Home | History | Annotate | Download | only in IPO
      1 //===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass promotes "by reference" arguments to be "by value" arguments.  In
     11 // practice, this means looking for internal functions that have pointer
     12 // arguments.  If it can prove, through the use of alias analysis, that an
     13 // argument is *only* loaded, then it can pass the value into the function
     14 // instead of the address of the value.  This can cause recursive simplification
     15 // of code and lead to the elimination of allocas (especially in C++ template
     16 // code like the STL).
     17 //
     18 // This pass also handles aggregate arguments that are passed into a function,
     19 // scalarizing them if the elements of the aggregate are only loaded.  Note that
     20 // by default it refuses to scalarize aggregates which would require passing in
     21 // more than three operands to the function, because passing thousands of
     22 // operands for a large array or structure is unprofitable! This limit can be
     23 // configured or disabled, however.
     24 //
     25 // Note that this transformation could also be done for arguments that are only
     26 // stored to (returning the value instead), but does not currently.  This case
     27 // would be best handled when and if LLVM begins supporting multiple return
     28 // values from functions.
     29 //
     30 //===----------------------------------------------------------------------===//
     31 
     32 #include "llvm/Transforms/IPO.h"
     33 #include "llvm/ADT/DepthFirstIterator.h"
     34 #include "llvm/ADT/Statistic.h"
     35 #include "llvm/ADT/StringExtras.h"
     36 #include "llvm/Analysis/AliasAnalysis.h"
     37 #include "llvm/Analysis/AssumptionCache.h"
     38 #include "llvm/Analysis/BasicAliasAnalysis.h"
     39 #include "llvm/Analysis/CallGraph.h"
     40 #include "llvm/Analysis/CallGraphSCCPass.h"
     41 #include "llvm/Analysis/TargetLibraryInfo.h"
     42 #include "llvm/Analysis/ValueTracking.h"
     43 #include "llvm/IR/CFG.h"
     44 #include "llvm/IR/CallSite.h"
     45 #include "llvm/IR/Constants.h"
     46 #include "llvm/IR/DataLayout.h"
     47 #include "llvm/IR/DebugInfo.h"
     48 #include "llvm/IR/DerivedTypes.h"
     49 #include "llvm/IR/Instructions.h"
     50 #include "llvm/IR/LLVMContext.h"
     51 #include "llvm/IR/Module.h"
     52 #include "llvm/Support/Debug.h"
     53 #include "llvm/Support/raw_ostream.h"
     54 #include <set>
     55 using namespace llvm;
     56 
     57 #define DEBUG_TYPE "argpromotion"
     58 
     59 STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
     60 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
     61 STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
     62 STATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
     63 
     64 namespace {
     65   /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
     66   ///
     67   struct ArgPromotion : public CallGraphSCCPass {
     68     void getAnalysisUsage(AnalysisUsage &AU) const override {
     69       AU.addRequired<AssumptionCacheTracker>();
     70       AU.addRequired<TargetLibraryInfoWrapperPass>();
     71       CallGraphSCCPass::getAnalysisUsage(AU);
     72     }
     73 
     74     bool runOnSCC(CallGraphSCC &SCC) override;
     75     static char ID; // Pass identification, replacement for typeid
     76     explicit ArgPromotion(unsigned maxElements = 3)
     77         : CallGraphSCCPass(ID), maxElements(maxElements) {
     78       initializeArgPromotionPass(*PassRegistry::getPassRegistry());
     79     }
     80 
     81     /// A vector used to hold the indices of a single GEP instruction
     82     typedef std::vector<uint64_t> IndicesVector;
     83 
     84   private:
     85     bool isDenselyPacked(Type *type, const DataLayout &DL);
     86     bool canPaddingBeAccessed(Argument *Arg);
     87     CallGraphNode *PromoteArguments(CallGraphNode *CGN);
     88     bool isSafeToPromoteArgument(Argument *Arg, bool isByVal,
     89                                  AAResults &AAR) const;
     90     CallGraphNode *DoPromotion(Function *F,
     91                               SmallPtrSetImpl<Argument*> &ArgsToPromote,
     92                               SmallPtrSetImpl<Argument*> &ByValArgsToTransform);
     93 
     94     using llvm::Pass::doInitialization;
     95     bool doInitialization(CallGraph &CG) override;
     96     /// The maximum number of elements to expand, or 0 for unlimited.
     97     unsigned maxElements;
     98   };
     99 }
    100 
    101 char ArgPromotion::ID = 0;
    102 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
    103                 "Promote 'by reference' arguments to scalars", false, false)
    104 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
    105 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
    106 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
    107 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
    108                 "Promote 'by reference' arguments to scalars", false, false)
    109 
    110 Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
    111   return new ArgPromotion(maxElements);
    112 }
    113 
    114 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
    115   bool Changed = false, LocalChange;
    116 
    117   do {  // Iterate until we stop promoting from this SCC.
    118     LocalChange = false;
    119     // Attempt to promote arguments from all functions in this SCC.
    120     for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
    121       if (CallGraphNode *CGN = PromoteArguments(*I)) {
    122         LocalChange = true;
    123         SCC.ReplaceNode(*I, CGN);
    124       }
    125     }
    126     Changed |= LocalChange;               // Remember that we changed something.
    127   } while (LocalChange);
    128 
    129   return Changed;
    130 }
    131 
    132 /// \brief Checks if a type could have padding bytes.
    133 bool ArgPromotion::isDenselyPacked(Type *type, const DataLayout &DL) {
    134 
    135   // There is no size information, so be conservative.
    136   if (!type->isSized())
    137     return false;
    138 
    139   // If the alloc size is not equal to the storage size, then there are padding
    140   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
    141   if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
    142     return false;
    143 
    144   if (!isa<CompositeType>(type))
    145     return true;
    146 
    147   // For homogenous sequential types, check for padding within members.
    148   if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
    149     return isa<PointerType>(seqTy) ||
    150            isDenselyPacked(seqTy->getElementType(), DL);
    151 
    152   // Check for padding within and between elements of a struct.
    153   StructType *StructTy = cast<StructType>(type);
    154   const StructLayout *Layout = DL.getStructLayout(StructTy);
    155   uint64_t StartPos = 0;
    156   for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
    157     Type *ElTy = StructTy->getElementType(i);
    158     if (!isDenselyPacked(ElTy, DL))
    159       return false;
    160     if (StartPos != Layout->getElementOffsetInBits(i))
    161       return false;
    162     StartPos += DL.getTypeAllocSizeInBits(ElTy);
    163   }
    164 
    165   return true;
    166 }
    167 
    168 /// \brief Checks if the padding bytes of an argument could be accessed.
    169 bool ArgPromotion::canPaddingBeAccessed(Argument *arg) {
    170 
    171   assert(arg->hasByValAttr());
    172 
    173   // Track all the pointers to the argument to make sure they are not captured.
    174   SmallPtrSet<Value *, 16> PtrValues;
    175   PtrValues.insert(arg);
    176 
    177   // Track all of the stores.
    178   SmallVector<StoreInst *, 16> Stores;
    179 
    180   // Scan through the uses recursively to make sure the pointer is always used
    181   // sanely.
    182   SmallVector<Value *, 16> WorkList;
    183   WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
    184   while (!WorkList.empty()) {
    185     Value *V = WorkList.back();
    186     WorkList.pop_back();
    187     if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
    188       if (PtrValues.insert(V).second)
    189         WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
    190     } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
    191       Stores.push_back(Store);
    192     } else if (!isa<LoadInst>(V)) {
    193       return true;
    194     }
    195   }
    196 
    197 // Check to make sure the pointers aren't captured
    198   for (StoreInst *Store : Stores)
    199     if (PtrValues.count(Store->getValueOperand()))
    200       return true;
    201 
    202   return false;
    203 }
    204 
    205 /// PromoteArguments - This method checks the specified function to see if there
    206 /// are any promotable arguments and if it is safe to promote the function (for
    207 /// example, all callers are direct).  If safe to promote some arguments, it
    208 /// calls the DoPromotion method.
    209 ///
    210 CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
    211   Function *F = CGN->getFunction();
    212 
    213   // Make sure that it is local to this module.
    214   if (!F || !F->hasLocalLinkage()) return nullptr;
    215 
    216   // Don't promote arguments for variadic functions. Adding, removing, or
    217   // changing non-pack parameters can change the classification of pack
    218   // parameters. Frontends encode that classification at the call site in the
    219   // IR, while in the callee the classification is determined dynamically based
    220   // on the number of registers consumed so far.
    221   if (F->isVarArg()) return nullptr;
    222 
    223   // First check: see if there are any pointer arguments!  If not, quick exit.
    224   SmallVector<Argument*, 16> PointerArgs;
    225   for (Argument &I : F->args())
    226     if (I.getType()->isPointerTy())
    227       PointerArgs.push_back(&I);
    228   if (PointerArgs.empty()) return nullptr;
    229 
    230   // Second check: make sure that all callers are direct callers.  We can't
    231   // transform functions that have indirect callers.  Also see if the function
    232   // is self-recursive.
    233   bool isSelfRecursive = false;
    234   for (Use &U : F->uses()) {
    235     CallSite CS(U.getUser());
    236     // Must be a direct call.
    237     if (CS.getInstruction() == nullptr || !CS.isCallee(&U)) return nullptr;
    238 
    239     if (CS.getInstruction()->getParent()->getParent() == F)
    240       isSelfRecursive = true;
    241   }
    242 
    243   const DataLayout &DL = F->getParent()->getDataLayout();
    244 
    245   // We need to manually construct BasicAA directly in order to disable its use
    246   // of other function analyses.
    247   BasicAAResult BAR(createLegacyPMBasicAAResult(*this, *F));
    248 
    249   // Construct our own AA results for this function. We do this manually to
    250   // work around the limitations of the legacy pass manager.
    251   AAResults AAR(createLegacyPMAAResults(*this, *F, BAR));
    252 
    253   // Check to see which arguments are promotable.  If an argument is promotable,
    254   // add it to ArgsToPromote.
    255   SmallPtrSet<Argument*, 8> ArgsToPromote;
    256   SmallPtrSet<Argument*, 8> ByValArgsToTransform;
    257   for (unsigned i = 0, e = PointerArgs.size(); i != e; ++i) {
    258     Argument *PtrArg = PointerArgs[i];
    259     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
    260 
    261     // Replace sret attribute with noalias. This reduces register pressure by
    262     // avoiding a register copy.
    263     if (PtrArg->hasStructRetAttr()) {
    264       unsigned ArgNo = PtrArg->getArgNo();
    265       F->setAttributes(
    266           F->getAttributes()
    267               .removeAttribute(F->getContext(), ArgNo + 1, Attribute::StructRet)
    268               .addAttribute(F->getContext(), ArgNo + 1, Attribute::NoAlias));
    269       for (Use &U : F->uses()) {
    270         CallSite CS(U.getUser());
    271         CS.setAttributes(
    272             CS.getAttributes()
    273                 .removeAttribute(F->getContext(), ArgNo + 1,
    274                                  Attribute::StructRet)
    275                 .addAttribute(F->getContext(), ArgNo + 1, Attribute::NoAlias));
    276       }
    277     }
    278 
    279     // If this is a byval argument, and if the aggregate type is small, just
    280     // pass the elements, which is always safe, if the passed value is densely
    281     // packed or if we can prove the padding bytes are never accessed. This does
    282     // not apply to inalloca.
    283     bool isSafeToPromote =
    284         PtrArg->hasByValAttr() &&
    285         (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg));
    286     if (isSafeToPromote) {
    287       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
    288         if (maxElements > 0 && STy->getNumElements() > maxElements) {
    289           DEBUG(dbgs() << "argpromotion disable promoting argument '"
    290                 << PtrArg->getName() << "' because it would require adding more"
    291                 << " than " << maxElements << " arguments to the function.\n");
    292           continue;
    293         }
    294 
    295         // If all the elements are single-value types, we can promote it.
    296         bool AllSimple = true;
    297         for (const auto *EltTy : STy->elements()) {
    298           if (!EltTy->isSingleValueType()) {
    299             AllSimple = false;
    300             break;
    301           }
    302         }
    303 
    304         // Safe to transform, don't even bother trying to "promote" it.
    305         // Passing the elements as a scalar will allow scalarrepl to hack on
    306         // the new alloca we introduce.
    307         if (AllSimple) {
    308           ByValArgsToTransform.insert(PtrArg);
    309           continue;
    310         }
    311       }
    312     }
    313 
    314     // If the argument is a recursive type and we're in a recursive
    315     // function, we could end up infinitely peeling the function argument.
    316     if (isSelfRecursive) {
    317       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
    318         bool RecursiveType = false;
    319         for (const auto *EltTy : STy->elements()) {
    320           if (EltTy == PtrArg->getType()) {
    321             RecursiveType = true;
    322             break;
    323           }
    324         }
    325         if (RecursiveType)
    326           continue;
    327       }
    328     }
    329 
    330     // Otherwise, see if we can promote the pointer to its value.
    331     if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr(), AAR))
    332       ArgsToPromote.insert(PtrArg);
    333   }
    334 
    335   // No promotable pointer arguments.
    336   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
    337     return nullptr;
    338 
    339   return DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
    340 }
    341 
    342 /// AllCallersPassInValidPointerForArgument - Return true if we can prove that
    343 /// all callees pass in a valid pointer for the specified function argument.
    344 static bool AllCallersPassInValidPointerForArgument(Argument *Arg) {
    345   Function *Callee = Arg->getParent();
    346   const DataLayout &DL = Callee->getParent()->getDataLayout();
    347 
    348   unsigned ArgNo = Arg->getArgNo();
    349 
    350   // Look at all call sites of the function.  At this pointer we know we only
    351   // have direct callees.
    352   for (User *U : Callee->users()) {
    353     CallSite CS(U);
    354     assert(CS && "Should only have direct calls!");
    355 
    356     if (!isDereferenceablePointer(CS.getArgument(ArgNo), DL))
    357       return false;
    358   }
    359   return true;
    360 }
    361 
    362 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
    363 /// that is greater than or equal to the size of prefix, and each of the
    364 /// elements in Prefix is the same as the corresponding elements in Longer.
    365 ///
    366 /// This means it also returns true when Prefix and Longer are equal!
    367 static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix,
    368                      const ArgPromotion::IndicesVector &Longer) {
    369   if (Prefix.size() > Longer.size())
    370     return false;
    371   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
    372 }
    373 
    374 
    375 /// Checks if Indices, or a prefix of Indices, is in Set.
    376 static bool PrefixIn(const ArgPromotion::IndicesVector &Indices,
    377                      std::set<ArgPromotion::IndicesVector> &Set) {
    378     std::set<ArgPromotion::IndicesVector>::iterator Low;
    379     Low = Set.upper_bound(Indices);
    380     if (Low != Set.begin())
    381       Low--;
    382     // Low is now the last element smaller than or equal to Indices. This means
    383     // it points to a prefix of Indices (possibly Indices itself), if such
    384     // prefix exists.
    385     //
    386     // This load is safe if any prefix of its operands is safe to load.
    387     return Low != Set.end() && IsPrefix(*Low, Indices);
    388 }
    389 
    390 /// Mark the given indices (ToMark) as safe in the given set of indices
    391 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
    392 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
    393 /// already. Furthermore, any indices that Indices is itself a prefix of, are
    394 /// removed from Safe (since they are implicitely safe because of Indices now).
    395 static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark,
    396                             std::set<ArgPromotion::IndicesVector> &Safe) {
    397   std::set<ArgPromotion::IndicesVector>::iterator Low;
    398   Low = Safe.upper_bound(ToMark);
    399   // Guard against the case where Safe is empty
    400   if (Low != Safe.begin())
    401     Low--;
    402   // Low is now the last element smaller than or equal to Indices. This
    403   // means it points to a prefix of Indices (possibly Indices itself), if
    404   // such prefix exists.
    405   if (Low != Safe.end()) {
    406     if (IsPrefix(*Low, ToMark))
    407       // If there is already a prefix of these indices (or exactly these
    408       // indices) marked a safe, don't bother adding these indices
    409       return;
    410 
    411     // Increment Low, so we can use it as a "insert before" hint
    412     ++Low;
    413   }
    414   // Insert
    415   Low = Safe.insert(Low, ToMark);
    416   ++Low;
    417   // If there we're a prefix of longer index list(s), remove those
    418   std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end();
    419   while (Low != End && IsPrefix(ToMark, *Low)) {
    420     std::set<ArgPromotion::IndicesVector>::iterator Remove = Low;
    421     ++Low;
    422     Safe.erase(Remove);
    423   }
    424 }
    425 
    426 /// isSafeToPromoteArgument - As you might guess from the name of this method,
    427 /// it checks to see if it is both safe and useful to promote the argument.
    428 /// This method limits promotion of aggregates to only promote up to three
    429 /// elements of the aggregate in order to avoid exploding the number of
    430 /// arguments passed in.
    431 bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg,
    432                                            bool isByValOrInAlloca,
    433                                            AAResults &AAR) const {
    434   typedef std::set<IndicesVector> GEPIndicesSet;
    435 
    436   // Quick exit for unused arguments
    437   if (Arg->use_empty())
    438     return true;
    439 
    440   // We can only promote this argument if all of the uses are loads, or are GEP
    441   // instructions (with constant indices) that are subsequently loaded.
    442   //
    443   // Promoting the argument causes it to be loaded in the caller
    444   // unconditionally. This is only safe if we can prove that either the load
    445   // would have happened in the callee anyway (ie, there is a load in the entry
    446   // block) or the pointer passed in at every call site is guaranteed to be
    447   // valid.
    448   // In the former case, invalid loads can happen, but would have happened
    449   // anyway, in the latter case, invalid loads won't happen. This prevents us
    450   // from introducing an invalid load that wouldn't have happened in the
    451   // original code.
    452   //
    453   // This set will contain all sets of indices that are loaded in the entry
    454   // block, and thus are safe to unconditionally load in the caller.
    455   //
    456   // This optimization is also safe for InAlloca parameters, because it verifies
    457   // that the address isn't captured.
    458   GEPIndicesSet SafeToUnconditionallyLoad;
    459 
    460   // This set contains all the sets of indices that we are planning to promote.
    461   // This makes it possible to limit the number of arguments added.
    462   GEPIndicesSet ToPromote;
    463 
    464   // If the pointer is always valid, any load with first index 0 is valid.
    465   if (isByValOrInAlloca || AllCallersPassInValidPointerForArgument(Arg))
    466     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
    467 
    468   // First, iterate the entry block and mark loads of (geps of) arguments as
    469   // safe.
    470   BasicBlock &EntryBlock = Arg->getParent()->front();
    471   // Declare this here so we can reuse it
    472   IndicesVector Indices;
    473   for (Instruction &I : EntryBlock)
    474     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
    475       Value *V = LI->getPointerOperand();
    476       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
    477         V = GEP->getPointerOperand();
    478         if (V == Arg) {
    479           // This load actually loads (part of) Arg? Check the indices then.
    480           Indices.reserve(GEP->getNumIndices());
    481           for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
    482                II != IE; ++II)
    483             if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
    484               Indices.push_back(CI->getSExtValue());
    485             else
    486               // We found a non-constant GEP index for this argument? Bail out
    487               // right away, can't promote this argument at all.
    488               return false;
    489 
    490           // Indices checked out, mark them as safe
    491           MarkIndicesSafe(Indices, SafeToUnconditionallyLoad);
    492           Indices.clear();
    493         }
    494       } else if (V == Arg) {
    495         // Direct loads are equivalent to a GEP with a single 0 index.
    496         MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
    497       }
    498     }
    499 
    500   // Now, iterate all uses of the argument to see if there are any uses that are
    501   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
    502   SmallVector<LoadInst*, 16> Loads;
    503   IndicesVector Operands;
    504   for (Use &U : Arg->uses()) {
    505     User *UR = U.getUser();
    506     Operands.clear();
    507     if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
    508       // Don't hack volatile/atomic loads
    509       if (!LI->isSimple()) return false;
    510       Loads.push_back(LI);
    511       // Direct loads are equivalent to a GEP with a zero index and then a load.
    512       Operands.push_back(0);
    513     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
    514       if (GEP->use_empty()) {
    515         // Dead GEP's cause trouble later.  Just remove them if we run into
    516         // them.
    517         GEP->eraseFromParent();
    518         // TODO: This runs the above loop over and over again for dead GEPs
    519         // Couldn't we just do increment the UI iterator earlier and erase the
    520         // use?
    521         return isSafeToPromoteArgument(Arg, isByValOrInAlloca, AAR);
    522       }
    523 
    524       // Ensure that all of the indices are constants.
    525       for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end();
    526         i != e; ++i)
    527         if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
    528           Operands.push_back(C->getSExtValue());
    529         else
    530           return false;  // Not a constant operand GEP!
    531 
    532       // Ensure that the only users of the GEP are load instructions.
    533       for (User *GEPU : GEP->users())
    534         if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
    535           // Don't hack volatile/atomic loads
    536           if (!LI->isSimple()) return false;
    537           Loads.push_back(LI);
    538         } else {
    539           // Other uses than load?
    540           return false;
    541         }
    542     } else {
    543       return false;  // Not a load or a GEP.
    544     }
    545 
    546     // Now, see if it is safe to promote this load / loads of this GEP. Loading
    547     // is safe if Operands, or a prefix of Operands, is marked as safe.
    548     if (!PrefixIn(Operands, SafeToUnconditionallyLoad))
    549       return false;
    550 
    551     // See if we are already promoting a load with these indices. If not, check
    552     // to make sure that we aren't promoting too many elements.  If so, nothing
    553     // to do.
    554     if (ToPromote.find(Operands) == ToPromote.end()) {
    555       if (maxElements > 0 && ToPromote.size() == maxElements) {
    556         DEBUG(dbgs() << "argpromotion not promoting argument '"
    557               << Arg->getName() << "' because it would require adding more "
    558               << "than " << maxElements << " arguments to the function.\n");
    559         // We limit aggregate promotion to only promoting up to a fixed number
    560         // of elements of the aggregate.
    561         return false;
    562       }
    563       ToPromote.insert(std::move(Operands));
    564     }
    565   }
    566 
    567   if (Loads.empty()) return true;  // No users, this is a dead argument.
    568 
    569   // Okay, now we know that the argument is only used by load instructions and
    570   // it is safe to unconditionally perform all of them. Use alias analysis to
    571   // check to see if the pointer is guaranteed to not be modified from entry of
    572   // the function to each of the load instructions.
    573 
    574   // Because there could be several/many load instructions, remember which
    575   // blocks we know to be transparent to the load.
    576   SmallPtrSet<BasicBlock*, 16> TranspBlocks;
    577 
    578   for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
    579     // Check to see if the load is invalidated from the start of the block to
    580     // the load itself.
    581     LoadInst *Load = Loads[i];
    582     BasicBlock *BB = Load->getParent();
    583 
    584     MemoryLocation Loc = MemoryLocation::get(Load);
    585     if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, MRI_Mod))
    586       return false;  // Pointer is invalidated!
    587 
    588     // Now check every path from the entry block to the load for transparency.
    589     // To do this, we perform a depth first search on the inverse CFG from the
    590     // loading block.
    591     for (BasicBlock *P : predecessors(BB)) {
    592       for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
    593         if (AAR.canBasicBlockModify(*TranspBB, Loc))
    594           return false;
    595     }
    596   }
    597 
    598   // If the path from the entry of the function to each load is free of
    599   // instructions that potentially invalidate the load, we can make the
    600   // transformation!
    601   return true;
    602 }
    603 
    604 /// DoPromotion - This method actually performs the promotion of the specified
    605 /// arguments, and returns the new function.  At this point, we know that it's
    606 /// safe to do so.
    607 CallGraphNode *ArgPromotion::DoPromotion(Function *F,
    608                              SmallPtrSetImpl<Argument*> &ArgsToPromote,
    609                              SmallPtrSetImpl<Argument*> &ByValArgsToTransform) {
    610 
    611   // Start by computing a new prototype for the function, which is the same as
    612   // the old function, but has modified arguments.
    613   FunctionType *FTy = F->getFunctionType();
    614   std::vector<Type*> Params;
    615 
    616   typedef std::set<std::pair<Type *, IndicesVector>> ScalarizeTable;
    617 
    618   // ScalarizedElements - If we are promoting a pointer that has elements
    619   // accessed out of it, keep track of which elements are accessed so that we
    620   // can add one argument for each.
    621   //
    622   // Arguments that are directly loaded will have a zero element value here, to
    623   // handle cases where there are both a direct load and GEP accesses.
    624   //
    625   std::map<Argument*, ScalarizeTable> ScalarizedElements;
    626 
    627   // OriginalLoads - Keep track of a representative load instruction from the
    628   // original function so that we can tell the alias analysis implementation
    629   // what the new GEP/Load instructions we are inserting look like.
    630   // We need to keep the original loads for each argument and the elements
    631   // of the argument that are accessed.
    632   std::map<std::pair<Argument*, IndicesVector>, LoadInst*> OriginalLoads;
    633 
    634   // Attribute - Keep track of the parameter attributes for the arguments
    635   // that we are *not* promoting. For the ones that we do promote, the parameter
    636   // attributes are lost
    637   SmallVector<AttributeSet, 8> AttributesVec;
    638   const AttributeSet &PAL = F->getAttributes();
    639 
    640   // Add any return attributes.
    641   if (PAL.hasAttributes(AttributeSet::ReturnIndex))
    642     AttributesVec.push_back(AttributeSet::get(F->getContext(),
    643                                               PAL.getRetAttributes()));
    644 
    645   // First, determine the new argument list
    646   unsigned ArgIndex = 1;
    647   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
    648        ++I, ++ArgIndex) {
    649     if (ByValArgsToTransform.count(&*I)) {
    650       // Simple byval argument? Just add all the struct element types.
    651       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
    652       StructType *STy = cast<StructType>(AgTy);
    653       Params.insert(Params.end(), STy->element_begin(), STy->element_end());
    654       ++NumByValArgsPromoted;
    655     } else if (!ArgsToPromote.count(&*I)) {
    656       // Unchanged argument
    657       Params.push_back(I->getType());
    658       AttributeSet attrs = PAL.getParamAttributes(ArgIndex);
    659       if (attrs.hasAttributes(ArgIndex)) {
    660         AttrBuilder B(attrs, ArgIndex);
    661         AttributesVec.
    662           push_back(AttributeSet::get(F->getContext(), Params.size(), B));
    663       }
    664     } else if (I->use_empty()) {
    665       // Dead argument (which are always marked as promotable)
    666       ++NumArgumentsDead;
    667     } else {
    668       // Okay, this is being promoted. This means that the only uses are loads
    669       // or GEPs which are only used by loads
    670 
    671       // In this table, we will track which indices are loaded from the argument
    672       // (where direct loads are tracked as no indices).
    673       ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
    674       for (User *U : I->users()) {
    675         Instruction *UI = cast<Instruction>(U);
    676         Type *SrcTy;
    677         if (LoadInst *L = dyn_cast<LoadInst>(UI))
    678           SrcTy = L->getType();
    679         else
    680           SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
    681         IndicesVector Indices;
    682         Indices.reserve(UI->getNumOperands() - 1);
    683         // Since loads will only have a single operand, and GEPs only a single
    684         // non-index operand, this will record direct loads without any indices,
    685         // and gep+loads with the GEP indices.
    686         for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
    687              II != IE; ++II)
    688           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
    689         // GEPs with a single 0 index can be merged with direct loads
    690         if (Indices.size() == 1 && Indices.front() == 0)
    691           Indices.clear();
    692         ArgIndices.insert(std::make_pair(SrcTy, Indices));
    693         LoadInst *OrigLoad;
    694         if (LoadInst *L = dyn_cast<LoadInst>(UI))
    695           OrigLoad = L;
    696         else
    697           // Take any load, we will use it only to update Alias Analysis
    698           OrigLoad = cast<LoadInst>(UI->user_back());
    699         OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
    700       }
    701 
    702       // Add a parameter to the function for each element passed in.
    703       for (ScalarizeTable::iterator SI = ArgIndices.begin(),
    704              E = ArgIndices.end(); SI != E; ++SI) {
    705         // not allowed to dereference ->begin() if size() is 0
    706         Params.push_back(GetElementPtrInst::getIndexedType(
    707             cast<PointerType>(I->getType()->getScalarType())->getElementType(),
    708             SI->second));
    709         assert(Params.back());
    710       }
    711 
    712       if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
    713         ++NumArgumentsPromoted;
    714       else
    715         ++NumAggregatesPromoted;
    716     }
    717   }
    718 
    719   // Add any function attributes.
    720   if (PAL.hasAttributes(AttributeSet::FunctionIndex))
    721     AttributesVec.push_back(AttributeSet::get(FTy->getContext(),
    722                                               PAL.getFnAttributes()));
    723 
    724   Type *RetTy = FTy->getReturnType();
    725 
    726   // Construct the new function type using the new arguments.
    727   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
    728 
    729   // Create the new function body and insert it into the module.
    730   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
    731   NF->copyAttributesFrom(F);
    732 
    733   // Patch the pointer to LLVM function in debug info descriptor.
    734   NF->setSubprogram(F->getSubprogram());
    735   F->setSubprogram(nullptr);
    736 
    737   DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
    738         << "From: " << *F);
    739 
    740   // Recompute the parameter attributes list based on the new arguments for
    741   // the function.
    742   NF->setAttributes(AttributeSet::get(F->getContext(), AttributesVec));
    743   AttributesVec.clear();
    744 
    745   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
    746   NF->takeName(F);
    747 
    748   // Get the callgraph information that we need to update to reflect our
    749   // changes.
    750   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
    751 
    752   // Get a new callgraph node for NF.
    753   CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
    754 
    755   // Loop over all of the callers of the function, transforming the call sites
    756   // to pass in the loaded pointers.
    757   //
    758   SmallVector<Value*, 16> Args;
    759   while (!F->use_empty()) {
    760     CallSite CS(F->user_back());
    761     assert(CS.getCalledFunction() == F);
    762     Instruction *Call = CS.getInstruction();
    763     const AttributeSet &CallPAL = CS.getAttributes();
    764 
    765     // Add any return attributes.
    766     if (CallPAL.hasAttributes(AttributeSet::ReturnIndex))
    767       AttributesVec.push_back(AttributeSet::get(F->getContext(),
    768                                                 CallPAL.getRetAttributes()));
    769 
    770     // Loop over the operands, inserting GEP and loads in the caller as
    771     // appropriate.
    772     CallSite::arg_iterator AI = CS.arg_begin();
    773     ArgIndex = 1;
    774     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
    775          I != E; ++I, ++AI, ++ArgIndex)
    776       if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
    777         Args.push_back(*AI);          // Unmodified argument
    778 
    779         if (CallPAL.hasAttributes(ArgIndex)) {
    780           AttrBuilder B(CallPAL, ArgIndex);
    781           AttributesVec.
    782             push_back(AttributeSet::get(F->getContext(), Args.size(), B));
    783         }
    784       } else if (ByValArgsToTransform.count(&*I)) {
    785         // Emit a GEP and load for each element of the struct.
    786         Type *AgTy = cast<PointerType>(I->getType())->getElementType();
    787         StructType *STy = cast<StructType>(AgTy);
    788         Value *Idxs[2] = {
    789               ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr };
    790         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    791           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
    792           Value *Idx = GetElementPtrInst::Create(
    793               STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i), Call);
    794           // TODO: Tell AA about the new values?
    795           Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
    796         }
    797       } else if (!I->use_empty()) {
    798         // Non-dead argument: insert GEPs and loads as appropriate.
    799         ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
    800         // Store the Value* version of the indices in here, but declare it now
    801         // for reuse.
    802         std::vector<Value*> Ops;
    803         for (ScalarizeTable::iterator SI = ArgIndices.begin(),
    804                E = ArgIndices.end(); SI != E; ++SI) {
    805           Value *V = *AI;
    806           LoadInst *OrigLoad = OriginalLoads[std::make_pair(&*I, SI->second)];
    807           if (!SI->second.empty()) {
    808             Ops.reserve(SI->second.size());
    809             Type *ElTy = V->getType();
    810             for (IndicesVector::const_iterator II = SI->second.begin(),
    811                                                IE = SI->second.end();
    812                  II != IE; ++II) {
    813               // Use i32 to index structs, and i64 for others (pointers/arrays).
    814               // This satisfies GEP constraints.
    815               Type *IdxTy = (ElTy->isStructTy() ?
    816                     Type::getInt32Ty(F->getContext()) :
    817                     Type::getInt64Ty(F->getContext()));
    818               Ops.push_back(ConstantInt::get(IdxTy, *II));
    819               // Keep track of the type we're currently indexing.
    820               ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
    821             }
    822             // And create a GEP to extract those indices.
    823             V = GetElementPtrInst::Create(SI->first, V, Ops,
    824                                           V->getName() + ".idx", Call);
    825             Ops.clear();
    826           }
    827           // Since we're replacing a load make sure we take the alignment
    828           // of the previous load.
    829           LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call);
    830           newLoad->setAlignment(OrigLoad->getAlignment());
    831           // Transfer the AA info too.
    832           AAMDNodes AAInfo;
    833           OrigLoad->getAAMetadata(AAInfo);
    834           newLoad->setAAMetadata(AAInfo);
    835 
    836           Args.push_back(newLoad);
    837         }
    838       }
    839 
    840     // Push any varargs arguments on the list.
    841     for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
    842       Args.push_back(*AI);
    843       if (CallPAL.hasAttributes(ArgIndex)) {
    844         AttrBuilder B(CallPAL, ArgIndex);
    845         AttributesVec.
    846           push_back(AttributeSet::get(F->getContext(), Args.size(), B));
    847       }
    848     }
    849 
    850     // Add any function attributes.
    851     if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
    852       AttributesVec.push_back(AttributeSet::get(Call->getContext(),
    853                                                 CallPAL.getFnAttributes()));
    854 
    855     Instruction *New;
    856     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
    857       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
    858                                Args, "", Call);
    859       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
    860       cast<InvokeInst>(New)->setAttributes(AttributeSet::get(II->getContext(),
    861                                                             AttributesVec));
    862     } else {
    863       New = CallInst::Create(NF, Args, "", Call);
    864       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
    865       cast<CallInst>(New)->setAttributes(AttributeSet::get(New->getContext(),
    866                                                           AttributesVec));
    867       if (cast<CallInst>(Call)->isTailCall())
    868         cast<CallInst>(New)->setTailCall();
    869     }
    870     New->setDebugLoc(Call->getDebugLoc());
    871     Args.clear();
    872     AttributesVec.clear();
    873 
    874     // Update the callgraph to know that the callsite has been transformed.
    875     CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
    876     CalleeNode->replaceCallEdge(CS, CallSite(New), NF_CGN);
    877 
    878     if (!Call->use_empty()) {
    879       Call->replaceAllUsesWith(New);
    880       New->takeName(Call);
    881     }
    882 
    883     // Finally, remove the old call from the program, reducing the use-count of
    884     // F.
    885     Call->eraseFromParent();
    886   }
    887 
    888   // Since we have now created the new function, splice the body of the old
    889   // function right into the new function, leaving the old rotting hulk of the
    890   // function empty.
    891   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
    892 
    893   // Loop over the argument list, transferring uses of the old arguments over to
    894   // the new arguments, also transferring over the names as well.
    895   //
    896   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
    897        I2 = NF->arg_begin(); I != E; ++I) {
    898     if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
    899       // If this is an unmodified argument, move the name and users over to the
    900       // new version.
    901       I->replaceAllUsesWith(&*I2);
    902       I2->takeName(&*I);
    903       ++I2;
    904       continue;
    905     }
    906 
    907     if (ByValArgsToTransform.count(&*I)) {
    908       // In the callee, we create an alloca, and store each of the new incoming
    909       // arguments into the alloca.
    910       Instruction *InsertPt = &NF->begin()->front();
    911 
    912       // Just add all the struct element types.
    913       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
    914       Value *TheAlloca = new AllocaInst(AgTy, nullptr, "", InsertPt);
    915       StructType *STy = cast<StructType>(AgTy);
    916       Value *Idxs[2] = {
    917             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr };
    918 
    919       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    920         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
    921         Value *Idx = GetElementPtrInst::Create(
    922             AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
    923             InsertPt);
    924         I2->setName(I->getName()+"."+Twine(i));
    925         new StoreInst(&*I2++, Idx, InsertPt);
    926       }
    927 
    928       // Anything that used the arg should now use the alloca.
    929       I->replaceAllUsesWith(TheAlloca);
    930       TheAlloca->takeName(&*I);
    931 
    932       // If the alloca is used in a call, we must clear the tail flag since
    933       // the callee now uses an alloca from the caller.
    934       for (User *U : TheAlloca->users()) {
    935         CallInst *Call = dyn_cast<CallInst>(U);
    936         if (!Call)
    937           continue;
    938         Call->setTailCall(false);
    939       }
    940       continue;
    941     }
    942 
    943     if (I->use_empty())
    944       continue;
    945 
    946     // Otherwise, if we promoted this argument, then all users are load
    947     // instructions (or GEPs with only load users), and all loads should be
    948     // using the new argument that we added.
    949     ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
    950 
    951     while (!I->use_empty()) {
    952       if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
    953         assert(ArgIndices.begin()->second.empty() &&
    954                "Load element should sort to front!");
    955         I2->setName(I->getName()+".val");
    956         LI->replaceAllUsesWith(&*I2);
    957         LI->eraseFromParent();
    958         DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
    959               << "' in function '" << F->getName() << "'\n");
    960       } else {
    961         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
    962         IndicesVector Operands;
    963         Operands.reserve(GEP->getNumIndices());
    964         for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
    965              II != IE; ++II)
    966           Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
    967 
    968         // GEPs with a single 0 index can be merged with direct loads
    969         if (Operands.size() == 1 && Operands.front() == 0)
    970           Operands.clear();
    971 
    972         Function::arg_iterator TheArg = I2;
    973         for (ScalarizeTable::iterator It = ArgIndices.begin();
    974              It->second != Operands; ++It, ++TheArg) {
    975           assert(It != ArgIndices.end() && "GEP not handled??");
    976         }
    977 
    978         std::string NewName = I->getName();
    979         for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    980             NewName += "." + utostr(Operands[i]);
    981         }
    982         NewName += ".val";
    983         TheArg->setName(NewName);
    984 
    985         DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
    986               << "' of function '" << NF->getName() << "'\n");
    987 
    988         // All of the uses must be load instructions.  Replace them all with
    989         // the argument specified by ArgNo.
    990         while (!GEP->use_empty()) {
    991           LoadInst *L = cast<LoadInst>(GEP->user_back());
    992           L->replaceAllUsesWith(&*TheArg);
    993           L->eraseFromParent();
    994         }
    995         GEP->eraseFromParent();
    996       }
    997     }
    998 
    999     // Increment I2 past all of the arguments added for this promoted pointer.
   1000     std::advance(I2, ArgIndices.size());
   1001   }
   1002 
   1003   NF_CGN->stealCalledFunctionsFrom(CG[F]);
   1004 
   1005   // Now that the old function is dead, delete it.  If there is a dangling
   1006   // reference to the CallgraphNode, just leave the dead function around for
   1007   // someone else to nuke.
   1008   CallGraphNode *CGN = CG[F];
   1009   if (CGN->getNumReferences() == 0)
   1010     delete CG.removeFunctionFromModule(CGN);
   1011   else
   1012     F->setLinkage(Function::ExternalLinkage);
   1013 
   1014   return NF_CGN;
   1015 }
   1016 
   1017 bool ArgPromotion::doInitialization(CallGraph &CG) {
   1018   return CallGraphSCCPass::doInitialization(CG);
   1019 }
   1020