1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "src/zone.h" 6 7 #include <cstring> 8 9 #include "src/v8.h" 10 11 #ifdef V8_USE_ADDRESS_SANITIZER 12 #include <sanitizer/asan_interface.h> 13 #endif // V8_USE_ADDRESS_SANITIZER 14 15 namespace v8 { 16 namespace internal { 17 18 namespace { 19 20 #if V8_USE_ADDRESS_SANITIZER 21 22 const size_t kASanRedzoneBytes = 24; // Must be a multiple of 8. 23 24 #else 25 26 #define ASAN_POISON_MEMORY_REGION(start, size) \ 27 do { \ 28 USE(start); \ 29 USE(size); \ 30 } while (false) 31 32 #define ASAN_UNPOISON_MEMORY_REGION(start, size) \ 33 do { \ 34 USE(start); \ 35 USE(size); \ 36 } while (false) 37 38 const size_t kASanRedzoneBytes = 0; 39 40 #endif // V8_USE_ADDRESS_SANITIZER 41 42 } // namespace 43 44 45 // Segments represent chunks of memory: They have starting address 46 // (encoded in the this pointer) and a size in bytes. Segments are 47 // chained together forming a LIFO structure with the newest segment 48 // available as segment_head_. Segments are allocated using malloc() 49 // and de-allocated using free(). 50 51 class Segment { 52 public: 53 void Initialize(Segment* next, size_t size) { 54 next_ = next; 55 size_ = size; 56 } 57 58 Segment* next() const { return next_; } 59 void clear_next() { next_ = nullptr; } 60 61 size_t size() const { return size_; } 62 size_t capacity() const { return size_ - sizeof(Segment); } 63 64 Address start() const { return address(sizeof(Segment)); } 65 Address end() const { return address(size_); } 66 67 private: 68 // Computes the address of the nth byte in this segment. 69 Address address(size_t n) const { return Address(this) + n; } 70 71 Segment* next_; 72 size_t size_; 73 }; 74 75 76 Zone::Zone() 77 : allocation_size_(0), 78 segment_bytes_allocated_(0), 79 position_(0), 80 limit_(0), 81 segment_head_(nullptr) {} 82 83 84 Zone::~Zone() { 85 DeleteAll(); 86 DeleteKeptSegment(); 87 88 DCHECK(segment_bytes_allocated_ == 0); 89 } 90 91 92 void* Zone::New(size_t size) { 93 // Round up the requested size to fit the alignment. 94 size = RoundUp(size, kAlignment); 95 96 // If the allocation size is divisible by 8 then we return an 8-byte aligned 97 // address. 98 if (kPointerSize == 4 && kAlignment == 4) { 99 position_ += ((~size) & 4) & (reinterpret_cast<intptr_t>(position_) & 4); 100 } else { 101 DCHECK(kAlignment >= kPointerSize); 102 } 103 104 // Check if the requested size is available without expanding. 105 Address result = position_; 106 107 const size_t size_with_redzone = size + kASanRedzoneBytes; 108 if (limit_ < position_ + size_with_redzone) { 109 result = NewExpand(size_with_redzone); 110 } else { 111 position_ += size_with_redzone; 112 } 113 114 Address redzone_position = result + size; 115 DCHECK(redzone_position + kASanRedzoneBytes == position_); 116 ASAN_POISON_MEMORY_REGION(redzone_position, kASanRedzoneBytes); 117 118 // Check that the result has the proper alignment and return it. 119 DCHECK(IsAddressAligned(result, kAlignment, 0)); 120 allocation_size_ += size; 121 return reinterpret_cast<void*>(result); 122 } 123 124 125 void Zone::DeleteAll() { 126 #ifdef DEBUG 127 // Constant byte value used for zapping dead memory in debug mode. 128 static const unsigned char kZapDeadByte = 0xcd; 129 #endif 130 131 // Find a segment with a suitable size to keep around. 132 Segment* keep = nullptr; 133 // Traverse the chained list of segments, zapping (in debug mode) 134 // and freeing every segment except the one we wish to keep. 135 for (Segment* current = segment_head_; current;) { 136 Segment* next = current->next(); 137 if (!keep && current->size() <= kMaximumKeptSegmentSize) { 138 // Unlink the segment we wish to keep from the list. 139 keep = current; 140 keep->clear_next(); 141 } else { 142 size_t size = current->size(); 143 #ifdef DEBUG 144 // Un-poison first so the zapping doesn't trigger ASan complaints. 145 ASAN_UNPOISON_MEMORY_REGION(current, size); 146 // Zap the entire current segment (including the header). 147 memset(current, kZapDeadByte, size); 148 #endif 149 DeleteSegment(current, size); 150 } 151 current = next; 152 } 153 154 // If we have found a segment we want to keep, we must recompute the 155 // variables 'position' and 'limit' to prepare for future allocate 156 // attempts. Otherwise, we must clear the position and limit to 157 // force a new segment to be allocated on demand. 158 if (keep) { 159 Address start = keep->start(); 160 position_ = RoundUp(start, kAlignment); 161 limit_ = keep->end(); 162 // Un-poison so we can re-use the segment later. 163 ASAN_UNPOISON_MEMORY_REGION(start, keep->capacity()); 164 #ifdef DEBUG 165 // Zap the contents of the kept segment (but not the header). 166 memset(start, kZapDeadByte, keep->capacity()); 167 #endif 168 } else { 169 position_ = limit_ = 0; 170 } 171 172 allocation_size_ = 0; 173 // Update the head segment to be the kept segment (if any). 174 segment_head_ = keep; 175 } 176 177 178 void Zone::DeleteKeptSegment() { 179 #ifdef DEBUG 180 // Constant byte value used for zapping dead memory in debug mode. 181 static const unsigned char kZapDeadByte = 0xcd; 182 #endif 183 184 DCHECK(segment_head_ == nullptr || segment_head_->next() == nullptr); 185 if (segment_head_ != nullptr) { 186 size_t size = segment_head_->size(); 187 #ifdef DEBUG 188 // Un-poison first so the zapping doesn't trigger ASan complaints. 189 ASAN_UNPOISON_MEMORY_REGION(segment_head_, size); 190 // Zap the entire kept segment (including the header). 191 memset(segment_head_, kZapDeadByte, size); 192 #endif 193 DeleteSegment(segment_head_, size); 194 segment_head_ = nullptr; 195 } 196 197 DCHECK(segment_bytes_allocated_ == 0); 198 } 199 200 201 // Creates a new segment, sets it size, and pushes it to the front 202 // of the segment chain. Returns the new segment. 203 Segment* Zone::NewSegment(size_t size) { 204 Segment* result = reinterpret_cast<Segment*>(Malloced::New(size)); 205 segment_bytes_allocated_ += size; 206 if (result != nullptr) { 207 result->Initialize(segment_head_, size); 208 segment_head_ = result; 209 } 210 return result; 211 } 212 213 214 // Deletes the given segment. Does not touch the segment chain. 215 void Zone::DeleteSegment(Segment* segment, size_t size) { 216 segment_bytes_allocated_ -= size; 217 Malloced::Delete(segment); 218 } 219 220 221 Address Zone::NewExpand(size_t size) { 222 // Make sure the requested size is already properly aligned and that 223 // there isn't enough room in the Zone to satisfy the request. 224 DCHECK_EQ(size, RoundDown(size, kAlignment)); 225 DCHECK_LT(limit_, position_ + size); 226 227 // Compute the new segment size. We use a 'high water mark' 228 // strategy, where we increase the segment size every time we expand 229 // except that we employ a maximum segment size when we delete. This 230 // is to avoid excessive malloc() and free() overhead. 231 Segment* head = segment_head_; 232 const size_t old_size = (head == nullptr) ? 0 : head->size(); 233 static const size_t kSegmentOverhead = sizeof(Segment) + kAlignment; 234 const size_t new_size_no_overhead = size + (old_size << 1); 235 size_t new_size = kSegmentOverhead + new_size_no_overhead; 236 const size_t min_new_size = kSegmentOverhead + size; 237 // Guard against integer overflow. 238 if (new_size_no_overhead < size || new_size < kSegmentOverhead) { 239 V8::FatalProcessOutOfMemory("Zone"); 240 return nullptr; 241 } 242 if (new_size < kMinimumSegmentSize) { 243 new_size = kMinimumSegmentSize; 244 } else if (new_size > kMaximumSegmentSize) { 245 // Limit the size of new segments to avoid growing the segment size 246 // exponentially, thus putting pressure on contiguous virtual address space. 247 // All the while making sure to allocate a segment large enough to hold the 248 // requested size. 249 new_size = Max(min_new_size, kMaximumSegmentSize); 250 } 251 if (new_size > INT_MAX) { 252 V8::FatalProcessOutOfMemory("Zone"); 253 return nullptr; 254 } 255 Segment* segment = NewSegment(new_size); 256 if (segment == nullptr) { 257 V8::FatalProcessOutOfMemory("Zone"); 258 return nullptr; 259 } 260 261 // Recompute 'top' and 'limit' based on the new segment. 262 Address result = RoundUp(segment->start(), kAlignment); 263 position_ = result + size; 264 // Check for address overflow. 265 // (Should not happen since the segment is guaranteed to accomodate 266 // size bytes + header and alignment padding) 267 DCHECK(reinterpret_cast<uintptr_t>(position_) >= 268 reinterpret_cast<uintptr_t>(result)); 269 limit_ = segment->end(); 270 DCHECK(position_ <= limit_); 271 return result; 272 } 273 274 } // namespace internal 275 } // namespace v8 276