Home | History | Annotate | Download | only in ImgTrans
      1 /**
      2  * @function Watershed_and_Distance_Transform.cpp
      3  * @brief Sample code showing how to segment overlapping objects using Laplacian filtering, in addition to Watershed and Distance Transformation
      4  * @author OpenCV Team
      5  */
      6 
      7 #include <opencv2/opencv.hpp>
      8 #include <iostream>
      9 
     10 using namespace std;
     11 using namespace cv;
     12 
     13 int main(int, char** argv)
     14 {
     15 //! [load_image]
     16     // Load the image
     17     Mat src = imread(argv[1]);
     18 
     19     // Check if everything was fine
     20     if (!src.data)
     21         return -1;
     22 
     23     // Show source image
     24     imshow("Source Image", src);
     25 //! [load_image]
     26 
     27 //! [black_bg]
     28     // Change the background from white to black, since that will help later to extract
     29     // better results during the use of Distance Transform
     30     for( int x = 0; x < src.rows; x++ ) {
     31       for( int y = 0; y < src.cols; y++ ) {
     32           if ( src.at<Vec3b>(x, y) == Vec3b(255,255,255) ) {
     33             src.at<Vec3b>(x, y)[0] = 0;
     34             src.at<Vec3b>(x, y)[1] = 0;
     35             src.at<Vec3b>(x, y)[2] = 0;
     36           }
     37         }
     38     }
     39 
     40     // Show output image
     41     imshow("Black Background Image", src);
     42 //! [black_bg]
     43 
     44 //! [sharp]
     45     // Create a kernel that we will use for accuting/sharpening our image
     46     Mat kernel = (Mat_<float>(3,3) <<
     47             1,  1, 1,
     48             1, -8, 1,
     49             1,  1, 1); // an approximation of second derivative, a quite strong kernel
     50 
     51     // do the laplacian filtering as it is
     52     // well, we need to convert everything in something more deeper then CV_8U
     53     // because the kernel has some negative values,
     54     // and we can expect in general to have a Laplacian image with negative values
     55     // BUT a 8bits unsigned int (the one we are working with) can contain values from 0 to 255
     56     // so the possible negative number will be truncated
     57     Mat imgLaplacian;
     58     Mat sharp = src; // copy source image to another temporary one
     59     filter2D(sharp, imgLaplacian, CV_32F, kernel);
     60     src.convertTo(sharp, CV_32F);
     61     Mat imgResult = sharp - imgLaplacian;
     62 
     63     // convert back to 8bits gray scale
     64     imgResult.convertTo(imgResult, CV_8UC3);
     65     imgLaplacian.convertTo(imgLaplacian, CV_8UC3);
     66 
     67     // imshow( "Laplace Filtered Image", imgLaplacian );
     68     imshow( "New Sharped Image", imgResult );
     69 //! [sharp]
     70 
     71     src = imgResult; // copy back
     72 
     73 //! [bin]
     74     // Create binary image from source image
     75     Mat bw;
     76     cvtColor(src, bw, CV_BGR2GRAY);
     77     threshold(bw, bw, 40, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);
     78     imshow("Binary Image", bw);
     79 //! [bin]
     80 
     81 //! [dist]
     82     // Perform the distance transform algorithm
     83     Mat dist;
     84     distanceTransform(bw, dist, CV_DIST_L2, 3);
     85 
     86     // Normalize the distance image for range = {0.0, 1.0}
     87     // so we can visualize and threshold it
     88     normalize(dist, dist, 0, 1., NORM_MINMAX);
     89     imshow("Distance Transform Image", dist);
     90 //! [dist]
     91 
     92 //! [peaks]
     93     // Threshold to obtain the peaks
     94     // This will be the markers for the foreground objects
     95     threshold(dist, dist, .4, 1., CV_THRESH_BINARY);
     96 
     97     // Dilate a bit the dist image
     98     Mat kernel1 = Mat::ones(3, 3, CV_8UC1);
     99     dilate(dist, dist, kernel1);
    100     imshow("Peaks", dist);
    101 //! [peaks]
    102 
    103 //! [seeds]
    104     // Create the CV_8U version of the distance image
    105     // It is needed for findContours()
    106     Mat dist_8u;
    107     dist.convertTo(dist_8u, CV_8U);
    108 
    109     // Find total markers
    110     vector<vector<Point> > contours;
    111     findContours(dist_8u, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
    112 
    113     // Create the marker image for the watershed algorithm
    114     Mat markers = Mat::zeros(dist.size(), CV_32SC1);
    115 
    116     // Draw the foreground markers
    117     for (size_t i = 0; i < contours.size(); i++)
    118         drawContours(markers, contours, static_cast<int>(i), Scalar::all(static_cast<int>(i)+1), -1);
    119 
    120     // Draw the background marker
    121     circle(markers, Point(5,5), 3, CV_RGB(255,255,255), -1);
    122     imshow("Markers", markers*10000);
    123 //! [seeds]
    124 
    125 //! [watershed]
    126     // Perform the watershed algorithm
    127     watershed(src, markers);
    128 
    129     Mat mark = Mat::zeros(markers.size(), CV_8UC1);
    130     markers.convertTo(mark, CV_8UC1);
    131     bitwise_not(mark, mark);
    132 //    imshow("Markers_v2", mark); // uncomment this if you want to see how the mark
    133                                   // image looks like at that point
    134 
    135     // Generate random colors
    136     vector<Vec3b> colors;
    137     for (size_t i = 0; i < contours.size(); i++)
    138     {
    139         int b = theRNG().uniform(0, 255);
    140         int g = theRNG().uniform(0, 255);
    141         int r = theRNG().uniform(0, 255);
    142 
    143         colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));
    144     }
    145 
    146     // Create the result image
    147     Mat dst = Mat::zeros(markers.size(), CV_8UC3);
    148 
    149     // Fill labeled objects with random colors
    150     for (int i = 0; i < markers.rows; i++)
    151     {
    152         for (int j = 0; j < markers.cols; j++)
    153         {
    154             int index = markers.at<int>(i,j);
    155             if (index > 0 && index <= static_cast<int>(contours.size()))
    156                 dst.at<Vec3b>(i,j) = colors[index-1];
    157             else
    158                 dst.at<Vec3b>(i,j) = Vec3b(0,0,0);
    159         }
    160     }
    161 
    162     // Visualize the final image
    163     imshow("Final Result", dst);
    164 //! [watershed]
    165 
    166     waitKey(0);
    167     return 0;
    168 }