1 /*- genpng 2 * 3 * COPYRIGHT: Written by John Cunningham Bowler, 2015. 4 * To the extent possible under law, the author has waived all copyright and 5 * related or neighboring rights to this work. This work is published from: 6 * United States. 7 * 8 * Generate a PNG with an alpha channel, correctly. 9 * 10 * This is a test case generator; the resultant PNG files are only of interest 11 * to those of us who care about whether the edges of circles are green, red, 12 * or yellow. 13 * 14 * The program generates an RGB+Alpha PNG of a given size containing the given 15 * shapes on a transparent background: 16 * 17 * genpng width height { shape } 18 * shape ::= color width shape x1 y1 x2 y2 19 * 20 * 'color' is: 21 * 22 * black white red green yellow blue brown purple pink orange gray cyan 23 * 24 * The point is to have colors that are linguistically meaningful plus that old 25 * bugbear of the department store dress murders, Cyan, the only color we argue 26 * about. 27 * 28 * 'shape' is: 29 * 30 * circle: an ellipse 31 * square: a rectangle 32 * line: a straight line 33 * 34 * Each shape is followed by four numbers, these are two points in the output 35 * coordinate space (as real numbers) which describe the circle, square, or 36 * line. The shape is filled if it is preceded by 'filled' (not valid for 37 * 'line') or is drawn with a line, in which case the width of the line must 38 * precede the shape. 39 * 40 * The whole set of information can be repeated as many times as desired: 41 * 42 * shape ::= color width shape x1 y1 x2 y2 43 * 44 * color ::= black|white|red|green|yellow|blue 45 * color ::= brown|purple|pink|orange|gray|cyan 46 * width ::= filled 47 * width ::= <number> 48 * shape ::= circle|square|line 49 * x1 ::= <number> 50 * x2 ::= <number> 51 * y1 ::= <number> 52 * y2 ::= <number> 53 * 54 * The output PNG is generated by down-sampling a 4x supersampled image using 55 * a bi-cubic filter. The bi-cubic has a 2 (output) pixel width, so an 8x8 56 * array of super-sampled points contribute to each output pixel. The value of 57 * a super-sampled point is found using an unfiltered, aliased, infinite 58 * precision image: Each shape from the last to the first is checked to see if 59 * the point is in the drawn area and, if it is, the color of the point is the 60 * color of the shape and the alpha is 1, if not the previous shape is checked. 61 * 62 * This is an aliased algorithm because no filtering is done; a point is either 63 * inside or outside each shape and 'close' points do not contribute to the 64 * sample. The down-sampling is relied on to correct the error of not using 65 * a filter. 66 * 67 * The line end-caps are 'flat'; they go through the points. The square line 68 * joins are mitres; the outside of the lines are continued to the point of 69 * intersection. 70 */ 71 #include <stddef.h> 72 #include <stdlib.h> 73 #include <string.h> 74 #include <stdio.h> 75 #include <math.h> 76 77 /* Normally use <png.h> here to get the installed libpng, but this is done to 78 * ensure the code picks up the local libpng implementation: 79 */ 80 #include "../../png.h" 81 82 #if defined(PNG_SIMPLIFIED_WRITE_SUPPORTED) && defined(PNG_STDIO_SUPPORTED) 83 84 static const struct color 85 { 86 const char *name; 87 double red; 88 double green; 89 double blue; 90 } colors[] = 91 /* color ::= black|white|red|green|yellow|blue 92 * color ::= brown|purple|pink|orange|gray|cyan 93 */ 94 { 95 { "black", 0, 0, 0 }, 96 { "white", 1, 1, 1 }, 97 { "red", 1, 0, 0 }, 98 { "green", 0, 1, 0 }, 99 { "yellow", 1, 1, 0 }, 100 { "blue", 0, 0, 1 }, 101 { "brown", .5, .125, 0 }, 102 { "purple", 1, 0, 1 }, 103 { "pink", 1, .5, .5 }, 104 { "orange", 1, .5, 0 }, 105 { "gray", 0, .5, .5 }, 106 { "cyan", 0, 1, 1 } 107 }; 108 #define color_count ((sizeof colors)/(sizeof colors[0])) 109 110 static const struct color * 111 color_of(const char *arg) 112 { 113 int icolor = color_count; 114 115 while (--icolor >= 0) 116 { 117 if (strcmp(colors[icolor].name, arg) == 0) 118 return colors+icolor; 119 } 120 121 fprintf(stderr, "genpng: invalid color %s\n", arg); 122 exit(1); 123 } 124 125 static double 126 width_of(const char *arg) 127 { 128 if (strcmp(arg, "filled") == 0) 129 return 0; 130 131 else 132 { 133 char *ep = NULL; 134 double w = strtod(arg, &ep); 135 136 if (ep != NULL && *ep == 0 && w > 0) 137 return w; 138 } 139 140 fprintf(stderr, "genpng: invalid line width %s\n", arg); 141 exit(1); 142 } 143 144 static double 145 coordinate_of(const char *arg) 146 { 147 char *ep = NULL; 148 double w = strtod(arg, &ep); 149 150 if (ep != NULL && *ep == 0) 151 return w; 152 153 fprintf(stderr, "genpng: invalid coordinate value %s\n", arg); 154 exit(1); 155 } 156 157 struct arg; /* forward declaration */ 158 159 typedef int (*shape_fn_ptr)(const struct arg *arg, double x, double y); 160 /* A function to determine if (x,y) is inside the shape. 161 * 162 * There are two implementations: 163 * 164 * inside_fn: returns true if the point is inside 165 * check_fn: returns; 166 * -1: the point is outside the shape by more than the filter width (2) 167 * 0: the point may be inside the shape 168 * +1: the point is inside the shape by more than the filter width 169 */ 170 #define OUTSIDE (-1) 171 #define INSIDE (1) 172 173 struct arg 174 { 175 const struct color *color; 176 shape_fn_ptr inside_fn; 177 shape_fn_ptr check_fn; 178 double width; /* line width, 0 for 'filled' */ 179 double x1, y1, x2, y2; 180 }; 181 182 /* IMPLEMENTATION NOTE: 183 * 184 * We want the contribution of each shape to the sample corresponding to each 185 * pixel. This could be obtained by super sampling the image to infinite 186 * dimensions, finding each point within the shape and assigning that a value 187 * '1' while leaving every point outside the shape with value '0' then 188 * downsampling to the image size with sinc; computationally very expensive. 189 * 190 * Approximations are as follows: 191 * 192 * 1) If the pixel coordinate is within the shape assume the sample has the 193 * shape color and is opaque, else assume there is no contribution from 194 * the shape. 195 * 196 * This is the equivalent of aliased rendering or resampling an image with 197 * a block filter. The maximum error in the calculated alpha (which will 198 * always be 0 or 1) is 0.5. 199 * 200 * 2) If the shape is within a square of size 1x1 centered on the pixel assume 201 * that the shape obscures an amount of the pixel equal to its area within 202 * that square. 203 * 204 * This is the equivalent of 'pixel coverage' alpha calculation or resampling 205 * an image with a bi-linear filter. The maximum error is over 0.2, but the 206 * results are often acceptable. 207 * 208 * This can be approximated by applying (1) to a super-sampled image then 209 * downsampling with a bi-linear filter. The error in the super-sampled 210 * image is 0.5 per sample, but the resampling reduces this. 211 * 212 * 3) Use a better filter with a super-sampled image; in the limit this is the 213 * sinc() approach. 214 * 215 * 4) Do the geometric calculation; a bivariate definite integral across the 216 * shape, unfortunately this means evaluating Si(x), the integral of sinc(x), 217 * which is still a lot of math. 218 * 219 * This code uses approach (3) with a bi-cubic filter and 8x super-sampling 220 * and method (1) for the super-samples. This means that the sample is either 221 * 0 or 1, depending on whether the sub-pixel is within or outside the shape. 222 * The bi-cubic weights are also fixed and the 16 required weights are 223 * pre-computed here (note that the 'scale' setting will need to be changed if 224 * 'super' is increased). 225 * 226 * The code also calculates a sum to the edge of the filter. This is not 227 * currently used by could be used to optimize the calculation. 228 */ 229 #if 0 /* bc code */ 230 scale=10 231 super=8 232 define bicubic(x) { 233 if (x <= 1) return (1.5*x - 2.5)*x*x + 1; 234 if (x < 2) return (((2.5 - 0.5*x)*x - 4)*x + 2); 235 return 0; 236 } 237 define sum(x) { 238 auto s; 239 s = 0; 240 while (x < 2*super) { 241 s = s + bicubic(x/super); 242 x = x + 1; 243 } 244 return s; 245 } 246 define results(x) { 247 auto b, s; 248 b = bicubic(x/super); 249 s = sum(x); 250 251 print " /*", x, "*/ { ", b, ", ", s, " }"; 252 return 1; 253 } 254 x=0 255 while (x<2*super) { 256 x = x + results(x) 257 if (x < 2*super) print "," 258 print "\n" 259 } 260 quit 261 #endif 262 263 #define BICUBIC1(x) /* |x| <= 1 */ ((1.5*(x)* - 2.5)*(x)*(x) + 1) 264 #define BICUBIC2(x) /* 1 < |x| < 2 */ (((2.5 - 0.5*(x))*(x) - 4)*(x) + 2) 265 #define FILTER_WEIGHT 9 /* Twice the first sum below */ 266 #define FILTER_WIDTH 2 /* Actually half the width; -2..+2 */ 267 #define FILTER_STEPS 8 /* steps per filter unit */ 268 static const double 269 bicubic[16][2] = 270 { 271 /* These numbers are exact; the weight for the filter is 1/9, but this 272 * would make the numbers inexact, so it is not included here. 273 */ 274 /* bicubic sum */ 275 /* 0*/ { 1.0000000000, 4.5000000000 }, 276 /* 1*/ { .9638671875, 3.5000000000 }, 277 /* 2*/ { .8671875000, 2.5361328125 }, 278 /* 3*/ { .7275390625, 1.6689453125 }, 279 /* 4*/ { .5625000000, .9414062500 }, 280 /* 5*/ { .3896484375, .3789062500 }, 281 /* 6*/ { .2265625000, -.0107421875 }, 282 /* 7*/ { .0908203125, -.2373046875 }, 283 /* 8*/ { 0, -.3281250000 }, 284 /* 9*/ { -.0478515625, -.3281250000 }, 285 /*10*/ { -.0703125000, -.2802734375 }, 286 /*11*/ { -.0732421875, -.2099609375 }, 287 /*12*/ { -.0625000000, -.1367187500 }, 288 /*13*/ { -.0439453125, -.0742187500 }, 289 /*14*/ { -.0234375000, -.0302734375 }, 290 /*15*/ { -.0068359375, -.0068359375 } 291 }; 292 293 static double 294 alpha_calc(const struct arg *arg, double x, double y) 295 { 296 /* For [x-2..x+2],[y-2,y+2] calculate the weighted bicubic given a function 297 * which tells us whether a point is inside or outside the shape. First 298 * check if we need to do this at all: 299 */ 300 switch (arg->check_fn(arg, x, y)) 301 { 302 case OUTSIDE: 303 return 0; /* all samples outside the shape */ 304 305 case INSIDE: 306 return 1; /* all samples inside the shape */ 307 308 default: 309 { 310 int dy; 311 double alpha = 0; 312 313 # define FILTER_D (FILTER_WIDTH*FILTER_STEPS-1) 314 for (dy=-FILTER_D; dy<=FILTER_D; ++dy) 315 { 316 double wy = bicubic[abs(dy)][0]; 317 318 if (wy != 0) 319 { 320 double alphay = 0; 321 int dx; 322 323 for (dx=-FILTER_D; dx<=FILTER_D; ++dx) 324 { 325 double wx = bicubic[abs(dx)][0]; 326 327 if (wx != 0 && arg->inside_fn(arg, x+dx/16, y+dy/16)) 328 alphay += wx; 329 } 330 331 alpha += wy * alphay; 332 } 333 } 334 335 /* This needs to be weighted for each dimension: */ 336 return alpha / (FILTER_WEIGHT*FILTER_WEIGHT); 337 } 338 } 339 } 340 341 /* These are the shape functions. */ 342 /* "square", 343 * { inside_square_filled, check_square_filled }, 344 * { inside_square, check_square } 345 */ 346 static int 347 square_check(double x, double y, double x1, double y1, double x2, double y2) 348 /* Is x,y inside the square (x1,y1)..(x2,y2)? */ 349 { 350 /* Do a modified Cohen-Sutherland on one point, bit patterns that indicate 351 * 'outside' are: 352 * 353 * x<x1 | x<y1 | x<x2 | x<y2 354 * 0 x 0 x To the right 355 * 1 x 1 x To the left 356 * x 0 x 0 Below 357 * x 1 x 1 Above 358 * 359 * So 'inside' is (x<x1) != (x<x2) && (y<y1) != (y<y2); 360 */ 361 return ((x<x1) ^ (x<x2)) & ((y<y1) ^ (y<y2)); 362 } 363 364 static int 365 inside_square_filled(const struct arg *arg, double x, double y) 366 { 367 return square_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2); 368 } 369 370 static int 371 square_check_line(const struct arg *arg, double x, double y, double w) 372 /* Check for a point being inside the boundaries implied by the given arg 373 * and assuming a width 2*w each side of the boundaries. This returns the 374 * 'check' INSIDE/OUTSIDE/0 result but note the semantics: 375 * 376 * +--------------+ 377 * | | OUTSIDE 378 * | INSIDE | 379 * | | 380 * +--------------+ 381 * 382 * And '0' means within the line boundaries. 383 */ 384 { 385 double cx = (arg->x1+arg->x2)/2; 386 double wx = fabs(arg->x1-arg->x2)/2; 387 double cy = (arg->y1+arg->y2)/2; 388 double wy = fabs(arg->y1-arg->y2)/2; 389 390 if (square_check(x, y, cx-wx-w, cy-wy-w, cx+wx+w, cy+wy+w)) 391 { 392 /* Inside, but maybe too far; check for the redundant case where 393 * the lines overlap: 394 */ 395 wx -= w; 396 wy -= w; 397 if (wx > 0 && wy > 0 && square_check(x, y, cx-wx, cy-wy, cx+wx, cy+wy)) 398 return INSIDE; /* between (inside) the boundary lines. */ 399 400 return 0; /* inside the lines themselves. */ 401 } 402 403 return OUTSIDE; /* outside the boundary lines. */ 404 } 405 406 static int 407 check_square_filled(const struct arg *arg, double x, double y) 408 { 409 /* The filter extends +/-FILTER_WIDTH each side of each output point, so 410 * the check has to expand and contract the square by that amount; '0' 411 * means close enough to the edge of the square that the bicubic filter has 412 * to be run, OUTSIDE means alpha==0, INSIDE means alpha==1. 413 */ 414 return square_check_line(arg, x, y, FILTER_WIDTH); 415 } 416 417 static int 418 inside_square(const struct arg *arg, double x, double y) 419 { 420 /* Return true if within the drawn lines, else false, no need to distinguish 421 * INSIDE vs OUTSIDE here: 422 */ 423 return square_check_line(arg, x, y, arg->width/2) == 0; 424 } 425 426 static int 427 check_square(const struct arg *arg, double x, double y) 428 { 429 /* So for this function a result of 'INSIDE' means inside the actual lines. 430 */ 431 double w = arg->width/2; 432 433 if (square_check_line(arg, x, y, w+FILTER_WIDTH) == 0) 434 { 435 /* Somewhere close to the boundary lines. If far enough inside one of 436 * them then we can return INSIDE: 437 */ 438 w -= FILTER_WIDTH; 439 440 if (w > 0 && square_check_line(arg, x, y, w) == 0) 441 return INSIDE; 442 443 /* Point is somewhere in the filter region: */ 444 return 0; 445 } 446 447 else /* Inside or outside the square by more than w+FILTER_WIDTH. */ 448 return OUTSIDE; 449 } 450 451 /* "circle", 452 * { inside_circle_filled, check_circle_filled }, 453 * { inside_circle, check_circle } 454 * 455 * The functions here are analoguous to the square ones; however, they check 456 * the corresponding ellipse as opposed to the rectangle. 457 */ 458 static int 459 circle_check(double x, double y, double x1, double y1, double x2, double y2) 460 { 461 if (square_check(x, y, x1, y1, x2, y2)) 462 { 463 /* Inside the square, so maybe inside the circle too: */ 464 const double cx = (x1 + x2)/2; 465 const double cy = (y1 + y2)/2; 466 const double dx = x1 - x2; 467 const double dy = y1 - y2; 468 469 x = (x - cx)/dx; 470 y = (y - cy)/dy; 471 472 /* It is outside if the distance from the center is more than half the 473 * diameter: 474 */ 475 return x*x+y*y < .25; 476 } 477 478 return 0; /* outside */ 479 } 480 481 static int 482 inside_circle_filled(const struct arg *arg, double x, double y) 483 { 484 return circle_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2); 485 } 486 487 static int 488 circle_check_line(const struct arg *arg, double x, double y, double w) 489 /* Check for a point being inside the boundaries implied by the given arg 490 * and assuming a width 2*w each side of the boundaries. This function has 491 * the same semantic as square_check_line but tests the circle. 492 */ 493 { 494 double cx = (arg->x1+arg->x2)/2; 495 double wx = fabs(arg->x1-arg->x2)/2; 496 double cy = (arg->y1+arg->y2)/2; 497 double wy = fabs(arg->y1-arg->y2)/2; 498 499 if (circle_check(x, y, cx-wx-w, cy-wy-w, cx+wx+w, cy+wy+w)) 500 { 501 /* Inside, but maybe too far; check for the redundant case where 502 * the lines overlap: 503 */ 504 wx -= w; 505 wy -= w; 506 if (wx > 0 && wy > 0 && circle_check(x, y, cx-wx, cy-wy, cx+wx, cy+wy)) 507 return INSIDE; /* between (inside) the boundary lines. */ 508 509 return 0; /* inside the lines themselves. */ 510 } 511 512 return OUTSIDE; /* outside the boundary lines. */ 513 } 514 515 static int 516 check_circle_filled(const struct arg *arg, double x, double y) 517 { 518 return circle_check_line(arg, x, y, FILTER_WIDTH); 519 } 520 521 static int 522 inside_circle(const struct arg *arg, double x, double y) 523 { 524 return circle_check_line(arg, x, y, arg->width/2) == 0; 525 } 526 527 static int 528 check_circle(const struct arg *arg, double x, double y) 529 { 530 /* Exactly as the 'square' code. */ 531 double w = arg->width/2; 532 533 if (circle_check_line(arg, x, y, w+FILTER_WIDTH) == 0) 534 { 535 w -= FILTER_WIDTH; 536 537 if (w > 0 && circle_check_line(arg, x, y, w) == 0) 538 return INSIDE; 539 540 /* Point is somewhere in the filter region: */ 541 return 0; 542 } 543 544 else /* Inside or outside the square by more than w+FILTER_WIDTH. */ 545 return OUTSIDE; 546 } 547 548 /* "line", 549 * { NULL, NULL }, There is no 'filled' line. 550 * { inside_line, check_line } 551 */ 552 static int 553 line_check(double x, double y, double x1, double y1, double x2, double y2, 554 double w, double expand) 555 { 556 /* Shift all the points to (arg->x1, arg->y1) */ 557 double lx = x2 - x1; 558 double ly = y2 - y1; 559 double len2 = lx*lx + ly*ly; 560 double cross, dot; 561 562 x -= x1; 563 y -= y1; 564 565 /* The dot product is the distance down the line, the cross product is 566 * the distance away from the line: 567 * 568 * distance = |cross| / sqrt(len2) 569 */ 570 cross = x * ly - y * lx; 571 572 /* If 'distance' is more than w the point is definitely outside the line: 573 * 574 * distance >= w 575 * |cross| >= w * sqrt(len2) 576 * cross^2 >= w^2 * len2: 577 */ 578 if (cross*cross >= (w+expand)*(w+expand)*len2) 579 return 0; /* outside */ 580 581 /* Now find the distance *along* the line; this comes from the dot product 582 * lx.x+ly.y. The actual distance (in pixels) is: 583 * 584 * distance = dot / sqrt(len2) 585 */ 586 dot = lx * x + ly * y; 587 588 /* The test for 'outside' is: 589 * 590 * distance < 0 || distance > sqrt(len2) 591 * -> dot / sqrt(len2) > sqrt(len2) 592 * -> dot > len2 593 * 594 * But 'expand' is used for the filter width and needs to be handled too: 595 */ 596 return dot > -expand && dot < len2+expand; 597 } 598 599 static int 600 inside_line(const struct arg *arg, double x, double y) 601 { 602 return line_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2, arg->width/2, 0); 603 } 604 605 static int 606 check_line(const struct arg *arg, double x, double y) 607 { 608 /* The end caps of the line must be checked too; it's not enough just to 609 * widen the line by FILTER_WIDTH; 'expand' exists for this purpose: 610 */ 611 if (line_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2, arg->width/2, 612 FILTER_WIDTH)) 613 { 614 /* Inside the line+filter; far enough inside that the filter isn't 615 * required? 616 */ 617 if (arg->width > 2*FILTER_WIDTH && 618 line_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2, arg->width/2, 619 -FILTER_WIDTH)) 620 return INSIDE; 621 622 return 0; 623 } 624 625 return OUTSIDE; 626 } 627 628 static const struct 629 { 630 const char *name; 631 shape_fn_ptr function[2/*fill,line*/][2]; 632 # define FN_INSIDE 0 633 # define FN_CHECK 1 634 } shape_defs[] = 635 { 636 { "square", 637 { { inside_square_filled, check_square_filled }, 638 { inside_square, check_square } } 639 }, 640 { "circle", 641 { { inside_circle_filled, check_circle_filled }, 642 { inside_circle, check_circle } } 643 }, 644 { "line", 645 { { NULL, NULL }, 646 { inside_line, check_line } } 647 } 648 }; 649 650 #define shape_count ((sizeof shape_defs)/(sizeof shape_defs[0])) 651 652 static shape_fn_ptr 653 shape_of(const char *arg, double width, int f) 654 { 655 unsigned int i; 656 657 for (i=0; i<shape_count; ++i) if (strcmp(shape_defs[i].name, arg) == 0) 658 { 659 shape_fn_ptr fn = shape_defs[i].function[width != 0][f]; 660 661 if (fn != NULL) 662 return fn; 663 664 fprintf(stderr, "genpng: %s %s not supported\n", 665 width == 0 ? "filled" : "unfilled", arg); 666 exit(1); 667 } 668 669 fprintf(stderr, "genpng: %s: not a valid shape name\n", arg); 670 exit(1); 671 } 672 673 static void 674 parse_arg(struct arg *arg, const char **argv/*7 arguments*/) 675 { 676 /* shape ::= color width shape x1 y1 x2 y2 */ 677 arg->color = color_of(argv[0]); 678 arg->width = width_of(argv[1]); 679 arg->inside_fn = shape_of(argv[2], arg->width, FN_INSIDE); 680 arg->check_fn = shape_of(argv[2], arg->width, FN_CHECK); 681 arg->x1 = coordinate_of(argv[3]); 682 arg->y1 = coordinate_of(argv[4]); 683 arg->x2 = coordinate_of(argv[5]); 684 arg->y2 = coordinate_of(argv[6]); 685 } 686 687 static png_uint_32 688 read_wh(const char *name, const char *str) 689 /* read a PNG width or height */ 690 { 691 char *ep = NULL; 692 unsigned long ul = strtoul(str, &ep, 10); 693 694 if (ep != NULL && *ep == 0 && ul > 0 && ul <= 0x7fffffff) 695 return (png_uint_32)/*SAFE*/ul; 696 697 fprintf(stderr, "genpng: %s: invalid number %s\n", name, str); 698 exit(1); 699 } 700 701 static void 702 pixel(png_uint_16p p, struct arg *args, int nargs, double x, double y) 703 { 704 /* Fill in the pixel by checking each shape (args[nargs]) for effects on 705 * the corresponding sample: 706 */ 707 double r=0, g=0, b=0, a=0; 708 709 while (--nargs >= 0 && a != 1) 710 { 711 /* NOTE: alpha_calc can return a value outside the range 0..1 with the 712 * bicubic filter. 713 */ 714 const double alpha = alpha_calc(args+nargs, x, y) * (1-a); 715 716 r += alpha * args[nargs].color->red; 717 g += alpha * args[nargs].color->green; 718 b += alpha * args[nargs].color->blue; 719 a += alpha; 720 } 721 722 /* 'a' may be negative or greater than 1; if it is, negative clamp the 723 * pixel to 0 if >1 clamp r/g/b: 724 */ 725 if (a > 0) 726 { 727 if (a > 1) 728 { 729 if (r > 1) r = 1; 730 if (g > 1) g = 1; 731 if (b > 1) b = 1; 732 a = 1; 733 } 734 735 /* And fill in the pixel: */ 736 p[0] = (png_uint_16)/*SAFE*/round(r * 65535); 737 p[1] = (png_uint_16)/*SAFE*/round(g * 65535); 738 p[2] = (png_uint_16)/*SAFE*/round(b * 65535); 739 p[3] = (png_uint_16)/*SAFE*/round(a * 65535); 740 } 741 742 else 743 p[3] = p[2] = p[1] = p[0] = 0; 744 } 745 746 int 747 main(int argc, const char **argv) 748 { 749 int convert_to_8bit = 0; 750 751 /* There is one option: --8bit: */ 752 if (argc > 1 && strcmp(argv[1], "--8bit") == 0) 753 --argc, ++argv, convert_to_8bit = 1; 754 755 if (argc >= 3) 756 { 757 png_uint_16p buffer; 758 int nshapes; 759 png_image image; 760 # define max_shapes 256 761 struct arg arg_list[max_shapes]; 762 763 /* The libpng Simplified API write code requires a fully initialized 764 * structure. 765 */ 766 memset(&image, 0, sizeof image); 767 image.version = PNG_IMAGE_VERSION; 768 image.opaque = NULL; 769 image.width = read_wh("width", argv[1]); 770 image.height = read_wh("height", argv[2]); 771 image.format = PNG_FORMAT_LINEAR_RGB_ALPHA; 772 image.flags = 0; 773 image.colormap_entries = 0; 774 775 /* Check the remainder of the arguments */ 776 for (nshapes=0; 3+7*(nshapes+1) <= argc && nshapes < max_shapes; 777 ++nshapes) 778 parse_arg(arg_list+nshapes, argv+3+7*nshapes); 779 780 if (3+7*nshapes != argc) 781 { 782 fprintf(stderr, "genpng: %s: too many arguments\n", argv[3+7*nshapes]); 783 return 1; 784 } 785 786 /* Create the buffer: */ 787 buffer = malloc(PNG_IMAGE_SIZE(image)); 788 789 if (buffer != NULL) 790 { 791 png_uint_32 y; 792 793 /* Write each row... */ 794 for (y=0; y<image.height; ++y) 795 { 796 png_uint_32 x; 797 798 /* Each pixel in each row: */ 799 for (x=0; x<image.width; ++x) 800 pixel(buffer + 4*(x + y*image.width), arg_list, nshapes, x, y); 801 } 802 803 /* Write the result (to stdout) */ 804 if (png_image_write_to_stdio(&image, stdout, convert_to_8bit, 805 buffer, 0/*row_stride*/, NULL/*colormap*/)) 806 { 807 free(buffer); 808 return 0; /* success */ 809 } 810 811 else 812 fprintf(stderr, "genpng: write stdout: %s\n", image.message); 813 814 free(buffer); 815 } 816 817 else 818 fprintf(stderr, "genpng: out of memory: %lu bytes\n", 819 (unsigned long)PNG_IMAGE_SIZE(image)); 820 } 821 822 else 823 { 824 /* Wrong number of arguments */ 825 fprintf(stderr, "genpng: usage: genpng [--8bit] width height {shape}\n" 826 " Generate a transparent PNG in RGBA (truecolor+alpha) format\n" 827 " containing the given shape or shapes. Shapes are defined:\n" 828 "\n" 829 " shape ::= color width shape x1 y1 x2 y2\n" 830 " color ::= black|white|red|green|yellow|blue\n" 831 " color ::= brown|purple|pink|orange|gray|cyan\n" 832 " width ::= filled|<number>\n" 833 " shape ::= circle|square|line\n" 834 " x1,x2 ::= <number>\n" 835 " y1,y2 ::= <number>\n" 836 "\n" 837 " Numbers are floating point numbers describing points relative to\n" 838 " the top left of the output PNG as pixel coordinates. The 'width'\n" 839 " parameter is either the width of the line (in output pixels) used\n" 840 " to draw the shape or 'filled' to indicate that the shape should\n" 841 " be filled with the color.\n" 842 "\n" 843 " Colors are interpreted loosely to give access to the eight full\n" 844 " intensity RGB values:\n" 845 "\n" 846 " black, red, green, blue, yellow, cyan, purple, white,\n" 847 "\n" 848 " Cyan is full intensity blue+green; RGB(0,1,1), plus the following\n" 849 " lower intensity values:\n" 850 "\n" 851 " brown: red+orange: RGB(0.5, 0.125, 0) (dark red+orange)\n" 852 " pink: red+white: RGB(1.0, 0.5, 0.5)\n" 853 " orange: red+yellow: RGB(1.0, 0.5, 0)\n" 854 " gray: black+white: RGB(0.5, 0.5, 0.5)\n" 855 "\n" 856 " The RGB values are selected to make detection of aliasing errors\n" 857 " easy. The names are selected to make the description of errors\n" 858 " easy.\n" 859 "\n" 860 " The PNG is written to stdout, if --8bit is given a 32bpp RGBA sRGB\n" 861 " file is produced, otherwise a 64bpp RGBA linear encoded file is\n" 862 " written.\n"); 863 } 864 865 return 1; 866 } 867 #endif /* SIMPLIFIED_WRITE && STDIO */ 868