes no sense. In that case we don't 3449 adjust the "value", and for 21 bit addil instructions, we change the 3450 source addend register from %dp to %r0. This situation commonly 3451 arises for undefined weak symbols and when a variable's "constness" 3452 is declared differently from the way the variable is defined. For 3453 instance: "extern int foo" with foo defined as "const int foo". */ 3454 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0) 3455 { 3456 if ((insn & ((0x3f << 26) | (0x1f << 21))) 3457 == (((int) OP_ADDIL << 26) | (27 << 21))) 3458 { 3459 insn &= ~ (0x1f << 21); 3460 } 3461 /* Now try to make things easy for the dynamic linker. */ 3462 3463 break; 3464 } 3465 /* Fall thru. */ 3466 3467 case R_PARISC_DLTIND21L: 3468 case R_PARISC_DLTIND14R: 3469 case R_PARISC_DLTIND14F: 3470 case R_PARISC_TLS_GD21L: 3471 case R_PARISC_TLS_LDM21L: 3472 case R_PARISC_TLS_IE21L: 3473 case R_PARISC_TLS_GD14R: 3474 case R_PARISC_TLS_LDM14R: 3475 case R_PARISC_TLS_IE14R: 3476 value -= elf_gp (input_section->output_section->owner); 3477 break; 3478 3479 case R_PARISC_SEGREL32: 3480 if ((sym_sec->flags & SEC_CODE) != 0) 3481 value -= htab->text_segment_base; 3482 else 3483 value -= htab->data_segment_base; 3484 break; 3485 3486 default: 3487 break; 3488 } 3489 3490 switch (r_type) 3491 { 3492 case R_PARISC_DIR32: 3493 case R_PARISC_DIR14F: 3494 case R_PARISC_DIR17F: 3495 case R_PARISC_PCREL17C: 3496 case R_PARISC_PCREL14F: 3497 case R_PARISC_PCREL32: 3498 case R_PARISC_DPREL14F: 3499 case R_PARISC_PLABEL32: 3500 case R_PARISC_DLTIND14F: 3501 case R_PARISC_SEGBASE: 3502 case R_PARISC_SEGREL32: 3503 case R_PARISC_TLS_DTPMOD32: 3504 case R_PARISC_TLS_DTPOFF32: 3505 case R_PARISC_TLS_TPREL32: 3506 r_field = e_fsel; 3507 break; 3508 3509 case R_PARISC_DLTIND21L: 3510 case R_PARISC_PCREL21L: 3511 case R_PARISC_PLABEL21L: 3512 r_field = e_lsel; 3513 break; 3514 3515 case R_PARISC_DIR21L: 3516 case R_PARISC_DPREL21L: 3517 case R_PARISC_TLS_GD21L: 3518 case R_PARISC_TLS_LDM21L: 3519 case R_PARISC_TLS_LDO21L: 3520 case R_PARISC_TLS_IE21L: 3521 case R_PARISC_TLS_LE21L: 3522 r_field = e_lrsel; 3523 break; 3524 3525 case R_PARISC_PCREL17R: 3526 case R_PARISC_PCREL14R: 3527 case R_PARISC_PLABEL14R: 3528 case R_PARISC_DLTIND14R: 3529 r_field = e_rsel; 3530 break; 3531 3532 case R_PARISC_DIR17R: 3533 case R_PARISC_DIR14R: 3534 case R_PARISC_DPREL14R: 3535 case R_PARISC_TLS_GD14R: 3536 case R_PARISC_TLS_LDM14R: 3537 case R_PARISC_TLS_LDO14R: 3538 case R_PARISC_TLS_IE14R: 3539 case R_PARISC_TLS_LE14R: 3540 r_field = e_rrsel; 3541 break; 3542 3543 case R_PARISC_PCREL12F: 3544 case R_PARISC_PCREL17F: 3545 case R_PARISC_PCREL22F: 3546 r_field = e_fsel; 3547 3548 if (r_type == (unsigned int) R_PARISC_PCREL17F) 3549 { 3550 max_branch_offset = (1 << (17-1)) << 2; 3551 } 3552 else if (r_type == (unsigned int) R_PARISC_PCREL12F) 3553 { 3554 max_branch_offset = (1 << (12-1)) << 2; 3555 } 3556 else 3557 { 3558 max_branch_offset = (1 << (22-1)) << 2; 3559 } 3560 3561 /* sym_sec is NULL on undefined weak syms or when shared on 3562 undefined syms. We've already checked for a stub for the 3563 shared undefined case. */ 3564 if (sym_sec == NULL) 3565 break; 3566 3567 /* If the branch is out of reach, then redirect the 3568 call to the local stub for this function. */ 3569 if (value + addend + max_branch_offset >= 2*max_branch_offset) 3570 { 3571 hsh = hppa_get_stub_entry (input_section, sym_sec, 3572 hh, rela, htab); 3573 if (hsh == NULL) 3574 return bfd_reloc_undefined; 3575 3576 /* Munge up the value and addend so that we call the stub 3577 rather than the procedure directly. */ 3578 value = (hsh->stub_offset 3579 + hsh->stub_sec->output_offset 3580 + hsh->stub_sec->output_section->vma 3581 - location); 3582 addend = -8; 3583 } 3584 break; 3585 3586 /* Something we don't know how to handle. */ 3587 default: 3588 return bfd_reloc_notsupported; 3589 } 3590 3591 /* Make sure we can reach the stub. */ 3592 if (max_branch_offset != 0 3593 && value + addend + max_branch_offset >= 2*max_branch_offset) 3594 { 3595 (*_bfd_error_handler) 3596 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"), 3597 input_bfd, 3598 input_section, 3599 (long) offset, 3600 hsh->bh_root.string); 3601 bfd_set_error (bfd_error_bad_value); 3602 return bfd_reloc_notsupported; 3603 } 3604 3605 val = hppa_field_adjust (value, addend, r_field); 3606 3607 switch (r_type) 3608 { 3609 case R_PARISC_PCREL12F: 3610 case R_PARISC_PCREL17C: 3611 case R_PARISC_PCREL17F: 3612 case R_PARISC_PCREL17R: 3613 case R_PARISC_PCREL22F: 3614 case R_PARISC_DIR17F: 3615 case R_PARISC_DIR17R: 3616 /* This is a branch. Divide the offset by four. 3617 Note that we need to decide whether it's a branch or 3618 otherwise by inspecting the reloc. Inspecting insn won't 3619 work as insn might be from a .word directive. */ 3620 val >>= 2; 3621 break; 3622 3623 default: 3624 break; 3625 } 3626 3627 insn = hppa_rebuild_insn (insn, val, r_format); 3628 3629 /* Update the instruction word. */ 3630 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data); 3631 return bfd_reloc_ok; 3632 } 3633 3634 /* Relocate an HPPA ELF section. */ 3635 3636 static bfd_boolean 3637 elf32_hppa_relocate_section (bfd *output_bfd, 3638 struct bfd_link_info *info, 3639 bfd *input_bfd, 3640 asection *input_section, 3641 bfd_byte *contents, 3642 Elf_Internal_Rela *relocs, 3643 Elf_Internal_Sym *local_syms, 3644 asection **local_sections) 3645 { 3646 bfd_vma *local_got_offsets; 3647 struct elf32_hppa_link_hash_table *htab; 3648 Elf_Internal_Shdr *symtab_hdr; 3649 Elf_Internal_Rela *rela; 3650 Elf_Internal_Rela *relend; 3651 3652 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 3653 3654 htab = hppa_link_hash_table (info); 3655 if (htab == NULL) 3656 return FALSE; 3657 3658 local_got_offsets = elf_local_got_offsets (input_bfd); 3659 3660 rela = relocs; 3661 relend = relocs + input_section->reloc_count; 3662 for (; rela < relend; rela++) 3663 { 3664 unsigned int r_type; 3665 reloc_howto_type *howto; 3666 unsigned int r_symndx; 3667 struct elf32_hppa_link_hash_entry *hh; 3668 Elf_Internal_Sym *sym; 3669 asection *sym_sec; 3670 bfd_vma relocation; 3671 bfd_reloc_status_type rstatus; 3672 const char *sym_name; 3673 bfd_boolean plabel; 3674 bfd_boolean warned_undef; 3675 3676 r_type = ELF32_R_TYPE (rela->r_info); 3677 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED) 3678 { 3679 bfd_set_error (bfd_error_bad_value); 3680 return FALSE; 3681 } 3682 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY 3683 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT) 3684 continue; 3685 3686 r_symndx = ELF32_R_SYM (rela->r_info); 3687 hh = NULL; 3688 sym = NULL; 3689 sym_sec = NULL; 3690 warned_undef = FALSE; 3691 if (r_symndx < symtab_hdr->sh_info) 3692 { 3693 /* This is a local symbol, h defaults to NULL. */ 3694 sym = local_syms + r_symndx; 3695 sym_sec = local_sections[r_symndx]; 3696 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela); 3697 } 3698 else 3699 { 3700 struct elf_link_hash_entry *eh; 3701 bfd_boolean unresolved_reloc, ignored; 3702 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd); 3703 3704 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela, 3705 r_symndx, symtab_hdr, sym_hashes, 3706 eh, sym_sec, relocation, 3707 unresolved_reloc, warned_undef, 3708 ignored); 3709 3710 if (!info->relocatable 3711 && relocation == 0 3712 && eh->root.type != bfd_link_hash_defined 3713 && eh->root.type != bfd_link_hash_defweak 3714 && eh->root.type != bfd_link_hash_undefweak) 3715 { 3716 if (info->unresolved_syms_in_objects == RM_IGNORE 3717 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT 3718 && eh->type == STT_PARISC_MILLI) 3719 { 3720 if (! info->callbacks->undefined_symbol 3721 (info, eh_name (eh), input_bfd, 3722 input_section, rela->r_offset, FALSE)) 3723 return FALSE; 3724 warned_undef = TRUE; 3725 } 3726 } 3727 hh = hppa_elf_hash_entry (eh); 3728 } 3729 3730 if (sym_sec != NULL && discarded_section (sym_sec)) 3731 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 3732 rela, 1, relend, 3733 elf_hppa_howto_table + r_type, 0, 3734 contents); 3735 3736 if (info->relocatable) 3737 continue; 3738 3739 /* Do any required modifications to the relocation value, and 3740 determine what types of dynamic info we need to output, if 3741 any. */ 3742 plabel = 0; 3743 switch (r_type) 3744 { 3745 case R_PARISC_DLTIND14F: 3746 case R_PARISC_DLTIND14R: 3747 case R_PARISC_DLTIND21L: 3748 { 3749 bfd_vma off; 3750 bfd_boolean do_got = 0; 3751 3752 /* Relocation is to the entry for this symbol in the 3753 global offset table. */ 3754 if (hh != NULL) 3755 { 3756 bfd_boolean dyn; 3757 3758 off = hh->eh.got.offset; 3759 dyn = htab->etab.dynamic_sections_created; 3760 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, 3761 &hh->eh)) 3762 { 3763 /* If we aren't going to call finish_dynamic_symbol, 3764 then we need to handle initialisation of the .got 3765 entry and create needed relocs here. Since the 3766 offset must always be a multiple of 4, we use the 3767 least significant bit to record whether we have 3768 initialised it already. */ 3769 if ((off & 1) != 0) 3770 off &= ~1; 3771 else 3772 { 3773 hh->eh.got.offset |= 1; 3774 do_got = 1; 3775 } 3776 } 3777 } 3778 else 3779 { 3780 /* Local symbol case. */ 3781 if (local_got_offsets == NULL) 3782 abort (); 3783 3784 off = local_got_offsets[r_symndx]; 3785 3786 /* The offset must always be a multiple of 4. We use 3787 the least significant bit to record whether we have 3788 already generated the necessary reloc. */ 3789 if ((off & 1) != 0) 3790 off &= ~1; 3791 else 3792 { 3793 local_got_offsets[r_symndx] |= 1; 3794 do_got = 1; 3795 } 3796 } 3797 3798 if (do_got) 3799 { 3800 if (info->shared) 3801 { 3802 /* Output a dynamic relocation for this GOT entry. 3803 In this case it is relative to the base of the 3804 object because the symbol index is zero. */ 3805 Elf_Internal_Rela outrel; 3806 bfd_byte *loc; 3807 asection *sec = htab->srelgot; 3808 3809 outrel.r_offset = (off 3810 + htab->sgot->output_offset 3811 + htab->sgot->output_section->vma); 3812 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32); 3813 outrel.r_addend = relocation; 3814 loc = sec->contents; 3815 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela); 3816 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); 3817 } 3818 else 3819 bfd_put_32 (output_bfd, relocation, 3820 htab->sgot->contents + off); 3821 } 3822 3823 if (off >= (bfd_vma) -2) 3824 abort (); 3825 3826 /* Add the base of the GOT to the relocation value. */ 3827 relocation = (off 3828 + htab->sgot->output_offset 3829 + htab->sgot->output_section->vma); 3830 } 3831 break; 3832 3833 case R_PARISC_SEGREL32: 3834 /* If this is the first SEGREL relocation, then initialize 3835 the segment base values. */ 3836 if (htab->text_segment_base == (bfd_vma) -1) 3837 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab); 3838 break; 3839 3840 case R_PARISC_PLABEL14R: 3841 case R_PARISC_PLABEL21L: 3842 case R_PARISC_PLABEL32: 3843 if (htab->etab.dynamic_sections_created) 3844 { 3845 bfd_vma off; 3846 bfd_boolean do_plt = 0; 3847 /* If we have a global symbol with a PLT slot, then 3848 redirect this relocation to it. */ 3849 if (hh != NULL) 3850 { 3851 off = hh->eh.plt.offset; 3852 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, 3853 &hh->eh)) 3854 { 3855 /* In a non-shared link, adjust_dynamic_symbols 3856 isn't called for symbols forced local. We 3857 need to write out the plt entry here. */ 3858 if ((off & 1) != 0) 3859 off &= ~1; 3860 else 3861 { 3862 hh->eh.plt.offset |= 1; 3863 do_plt = 1; 3864 } 3865 } 3866 } 3867 else 3868 { 3869 bfd_vma *local_plt_offsets; 3870 3871 if (local_got_offsets == NULL) 3872 abort (); 3873 3874 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info; 3875 off = local_plt_offsets[r_symndx]; 3876 3877 /* As for the local .got entry case, we use the last 3878 bit to record whether we've already initialised 3879 this local .plt entry. */ 3880 if ((off & 1) != 0) 3881 off &= ~1; 3882 else 3883 { 3884 local_plt_offsets[r_symndx] |= 1; 3885 do_plt = 1; 3886 } 3887 } 3888 3889 if (do_plt) 3890 { 3891 if (info->shared) 3892 { 3893 /* Output a dynamic IPLT relocation for this 3894 PLT entry. */ 3895 Elf_Internal_Rela outrel; 3896 bfd_byte *loc; 3897 asection *s = htab->srelplt; 3898 3899 outrel.r_offset = (off 3900 + htab->splt->output_offset 3901 + htab->splt->output_section->vma); 3902 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT); 3903 outrel.r_addend = relocation; 3904 loc = s->contents; 3905 loc += s->reloc_count++ * sizeof (Elf32_External_Rela); 3906 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); 3907 } 3908 else 3909 { 3910 bfd_put_32 (output_bfd, 3911 relocation, 3912 htab->splt->contents + off); 3913 bfd_put_32 (output_bfd, 3914 elf_gp (htab->splt->output_section->owner), 3915 htab->splt->contents + off + 4); 3916 } 3917 } 3918 3919 if (off >= (bfd_vma) -2) 3920 abort (); 3921 3922 /* PLABELs contain function pointers. Relocation is to 3923 the entry for the function in the .plt. The magic +2 3924 offset signals to $$dyncall that the function pointer 3925 is in the .plt and thus has a gp pointer too. 3926 Exception: Undefined PLABELs should have a value of 3927 zero. */ 3928 if (hh == NULL 3929 || (hh->eh.root.type != bfd_link_hash_undefweak 3930 && hh->eh.root.type != bfd_link_hash_undefined)) 3931 { 3932 relocation = (off 3933 + htab->splt->output_offset 3934 + htab->splt->output_section->vma 3935 + 2); 3936 } 3937 plabel = 1; 3938 } 3939 /* Fall through and possibly emit a dynamic relocation. */ 3940 3941 case R_PARISC_DIR17F: 3942 case R_PARISC_DIR17R: 3943 case R_PARISC_DIR14F: 3944 case R_PARISC_DIR14R: 3945 case R_PARISC_DIR21L: 3946 case R_PARISC_DPREL14F: 3947 case R_PARISC_DPREL14R: 3948 case R_PARISC_DPREL21L: 3949 case R_PARISC_DIR32: 3950 if ((input_section->flags & SEC_ALLOC) == 0) 3951 break; 3952 3953 /* The reloc types handled here and this conditional 3954 expression must match the code in ..check_relocs and 3955 allocate_dynrelocs. ie. We need exactly the same condition 3956 as in ..check_relocs, with some extra conditions (dynindx 3957 test in this case) to cater for relocs removed by 3958 allocate_dynrelocs. If you squint, the non-shared test 3959 here does indeed match the one in ..check_relocs, the 3960 difference being that here we test DEF_DYNAMIC as well as 3961 !DEF_REGULAR. All common syms end up with !DEF_REGULAR, 3962 which is why we can't use just that test here. 3963 Conversely, DEF_DYNAMIC can't be used in check_relocs as 3964 there all files have not been loaded. */ 3965 if ((info->shared 3966 && (hh == NULL 3967 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT 3968 || hh->eh.root.type != bfd_link_hash_undefweak) 3969 && (IS_ABSOLUTE_RELOC (r_type) 3970 || !SYMBOL_CALLS_LOCAL (info, &hh->eh))) 3971 || (!info->shared 3972 && hh != NULL 3973 && hh->eh.dynindx != -1 3974 && !hh->eh.non_got_ref 3975 && ((ELIMINATE_COPY_RELOCS 3976 && hh->eh.def_dynamic 3977 && !hh->eh.def_regular) 3978 || hh->eh.root.type == bfd_link_hash_undefweak 3979 || hh->eh.root.type == bfd_link_hash_undefined))) 3980 { 3981 Elf_Internal_Rela outrel; 3982 bfd_boolean skip; 3983 asection *sreloc; 3984 bfd_byte *loc; 3985 3986 /* When generating a shared object, these relocations 3987 are copied into the output file to be resolved at run 3988 time. */ 3989 3990 outrel.r_addend = rela->r_addend; 3991 outrel.r_offset = 3992 _bfd_elf_section_offset (output_bfd, info, input_section, 3993 rela->r_offset); 3994 skip = (outrel.r_offset == (bfd_vma) -1 3995 || outrel.r_offset == (bfd_vma) -2); 3996 outrel.r_offset += (input_section->output_offset 3997 + input_section->output_section->vma); 3998 3999 if (skip) 4000 { 4001 memset (&outrel, 0, sizeof (outrel)); 4002 } 4003 else if (hh != NULL 4004 && hh->eh.dynindx != -1 4005 && (plabel 4006 || !IS_ABSOLUTE_RELOC (r_type) 4007 || !info->shared 4008 || !info->symbolic 4009 || !hh->eh.def_regular)) 4010 { 4011 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type); 4012 } 4013 else /* It's a local symbol, or one marked to become local. */ 4014 { 4015 int indx = 0; 4016 4017 /* Add the absolute offset of the symbol. */ 4018 outrel.r_addend += relocation; 4019 4020 /* Global plabels need to be processed by the 4021 dynamic linker so that functions have at most one 4022 fptr. For this reason, we need to differentiate 4023 between global and local plabels, which we do by 4024 providing the function symbol for a global plabel 4025 reloc, and no symbol for local plabels. */ 4026 if (! plabel 4027 && sym_sec != NULL 4028 && sym_sec->output_section != NULL 4029 && ! bfd_is_abs_section (sym_sec)) 4030 { 4031 asection *osec; 4032 4033 osec = sym_sec->output_section; 4034 indx = elf_section_data (osec)->dynindx; 4035 if (indx == 0) 4036 { 4037 osec = htab->etab.text_index_section; 4038 indx = elf_section_data (osec)->dynindx; 4039 } 4040 BFD_ASSERT (indx != 0); 4041 4042 /* We are turning this relocation into one 4043 against a section symbol, so subtract out the 4044 output section's address but not the offset 4045 of the input section in the output section. */ 4046 outrel.r_addend -= osec->vma; 4047 } 4048 4049 outrel.r_info = ELF32_R_INFO (indx, r_type); 4050 } 4051 sreloc = elf_section_data (input_section)->sreloc; 4052 if (sreloc == NULL) 4053 abort (); 4054 4055 loc = sreloc->contents; 4056 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela); 4057 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); 4058 } 4059 break; 4060 4061 case R_PARISC_TLS_LDM21L: 4062 case R_PARISC_TLS_LDM14R: 4063 { 4064 bfd_vma off; 4065 4066 off = htab->tls_ldm_got.offset; 4067 if (off & 1) 4068 off &= ~1; 4069 else 4070 { 4071 Elf_Internal_Rela outrel; 4072 bfd_byte *loc; 4073 4074 outrel.r_offset = (off 4075 + htab->sgot->output_section->vma 4076 + htab->sgot->output_offset); 4077 outrel.r_addend = 0; 4078 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32); 4079 loc = htab->srelgot->contents; 4080 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela); 4081 4082 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); 4083 htab->tls_ldm_got.offset |= 1; 4084 } 4085 4086 /* Add the base of the GOT to the relocation value. */ 4087 relocation = (off 4088 + htab->sgot->output_offset 4089 + htab->sgot->output_section->vma); 4090 4091 break; 4092 } 4093 4094 case R_PARISC_TLS_LDO21L: 4095 case R_PARISC_TLS_LDO14R: 4096 relocation -= dtpoff_base (info); 4097 break; 4098 4099 case R_PARISC_TLS_GD21L: 4100 case R_PARISC_TLS_GD14R: 4101 case R_PARISC_TLS_IE21L: 4102 case R_PARISC_TLS_IE14R: 4103 { 4104 bfd_vma off; 4105 int indx; 4106 char tls_type; 4107 4108 indx = 0; 4109 if (hh != NULL) 4110 { 4111 bfd_boolean dyn; 4112 dyn = htab->etab.dynamic_sections_created; 4113 4114 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh) 4115 && (!info->shared 4116 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh))) 4117 { 4118 indx = hh->eh.dynindx; 4119 } 4120 off = hh->eh.got.offset; 4121 tls_type = hh->tls_type; 4122 } 4123 else 4124 { 4125 off = local_got_offsets[r_symndx]; 4126 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx]; 4127 } 4128 4129 if (tls_type == GOT_UNKNOWN) 4130 abort (); 4131 4132 if ((off & 1) != 0) 4133 off &= ~1; 4134 else 4135 { 4136 bfd_boolean need_relocs = FALSE; 4137 Elf_Internal_Rela outrel; 4138 bfd_byte *loc = NULL; 4139 int cur_off = off; 4140 4141 /* The GOT entries have not been initialized yet. Do it 4142 now, and emit any relocations. If both an IE GOT and a 4143 GD GOT are necessary, we emit the GD first. */ 4144 4145 if ((info->shared || indx != 0) 4146 && (hh == NULL 4147 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT 4148 || hh->eh.root.type != bfd_link_hash_undefweak)) 4149 { 4150 need_relocs = TRUE; 4151 loc = htab->srelgot->contents; 4152 /* FIXME (CAO): Should this be reloc_count++ ? */ 4153 loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela); 4154 } 4155 4156 if (tls_type & GOT_TLS_GD) 4157 { 4158 if (need_relocs) 4159 { 4160 outrel.r_offset = (cur_off 4161 + htab->sgot->output_section->vma 4162 + htab->sgot->output_offset); 4163 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32); 4164 outrel.r_addend = 0; 4165 bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off); 4166 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); 4167 htab->srelgot->reloc_count++; 4168 loc += sizeof (Elf32_External_Rela); 4169 4170 if (indx == 0) 4171 bfd_put_32 (output_bfd, relocation - dtpoff_base (info), 4172 htab->sgot->contents + cur_off + 4); 4173 else 4174 { 4175 bfd_put_32 (output_bfd, 0, 4176 htab->sgot->contents + cur_off + 4); 4177 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32); 4178 outrel.r_offset += 4; 4179 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc); 4180 htab->srelgot->reloc_count++; 4181 loc += sizeof (Elf32_External_Rela); 4182 } 4183 } 4184 else 4185 { 4186 /* If we are not emitting relocations for a 4187 general dynamic reference, then we must be in a 4188 static link or an executable link with the 4189 symbol binding locally. Mark it as belonging 4190 to module 1, the executable. */ 4191 bfd_put_32 (output_bfd, 1, 4192 htab->sgot->contents + cur_off); 4193 bfd_put_32 (output_bfd, relocation - dtpoff_base (info), 4194 htab->sgot->contents + cur_off + 4); 4195 } 4196 4197 4198 cur_off += 8; 4199 } 4200 4201 if (tls_type & GOT_TLS_IE) 4202 { 4203 if (need_relocs) 4204 { 4205 outrel.r_offset = (cur_off 4206 + htab->sgot->output_section->vma 4207 + htab->sgot->output_offset); 4208 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32); 4209 4210 if (indx == 0) 4211 outrel.r_addend = relocation - dtpoff_base (info); 4212 else 4213 outrel.r_addend = 0; 4214 4215 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); 4216 htab->srelgot->reloc_count++; 4217 loc += sizeof (Elf32_External_Rela); 4218 } 4219 else 4220 bfd_put_32 (output_bfd, tpoff (info, relocation), 4221 htab->sgot->contents + cur_off); 4222 4223 cur_off += 4; 4224 } 4225 4226 if (hh != NULL) 4227 hh->eh.got.offset |= 1; 4228 else 4229 local_got_offsets[r_symndx] |= 1; 4230 } 4231 4232 if ((tls_type & GOT_TLS_GD) 4233 && r_type != R_PARISC_TLS_GD21L 4234 && r_type != R_PARISC_TLS_GD14R) 4235 off += 2 * GOT_ENTRY_SIZE; 4236 4237 /* Add the base of the GOT to the relocation value. */ 4238 relocation = (off 4239 + htab->sgot->output_offset 4240 + htab->sgot->output_section->vma); 4241 4242 break; 4243 } 4244 4245 case R_PARISC_TLS_LE21L: 4246 case R_PARISC_TLS_LE14R: 4247 { 4248 relocation = tpoff (info, relocation); 4249 break; 4250 } 4251 break; 4252 4253 default: 4254 break; 4255 } 4256 4257 rstatus = final_link_relocate (input_section, contents, rela, relocation, 4258 htab, sym_sec, hh, info); 4259 4260 if (rstatus == bfd_reloc_ok) 4261 continue; 4262 4263 if (hh != NULL) 4264 sym_name = hh_name (hh); 4265 else 4266 { 4267 sym_name = bfd_elf_string_from_elf_section (input_bfd, 4268 symtab_hdr->sh_link, 4269 sym->st_name); 4270 if (sym_name == NULL) 4271 return FALSE; 4272 if (*sym_name == '\0') 4273 sym_name = bfd_section_name (input_bfd, sym_sec); 4274 } 4275 4276 howto = elf_hppa_howto_table + r_type; 4277 4278 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported) 4279 { 4280 if (rstatus == bfd_reloc_notsupported || !warned_undef) 4281 { 4282 (*_bfd_error_handler) 4283 (_("%B(%A+0x%lx): cannot handle %s for %s"), 4284 input_bfd, 4285 input_section, 4286 (long) rela->r_offset, 4287 howto->name, 4288 sym_name); 4289 bfd_set_error (bfd_error_bad_value); 4290 return FALSE; 4291 } 4292 } 4293 else 4294 { 4295 if (!((*info->callbacks->reloc_overflow) 4296 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name, 4297 (bfd_vma) 0, input_bfd, input_section, rela->r_offset))) 4298 return FALSE; 4299 } 4300 } 4301 4302 return TRUE; 4303 } 4304 4305 /* Finish up dynamic symbol handling. We set the contents of various 4306 dynamic sections here. */ 4307 4308 static bfd_boolean 4309 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd, 4310 struct bfd_link_info *info, 4311 struct elf_link_hash_entry *eh, 4312 Elf_Internal_Sym *sym) 4313 { 4314 struct elf32_hppa_link_hash_table *htab; 4315 Elf_Internal_Rela rela; 4316 bfd_byte *loc; 4317 4318 htab = hppa_link_hash_table (info); 4319 if (htab == NULL) 4320 return FALSE; 4321 4322 if (eh->plt.offset != (bfd_vma) -1) 4323 { 4324 bfd_vma value; 4325 4326 if (eh->plt.offset & 1) 4327 abort (); 4328 4329 /* This symbol has an entry in the procedure linkage table. Set 4330 it up. 4331 4332 The format of a plt entry is 4333 <funcaddr> 4334 <__gp> 4335 */ 4336 value = 0; 4337 if (eh->root.type == bfd_link_hash_defined 4338 || eh->root.type == bfd_link_hash_defweak) 4339 { 4340 value = eh->root.u.def.value; 4341 if (eh->root.u.def.section->output_section != NULL) 4342 value += (eh->root.u.def.section->output_offset 4343 + eh->root.u.def.section->output_section->vma); 4344 } 4345 4346 /* Create a dynamic IPLT relocation for this entry. */ 4347 rela.r_offset = (eh->plt.offset 4348 + htab->splt->output_offset 4349 + htab->splt->output_section->vma); 4350 if (eh->dynindx != -1) 4351 { 4352 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT); 4353 rela.r_addend = 0; 4354 } 4355 else 4356 { 4357 /* This symbol has been marked to become local, and is 4358 used by a plabel so must be kept in the .plt. */ 4359 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT); 4360 rela.r_addend = value; 4361 } 4362 4363 loc = htab->srelplt->contents; 4364 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela); 4365 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc); 4366 4367 if (!eh->def_regular) 4368 { 4369 /* Mark the symbol as undefined, rather than as defined in 4370 the .plt section. Leave the value alone. */ 4371 sym->st_shndx = SHN_UNDEF; 4372 } 4373 } 4374 4375 if (eh->got.offset != (bfd_vma) -1 4376 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0 4377 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0) 4378 { 4379 /* This symbol has an entry in the global offset table. Set it 4380 up. */ 4381 4382 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1) 4383 + htab->sgot->output_offset 4384 + htab->sgot->output_section->vma); 4385 4386 /* If this is a -Bsymbolic link and the symbol is defined 4387 locally or was forced to be local because of a version file, 4388 we just want to emit a RELATIVE reloc. The entry in the 4389 global offset table will already have been initialized in the 4390 relocate_section function. */ 4391 if (info->shared 4392 && (info->symbolic || eh->dynindx == -1) 4393 && eh->def_regular) 4394 { 4395 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32); 4396 rela.r_addend = (eh->root.u.def.value 4397 + eh->root.u.def.section->output_offset 4398 + eh->root.u.def.section->output_section->vma); 4399 } 4400 else 4401 { 4402 if ((eh->got.offset & 1) != 0) 4403 abort (); 4404 4405 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1)); 4406 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32); 4407 rela.r_addend = 0; 4408 } 4409 4410 loc = htab->srelgot->contents; 4411 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela); 4412 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 4413 } 4414 4415 if (eh->needs_copy) 4416 { 4417 asection *sec; 4418 4419 /* This symbol needs a copy reloc. Set it up. */ 4420 4421 if (! (eh->dynindx != -1 4422 && (eh->root.type == bfd_link_hash_defined 4423 || eh->root.type == bfd_link_hash_defweak))) 4424 abort (); 4425 4426 sec = htab->srelbss; 4427 4428 rela.r_offset = (eh->root.u.def.value 4429 + eh->root.u.def.section->output_offset 4430 + eh->root.u.def.section->output_section->vma); 4431 rela.r_addend = 0; 4432 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY); 4433 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela); 4434 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 4435 } 4436 4437 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ 4438 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot) 4439 { 4440 sym->st_shndx = SHN_ABS; 4441 } 4442 4443 return TRUE; 4444 } 4445 4446 /* Used to decide how to sort relocs in an optimal manner for the 4447 dynamic linker, before writing them out. */ 4448 4449 static enum elf_reloc_type_class 4450 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, 4451 const asection *rel_sec ATTRIBUTE_UNUSED, 4452 const Elf_Internal_Rela *rela) 4453 { 4454 /* Handle TLS relocs first; we don't want them to be marked 4455 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)" 4456 check below. */ 4457 switch ((int) ELF32_R_TYPE (rela->r_info)) 4458 { 4459 case R_PARISC_TLS_DTPMOD32: 4460 case R_PARISC_TLS_DTPOFF32: 4461 case R_PARISC_TLS_TPREL32: 4462 return reloc_class_normal; 4463 } 4464 4465 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF) 4466 return reloc_class_relative; 4467 4468 switch ((int) ELF32_R_TYPE (rela->r_info)) 4469 { 4470 case R_PARISC_IPLT: 4471 return reloc_class_plt; 4472 case R_PARISC_COPY: 4473 return reloc_class_copy; 4474 default: 4475 return reloc_class_normal; 4476 } 4477 } 4478 4479 /* Finish up the dynamic sections. */ 4480 4481 static bfd_boolean 4482 elf32_hppa_finish_dynamic_sections (bfd *output_bfd, 4483 struct bfd_link_info *info) 4484 { 4485 bfd *dynobj; 4486 struct elf32_hppa_link_hash_table *htab; 4487 asection *sdyn; 4488 asection * sgot; 4489 4490 htab = hppa_link_hash_table (info); 4491 if (htab == NULL) 4492 return FALSE; 4493 4494 dynobj = htab->etab.dynobj; 4495 4496 sgot = htab->sgot; 4497 /* A broken linker script might have discarded the dynamic sections. 4498 Catch this here so that we do not seg-fault later on. */ 4499 if (sgot != NULL && bfd_is_abs_section (sgot->output_section)) 4500 return FALSE; 4501 4502 sdyn = bfd_get_linker_section (dynobj, ".dynamic"); 4503 4504 if (htab->etab.dynamic_sections_created) 4505 { 4506 Elf32_External_Dyn *dyncon, *dynconend; 4507 4508 if (sdyn == NULL) 4509 abort (); 4510 4511 dyncon = (Elf32_External_Dyn *) sdyn->contents; 4512 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); 4513 for (; dyncon < dynconend; dyncon++) 4514 { 4515 Elf_Internal_Dyn dyn; 4516 asection *s; 4517 4518 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); 4519 4520 switch (dyn.d_tag) 4521 { 4522 default: 4523 continue; 4524 4525 case DT_PLTGOT: 4526 /* Use PLTGOT to set the GOT register. */ 4527 dyn.d_un.d_ptr = elf_gp (output_bfd); 4528 break; 4529 4530 case DT_JMPREL: 4531 s = htab->srelplt; 4532 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 4533 break; 4534 4535 case DT_PLTRELSZ: 4536 s = htab->srelplt; 4537 dyn.d_un.d_val = s->size; 4538 break; 4539 4540 case DT_RELASZ: 4541 /* Don't count procedure linkage table relocs in the 4542 overall reloc count. */ 4543 s = htab->srelplt; 4544 if (s == NULL) 4545 continue; 4546 dyn.d_un.d_val -= s->size; 4547 break; 4548 4549 case DT_RELA: 4550 /* We may not be using the standard ELF linker script. 4551 If .rela.plt is the first .rela section, we adjust 4552 DT_RELA to not include it. */ 4553 s = htab->srelplt; 4554 if (s == NULL) 4555 continue; 4556 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset) 4557 continue; 4558 dyn.d_un.d_ptr += s->size; 4559 break; 4560 } 4561 4562 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 4563 } 4564 } 4565 4566 if (sgot != NULL && sgot->size != 0) 4567 { 4568 /* Fill in the first entry in the global offset table. 4569 We use it to point to our dynamic section, if we have one. */ 4570 bfd_put_32 (output_bfd, 4571 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0, 4572 sgot->contents); 4573 4574 /* The second entry is reserved for use by the dynamic linker. */ 4575 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE); 4576 4577 /* Set .got entry size. */ 4578 elf_section_data (sgot->output_section) 4579 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE; 4580 } 4581 4582 if (htab->splt != NULL && htab->splt->size != 0) 4583 { 4584 /* Set plt entry size. */ 4585 elf_section_data (htab->splt->output_section) 4586 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE; 4587 4588 if (htab->need_plt_stub) 4589 { 4590 /* Set up the .plt stub. */ 4591 memcpy (htab->splt->contents 4592 + htab->splt->size - sizeof (plt_stub), 4593 plt_stub, sizeof (plt_stub)); 4594 4595 if ((htab->splt->output_offset 4596 + htab->splt->output_section->vma 4597 + htab->splt->size) 4598 != (sgot->output_offset 4599 + sgot->output_section->vma)) 4600 { 4601 (*_bfd_error_handler) 4602 (_(".got section not immediately after .plt section")); 4603 return FALSE; 4604 } 4605 } 4606 } 4607 4608 return TRUE; 4609 } 4610 4611 /* Called when writing out an object file to decide the type of a 4612 symbol. */ 4613 static int 4614 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type) 4615 { 4616 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI) 4617 return STT_PARISC_MILLI; 4618 else 4619 return type; 4620 } 4621 4622 /* Misc BFD support code. */ 4623 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name 4624 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup 4625 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup 4626 #define elf_info_to_howto elf_hppa_info_to_howto 4627 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel 4628 4629 /* Stuff for the BFD linker. */ 4630 #define bfd_elf32_bfd_final_link elf32_hppa_final_link 4631 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create 4632 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol 4633 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol 4634 #define elf_backend_check_relocs elf32_hppa_check_relocs 4635 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections 4636 #define elf_backend_fake_sections elf_hppa_fake_sections 4637 #define elf_backend_relocate_section elf32_hppa_relocate_section 4638 #define elf_backend_hide_symbol elf32_hppa_hide_symbol 4639 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol 4640 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections 4641 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections 4642 #define elf_backend_init_index_section _bfd_elf_init_1_index_section 4643 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook 4644 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook 4645 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus 4646 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo 4647 #define elf_backend_object_p elf32_hppa_object_p 4648 #define elf_backend_final_write_processing elf_hppa_final_write_processing 4649 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type 4650 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class 4651 #define elf_backend_action_discarded elf_hppa_action_discarded 4652 4653 #define elf_backend_can_gc_sections 1 4654 #define elf_backend_can_refcount 1 4655 #define elf_backend_plt_alignment 2 4656 #define elf_backend_want_got_plt 0 4657 #define elf_backend_plt_readonly 0 4658 #define elf_backend_want_plt_sym 0 4659 #define elf_backend_got_header_size 8 4660 #define elf_backend_rela_normal 1 4661 4662 #define TARGET_BIG_SYM hppa_elf32_vec 4663 #define TARGET_BIG_NAME "elf32-hppa" 4664 #define ELF_ARCH bfd_arch_hppa 4665 #define ELF_TARGET_ID HPPA32_ELF_DATA 4666 #define ELF_MACHINE_CODE EM_PARISC 4667 #define ELF_MAXPAGESIZE 0x1000 4668 #define ELF_OSABI ELFOSABI_HPUX 4669 #define elf32_bed elf32_hppa_hpux_bed 4670 4671 #include "elf32-target.h" 4672 4673 #undef TARGET_BIG_SYM 4674 #define TARGET_BIG_SYM hppa_elf32_linux_vec 4675 #undef TARGET_BIG_NAME 4676 #define TARGET_BIG_NAME "elf32-hppa-linux" 4677 #undef ELF_OSABI 4678 #define ELF_OSABI ELFOSABI_GNU 4679 #undef elf32_bed 4680 #define elf32_bed elf32_hppa_linux_bed 4681 4682 #include "elf32-target.h" 4683 4684 #undef TARGET_BIG_SYM 4685 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec 4686 #undef TARGET_BIG_NAME 4687 #define TARGET_BIG_NAME "elf32-hppa-netbsd" 4688 #undef ELF_OSABI 4689 #define ELF_OSABI ELFOSABI_NETBSD 4690 #undef elf32_bed 4691 #define elf32_bed elf32_hppa_netbsd_bed 4692 4693 #include "elf32-target.h" 4694