1 /* 2 * Copyright (C) 2015 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #define LOG_TAG "InputHub" 18 //#define LOG_NDEBUG 0 19 20 #include "InputHub.h" 21 22 #include <dirent.h> 23 #include <errno.h> 24 #include <fcntl.h> 25 #include <string.h> 26 #include <sys/capability.h> 27 #include <sys/epoll.h> 28 #include <sys/eventfd.h> 29 #include <sys/inotify.h> 30 #include <sys/ioctl.h> 31 #include <sys/stat.h> 32 #include <sys/types.h> 33 #include <sys/utsname.h> 34 #include <unistd.h> 35 36 #include <vector> 37 38 #include <android/input.h> 39 #include <hardware_legacy/power.h> 40 #include <linux/input.h> 41 42 #include <utils/Log.h> 43 44 #include "BitUtils.h" 45 46 namespace android { 47 48 static const char WAKE_LOCK_ID[] = "KeyEvents"; 49 static const int NO_TIMEOUT = -1; 50 static const int EPOLL_MAX_EVENTS = 16; 51 static const int INPUT_MAX_EVENTS = 128; 52 53 static constexpr bool testBit(int bit, const uint8_t arr[]) { 54 return arr[bit / 8] & (1 << (bit % 8)); 55 } 56 57 static constexpr size_t sizeofBitArray(size_t bits) { 58 return (bits + 7) / 8; 59 } 60 61 static void getLinuxRelease(int* major, int* minor) { 62 struct utsname info; 63 if (uname(&info) || sscanf(info.release, "%d.%d", major, minor) <= 0) { 64 *major = 0, *minor = 0; 65 ALOGE("Could not get linux version: %s", strerror(errno)); 66 } 67 } 68 69 static bool processHasCapability(int capability) { 70 LOG_ALWAYS_FATAL_IF(!cap_valid(capability), "invalid linux capability: %d", capability); 71 struct __user_cap_header_struct cap_header_data; 72 struct __user_cap_data_struct cap_data_data[2]; 73 cap_user_header_t caphdr = &cap_header_data; 74 cap_user_data_t capdata = cap_data_data; 75 caphdr->pid = 0; 76 caphdr->version = _LINUX_CAPABILITY_VERSION_3; 77 LOG_ALWAYS_FATAL_IF(capget(caphdr, capdata) != 0, 78 "Could not get process capabilities. errno=%d", errno); 79 int idx = CAP_TO_INDEX(capability); 80 return capdata[idx].effective & CAP_TO_MASK(capability); 81 } 82 83 class EvdevDeviceNode : public InputDeviceNode { 84 public: 85 static EvdevDeviceNode* openDeviceNode(const std::string& path); 86 87 virtual ~EvdevDeviceNode() { 88 ALOGV("closing %s (fd=%d)", mPath.c_str(), mFd); 89 if (mFd >= 0) { 90 ::close(mFd); 91 } 92 } 93 94 virtual int getFd() const { return mFd; } 95 virtual const std::string& getPath() const override { return mPath; } 96 virtual const std::string& getName() const override { return mName; } 97 virtual const std::string& getLocation() const override { return mLocation; } 98 virtual const std::string& getUniqueId() const override { return mUniqueId; } 99 100 virtual uint16_t getBusType() const override { return mBusType; } 101 virtual uint16_t getVendorId() const override { return mVendorId; } 102 virtual uint16_t getProductId() const override { return mProductId; } 103 virtual uint16_t getVersion() const override { return mVersion; } 104 105 virtual bool hasKey(int32_t key) const override; 106 virtual bool hasKeyInRange(int32_t start, int32_t end) const override; 107 virtual bool hasRelativeAxis(int32_t axis) const override; 108 virtual bool hasAbsoluteAxis(int32_t axis) const override; 109 virtual bool hasSwitch(int32_t sw) const override; 110 virtual bool hasForceFeedback(int32_t ff) const override; 111 virtual bool hasInputProperty(int property) const override; 112 113 virtual int32_t getKeyState(int32_t key) const override; 114 virtual int32_t getSwitchState(int32_t sw) const override; 115 virtual const AbsoluteAxisInfo* getAbsoluteAxisInfo(int32_t axis) const override; 116 virtual status_t getAbsoluteAxisValue(int32_t axis, int32_t* outValue) const override; 117 118 virtual void vibrate(nsecs_t duration) override; 119 virtual void cancelVibrate() override; 120 121 virtual void disableDriverKeyRepeat() override; 122 123 private: 124 EvdevDeviceNode(const std::string& path, int fd) : 125 mFd(fd), mPath(path) {} 126 127 status_t queryProperties(); 128 void queryAxisInfo(); 129 130 int mFd; 131 std::string mPath; 132 133 std::string mName; 134 std::string mLocation; 135 std::string mUniqueId; 136 137 uint16_t mBusType; 138 uint16_t mVendorId; 139 uint16_t mProductId; 140 uint16_t mVersion; 141 142 uint8_t mKeyBitmask[KEY_CNT / 8]; 143 uint8_t mAbsBitmask[ABS_CNT / 8]; 144 uint8_t mRelBitmask[REL_CNT / 8]; 145 uint8_t mSwBitmask[SW_CNT / 8]; 146 uint8_t mLedBitmask[LED_CNT / 8]; 147 uint8_t mFfBitmask[FF_CNT / 8]; 148 uint8_t mPropBitmask[INPUT_PROP_CNT / 8]; 149 150 std::unordered_map<uint32_t, std::unique_ptr<AbsoluteAxisInfo>> mAbsInfo; 151 152 bool mFfEffectPlaying = false; 153 int16_t mFfEffectId = -1; 154 }; 155 156 EvdevDeviceNode* EvdevDeviceNode::openDeviceNode(const std::string& path) { 157 auto fd = TEMP_FAILURE_RETRY(::open(path.c_str(), O_RDONLY | O_NONBLOCK | O_CLOEXEC)); 158 if (fd < 0) { 159 ALOGE("could not open evdev device %s. err=%d", path.c_str(), errno); 160 return nullptr; 161 } 162 163 // Tell the kernel that we want to use the monotonic clock for reporting 164 // timestamps associated with input events. This is important because the 165 // input system uses the timestamps extensively and assumes they were 166 // recorded using the monotonic clock. 167 // 168 // The EVIOCSCLOCKID ioctl was introduced in Linux 3.4. 169 int clockId = CLOCK_MONOTONIC; 170 if (TEMP_FAILURE_RETRY(ioctl(fd, EVIOCSCLOCKID, &clockId)) < 0) { 171 ALOGW("Could not set input clock id to CLOCK_MONOTONIC. errno=%d", errno); 172 } 173 174 auto node = new EvdevDeviceNode(path, fd); 175 status_t ret = node->queryProperties(); 176 if (ret != OK) { 177 ALOGE("could not open evdev device %s: failed to read properties. errno=%d", 178 path.c_str(), ret); 179 delete node; 180 return nullptr; 181 } 182 return node; 183 } 184 185 status_t EvdevDeviceNode::queryProperties() { 186 char buffer[80]; 187 188 if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGNAME(sizeof(buffer) - 1), buffer)) < 1) { 189 ALOGV("could not get device name for %s.", mPath.c_str()); 190 } else { 191 buffer[sizeof(buffer) - 1] = '\0'; 192 mName = buffer; 193 } 194 195 int driverVersion; 196 if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGVERSION, &driverVersion))) { 197 ALOGE("could not get driver version for %s. err=%d", mPath.c_str(), errno); 198 return -errno; 199 } 200 201 struct input_id inputId; 202 if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGID, &inputId))) { 203 ALOGE("could not get device input id for %s. err=%d", mPath.c_str(), errno); 204 return -errno; 205 } 206 mBusType = inputId.bustype; 207 mVendorId = inputId.vendor; 208 mProductId = inputId.product; 209 mVersion = inputId.version; 210 211 if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGPHYS(sizeof(buffer) - 1), buffer)) < 1) { 212 ALOGV("could not get location for %s.", mPath.c_str()); 213 } else { 214 buffer[sizeof(buffer) - 1] = '\0'; 215 mLocation = buffer; 216 } 217 218 if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGUNIQ(sizeof(buffer) - 1), buffer)) < 1) { 219 ALOGV("could not get unique id for %s.", mPath.c_str()); 220 } else { 221 buffer[sizeof(buffer) - 1] = '\0'; 222 mUniqueId = buffer; 223 } 224 225 ALOGV("add device %s", mPath.c_str()); 226 ALOGV(" bus: %04x\n" 227 " vendor: %04x\n" 228 " product: %04x\n" 229 " version: %04x\n", 230 mBusType, mVendorId, mProductId, mVersion); 231 ALOGV(" name: \"%s\"\n" 232 " location: \"%s\"\n" 233 " unique_id: \"%s\"\n" 234 " descriptor: (TODO)\n" 235 " driver: v%d.%d.%d", 236 mName.c_str(), mLocation.c_str(), mUniqueId.c_str(), 237 driverVersion >> 16, (driverVersion >> 8) & 0xff, (driverVersion >> 16) & 0xff); 238 239 TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGBIT(EV_KEY, sizeof(mKeyBitmask)), mKeyBitmask)); 240 TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGBIT(EV_ABS, sizeof(mAbsBitmask)), mAbsBitmask)); 241 TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGBIT(EV_REL, sizeof(mRelBitmask)), mRelBitmask)); 242 TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGBIT(EV_SW, sizeof(mSwBitmask)), mSwBitmask)); 243 TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGBIT(EV_LED, sizeof(mLedBitmask)), mLedBitmask)); 244 TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGBIT(EV_FF, sizeof(mFfBitmask)), mFfBitmask)); 245 TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGPROP(sizeof(mPropBitmask)), mPropBitmask)); 246 247 queryAxisInfo(); 248 249 return OK; 250 } 251 252 void EvdevDeviceNode::queryAxisInfo() { 253 for (int32_t axis = 0; axis < ABS_MAX; ++axis) { 254 if (testBit(axis, mAbsBitmask)) { 255 struct input_absinfo info; 256 if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGABS(axis), &info))) { 257 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", 258 axis, mPath.c_str(), mFd, errno); 259 continue; 260 } 261 262 mAbsInfo[axis] = std::unique_ptr<AbsoluteAxisInfo>(new AbsoluteAxisInfo{ 263 .minValue = info.minimum, 264 .maxValue = info.maximum, 265 .flat = info.flat, 266 .fuzz = info.fuzz, 267 .resolution = info.resolution 268 }); 269 } 270 } 271 } 272 273 bool EvdevDeviceNode::hasKey(int32_t key) const { 274 if (key >= 0 && key <= KEY_MAX) { 275 return testBit(key, mKeyBitmask); 276 } 277 return false; 278 } 279 280 bool EvdevDeviceNode::hasKeyInRange(int32_t startKey, int32_t endKey) const { 281 return testBitInRange(mKeyBitmask, startKey, endKey); 282 } 283 284 bool EvdevDeviceNode::hasRelativeAxis(int axis) const { 285 if (axis >= 0 && axis <= REL_MAX) { 286 return testBit(axis, mRelBitmask); 287 } 288 return false; 289 } 290 291 bool EvdevDeviceNode::hasAbsoluteAxis(int axis) const { 292 if (axis >= 0 && axis <= ABS_MAX) { 293 return getAbsoluteAxisInfo(axis) != nullptr; 294 } 295 return false; 296 } 297 298 const AbsoluteAxisInfo* EvdevDeviceNode::getAbsoluteAxisInfo(int32_t axis) const { 299 if (axis < 0 || axis > ABS_MAX) { 300 return nullptr; 301 } 302 303 const auto absInfo = mAbsInfo.find(axis); 304 if (absInfo != mAbsInfo.end()) { 305 return absInfo->second.get(); 306 } 307 return nullptr; 308 } 309 310 bool EvdevDeviceNode::hasSwitch(int32_t sw) const { 311 if (sw >= 0 && sw <= SW_MAX) { 312 return testBit(sw, mSwBitmask); 313 } 314 return false; 315 } 316 317 bool EvdevDeviceNode::hasForceFeedback(int32_t ff) const { 318 if (ff >= 0 && ff <= FF_MAX) { 319 return testBit(ff, mFfBitmask); 320 } 321 return false; 322 } 323 324 bool EvdevDeviceNode::hasInputProperty(int property) const { 325 if (property >= 0 && property <= INPUT_PROP_MAX) { 326 return testBit(property, mPropBitmask); 327 } 328 return false; 329 } 330 331 int32_t EvdevDeviceNode::getKeyState(int32_t key) const { 332 if (key >= 0 && key <= KEY_MAX) { 333 if (testBit(key, mKeyBitmask)) { 334 uint8_t keyState[sizeofBitArray(KEY_CNT)]; 335 memset(keyState, 0, sizeof(keyState)); 336 if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGKEY(sizeof(keyState)), keyState)) >= 0) { 337 return testBit(key, keyState) ? AKEY_STATE_DOWN : AKEY_STATE_UP; 338 } 339 } 340 } 341 return AKEY_STATE_UNKNOWN; 342 } 343 344 int32_t EvdevDeviceNode::getSwitchState(int32_t sw) const { 345 if (sw >= 0 && sw <= SW_MAX) { 346 if (testBit(sw, mSwBitmask)) { 347 uint8_t swState[sizeofBitArray(SW_CNT)]; 348 memset(swState, 0, sizeof(swState)); 349 if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGSW(sizeof(swState)), swState)) >= 0) { 350 return testBit(sw, swState) ? AKEY_STATE_DOWN : AKEY_STATE_UP; 351 } 352 } 353 } 354 return AKEY_STATE_UNKNOWN; 355 } 356 357 status_t EvdevDeviceNode::getAbsoluteAxisValue(int32_t axis, int32_t* outValue) const { 358 *outValue = 0; 359 360 if (axis >= 0 && axis <= ABS_MAX) { 361 if (testBit(axis, mAbsBitmask)) { 362 struct input_absinfo info; 363 if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGABS(axis), &info))) { 364 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", 365 axis, mPath.c_str(), mFd, errno); 366 return -errno; 367 } 368 369 *outValue = info.value; 370 return OK; 371 } 372 } 373 return -1; 374 } 375 376 void EvdevDeviceNode::vibrate(nsecs_t duration) { 377 ff_effect effect{}; 378 effect.type = FF_RUMBLE; 379 effect.id = mFfEffectId; 380 effect.u.rumble.strong_magnitude = 0xc000; 381 effect.u.rumble.weak_magnitude = 0xc000; 382 effect.replay.length = (duration + 999'999LL) / 1'000'000LL; 383 effect.replay.delay = 0; 384 if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCSFF, &effect))) { 385 ALOGW("Could not upload force feedback effect to device %s due to error %d.", 386 mPath.c_str(), errno); 387 return; 388 } 389 mFfEffectId = effect.id; 390 391 struct input_event ev{}; 392 ev.type = EV_FF; 393 ev.code = mFfEffectId; 394 ev.value = 1; 395 size_t written = TEMP_FAILURE_RETRY(write(mFd, &ev, sizeof(ev))); 396 if (written != sizeof(ev)) { 397 ALOGW("Could not start force feedback effect on device %s due to error %d.", 398 mPath.c_str(), errno); 399 return; 400 } 401 mFfEffectPlaying = true; 402 } 403 404 void EvdevDeviceNode::cancelVibrate() { 405 if (mFfEffectPlaying) { 406 mFfEffectPlaying = false; 407 408 struct input_event ev{}; 409 ev.type = EV_FF; 410 ev.code = mFfEffectId; 411 ev.value = 0; 412 size_t written = TEMP_FAILURE_RETRY(write(mFd, &ev, sizeof(ev))); 413 if (written != sizeof(ev)) { 414 ALOGW("Could not stop force feedback effect on device %s due to error %d.", 415 mPath.c_str(), errno); 416 return; 417 } 418 } 419 } 420 421 void EvdevDeviceNode::disableDriverKeyRepeat() { 422 unsigned int repeatRate[] = {0, 0}; 423 if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCSREP, repeatRate))) { 424 ALOGW("Unable to disable kernel key repeat for %s due to error %d.", 425 mPath.c_str(), errno); 426 } 427 } 428 429 InputHub::InputHub(const std::shared_ptr<InputCallbackInterface>& cb) : 430 mInputCallback(cb) { 431 // Determine the type of suspend blocking we can do on this device. There 432 // are 3 options, in decreasing order of preference: 433 // 1) EPOLLWAKEUP: introduced in Linux kernel 3.5, this flag can be set on 434 // an epoll event to indicate that a wake lock should be held from the 435 // time an fd has data until the next epoll_wait (or the epoll fd is 436 // closed). 437 // 2) EVIOCSSUSPENDBLOCK: introduced into the Android kernel's evdev 438 // driver, this ioctl blocks suspend while the event queue for the fd is 439 // not empty. This was never accepted into the mainline kernel, and it was 440 // replaced by EPOLLWAKEUP. 441 // 3) explicit wake locks: use acquire_wake_lock to manage suspend 442 // blocking explicitly in the InputHub code. 443 // 444 // (1) can be checked by simply observing the Linux kernel version. (2) 445 // requires an fd from an evdev node, which cannot be done in the InputHub 446 // constructor. So we assume (3) unless (1) is true, and we can verify 447 // whether (2) is true once we have an evdev fd (and we're not in (1)). 448 int major, minor; 449 getLinuxRelease(&major, &minor); 450 if (major > 3 || (major == 3 && minor >= 5)) { 451 ALOGI("Using EPOLLWAKEUP to block suspend while processing input events."); 452 mWakeupMechanism = WakeMechanism::EPOLL_WAKEUP; 453 mNeedToCheckSuspendBlockIoctl = false; 454 } 455 if (manageWakeLocks()) { 456 acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID); 457 } 458 459 // epoll_create argument is ignored, but it must be > 0. 460 mEpollFd = epoll_create(1); 461 LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance. errno=%d", errno); 462 463 mINotifyFd = inotify_init(); 464 LOG_ALWAYS_FATAL_IF(mINotifyFd < 0, "Could not create inotify instance. errno=%d", errno); 465 466 struct epoll_event eventItem; 467 memset(&eventItem, 0, sizeof(eventItem)); 468 eventItem.events = EPOLLIN; 469 if (mWakeupMechanism == WakeMechanism::EPOLL_WAKEUP) { 470 eventItem.events |= EPOLLWAKEUP; 471 } 472 eventItem.data.u32 = mINotifyFd; 473 int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem); 474 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance. errno=%d", errno); 475 476 int wakeFds[2]; 477 result = pipe(wakeFds); 478 LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno); 479 480 mWakeEventFd = eventfd(0, EFD_NONBLOCK); 481 LOG_ALWAYS_FATAL_IF(mWakeEventFd == -1, "Could not create wake event fd. errno=%d", errno); 482 483 eventItem.data.u32 = mWakeEventFd; 484 result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeEventFd, &eventItem); 485 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake event fd to epoll instance. errno=%d", errno); 486 } 487 488 InputHub::~InputHub() { 489 ::close(mEpollFd); 490 ::close(mINotifyFd); 491 ::close(mWakeEventFd); 492 493 if (manageWakeLocks()) { 494 release_wake_lock(WAKE_LOCK_ID); 495 } 496 } 497 498 status_t InputHub::registerDevicePath(const std::string& path) { 499 ALOGV("registering device path %s", path.c_str()); 500 int wd = inotify_add_watch(mINotifyFd, path.c_str(), IN_DELETE | IN_CREATE); 501 if (wd < 0) { 502 ALOGE("Could not add %s to INotify watch. errno=%d", path.c_str(), errno); 503 return -errno; 504 } 505 mWatchedPaths[wd] = path; 506 scanDir(path); 507 return OK; 508 } 509 510 status_t InputHub::unregisterDevicePath(const std::string& path) { 511 int wd = -1; 512 for (auto pair : mWatchedPaths) { 513 if (pair.second == path) { 514 wd = pair.first; 515 break; 516 } 517 } 518 519 if (wd == -1) { 520 return BAD_VALUE; 521 } 522 mWatchedPaths.erase(wd); 523 if (inotify_rm_watch(mINotifyFd, wd) != 0) { 524 return -errno; 525 } 526 return OK; 527 } 528 529 status_t InputHub::poll() { 530 bool deviceChange = false; 531 532 if (manageWakeLocks()) { 533 // Mind the wake lock dance! 534 // If we're relying on wake locks, we hold a wake lock at all times 535 // except during epoll_wait(). This works due to some subtle 536 // choreography. When a device driver has pending (unread) events, it 537 // acquires a kernel wake lock. However, once the last pending event 538 // has been read, the device driver will release the kernel wake lock. 539 // To prevent the system from going to sleep when this happens, the 540 // InputHub holds onto its own user wake lock while the client is 541 // processing events. Thus the system can only sleep if there are no 542 // events pending or currently being processed. 543 release_wake_lock(WAKE_LOCK_ID); 544 } 545 546 struct epoll_event pendingEventItems[EPOLL_MAX_EVENTS]; 547 int pollResult = epoll_wait(mEpollFd, pendingEventItems, EPOLL_MAX_EVENTS, NO_TIMEOUT); 548 549 if (manageWakeLocks()) { 550 acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID); 551 } 552 553 if (pollResult == 0) { 554 ALOGW("epoll_wait should not return 0 with no timeout"); 555 return UNKNOWN_ERROR; 556 } 557 if (pollResult < 0) { 558 // An error occurred. Return even if it's EINTR, and let the caller 559 // restart the poll. 560 ALOGE("epoll_wait returned with errno=%d", errno); 561 return -errno; 562 } 563 564 // pollResult > 0: there are events to process 565 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); 566 std::vector<int> removedDeviceFds; 567 int inputFd = -1; 568 std::shared_ptr<InputDeviceNode> deviceNode; 569 for (int i = 0; i < pollResult; ++i) { 570 const struct epoll_event& eventItem = pendingEventItems[i]; 571 572 int dataFd = static_cast<int>(eventItem.data.u32); 573 if (dataFd == mINotifyFd) { 574 if (eventItem.events & EPOLLIN) { 575 deviceChange = true; 576 } else { 577 ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events); 578 } 579 continue; 580 } 581 582 if (dataFd == mWakeEventFd) { 583 if (eventItem.events & EPOLLIN) { 584 ALOGV("awoken after wake()"); 585 uint64_t u; 586 ssize_t nRead = TEMP_FAILURE_RETRY(read(mWakeEventFd, &u, sizeof(uint64_t))); 587 if (nRead != sizeof(uint64_t)) { 588 ALOGW("Could not read event fd; waking anyway."); 589 } 590 } else { 591 ALOGW("Received unexpected epoll event 0x%08x for wake event.", 592 eventItem.events); 593 } 594 continue; 595 } 596 597 // Update the fd and device node when the fd changes. When several 598 // events are read back-to-back with the same fd, this saves many reads 599 // from the hash table. 600 if (inputFd != dataFd) { 601 inputFd = dataFd; 602 deviceNode = mDeviceNodes[inputFd]; 603 } 604 if (deviceNode == nullptr) { 605 ALOGE("could not find device node for fd %d", inputFd); 606 continue; 607 } 608 if (eventItem.events & EPOLLIN) { 609 struct input_event ievs[INPUT_MAX_EVENTS]; 610 for (;;) { 611 ssize_t readSize = TEMP_FAILURE_RETRY(read(inputFd, ievs, sizeof(ievs))); 612 if (readSize == 0 || (readSize < 0 && errno == ENODEV)) { 613 ALOGW("could not get event, removed? (fd: %d, size: %d errno: %d)", 614 inputFd, readSize, errno); 615 616 removedDeviceFds.push_back(inputFd); 617 break; 618 } else if (readSize < 0) { 619 if (errno != EAGAIN && errno != EINTR) { 620 ALOGW("could not get event. errno=%d", errno); 621 } 622 break; 623 } else if (readSize % sizeof(input_event) != 0) { 624 ALOGE("could not get event. wrong size=%d", readSize); 625 break; 626 } else { 627 size_t count = static_cast<size_t>(readSize) / sizeof(struct input_event); 628 for (size_t i = 0; i < count; ++i) { 629 auto& iev = ievs[i]; 630 auto when = s2ns(iev.time.tv_sec) + us2ns(iev.time.tv_usec); 631 InputEvent inputEvent = { when, iev.type, iev.code, iev.value }; 632 mInputCallback->onInputEvent(deviceNode, inputEvent, now); 633 } 634 } 635 } 636 } else if (eventItem.events & EPOLLHUP) { 637 ALOGI("Removing device fd %d due to epoll hangup event.", inputFd); 638 removedDeviceFds.push_back(inputFd); 639 } else { 640 ALOGW("Received unexpected epoll event 0x%08x for device fd %d", 641 eventItem.events, inputFd); 642 } 643 } 644 645 if (removedDeviceFds.size()) { 646 for (auto deviceFd : removedDeviceFds) { 647 auto deviceNode = mDeviceNodes[deviceFd]; 648 if (deviceNode != nullptr) { 649 status_t ret = closeNodeByFd(deviceFd); 650 if (ret != OK) { 651 ALOGW("Could not close device with fd %d. errno=%d", deviceFd, ret); 652 } else { 653 mInputCallback->onDeviceRemoved(deviceNode); 654 } 655 } 656 } 657 } 658 659 if (deviceChange) { 660 readNotify(); 661 } 662 663 return OK; 664 } 665 666 status_t InputHub::wake() { 667 ALOGV("wake() called"); 668 669 uint64_t u = 1; 670 ssize_t nWrite = TEMP_FAILURE_RETRY(write(mWakeEventFd, &u, sizeof(uint64_t))); 671 672 if (nWrite != sizeof(uint64_t) && errno != EAGAIN) { 673 ALOGW("Could not write wake signal, errno=%d", errno); 674 return -errno; 675 } 676 return OK; 677 } 678 679 void InputHub::dump(String8& dump) { 680 // TODO 681 } 682 683 status_t InputHub::readNotify() { 684 char event_buf[512]; 685 struct inotify_event* event; 686 687 ssize_t res = TEMP_FAILURE_RETRY(read(mINotifyFd, event_buf, sizeof(event_buf))); 688 if (res < static_cast<int>(sizeof(*event))) { 689 ALOGW("could not get inotify event, %s\n", strerror(errno)); 690 return -errno; 691 } 692 693 size_t event_pos = 0; 694 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); 695 while (res >= static_cast<int>(sizeof(*event))) { 696 event = reinterpret_cast<struct inotify_event*>(event_buf + event_pos); 697 if (event->len) { 698 std::string path = mWatchedPaths[event->wd]; 699 path.append("/").append(event->name); 700 ALOGV("inotify event for path %s", path.c_str()); 701 702 if (event->mask & IN_CREATE) { 703 auto deviceNode = openNode(path); 704 if (deviceNode == nullptr) { 705 ALOGE("could not open device node %s. err=%d", path.c_str(), res); 706 } else { 707 mInputCallback->onDeviceAdded(deviceNode); 708 } 709 } else { 710 auto deviceNode = findNodeByPath(path); 711 if (deviceNode != nullptr) { 712 status_t ret = closeNode(deviceNode.get()); 713 if (ret != OK) { 714 ALOGW("Could not close device %s. errno=%d", path.c_str(), ret); 715 } else { 716 mInputCallback->onDeviceRemoved(deviceNode); 717 } 718 } else { 719 ALOGW("could not find device node for %s", path.c_str()); 720 } 721 } 722 } 723 int event_size = sizeof(*event) + event->len; 724 res -= event_size; 725 event_pos += event_size; 726 } 727 728 return OK; 729 } 730 731 status_t InputHub::scanDir(const std::string& path) { 732 auto dir = ::opendir(path.c_str()); 733 if (dir == nullptr) { 734 ALOGE("could not open device path %s to scan for devices. err=%d", path.c_str(), errno); 735 return -errno; 736 } 737 738 while (auto dirent = readdir(dir)) { 739 if (strcmp(dirent->d_name, ".") == 0 || 740 strcmp(dirent->d_name, "..") == 0) { 741 continue; 742 } 743 std::string filename = path + "/" + dirent->d_name; 744 auto node = openNode(filename); 745 if (node == nullptr) { 746 ALOGE("could not open device node %s", filename.c_str()); 747 } else { 748 mInputCallback->onDeviceAdded(node); 749 } 750 } 751 ::closedir(dir); 752 return OK; 753 } 754 755 std::shared_ptr<InputDeviceNode> InputHub::openNode(const std::string& path) { 756 ALOGV("opening %s...", path.c_str()); 757 auto evdevNode = std::shared_ptr<EvdevDeviceNode>(EvdevDeviceNode::openDeviceNode(path)); 758 if (evdevNode == nullptr) { 759 return nullptr; 760 } 761 762 auto fd = evdevNode->getFd(); 763 ALOGV("opened %s with fd %d", path.c_str(), fd); 764 mDeviceNodes[fd] = evdevNode; 765 struct epoll_event eventItem{}; 766 eventItem.events = EPOLLIN; 767 if (mWakeupMechanism == WakeMechanism::EPOLL_WAKEUP) { 768 eventItem.events |= EPOLLWAKEUP; 769 } 770 eventItem.data.u32 = fd; 771 if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) { 772 ALOGE("Could not add device fd to epoll instance. errno=%d", errno); 773 return nullptr; 774 } 775 776 if (mNeedToCheckSuspendBlockIoctl) { 777 #ifndef EVIOCSSUSPENDBLOCK 778 // uapi headers don't include EVIOCSSUSPENDBLOCK, and future kernels 779 // will use an epoll flag instead, so as long as we want to support this 780 // feature, we need to be prepared to define the ioctl ourselves. 781 #define EVIOCSSUSPENDBLOCK _IOW('E', 0x91, int) 782 #endif 783 if (TEMP_FAILURE_RETRY(ioctl(fd, EVIOCSSUSPENDBLOCK, 1))) { 784 // no wake mechanism, continue using explicit wake locks 785 ALOGI("Using explicit wakelocks to block suspend while processing input events."); 786 } else { 787 mWakeupMechanism = WakeMechanism::LEGACY_EVDEV_SUSPENDBLOCK_IOCTL; 788 // release any held wakelocks since we won't need them anymore 789 release_wake_lock(WAKE_LOCK_ID); 790 ALOGI("Using EVIOCSSUSPENDBLOCK to block suspend while processing input events."); 791 } 792 mNeedToCheckSuspendBlockIoctl = false; 793 } 794 795 return evdevNode; 796 } 797 798 status_t InputHub::closeNode(const InputDeviceNode* node) { 799 for (auto pair : mDeviceNodes) { 800 if (pair.second.get() == node) { 801 return closeNodeByFd(pair.first); 802 } 803 } 804 return BAD_VALUE; 805 } 806 807 status_t InputHub::closeNodeByFd(int fd) { 808 status_t ret = OK; 809 if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, fd, NULL)) { 810 ALOGW("Could not remove device fd from epoll instance. errno=%d", errno); 811 ret = -errno; 812 } 813 mDeviceNodes.erase(fd); 814 ::close(fd); 815 return ret; 816 } 817 818 std::shared_ptr<InputDeviceNode> InputHub::findNodeByPath(const std::string& path) { 819 for (auto pair : mDeviceNodes) { 820 if (pair.second->getPath() == path) return pair.second; 821 } 822 return nullptr; 823 } 824 825 bool InputHub::manageWakeLocks() const { 826 return mWakeupMechanism != WakeMechanism::EPOLL_WAKEUP; 827 } 828 829 } // namespace android 830