Home | History | Annotate | Download | only in bench
      1 
      2 //g++ -O3 -g0 -DNDEBUG  sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && ./a.out
      3 //g++ -O3 -g0 -DNDEBUG  sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 -DSIZE=2000 && ./a.out
      4 // -DNOGMM -DNOMTL
      5 // -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a
      6 
      7 #ifndef SIZE
      8 #define SIZE 10000
      9 #endif
     10 
     11 #ifndef DENSITY
     12 #define DENSITY 0.01
     13 #endif
     14 
     15 #ifndef REPEAT
     16 #define REPEAT 1
     17 #endif
     18 
     19 #include "BenchSparseUtil.h"
     20 
     21 #ifndef MINDENSITY
     22 #define MINDENSITY 0.0004
     23 #endif
     24 
     25 #ifndef NBTRIES
     26 #define NBTRIES 10
     27 #endif
     28 
     29 #define BENCH(X) \
     30   timer.reset(); \
     31   for (int _j=0; _j<NBTRIES; ++_j) { \
     32     timer.start(); \
     33     for (int _k=0; _k<REPEAT; ++_k) { \
     34         X  \
     35   } timer.stop(); }
     36 
     37 typedef SparseMatrix<Scalar,UpperTriangular> EigenSparseTriMatrix;
     38 typedef SparseMatrix<Scalar,RowMajorBit|UpperTriangular> EigenSparseTriMatrixRow;
     39 
     40 void fillMatrix(float density, int rows, int cols,  EigenSparseTriMatrix& dst)
     41 {
     42   dst.startFill(rows*cols*density);
     43   for(int j = 0; j < cols; j++)
     44   {
     45     for(int i = 0; i < j; i++)
     46     {
     47       Scalar v = (internal::random<float>(0,1) < density) ? internal::random<Scalar>() : 0;
     48       if (v!=0)
     49         dst.fill(i,j) = v;
     50     }
     51     dst.fill(j,j) = internal::random<Scalar>();
     52   }
     53   dst.endFill();
     54 }
     55 
     56 int main(int argc, char *argv[])
     57 {
     58   int rows = SIZE;
     59   int cols = SIZE;
     60   float density = DENSITY;
     61   BenchTimer timer;
     62   #if 1
     63   EigenSparseTriMatrix sm1(rows,cols);
     64   typedef Matrix<Scalar,Dynamic,1> DenseVector;
     65   DenseVector b = DenseVector::Random(cols);
     66   DenseVector x = DenseVector::Random(cols);
     67 
     68   bool densedone = false;
     69 
     70   for (float density = DENSITY; density>=MINDENSITY; density*=0.5)
     71   {
     72     EigenSparseTriMatrix sm1(rows, cols);
     73     fillMatrix(density, rows, cols, sm1);
     74 
     75     // dense matrices
     76     #ifdef DENSEMATRIX
     77     if (!densedone)
     78     {
     79       densedone = true;
     80       std::cout << "Eigen Dense\t" << density*100 << "%\n";
     81       DenseMatrix m1(rows,cols);
     82       Matrix<Scalar,Dynamic,Dynamic,Dynamic,Dynamic,RowMajorBit> m2(rows,cols);
     83       eiToDense(sm1, m1);
     84       m2 = m1;
     85 
     86       BENCH(x = m1.marked<UpperTriangular>().solveTriangular(b);)
     87       std::cout << "   colmajor^-1 * b:\t" << timer.value() << endl;
     88 //       std::cerr << x.transpose() << "\n";
     89 
     90       BENCH(x = m2.marked<UpperTriangular>().solveTriangular(b);)
     91       std::cout << "   rowmajor^-1 * b:\t" << timer.value() << endl;
     92 //       std::cerr << x.transpose() << "\n";
     93     }
     94     #endif
     95 
     96     // eigen sparse matrices
     97     {
     98       std::cout << "Eigen sparse\t" << density*100 << "%\n";
     99       EigenSparseTriMatrixRow sm2 = sm1;
    100 
    101       BENCH(x = sm1.solveTriangular(b);)
    102       std::cout << "   colmajor^-1 * b:\t" << timer.value() << endl;
    103 //       std::cerr << x.transpose() << "\n";
    104 
    105       BENCH(x = sm2.solveTriangular(b);)
    106       std::cout << "   rowmajor^-1 * b:\t" << timer.value() << endl;
    107 //       std::cerr << x.transpose() << "\n";
    108 
    109 //       x = b;
    110 //       BENCH(sm1.inverseProductInPlace(x);)
    111 //       std::cout << "   colmajor^-1 * b:\t" << timer.value() << " (inplace)" << endl;
    112 //       std::cerr << x.transpose() << "\n";
    113 //
    114 //       x = b;
    115 //       BENCH(sm2.inverseProductInPlace(x);)
    116 //       std::cout << "   rowmajor^-1 * b:\t" << timer.value() << " (inplace)" << endl;
    117 //       std::cerr << x.transpose() << "\n";
    118     }
    119 
    120 
    121 
    122     // CSparse
    123     #ifdef CSPARSE
    124     {
    125       std::cout << "CSparse \t" << density*100 << "%\n";
    126       cs *m1;
    127       eiToCSparse(sm1, m1);
    128 
    129       BENCH(x = b; if (!cs_lsolve (m1, x.data())){std::cerr << "cs_lsolve failed\n"; break;}; )
    130       std::cout << "   colmajor^-1 * b:\t" << timer.value() << endl;
    131     }
    132     #endif
    133 
    134     // GMM++
    135     #ifndef NOGMM
    136     {
    137       std::cout << "GMM++ sparse\t" << density*100 << "%\n";
    138       GmmSparse m1(rows,cols);
    139       gmm::csr_matrix<Scalar> m2;
    140       eiToGmm(sm1, m1);
    141       gmm::copy(m1,m2);
    142       std::vector<Scalar> gmmX(cols), gmmB(cols);
    143       Map<Matrix<Scalar,Dynamic,1> >(&gmmX[0], cols) = x;
    144       Map<Matrix<Scalar,Dynamic,1> >(&gmmB[0], cols) = b;
    145 
    146       gmmX = gmmB;
    147       BENCH(gmm::upper_tri_solve(m1, gmmX, false);)
    148       std::cout << "   colmajor^-1 * b:\t" << timer.value() << endl;
    149 //       std::cerr << Map<Matrix<Scalar,Dynamic,1> >(&gmmX[0], cols).transpose() << "\n";
    150 
    151       gmmX = gmmB;
    152       BENCH(gmm::upper_tri_solve(m2, gmmX, false);)
    153       timer.stop();
    154       std::cout << "   rowmajor^-1 * b:\t" << timer.value() << endl;
    155 //       std::cerr << Map<Matrix<Scalar,Dynamic,1> >(&gmmX[0], cols).transpose() << "\n";
    156     }
    157     #endif
    158 
    159     // MTL4
    160     #ifndef NOMTL
    161     {
    162       std::cout << "MTL4\t" << density*100 << "%\n";
    163       MtlSparse m1(rows,cols);
    164       MtlSparseRowMajor m2(rows,cols);
    165       eiToMtl(sm1, m1);
    166       m2 = m1;
    167       mtl::dense_vector<Scalar> x(rows, 1.0);
    168       mtl::dense_vector<Scalar> b(rows, 1.0);
    169 
    170       BENCH(x = mtl::upper_trisolve(m1,b);)
    171       std::cout << "   colmajor^-1 * b:\t" << timer.value() << endl;
    172 //       std::cerr << x << "\n";
    173 
    174       BENCH(x = mtl::upper_trisolve(m2,b);)
    175       std::cout << "   rowmajor^-1 * b:\t" << timer.value() << endl;
    176 //       std::cerr << x << "\n";
    177     }
    178     #endif
    179 
    180 
    181     std::cout << "\n\n";
    182   }
    183   #endif
    184 
    185   #if 0
    186     // bench small matrices (in-place versus return bye value)
    187     {
    188       timer.reset();
    189       for (int _j=0; _j<10; ++_j) {
    190         Matrix4f m = Matrix4f::Random();
    191         Vector4f b = Vector4f::Random();
    192         Vector4f x = Vector4f::Random();
    193         timer.start();
    194         for (int _k=0; _k<1000000; ++_k) {
    195           b = m.inverseProduct(b);
    196         }
    197         timer.stop();
    198       }
    199       std::cout << "4x4 :\t" << timer.value() << endl;
    200     }
    201 
    202     {
    203       timer.reset();
    204       for (int _j=0; _j<10; ++_j) {
    205         Matrix4f m = Matrix4f::Random();
    206         Vector4f b = Vector4f::Random();
    207         Vector4f x = Vector4f::Random();
    208         timer.start();
    209         for (int _k=0; _k<1000000; ++_k) {
    210           m.inverseProductInPlace(x);
    211         }
    212         timer.stop();
    213       }
    214       std::cout << "4x4 IP :\t" << timer.value() << endl;
    215     }
    216   #endif
    217 
    218   return 0;
    219 }
    220 
    221