1 //===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass promotes "by reference" arguments to be "by value" arguments. In 11 // practice, this means looking for internal functions that have pointer 12 // arguments. If it can prove, through the use of alias analysis, that an 13 // argument is *only* loaded, then it can pass the value into the function 14 // instead of the address of the value. This can cause recursive simplification 15 // of code and lead to the elimination of allocas (especially in C++ template 16 // code like the STL). 17 // 18 // This pass also handles aggregate arguments that are passed into a function, 19 // scalarizing them if the elements of the aggregate are only loaded. Note that 20 // by default it refuses to scalarize aggregates which would require passing in 21 // more than three operands to the function, because passing thousands of 22 // operands for a large array or structure is unprofitable! This limit can be 23 // configured or disabled, however. 24 // 25 // Note that this transformation could also be done for arguments that are only 26 // stored to (returning the value instead), but does not currently. This case 27 // would be best handled when and if LLVM begins supporting multiple return 28 // values from functions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/Transforms/IPO.h" 33 #include "llvm/ADT/DepthFirstIterator.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringExtras.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Analysis/AssumptionCache.h" 38 #include "llvm/Analysis/BasicAliasAnalysis.h" 39 #include "llvm/Analysis/CallGraph.h" 40 #include "llvm/Analysis/CallGraphSCCPass.h" 41 #include "llvm/Analysis/TargetLibraryInfo.h" 42 #include "llvm/Analysis/ValueTracking.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/CallSite.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfo.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include <set> 55 using namespace llvm; 56 57 #define DEBUG_TYPE "argpromotion" 58 59 STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted"); 60 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted"); 61 STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted"); 62 STATISTIC(NumArgumentsDead , "Number of dead pointer args eliminated"); 63 64 namespace { 65 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass. 66 /// 67 struct ArgPromotion : public CallGraphSCCPass { 68 void getAnalysisUsage(AnalysisUsage &AU) const override { 69 AU.addRequired<AssumptionCacheTracker>(); 70 AU.addRequired<TargetLibraryInfoWrapperPass>(); 71 CallGraphSCCPass::getAnalysisUsage(AU); 72 } 73 74 bool runOnSCC(CallGraphSCC &SCC) override; 75 static char ID; // Pass identification, replacement for typeid 76 explicit ArgPromotion(unsigned maxElements = 3) 77 : CallGraphSCCPass(ID), maxElements(maxElements) { 78 initializeArgPromotionPass(*PassRegistry::getPassRegistry()); 79 } 80 81 /// A vector used to hold the indices of a single GEP instruction 82 typedef std::vector<uint64_t> IndicesVector; 83 84 private: 85 bool isDenselyPacked(Type *type, const DataLayout &DL); 86 bool canPaddingBeAccessed(Argument *Arg); 87 CallGraphNode *PromoteArguments(CallGraphNode *CGN); 88 bool isSafeToPromoteArgument(Argument *Arg, bool isByVal, 89 AAResults &AAR) const; 90 CallGraphNode *DoPromotion(Function *F, 91 SmallPtrSetImpl<Argument*> &ArgsToPromote, 92 SmallPtrSetImpl<Argument*> &ByValArgsToTransform); 93 94 using llvm::Pass::doInitialization; 95 bool doInitialization(CallGraph &CG) override; 96 /// The maximum number of elements to expand, or 0 for unlimited. 97 unsigned maxElements; 98 }; 99 } 100 101 char ArgPromotion::ID = 0; 102 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion", 103 "Promote 'by reference' arguments to scalars", false, false) 104 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 105 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 106 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 107 INITIALIZE_PASS_END(ArgPromotion, "argpromotion", 108 "Promote 'by reference' arguments to scalars", false, false) 109 110 Pass *llvm::createArgumentPromotionPass(unsigned maxElements) { 111 return new ArgPromotion(maxElements); 112 } 113 114 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) { 115 bool Changed = false, LocalChange; 116 117 do { // Iterate until we stop promoting from this SCC. 118 LocalChange = false; 119 // Attempt to promote arguments from all functions in this SCC. 120 for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { 121 if (CallGraphNode *CGN = PromoteArguments(*I)) { 122 LocalChange = true; 123 SCC.ReplaceNode(*I, CGN); 124 } 125 } 126 Changed |= LocalChange; // Remember that we changed something. 127 } while (LocalChange); 128 129 return Changed; 130 } 131 132 /// \brief Checks if a type could have padding bytes. 133 bool ArgPromotion::isDenselyPacked(Type *type, const DataLayout &DL) { 134 135 // There is no size information, so be conservative. 136 if (!type->isSized()) 137 return false; 138 139 // If the alloc size is not equal to the storage size, then there are padding 140 // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128. 141 if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type)) 142 return false; 143 144 if (!isa<CompositeType>(type)) 145 return true; 146 147 // For homogenous sequential types, check for padding within members. 148 if (SequentialType *seqTy = dyn_cast<SequentialType>(type)) 149 return isa<PointerType>(seqTy) || 150 isDenselyPacked(seqTy->getElementType(), DL); 151 152 // Check for padding within and between elements of a struct. 153 StructType *StructTy = cast<StructType>(type); 154 const StructLayout *Layout = DL.getStructLayout(StructTy); 155 uint64_t StartPos = 0; 156 for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) { 157 Type *ElTy = StructTy->getElementType(i); 158 if (!isDenselyPacked(ElTy, DL)) 159 return false; 160 if (StartPos != Layout->getElementOffsetInBits(i)) 161 return false; 162 StartPos += DL.getTypeAllocSizeInBits(ElTy); 163 } 164 165 return true; 166 } 167 168 /// \brief Checks if the padding bytes of an argument could be accessed. 169 bool ArgPromotion::canPaddingBeAccessed(Argument *arg) { 170 171 assert(arg->hasByValAttr()); 172 173 // Track all the pointers to the argument to make sure they are not captured. 174 SmallPtrSet<Value *, 16> PtrValues; 175 PtrValues.insert(arg); 176 177 // Track all of the stores. 178 SmallVector<StoreInst *, 16> Stores; 179 180 // Scan through the uses recursively to make sure the pointer is always used 181 // sanely. 182 SmallVector<Value *, 16> WorkList; 183 WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end()); 184 while (!WorkList.empty()) { 185 Value *V = WorkList.back(); 186 WorkList.pop_back(); 187 if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) { 188 if (PtrValues.insert(V).second) 189 WorkList.insert(WorkList.end(), V->user_begin(), V->user_end()); 190 } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) { 191 Stores.push_back(Store); 192 } else if (!isa<LoadInst>(V)) { 193 return true; 194 } 195 } 196 197 // Check to make sure the pointers aren't captured 198 for (StoreInst *Store : Stores) 199 if (PtrValues.count(Store->getValueOperand())) 200 return true; 201 202 return false; 203 } 204 205 /// PromoteArguments - This method checks the specified function to see if there 206 /// are any promotable arguments and if it is safe to promote the function (for 207 /// example, all callers are direct). If safe to promote some arguments, it 208 /// calls the DoPromotion method. 209 /// 210 CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) { 211 Function *F = CGN->getFunction(); 212 213 // Make sure that it is local to this module. 214 if (!F || !F->hasLocalLinkage()) return nullptr; 215 216 // Don't promote arguments for variadic functions. Adding, removing, or 217 // changing non-pack parameters can change the classification of pack 218 // parameters. Frontends encode that classification at the call site in the 219 // IR, while in the callee the classification is determined dynamically based 220 // on the number of registers consumed so far. 221 if (F->isVarArg()) return nullptr; 222 223 // First check: see if there are any pointer arguments! If not, quick exit. 224 SmallVector<Argument*, 16> PointerArgs; 225 for (Argument &I : F->args()) 226 if (I.getType()->isPointerTy()) 227 PointerArgs.push_back(&I); 228 if (PointerArgs.empty()) return nullptr; 229 230 // Second check: make sure that all callers are direct callers. We can't 231 // transform functions that have indirect callers. Also see if the function 232 // is self-recursive. 233 bool isSelfRecursive = false; 234 for (Use &U : F->uses()) { 235 CallSite CS(U.getUser()); 236 // Must be a direct call. 237 if (CS.getInstruction() == nullptr || !CS.isCallee(&U)) return nullptr; 238 239 if (CS.getInstruction()->getParent()->getParent() == F) 240 isSelfRecursive = true; 241 } 242 243 const DataLayout &DL = F->getParent()->getDataLayout(); 244 245 // We need to manually construct BasicAA directly in order to disable its use 246 // of other function analyses. 247 BasicAAResult BAR(createLegacyPMBasicAAResult(*this, *F)); 248 249 // Construct our own AA results for this function. We do this manually to 250 // work around the limitations of the legacy pass manager. 251 AAResults AAR(createLegacyPMAAResults(*this, *F, BAR)); 252 253 // Check to see which arguments are promotable. If an argument is promotable, 254 // add it to ArgsToPromote. 255 SmallPtrSet<Argument*, 8> ArgsToPromote; 256 SmallPtrSet<Argument*, 8> ByValArgsToTransform; 257 for (unsigned i = 0, e = PointerArgs.size(); i != e; ++i) { 258 Argument *PtrArg = PointerArgs[i]; 259 Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType(); 260 261 // Replace sret attribute with noalias. This reduces register pressure by 262 // avoiding a register copy. 263 if (PtrArg->hasStructRetAttr()) { 264 unsigned ArgNo = PtrArg->getArgNo(); 265 F->setAttributes( 266 F->getAttributes() 267 .removeAttribute(F->getContext(), ArgNo + 1, Attribute::StructRet) 268 .addAttribute(F->getContext(), ArgNo + 1, Attribute::NoAlias)); 269 for (Use &U : F->uses()) { 270 CallSite CS(U.getUser()); 271 CS.setAttributes( 272 CS.getAttributes() 273 .removeAttribute(F->getContext(), ArgNo + 1, 274 Attribute::StructRet) 275 .addAttribute(F->getContext(), ArgNo + 1, Attribute::NoAlias)); 276 } 277 } 278 279 // If this is a byval argument, and if the aggregate type is small, just 280 // pass the elements, which is always safe, if the passed value is densely 281 // packed or if we can prove the padding bytes are never accessed. This does 282 // not apply to inalloca. 283 bool isSafeToPromote = 284 PtrArg->hasByValAttr() && 285 (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg)); 286 if (isSafeToPromote) { 287 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 288 if (maxElements > 0 && STy->getNumElements() > maxElements) { 289 DEBUG(dbgs() << "argpromotion disable promoting argument '" 290 << PtrArg->getName() << "' because it would require adding more" 291 << " than " << maxElements << " arguments to the function.\n"); 292 continue; 293 } 294 295 // If all the elements are single-value types, we can promote it. 296 bool AllSimple = true; 297 for (const auto *EltTy : STy->elements()) { 298 if (!EltTy->isSingleValueType()) { 299 AllSimple = false; 300 break; 301 } 302 } 303 304 // Safe to transform, don't even bother trying to "promote" it. 305 // Passing the elements as a scalar will allow scalarrepl to hack on 306 // the new alloca we introduce. 307 if (AllSimple) { 308 ByValArgsToTransform.insert(PtrArg); 309 continue; 310 } 311 } 312 } 313 314 // If the argument is a recursive type and we're in a recursive 315 // function, we could end up infinitely peeling the function argument. 316 if (isSelfRecursive) { 317 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 318 bool RecursiveType = false; 319 for (const auto *EltTy : STy->elements()) { 320 if (EltTy == PtrArg->getType()) { 321 RecursiveType = true; 322 break; 323 } 324 } 325 if (RecursiveType) 326 continue; 327 } 328 } 329 330 // Otherwise, see if we can promote the pointer to its value. 331 if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr(), AAR)) 332 ArgsToPromote.insert(PtrArg); 333 } 334 335 // No promotable pointer arguments. 336 if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) 337 return nullptr; 338 339 return DoPromotion(F, ArgsToPromote, ByValArgsToTransform); 340 } 341 342 /// AllCallersPassInValidPointerForArgument - Return true if we can prove that 343 /// all callees pass in a valid pointer for the specified function argument. 344 static bool AllCallersPassInValidPointerForArgument(Argument *Arg) { 345 Function *Callee = Arg->getParent(); 346 const DataLayout &DL = Callee->getParent()->getDataLayout(); 347 348 unsigned ArgNo = Arg->getArgNo(); 349 350 // Look at all call sites of the function. At this pointer we know we only 351 // have direct callees. 352 for (User *U : Callee->users()) { 353 CallSite CS(U); 354 assert(CS && "Should only have direct calls!"); 355 356 if (!isDereferenceablePointer(CS.getArgument(ArgNo), DL)) 357 return false; 358 } 359 return true; 360 } 361 362 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size 363 /// that is greater than or equal to the size of prefix, and each of the 364 /// elements in Prefix is the same as the corresponding elements in Longer. 365 /// 366 /// This means it also returns true when Prefix and Longer are equal! 367 static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix, 368 const ArgPromotion::IndicesVector &Longer) { 369 if (Prefix.size() > Longer.size()) 370 return false; 371 return std::equal(Prefix.begin(), Prefix.end(), Longer.begin()); 372 } 373 374 375 /// Checks if Indices, or a prefix of Indices, is in Set. 376 static bool PrefixIn(const ArgPromotion::IndicesVector &Indices, 377 std::set<ArgPromotion::IndicesVector> &Set) { 378 std::set<ArgPromotion::IndicesVector>::iterator Low; 379 Low = Set.upper_bound(Indices); 380 if (Low != Set.begin()) 381 Low--; 382 // Low is now the last element smaller than or equal to Indices. This means 383 // it points to a prefix of Indices (possibly Indices itself), if such 384 // prefix exists. 385 // 386 // This load is safe if any prefix of its operands is safe to load. 387 return Low != Set.end() && IsPrefix(*Low, Indices); 388 } 389 390 /// Mark the given indices (ToMark) as safe in the given set of indices 391 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there 392 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe 393 /// already. Furthermore, any indices that Indices is itself a prefix of, are 394 /// removed from Safe (since they are implicitely safe because of Indices now). 395 static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark, 396 std::set<ArgPromotion::IndicesVector> &Safe) { 397 std::set<ArgPromotion::IndicesVector>::iterator Low; 398 Low = Safe.upper_bound(ToMark); 399 // Guard against the case where Safe is empty 400 if (Low != Safe.begin()) 401 Low--; 402 // Low is now the last element smaller than or equal to Indices. This 403 // means it points to a prefix of Indices (possibly Indices itself), if 404 // such prefix exists. 405 if (Low != Safe.end()) { 406 if (IsPrefix(*Low, ToMark)) 407 // If there is already a prefix of these indices (or exactly these 408 // indices) marked a safe, don't bother adding these indices 409 return; 410 411 // Increment Low, so we can use it as a "insert before" hint 412 ++Low; 413 } 414 // Insert 415 Low = Safe.insert(Low, ToMark); 416 ++Low; 417 // If there we're a prefix of longer index list(s), remove those 418 std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end(); 419 while (Low != End && IsPrefix(ToMark, *Low)) { 420 std::set<ArgPromotion::IndicesVector>::iterator Remove = Low; 421 ++Low; 422 Safe.erase(Remove); 423 } 424 } 425 426 /// isSafeToPromoteArgument - As you might guess from the name of this method, 427 /// it checks to see if it is both safe and useful to promote the argument. 428 /// This method limits promotion of aggregates to only promote up to three 429 /// elements of the aggregate in order to avoid exploding the number of 430 /// arguments passed in. 431 bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, 432 bool isByValOrInAlloca, 433 AAResults &AAR) const { 434 typedef std::set<IndicesVector> GEPIndicesSet; 435 436 // Quick exit for unused arguments 437 if (Arg->use_empty()) 438 return true; 439 440 // We can only promote this argument if all of the uses are loads, or are GEP 441 // instructions (with constant indices) that are subsequently loaded. 442 // 443 // Promoting the argument causes it to be loaded in the caller 444 // unconditionally. This is only safe if we can prove that either the load 445 // would have happened in the callee anyway (ie, there is a load in the entry 446 // block) or the pointer passed in at every call site is guaranteed to be 447 // valid. 448 // In the former case, invalid loads can happen, but would have happened 449 // anyway, in the latter case, invalid loads won't happen. This prevents us 450 // from introducing an invalid load that wouldn't have happened in the 451 // original code. 452 // 453 // This set will contain all sets of indices that are loaded in the entry 454 // block, and thus are safe to unconditionally load in the caller. 455 // 456 // This optimization is also safe for InAlloca parameters, because it verifies 457 // that the address isn't captured. 458 GEPIndicesSet SafeToUnconditionallyLoad; 459 460 // This set contains all the sets of indices that we are planning to promote. 461 // This makes it possible to limit the number of arguments added. 462 GEPIndicesSet ToPromote; 463 464 // If the pointer is always valid, any load with first index 0 is valid. 465 if (isByValOrInAlloca || AllCallersPassInValidPointerForArgument(Arg)) 466 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); 467 468 // First, iterate the entry block and mark loads of (geps of) arguments as 469 // safe. 470 BasicBlock &EntryBlock = Arg->getParent()->front(); 471 // Declare this here so we can reuse it 472 IndicesVector Indices; 473 for (Instruction &I : EntryBlock) 474 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 475 Value *V = LI->getPointerOperand(); 476 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 477 V = GEP->getPointerOperand(); 478 if (V == Arg) { 479 // This load actually loads (part of) Arg? Check the indices then. 480 Indices.reserve(GEP->getNumIndices()); 481 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); 482 II != IE; ++II) 483 if (ConstantInt *CI = dyn_cast<ConstantInt>(*II)) 484 Indices.push_back(CI->getSExtValue()); 485 else 486 // We found a non-constant GEP index for this argument? Bail out 487 // right away, can't promote this argument at all. 488 return false; 489 490 // Indices checked out, mark them as safe 491 MarkIndicesSafe(Indices, SafeToUnconditionallyLoad); 492 Indices.clear(); 493 } 494 } else if (V == Arg) { 495 // Direct loads are equivalent to a GEP with a single 0 index. 496 MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad); 497 } 498 } 499 500 // Now, iterate all uses of the argument to see if there are any uses that are 501 // not (GEP+)loads, or any (GEP+)loads that are not safe to promote. 502 SmallVector<LoadInst*, 16> Loads; 503 IndicesVector Operands; 504 for (Use &U : Arg->uses()) { 505 User *UR = U.getUser(); 506 Operands.clear(); 507 if (LoadInst *LI = dyn_cast<LoadInst>(UR)) { 508 // Don't hack volatile/atomic loads 509 if (!LI->isSimple()) return false; 510 Loads.push_back(LI); 511 // Direct loads are equivalent to a GEP with a zero index and then a load. 512 Operands.push_back(0); 513 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) { 514 if (GEP->use_empty()) { 515 // Dead GEP's cause trouble later. Just remove them if we run into 516 // them. 517 GEP->eraseFromParent(); 518 // TODO: This runs the above loop over and over again for dead GEPs 519 // Couldn't we just do increment the UI iterator earlier and erase the 520 // use? 521 return isSafeToPromoteArgument(Arg, isByValOrInAlloca, AAR); 522 } 523 524 // Ensure that all of the indices are constants. 525 for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); 526 i != e; ++i) 527 if (ConstantInt *C = dyn_cast<ConstantInt>(*i)) 528 Operands.push_back(C->getSExtValue()); 529 else 530 return false; // Not a constant operand GEP! 531 532 // Ensure that the only users of the GEP are load instructions. 533 for (User *GEPU : GEP->users()) 534 if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) { 535 // Don't hack volatile/atomic loads 536 if (!LI->isSimple()) return false; 537 Loads.push_back(LI); 538 } else { 539 // Other uses than load? 540 return false; 541 } 542 } else { 543 return false; // Not a load or a GEP. 544 } 545 546 // Now, see if it is safe to promote this load / loads of this GEP. Loading 547 // is safe if Operands, or a prefix of Operands, is marked as safe. 548 if (!PrefixIn(Operands, SafeToUnconditionallyLoad)) 549 return false; 550 551 // See if we are already promoting a load with these indices. If not, check 552 // to make sure that we aren't promoting too many elements. If so, nothing 553 // to do. 554 if (ToPromote.find(Operands) == ToPromote.end()) { 555 if (maxElements > 0 && ToPromote.size() == maxElements) { 556 DEBUG(dbgs() << "argpromotion not promoting argument '" 557 << Arg->getName() << "' because it would require adding more " 558 << "than " << maxElements << " arguments to the function.\n"); 559 // We limit aggregate promotion to only promoting up to a fixed number 560 // of elements of the aggregate. 561 return false; 562 } 563 ToPromote.insert(std::move(Operands)); 564 } 565 } 566 567 if (Loads.empty()) return true; // No users, this is a dead argument. 568 569 // Okay, now we know that the argument is only used by load instructions and 570 // it is safe to unconditionally perform all of them. Use alias analysis to 571 // check to see if the pointer is guaranteed to not be modified from entry of 572 // the function to each of the load instructions. 573 574 // Because there could be several/many load instructions, remember which 575 // blocks we know to be transparent to the load. 576 SmallPtrSet<BasicBlock*, 16> TranspBlocks; 577 578 for (unsigned i = 0, e = Loads.size(); i != e; ++i) { 579 // Check to see if the load is invalidated from the start of the block to 580 // the load itself. 581 LoadInst *Load = Loads[i]; 582 BasicBlock *BB = Load->getParent(); 583 584 MemoryLocation Loc = MemoryLocation::get(Load); 585 if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, MRI_Mod)) 586 return false; // Pointer is invalidated! 587 588 // Now check every path from the entry block to the load for transparency. 589 // To do this, we perform a depth first search on the inverse CFG from the 590 // loading block. 591 for (BasicBlock *P : predecessors(BB)) { 592 for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks)) 593 if (AAR.canBasicBlockModify(*TranspBB, Loc)) 594 return false; 595 } 596 } 597 598 // If the path from the entry of the function to each load is free of 599 // instructions that potentially invalidate the load, we can make the 600 // transformation! 601 return true; 602 } 603 604 /// DoPromotion - This method actually performs the promotion of the specified 605 /// arguments, and returns the new function. At this point, we know that it's 606 /// safe to do so. 607 CallGraphNode *ArgPromotion::DoPromotion(Function *F, 608 SmallPtrSetImpl<Argument*> &ArgsToPromote, 609 SmallPtrSetImpl<Argument*> &ByValArgsToTransform) { 610 611 // Start by computing a new prototype for the function, which is the same as 612 // the old function, but has modified arguments. 613 FunctionType *FTy = F->getFunctionType(); 614 std::vector<Type*> Params; 615 616 typedef std::set<std::pair<Type *, IndicesVector>> ScalarizeTable; 617 618 // ScalarizedElements - If we are promoting a pointer that has elements 619 // accessed out of it, keep track of which elements are accessed so that we 620 // can add one argument for each. 621 // 622 // Arguments that are directly loaded will have a zero element value here, to 623 // handle cases where there are both a direct load and GEP accesses. 624 // 625 std::map<Argument*, ScalarizeTable> ScalarizedElements; 626 627 // OriginalLoads - Keep track of a representative load instruction from the 628 // original function so that we can tell the alias analysis implementation 629 // what the new GEP/Load instructions we are inserting look like. 630 // We need to keep the original loads for each argument and the elements 631 // of the argument that are accessed. 632 std::map<std::pair<Argument*, IndicesVector>, LoadInst*> OriginalLoads; 633 634 // Attribute - Keep track of the parameter attributes for the arguments 635 // that we are *not* promoting. For the ones that we do promote, the parameter 636 // attributes are lost 637 SmallVector<AttributeSet, 8> AttributesVec; 638 const AttributeSet &PAL = F->getAttributes(); 639 640 // Add any return attributes. 641 if (PAL.hasAttributes(AttributeSet::ReturnIndex)) 642 AttributesVec.push_back(AttributeSet::get(F->getContext(), 643 PAL.getRetAttributes())); 644 645 // First, determine the new argument list 646 unsigned ArgIndex = 1; 647 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 648 ++I, ++ArgIndex) { 649 if (ByValArgsToTransform.count(&*I)) { 650 // Simple byval argument? Just add all the struct element types. 651 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 652 StructType *STy = cast<StructType>(AgTy); 653 Params.insert(Params.end(), STy->element_begin(), STy->element_end()); 654 ++NumByValArgsPromoted; 655 } else if (!ArgsToPromote.count(&*I)) { 656 // Unchanged argument 657 Params.push_back(I->getType()); 658 AttributeSet attrs = PAL.getParamAttributes(ArgIndex); 659 if (attrs.hasAttributes(ArgIndex)) { 660 AttrBuilder B(attrs, ArgIndex); 661 AttributesVec. 662 push_back(AttributeSet::get(F->getContext(), Params.size(), B)); 663 } 664 } else if (I->use_empty()) { 665 // Dead argument (which are always marked as promotable) 666 ++NumArgumentsDead; 667 } else { 668 // Okay, this is being promoted. This means that the only uses are loads 669 // or GEPs which are only used by loads 670 671 // In this table, we will track which indices are loaded from the argument 672 // (where direct loads are tracked as no indices). 673 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 674 for (User *U : I->users()) { 675 Instruction *UI = cast<Instruction>(U); 676 Type *SrcTy; 677 if (LoadInst *L = dyn_cast<LoadInst>(UI)) 678 SrcTy = L->getType(); 679 else 680 SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType(); 681 IndicesVector Indices; 682 Indices.reserve(UI->getNumOperands() - 1); 683 // Since loads will only have a single operand, and GEPs only a single 684 // non-index operand, this will record direct loads without any indices, 685 // and gep+loads with the GEP indices. 686 for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end(); 687 II != IE; ++II) 688 Indices.push_back(cast<ConstantInt>(*II)->getSExtValue()); 689 // GEPs with a single 0 index can be merged with direct loads 690 if (Indices.size() == 1 && Indices.front() == 0) 691 Indices.clear(); 692 ArgIndices.insert(std::make_pair(SrcTy, Indices)); 693 LoadInst *OrigLoad; 694 if (LoadInst *L = dyn_cast<LoadInst>(UI)) 695 OrigLoad = L; 696 else 697 // Take any load, we will use it only to update Alias Analysis 698 OrigLoad = cast<LoadInst>(UI->user_back()); 699 OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad; 700 } 701 702 // Add a parameter to the function for each element passed in. 703 for (ScalarizeTable::iterator SI = ArgIndices.begin(), 704 E = ArgIndices.end(); SI != E; ++SI) { 705 // not allowed to dereference ->begin() if size() is 0 706 Params.push_back(GetElementPtrInst::getIndexedType( 707 cast<PointerType>(I->getType()->getScalarType())->getElementType(), 708 SI->second)); 709 assert(Params.back()); 710 } 711 712 if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty()) 713 ++NumArgumentsPromoted; 714 else 715 ++NumAggregatesPromoted; 716 } 717 } 718 719 // Add any function attributes. 720 if (PAL.hasAttributes(AttributeSet::FunctionIndex)) 721 AttributesVec.push_back(AttributeSet::get(FTy->getContext(), 722 PAL.getFnAttributes())); 723 724 Type *RetTy = FTy->getReturnType(); 725 726 // Construct the new function type using the new arguments. 727 FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg()); 728 729 // Create the new function body and insert it into the module. 730 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName()); 731 NF->copyAttributesFrom(F); 732 733 // Patch the pointer to LLVM function in debug info descriptor. 734 NF->setSubprogram(F->getSubprogram()); 735 F->setSubprogram(nullptr); 736 737 DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n" 738 << "From: " << *F); 739 740 // Recompute the parameter attributes list based on the new arguments for 741 // the function. 742 NF->setAttributes(AttributeSet::get(F->getContext(), AttributesVec)); 743 AttributesVec.clear(); 744 745 F->getParent()->getFunctionList().insert(F->getIterator(), NF); 746 NF->takeName(F); 747 748 // Get the callgraph information that we need to update to reflect our 749 // changes. 750 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 751 752 // Get a new callgraph node for NF. 753 CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF); 754 755 // Loop over all of the callers of the function, transforming the call sites 756 // to pass in the loaded pointers. 757 // 758 SmallVector<Value*, 16> Args; 759 while (!F->use_empty()) { 760 CallSite CS(F->user_back()); 761 assert(CS.getCalledFunction() == F); 762 Instruction *Call = CS.getInstruction(); 763 const AttributeSet &CallPAL = CS.getAttributes(); 764 765 // Add any return attributes. 766 if (CallPAL.hasAttributes(AttributeSet::ReturnIndex)) 767 AttributesVec.push_back(AttributeSet::get(F->getContext(), 768 CallPAL.getRetAttributes())); 769 770 // Loop over the operands, inserting GEP and loads in the caller as 771 // appropriate. 772 CallSite::arg_iterator AI = CS.arg_begin(); 773 ArgIndex = 1; 774 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); 775 I != E; ++I, ++AI, ++ArgIndex) 776 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { 777 Args.push_back(*AI); // Unmodified argument 778 779 if (CallPAL.hasAttributes(ArgIndex)) { 780 AttrBuilder B(CallPAL, ArgIndex); 781 AttributesVec. 782 push_back(AttributeSet::get(F->getContext(), Args.size(), B)); 783 } 784 } else if (ByValArgsToTransform.count(&*I)) { 785 // Emit a GEP and load for each element of the struct. 786 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 787 StructType *STy = cast<StructType>(AgTy); 788 Value *Idxs[2] = { 789 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr }; 790 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 791 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 792 Value *Idx = GetElementPtrInst::Create( 793 STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i), Call); 794 // TODO: Tell AA about the new values? 795 Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call)); 796 } 797 } else if (!I->use_empty()) { 798 // Non-dead argument: insert GEPs and loads as appropriate. 799 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 800 // Store the Value* version of the indices in here, but declare it now 801 // for reuse. 802 std::vector<Value*> Ops; 803 for (ScalarizeTable::iterator SI = ArgIndices.begin(), 804 E = ArgIndices.end(); SI != E; ++SI) { 805 Value *V = *AI; 806 LoadInst *OrigLoad = OriginalLoads[std::make_pair(&*I, SI->second)]; 807 if (!SI->second.empty()) { 808 Ops.reserve(SI->second.size()); 809 Type *ElTy = V->getType(); 810 for (IndicesVector::const_iterator II = SI->second.begin(), 811 IE = SI->second.end(); 812 II != IE; ++II) { 813 // Use i32 to index structs, and i64 for others (pointers/arrays). 814 // This satisfies GEP constraints. 815 Type *IdxTy = (ElTy->isStructTy() ? 816 Type::getInt32Ty(F->getContext()) : 817 Type::getInt64Ty(F->getContext())); 818 Ops.push_back(ConstantInt::get(IdxTy, *II)); 819 // Keep track of the type we're currently indexing. 820 ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II); 821 } 822 // And create a GEP to extract those indices. 823 V = GetElementPtrInst::Create(SI->first, V, Ops, 824 V->getName() + ".idx", Call); 825 Ops.clear(); 826 } 827 // Since we're replacing a load make sure we take the alignment 828 // of the previous load. 829 LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call); 830 newLoad->setAlignment(OrigLoad->getAlignment()); 831 // Transfer the AA info too. 832 AAMDNodes AAInfo; 833 OrigLoad->getAAMetadata(AAInfo); 834 newLoad->setAAMetadata(AAInfo); 835 836 Args.push_back(newLoad); 837 } 838 } 839 840 // Push any varargs arguments on the list. 841 for (; AI != CS.arg_end(); ++AI, ++ArgIndex) { 842 Args.push_back(*AI); 843 if (CallPAL.hasAttributes(ArgIndex)) { 844 AttrBuilder B(CallPAL, ArgIndex); 845 AttributesVec. 846 push_back(AttributeSet::get(F->getContext(), Args.size(), B)); 847 } 848 } 849 850 // Add any function attributes. 851 if (CallPAL.hasAttributes(AttributeSet::FunctionIndex)) 852 AttributesVec.push_back(AttributeSet::get(Call->getContext(), 853 CallPAL.getFnAttributes())); 854 855 Instruction *New; 856 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { 857 New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 858 Args, "", Call); 859 cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv()); 860 cast<InvokeInst>(New)->setAttributes(AttributeSet::get(II->getContext(), 861 AttributesVec)); 862 } else { 863 New = CallInst::Create(NF, Args, "", Call); 864 cast<CallInst>(New)->setCallingConv(CS.getCallingConv()); 865 cast<CallInst>(New)->setAttributes(AttributeSet::get(New->getContext(), 866 AttributesVec)); 867 if (cast<CallInst>(Call)->isTailCall()) 868 cast<CallInst>(New)->setTailCall(); 869 } 870 New->setDebugLoc(Call->getDebugLoc()); 871 Args.clear(); 872 AttributesVec.clear(); 873 874 // Update the callgraph to know that the callsite has been transformed. 875 CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()]; 876 CalleeNode->replaceCallEdge(CS, CallSite(New), NF_CGN); 877 878 if (!Call->use_empty()) { 879 Call->replaceAllUsesWith(New); 880 New->takeName(Call); 881 } 882 883 // Finally, remove the old call from the program, reducing the use-count of 884 // F. 885 Call->eraseFromParent(); 886 } 887 888 // Since we have now created the new function, splice the body of the old 889 // function right into the new function, leaving the old rotting hulk of the 890 // function empty. 891 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); 892 893 // Loop over the argument list, transferring uses of the old arguments over to 894 // the new arguments, also transferring over the names as well. 895 // 896 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), 897 I2 = NF->arg_begin(); I != E; ++I) { 898 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { 899 // If this is an unmodified argument, move the name and users over to the 900 // new version. 901 I->replaceAllUsesWith(&*I2); 902 I2->takeName(&*I); 903 ++I2; 904 continue; 905 } 906 907 if (ByValArgsToTransform.count(&*I)) { 908 // In the callee, we create an alloca, and store each of the new incoming 909 // arguments into the alloca. 910 Instruction *InsertPt = &NF->begin()->front(); 911 912 // Just add all the struct element types. 913 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 914 Value *TheAlloca = new AllocaInst(AgTy, nullptr, "", InsertPt); 915 StructType *STy = cast<StructType>(AgTy); 916 Value *Idxs[2] = { 917 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr }; 918 919 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 920 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 921 Value *Idx = GetElementPtrInst::Create( 922 AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i), 923 InsertPt); 924 I2->setName(I->getName()+"."+Twine(i)); 925 new StoreInst(&*I2++, Idx, InsertPt); 926 } 927 928 // Anything that used the arg should now use the alloca. 929 I->replaceAllUsesWith(TheAlloca); 930 TheAlloca->takeName(&*I); 931 932 // If the alloca is used in a call, we must clear the tail flag since 933 // the callee now uses an alloca from the caller. 934 for (User *U : TheAlloca->users()) { 935 CallInst *Call = dyn_cast<CallInst>(U); 936 if (!Call) 937 continue; 938 Call->setTailCall(false); 939 } 940 continue; 941 } 942 943 if (I->use_empty()) 944 continue; 945 946 // Otherwise, if we promoted this argument, then all users are load 947 // instructions (or GEPs with only load users), and all loads should be 948 // using the new argument that we added. 949 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 950 951 while (!I->use_empty()) { 952 if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) { 953 assert(ArgIndices.begin()->second.empty() && 954 "Load element should sort to front!"); 955 I2->setName(I->getName()+".val"); 956 LI->replaceAllUsesWith(&*I2); 957 LI->eraseFromParent(); 958 DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName() 959 << "' in function '" << F->getName() << "'\n"); 960 } else { 961 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back()); 962 IndicesVector Operands; 963 Operands.reserve(GEP->getNumIndices()); 964 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); 965 II != IE; ++II) 966 Operands.push_back(cast<ConstantInt>(*II)->getSExtValue()); 967 968 // GEPs with a single 0 index can be merged with direct loads 969 if (Operands.size() == 1 && Operands.front() == 0) 970 Operands.clear(); 971 972 Function::arg_iterator TheArg = I2; 973 for (ScalarizeTable::iterator It = ArgIndices.begin(); 974 It->second != Operands; ++It, ++TheArg) { 975 assert(It != ArgIndices.end() && "GEP not handled??"); 976 } 977 978 std::string NewName = I->getName(); 979 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 980 NewName += "." + utostr(Operands[i]); 981 } 982 NewName += ".val"; 983 TheArg->setName(NewName); 984 985 DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName() 986 << "' of function '" << NF->getName() << "'\n"); 987 988 // All of the uses must be load instructions. Replace them all with 989 // the argument specified by ArgNo. 990 while (!GEP->use_empty()) { 991 LoadInst *L = cast<LoadInst>(GEP->user_back()); 992 L->replaceAllUsesWith(&*TheArg); 993 L->eraseFromParent(); 994 } 995 GEP->eraseFromParent(); 996 } 997 } 998 999 // Increment I2 past all of the arguments added for this promoted pointer. 1000 std::advance(I2, ArgIndices.size()); 1001 } 1002 1003 NF_CGN->stealCalledFunctionsFrom(CG[F]); 1004 1005 // Now that the old function is dead, delete it. If there is a dangling 1006 // reference to the CallgraphNode, just leave the dead function around for 1007 // someone else to nuke. 1008 CallGraphNode *CGN = CG[F]; 1009 if (CGN->getNumReferences() == 0) 1010 delete CG.removeFunctionFromModule(CGN); 1011 else 1012 F->setLinkage(Function::ExternalLinkage); 1013 1014 return NF_CGN; 1015 } 1016 1017 bool ArgPromotion::doInitialization(CallGraph &CG) { 1018 return CallGraphSCCPass::doInitialization(CG); 1019 } 1020