1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs several transformations to transform natural loops into a 11 // simpler form, which makes subsequent analyses and transformations simpler and 12 // more effective. 13 // 14 // Loop pre-header insertion guarantees that there is a single, non-critical 15 // entry edge from outside of the loop to the loop header. This simplifies a 16 // number of analyses and transformations, such as LICM. 17 // 18 // Loop exit-block insertion guarantees that all exit blocks from the loop 19 // (blocks which are outside of the loop that have predecessors inside of the 20 // loop) only have predecessors from inside of the loop (and are thus dominated 21 // by the loop header). This simplifies transformations such as store-sinking 22 // that are built into LICM. 23 // 24 // This pass also guarantees that loops will have exactly one backedge. 25 // 26 // Indirectbr instructions introduce several complications. If the loop 27 // contains or is entered by an indirectbr instruction, it may not be possible 28 // to transform the loop and make these guarantees. Client code should check 29 // that these conditions are true before relying on them. 30 // 31 // Note that the simplifycfg pass will clean up blocks which are split out but 32 // end up being unnecessary, so usage of this pass should not pessimize 33 // generated code. 34 // 35 // This pass obviously modifies the CFG, but updates loop information and 36 // dominator information. 37 // 38 //===----------------------------------------------------------------------===// 39 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/ADT/DepthFirstIterator.h" 42 #include "llvm/ADT/SetOperations.h" 43 #include "llvm/ADT/SetVector.h" 44 #include "llvm/ADT/SmallVector.h" 45 #include "llvm/ADT/Statistic.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/BasicAliasAnalysis.h" 48 #include "llvm/Analysis/AssumptionCache.h" 49 #include "llvm/Analysis/DependenceAnalysis.h" 50 #include "llvm/Analysis/GlobalsModRef.h" 51 #include "llvm/Analysis/InstructionSimplify.h" 52 #include "llvm/Analysis/LoopInfo.h" 53 #include "llvm/Analysis/ScalarEvolution.h" 54 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 55 #include "llvm/IR/CFG.h" 56 #include "llvm/IR/Constants.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/Type.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include "llvm/Transforms/Utils/LoopUtils.h" 70 using namespace llvm; 71 72 #define DEBUG_TYPE "loop-simplify" 73 74 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted"); 75 STATISTIC(NumNested , "Number of nested loops split out"); 76 77 // If the block isn't already, move the new block to right after some 'outside 78 // block' block. This prevents the preheader from being placed inside the loop 79 // body, e.g. when the loop hasn't been rotated. 80 static void placeSplitBlockCarefully(BasicBlock *NewBB, 81 SmallVectorImpl<BasicBlock *> &SplitPreds, 82 Loop *L) { 83 // Check to see if NewBB is already well placed. 84 Function::iterator BBI = --NewBB->getIterator(); 85 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 86 if (&*BBI == SplitPreds[i]) 87 return; 88 } 89 90 // If it isn't already after an outside block, move it after one. This is 91 // always good as it makes the uncond branch from the outside block into a 92 // fall-through. 93 94 // Figure out *which* outside block to put this after. Prefer an outside 95 // block that neighbors a BB actually in the loop. 96 BasicBlock *FoundBB = nullptr; 97 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 98 Function::iterator BBI = SplitPreds[i]->getIterator(); 99 if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) { 100 FoundBB = SplitPreds[i]; 101 break; 102 } 103 } 104 105 // If our heuristic for a *good* bb to place this after doesn't find 106 // anything, just pick something. It's likely better than leaving it within 107 // the loop. 108 if (!FoundBB) 109 FoundBB = SplitPreds[0]; 110 NewBB->moveAfter(FoundBB); 111 } 112 113 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 114 /// preheader, this method is called to insert one. This method has two phases: 115 /// preheader insertion and analysis updating. 116 /// 117 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT, 118 LoopInfo *LI, bool PreserveLCSSA) { 119 BasicBlock *Header = L->getHeader(); 120 121 // Compute the set of predecessors of the loop that are not in the loop. 122 SmallVector<BasicBlock*, 8> OutsideBlocks; 123 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 124 PI != PE; ++PI) { 125 BasicBlock *P = *PI; 126 if (!L->contains(P)) { // Coming in from outside the loop? 127 // If the loop is branched to from an indirect branch, we won't 128 // be able to fully transform the loop, because it prohibits 129 // edge splitting. 130 if (isa<IndirectBrInst>(P->getTerminator())) return nullptr; 131 132 // Keep track of it. 133 OutsideBlocks.push_back(P); 134 } 135 } 136 137 // Split out the loop pre-header. 138 BasicBlock *PreheaderBB; 139 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT, 140 LI, PreserveLCSSA); 141 if (!PreheaderBB) 142 return nullptr; 143 144 DEBUG(dbgs() << "LoopSimplify: Creating pre-header " 145 << PreheaderBB->getName() << "\n"); 146 147 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 148 // code layout too horribly. 149 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); 150 151 return PreheaderBB; 152 } 153 154 /// \brief Ensure that the loop preheader dominates all exit blocks. 155 /// 156 /// This method is used to split exit blocks that have predecessors outside of 157 /// the loop. 158 static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit, 159 DominatorTree *DT, LoopInfo *LI, 160 bool PreserveLCSSA) { 161 SmallVector<BasicBlock*, 8> LoopBlocks; 162 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) { 163 BasicBlock *P = *I; 164 if (L->contains(P)) { 165 // Don't do this if the loop is exited via an indirect branch. 166 if (isa<IndirectBrInst>(P->getTerminator())) return nullptr; 167 168 LoopBlocks.push_back(P); 169 } 170 } 171 172 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?"); 173 BasicBlock *NewExitBB = nullptr; 174 175 NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", DT, LI, 176 PreserveLCSSA); 177 if (!NewExitBB) 178 return nullptr; 179 180 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 181 << NewExitBB->getName() << "\n"); 182 return NewExitBB; 183 } 184 185 /// Add the specified block, and all of its predecessors, to the specified set, 186 /// if it's not already in there. Stop predecessor traversal when we reach 187 /// StopBlock. 188 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 189 std::set<BasicBlock*> &Blocks) { 190 SmallVector<BasicBlock *, 8> Worklist; 191 Worklist.push_back(InputBB); 192 do { 193 BasicBlock *BB = Worklist.pop_back_val(); 194 if (Blocks.insert(BB).second && BB != StopBlock) 195 // If BB is not already processed and it is not a stop block then 196 // insert its predecessor in the work list 197 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 198 BasicBlock *WBB = *I; 199 Worklist.push_back(WBB); 200 } 201 } while (!Worklist.empty()); 202 } 203 204 /// \brief The first part of loop-nestification is to find a PHI node that tells 205 /// us how to partition the loops. 206 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT, 207 AssumptionCache *AC) { 208 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 209 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 210 PHINode *PN = cast<PHINode>(I); 211 ++I; 212 if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) { 213 // This is a degenerate PHI already, don't modify it! 214 PN->replaceAllUsesWith(V); 215 PN->eraseFromParent(); 216 continue; 217 } 218 219 // Scan this PHI node looking for a use of the PHI node by itself. 220 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 221 if (PN->getIncomingValue(i) == PN && 222 L->contains(PN->getIncomingBlock(i))) 223 // We found something tasty to remove. 224 return PN; 225 } 226 return nullptr; 227 } 228 229 /// \brief If this loop has multiple backedges, try to pull one of them out into 230 /// a nested loop. 231 /// 232 /// This is important for code that looks like 233 /// this: 234 /// 235 /// Loop: 236 /// ... 237 /// br cond, Loop, Next 238 /// ... 239 /// br cond2, Loop, Out 240 /// 241 /// To identify this common case, we look at the PHI nodes in the header of the 242 /// loop. PHI nodes with unchanging values on one backedge correspond to values 243 /// that change in the "outer" loop, but not in the "inner" loop. 244 /// 245 /// If we are able to separate out a loop, return the new outer loop that was 246 /// created. 247 /// 248 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader, 249 DominatorTree *DT, LoopInfo *LI, 250 ScalarEvolution *SE, bool PreserveLCSSA, 251 AssumptionCache *AC) { 252 // Don't try to separate loops without a preheader. 253 if (!Preheader) 254 return nullptr; 255 256 // The header is not a landing pad; preheader insertion should ensure this. 257 BasicBlock *Header = L->getHeader(); 258 assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); 259 260 PHINode *PN = findPHIToPartitionLoops(L, DT, AC); 261 if (!PN) return nullptr; // No known way to partition. 262 263 // Pull out all predecessors that have varying values in the loop. This 264 // handles the case when a PHI node has multiple instances of itself as 265 // arguments. 266 SmallVector<BasicBlock*, 8> OuterLoopPreds; 267 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 268 if (PN->getIncomingValue(i) != PN || 269 !L->contains(PN->getIncomingBlock(i))) { 270 // We can't split indirectbr edges. 271 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator())) 272 return nullptr; 273 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 274 } 275 } 276 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 277 278 // If ScalarEvolution is around and knows anything about values in 279 // this loop, tell it to forget them, because we're about to 280 // substantially change it. 281 if (SE) 282 SE->forgetLoop(L); 283 284 BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", 285 DT, LI, PreserveLCSSA); 286 287 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 288 // code layout too horribly. 289 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L); 290 291 // Create the new outer loop. 292 Loop *NewOuter = new Loop(); 293 294 // Change the parent loop to use the outer loop as its child now. 295 if (Loop *Parent = L->getParentLoop()) 296 Parent->replaceChildLoopWith(L, NewOuter); 297 else 298 LI->changeTopLevelLoop(L, NewOuter); 299 300 // L is now a subloop of our outer loop. 301 NewOuter->addChildLoop(L); 302 303 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 304 I != E; ++I) 305 NewOuter->addBlockEntry(*I); 306 307 // Now reset the header in L, which had been moved by 308 // SplitBlockPredecessors for the outer loop. 309 L->moveToHeader(Header); 310 311 // Determine which blocks should stay in L and which should be moved out to 312 // the Outer loop now. 313 std::set<BasicBlock*> BlocksInL; 314 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { 315 BasicBlock *P = *PI; 316 if (DT->dominates(Header, P)) 317 addBlockAndPredsToSet(P, Header, BlocksInL); 318 } 319 320 // Scan all of the loop children of L, moving them to OuterLoop if they are 321 // not part of the inner loop. 322 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 323 for (size_t I = 0; I != SubLoops.size(); ) 324 if (BlocksInL.count(SubLoops[I]->getHeader())) 325 ++I; // Loop remains in L 326 else 327 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 328 329 // Now that we know which blocks are in L and which need to be moved to 330 // OuterLoop, move any blocks that need it. 331 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 332 BasicBlock *BB = L->getBlocks()[i]; 333 if (!BlocksInL.count(BB)) { 334 // Move this block to the parent, updating the exit blocks sets 335 L->removeBlockFromLoop(BB); 336 if ((*LI)[BB] == L) 337 LI->changeLoopFor(BB, NewOuter); 338 --i; 339 } 340 } 341 342 return NewOuter; 343 } 344 345 /// \brief This method is called when the specified loop has more than one 346 /// backedge in it. 347 /// 348 /// If this occurs, revector all of these backedges to target a new basic block 349 /// and have that block branch to the loop header. This ensures that loops 350 /// have exactly one backedge. 351 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader, 352 DominatorTree *DT, LoopInfo *LI) { 353 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 354 355 // Get information about the loop 356 BasicBlock *Header = L->getHeader(); 357 Function *F = Header->getParent(); 358 359 // Unique backedge insertion currently depends on having a preheader. 360 if (!Preheader) 361 return nullptr; 362 363 // The header is not an EH pad; preheader insertion should ensure this. 364 assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); 365 366 // Figure out which basic blocks contain back-edges to the loop header. 367 std::vector<BasicBlock*> BackedgeBlocks; 368 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ 369 BasicBlock *P = *I; 370 371 // Indirectbr edges cannot be split, so we must fail if we find one. 372 if (isa<IndirectBrInst>(P->getTerminator())) 373 return nullptr; 374 375 if (P != Preheader) BackedgeBlocks.push_back(P); 376 } 377 378 // Create and insert the new backedge block... 379 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 380 Header->getName() + ".backedge", F); 381 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 382 BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc()); 383 384 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " 385 << BEBlock->getName() << "\n"); 386 387 // Move the new backedge block to right after the last backedge block. 388 Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator(); 389 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 390 391 // Now that the block has been inserted into the function, create PHI nodes in 392 // the backedge block which correspond to any PHI nodes in the header block. 393 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 394 PHINode *PN = cast<PHINode>(I); 395 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), 396 PN->getName()+".be", BETerminator); 397 398 // Loop over the PHI node, moving all entries except the one for the 399 // preheader over to the new PHI node. 400 unsigned PreheaderIdx = ~0U; 401 bool HasUniqueIncomingValue = true; 402 Value *UniqueValue = nullptr; 403 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 404 BasicBlock *IBB = PN->getIncomingBlock(i); 405 Value *IV = PN->getIncomingValue(i); 406 if (IBB == Preheader) { 407 PreheaderIdx = i; 408 } else { 409 NewPN->addIncoming(IV, IBB); 410 if (HasUniqueIncomingValue) { 411 if (!UniqueValue) 412 UniqueValue = IV; 413 else if (UniqueValue != IV) 414 HasUniqueIncomingValue = false; 415 } 416 } 417 } 418 419 // Delete all of the incoming values from the old PN except the preheader's 420 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 421 if (PreheaderIdx != 0) { 422 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 423 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 424 } 425 // Nuke all entries except the zero'th. 426 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 427 PN->removeIncomingValue(e-i, false); 428 429 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 430 PN->addIncoming(NewPN, BEBlock); 431 432 // As an optimization, if all incoming values in the new PhiNode (which is a 433 // subset of the incoming values of the old PHI node) have the same value, 434 // eliminate the PHI Node. 435 if (HasUniqueIncomingValue) { 436 NewPN->replaceAllUsesWith(UniqueValue); 437 BEBlock->getInstList().erase(NewPN); 438 } 439 } 440 441 // Now that all of the PHI nodes have been inserted and adjusted, modify the 442 // backedge blocks to just to the BEBlock instead of the header. 443 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 444 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator(); 445 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) 446 if (TI->getSuccessor(Op) == Header) 447 TI->setSuccessor(Op, BEBlock); 448 } 449 450 //===--- Update all analyses which we must preserve now -----------------===// 451 452 // Update Loop Information - we know that this block is now in the current 453 // loop and all parent loops. 454 L->addBasicBlockToLoop(BEBlock, *LI); 455 456 // Update dominator information 457 DT->splitBlock(BEBlock); 458 459 return BEBlock; 460 } 461 462 /// \brief Simplify one loop and queue further loops for simplification. 463 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist, 464 DominatorTree *DT, LoopInfo *LI, 465 ScalarEvolution *SE, AssumptionCache *AC, 466 bool PreserveLCSSA) { 467 bool Changed = false; 468 ReprocessLoop: 469 470 // Check to see that no blocks (other than the header) in this loop have 471 // predecessors that are not in the loop. This is not valid for natural 472 // loops, but can occur if the blocks are unreachable. Since they are 473 // unreachable we can just shamelessly delete those CFG edges! 474 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 475 BB != E; ++BB) { 476 if (*BB == L->getHeader()) continue; 477 478 SmallPtrSet<BasicBlock*, 4> BadPreds; 479 for (pred_iterator PI = pred_begin(*BB), 480 PE = pred_end(*BB); PI != PE; ++PI) { 481 BasicBlock *P = *PI; 482 if (!L->contains(P)) 483 BadPreds.insert(P); 484 } 485 486 // Delete each unique out-of-loop (and thus dead) predecessor. 487 for (BasicBlock *P : BadPreds) { 488 489 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " 490 << P->getName() << "\n"); 491 492 // Inform each successor of each dead pred. 493 for (succ_iterator SI = succ_begin(P), SE = succ_end(P); SI != SE; ++SI) 494 (*SI)->removePredecessor(P); 495 // Zap the dead pred's terminator and replace it with unreachable. 496 TerminatorInst *TI = P->getTerminator(); 497 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 498 P->getTerminator()->eraseFromParent(); 499 new UnreachableInst(P->getContext(), P); 500 Changed = true; 501 } 502 } 503 504 // If there are exiting blocks with branches on undef, resolve the undef in 505 // the direction which will exit the loop. This will help simplify loop 506 // trip count computations. 507 SmallVector<BasicBlock*, 8> ExitingBlocks; 508 L->getExitingBlocks(ExitingBlocks); 509 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), 510 E = ExitingBlocks.end(); I != E; ++I) 511 if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator())) 512 if (BI->isConditional()) { 513 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 514 515 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in " 516 << (*I)->getName() << "\n"); 517 518 BI->setCondition(ConstantInt::get(Cond->getType(), 519 !L->contains(BI->getSuccessor(0)))); 520 521 // This may make the loop analyzable, force SCEV recomputation. 522 if (SE) 523 SE->forgetLoop(L); 524 525 Changed = true; 526 } 527 } 528 529 // Does the loop already have a preheader? If so, don't insert one. 530 BasicBlock *Preheader = L->getLoopPreheader(); 531 if (!Preheader) { 532 Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA); 533 if (Preheader) { 534 ++NumInserted; 535 Changed = true; 536 } 537 } 538 539 // Next, check to make sure that all exit nodes of the loop only have 540 // predecessors that are inside of the loop. This check guarantees that the 541 // loop preheader/header will dominate the exit blocks. If the exit block has 542 // predecessors from outside of the loop, split the edge now. 543 SmallVector<BasicBlock*, 8> ExitBlocks; 544 L->getExitBlocks(ExitBlocks); 545 546 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(), 547 ExitBlocks.end()); 548 for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(), 549 E = ExitBlockSet.end(); I != E; ++I) { 550 BasicBlock *ExitBlock = *I; 551 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); 552 PI != PE; ++PI) 553 // Must be exactly this loop: no subloops, parent loops, or non-loop preds 554 // allowed. 555 if (!L->contains(*PI)) { 556 if (rewriteLoopExitBlock(L, ExitBlock, DT, LI, PreserveLCSSA)) { 557 ++NumInserted; 558 Changed = true; 559 } 560 break; 561 } 562 } 563 564 // If the header has more than two predecessors at this point (from the 565 // preheader and from multiple backedges), we must adjust the loop. 566 BasicBlock *LoopLatch = L->getLoopLatch(); 567 if (!LoopLatch) { 568 // If this is really a nested loop, rip it out into a child loop. Don't do 569 // this for loops with a giant number of backedges, just factor them into a 570 // common backedge instead. 571 if (L->getNumBackEdges() < 8) { 572 if (Loop *OuterL = 573 separateNestedLoop(L, Preheader, DT, LI, SE, PreserveLCSSA, AC)) { 574 ++NumNested; 575 // Enqueue the outer loop as it should be processed next in our 576 // depth-first nest walk. 577 Worklist.push_back(OuterL); 578 579 // This is a big restructuring change, reprocess the whole loop. 580 Changed = true; 581 // GCC doesn't tail recursion eliminate this. 582 // FIXME: It isn't clear we can't rely on LLVM to TRE this. 583 goto ReprocessLoop; 584 } 585 } 586 587 // If we either couldn't, or didn't want to, identify nesting of the loops, 588 // insert a new block that all backedges target, then make it jump to the 589 // loop header. 590 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI); 591 if (LoopLatch) { 592 ++NumInserted; 593 Changed = true; 594 } 595 } 596 597 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 598 599 // Scan over the PHI nodes in the loop header. Since they now have only two 600 // incoming values (the loop is canonicalized), we may have simplified the PHI 601 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 602 PHINode *PN; 603 for (BasicBlock::iterator I = L->getHeader()->begin(); 604 (PN = dyn_cast<PHINode>(I++)); ) 605 if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) { 606 if (SE) SE->forgetValue(PN); 607 PN->replaceAllUsesWith(V); 608 PN->eraseFromParent(); 609 } 610 611 // If this loop has multiple exits and the exits all go to the same 612 // block, attempt to merge the exits. This helps several passes, such 613 // as LoopRotation, which do not support loops with multiple exits. 614 // SimplifyCFG also does this (and this code uses the same utility 615 // function), however this code is loop-aware, where SimplifyCFG is 616 // not. That gives it the advantage of being able to hoist 617 // loop-invariant instructions out of the way to open up more 618 // opportunities, and the disadvantage of having the responsibility 619 // to preserve dominator information. 620 bool UniqueExit = true; 621 if (!ExitBlocks.empty()) 622 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i) 623 if (ExitBlocks[i] != ExitBlocks[0]) { 624 UniqueExit = false; 625 break; 626 } 627 if (UniqueExit) { 628 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 629 BasicBlock *ExitingBlock = ExitingBlocks[i]; 630 if (!ExitingBlock->getSinglePredecessor()) continue; 631 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 632 if (!BI || !BI->isConditional()) continue; 633 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 634 if (!CI || CI->getParent() != ExitingBlock) continue; 635 636 // Attempt to hoist out all instructions except for the 637 // comparison and the branch. 638 bool AllInvariant = true; 639 bool AnyInvariant = false; 640 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) { 641 Instruction *Inst = &*I++; 642 // Skip debug info intrinsics. 643 if (isa<DbgInfoIntrinsic>(Inst)) 644 continue; 645 if (Inst == CI) 646 continue; 647 if (!L->makeLoopInvariant(Inst, AnyInvariant, 648 Preheader ? Preheader->getTerminator() 649 : nullptr)) { 650 AllInvariant = false; 651 break; 652 } 653 } 654 if (AnyInvariant) { 655 Changed = true; 656 // The loop disposition of all SCEV expressions that depend on any 657 // hoisted values have also changed. 658 if (SE) 659 SE->forgetLoopDispositions(L); 660 } 661 if (!AllInvariant) continue; 662 663 // The block has now been cleared of all instructions except for 664 // a comparison and a conditional branch. SimplifyCFG may be able 665 // to fold it now. 666 if (!FoldBranchToCommonDest(BI)) 667 continue; 668 669 // Success. The block is now dead, so remove it from the loop, 670 // update the dominator tree and delete it. 671 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " 672 << ExitingBlock->getName() << "\n"); 673 674 // Notify ScalarEvolution before deleting this block. Currently assume the 675 // parent loop doesn't change (spliting edges doesn't count). If blocks, 676 // CFG edges, or other values in the parent loop change, then we need call 677 // to forgetLoop() for the parent instead. 678 if (SE) 679 SE->forgetLoop(L); 680 681 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 682 Changed = true; 683 LI->removeBlock(ExitingBlock); 684 685 DomTreeNode *Node = DT->getNode(ExitingBlock); 686 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = 687 Node->getChildren(); 688 while (!Children.empty()) { 689 DomTreeNode *Child = Children.front(); 690 DT->changeImmediateDominator(Child, Node->getIDom()); 691 } 692 DT->eraseNode(ExitingBlock); 693 694 BI->getSuccessor(0)->removePredecessor(ExitingBlock); 695 BI->getSuccessor(1)->removePredecessor(ExitingBlock); 696 ExitingBlock->eraseFromParent(); 697 } 698 } 699 700 return Changed; 701 } 702 703 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, 704 ScalarEvolution *SE, AssumptionCache *AC, 705 bool PreserveLCSSA) { 706 bool Changed = false; 707 708 // Worklist maintains our depth-first queue of loops in this nest to process. 709 SmallVector<Loop *, 4> Worklist; 710 Worklist.push_back(L); 711 712 // Walk the worklist from front to back, pushing newly found sub loops onto 713 // the back. This will let us process loops from back to front in depth-first 714 // order. We can use this simple process because loops form a tree. 715 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 716 Loop *L2 = Worklist[Idx]; 717 Worklist.append(L2->begin(), L2->end()); 718 } 719 720 while (!Worklist.empty()) 721 Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE, 722 AC, PreserveLCSSA); 723 724 return Changed; 725 } 726 727 namespace { 728 struct LoopSimplify : public FunctionPass { 729 static char ID; // Pass identification, replacement for typeid 730 LoopSimplify() : FunctionPass(ID) { 731 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 732 } 733 734 DominatorTree *DT; 735 LoopInfo *LI; 736 ScalarEvolution *SE; 737 AssumptionCache *AC; 738 739 bool runOnFunction(Function &F) override; 740 741 void getAnalysisUsage(AnalysisUsage &AU) const override { 742 AU.addRequired<AssumptionCacheTracker>(); 743 744 // We need loop information to identify the loops... 745 AU.addRequired<DominatorTreeWrapperPass>(); 746 AU.addPreserved<DominatorTreeWrapperPass>(); 747 748 AU.addRequired<LoopInfoWrapperPass>(); 749 AU.addPreserved<LoopInfoWrapperPass>(); 750 751 AU.addPreserved<BasicAAWrapperPass>(); 752 AU.addPreserved<AAResultsWrapperPass>(); 753 AU.addPreserved<GlobalsAAWrapperPass>(); 754 AU.addPreserved<ScalarEvolutionWrapperPass>(); 755 AU.addPreserved<SCEVAAWrapperPass>(); 756 AU.addPreserved<DependenceAnalysis>(); 757 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 758 } 759 760 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 761 void verifyAnalysis() const override; 762 }; 763 } 764 765 char LoopSimplify::ID = 0; 766 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", 767 "Canonicalize natural loops", false, false) 768 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 769 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 770 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 771 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 772 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 773 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 774 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", 775 "Canonicalize natural loops", false, false) 776 777 // Publicly exposed interface to pass... 778 char &llvm::LoopSimplifyID = LoopSimplify::ID; 779 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 780 781 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do 782 /// it in any convenient order) inserting preheaders... 783 /// 784 bool LoopSimplify::runOnFunction(Function &F) { 785 bool Changed = false; 786 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 787 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 788 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 789 SE = SEWP ? &SEWP->getSE() : nullptr; 790 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 791 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 792 793 // Simplify each loop nest in the function. 794 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 795 Changed |= simplifyLoop(*I, DT, LI, SE, AC, PreserveLCSSA); 796 797 return Changed; 798 } 799 800 // FIXME: Restore this code when we re-enable verification in verifyAnalysis 801 // below. 802 #if 0 803 static void verifyLoop(Loop *L) { 804 // Verify subloops. 805 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 806 verifyLoop(*I); 807 808 // It used to be possible to just assert L->isLoopSimplifyForm(), however 809 // with the introduction of indirectbr, there are now cases where it's 810 // not possible to transform a loop as necessary. We can at least check 811 // that there is an indirectbr near any time there's trouble. 812 813 // Indirectbr can interfere with preheader and unique backedge insertion. 814 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 815 bool HasIndBrPred = false; 816 for (pred_iterator PI = pred_begin(L->getHeader()), 817 PE = pred_end(L->getHeader()); PI != PE; ++PI) 818 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 819 HasIndBrPred = true; 820 break; 821 } 822 assert(HasIndBrPred && 823 "LoopSimplify has no excuse for missing loop header info!"); 824 (void)HasIndBrPred; 825 } 826 827 // Indirectbr can interfere with exit block canonicalization. 828 if (!L->hasDedicatedExits()) { 829 bool HasIndBrExiting = false; 830 SmallVector<BasicBlock*, 8> ExitingBlocks; 831 L->getExitingBlocks(ExitingBlocks); 832 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 833 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 834 HasIndBrExiting = true; 835 break; 836 } 837 } 838 839 assert(HasIndBrExiting && 840 "LoopSimplify has no excuse for missing exit block info!"); 841 (void)HasIndBrExiting; 842 } 843 } 844 #endif 845 846 void LoopSimplify::verifyAnalysis() const { 847 // FIXME: This routine is being called mid-way through the loop pass manager 848 // as loop passes destroy this analysis. That's actually fine, but we have no 849 // way of expressing that here. Once all of the passes that destroy this are 850 // hoisted out of the loop pass manager we can add back verification here. 851 #if 0 852 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 853 verifyLoop(*I); 854 #endif 855 } 856