Home | History | Annotate | Download | only in stubs
      1 // Protocol Buffers - Google's data interchange format
      2 // Copyright 2008 Google Inc.  All rights reserved.
      3 // http://code.google.com/p/protobuf/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are
      7 // met:
      8 //
      9 //     * Redistributions of source code must retain the above copyright
     10 // notice, this list of conditions and the following disclaimer.
     11 //     * Redistributions in binary form must reproduce the above
     12 // copyright notice, this list of conditions and the following disclaimer
     13 // in the documentation and/or other materials provided with the
     14 // distribution.
     15 //     * Neither the name of Google Inc. nor the names of its
     16 // contributors may be used to endorse or promote products derived from
     17 // this software without specific prior written permission.
     18 //
     19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30 
     31 // Author: kenton (at) google.com (Kenton Varda) and others
     32 //
     33 // Contains basic types and utilities used by the rest of the library.
     34 
     35 #ifndef GOOGLE_PROTOBUF_COMMON_H__
     36 #define GOOGLE_PROTOBUF_COMMON_H__
     37 
     38 #include <assert.h>
     39 #include <stdlib.h>
     40 #include <cstddef>
     41 #include <string>
     42 #include <string.h>
     43 #if defined(__osf__)
     44 // Tru64 lacks stdint.h, but has inttypes.h which defines a superset of
     45 // what stdint.h would define.
     46 #include <inttypes.h>
     47 #elif !defined(_MSC_VER)
     48 #include <stdint.h>
     49 #endif
     50 
     51 #ifndef PROTOBUF_USE_EXCEPTIONS
     52 #if defined(_MSC_VER) && defined(_CPPUNWIND)
     53   #define PROTOBUF_USE_EXCEPTIONS 1
     54 #elif defined(__EXCEPTIONS)
     55   #define PROTOBUF_USE_EXCEPTIONS 1
     56 #else
     57   #define PROTOBUF_USE_EXCEPTIONS 0
     58 #endif
     59 #endif
     60 
     61 #if PROTOBUF_USE_EXCEPTIONS
     62 #include <exception>
     63 #endif
     64 
     65 #if defined(_WIN32) && defined(GetMessage)
     66 // Allow GetMessage to be used as a valid method name in protobuf classes.
     67 // windows.h defines GetMessage() as a macro.  Let's re-define it as an inline
     68 // function.  The inline function should be equivalent for C++ users.
     69 inline BOOL GetMessage_Win32(
     70     LPMSG lpMsg, HWND hWnd,
     71     UINT wMsgFilterMin, UINT wMsgFilterMax) {
     72   return GetMessage(lpMsg, hWnd, wMsgFilterMin, wMsgFilterMax);
     73 }
     74 #undef GetMessage
     75 inline BOOL GetMessage(
     76     LPMSG lpMsg, HWND hWnd,
     77     UINT wMsgFilterMin, UINT wMsgFilterMax) {
     78   return GetMessage_Win32(lpMsg, hWnd, wMsgFilterMin, wMsgFilterMax);
     79 }
     80 #endif
     81 
     82 
     83 namespace std {}
     84 
     85 namespace google {
     86 namespace protobuf {
     87 
     88 #undef GOOGLE_DISALLOW_EVIL_CONSTRUCTORS
     89 #define GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(TypeName)    \
     90   TypeName(const TypeName&);                           \
     91   void operator=(const TypeName&)
     92 
     93 #if defined(_MSC_VER) && defined(PROTOBUF_USE_DLLS)
     94   #ifdef LIBPROTOBUF_EXPORTS
     95     #define LIBPROTOBUF_EXPORT __declspec(dllexport)
     96   #else
     97     #define LIBPROTOBUF_EXPORT __declspec(dllimport)
     98   #endif
     99   #ifdef LIBPROTOC_EXPORTS
    100     #define LIBPROTOC_EXPORT   __declspec(dllexport)
    101   #else
    102     #define LIBPROTOC_EXPORT   __declspec(dllimport)
    103   #endif
    104 #else
    105   #define LIBPROTOBUF_EXPORT
    106   #define LIBPROTOC_EXPORT
    107 #endif
    108 
    109 namespace internal {
    110 
    111 // Some of these constants are macros rather than const ints so that they can
    112 // be used in #if directives.
    113 
    114 // The current version, represented as a single integer to make comparison
    115 // easier:  major * 10^6 + minor * 10^3 + micro
    116 #define GOOGLE_PROTOBUF_VERSION 2005000
    117 
    118 // The minimum library version which works with the current version of the
    119 // headers.
    120 #define GOOGLE_PROTOBUF_MIN_LIBRARY_VERSION 2005000
    121 
    122 // The minimum header version which works with the current version of
    123 // the library.  This constant should only be used by protoc's C++ code
    124 // generator.
    125 static const int kMinHeaderVersionForLibrary = 2005000;
    126 
    127 // The minimum protoc version which works with the current version of the
    128 // headers.
    129 #define GOOGLE_PROTOBUF_MIN_PROTOC_VERSION 2005000
    130 
    131 // The minimum header version which works with the current version of
    132 // protoc.  This constant should only be used in VerifyVersion().
    133 static const int kMinHeaderVersionForProtoc = 2005000;
    134 
    135 // Verifies that the headers and libraries are compatible.  Use the macro
    136 // below to call this.
    137 void LIBPROTOBUF_EXPORT VerifyVersion(int headerVersion, int minLibraryVersion,
    138                                       const char* filename);
    139 
    140 // Converts a numeric version number to a string.
    141 std::string LIBPROTOBUF_EXPORT VersionString(int version);
    142 
    143 }  // namespace internal
    144 
    145 // Place this macro in your main() function (or somewhere before you attempt
    146 // to use the protobuf library) to verify that the version you link against
    147 // matches the headers you compiled against.  If a version mismatch is
    148 // detected, the process will abort.
    149 #define GOOGLE_PROTOBUF_VERIFY_VERSION                                    \
    150   ::google::protobuf::internal::VerifyVersion(                            \
    151     GOOGLE_PROTOBUF_VERSION, GOOGLE_PROTOBUF_MIN_LIBRARY_VERSION,         \
    152     __FILE__)
    153 
    154 // ===================================================================
    155 // from google3/base/port.h
    156 
    157 typedef unsigned int uint;
    158 
    159 #ifdef _MSC_VER
    160 typedef __int8  int8;
    161 typedef __int16 int16;
    162 typedef __int32 int32;
    163 typedef __int64 int64;
    164 
    165 typedef unsigned __int8  uint8;
    166 typedef unsigned __int16 uint16;
    167 typedef unsigned __int32 uint32;
    168 typedef unsigned __int64 uint64;
    169 #else
    170 typedef int8_t  int8;
    171 typedef int16_t int16;
    172 typedef int32_t int32;
    173 typedef int64_t int64;
    174 
    175 typedef uint8_t  uint8;
    176 typedef uint16_t uint16;
    177 typedef uint32_t uint32;
    178 typedef uint64_t uint64;
    179 #endif
    180 
    181 // long long macros to be used because gcc and vc++ use different suffixes,
    182 // and different size specifiers in format strings
    183 #undef GOOGLE_LONGLONG
    184 #undef GOOGLE_ULONGLONG
    185 #undef GOOGLE_LL_FORMAT
    186 
    187 #ifdef _MSC_VER
    188 #define GOOGLE_LONGLONG(x) x##I64
    189 #define GOOGLE_ULONGLONG(x) x##UI64
    190 #define GOOGLE_LL_FORMAT "I64"  // As in printf("%I64d", ...)
    191 #else
    192 #define GOOGLE_LONGLONG(x) x##LL
    193 #define GOOGLE_ULONGLONG(x) x##ULL
    194 #define GOOGLE_LL_FORMAT "ll"  // As in "%lld". Note that "q" is poor form also.
    195 #endif
    196 
    197 static const int32 kint32max = 0x7FFFFFFF;
    198 static const int32 kint32min = -kint32max - 1;
    199 static const int64 kint64max = GOOGLE_LONGLONG(0x7FFFFFFFFFFFFFFF);
    200 static const int64 kint64min = -kint64max - 1;
    201 static const uint32 kuint32max = 0xFFFFFFFFu;
    202 static const uint64 kuint64max = GOOGLE_ULONGLONG(0xFFFFFFFFFFFFFFFF);
    203 
    204 // -------------------------------------------------------------------
    205 // Annotations:  Some parts of the code have been annotated in ways that might
    206 //   be useful to some compilers or tools, but are not supported universally.
    207 //   You can #define these annotations yourself if the default implementation
    208 //   is not right for you.
    209 
    210 #ifndef GOOGLE_ATTRIBUTE_ALWAYS_INLINE
    211 #if defined(__GNUC__) && (__GNUC__ > 3 ||(__GNUC__ == 3 && __GNUC_MINOR__ >= 1))
    212 // For functions we want to force inline.
    213 // Introduced in gcc 3.1.
    214 #define GOOGLE_ATTRIBUTE_ALWAYS_INLINE __attribute__ ((always_inline))
    215 #else
    216 // Other compilers will have to figure it out for themselves.
    217 #define GOOGLE_ATTRIBUTE_ALWAYS_INLINE
    218 #endif
    219 #endif
    220 
    221 #ifndef GOOGLE_ATTRIBUTE_DEPRECATED
    222 #ifdef __GNUC__
    223 // If the method/variable/type is used anywhere, produce a warning.
    224 #define GOOGLE_ATTRIBUTE_DEPRECATED __attribute__((deprecated))
    225 #else
    226 #define GOOGLE_ATTRIBUTE_DEPRECATED
    227 #endif
    228 #endif
    229 
    230 #ifndef GOOGLE_PREDICT_TRUE
    231 #ifdef __GNUC__
    232 // Provided at least since GCC 3.0.
    233 #define GOOGLE_PREDICT_TRUE(x) (__builtin_expect(!!(x), 1))
    234 #else
    235 #define GOOGLE_PREDICT_TRUE
    236 #endif
    237 #endif
    238 
    239 // Delimits a block of code which may write to memory which is simultaneously
    240 // written by other threads, but which has been determined to be thread-safe
    241 // (e.g. because it is an idempotent write).
    242 #ifndef GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN
    243 #define GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN()
    244 #endif
    245 #ifndef GOOGLE_SAFE_CONCURRENT_WRITES_END
    246 #define GOOGLE_SAFE_CONCURRENT_WRITES_END()
    247 #endif
    248 
    249 // ===================================================================
    250 // from google3/base/basictypes.h
    251 
    252 // The GOOGLE_ARRAYSIZE(arr) macro returns the # of elements in an array arr.
    253 // The expression is a compile-time constant, and therefore can be
    254 // used in defining new arrays, for example.
    255 //
    256 // GOOGLE_ARRAYSIZE catches a few type errors.  If you see a compiler error
    257 //
    258 //   "warning: division by zero in ..."
    259 //
    260 // when using GOOGLE_ARRAYSIZE, you are (wrongfully) giving it a pointer.
    261 // You should only use GOOGLE_ARRAYSIZE on statically allocated arrays.
    262 //
    263 // The following comments are on the implementation details, and can
    264 // be ignored by the users.
    265 //
    266 // ARRAYSIZE(arr) works by inspecting sizeof(arr) (the # of bytes in
    267 // the array) and sizeof(*(arr)) (the # of bytes in one array
    268 // element).  If the former is divisible by the latter, perhaps arr is
    269 // indeed an array, in which case the division result is the # of
    270 // elements in the array.  Otherwise, arr cannot possibly be an array,
    271 // and we generate a compiler error to prevent the code from
    272 // compiling.
    273 //
    274 // Since the size of bool is implementation-defined, we need to cast
    275 // !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final
    276 // result has type size_t.
    277 //
    278 // This macro is not perfect as it wrongfully accepts certain
    279 // pointers, namely where the pointer size is divisible by the pointee
    280 // size.  Since all our code has to go through a 32-bit compiler,
    281 // where a pointer is 4 bytes, this means all pointers to a type whose
    282 // size is 3 or greater than 4 will be (righteously) rejected.
    283 //
    284 // Kudos to Jorg Brown for this simple and elegant implementation.
    285 
    286 #undef GOOGLE_ARRAYSIZE
    287 #define GOOGLE_ARRAYSIZE(a) \
    288   ((sizeof(a) / sizeof(*(a))) / \
    289    static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))
    290 
    291 namespace internal {
    292 
    293 // Use implicit_cast as a safe version of static_cast or const_cast
    294 // for upcasting in the type hierarchy (i.e. casting a pointer to Foo
    295 // to a pointer to SuperclassOfFoo or casting a pointer to Foo to
    296 // a const pointer to Foo).
    297 // When you use implicit_cast, the compiler checks that the cast is safe.
    298 // Such explicit implicit_casts are necessary in surprisingly many
    299 // situations where C++ demands an exact type match instead of an
    300 // argument type convertable to a target type.
    301 //
    302 // The From type can be inferred, so the preferred syntax for using
    303 // implicit_cast is the same as for static_cast etc.:
    304 //
    305 //   implicit_cast<ToType>(expr)
    306 //
    307 // implicit_cast would have been part of the C++ standard library,
    308 // but the proposal was submitted too late.  It will probably make
    309 // its way into the language in the future.
    310 template<typename To, typename From>
    311 inline To implicit_cast(From const &f) {
    312   return f;
    313 }
    314 
    315 // When you upcast (that is, cast a pointer from type Foo to type
    316 // SuperclassOfFoo), it's fine to use implicit_cast<>, since upcasts
    317 // always succeed.  When you downcast (that is, cast a pointer from
    318 // type Foo to type SubclassOfFoo), static_cast<> isn't safe, because
    319 // how do you know the pointer is really of type SubclassOfFoo?  It
    320 // could be a bare Foo, or of type DifferentSubclassOfFoo.  Thus,
    321 // when you downcast, you should use this macro.  In debug mode, we
    322 // use dynamic_cast<> to double-check the downcast is legal (we die
    323 // if it's not).  In normal mode, we do the efficient static_cast<>
    324 // instead.  Thus, it's important to test in debug mode to make sure
    325 // the cast is legal!
    326 //    This is the only place in the code we should use dynamic_cast<>.
    327 // In particular, you SHOULDN'T be using dynamic_cast<> in order to
    328 // do RTTI (eg code like this:
    329 //    if (dynamic_cast<Subclass1>(foo)) HandleASubclass1Object(foo);
    330 //    if (dynamic_cast<Subclass2>(foo)) HandleASubclass2Object(foo);
    331 // You should design the code some other way not to need this.
    332 
    333 template<typename To, typename From>     // use like this: down_cast<T*>(foo);
    334 inline To down_cast(From* f) {                   // so we only accept pointers
    335   // Ensures that To is a sub-type of From *.  This test is here only
    336   // for compile-time type checking, and has no overhead in an
    337   // optimized build at run-time, as it will be optimized away
    338   // completely.
    339   if (false) {
    340     implicit_cast<From*, To>(0);
    341   }
    342 
    343 #if !defined(NDEBUG) && !defined(GOOGLE_PROTOBUF_NO_RTTI)
    344   assert(f == NULL || dynamic_cast<To>(f) != NULL);  // RTTI: debug mode only!
    345 #endif
    346   return static_cast<To>(f);
    347 }
    348 
    349 }  // namespace internal
    350 
    351 // We made these internal so that they would show up as such in the docs,
    352 // but we don't want to stick "internal::" in front of them everywhere.
    353 using internal::implicit_cast;
    354 using internal::down_cast;
    355 
    356 // The COMPILE_ASSERT macro can be used to verify that a compile time
    357 // expression is true. For example, you could use it to verify the
    358 // size of a static array:
    359 //
    360 //   COMPILE_ASSERT(ARRAYSIZE(content_type_names) == CONTENT_NUM_TYPES,
    361 //                  content_type_names_incorrect_size);
    362 //
    363 // or to make sure a struct is smaller than a certain size:
    364 //
    365 //   COMPILE_ASSERT(sizeof(foo) < 128, foo_too_large);
    366 //
    367 // The second argument to the macro is the name of the variable. If
    368 // the expression is false, most compilers will issue a warning/error
    369 // containing the name of the variable.
    370 
    371 namespace internal {
    372 
    373 template <bool>
    374 struct CompileAssert {
    375 };
    376 
    377 }  // namespace internal
    378 
    379 #undef GOOGLE_COMPILE_ASSERT
    380 #define GOOGLE_COMPILE_ASSERT(expr, msg) \
    381   typedef ::google::protobuf::internal::CompileAssert<(bool(expr))> \
    382           msg[bool(expr) ? 1 : -1]
    383 
    384 
    385 // Implementation details of COMPILE_ASSERT:
    386 //
    387 // - COMPILE_ASSERT works by defining an array type that has -1
    388 //   elements (and thus is invalid) when the expression is false.
    389 //
    390 // - The simpler definition
    391 //
    392 //     #define COMPILE_ASSERT(expr, msg) typedef char msg[(expr) ? 1 : -1]
    393 //
    394 //   does not work, as gcc supports variable-length arrays whose sizes
    395 //   are determined at run-time (this is gcc's extension and not part
    396 //   of the C++ standard).  As a result, gcc fails to reject the
    397 //   following code with the simple definition:
    398 //
    399 //     int foo;
    400 //     COMPILE_ASSERT(foo, msg); // not supposed to compile as foo is
    401 //                               // not a compile-time constant.
    402 //
    403 // - By using the type CompileAssert<(bool(expr))>, we ensures that
    404 //   expr is a compile-time constant.  (Template arguments must be
    405 //   determined at compile-time.)
    406 //
    407 // - The outter parentheses in CompileAssert<(bool(expr))> are necessary
    408 //   to work around a bug in gcc 3.4.4 and 4.0.1.  If we had written
    409 //
    410 //     CompileAssert<bool(expr)>
    411 //
    412 //   instead, these compilers will refuse to compile
    413 //
    414 //     COMPILE_ASSERT(5 > 0, some_message);
    415 //
    416 //   (They seem to think the ">" in "5 > 0" marks the end of the
    417 //   template argument list.)
    418 //
    419 // - The array size is (bool(expr) ? 1 : -1), instead of simply
    420 //
    421 //     ((expr) ? 1 : -1).
    422 //
    423 //   This is to avoid running into a bug in MS VC 7.1, which
    424 //   causes ((0.0) ? 1 : -1) to incorrectly evaluate to 1.
    425 
    426 // ===================================================================
    427 // from google3/base/scoped_ptr.h
    428 
    429 namespace internal {
    430 
    431 //  This is an implementation designed to match the anticipated future TR2
    432 //  implementation of the scoped_ptr class, and its closely-related brethren,
    433 //  scoped_array, scoped_ptr_malloc, and make_scoped_ptr.
    434 
    435 template <class C> class scoped_ptr;
    436 template <class C> class scoped_array;
    437 
    438 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
    439 // automatically deletes the pointer it holds (if any).
    440 // That is, scoped_ptr<T> owns the T object that it points to.
    441 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
    442 //
    443 // The size of a scoped_ptr is small:
    444 // sizeof(scoped_ptr<C>) == sizeof(C*)
    445 template <class C>
    446 class scoped_ptr {
    447  public:
    448 
    449   // The element type
    450   typedef C element_type;
    451 
    452   // Constructor.  Defaults to intializing with NULL.
    453   // There is no way to create an uninitialized scoped_ptr.
    454   // The input parameter must be allocated with new.
    455   explicit scoped_ptr(C* p = NULL) : ptr_(p) { }
    456 
    457   // Destructor.  If there is a C object, delete it.
    458   // We don't need to test ptr_ == NULL because C++ does that for us.
    459   ~scoped_ptr() {
    460     enum { type_must_be_complete = sizeof(C) };
    461     delete ptr_;
    462   }
    463 
    464   // Reset.  Deletes the current owned object, if any.
    465   // Then takes ownership of a new object, if given.
    466   // this->reset(this->get()) works.
    467   void reset(C* p = NULL) {
    468     if (p != ptr_) {
    469       enum { type_must_be_complete = sizeof(C) };
    470       delete ptr_;
    471       ptr_ = p;
    472     }
    473   }
    474 
    475   // Accessors to get the owned object.
    476   // operator* and operator-> will assert() if there is no current object.
    477   C& operator*() const {
    478     assert(ptr_ != NULL);
    479     return *ptr_;
    480   }
    481   C* operator->() const  {
    482     assert(ptr_ != NULL);
    483     return ptr_;
    484   }
    485   C* get() const { return ptr_; }
    486 
    487   // Comparison operators.
    488   // These return whether two scoped_ptr refer to the same object, not just to
    489   // two different but equal objects.
    490   bool operator==(C* p) const { return ptr_ == p; }
    491   bool operator!=(C* p) const { return ptr_ != p; }
    492 
    493   // Swap two scoped pointers.
    494   void swap(scoped_ptr& p2) {
    495     C* tmp = ptr_;
    496     ptr_ = p2.ptr_;
    497     p2.ptr_ = tmp;
    498   }
    499 
    500   // Release a pointer.
    501   // The return value is the current pointer held by this object.
    502   // If this object holds a NULL pointer, the return value is NULL.
    503   // After this operation, this object will hold a NULL pointer,
    504   // and will not own the object any more.
    505   C* release() {
    506     C* retVal = ptr_;
    507     ptr_ = NULL;
    508     return retVal;
    509   }
    510 
    511  private:
    512   C* ptr_;
    513 
    514   // Forbid comparison of scoped_ptr types.  If C2 != C, it totally doesn't
    515   // make sense, and if C2 == C, it still doesn't make sense because you should
    516   // never have the same object owned by two different scoped_ptrs.
    517   template <class C2> bool operator==(scoped_ptr<C2> const& p2) const;
    518   template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const;
    519 
    520   // Disallow evil constructors
    521   scoped_ptr(const scoped_ptr&);
    522   void operator=(const scoped_ptr&);
    523 };
    524 
    525 // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate
    526 // with new [] and the destructor deletes objects with delete [].
    527 //
    528 // As with scoped_ptr<C>, a scoped_array<C> either points to an object
    529 // or is NULL.  A scoped_array<C> owns the object that it points to.
    530 //
    531 // Size: sizeof(scoped_array<C>) == sizeof(C*)
    532 template <class C>
    533 class scoped_array {
    534  public:
    535 
    536   // The element type
    537   typedef C element_type;
    538 
    539   // Constructor.  Defaults to intializing with NULL.
    540   // There is no way to create an uninitialized scoped_array.
    541   // The input parameter must be allocated with new [].
    542   explicit scoped_array(C* p = NULL) : array_(p) { }
    543 
    544   // Destructor.  If there is a C object, delete it.
    545   // We don't need to test ptr_ == NULL because C++ does that for us.
    546   ~scoped_array() {
    547     enum { type_must_be_complete = sizeof(C) };
    548     delete[] array_;
    549   }
    550 
    551   // Reset.  Deletes the current owned object, if any.
    552   // Then takes ownership of a new object, if given.
    553   // this->reset(this->get()) works.
    554   void reset(C* p = NULL) {
    555     if (p != array_) {
    556       enum { type_must_be_complete = sizeof(C) };
    557       delete[] array_;
    558       array_ = p;
    559     }
    560   }
    561 
    562   // Get one element of the current object.
    563   // Will assert() if there is no current object, or index i is negative.
    564   C& operator[](std::ptrdiff_t i) const {
    565     assert(i >= 0);
    566     assert(array_ != NULL);
    567     return array_[i];
    568   }
    569 
    570   // Get a pointer to the zeroth element of the current object.
    571   // If there is no current object, return NULL.
    572   C* get() const {
    573     return array_;
    574   }
    575 
    576   // Comparison operators.
    577   // These return whether two scoped_array refer to the same object, not just to
    578   // two different but equal objects.
    579   bool operator==(C* p) const { return array_ == p; }
    580   bool operator!=(C* p) const { return array_ != p; }
    581 
    582   // Swap two scoped arrays.
    583   void swap(scoped_array& p2) {
    584     C* tmp = array_;
    585     array_ = p2.array_;
    586     p2.array_ = tmp;
    587   }
    588 
    589   // Release an array.
    590   // The return value is the current pointer held by this object.
    591   // If this object holds a NULL pointer, the return value is NULL.
    592   // After this operation, this object will hold a NULL pointer,
    593   // and will not own the object any more.
    594   C* release() {
    595     C* retVal = array_;
    596     array_ = NULL;
    597     return retVal;
    598   }
    599 
    600  private:
    601   C* array_;
    602 
    603   // Forbid comparison of different scoped_array types.
    604   template <class C2> bool operator==(scoped_array<C2> const& p2) const;
    605   template <class C2> bool operator!=(scoped_array<C2> const& p2) const;
    606 
    607   // Disallow evil constructors
    608   scoped_array(const scoped_array&);
    609   void operator=(const scoped_array&);
    610 };
    611 
    612 }  // namespace internal
    613 
    614 // We made these internal so that they would show up as such in the docs,
    615 // but we don't want to stick "internal::" in front of them everywhere.
    616 using internal::scoped_ptr;
    617 using internal::scoped_array;
    618 
    619 // ===================================================================
    620 // emulates google3/base/logging.h
    621 
    622 enum LogLevel {
    623   LOGLEVEL_INFO,     // Informational.  This is never actually used by
    624                      // libprotobuf.
    625   LOGLEVEL_WARNING,  // Warns about issues that, although not technically a
    626                      // problem now, could cause problems in the future.  For
    627                      // example, a // warning will be printed when parsing a
    628                      // message that is near the message size limit.
    629   LOGLEVEL_ERROR,    // An error occurred which should never happen during
    630                      // normal use.
    631   LOGLEVEL_FATAL,    // An error occurred from which the library cannot
    632                      // recover.  This usually indicates a programming error
    633                      // in the code which calls the library, especially when
    634                      // compiled in debug mode.
    635 
    636 #ifdef NDEBUG
    637   LOGLEVEL_DFATAL = LOGLEVEL_ERROR
    638 #else
    639   LOGLEVEL_DFATAL = LOGLEVEL_FATAL
    640 #endif
    641 };
    642 
    643 namespace internal {
    644 
    645 class LogFinisher;
    646 
    647 class LIBPROTOBUF_EXPORT LogMessage {
    648  public:
    649   LogMessage(LogLevel level, const char* filename, int line);
    650   ~LogMessage();
    651 
    652   LogMessage& operator<<(const std::string& value);
    653   LogMessage& operator<<(const char* value);
    654   LogMessage& operator<<(char value);
    655   LogMessage& operator<<(int value);
    656   LogMessage& operator<<(uint value);
    657   LogMessage& operator<<(long value);
    658   LogMessage& operator<<(unsigned long value);
    659   LogMessage& operator<<(double value);
    660 
    661  private:
    662   friend class LogFinisher;
    663   void Finish();
    664 
    665   LogLevel level_;
    666   const char* filename_;
    667   int line_;
    668   std::string message_;
    669 };
    670 
    671 // Used to make the entire "LOG(BLAH) << etc." expression have a void return
    672 // type and print a newline after each message.
    673 class LIBPROTOBUF_EXPORT LogFinisher {
    674  public:
    675   void operator=(LogMessage& other);
    676 };
    677 
    678 }  // namespace internal
    679 
    680 // Undef everything in case we're being mixed with some other Google library
    681 // which already defined them itself.  Presumably all Google libraries will
    682 // support the same syntax for these so it should not be a big deal if they
    683 // end up using our definitions instead.
    684 #undef GOOGLE_LOG
    685 #undef GOOGLE_LOG_IF
    686 
    687 #undef GOOGLE_CHECK
    688 #undef GOOGLE_CHECK_EQ
    689 #undef GOOGLE_CHECK_NE
    690 #undef GOOGLE_CHECK_LT
    691 #undef GOOGLE_CHECK_LE
    692 #undef GOOGLE_CHECK_GT
    693 #undef GOOGLE_CHECK_GE
    694 #undef GOOGLE_CHECK_NOTNULL
    695 
    696 #undef GOOGLE_DLOG
    697 #undef GOOGLE_DCHECK
    698 #undef GOOGLE_DCHECK_EQ
    699 #undef GOOGLE_DCHECK_NE
    700 #undef GOOGLE_DCHECK_LT
    701 #undef GOOGLE_DCHECK_LE
    702 #undef GOOGLE_DCHECK_GT
    703 #undef GOOGLE_DCHECK_GE
    704 
    705 #define GOOGLE_LOG(LEVEL)                                                 \
    706   ::google::protobuf::internal::LogFinisher() =                           \
    707     ::google::protobuf::internal::LogMessage(                             \
    708       ::google::protobuf::LOGLEVEL_##LEVEL, __FILE__, __LINE__)
    709 #define GOOGLE_LOG_IF(LEVEL, CONDITION) \
    710   !(CONDITION) ? (void)0 : GOOGLE_LOG(LEVEL)
    711 
    712 #define GOOGLE_CHECK(EXPRESSION) \
    713   GOOGLE_LOG_IF(FATAL, !(EXPRESSION)) << "CHECK failed: " #EXPRESSION ": "
    714 #define GOOGLE_CHECK_EQ(A, B) GOOGLE_CHECK((A) == (B))
    715 #define GOOGLE_CHECK_NE(A, B) GOOGLE_CHECK((A) != (B))
    716 #define GOOGLE_CHECK_LT(A, B) GOOGLE_CHECK((A) <  (B))
    717 #define GOOGLE_CHECK_LE(A, B) GOOGLE_CHECK((A) <= (B))
    718 #define GOOGLE_CHECK_GT(A, B) GOOGLE_CHECK((A) >  (B))
    719 #define GOOGLE_CHECK_GE(A, B) GOOGLE_CHECK((A) >= (B))
    720 
    721 namespace internal {
    722 template<typename T>
    723 T* CheckNotNull(const char *file, int line, const char *name, T* val) {
    724   if (val == NULL) {
    725     GOOGLE_LOG(FATAL) << name;
    726   }
    727   return val;
    728 }
    729 }  // namespace internal
    730 #define GOOGLE_CHECK_NOTNULL(A) \
    731   internal::CheckNotNull(__FILE__, __LINE__, "'" #A "' must not be NULL", (A))
    732 
    733 #ifdef NDEBUG
    734 
    735 #define GOOGLE_DLOG GOOGLE_LOG_IF(INFO, false)
    736 
    737 #define GOOGLE_DCHECK(EXPRESSION) while(false) GOOGLE_CHECK(EXPRESSION)
    738 #define GOOGLE_DCHECK_EQ(A, B) GOOGLE_DCHECK((A) == (B))
    739 #define GOOGLE_DCHECK_NE(A, B) GOOGLE_DCHECK((A) != (B))
    740 #define GOOGLE_DCHECK_LT(A, B) GOOGLE_DCHECK((A) <  (B))
    741 #define GOOGLE_DCHECK_LE(A, B) GOOGLE_DCHECK((A) <= (B))
    742 #define GOOGLE_DCHECK_GT(A, B) GOOGLE_DCHECK((A) >  (B))
    743 #define GOOGLE_DCHECK_GE(A, B) GOOGLE_DCHECK((A) >= (B))
    744 
    745 #else  // NDEBUG
    746 
    747 #define GOOGLE_DLOG GOOGLE_LOG
    748 
    749 #define GOOGLE_DCHECK    GOOGLE_CHECK
    750 #define GOOGLE_DCHECK_EQ GOOGLE_CHECK_EQ
    751 #define GOOGLE_DCHECK_NE GOOGLE_CHECK_NE
    752 #define GOOGLE_DCHECK_LT GOOGLE_CHECK_LT
    753 #define GOOGLE_DCHECK_LE GOOGLE_CHECK_LE
    754 #define GOOGLE_DCHECK_GT GOOGLE_CHECK_GT
    755 #define GOOGLE_DCHECK_GE GOOGLE_CHECK_GE
    756 
    757 #endif  // !NDEBUG
    758 
    759 typedef void LogHandler(LogLevel level, const char* filename, int line,
    760                         const std::string& message);
    761 
    762 // The protobuf library sometimes writes warning and error messages to
    763 // stderr.  These messages are primarily useful for developers, but may
    764 // also help end users figure out a problem.  If you would prefer that
    765 // these messages be sent somewhere other than stderr, call SetLogHandler()
    766 // to set your own handler.  This returns the old handler.  Set the handler
    767 // to NULL to ignore log messages (but see also LogSilencer, below).
    768 //
    769 // Obviously, SetLogHandler is not thread-safe.  You should only call it
    770 // at initialization time, and probably not from library code.  If you
    771 // simply want to suppress log messages temporarily (e.g. because you
    772 // have some code that tends to trigger them frequently and you know
    773 // the warnings are not important to you), use the LogSilencer class
    774 // below.
    775 LIBPROTOBUF_EXPORT LogHandler* SetLogHandler(LogHandler* new_func);
    776 
    777 // Create a LogSilencer if you want to temporarily suppress all log
    778 // messages.  As long as any LogSilencer objects exist, non-fatal
    779 // log messages will be discarded (the current LogHandler will *not*
    780 // be called).  Constructing a LogSilencer is thread-safe.  You may
    781 // accidentally suppress log messages occurring in another thread, but
    782 // since messages are generally for debugging purposes only, this isn't
    783 // a big deal.  If you want to intercept log messages, use SetLogHandler().
    784 class LIBPROTOBUF_EXPORT LogSilencer {
    785  public:
    786   LogSilencer();
    787   ~LogSilencer();
    788 };
    789 
    790 // ===================================================================
    791 // emulates google3/base/callback.h
    792 
    793 // Abstract interface for a callback.  When calling an RPC, you must provide
    794 // a Closure to call when the procedure completes.  See the Service interface
    795 // in service.h.
    796 //
    797 // To automatically construct a Closure which calls a particular function or
    798 // method with a particular set of parameters, use the NewCallback() function.
    799 // Example:
    800 //   void FooDone(const FooResponse* response) {
    801 //     ...
    802 //   }
    803 //
    804 //   void CallFoo() {
    805 //     ...
    806 //     // When done, call FooDone() and pass it a pointer to the response.
    807 //     Closure* callback = NewCallback(&FooDone, response);
    808 //     // Make the call.
    809 //     service->Foo(controller, request, response, callback);
    810 //   }
    811 //
    812 // Example that calls a method:
    813 //   class Handler {
    814 //    public:
    815 //     ...
    816 //
    817 //     void FooDone(const FooResponse* response) {
    818 //       ...
    819 //     }
    820 //
    821 //     void CallFoo() {
    822 //       ...
    823 //       // When done, call FooDone() and pass it a pointer to the response.
    824 //       Closure* callback = NewCallback(this, &Handler::FooDone, response);
    825 //       // Make the call.
    826 //       service->Foo(controller, request, response, callback);
    827 //     }
    828 //   };
    829 //
    830 // Currently NewCallback() supports binding zero, one, or two arguments.
    831 //
    832 // Callbacks created with NewCallback() automatically delete themselves when
    833 // executed.  They should be used when a callback is to be called exactly
    834 // once (usually the case with RPC callbacks).  If a callback may be called
    835 // a different number of times (including zero), create it with
    836 // NewPermanentCallback() instead.  You are then responsible for deleting the
    837 // callback (using the "delete" keyword as normal).
    838 //
    839 // Note that NewCallback() is a bit touchy regarding argument types.  Generally,
    840 // the values you provide for the parameter bindings must exactly match the
    841 // types accepted by the callback function.  For example:
    842 //   void Foo(string s);
    843 //   NewCallback(&Foo, "foo");          // WON'T WORK:  const char* != string
    844 //   NewCallback(&Foo, string("foo"));  // WORKS
    845 // Also note that the arguments cannot be references:
    846 //   void Foo(const string& s);
    847 //   string my_str;
    848 //   NewCallback(&Foo, my_str);  // WON'T WORK:  Can't use referecnes.
    849 // However, correctly-typed pointers will work just fine.
    850 class LIBPROTOBUF_EXPORT Closure {
    851  public:
    852   Closure() {}
    853   virtual ~Closure();
    854 
    855   virtual void Run() = 0;
    856 
    857  private:
    858   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Closure);
    859 };
    860 
    861 namespace internal {
    862 
    863 class LIBPROTOBUF_EXPORT FunctionClosure0 : public Closure {
    864  public:
    865   typedef void (*FunctionType)();
    866 
    867   FunctionClosure0(FunctionType function, bool self_deleting)
    868     : function_(function), self_deleting_(self_deleting) {}
    869   ~FunctionClosure0();
    870 
    871   void Run() {
    872     bool needs_delete = self_deleting_;  // read in case callback deletes
    873     function_();
    874     if (needs_delete) delete this;
    875   }
    876 
    877  private:
    878   FunctionType function_;
    879   bool self_deleting_;
    880 };
    881 
    882 template <typename Class>
    883 class MethodClosure0 : public Closure {
    884  public:
    885   typedef void (Class::*MethodType)();
    886 
    887   MethodClosure0(Class* object, MethodType method, bool self_deleting)
    888     : object_(object), method_(method), self_deleting_(self_deleting) {}
    889   ~MethodClosure0() {}
    890 
    891   void Run() {
    892     bool needs_delete = self_deleting_;  // read in case callback deletes
    893     (object_->*method_)();
    894     if (needs_delete) delete this;
    895   }
    896 
    897  private:
    898   Class* object_;
    899   MethodType method_;
    900   bool self_deleting_;
    901 };
    902 
    903 template <typename Arg1>
    904 class FunctionClosure1 : public Closure {
    905  public:
    906   typedef void (*FunctionType)(Arg1 arg1);
    907 
    908   FunctionClosure1(FunctionType function, bool self_deleting,
    909                    Arg1 arg1)
    910     : function_(function), self_deleting_(self_deleting),
    911       arg1_(arg1) {}
    912   ~FunctionClosure1() {}
    913 
    914   void Run() {
    915     bool needs_delete = self_deleting_;  // read in case callback deletes
    916     function_(arg1_);
    917     if (needs_delete) delete this;
    918   }
    919 
    920  private:
    921   FunctionType function_;
    922   bool self_deleting_;
    923   Arg1 arg1_;
    924 };
    925 
    926 template <typename Class, typename Arg1>
    927 class MethodClosure1 : public Closure {
    928  public:
    929   typedef void (Class::*MethodType)(Arg1 arg1);
    930 
    931   MethodClosure1(Class* object, MethodType method, bool self_deleting,
    932                  Arg1 arg1)
    933     : object_(object), method_(method), self_deleting_(self_deleting),
    934       arg1_(arg1) {}
    935   ~MethodClosure1() {}
    936 
    937   void Run() {
    938     bool needs_delete = self_deleting_;  // read in case callback deletes
    939     (object_->*method_)(arg1_);
    940     if (needs_delete) delete this;
    941   }
    942 
    943  private:
    944   Class* object_;
    945   MethodType method_;
    946   bool self_deleting_;
    947   Arg1 arg1_;
    948 };
    949 
    950 template <typename Arg1, typename Arg2>
    951 class FunctionClosure2 : public Closure {
    952  public:
    953   typedef void (*FunctionType)(Arg1 arg1, Arg2 arg2);
    954 
    955   FunctionClosure2(FunctionType function, bool self_deleting,
    956                    Arg1 arg1, Arg2 arg2)
    957     : function_(function), self_deleting_(self_deleting),
    958       arg1_(arg1), arg2_(arg2) {}
    959   ~FunctionClosure2() {}
    960 
    961   void Run() {
    962     bool needs_delete = self_deleting_;  // read in case callback deletes
    963     function_(arg1_, arg2_);
    964     if (needs_delete) delete this;
    965   }
    966 
    967  private:
    968   FunctionType function_;
    969   bool self_deleting_;
    970   Arg1 arg1_;
    971   Arg2 arg2_;
    972 };
    973 
    974 template <typename Class, typename Arg1, typename Arg2>
    975 class MethodClosure2 : public Closure {
    976  public:
    977   typedef void (Class::*MethodType)(Arg1 arg1, Arg2 arg2);
    978 
    979   MethodClosure2(Class* object, MethodType method, bool self_deleting,
    980                  Arg1 arg1, Arg2 arg2)
    981     : object_(object), method_(method), self_deleting_(self_deleting),
    982       arg1_(arg1), arg2_(arg2) {}
    983   ~MethodClosure2() {}
    984 
    985   void Run() {
    986     bool needs_delete = self_deleting_;  // read in case callback deletes
    987     (object_->*method_)(arg1_, arg2_);
    988     if (needs_delete) delete this;
    989   }
    990 
    991  private:
    992   Class* object_;
    993   MethodType method_;
    994   bool self_deleting_;
    995   Arg1 arg1_;
    996   Arg2 arg2_;
    997 };
    998 
    999 }  // namespace internal
   1000 
   1001 // See Closure.
   1002 inline Closure* NewCallback(void (*function)()) {
   1003   return new internal::FunctionClosure0(function, true);
   1004 }
   1005 
   1006 // See Closure.
   1007 inline Closure* NewPermanentCallback(void (*function)()) {
   1008   return new internal::FunctionClosure0(function, false);
   1009 }
   1010 
   1011 // See Closure.
   1012 template <typename Class>
   1013 inline Closure* NewCallback(Class* object, void (Class::*method)()) {
   1014   return new internal::MethodClosure0<Class>(object, method, true);
   1015 }
   1016 
   1017 // See Closure.
   1018 template <typename Class>
   1019 inline Closure* NewPermanentCallback(Class* object, void (Class::*method)()) {
   1020   return new internal::MethodClosure0<Class>(object, method, false);
   1021 }
   1022 
   1023 // See Closure.
   1024 template <typename Arg1>
   1025 inline Closure* NewCallback(void (*function)(Arg1),
   1026                             Arg1 arg1) {
   1027   return new internal::FunctionClosure1<Arg1>(function, true, arg1);
   1028 }
   1029 
   1030 // See Closure.
   1031 template <typename Arg1>
   1032 inline Closure* NewPermanentCallback(void (*function)(Arg1),
   1033                                      Arg1 arg1) {
   1034   return new internal::FunctionClosure1<Arg1>(function, false, arg1);
   1035 }
   1036 
   1037 // See Closure.
   1038 template <typename Class, typename Arg1>
   1039 inline Closure* NewCallback(Class* object, void (Class::*method)(Arg1),
   1040                             Arg1 arg1) {
   1041   return new internal::MethodClosure1<Class, Arg1>(object, method, true, arg1);
   1042 }
   1043 
   1044 // See Closure.
   1045 template <typename Class, typename Arg1>
   1046 inline Closure* NewPermanentCallback(Class* object, void (Class::*method)(Arg1),
   1047                                      Arg1 arg1) {
   1048   return new internal::MethodClosure1<Class, Arg1>(object, method, false, arg1);
   1049 }
   1050 
   1051 // See Closure.
   1052 template <typename Arg1, typename Arg2>
   1053 inline Closure* NewCallback(void (*function)(Arg1, Arg2),
   1054                             Arg1 arg1, Arg2 arg2) {
   1055   return new internal::FunctionClosure2<Arg1, Arg2>(
   1056     function, true, arg1, arg2);
   1057 }
   1058 
   1059 // See Closure.
   1060 template <typename Arg1, typename Arg2>
   1061 inline Closure* NewPermanentCallback(void (*function)(Arg1, Arg2),
   1062                                      Arg1 arg1, Arg2 arg2) {
   1063   return new internal::FunctionClosure2<Arg1, Arg2>(
   1064     function, false, arg1, arg2);
   1065 }
   1066 
   1067 // See Closure.
   1068 template <typename Class, typename Arg1, typename Arg2>
   1069 inline Closure* NewCallback(Class* object, void (Class::*method)(Arg1, Arg2),
   1070                             Arg1 arg1, Arg2 arg2) {
   1071   return new internal::MethodClosure2<Class, Arg1, Arg2>(
   1072     object, method, true, arg1, arg2);
   1073 }
   1074 
   1075 // See Closure.
   1076 template <typename Class, typename Arg1, typename Arg2>
   1077 inline Closure* NewPermanentCallback(
   1078     Class* object, void (Class::*method)(Arg1, Arg2),
   1079     Arg1 arg1, Arg2 arg2) {
   1080   return new internal::MethodClosure2<Class, Arg1, Arg2>(
   1081     object, method, false, arg1, arg2);
   1082 }
   1083 
   1084 // A function which does nothing.  Useful for creating no-op callbacks, e.g.:
   1085 //   Closure* nothing = NewCallback(&DoNothing);
   1086 void LIBPROTOBUF_EXPORT DoNothing();
   1087 
   1088 // ===================================================================
   1089 // emulates google3/base/mutex.h
   1090 
   1091 namespace internal {
   1092 
   1093 // A Mutex is a non-reentrant (aka non-recursive) mutex.  At most one thread T
   1094 // may hold a mutex at a given time.  If T attempts to Lock() the same Mutex
   1095 // while holding it, T will deadlock.
   1096 class LIBPROTOBUF_EXPORT Mutex {
   1097  public:
   1098   // Create a Mutex that is not held by anybody.
   1099   Mutex();
   1100 
   1101   // Destructor
   1102   ~Mutex();
   1103 
   1104   // Block if necessary until this Mutex is free, then acquire it exclusively.
   1105   void Lock();
   1106 
   1107   // Release this Mutex.  Caller must hold it exclusively.
   1108   void Unlock();
   1109 
   1110   // Crash if this Mutex is not held exclusively by this thread.
   1111   // May fail to crash when it should; will never crash when it should not.
   1112   void AssertHeld();
   1113 
   1114  private:
   1115   struct Internal;
   1116   Internal* mInternal;
   1117 
   1118   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Mutex);
   1119 };
   1120 
   1121 // MutexLock(mu) acquires mu when constructed and releases it when destroyed.
   1122 class LIBPROTOBUF_EXPORT MutexLock {
   1123  public:
   1124   explicit MutexLock(Mutex *mu) : mu_(mu) { this->mu_->Lock(); }
   1125   ~MutexLock() { this->mu_->Unlock(); }
   1126  private:
   1127   Mutex *const mu_;
   1128   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MutexLock);
   1129 };
   1130 
   1131 // TODO(kenton):  Implement these?  Hard to implement portably.
   1132 typedef MutexLock ReaderMutexLock;
   1133 typedef MutexLock WriterMutexLock;
   1134 
   1135 // MutexLockMaybe is like MutexLock, but is a no-op when mu is NULL.
   1136 class LIBPROTOBUF_EXPORT MutexLockMaybe {
   1137  public:
   1138   explicit MutexLockMaybe(Mutex *mu) :
   1139     mu_(mu) { if (this->mu_ != NULL) { this->mu_->Lock(); } }
   1140   ~MutexLockMaybe() { if (this->mu_ != NULL) { this->mu_->Unlock(); } }
   1141  private:
   1142   Mutex *const mu_;
   1143   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MutexLockMaybe);
   1144 };
   1145 
   1146 }  // namespace internal
   1147 
   1148 // We made these internal so that they would show up as such in the docs,
   1149 // but we don't want to stick "internal::" in front of them everywhere.
   1150 using internal::Mutex;
   1151 using internal::MutexLock;
   1152 using internal::ReaderMutexLock;
   1153 using internal::WriterMutexLock;
   1154 using internal::MutexLockMaybe;
   1155 
   1156 // ===================================================================
   1157 // from google3/util/utf8/public/unilib.h
   1158 
   1159 namespace internal {
   1160 
   1161 // Checks if the buffer contains structurally-valid UTF-8.  Implemented in
   1162 // structurally_valid.cc.
   1163 LIBPROTOBUF_EXPORT bool IsStructurallyValidUTF8(const char* buf, int len);
   1164 
   1165 }  // namespace internal
   1166 
   1167 // ===================================================================
   1168 // from google3/util/endian/endian.h
   1169 LIBPROTOBUF_EXPORT uint32 ghtonl(uint32 x);
   1170 
   1171 // ===================================================================
   1172 // Shutdown support.
   1173 
   1174 // Shut down the entire protocol buffers library, deleting all static-duration
   1175 // objects allocated by the library or by generated .pb.cc files.
   1176 //
   1177 // There are two reasons you might want to call this:
   1178 // * You use a draconian definition of "memory leak" in which you expect
   1179 //   every single malloc() to have a corresponding free(), even for objects
   1180 //   which live until program exit.
   1181 // * You are writing a dynamically-loaded library which needs to clean up
   1182 //   after itself when the library is unloaded.
   1183 //
   1184 // It is safe to call this multiple times.  However, it is not safe to use
   1185 // any other part of the protocol buffers library after
   1186 // ShutdownProtobufLibrary() has been called.
   1187 LIBPROTOBUF_EXPORT void ShutdownProtobufLibrary();
   1188 
   1189 namespace internal {
   1190 
   1191 // Register a function to be called when ShutdownProtocolBuffers() is called.
   1192 LIBPROTOBUF_EXPORT void OnShutdown(void (*func)());
   1193 
   1194 }  // namespace internal
   1195 
   1196 #if PROTOBUF_USE_EXCEPTIONS
   1197 class FatalException : public std::exception {
   1198  public:
   1199   FatalException(const char* filename, int line, const std::string& message)
   1200       : filename_(filename), line_(line), message_(message) {}
   1201   virtual ~FatalException() throw();
   1202 
   1203   virtual const char* what() const throw();
   1204 
   1205   const char* filename() const { return filename_; }
   1206   int line() const { return line_; }
   1207   const std::string& message() const { return message_; }
   1208 
   1209  private:
   1210   const char* filename_;
   1211   const int line_;
   1212   const std::string message_;
   1213 };
   1214 #endif
   1215 
   1216 // This is at the end of the file instead of the beginning to work around a bug
   1217 // in some versions of MSVC.
   1218 using namespace std;  // Don't do this at home, kids.
   1219 
   1220 }  // namespace protobuf
   1221 }  // namespace google
   1222 
   1223 #endif  // GOOGLE_PROTOBUF_COMMON_H__
   1224