Home | History | Annotate | Download | only in memory
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // Weak pointers are pointers to an object that do not affect its lifetime,
      6 // and which may be invalidated (i.e. reset to NULL) by the object, or its
      7 // owner, at any time, most commonly when the object is about to be deleted.
      8 
      9 // Weak pointers are useful when an object needs to be accessed safely by one
     10 // or more objects other than its owner, and those callers can cope with the
     11 // object vanishing and e.g. tasks posted to it being silently dropped.
     12 // Reference-counting such an object would complicate the ownership graph and
     13 // make it harder to reason about the object's lifetime.
     14 
     15 // EXAMPLE:
     16 //
     17 //  class Controller {
     18 //   public:
     19 //    Controller() : weak_factory_(this) {}
     20 //    void SpawnWorker() { Worker::StartNew(weak_factory_.GetWeakPtr()); }
     21 //    void WorkComplete(const Result& result) { ... }
     22 //   private:
     23 //    // Member variables should appear before the WeakPtrFactory, to ensure
     24 //    // that any WeakPtrs to Controller are invalidated before its members
     25 //    // variable's destructors are executed, rendering them invalid.
     26 //    WeakPtrFactory<Controller> weak_factory_;
     27 //  };
     28 //
     29 //  class Worker {
     30 //   public:
     31 //    static void StartNew(const WeakPtr<Controller>& controller) {
     32 //      Worker* worker = new Worker(controller);
     33 //      // Kick off asynchronous processing...
     34 //    }
     35 //   private:
     36 //    Worker(const WeakPtr<Controller>& controller)
     37 //        : controller_(controller) {}
     38 //    void DidCompleteAsynchronousProcessing(const Result& result) {
     39 //      if (controller_)
     40 //        controller_->WorkComplete(result);
     41 //    }
     42 //    WeakPtr<Controller> controller_;
     43 //  };
     44 //
     45 // With this implementation a caller may use SpawnWorker() to dispatch multiple
     46 // Workers and subsequently delete the Controller, without waiting for all
     47 // Workers to have completed.
     48 
     49 // ------------------------- IMPORTANT: Thread-safety -------------------------
     50 
     51 // Weak pointers may be passed safely between threads, but must always be
     52 // dereferenced and invalidated on the same SequencedTaskRunner otherwise
     53 // checking the pointer would be racey.
     54 //
     55 // To ensure correct use, the first time a WeakPtr issued by a WeakPtrFactory
     56 // is dereferenced, the factory and its WeakPtrs become bound to the calling
     57 // thread or current SequencedWorkerPool token, and cannot be dereferenced or
     58 // invalidated on any other task runner. Bound WeakPtrs can still be handed
     59 // off to other task runners, e.g. to use to post tasks back to object on the
     60 // bound sequence.
     61 //
     62 // If all WeakPtr objects are destroyed or invalidated then the factory is
     63 // unbound from the SequencedTaskRunner/Thread. The WeakPtrFactory may then be
     64 // destroyed, or new WeakPtr objects may be used, from a different sequence.
     65 //
     66 // Thus, at least one WeakPtr object must exist and have been dereferenced on
     67 // the correct thread to enforce that other WeakPtr objects will enforce they
     68 // are used on the desired thread.
     69 
     70 #ifndef BASE_MEMORY_WEAK_PTR_H_
     71 #define BASE_MEMORY_WEAK_PTR_H_
     72 
     73 #include "base/base_export.h"
     74 #include "base/logging.h"
     75 #include "base/macros.h"
     76 #include "base/memory/ref_counted.h"
     77 #include "base/sequence_checker.h"
     78 #include "base/template_util.h"
     79 
     80 namespace base {
     81 
     82 template <typename T> class SupportsWeakPtr;
     83 template <typename T> class WeakPtr;
     84 
     85 namespace internal {
     86 // These classes are part of the WeakPtr implementation.
     87 // DO NOT USE THESE CLASSES DIRECTLY YOURSELF.
     88 
     89 class BASE_EXPORT WeakReference {
     90  public:
     91   // Although Flag is bound to a specific SequencedTaskRunner, it may be
     92   // deleted from another via base::WeakPtr::~WeakPtr().
     93   class BASE_EXPORT Flag : public RefCountedThreadSafe<Flag> {
     94    public:
     95     Flag();
     96 
     97     void Invalidate();
     98     bool IsValid() const;
     99 
    100    private:
    101     friend class base::RefCountedThreadSafe<Flag>;
    102 
    103     ~Flag();
    104 
    105     SequenceChecker sequence_checker_;
    106     bool is_valid_;
    107   };
    108 
    109   WeakReference();
    110   explicit WeakReference(const Flag* flag);
    111   ~WeakReference();
    112 
    113   bool is_valid() const;
    114 
    115  private:
    116   scoped_refptr<const Flag> flag_;
    117 };
    118 
    119 class BASE_EXPORT WeakReferenceOwner {
    120  public:
    121   WeakReferenceOwner();
    122   ~WeakReferenceOwner();
    123 
    124   WeakReference GetRef() const;
    125 
    126   bool HasRefs() const {
    127     return flag_.get() && !flag_->HasOneRef();
    128   }
    129 
    130   void Invalidate();
    131 
    132  private:
    133   mutable scoped_refptr<WeakReference::Flag> flag_;
    134 };
    135 
    136 // This class simplifies the implementation of WeakPtr's type conversion
    137 // constructor by avoiding the need for a public accessor for ref_.  A
    138 // WeakPtr<T> cannot access the private members of WeakPtr<U>, so this
    139 // base class gives us a way to access ref_ in a protected fashion.
    140 class BASE_EXPORT WeakPtrBase {
    141  public:
    142   WeakPtrBase();
    143   ~WeakPtrBase();
    144 
    145  protected:
    146   explicit WeakPtrBase(const WeakReference& ref);
    147 
    148   WeakReference ref_;
    149 };
    150 
    151 // This class provides a common implementation of common functions that would
    152 // otherwise get instantiated separately for each distinct instantiation of
    153 // SupportsWeakPtr<>.
    154 class SupportsWeakPtrBase {
    155  public:
    156   // A safe static downcast of a WeakPtr<Base> to WeakPtr<Derived>. This
    157   // conversion will only compile if there is exists a Base which inherits
    158   // from SupportsWeakPtr<Base>. See base::AsWeakPtr() below for a helper
    159   // function that makes calling this easier.
    160   template<typename Derived>
    161   static WeakPtr<Derived> StaticAsWeakPtr(Derived* t) {
    162     typedef
    163         is_convertible<Derived, internal::SupportsWeakPtrBase&> convertible;
    164     static_assert(convertible::value,
    165                   "AsWeakPtr argument must inherit from SupportsWeakPtr");
    166     return AsWeakPtrImpl<Derived>(t, *t);
    167   }
    168 
    169  private:
    170   // This template function uses type inference to find a Base of Derived
    171   // which is an instance of SupportsWeakPtr<Base>. We can then safely
    172   // static_cast the Base* to a Derived*.
    173   template <typename Derived, typename Base>
    174   static WeakPtr<Derived> AsWeakPtrImpl(
    175       Derived* t, const SupportsWeakPtr<Base>&) {
    176     WeakPtr<Base> ptr = t->Base::AsWeakPtr();
    177     return WeakPtr<Derived>(ptr.ref_, static_cast<Derived*>(ptr.ptr_));
    178   }
    179 };
    180 
    181 }  // namespace internal
    182 
    183 template <typename T> class WeakPtrFactory;
    184 
    185 // The WeakPtr class holds a weak reference to |T*|.
    186 //
    187 // This class is designed to be used like a normal pointer.  You should always
    188 // null-test an object of this class before using it or invoking a method that
    189 // may result in the underlying object being destroyed.
    190 //
    191 // EXAMPLE:
    192 //
    193 //   class Foo { ... };
    194 //   WeakPtr<Foo> foo;
    195 //   if (foo)
    196 //     foo->method();
    197 //
    198 template <typename T>
    199 class WeakPtr : public internal::WeakPtrBase {
    200  public:
    201   WeakPtr() : ptr_(NULL) {
    202   }
    203 
    204   // Allow conversion from U to T provided U "is a" T. Note that this
    205   // is separate from the (implicit) copy constructor.
    206   template <typename U>
    207   WeakPtr(const WeakPtr<U>& other) : WeakPtrBase(other), ptr_(other.ptr_) {
    208   }
    209 
    210   T* get() const { return ref_.is_valid() ? ptr_ : NULL; }
    211 
    212   T& operator*() const {
    213     DCHECK(get() != NULL);
    214     return *get();
    215   }
    216   T* operator->() const {
    217     DCHECK(get() != NULL);
    218     return get();
    219   }
    220 
    221   // Allow WeakPtr<element_type> to be used in boolean expressions, but not
    222   // implicitly convertible to a real bool (which is dangerous).
    223   //
    224   // Note that this trick is only safe when the == and != operators
    225   // are declared explicitly, as otherwise "weak_ptr1 == weak_ptr2"
    226   // will compile but do the wrong thing (i.e., convert to Testable
    227   // and then do the comparison).
    228  private:
    229   typedef T* WeakPtr::*Testable;
    230 
    231  public:
    232   operator Testable() const { return get() ? &WeakPtr::ptr_ : NULL; }
    233 
    234   void reset() {
    235     ref_ = internal::WeakReference();
    236     ptr_ = NULL;
    237   }
    238 
    239  private:
    240   // Explicitly declare comparison operators as required by the bool
    241   // trick, but keep them private.
    242   template <class U> bool operator==(WeakPtr<U> const&) const;
    243   template <class U> bool operator!=(WeakPtr<U> const&) const;
    244 
    245   friend class internal::SupportsWeakPtrBase;
    246   template <typename U> friend class WeakPtr;
    247   friend class SupportsWeakPtr<T>;
    248   friend class WeakPtrFactory<T>;
    249 
    250   WeakPtr(const internal::WeakReference& ref, T* ptr)
    251       : WeakPtrBase(ref),
    252         ptr_(ptr) {
    253   }
    254 
    255   // This pointer is only valid when ref_.is_valid() is true.  Otherwise, its
    256   // value is undefined (as opposed to NULL).
    257   T* ptr_;
    258 };
    259 
    260 // A class may be composed of a WeakPtrFactory and thereby
    261 // control how it exposes weak pointers to itself.  This is helpful if you only
    262 // need weak pointers within the implementation of a class.  This class is also
    263 // useful when working with primitive types.  For example, you could have a
    264 // WeakPtrFactory<bool> that is used to pass around a weak reference to a bool.
    265 template <class T>
    266 class WeakPtrFactory {
    267  public:
    268   explicit WeakPtrFactory(T* ptr) : ptr_(ptr) {
    269   }
    270 
    271   ~WeakPtrFactory() {
    272     ptr_ = NULL;
    273   }
    274 
    275   WeakPtr<T> GetWeakPtr() {
    276     DCHECK(ptr_);
    277     return WeakPtr<T>(weak_reference_owner_.GetRef(), ptr_);
    278   }
    279 
    280   // Call this method to invalidate all existing weak pointers.
    281   void InvalidateWeakPtrs() {
    282     DCHECK(ptr_);
    283     weak_reference_owner_.Invalidate();
    284   }
    285 
    286   // Call this method to determine if any weak pointers exist.
    287   bool HasWeakPtrs() const {
    288     DCHECK(ptr_);
    289     return weak_reference_owner_.HasRefs();
    290   }
    291 
    292  private:
    293   internal::WeakReferenceOwner weak_reference_owner_;
    294   T* ptr_;
    295   DISALLOW_IMPLICIT_CONSTRUCTORS(WeakPtrFactory);
    296 };
    297 
    298 // A class may extend from SupportsWeakPtr to let others take weak pointers to
    299 // it. This avoids the class itself implementing boilerplate to dispense weak
    300 // pointers.  However, since SupportsWeakPtr's destructor won't invalidate
    301 // weak pointers to the class until after the derived class' members have been
    302 // destroyed, its use can lead to subtle use-after-destroy issues.
    303 template <class T>
    304 class SupportsWeakPtr : public internal::SupportsWeakPtrBase {
    305  public:
    306   SupportsWeakPtr() {}
    307 
    308   WeakPtr<T> AsWeakPtr() {
    309     return WeakPtr<T>(weak_reference_owner_.GetRef(), static_cast<T*>(this));
    310   }
    311 
    312  protected:
    313   ~SupportsWeakPtr() {}
    314 
    315  private:
    316   internal::WeakReferenceOwner weak_reference_owner_;
    317   DISALLOW_COPY_AND_ASSIGN(SupportsWeakPtr);
    318 };
    319 
    320 // Helper function that uses type deduction to safely return a WeakPtr<Derived>
    321 // when Derived doesn't directly extend SupportsWeakPtr<Derived>, instead it
    322 // extends a Base that extends SupportsWeakPtr<Base>.
    323 //
    324 // EXAMPLE:
    325 //   class Base : public base::SupportsWeakPtr<Producer> {};
    326 //   class Derived : public Base {};
    327 //
    328 //   Derived derived;
    329 //   base::WeakPtr<Derived> ptr = base::AsWeakPtr(&derived);
    330 //
    331 // Note that the following doesn't work (invalid type conversion) since
    332 // Derived::AsWeakPtr() is WeakPtr<Base> SupportsWeakPtr<Base>::AsWeakPtr(),
    333 // and there's no way to safely cast WeakPtr<Base> to WeakPtr<Derived> at
    334 // the caller.
    335 //
    336 //   base::WeakPtr<Derived> ptr = derived.AsWeakPtr();  // Fails.
    337 
    338 template <typename Derived>
    339 WeakPtr<Derived> AsWeakPtr(Derived* t) {
    340   return internal::SupportsWeakPtrBase::StaticAsWeakPtr<Derived>(t);
    341 }
    342 
    343 }  // namespace base
    344 
    345 #endif  // BASE_MEMORY_WEAK_PTR_H_
    346