Home | History | Annotate | Download | only in IR
      1 //===- Metadata.cpp - Implement Metadata classes --------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Metadata classes.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/IR/Metadata.h"
     15 #include "LLVMContextImpl.h"
     16 #include "MetadataImpl.h"
     17 #include "SymbolTableListTraitsImpl.h"
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/ADT/STLExtras.h"
     20 #include "llvm/ADT/SmallSet.h"
     21 #include "llvm/ADT/SmallString.h"
     22 #include "llvm/ADT/StringMap.h"
     23 #include "llvm/IR/ConstantRange.h"
     24 #include "llvm/IR/DebugInfoMetadata.h"
     25 #include "llvm/IR/Instruction.h"
     26 #include "llvm/IR/LLVMContext.h"
     27 #include "llvm/IR/Module.h"
     28 #include "llvm/IR/ValueHandle.h"
     29 
     30 using namespace llvm;
     31 
     32 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD)
     33     : Value(Ty, MetadataAsValueVal), MD(MD) {
     34   track();
     35 }
     36 
     37 MetadataAsValue::~MetadataAsValue() {
     38   getType()->getContext().pImpl->MetadataAsValues.erase(MD);
     39   untrack();
     40 }
     41 
     42 /// \brief Canonicalize metadata arguments to intrinsics.
     43 ///
     44 /// To support bitcode upgrades (and assembly semantic sugar) for \a
     45 /// MetadataAsValue, we need to canonicalize certain metadata.
     46 ///
     47 ///   - nullptr is replaced by an empty MDNode.
     48 ///   - An MDNode with a single null operand is replaced by an empty MDNode.
     49 ///   - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped.
     50 ///
     51 /// This maintains readability of bitcode from when metadata was a type of
     52 /// value, and these bridges were unnecessary.
     53 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context,
     54                                               Metadata *MD) {
     55   if (!MD)
     56     // !{}
     57     return MDNode::get(Context, None);
     58 
     59   // Return early if this isn't a single-operand MDNode.
     60   auto *N = dyn_cast<MDNode>(MD);
     61   if (!N || N->getNumOperands() != 1)
     62     return MD;
     63 
     64   if (!N->getOperand(0))
     65     // !{}
     66     return MDNode::get(Context, None);
     67 
     68   if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0)))
     69     // Look through the MDNode.
     70     return C;
     71 
     72   return MD;
     73 }
     74 
     75 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) {
     76   MD = canonicalizeMetadataForValue(Context, MD);
     77   auto *&Entry = Context.pImpl->MetadataAsValues[MD];
     78   if (!Entry)
     79     Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD);
     80   return Entry;
     81 }
     82 
     83 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context,
     84                                               Metadata *MD) {
     85   MD = canonicalizeMetadataForValue(Context, MD);
     86   auto &Store = Context.pImpl->MetadataAsValues;
     87   return Store.lookup(MD);
     88 }
     89 
     90 void MetadataAsValue::handleChangedMetadata(Metadata *MD) {
     91   LLVMContext &Context = getContext();
     92   MD = canonicalizeMetadataForValue(Context, MD);
     93   auto &Store = Context.pImpl->MetadataAsValues;
     94 
     95   // Stop tracking the old metadata.
     96   Store.erase(this->MD);
     97   untrack();
     98   this->MD = nullptr;
     99 
    100   // Start tracking MD, or RAUW if necessary.
    101   auto *&Entry = Store[MD];
    102   if (Entry) {
    103     replaceAllUsesWith(Entry);
    104     delete this;
    105     return;
    106   }
    107 
    108   this->MD = MD;
    109   track();
    110   Entry = this;
    111 }
    112 
    113 void MetadataAsValue::track() {
    114   if (MD)
    115     MetadataTracking::track(&MD, *MD, *this);
    116 }
    117 
    118 void MetadataAsValue::untrack() {
    119   if (MD)
    120     MetadataTracking::untrack(MD);
    121 }
    122 
    123 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) {
    124   bool WasInserted =
    125       UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex)))
    126           .second;
    127   (void)WasInserted;
    128   assert(WasInserted && "Expected to add a reference");
    129 
    130   ++NextIndex;
    131   assert(NextIndex != 0 && "Unexpected overflow");
    132 }
    133 
    134 void ReplaceableMetadataImpl::dropRef(void *Ref) {
    135   bool WasErased = UseMap.erase(Ref);
    136   (void)WasErased;
    137   assert(WasErased && "Expected to drop a reference");
    138 }
    139 
    140 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New,
    141                                       const Metadata &MD) {
    142   auto I = UseMap.find(Ref);
    143   assert(I != UseMap.end() && "Expected to move a reference");
    144   auto OwnerAndIndex = I->second;
    145   UseMap.erase(I);
    146   bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second;
    147   (void)WasInserted;
    148   assert(WasInserted && "Expected to add a reference");
    149 
    150   // Check that the references are direct if there's no owner.
    151   (void)MD;
    152   assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) &&
    153          "Reference without owner must be direct");
    154   assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) &&
    155          "Reference without owner must be direct");
    156 }
    157 
    158 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) {
    159   assert(!(MD && isa<MDNode>(MD) && cast<MDNode>(MD)->isTemporary()) &&
    160          "Expected non-temp node");
    161 
    162   if (UseMap.empty())
    163     return;
    164 
    165   // Copy out uses since UseMap will get touched below.
    166   typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy;
    167   SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
    168   std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) {
    169     return L.second.second < R.second.second;
    170   });
    171   for (const auto &Pair : Uses) {
    172     // Check that this Ref hasn't disappeared after RAUW (when updating a
    173     // previous Ref).
    174     if (!UseMap.count(Pair.first))
    175       continue;
    176 
    177     OwnerTy Owner = Pair.second.first;
    178     if (!Owner) {
    179       // Update unowned tracking references directly.
    180       Metadata *&Ref = *static_cast<Metadata **>(Pair.first);
    181       Ref = MD;
    182       if (MD)
    183         MetadataTracking::track(Ref);
    184       UseMap.erase(Pair.first);
    185       continue;
    186     }
    187 
    188     // Check for MetadataAsValue.
    189     if (Owner.is<MetadataAsValue *>()) {
    190       Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD);
    191       continue;
    192     }
    193 
    194     // There's a Metadata owner -- dispatch.
    195     Metadata *OwnerMD = Owner.get<Metadata *>();
    196     switch (OwnerMD->getMetadataID()) {
    197 #define HANDLE_METADATA_LEAF(CLASS)                                            \
    198   case Metadata::CLASS##Kind:                                                  \
    199     cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD);                \
    200     continue;
    201 #include "llvm/IR/Metadata.def"
    202     default:
    203       llvm_unreachable("Invalid metadata subclass");
    204     }
    205   }
    206   assert(UseMap.empty() && "Expected all uses to be replaced");
    207 }
    208 
    209 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) {
    210   if (UseMap.empty())
    211     return;
    212 
    213   if (!ResolveUsers) {
    214     UseMap.clear();
    215     return;
    216   }
    217 
    218   // Copy out uses since UseMap could get touched below.
    219   typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy;
    220   SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
    221   std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) {
    222     return L.second.second < R.second.second;
    223   });
    224   UseMap.clear();
    225   for (const auto &Pair : Uses) {
    226     auto Owner = Pair.second.first;
    227     if (!Owner)
    228       continue;
    229     if (Owner.is<MetadataAsValue *>())
    230       continue;
    231 
    232     // Resolve MDNodes that point at this.
    233     auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>());
    234     if (!OwnerMD)
    235       continue;
    236     if (OwnerMD->isResolved())
    237       continue;
    238     OwnerMD->decrementUnresolvedOperandCount();
    239   }
    240 }
    241 
    242 static Function *getLocalFunction(Value *V) {
    243   assert(V && "Expected value");
    244   if (auto *A = dyn_cast<Argument>(V))
    245     return A->getParent();
    246   if (BasicBlock *BB = cast<Instruction>(V)->getParent())
    247     return BB->getParent();
    248   return nullptr;
    249 }
    250 
    251 ValueAsMetadata *ValueAsMetadata::get(Value *V) {
    252   assert(V && "Unexpected null Value");
    253 
    254   auto &Context = V->getContext();
    255   auto *&Entry = Context.pImpl->ValuesAsMetadata[V];
    256   if (!Entry) {
    257     assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
    258            "Expected constant or function-local value");
    259     assert(!V->IsUsedByMD &&
    260            "Expected this to be the only metadata use");
    261     V->IsUsedByMD = true;
    262     if (auto *C = dyn_cast<Constant>(V))
    263       Entry = new ConstantAsMetadata(C);
    264     else
    265       Entry = new LocalAsMetadata(V);
    266   }
    267 
    268   return Entry;
    269 }
    270 
    271 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) {
    272   assert(V && "Unexpected null Value");
    273   return V->getContext().pImpl->ValuesAsMetadata.lookup(V);
    274 }
    275 
    276 void ValueAsMetadata::handleDeletion(Value *V) {
    277   assert(V && "Expected valid value");
    278 
    279   auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata;
    280   auto I = Store.find(V);
    281   if (I == Store.end())
    282     return;
    283 
    284   // Remove old entry from the map.
    285   ValueAsMetadata *MD = I->second;
    286   assert(MD && "Expected valid metadata");
    287   assert(MD->getValue() == V && "Expected valid mapping");
    288   Store.erase(I);
    289 
    290   // Delete the metadata.
    291   MD->replaceAllUsesWith(nullptr);
    292   delete MD;
    293 }
    294 
    295 void ValueAsMetadata::handleRAUW(Value *From, Value *To) {
    296   assert(From && "Expected valid value");
    297   assert(To && "Expected valid value");
    298   assert(From != To && "Expected changed value");
    299   assert(From->getType() == To->getType() && "Unexpected type change");
    300 
    301   LLVMContext &Context = From->getType()->getContext();
    302   auto &Store = Context.pImpl->ValuesAsMetadata;
    303   auto I = Store.find(From);
    304   if (I == Store.end()) {
    305     assert(!From->IsUsedByMD &&
    306            "Expected From not to be used by metadata");
    307     return;
    308   }
    309 
    310   // Remove old entry from the map.
    311   assert(From->IsUsedByMD &&
    312          "Expected From to be used by metadata");
    313   From->IsUsedByMD = false;
    314   ValueAsMetadata *MD = I->second;
    315   assert(MD && "Expected valid metadata");
    316   assert(MD->getValue() == From && "Expected valid mapping");
    317   Store.erase(I);
    318 
    319   if (isa<LocalAsMetadata>(MD)) {
    320     if (auto *C = dyn_cast<Constant>(To)) {
    321       // Local became a constant.
    322       MD->replaceAllUsesWith(ConstantAsMetadata::get(C));
    323       delete MD;
    324       return;
    325     }
    326     if (getLocalFunction(From) && getLocalFunction(To) &&
    327         getLocalFunction(From) != getLocalFunction(To)) {
    328       // Function changed.
    329       MD->replaceAllUsesWith(nullptr);
    330       delete MD;
    331       return;
    332     }
    333   } else if (!isa<Constant>(To)) {
    334     // Changed to function-local value.
    335     MD->replaceAllUsesWith(nullptr);
    336     delete MD;
    337     return;
    338   }
    339 
    340   auto *&Entry = Store[To];
    341   if (Entry) {
    342     // The target already exists.
    343     MD->replaceAllUsesWith(Entry);
    344     delete MD;
    345     return;
    346   }
    347 
    348   // Update MD in place (and update the map entry).
    349   assert(!To->IsUsedByMD &&
    350          "Expected this to be the only metadata use");
    351   To->IsUsedByMD = true;
    352   MD->V = To;
    353   Entry = MD;
    354 }
    355 
    356 //===----------------------------------------------------------------------===//
    357 // MDString implementation.
    358 //
    359 
    360 MDString *MDString::get(LLVMContext &Context, StringRef Str) {
    361   auto &Store = Context.pImpl->MDStringCache;
    362   auto I = Store.find(Str);
    363   if (I != Store.end())
    364     return &I->second;
    365 
    366   auto *Entry =
    367       StringMapEntry<MDString>::Create(Str, Store.getAllocator(), MDString());
    368   bool WasInserted = Store.insert(Entry);
    369   (void)WasInserted;
    370   assert(WasInserted && "Expected entry to be inserted");
    371   Entry->second.Entry = Entry;
    372   return &Entry->second;
    373 }
    374 
    375 StringRef MDString::getString() const {
    376   assert(Entry && "Expected to find string map entry");
    377   return Entry->first();
    378 }
    379 
    380 //===----------------------------------------------------------------------===//
    381 // MDNode implementation.
    382 //
    383 
    384 // Assert that the MDNode types will not be unaligned by the objects
    385 // prepended to them.
    386 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
    387   static_assert(                                                               \
    388       llvm::AlignOf<uint64_t>::Alignment >= llvm::AlignOf<CLASS>::Alignment,   \
    389       "Alignment is insufficient after objects prepended to " #CLASS);
    390 #include "llvm/IR/Metadata.def"
    391 
    392 void *MDNode::operator new(size_t Size, unsigned NumOps) {
    393   size_t OpSize = NumOps * sizeof(MDOperand);
    394   // uint64_t is the most aligned type we need support (ensured by static_assert
    395   // above)
    396   OpSize = RoundUpToAlignment(OpSize, llvm::alignOf<uint64_t>());
    397   void *Ptr = reinterpret_cast<char *>(::operator new(OpSize + Size)) + OpSize;
    398   MDOperand *O = static_cast<MDOperand *>(Ptr);
    399   for (MDOperand *E = O - NumOps; O != E; --O)
    400     (void)new (O - 1) MDOperand;
    401   return Ptr;
    402 }
    403 
    404 void MDNode::operator delete(void *Mem) {
    405   MDNode *N = static_cast<MDNode *>(Mem);
    406   size_t OpSize = N->NumOperands * sizeof(MDOperand);
    407   OpSize = RoundUpToAlignment(OpSize, llvm::alignOf<uint64_t>());
    408 
    409   MDOperand *O = static_cast<MDOperand *>(Mem);
    410   for (MDOperand *E = O - N->NumOperands; O != E; --O)
    411     (O - 1)->~MDOperand();
    412   ::operator delete(reinterpret_cast<char *>(Mem) - OpSize);
    413 }
    414 
    415 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
    416                ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2)
    417     : Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()),
    418       NumUnresolved(0), Context(Context) {
    419   unsigned Op = 0;
    420   for (Metadata *MD : Ops1)
    421     setOperand(Op++, MD);
    422   for (Metadata *MD : Ops2)
    423     setOperand(Op++, MD);
    424 
    425   if (isDistinct())
    426     return;
    427 
    428   if (isUniqued())
    429     // Check whether any operands are unresolved, requiring re-uniquing.  If
    430     // not, don't support RAUW.
    431     if (!countUnresolvedOperands())
    432       return;
    433 
    434   this->Context.makeReplaceable(make_unique<ReplaceableMetadataImpl>(Context));
    435 }
    436 
    437 TempMDNode MDNode::clone() const {
    438   switch (getMetadataID()) {
    439   default:
    440     llvm_unreachable("Invalid MDNode subclass");
    441 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
    442   case CLASS##Kind:                                                            \
    443     return cast<CLASS>(this)->cloneImpl();
    444 #include "llvm/IR/Metadata.def"
    445   }
    446 }
    447 
    448 static bool isOperandUnresolved(Metadata *Op) {
    449   if (auto *N = dyn_cast_or_null<MDNode>(Op))
    450     return !N->isResolved();
    451   return false;
    452 }
    453 
    454 unsigned MDNode::countUnresolvedOperands() {
    455   assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted");
    456   NumUnresolved = std::count_if(op_begin(), op_end(), isOperandUnresolved);
    457   return NumUnresolved;
    458 }
    459 
    460 void MDNode::makeUniqued() {
    461   assert(isTemporary() && "Expected this to be temporary");
    462   assert(!isResolved() && "Expected this to be unresolved");
    463 
    464   // Enable uniquing callbacks.
    465   for (auto &Op : mutable_operands())
    466     Op.reset(Op.get(), this);
    467 
    468   // Make this 'uniqued'.
    469   Storage = Uniqued;
    470   if (!countUnresolvedOperands())
    471     resolve();
    472 
    473   assert(isUniqued() && "Expected this to be uniqued");
    474 }
    475 
    476 void MDNode::makeDistinct() {
    477   assert(isTemporary() && "Expected this to be temporary");
    478   assert(!isResolved() && "Expected this to be unresolved");
    479 
    480   // Pretend to be uniqued, resolve the node, and then store in distinct table.
    481   Storage = Uniqued;
    482   resolve();
    483   storeDistinctInContext();
    484 
    485   assert(isDistinct() && "Expected this to be distinct");
    486   assert(isResolved() && "Expected this to be resolved");
    487 }
    488 
    489 void MDNode::resolve() {
    490   assert(isUniqued() && "Expected this to be uniqued");
    491   assert(!isResolved() && "Expected this to be unresolved");
    492 
    493   // Move the map, so that this immediately looks resolved.
    494   auto Uses = Context.takeReplaceableUses();
    495   NumUnresolved = 0;
    496   assert(isResolved() && "Expected this to be resolved");
    497 
    498   // Drop RAUW support.
    499   Uses->resolveAllUses();
    500 }
    501 
    502 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) {
    503   assert(NumUnresolved != 0 && "Expected unresolved operands");
    504 
    505   // Check if an operand was resolved.
    506   if (!isOperandUnresolved(Old)) {
    507     if (isOperandUnresolved(New))
    508       // An operand was un-resolved!
    509       ++NumUnresolved;
    510   } else if (!isOperandUnresolved(New))
    511     decrementUnresolvedOperandCount();
    512 }
    513 
    514 void MDNode::decrementUnresolvedOperandCount() {
    515   if (!--NumUnresolved)
    516     // Last unresolved operand has just been resolved.
    517     resolve();
    518 }
    519 
    520 void MDNode::resolveCycles(bool MDMaterialized) {
    521   if (isResolved())
    522     return;
    523 
    524   // Resolve this node immediately.
    525   resolve();
    526 
    527   // Resolve all operands.
    528   for (const auto &Op : operands()) {
    529     auto *N = dyn_cast_or_null<MDNode>(Op);
    530     if (!N)
    531       continue;
    532 
    533     if (N->isTemporary() && !MDMaterialized)
    534       continue;
    535     assert(!N->isTemporary() &&
    536            "Expected all forward declarations to be resolved");
    537     if (!N->isResolved())
    538       N->resolveCycles();
    539   }
    540 }
    541 
    542 static bool hasSelfReference(MDNode *N) {
    543   for (Metadata *MD : N->operands())
    544     if (MD == N)
    545       return true;
    546   return false;
    547 }
    548 
    549 MDNode *MDNode::replaceWithPermanentImpl() {
    550   switch (getMetadataID()) {
    551   default:
    552     // If this type isn't uniquable, replace with a distinct node.
    553     return replaceWithDistinctImpl();
    554 
    555 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS)                                    \
    556   case CLASS##Kind:                                                            \
    557     break;
    558 #include "llvm/IR/Metadata.def"
    559   }
    560 
    561   // Even if this type is uniquable, self-references have to be distinct.
    562   if (hasSelfReference(this))
    563     return replaceWithDistinctImpl();
    564   return replaceWithUniquedImpl();
    565 }
    566 
    567 MDNode *MDNode::replaceWithUniquedImpl() {
    568   // Try to uniquify in place.
    569   MDNode *UniquedNode = uniquify();
    570 
    571   if (UniquedNode == this) {
    572     makeUniqued();
    573     return this;
    574   }
    575 
    576   // Collision, so RAUW instead.
    577   replaceAllUsesWith(UniquedNode);
    578   deleteAsSubclass();
    579   return UniquedNode;
    580 }
    581 
    582 MDNode *MDNode::replaceWithDistinctImpl() {
    583   makeDistinct();
    584   return this;
    585 }
    586 
    587 void MDTuple::recalculateHash() {
    588   setHash(MDTupleInfo::KeyTy::calculateHash(this));
    589 }
    590 
    591 void MDNode::dropAllReferences() {
    592   for (unsigned I = 0, E = NumOperands; I != E; ++I)
    593     setOperand(I, nullptr);
    594   if (!isResolved()) {
    595     Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false);
    596     (void)Context.takeReplaceableUses();
    597   }
    598 }
    599 
    600 void MDNode::handleChangedOperand(void *Ref, Metadata *New) {
    601   unsigned Op = static_cast<MDOperand *>(Ref) - op_begin();
    602   assert(Op < getNumOperands() && "Expected valid operand");
    603 
    604   if (!isUniqued()) {
    605     // This node is not uniqued.  Just set the operand and be done with it.
    606     setOperand(Op, New);
    607     return;
    608   }
    609 
    610   // This node is uniqued.
    611   eraseFromStore();
    612 
    613   Metadata *Old = getOperand(Op);
    614   setOperand(Op, New);
    615 
    616   // Drop uniquing for self-reference cycles.
    617   if (New == this) {
    618     if (!isResolved())
    619       resolve();
    620     storeDistinctInContext();
    621     return;
    622   }
    623 
    624   // Re-unique the node.
    625   auto *Uniqued = uniquify();
    626   if (Uniqued == this) {
    627     if (!isResolved())
    628       resolveAfterOperandChange(Old, New);
    629     return;
    630   }
    631 
    632   // Collision.
    633   if (!isResolved()) {
    634     // Still unresolved, so RAUW.
    635     //
    636     // First, clear out all operands to prevent any recursion (similar to
    637     // dropAllReferences(), but we still need the use-list).
    638     for (unsigned O = 0, E = getNumOperands(); O != E; ++O)
    639       setOperand(O, nullptr);
    640     Context.getReplaceableUses()->replaceAllUsesWith(Uniqued);
    641     deleteAsSubclass();
    642     return;
    643   }
    644 
    645   // Store in non-uniqued form if RAUW isn't possible.
    646   storeDistinctInContext();
    647 }
    648 
    649 void MDNode::deleteAsSubclass() {
    650   switch (getMetadataID()) {
    651   default:
    652     llvm_unreachable("Invalid subclass of MDNode");
    653 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
    654   case CLASS##Kind:                                                            \
    655     delete cast<CLASS>(this);                                                  \
    656     break;
    657 #include "llvm/IR/Metadata.def"
    658   }
    659 }
    660 
    661 template <class T, class InfoT>
    662 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) {
    663   if (T *U = getUniqued(Store, N))
    664     return U;
    665 
    666   Store.insert(N);
    667   return N;
    668 }
    669 
    670 template <class NodeTy> struct MDNode::HasCachedHash {
    671   typedef char Yes[1];
    672   typedef char No[2];
    673   template <class U, U Val> struct SFINAE {};
    674 
    675   template <class U>
    676   static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *);
    677   template <class U> static No &check(...);
    678 
    679   static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes);
    680 };
    681 
    682 MDNode *MDNode::uniquify() {
    683   assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node");
    684 
    685   // Try to insert into uniquing store.
    686   switch (getMetadataID()) {
    687   default:
    688     llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
    689 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS)                                    \
    690   case CLASS##Kind: {                                                          \
    691     CLASS *SubclassThis = cast<CLASS>(this);                                   \
    692     std::integral_constant<bool, HasCachedHash<CLASS>::value>                  \
    693         ShouldRecalculateHash;                                                 \
    694     dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash);              \
    695     return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s);           \
    696   }
    697 #include "llvm/IR/Metadata.def"
    698   }
    699 }
    700 
    701 void MDNode::eraseFromStore() {
    702   switch (getMetadataID()) {
    703   default:
    704     llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
    705 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS)                                    \
    706   case CLASS##Kind:                                                            \
    707     getContext().pImpl->CLASS##s.erase(cast<CLASS>(this));                     \
    708     break;
    709 #include "llvm/IR/Metadata.def"
    710   }
    711 }
    712 
    713 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
    714                           StorageType Storage, bool ShouldCreate) {
    715   unsigned Hash = 0;
    716   if (Storage == Uniqued) {
    717     MDTupleInfo::KeyTy Key(MDs);
    718     if (auto *N = getUniqued(Context.pImpl->MDTuples, Key))
    719       return N;
    720     if (!ShouldCreate)
    721       return nullptr;
    722     Hash = Key.getHash();
    723   } else {
    724     assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
    725   }
    726 
    727   return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs),
    728                    Storage, Context.pImpl->MDTuples);
    729 }
    730 
    731 void MDNode::deleteTemporary(MDNode *N) {
    732   assert(N->isTemporary() && "Expected temporary node");
    733   N->replaceAllUsesWith(nullptr);
    734   N->deleteAsSubclass();
    735 }
    736 
    737 void MDNode::storeDistinctInContext() {
    738   assert(isResolved() && "Expected resolved nodes");
    739   Storage = Distinct;
    740 
    741   // Reset the hash.
    742   switch (getMetadataID()) {
    743   default:
    744     llvm_unreachable("Invalid subclass of MDNode");
    745 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
    746   case CLASS##Kind: {                                                          \
    747     std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \
    748     dispatchResetHash(cast<CLASS>(this), ShouldResetHash);                     \
    749     break;                                                                     \
    750   }
    751 #include "llvm/IR/Metadata.def"
    752   }
    753 
    754   getContext().pImpl->DistinctMDNodes.insert(this);
    755 }
    756 
    757 void MDNode::replaceOperandWith(unsigned I, Metadata *New) {
    758   if (getOperand(I) == New)
    759     return;
    760 
    761   if (!isUniqued()) {
    762     setOperand(I, New);
    763     return;
    764   }
    765 
    766   handleChangedOperand(mutable_begin() + I, New);
    767 }
    768 
    769 void MDNode::setOperand(unsigned I, Metadata *New) {
    770   assert(I < NumOperands);
    771   mutable_begin()[I].reset(New, isUniqued() ? this : nullptr);
    772 }
    773 
    774 /// \brief Get a node, or a self-reference that looks like it.
    775 ///
    776 /// Special handling for finding self-references, for use by \a
    777 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from
    778 /// when self-referencing nodes were still uniqued.  If the first operand has
    779 /// the same operands as \c Ops, return the first operand instead.
    780 static MDNode *getOrSelfReference(LLVMContext &Context,
    781                                   ArrayRef<Metadata *> Ops) {
    782   if (!Ops.empty())
    783     if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0]))
    784       if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) {
    785         for (unsigned I = 1, E = Ops.size(); I != E; ++I)
    786           if (Ops[I] != N->getOperand(I))
    787             return MDNode::get(Context, Ops);
    788         return N;
    789       }
    790 
    791   return MDNode::get(Context, Ops);
    792 }
    793 
    794 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) {
    795   if (!A)
    796     return B;
    797   if (!B)
    798     return A;
    799 
    800   SmallVector<Metadata *, 4> MDs;
    801   MDs.reserve(A->getNumOperands() + B->getNumOperands());
    802   MDs.append(A->op_begin(), A->op_end());
    803   MDs.append(B->op_begin(), B->op_end());
    804 
    805   // FIXME: This preserves long-standing behaviour, but is it really the right
    806   // behaviour?  Or was that an unintended side-effect of node uniquing?
    807   return getOrSelfReference(A->getContext(), MDs);
    808 }
    809 
    810 MDNode *MDNode::intersect(MDNode *A, MDNode *B) {
    811   if (!A || !B)
    812     return nullptr;
    813 
    814   SmallVector<Metadata *, 4> MDs;
    815   for (Metadata *MD : A->operands())
    816     if (std::find(B->op_begin(), B->op_end(), MD) != B->op_end())
    817       MDs.push_back(MD);
    818 
    819   // FIXME: This preserves long-standing behaviour, but is it really the right
    820   // behaviour?  Or was that an unintended side-effect of node uniquing?
    821   return getOrSelfReference(A->getContext(), MDs);
    822 }
    823 
    824 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) {
    825   if (!A || !B)
    826     return nullptr;
    827 
    828   SmallVector<Metadata *, 4> MDs(B->op_begin(), B->op_end());
    829   for (Metadata *MD : A->operands())
    830     if (std::find(B->op_begin(), B->op_end(), MD) == B->op_end())
    831       MDs.push_back(MD);
    832 
    833   // FIXME: This preserves long-standing behaviour, but is it really the right
    834   // behaviour?  Or was that an unintended side-effect of node uniquing?
    835   return getOrSelfReference(A->getContext(), MDs);
    836 }
    837 
    838 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) {
    839   if (!A || !B)
    840     return nullptr;
    841 
    842   APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF();
    843   APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF();
    844   if (AVal.compare(BVal) == APFloat::cmpLessThan)
    845     return A;
    846   return B;
    847 }
    848 
    849 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
    850   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
    851 }
    852 
    853 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) {
    854   return !A.intersectWith(B).isEmptySet() || isContiguous(A, B);
    855 }
    856 
    857 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints,
    858                           ConstantInt *Low, ConstantInt *High) {
    859   ConstantRange NewRange(Low->getValue(), High->getValue());
    860   unsigned Size = EndPoints.size();
    861   APInt LB = EndPoints[Size - 2]->getValue();
    862   APInt LE = EndPoints[Size - 1]->getValue();
    863   ConstantRange LastRange(LB, LE);
    864   if (canBeMerged(NewRange, LastRange)) {
    865     ConstantRange Union = LastRange.unionWith(NewRange);
    866     Type *Ty = High->getType();
    867     EndPoints[Size - 2] =
    868         cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower()));
    869     EndPoints[Size - 1] =
    870         cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper()));
    871     return true;
    872   }
    873   return false;
    874 }
    875 
    876 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints,
    877                      ConstantInt *Low, ConstantInt *High) {
    878   if (!EndPoints.empty())
    879     if (tryMergeRange(EndPoints, Low, High))
    880       return;
    881 
    882   EndPoints.push_back(Low);
    883   EndPoints.push_back(High);
    884 }
    885 
    886 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) {
    887   // Given two ranges, we want to compute the union of the ranges. This
    888   // is slightly complitade by having to combine the intervals and merge
    889   // the ones that overlap.
    890 
    891   if (!A || !B)
    892     return nullptr;
    893 
    894   if (A == B)
    895     return A;
    896 
    897   // First, walk both lists in older of the lower boundary of each interval.
    898   // At each step, try to merge the new interval to the last one we adedd.
    899   SmallVector<ConstantInt *, 4> EndPoints;
    900   int AI = 0;
    901   int BI = 0;
    902   int AN = A->getNumOperands() / 2;
    903   int BN = B->getNumOperands() / 2;
    904   while (AI < AN && BI < BN) {
    905     ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI));
    906     ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI));
    907 
    908     if (ALow->getValue().slt(BLow->getValue())) {
    909       addRange(EndPoints, ALow,
    910                mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
    911       ++AI;
    912     } else {
    913       addRange(EndPoints, BLow,
    914                mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
    915       ++BI;
    916     }
    917   }
    918   while (AI < AN) {
    919     addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)),
    920              mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
    921     ++AI;
    922   }
    923   while (BI < BN) {
    924     addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)),
    925              mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
    926     ++BI;
    927   }
    928 
    929   // If we have more than 2 ranges (4 endpoints) we have to try to merge
    930   // the last and first ones.
    931   unsigned Size = EndPoints.size();
    932   if (Size > 4) {
    933     ConstantInt *FB = EndPoints[0];
    934     ConstantInt *FE = EndPoints[1];
    935     if (tryMergeRange(EndPoints, FB, FE)) {
    936       for (unsigned i = 0; i < Size - 2; ++i) {
    937         EndPoints[i] = EndPoints[i + 2];
    938       }
    939       EndPoints.resize(Size - 2);
    940     }
    941   }
    942 
    943   // If in the end we have a single range, it is possible that it is now the
    944   // full range. Just drop the metadata in that case.
    945   if (EndPoints.size() == 2) {
    946     ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue());
    947     if (Range.isFullSet())
    948       return nullptr;
    949   }
    950 
    951   SmallVector<Metadata *, 4> MDs;
    952   MDs.reserve(EndPoints.size());
    953   for (auto *I : EndPoints)
    954     MDs.push_back(ConstantAsMetadata::get(I));
    955   return MDNode::get(A->getContext(), MDs);
    956 }
    957 
    958 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) {
    959   if (!A || !B)
    960     return nullptr;
    961 
    962   ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0));
    963   ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0));
    964   if (AVal->getZExtValue() < BVal->getZExtValue())
    965     return A;
    966   return B;
    967 }
    968 
    969 //===----------------------------------------------------------------------===//
    970 // NamedMDNode implementation.
    971 //
    972 
    973 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) {
    974   return *(SmallVector<TrackingMDRef, 4> *)Operands;
    975 }
    976 
    977 NamedMDNode::NamedMDNode(const Twine &N)
    978     : Name(N.str()), Parent(nullptr),
    979       Operands(new SmallVector<TrackingMDRef, 4>()) {}
    980 
    981 NamedMDNode::~NamedMDNode() {
    982   dropAllReferences();
    983   delete &getNMDOps(Operands);
    984 }
    985 
    986 unsigned NamedMDNode::getNumOperands() const {
    987   return (unsigned)getNMDOps(Operands).size();
    988 }
    989 
    990 MDNode *NamedMDNode::getOperand(unsigned i) const {
    991   assert(i < getNumOperands() && "Invalid Operand number!");
    992   auto *N = getNMDOps(Operands)[i].get();
    993   return cast_or_null<MDNode>(N);
    994 }
    995 
    996 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); }
    997 
    998 void NamedMDNode::setOperand(unsigned I, MDNode *New) {
    999   assert(I < getNumOperands() && "Invalid operand number");
   1000   getNMDOps(Operands)[I].reset(New);
   1001 }
   1002 
   1003 void NamedMDNode::eraseFromParent() {
   1004   getParent()->eraseNamedMetadata(this);
   1005 }
   1006 
   1007 void NamedMDNode::dropAllReferences() {
   1008   getNMDOps(Operands).clear();
   1009 }
   1010 
   1011 StringRef NamedMDNode::getName() const {
   1012   return StringRef(Name);
   1013 }
   1014 
   1015 //===----------------------------------------------------------------------===//
   1016 // Instruction Metadata method implementations.
   1017 //
   1018 void MDAttachmentMap::set(unsigned ID, MDNode &MD) {
   1019   for (auto &I : Attachments)
   1020     if (I.first == ID) {
   1021       I.second.reset(&MD);
   1022       return;
   1023     }
   1024   Attachments.emplace_back(std::piecewise_construct, std::make_tuple(ID),
   1025                            std::make_tuple(&MD));
   1026 }
   1027 
   1028 void MDAttachmentMap::erase(unsigned ID) {
   1029   if (empty())
   1030     return;
   1031 
   1032   // Common case is one/last value.
   1033   if (Attachments.back().first == ID) {
   1034     Attachments.pop_back();
   1035     return;
   1036   }
   1037 
   1038   for (auto I = Attachments.begin(), E = std::prev(Attachments.end()); I != E;
   1039        ++I)
   1040     if (I->first == ID) {
   1041       *I = std::move(Attachments.back());
   1042       Attachments.pop_back();
   1043       return;
   1044     }
   1045 }
   1046 
   1047 MDNode *MDAttachmentMap::lookup(unsigned ID) const {
   1048   for (const auto &I : Attachments)
   1049     if (I.first == ID)
   1050       return I.second;
   1051   return nullptr;
   1052 }
   1053 
   1054 void MDAttachmentMap::getAll(
   1055     SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
   1056   Result.append(Attachments.begin(), Attachments.end());
   1057 
   1058   // Sort the resulting array so it is stable.
   1059   if (Result.size() > 1)
   1060     array_pod_sort(Result.begin(), Result.end());
   1061 }
   1062 
   1063 void Instruction::setMetadata(StringRef Kind, MDNode *Node) {
   1064   if (!Node && !hasMetadata())
   1065     return;
   1066   setMetadata(getContext().getMDKindID(Kind), Node);
   1067 }
   1068 
   1069 MDNode *Instruction::getMetadataImpl(StringRef Kind) const {
   1070   return getMetadataImpl(getContext().getMDKindID(Kind));
   1071 }
   1072 
   1073 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) {
   1074   SmallSet<unsigned, 5> KnownSet;
   1075   KnownSet.insert(KnownIDs.begin(), KnownIDs.end());
   1076 
   1077   if (!hasMetadataHashEntry())
   1078     return; // Nothing to remove!
   1079 
   1080   auto &InstructionMetadata = getContext().pImpl->InstructionMetadata;
   1081 
   1082   if (KnownSet.empty()) {
   1083     // Just drop our entry at the store.
   1084     InstructionMetadata.erase(this);
   1085     setHasMetadataHashEntry(false);
   1086     return;
   1087   }
   1088 
   1089   auto &Info = InstructionMetadata[this];
   1090   Info.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) {
   1091     return !KnownSet.count(I.first);
   1092   });
   1093 
   1094   if (Info.empty()) {
   1095     // Drop our entry at the store.
   1096     InstructionMetadata.erase(this);
   1097     setHasMetadataHashEntry(false);
   1098   }
   1099 }
   1100 
   1101 /// setMetadata - Set the metadata of the specified kind to the specified
   1102 /// node.  This updates/replaces metadata if already present, or removes it if
   1103 /// Node is null.
   1104 void Instruction::setMetadata(unsigned KindID, MDNode *Node) {
   1105   if (!Node && !hasMetadata())
   1106     return;
   1107 
   1108   // Handle 'dbg' as a special case since it is not stored in the hash table.
   1109   if (KindID == LLVMContext::MD_dbg) {
   1110     DbgLoc = DebugLoc(Node);
   1111     return;
   1112   }
   1113 
   1114   // Handle the case when we're adding/updating metadata on an instruction.
   1115   if (Node) {
   1116     auto &Info = getContext().pImpl->InstructionMetadata[this];
   1117     assert(!Info.empty() == hasMetadataHashEntry() &&
   1118            "HasMetadata bit is wonked");
   1119     if (Info.empty())
   1120       setHasMetadataHashEntry(true);
   1121     Info.set(KindID, *Node);
   1122     return;
   1123   }
   1124 
   1125   // Otherwise, we're removing metadata from an instruction.
   1126   assert((hasMetadataHashEntry() ==
   1127           (getContext().pImpl->InstructionMetadata.count(this) > 0)) &&
   1128          "HasMetadata bit out of date!");
   1129   if (!hasMetadataHashEntry())
   1130     return;  // Nothing to remove!
   1131   auto &Info = getContext().pImpl->InstructionMetadata[this];
   1132 
   1133   // Handle removal of an existing value.
   1134   Info.erase(KindID);
   1135 
   1136   if (!Info.empty())
   1137     return;
   1138 
   1139   getContext().pImpl->InstructionMetadata.erase(this);
   1140   setHasMetadataHashEntry(false);
   1141 }
   1142 
   1143 void Instruction::setAAMetadata(const AAMDNodes &N) {
   1144   setMetadata(LLVMContext::MD_tbaa, N.TBAA);
   1145   setMetadata(LLVMContext::MD_alias_scope, N.Scope);
   1146   setMetadata(LLVMContext::MD_noalias, N.NoAlias);
   1147 }
   1148 
   1149 MDNode *Instruction::getMetadataImpl(unsigned KindID) const {
   1150   // Handle 'dbg' as a special case since it is not stored in the hash table.
   1151   if (KindID == LLVMContext::MD_dbg)
   1152     return DbgLoc.getAsMDNode();
   1153 
   1154   if (!hasMetadataHashEntry())
   1155     return nullptr;
   1156   auto &Info = getContext().pImpl->InstructionMetadata[this];
   1157   assert(!Info.empty() && "bit out of sync with hash table");
   1158 
   1159   return Info.lookup(KindID);
   1160 }
   1161 
   1162 void Instruction::getAllMetadataImpl(
   1163     SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
   1164   Result.clear();
   1165 
   1166   // Handle 'dbg' as a special case since it is not stored in the hash table.
   1167   if (DbgLoc) {
   1168     Result.push_back(
   1169         std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode()));
   1170     if (!hasMetadataHashEntry()) return;
   1171   }
   1172 
   1173   assert(hasMetadataHashEntry() &&
   1174          getContext().pImpl->InstructionMetadata.count(this) &&
   1175          "Shouldn't have called this");
   1176   const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second;
   1177   assert(!Info.empty() && "Shouldn't have called this");
   1178   Info.getAll(Result);
   1179 }
   1180 
   1181 void Instruction::getAllMetadataOtherThanDebugLocImpl(
   1182     SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
   1183   Result.clear();
   1184   assert(hasMetadataHashEntry() &&
   1185          getContext().pImpl->InstructionMetadata.count(this) &&
   1186          "Shouldn't have called this");
   1187   const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second;
   1188   assert(!Info.empty() && "Shouldn't have called this");
   1189   Info.getAll(Result);
   1190 }
   1191 
   1192 /// clearMetadataHashEntries - Clear all hashtable-based metadata from
   1193 /// this instruction.
   1194 void Instruction::clearMetadataHashEntries() {
   1195   assert(hasMetadataHashEntry() && "Caller should check");
   1196   getContext().pImpl->InstructionMetadata.erase(this);
   1197   setHasMetadataHashEntry(false);
   1198 }
   1199 
   1200 MDNode *Function::getMetadata(unsigned KindID) const {
   1201   if (!hasMetadata())
   1202     return nullptr;
   1203   return getContext().pImpl->FunctionMetadata[this].lookup(KindID);
   1204 }
   1205 
   1206 MDNode *Function::getMetadata(StringRef Kind) const {
   1207   if (!hasMetadata())
   1208     return nullptr;
   1209   return getMetadata(getContext().getMDKindID(Kind));
   1210 }
   1211 
   1212 void Function::setMetadata(unsigned KindID, MDNode *MD) {
   1213   if (MD) {
   1214     if (!hasMetadata())
   1215       setHasMetadataHashEntry(true);
   1216 
   1217     getContext().pImpl->FunctionMetadata[this].set(KindID, *MD);
   1218     return;
   1219   }
   1220 
   1221   // Nothing to unset.
   1222   if (!hasMetadata())
   1223     return;
   1224 
   1225   auto &Store = getContext().pImpl->FunctionMetadata[this];
   1226   Store.erase(KindID);
   1227   if (Store.empty())
   1228     clearMetadata();
   1229 }
   1230 
   1231 void Function::setMetadata(StringRef Kind, MDNode *MD) {
   1232   if (!MD && !hasMetadata())
   1233     return;
   1234   setMetadata(getContext().getMDKindID(Kind), MD);
   1235 }
   1236 
   1237 void Function::getAllMetadata(
   1238     SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
   1239   MDs.clear();
   1240 
   1241   if (!hasMetadata())
   1242     return;
   1243 
   1244   getContext().pImpl->FunctionMetadata[this].getAll(MDs);
   1245 }
   1246 
   1247 void Function::dropUnknownMetadata(ArrayRef<unsigned> KnownIDs) {
   1248   if (!hasMetadata())
   1249     return;
   1250   if (KnownIDs.empty()) {
   1251     clearMetadata();
   1252     return;
   1253   }
   1254 
   1255   SmallSet<unsigned, 5> KnownSet;
   1256   KnownSet.insert(KnownIDs.begin(), KnownIDs.end());
   1257 
   1258   auto &Store = getContext().pImpl->FunctionMetadata[this];
   1259   assert(!Store.empty());
   1260 
   1261   Store.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) {
   1262     return !KnownSet.count(I.first);
   1263   });
   1264 
   1265   if (Store.empty())
   1266     clearMetadata();
   1267 }
   1268 
   1269 void Function::clearMetadata() {
   1270   if (!hasMetadata())
   1271     return;
   1272   getContext().pImpl->FunctionMetadata.erase(this);
   1273   setHasMetadataHashEntry(false);
   1274 }
   1275 
   1276 void Function::setSubprogram(DISubprogram *SP) {
   1277   setMetadata(LLVMContext::MD_dbg, SP);
   1278 }
   1279 
   1280 DISubprogram *Function::getSubprogram() const {
   1281   return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg));
   1282 }
   1283