Home | History | Annotate | Download | only in TableGen
      1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This tablegen backend emits a target specifier matcher for converting parsed
     11 // assembly operands in the MCInst structures. It also emits a matcher for
     12 // custom operand parsing.
     13 //
     14 // Converting assembly operands into MCInst structures
     15 // ---------------------------------------------------
     16 //
     17 // The input to the target specific matcher is a list of literal tokens and
     18 // operands. The target specific parser should generally eliminate any syntax
     19 // which is not relevant for matching; for example, comma tokens should have
     20 // already been consumed and eliminated by the parser. Most instructions will
     21 // end up with a single literal token (the instruction name) and some number of
     22 // operands.
     23 //
     24 // Some example inputs, for X86:
     25 //   'addl' (immediate ...) (register ...)
     26 //   'add' (immediate ...) (memory ...)
     27 //   'call' '*' %epc
     28 //
     29 // The assembly matcher is responsible for converting this input into a precise
     30 // machine instruction (i.e., an instruction with a well defined encoding). This
     31 // mapping has several properties which complicate matching:
     32 //
     33 //  - It may be ambiguous; many architectures can legally encode particular
     34 //    variants of an instruction in different ways (for example, using a smaller
     35 //    encoding for small immediates). Such ambiguities should never be
     36 //    arbitrarily resolved by the assembler, the assembler is always responsible
     37 //    for choosing the "best" available instruction.
     38 //
     39 //  - It may depend on the subtarget or the assembler context. Instructions
     40 //    which are invalid for the current mode, but otherwise unambiguous (e.g.,
     41 //    an SSE instruction in a file being assembled for i486) should be accepted
     42 //    and rejected by the assembler front end. However, if the proper encoding
     43 //    for an instruction is dependent on the assembler context then the matcher
     44 //    is responsible for selecting the correct machine instruction for the
     45 //    current mode.
     46 //
     47 // The core matching algorithm attempts to exploit the regularity in most
     48 // instruction sets to quickly determine the set of possibly matching
     49 // instructions, and the simplify the generated code. Additionally, this helps
     50 // to ensure that the ambiguities are intentionally resolved by the user.
     51 //
     52 // The matching is divided into two distinct phases:
     53 //
     54 //   1. Classification: Each operand is mapped to the unique set which (a)
     55 //      contains it, and (b) is the largest such subset for which a single
     56 //      instruction could match all members.
     57 //
     58 //      For register classes, we can generate these subgroups automatically. For
     59 //      arbitrary operands, we expect the user to define the classes and their
     60 //      relations to one another (for example, 8-bit signed immediates as a
     61 //      subset of 32-bit immediates).
     62 //
     63 //      By partitioning the operands in this way, we guarantee that for any
     64 //      tuple of classes, any single instruction must match either all or none
     65 //      of the sets of operands which could classify to that tuple.
     66 //
     67 //      In addition, the subset relation amongst classes induces a partial order
     68 //      on such tuples, which we use to resolve ambiguities.
     69 //
     70 //   2. The input can now be treated as a tuple of classes (static tokens are
     71 //      simple singleton sets). Each such tuple should generally map to a single
     72 //      instruction (we currently ignore cases where this isn't true, whee!!!),
     73 //      which we can emit a simple matcher for.
     74 //
     75 // Custom Operand Parsing
     76 // ----------------------
     77 //
     78 //  Some targets need a custom way to parse operands, some specific instructions
     79 //  can contain arguments that can represent processor flags and other kinds of
     80 //  identifiers that need to be mapped to specific values in the final encoded
     81 //  instructions. The target specific custom operand parsing works in the
     82 //  following way:
     83 //
     84 //   1. A operand match table is built, each entry contains a mnemonic, an
     85 //      operand class, a mask for all operand positions for that same
     86 //      class/mnemonic and target features to be checked while trying to match.
     87 //
     88 //   2. The operand matcher will try every possible entry with the same
     89 //      mnemonic and will check if the target feature for this mnemonic also
     90 //      matches. After that, if the operand to be matched has its index
     91 //      present in the mask, a successful match occurs. Otherwise, fallback
     92 //      to the regular operand parsing.
     93 //
     94 //   3. For a match success, each operand class that has a 'ParserMethod'
     95 //      becomes part of a switch from where the custom method is called.
     96 //
     97 //===----------------------------------------------------------------------===//
     98 
     99 #include "CodeGenTarget.h"
    100 #include "llvm/ADT/PointerUnion.h"
    101 #include "llvm/ADT/STLExtras.h"
    102 #include "llvm/ADT/SmallPtrSet.h"
    103 #include "llvm/ADT/SmallVector.h"
    104 #include "llvm/ADT/StringExtras.h"
    105 #include "llvm/Support/CommandLine.h"
    106 #include "llvm/Support/Debug.h"
    107 #include "llvm/Support/ErrorHandling.h"
    108 #include "llvm/TableGen/Error.h"
    109 #include "llvm/TableGen/Record.h"
    110 #include "llvm/TableGen/StringMatcher.h"
    111 #include "llvm/TableGen/StringToOffsetTable.h"
    112 #include "llvm/TableGen/TableGenBackend.h"
    113 #include <cassert>
    114 #include <cctype>
    115 #include <map>
    116 #include <set>
    117 #include <sstream>
    118 #include <forward_list>
    119 using namespace llvm;
    120 
    121 #define DEBUG_TYPE "asm-matcher-emitter"
    122 
    123 static cl::opt<std::string>
    124 MatchPrefix("match-prefix", cl::init(""),
    125             cl::desc("Only match instructions with the given prefix"));
    126 
    127 namespace {
    128 class AsmMatcherInfo;
    129 struct SubtargetFeatureInfo;
    130 
    131 // Register sets are used as keys in some second-order sets TableGen creates
    132 // when generating its data structures. This means that the order of two
    133 // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and
    134 // can even affect compiler output (at least seen in diagnostics produced when
    135 // all matches fail). So we use a type that sorts them consistently.
    136 typedef std::set<Record*, LessRecordByID> RegisterSet;
    137 
    138 class AsmMatcherEmitter {
    139   RecordKeeper &Records;
    140 public:
    141   AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
    142 
    143   void run(raw_ostream &o);
    144 };
    145 
    146 /// ClassInfo - Helper class for storing the information about a particular
    147 /// class of operands which can be matched.
    148 struct ClassInfo {
    149   enum ClassInfoKind {
    150     /// Invalid kind, for use as a sentinel value.
    151     Invalid = 0,
    152 
    153     /// The class for a particular token.
    154     Token,
    155 
    156     /// The (first) register class, subsequent register classes are
    157     /// RegisterClass0+1, and so on.
    158     RegisterClass0,
    159 
    160     /// The (first) user defined class, subsequent user defined classes are
    161     /// UserClass0+1, and so on.
    162     UserClass0 = 1<<16
    163   };
    164 
    165   /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
    166   /// N) for the Nth user defined class.
    167   unsigned Kind;
    168 
    169   /// SuperClasses - The super classes of this class. Note that for simplicities
    170   /// sake user operands only record their immediate super class, while register
    171   /// operands include all superclasses.
    172   std::vector<ClassInfo*> SuperClasses;
    173 
    174   /// Name - The full class name, suitable for use in an enum.
    175   std::string Name;
    176 
    177   /// ClassName - The unadorned generic name for this class (e.g., Token).
    178   std::string ClassName;
    179 
    180   /// ValueName - The name of the value this class represents; for a token this
    181   /// is the literal token string, for an operand it is the TableGen class (or
    182   /// empty if this is a derived class).
    183   std::string ValueName;
    184 
    185   /// PredicateMethod - The name of the operand method to test whether the
    186   /// operand matches this class; this is not valid for Token or register kinds.
    187   std::string PredicateMethod;
    188 
    189   /// RenderMethod - The name of the operand method to add this operand to an
    190   /// MCInst; this is not valid for Token or register kinds.
    191   std::string RenderMethod;
    192 
    193   /// ParserMethod - The name of the operand method to do a target specific
    194   /// parsing on the operand.
    195   std::string ParserMethod;
    196 
    197   /// For register classes: the records for all the registers in this class.
    198   RegisterSet Registers;
    199 
    200   /// For custom match classes: the diagnostic kind for when the predicate fails.
    201   std::string DiagnosticType;
    202 public:
    203   /// isRegisterClass() - Check if this is a register class.
    204   bool isRegisterClass() const {
    205     return Kind >= RegisterClass0 && Kind < UserClass0;
    206   }
    207 
    208   /// isUserClass() - Check if this is a user defined class.
    209   bool isUserClass() const {
    210     return Kind >= UserClass0;
    211   }
    212 
    213   /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
    214   /// are related if they are in the same class hierarchy.
    215   bool isRelatedTo(const ClassInfo &RHS) const {
    216     // Tokens are only related to tokens.
    217     if (Kind == Token || RHS.Kind == Token)
    218       return Kind == Token && RHS.Kind == Token;
    219 
    220     // Registers classes are only related to registers classes, and only if
    221     // their intersection is non-empty.
    222     if (isRegisterClass() || RHS.isRegisterClass()) {
    223       if (!isRegisterClass() || !RHS.isRegisterClass())
    224         return false;
    225 
    226       RegisterSet Tmp;
    227       std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin());
    228       std::set_intersection(Registers.begin(), Registers.end(),
    229                             RHS.Registers.begin(), RHS.Registers.end(),
    230                             II, LessRecordByID());
    231 
    232       return !Tmp.empty();
    233     }
    234 
    235     // Otherwise we have two users operands; they are related if they are in the
    236     // same class hierarchy.
    237     //
    238     // FIXME: This is an oversimplification, they should only be related if they
    239     // intersect, however we don't have that information.
    240     assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
    241     const ClassInfo *Root = this;
    242     while (!Root->SuperClasses.empty())
    243       Root = Root->SuperClasses.front();
    244 
    245     const ClassInfo *RHSRoot = &RHS;
    246     while (!RHSRoot->SuperClasses.empty())
    247       RHSRoot = RHSRoot->SuperClasses.front();
    248 
    249     return Root == RHSRoot;
    250   }
    251 
    252   /// isSubsetOf - Test whether this class is a subset of \p RHS.
    253   bool isSubsetOf(const ClassInfo &RHS) const {
    254     // This is a subset of RHS if it is the same class...
    255     if (this == &RHS)
    256       return true;
    257 
    258     // ... or if any of its super classes are a subset of RHS.
    259     for (const ClassInfo *CI : SuperClasses)
    260       if (CI->isSubsetOf(RHS))
    261         return true;
    262 
    263     return false;
    264   }
    265 
    266   /// operator< - Compare two classes.
    267   // FIXME: This ordering seems to be broken. For example:
    268   // u64 < i64, i64 < s8, s8 < u64, forming a cycle
    269   // u64 is a subset of i64
    270   // i64 and s8 are not subsets of each other, so are ordered by name
    271   // s8 and u64 are not subsets of each other, so are ordered by name
    272   bool operator<(const ClassInfo &RHS) const {
    273     if (this == &RHS)
    274       return false;
    275 
    276     // Unrelated classes can be ordered by kind.
    277     if (!isRelatedTo(RHS))
    278       return Kind < RHS.Kind;
    279 
    280     switch (Kind) {
    281     case Invalid:
    282       llvm_unreachable("Invalid kind!");
    283 
    284     default:
    285       // This class precedes the RHS if it is a proper subset of the RHS.
    286       if (isSubsetOf(RHS))
    287         return true;
    288       if (RHS.isSubsetOf(*this))
    289         return false;
    290 
    291       // Otherwise, order by name to ensure we have a total ordering.
    292       return ValueName < RHS.ValueName;
    293     }
    294   }
    295 };
    296 
    297 class AsmVariantInfo {
    298 public:
    299   std::string TokenizingCharacters;
    300   std::string SeparatorCharacters;
    301   std::string BreakCharacters;
    302 };
    303 
    304 /// MatchableInfo - Helper class for storing the necessary information for an
    305 /// instruction or alias which is capable of being matched.
    306 struct MatchableInfo {
    307   struct AsmOperand {
    308     /// Token - This is the token that the operand came from.
    309     StringRef Token;
    310 
    311     /// The unique class instance this operand should match.
    312     ClassInfo *Class;
    313 
    314     /// The operand name this is, if anything.
    315     StringRef SrcOpName;
    316 
    317     /// The suboperand index within SrcOpName, or -1 for the entire operand.
    318     int SubOpIdx;
    319 
    320     /// Whether the token is "isolated", i.e., it is preceded and followed
    321     /// by separators.
    322     bool IsIsolatedToken;
    323 
    324     /// Register record if this token is singleton register.
    325     Record *SingletonReg;
    326 
    327     explicit AsmOperand(bool IsIsolatedToken, StringRef T)
    328         : Token(T), Class(nullptr), SubOpIdx(-1),
    329           IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {}
    330   };
    331 
    332   /// ResOperand - This represents a single operand in the result instruction
    333   /// generated by the match.  In cases (like addressing modes) where a single
    334   /// assembler operand expands to multiple MCOperands, this represents the
    335   /// single assembler operand, not the MCOperand.
    336   struct ResOperand {
    337     enum {
    338       /// RenderAsmOperand - This represents an operand result that is
    339       /// generated by calling the render method on the assembly operand.  The
    340       /// corresponding AsmOperand is specified by AsmOperandNum.
    341       RenderAsmOperand,
    342 
    343       /// TiedOperand - This represents a result operand that is a duplicate of
    344       /// a previous result operand.
    345       TiedOperand,
    346 
    347       /// ImmOperand - This represents an immediate value that is dumped into
    348       /// the operand.
    349       ImmOperand,
    350 
    351       /// RegOperand - This represents a fixed register that is dumped in.
    352       RegOperand
    353     } Kind;
    354 
    355     union {
    356       /// This is the operand # in the AsmOperands list that this should be
    357       /// copied from.
    358       unsigned AsmOperandNum;
    359 
    360       /// TiedOperandNum - This is the (earlier) result operand that should be
    361       /// copied from.
    362       unsigned TiedOperandNum;
    363 
    364       /// ImmVal - This is the immediate value added to the instruction.
    365       int64_t ImmVal;
    366 
    367       /// Register - This is the register record.
    368       Record *Register;
    369     };
    370 
    371     /// MINumOperands - The number of MCInst operands populated by this
    372     /// operand.
    373     unsigned MINumOperands;
    374 
    375     static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
    376       ResOperand X;
    377       X.Kind = RenderAsmOperand;
    378       X.AsmOperandNum = AsmOpNum;
    379       X.MINumOperands = NumOperands;
    380       return X;
    381     }
    382 
    383     static ResOperand getTiedOp(unsigned TiedOperandNum) {
    384       ResOperand X;
    385       X.Kind = TiedOperand;
    386       X.TiedOperandNum = TiedOperandNum;
    387       X.MINumOperands = 1;
    388       return X;
    389     }
    390 
    391     static ResOperand getImmOp(int64_t Val) {
    392       ResOperand X;
    393       X.Kind = ImmOperand;
    394       X.ImmVal = Val;
    395       X.MINumOperands = 1;
    396       return X;
    397     }
    398 
    399     static ResOperand getRegOp(Record *Reg) {
    400       ResOperand X;
    401       X.Kind = RegOperand;
    402       X.Register = Reg;
    403       X.MINumOperands = 1;
    404       return X;
    405     }
    406   };
    407 
    408   /// AsmVariantID - Target's assembly syntax variant no.
    409   int AsmVariantID;
    410 
    411   /// AsmString - The assembly string for this instruction (with variants
    412   /// removed), e.g. "movsx $src, $dst".
    413   std::string AsmString;
    414 
    415   /// TheDef - This is the definition of the instruction or InstAlias that this
    416   /// matchable came from.
    417   Record *const TheDef;
    418 
    419   /// DefRec - This is the definition that it came from.
    420   PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
    421 
    422   const CodeGenInstruction *getResultInst() const {
    423     if (DefRec.is<const CodeGenInstruction*>())
    424       return DefRec.get<const CodeGenInstruction*>();
    425     return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
    426   }
    427 
    428   /// ResOperands - This is the operand list that should be built for the result
    429   /// MCInst.
    430   SmallVector<ResOperand, 8> ResOperands;
    431 
    432   /// Mnemonic - This is the first token of the matched instruction, its
    433   /// mnemonic.
    434   StringRef Mnemonic;
    435 
    436   /// AsmOperands - The textual operands that this instruction matches,
    437   /// annotated with a class and where in the OperandList they were defined.
    438   /// This directly corresponds to the tokenized AsmString after the mnemonic is
    439   /// removed.
    440   SmallVector<AsmOperand, 8> AsmOperands;
    441 
    442   /// Predicates - The required subtarget features to match this instruction.
    443   SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures;
    444 
    445   /// ConversionFnKind - The enum value which is passed to the generated
    446   /// convertToMCInst to convert parsed operands into an MCInst for this
    447   /// function.
    448   std::string ConversionFnKind;
    449 
    450   /// If this instruction is deprecated in some form.
    451   bool HasDeprecation;
    452 
    453   /// If this is an alias, this is use to determine whether or not to using
    454   /// the conversion function defined by the instruction's AsmMatchConverter
    455   /// or to use the function generated by the alias.
    456   bool UseInstAsmMatchConverter;
    457 
    458   MatchableInfo(const CodeGenInstruction &CGI)
    459     : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI),
    460       UseInstAsmMatchConverter(true) {
    461   }
    462 
    463   MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias)
    464     : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef),
    465       DefRec(Alias.release()),
    466       UseInstAsmMatchConverter(
    467         TheDef->getValueAsBit("UseInstAsmMatchConverter")) {
    468   }
    469 
    470   // Could remove this and the dtor if PointerUnion supported unique_ptr
    471   // elements with a dynamic failure/assertion (like the one below) in the case
    472   // where it was copied while being in an owning state.
    473   MatchableInfo(const MatchableInfo &RHS)
    474       : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString),
    475         TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands),
    476         Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands),
    477         RequiredFeatures(RHS.RequiredFeatures),
    478         ConversionFnKind(RHS.ConversionFnKind),
    479         HasDeprecation(RHS.HasDeprecation),
    480         UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) {
    481     assert(!DefRec.is<const CodeGenInstAlias *>());
    482   }
    483 
    484   ~MatchableInfo() {
    485     delete DefRec.dyn_cast<const CodeGenInstAlias*>();
    486   }
    487 
    488   // Two-operand aliases clone from the main matchable, but mark the second
    489   // operand as a tied operand of the first for purposes of the assembler.
    490   void formTwoOperandAlias(StringRef Constraint);
    491 
    492   void initialize(const AsmMatcherInfo &Info,
    493                   SmallPtrSetImpl<Record*> &SingletonRegisters,
    494                   int AsmVariantNo, StringRef RegisterPrefix,
    495                   AsmVariantInfo const &Variant);
    496 
    497   /// validate - Return true if this matchable is a valid thing to match against
    498   /// and perform a bunch of validity checking.
    499   bool validate(StringRef CommentDelimiter, bool Hack) const;
    500 
    501   /// findAsmOperand - Find the AsmOperand with the specified name and
    502   /// suboperand index.
    503   int findAsmOperand(StringRef N, int SubOpIdx) const {
    504     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
    505       if (N == AsmOperands[i].SrcOpName &&
    506           SubOpIdx == AsmOperands[i].SubOpIdx)
    507         return i;
    508     return -1;
    509   }
    510 
    511   /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
    512   /// This does not check the suboperand index.
    513   int findAsmOperandNamed(StringRef N) const {
    514     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
    515       if (N == AsmOperands[i].SrcOpName)
    516         return i;
    517     return -1;
    518   }
    519 
    520   void buildInstructionResultOperands();
    521   void buildAliasResultOperands();
    522 
    523   /// operator< - Compare two matchables.
    524   bool operator<(const MatchableInfo &RHS) const {
    525     // The primary comparator is the instruction mnemonic.
    526     if (Mnemonic != RHS.Mnemonic)
    527       return Mnemonic < RHS.Mnemonic;
    528 
    529     if (AsmOperands.size() != RHS.AsmOperands.size())
    530       return AsmOperands.size() < RHS.AsmOperands.size();
    531 
    532     // Compare lexicographically by operand. The matcher validates that other
    533     // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
    534     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    535       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
    536         return true;
    537       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
    538         return false;
    539     }
    540 
    541     // Give matches that require more features higher precedence. This is useful
    542     // because we cannot define AssemblerPredicates with the negation of
    543     // processor features. For example, ARM v6 "nop" may be either a HINT or
    544     // MOV. With v6, we want to match HINT. The assembler has no way to
    545     // predicate MOV under "NoV6", but HINT will always match first because it
    546     // requires V6 while MOV does not.
    547     if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
    548       return RequiredFeatures.size() > RHS.RequiredFeatures.size();
    549 
    550     return false;
    551   }
    552 
    553   /// couldMatchAmbiguouslyWith - Check whether this matchable could
    554   /// ambiguously match the same set of operands as \p RHS (without being a
    555   /// strictly superior match).
    556   bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const {
    557     // The primary comparator is the instruction mnemonic.
    558     if (Mnemonic != RHS.Mnemonic)
    559       return false;
    560 
    561     // The number of operands is unambiguous.
    562     if (AsmOperands.size() != RHS.AsmOperands.size())
    563       return false;
    564 
    565     // Otherwise, make sure the ordering of the two instructions is unambiguous
    566     // by checking that either (a) a token or operand kind discriminates them,
    567     // or (b) the ordering among equivalent kinds is consistent.
    568 
    569     // Tokens and operand kinds are unambiguous (assuming a correct target
    570     // specific parser).
    571     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
    572       if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
    573           AsmOperands[i].Class->Kind == ClassInfo::Token)
    574         if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
    575             *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
    576           return false;
    577 
    578     // Otherwise, this operand could commute if all operands are equivalent, or
    579     // there is a pair of operands that compare less than and a pair that
    580     // compare greater than.
    581     bool HasLT = false, HasGT = false;
    582     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    583       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
    584         HasLT = true;
    585       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
    586         HasGT = true;
    587     }
    588 
    589     return !(HasLT ^ HasGT);
    590   }
    591 
    592   void dump() const;
    593 
    594 private:
    595   void tokenizeAsmString(AsmMatcherInfo const &Info,
    596                          AsmVariantInfo const &Variant);
    597   void addAsmOperand(size_t Start, size_t End,
    598                      std::string const &SeparatorCharacters);
    599 };
    600 
    601 /// SubtargetFeatureInfo - Helper class for storing information on a subtarget
    602 /// feature which participates in instruction matching.
    603 struct SubtargetFeatureInfo {
    604   /// \brief The predicate record for this feature.
    605   Record *TheDef;
    606 
    607   /// \brief An unique index assigned to represent this feature.
    608   uint64_t Index;
    609 
    610   SubtargetFeatureInfo(Record *D, uint64_t Idx) : TheDef(D), Index(Idx) {}
    611 
    612   /// \brief The name of the enumerated constant identifying this feature.
    613   std::string getEnumName() const {
    614     return "Feature_" + TheDef->getName();
    615   }
    616 
    617   void dump() const {
    618     errs() << getEnumName() << " " << Index << "\n";
    619     TheDef->dump();
    620   }
    621 };
    622 
    623 struct OperandMatchEntry {
    624   unsigned OperandMask;
    625   const MatchableInfo* MI;
    626   ClassInfo *CI;
    627 
    628   static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci,
    629                                   unsigned opMask) {
    630     OperandMatchEntry X;
    631     X.OperandMask = opMask;
    632     X.CI = ci;
    633     X.MI = mi;
    634     return X;
    635   }
    636 };
    637 
    638 
    639 class AsmMatcherInfo {
    640 public:
    641   /// Tracked Records
    642   RecordKeeper &Records;
    643 
    644   /// The tablegen AsmParser record.
    645   Record *AsmParser;
    646 
    647   /// Target - The target information.
    648   CodeGenTarget &Target;
    649 
    650   /// The classes which are needed for matching.
    651   std::forward_list<ClassInfo> Classes;
    652 
    653   /// The information on the matchables to match.
    654   std::vector<std::unique_ptr<MatchableInfo>> Matchables;
    655 
    656   /// Info for custom matching operands by user defined methods.
    657   std::vector<OperandMatchEntry> OperandMatchInfo;
    658 
    659   /// Map of Register records to their class information.
    660   typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
    661   RegisterClassesTy RegisterClasses;
    662 
    663   /// Map of Predicate records to their subtarget information.
    664   std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
    665 
    666   /// Map of AsmOperandClass records to their class information.
    667   std::map<Record*, ClassInfo*> AsmOperandClasses;
    668 
    669 private:
    670   /// Map of token to class information which has already been constructed.
    671   std::map<std::string, ClassInfo*> TokenClasses;
    672 
    673   /// Map of RegisterClass records to their class information.
    674   std::map<Record*, ClassInfo*> RegisterClassClasses;
    675 
    676 private:
    677   /// getTokenClass - Lookup or create the class for the given token.
    678   ClassInfo *getTokenClass(StringRef Token);
    679 
    680   /// getOperandClass - Lookup or create the class for the given operand.
    681   ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
    682                              int SubOpIdx);
    683   ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
    684 
    685   /// buildRegisterClasses - Build the ClassInfo* instances for register
    686   /// classes.
    687   void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters);
    688 
    689   /// buildOperandClasses - Build the ClassInfo* instances for user defined
    690   /// operand classes.
    691   void buildOperandClasses();
    692 
    693   void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
    694                                         unsigned AsmOpIdx);
    695   void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
    696                                   MatchableInfo::AsmOperand &Op);
    697 
    698 public:
    699   AsmMatcherInfo(Record *AsmParser,
    700                  CodeGenTarget &Target,
    701                  RecordKeeper &Records);
    702 
    703   /// buildInfo - Construct the various tables used during matching.
    704   void buildInfo();
    705 
    706   /// buildOperandMatchInfo - Build the necessary information to handle user
    707   /// defined operand parsing methods.
    708   void buildOperandMatchInfo();
    709 
    710   /// getSubtargetFeature - Lookup or create the subtarget feature info for the
    711   /// given operand.
    712   const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
    713     assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
    714     const auto &I = SubtargetFeatures.find(Def);
    715     return I == SubtargetFeatures.end() ? nullptr : &I->second;
    716   }
    717 
    718   RecordKeeper &getRecords() const {
    719     return Records;
    720   }
    721 };
    722 
    723 } // End anonymous namespace
    724 
    725 void MatchableInfo::dump() const {
    726   errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
    727 
    728   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    729     const AsmOperand &Op = AsmOperands[i];
    730     errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
    731     errs() << '\"' << Op.Token << "\"\n";
    732   }
    733 }
    734 
    735 static std::pair<StringRef, StringRef>
    736 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
    737   // Split via the '='.
    738   std::pair<StringRef, StringRef> Ops = S.split('=');
    739   if (Ops.second == "")
    740     PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
    741   // Trim whitespace and the leading '$' on the operand names.
    742   size_t start = Ops.first.find_first_of('$');
    743   if (start == std::string::npos)
    744     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
    745   Ops.first = Ops.first.slice(start + 1, std::string::npos);
    746   size_t end = Ops.first.find_last_of(" \t");
    747   Ops.first = Ops.first.slice(0, end);
    748   // Now the second operand.
    749   start = Ops.second.find_first_of('$');
    750   if (start == std::string::npos)
    751     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
    752   Ops.second = Ops.second.slice(start + 1, std::string::npos);
    753   end = Ops.second.find_last_of(" \t");
    754   Ops.first = Ops.first.slice(0, end);
    755   return Ops;
    756 }
    757 
    758 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
    759   // Figure out which operands are aliased and mark them as tied.
    760   std::pair<StringRef, StringRef> Ops =
    761     parseTwoOperandConstraint(Constraint, TheDef->getLoc());
    762 
    763   // Find the AsmOperands that refer to the operands we're aliasing.
    764   int SrcAsmOperand = findAsmOperandNamed(Ops.first);
    765   int DstAsmOperand = findAsmOperandNamed(Ops.second);
    766   if (SrcAsmOperand == -1)
    767     PrintFatalError(TheDef->getLoc(),
    768                     "unknown source two-operand alias operand '" + Ops.first +
    769                     "'.");
    770   if (DstAsmOperand == -1)
    771     PrintFatalError(TheDef->getLoc(),
    772                     "unknown destination two-operand alias operand '" +
    773                     Ops.second + "'.");
    774 
    775   // Find the ResOperand that refers to the operand we're aliasing away
    776   // and update it to refer to the combined operand instead.
    777   for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
    778     ResOperand &Op = ResOperands[i];
    779     if (Op.Kind == ResOperand::RenderAsmOperand &&
    780         Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
    781       Op.AsmOperandNum = DstAsmOperand;
    782       break;
    783     }
    784   }
    785   // Remove the AsmOperand for the alias operand.
    786   AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
    787   // Adjust the ResOperand references to any AsmOperands that followed
    788   // the one we just deleted.
    789   for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
    790     ResOperand &Op = ResOperands[i];
    791     switch(Op.Kind) {
    792     default:
    793       // Nothing to do for operands that don't reference AsmOperands.
    794       break;
    795     case ResOperand::RenderAsmOperand:
    796       if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
    797         --Op.AsmOperandNum;
    798       break;
    799     case ResOperand::TiedOperand:
    800       if (Op.TiedOperandNum > (unsigned)SrcAsmOperand)
    801         --Op.TiedOperandNum;
    802       break;
    803     }
    804   }
    805 }
    806 
    807 /// extractSingletonRegisterForAsmOperand - Extract singleton register,
    808 /// if present, from specified token.
    809 static void
    810 extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op,
    811                                       const AsmMatcherInfo &Info,
    812                                       StringRef RegisterPrefix) {
    813   StringRef Tok = Op.Token;
    814 
    815   // If this token is not an isolated token, i.e., it isn't separated from
    816   // other tokens (e.g. with whitespace), don't interpret it as a register name.
    817   if (!Op.IsIsolatedToken)
    818     return;
    819 
    820   if (RegisterPrefix.empty()) {
    821     std::string LoweredTok = Tok.lower();
    822     if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
    823       Op.SingletonReg = Reg->TheDef;
    824     return;
    825   }
    826 
    827   if (!Tok.startswith(RegisterPrefix))
    828     return;
    829 
    830   StringRef RegName = Tok.substr(RegisterPrefix.size());
    831   if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
    832     Op.SingletonReg = Reg->TheDef;
    833 
    834   // If there is no register prefix (i.e. "%" in "%eax"), then this may
    835   // be some random non-register token, just ignore it.
    836   return;
    837 }
    838 
    839 void MatchableInfo::initialize(const AsmMatcherInfo &Info,
    840                                SmallPtrSetImpl<Record*> &SingletonRegisters,
    841                                int AsmVariantNo, StringRef RegisterPrefix,
    842                                AsmVariantInfo const &Variant) {
    843   AsmVariantID = AsmVariantNo;
    844   AsmString =
    845     CodeGenInstruction::FlattenAsmStringVariants(AsmString, AsmVariantNo);
    846 
    847   tokenizeAsmString(Info, Variant);
    848 
    849   // Compute the require features.
    850   for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates"))
    851     if (const SubtargetFeatureInfo *Feature =
    852             Info.getSubtargetFeature(Predicate))
    853       RequiredFeatures.push_back(Feature);
    854 
    855   // Collect singleton registers, if used.
    856   for (MatchableInfo::AsmOperand &Op : AsmOperands) {
    857     extractSingletonRegisterForAsmOperand(Op, Info, RegisterPrefix);
    858     if (Record *Reg = Op.SingletonReg)
    859       SingletonRegisters.insert(Reg);
    860   }
    861 
    862   const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask");
    863   if (!DepMask)
    864     DepMask = TheDef->getValue("ComplexDeprecationPredicate");
    865 
    866   HasDeprecation =
    867       DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false;
    868 }
    869 
    870 /// Append an AsmOperand for the given substring of AsmString.
    871 void MatchableInfo::addAsmOperand(size_t Start, size_t End,
    872                                   std::string const &Separators) {
    873   StringRef String = AsmString;
    874   // Look for separators before and after to figure out is this token is
    875   // isolated.  Accept '$$' as that's how we escape '$'.
    876   bool IsIsolatedToken =
    877       (!Start || Separators.find(String[Start - 1]) != StringRef::npos ||
    878        String.substr(Start - 1, 2) == "$$") &&
    879       (End >= String.size() || Separators.find(String[End]) != StringRef::npos);
    880   AsmOperands.push_back(AsmOperand(IsIsolatedToken, String.slice(Start, End)));
    881 }
    882 
    883 /// tokenizeAsmString - Tokenize a simplified assembly string.
    884 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info,
    885                                       AsmVariantInfo const &Variant) {
    886   StringRef String = AsmString;
    887   unsigned Prev = 0;
    888   bool InTok = false;
    889   std::string Separators = Variant.TokenizingCharacters +
    890                            Variant.SeparatorCharacters;
    891   for (unsigned i = 0, e = String.size(); i != e; ++i) {
    892     if(Variant.BreakCharacters.find(String[i]) != std::string::npos) {
    893       if(InTok) {
    894         addAsmOperand(Prev, i, Separators);
    895         Prev = i;
    896       }
    897       InTok = true;
    898       continue;
    899     }
    900     if(Variant.TokenizingCharacters.find(String[i]) != std::string::npos) {
    901       if(InTok) {
    902         addAsmOperand(Prev, i, Separators);
    903         InTok = false;
    904       }
    905       addAsmOperand(i, i + 1, Separators);
    906       Prev = i + 1;
    907       continue;
    908     }
    909     if(Variant.SeparatorCharacters.find(String[i]) != std::string::npos) {
    910       if(InTok) {
    911         addAsmOperand(Prev, i, Separators);
    912         InTok = false;
    913       }
    914       Prev = i + 1;
    915       continue;
    916     }
    917     switch (String[i]) {
    918     case '\\':
    919       if (InTok) {
    920         addAsmOperand(Prev, i, Separators);
    921         InTok = false;
    922       }
    923       ++i;
    924       assert(i != String.size() && "Invalid quoted character");
    925       addAsmOperand(i, i + 1, Separators);
    926       Prev = i + 1;
    927       break;
    928 
    929     case '$': {
    930       if (InTok && Prev != i) {
    931         addAsmOperand(Prev, i, Separators);
    932         InTok = false;
    933       }
    934 
    935       // If this isn't "${", start new identifier looking like "$xxx"
    936       if (i + 1 == String.size() || String[i + 1] != '{') {
    937         Prev = i;
    938         break;
    939       }
    940 
    941       StringRef::iterator End = std::find(String.begin() + i, String.end(),'}');
    942       assert(End != String.end() && "Missing brace in operand reference!");
    943       size_t EndPos = End - String.begin();
    944       addAsmOperand(i, EndPos+1, Separators);
    945       Prev = EndPos + 1;
    946       i = EndPos;
    947       break;
    948     }
    949     default:
    950       InTok = true;
    951     }
    952   }
    953   if (InTok && Prev != String.size())
    954     addAsmOperand(Prev, StringRef::npos, Separators);
    955 
    956   // The first token of the instruction is the mnemonic, which must be a
    957   // simple string, not a $foo variable or a singleton register.
    958   if (AsmOperands.empty())
    959     PrintFatalError(TheDef->getLoc(),
    960                   "Instruction '" + TheDef->getName() + "' has no tokens");
    961   assert(!AsmOperands[0].Token.empty());
    962   if (AsmOperands[0].Token[0] != '$')
    963     Mnemonic = AsmOperands[0].Token;
    964 }
    965 
    966 bool MatchableInfo::validate(StringRef CommentDelimiter, bool Hack) const {
    967   // Reject matchables with no .s string.
    968   if (AsmString.empty())
    969     PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
    970 
    971   // Reject any matchables with a newline in them, they should be marked
    972   // isCodeGenOnly if they are pseudo instructions.
    973   if (AsmString.find('\n') != std::string::npos)
    974     PrintFatalError(TheDef->getLoc(),
    975                   "multiline instruction is not valid for the asmparser, "
    976                   "mark it isCodeGenOnly");
    977 
    978   // Remove comments from the asm string.  We know that the asmstring only
    979   // has one line.
    980   if (!CommentDelimiter.empty() &&
    981       StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
    982     PrintFatalError(TheDef->getLoc(),
    983                   "asmstring for instruction has comment character in it, "
    984                   "mark it isCodeGenOnly");
    985 
    986   // Reject matchables with operand modifiers, these aren't something we can
    987   // handle, the target should be refactored to use operands instead of
    988   // modifiers.
    989   //
    990   // Also, check for instructions which reference the operand multiple times;
    991   // this implies a constraint we would not honor.
    992   std::set<std::string> OperandNames;
    993   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    994     StringRef Tok = AsmOperands[i].Token;
    995     if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
    996       PrintFatalError(TheDef->getLoc(),
    997                       "matchable with operand modifier '" + Tok +
    998                       "' not supported by asm matcher.  Mark isCodeGenOnly!");
    999 
   1000     // Verify that any operand is only mentioned once.
   1001     // We reject aliases and ignore instructions for now.
   1002     if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
   1003       if (!Hack)
   1004         PrintFatalError(TheDef->getLoc(),
   1005                         "ERROR: matchable with tied operand '" + Tok +
   1006                         "' can never be matched!");
   1007       // FIXME: Should reject these.  The ARM backend hits this with $lane in a
   1008       // bunch of instructions.  It is unclear what the right answer is.
   1009       DEBUG({
   1010         errs() << "warning: '" << TheDef->getName() << "': "
   1011                << "ignoring instruction with tied operand '"
   1012                << Tok << "'\n";
   1013       });
   1014       return false;
   1015     }
   1016   }
   1017 
   1018   return true;
   1019 }
   1020 
   1021 static std::string getEnumNameForToken(StringRef Str) {
   1022   std::string Res;
   1023 
   1024   for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
   1025     switch (*it) {
   1026     case '*': Res += "_STAR_"; break;
   1027     case '%': Res += "_PCT_"; break;
   1028     case ':': Res += "_COLON_"; break;
   1029     case '!': Res += "_EXCLAIM_"; break;
   1030     case '.': Res += "_DOT_"; break;
   1031     case '<': Res += "_LT_"; break;
   1032     case '>': Res += "_GT_"; break;
   1033     case '-': Res += "_MINUS_"; break;
   1034     default:
   1035       if ((*it >= 'A' && *it <= 'Z') ||
   1036           (*it >= 'a' && *it <= 'z') ||
   1037           (*it >= '0' && *it <= '9'))
   1038         Res += *it;
   1039       else
   1040         Res += "_" + utostr((unsigned) *it) + "_";
   1041     }
   1042   }
   1043 
   1044   return Res;
   1045 }
   1046 
   1047 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
   1048   ClassInfo *&Entry = TokenClasses[Token];
   1049 
   1050   if (!Entry) {
   1051     Classes.emplace_front();
   1052     Entry = &Classes.front();
   1053     Entry->Kind = ClassInfo::Token;
   1054     Entry->ClassName = "Token";
   1055     Entry->Name = "MCK_" + getEnumNameForToken(Token);
   1056     Entry->ValueName = Token;
   1057     Entry->PredicateMethod = "<invalid>";
   1058     Entry->RenderMethod = "<invalid>";
   1059     Entry->ParserMethod = "";
   1060     Entry->DiagnosticType = "";
   1061   }
   1062 
   1063   return Entry;
   1064 }
   1065 
   1066 ClassInfo *
   1067 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
   1068                                 int SubOpIdx) {
   1069   Record *Rec = OI.Rec;
   1070   if (SubOpIdx != -1)
   1071     Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
   1072   return getOperandClass(Rec, SubOpIdx);
   1073 }
   1074 
   1075 ClassInfo *
   1076 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
   1077   if (Rec->isSubClassOf("RegisterOperand")) {
   1078     // RegisterOperand may have an associated ParserMatchClass. If it does,
   1079     // use it, else just fall back to the underlying register class.
   1080     const RecordVal *R = Rec->getValue("ParserMatchClass");
   1081     if (!R || !R->getValue())
   1082       PrintFatalError("Record `" + Rec->getName() +
   1083         "' does not have a ParserMatchClass!\n");
   1084 
   1085     if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
   1086       Record *MatchClass = DI->getDef();
   1087       if (ClassInfo *CI = AsmOperandClasses[MatchClass])
   1088         return CI;
   1089     }
   1090 
   1091     // No custom match class. Just use the register class.
   1092     Record *ClassRec = Rec->getValueAsDef("RegClass");
   1093     if (!ClassRec)
   1094       PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
   1095                     "' has no associated register class!\n");
   1096     if (ClassInfo *CI = RegisterClassClasses[ClassRec])
   1097       return CI;
   1098     PrintFatalError(Rec->getLoc(), "register class has no class info!");
   1099   }
   1100 
   1101 
   1102   if (Rec->isSubClassOf("RegisterClass")) {
   1103     if (ClassInfo *CI = RegisterClassClasses[Rec])
   1104       return CI;
   1105     PrintFatalError(Rec->getLoc(), "register class has no class info!");
   1106   }
   1107 
   1108   if (!Rec->isSubClassOf("Operand"))
   1109     PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
   1110                   "' does not derive from class Operand!\n");
   1111   Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
   1112   if (ClassInfo *CI = AsmOperandClasses[MatchClass])
   1113     return CI;
   1114 
   1115   PrintFatalError(Rec->getLoc(), "operand has no match class!");
   1116 }
   1117 
   1118 struct LessRegisterSet {
   1119   bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const {
   1120     // std::set<T> defines its own compariso "operator<", but it
   1121     // performs a lexicographical comparison by T's innate comparison
   1122     // for some reason. We don't want non-deterministic pointer
   1123     // comparisons so use this instead.
   1124     return std::lexicographical_compare(LHS.begin(), LHS.end(),
   1125                                         RHS.begin(), RHS.end(),
   1126                                         LessRecordByID());
   1127   }
   1128 };
   1129 
   1130 void AsmMatcherInfo::
   1131 buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) {
   1132   const auto &Registers = Target.getRegBank().getRegisters();
   1133   auto &RegClassList = Target.getRegBank().getRegClasses();
   1134 
   1135   typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet;
   1136 
   1137   // The register sets used for matching.
   1138   RegisterSetSet RegisterSets;
   1139 
   1140   // Gather the defined sets.
   1141   for (const CodeGenRegisterClass &RC : RegClassList)
   1142     RegisterSets.insert(
   1143         RegisterSet(RC.getOrder().begin(), RC.getOrder().end()));
   1144 
   1145   // Add any required singleton sets.
   1146   for (Record *Rec : SingletonRegisters) {
   1147     RegisterSets.insert(RegisterSet(&Rec, &Rec + 1));
   1148   }
   1149 
   1150   // Introduce derived sets where necessary (when a register does not determine
   1151   // a unique register set class), and build the mapping of registers to the set
   1152   // they should classify to.
   1153   std::map<Record*, RegisterSet> RegisterMap;
   1154   for (const CodeGenRegister &CGR : Registers) {
   1155     // Compute the intersection of all sets containing this register.
   1156     RegisterSet ContainingSet;
   1157 
   1158     for (const RegisterSet &RS : RegisterSets) {
   1159       if (!RS.count(CGR.TheDef))
   1160         continue;
   1161 
   1162       if (ContainingSet.empty()) {
   1163         ContainingSet = RS;
   1164         continue;
   1165       }
   1166 
   1167       RegisterSet Tmp;
   1168       std::swap(Tmp, ContainingSet);
   1169       std::insert_iterator<RegisterSet> II(ContainingSet,
   1170                                            ContainingSet.begin());
   1171       std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II,
   1172                             LessRecordByID());
   1173     }
   1174 
   1175     if (!ContainingSet.empty()) {
   1176       RegisterSets.insert(ContainingSet);
   1177       RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
   1178     }
   1179   }
   1180 
   1181   // Construct the register classes.
   1182   std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses;
   1183   unsigned Index = 0;
   1184   for (const RegisterSet &RS : RegisterSets) {
   1185     Classes.emplace_front();
   1186     ClassInfo *CI = &Classes.front();
   1187     CI->Kind = ClassInfo::RegisterClass0 + Index;
   1188     CI->ClassName = "Reg" + utostr(Index);
   1189     CI->Name = "MCK_Reg" + utostr(Index);
   1190     CI->ValueName = "";
   1191     CI->PredicateMethod = ""; // unused
   1192     CI->RenderMethod = "addRegOperands";
   1193     CI->Registers = RS;
   1194     // FIXME: diagnostic type.
   1195     CI->DiagnosticType = "";
   1196     RegisterSetClasses.insert(std::make_pair(RS, CI));
   1197     ++Index;
   1198   }
   1199 
   1200   // Find the superclasses; we could compute only the subgroup lattice edges,
   1201   // but there isn't really a point.
   1202   for (const RegisterSet &RS : RegisterSets) {
   1203     ClassInfo *CI = RegisterSetClasses[RS];
   1204     for (const RegisterSet &RS2 : RegisterSets)
   1205       if (RS != RS2 &&
   1206           std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(),
   1207                         LessRecordByID()))
   1208         CI->SuperClasses.push_back(RegisterSetClasses[RS2]);
   1209   }
   1210 
   1211   // Name the register classes which correspond to a user defined RegisterClass.
   1212   for (const CodeGenRegisterClass &RC : RegClassList) {
   1213     // Def will be NULL for non-user defined register classes.
   1214     Record *Def = RC.getDef();
   1215     if (!Def)
   1216       continue;
   1217     ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
   1218                                                    RC.getOrder().end())];
   1219     if (CI->ValueName.empty()) {
   1220       CI->ClassName = RC.getName();
   1221       CI->Name = "MCK_" + RC.getName();
   1222       CI->ValueName = RC.getName();
   1223     } else
   1224       CI->ValueName = CI->ValueName + "," + RC.getName();
   1225 
   1226     RegisterClassClasses.insert(std::make_pair(Def, CI));
   1227   }
   1228 
   1229   // Populate the map for individual registers.
   1230   for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(),
   1231          ie = RegisterMap.end(); it != ie; ++it)
   1232     RegisterClasses[it->first] = RegisterSetClasses[it->second];
   1233 
   1234   // Name the register classes which correspond to singleton registers.
   1235   for (Record *Rec : SingletonRegisters) {
   1236     ClassInfo *CI = RegisterClasses[Rec];
   1237     assert(CI && "Missing singleton register class info!");
   1238 
   1239     if (CI->ValueName.empty()) {
   1240       CI->ClassName = Rec->getName();
   1241       CI->Name = "MCK_" + Rec->getName();
   1242       CI->ValueName = Rec->getName();
   1243     } else
   1244       CI->ValueName = CI->ValueName + "," + Rec->getName();
   1245   }
   1246 }
   1247 
   1248 void AsmMatcherInfo::buildOperandClasses() {
   1249   std::vector<Record*> AsmOperands =
   1250     Records.getAllDerivedDefinitions("AsmOperandClass");
   1251 
   1252   // Pre-populate AsmOperandClasses map.
   1253   for (Record *Rec : AsmOperands) {
   1254     Classes.emplace_front();
   1255     AsmOperandClasses[Rec] = &Classes.front();
   1256   }
   1257 
   1258   unsigned Index = 0;
   1259   for (Record *Rec : AsmOperands) {
   1260     ClassInfo *CI = AsmOperandClasses[Rec];
   1261     CI->Kind = ClassInfo::UserClass0 + Index;
   1262 
   1263     ListInit *Supers = Rec->getValueAsListInit("SuperClasses");
   1264     for (Init *I : Supers->getValues()) {
   1265       DefInit *DI = dyn_cast<DefInit>(I);
   1266       if (!DI) {
   1267         PrintError(Rec->getLoc(), "Invalid super class reference!");
   1268         continue;
   1269       }
   1270 
   1271       ClassInfo *SC = AsmOperandClasses[DI->getDef()];
   1272       if (!SC)
   1273         PrintError(Rec->getLoc(), "Invalid super class reference!");
   1274       else
   1275         CI->SuperClasses.push_back(SC);
   1276     }
   1277     CI->ClassName = Rec->getValueAsString("Name");
   1278     CI->Name = "MCK_" + CI->ClassName;
   1279     CI->ValueName = Rec->getName();
   1280 
   1281     // Get or construct the predicate method name.
   1282     Init *PMName = Rec->getValueInit("PredicateMethod");
   1283     if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
   1284       CI->PredicateMethod = SI->getValue();
   1285     } else {
   1286       assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
   1287       CI->PredicateMethod = "is" + CI->ClassName;
   1288     }
   1289 
   1290     // Get or construct the render method name.
   1291     Init *RMName = Rec->getValueInit("RenderMethod");
   1292     if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
   1293       CI->RenderMethod = SI->getValue();
   1294     } else {
   1295       assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
   1296       CI->RenderMethod = "add" + CI->ClassName + "Operands";
   1297     }
   1298 
   1299     // Get the parse method name or leave it as empty.
   1300     Init *PRMName = Rec->getValueInit("ParserMethod");
   1301     if (StringInit *SI = dyn_cast<StringInit>(PRMName))
   1302       CI->ParserMethod = SI->getValue();
   1303 
   1304     // Get the diagnostic type or leave it as empty.
   1305     // Get the parse method name or leave it as empty.
   1306     Init *DiagnosticType = Rec->getValueInit("DiagnosticType");
   1307     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
   1308       CI->DiagnosticType = SI->getValue();
   1309 
   1310     ++Index;
   1311   }
   1312 }
   1313 
   1314 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
   1315                                CodeGenTarget &target,
   1316                                RecordKeeper &records)
   1317   : Records(records), AsmParser(asmParser), Target(target) {
   1318 }
   1319 
   1320 /// buildOperandMatchInfo - Build the necessary information to handle user
   1321 /// defined operand parsing methods.
   1322 void AsmMatcherInfo::buildOperandMatchInfo() {
   1323 
   1324   /// Map containing a mask with all operands indices that can be found for
   1325   /// that class inside a instruction.
   1326   typedef std::map<ClassInfo *, unsigned, less_ptr<ClassInfo>> OpClassMaskTy;
   1327   OpClassMaskTy OpClassMask;
   1328 
   1329   for (const auto &MI : Matchables) {
   1330     OpClassMask.clear();
   1331 
   1332     // Keep track of all operands of this instructions which belong to the
   1333     // same class.
   1334     for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
   1335       const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
   1336       if (Op.Class->ParserMethod.empty())
   1337         continue;
   1338       unsigned &OperandMask = OpClassMask[Op.Class];
   1339       OperandMask |= (1 << i);
   1340     }
   1341 
   1342     // Generate operand match info for each mnemonic/operand class pair.
   1343     for (const auto &OCM : OpClassMask) {
   1344       unsigned OpMask = OCM.second;
   1345       ClassInfo *CI = OCM.first;
   1346       OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI,
   1347                                                            OpMask));
   1348     }
   1349   }
   1350 }
   1351 
   1352 void AsmMatcherInfo::buildInfo() {
   1353   // Build information about all of the AssemblerPredicates.
   1354   std::vector<Record*> AllPredicates =
   1355     Records.getAllDerivedDefinitions("Predicate");
   1356   for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) {
   1357     Record *Pred = AllPredicates[i];
   1358     // Ignore predicates that are not intended for the assembler.
   1359     if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
   1360       continue;
   1361 
   1362     if (Pred->getName().empty())
   1363       PrintFatalError(Pred->getLoc(), "Predicate has no name!");
   1364 
   1365     SubtargetFeatures.insert(std::make_pair(
   1366         Pred, SubtargetFeatureInfo(Pred, SubtargetFeatures.size())));
   1367     DEBUG(SubtargetFeatures.find(Pred)->second.dump());
   1368     assert(SubtargetFeatures.size() <= 64 && "Too many subtarget features!");
   1369   }
   1370 
   1371   // Parse the instructions; we need to do this first so that we can gather the
   1372   // singleton register classes.
   1373   SmallPtrSet<Record*, 16> SingletonRegisters;
   1374   unsigned VariantCount = Target.getAsmParserVariantCount();
   1375   for (unsigned VC = 0; VC != VariantCount; ++VC) {
   1376     Record *AsmVariant = Target.getAsmParserVariant(VC);
   1377     std::string CommentDelimiter =
   1378       AsmVariant->getValueAsString("CommentDelimiter");
   1379     std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
   1380     AsmVariantInfo Variant;
   1381     Variant.TokenizingCharacters =
   1382         AsmVariant->getValueAsString("TokenizingCharacters");
   1383     Variant.SeparatorCharacters =
   1384         AsmVariant->getValueAsString("SeparatorCharacters");
   1385     Variant.BreakCharacters =
   1386         AsmVariant->getValueAsString("BreakCharacters");
   1387     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
   1388 
   1389     for (const CodeGenInstruction *CGI : Target.instructions()) {
   1390 
   1391       // If the tblgen -match-prefix option is specified (for tblgen hackers),
   1392       // filter the set of instructions we consider.
   1393       if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix))
   1394         continue;
   1395 
   1396       // Ignore "codegen only" instructions.
   1397       if (CGI->TheDef->getValueAsBit("isCodeGenOnly"))
   1398         continue;
   1399 
   1400       auto II = llvm::make_unique<MatchableInfo>(*CGI);
   1401 
   1402       II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix,
   1403                      Variant);
   1404 
   1405       // Ignore instructions which shouldn't be matched and diagnose invalid
   1406       // instruction definitions with an error.
   1407       if (!II->validate(CommentDelimiter, true))
   1408         continue;
   1409 
   1410       Matchables.push_back(std::move(II));
   1411     }
   1412 
   1413     // Parse all of the InstAlias definitions and stick them in the list of
   1414     // matchables.
   1415     std::vector<Record*> AllInstAliases =
   1416       Records.getAllDerivedDefinitions("InstAlias");
   1417     for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
   1418       auto Alias = llvm::make_unique<CodeGenInstAlias>(AllInstAliases[i],
   1419                                                        AsmVariantNo, Target);
   1420 
   1421       // If the tblgen -match-prefix option is specified (for tblgen hackers),
   1422       // filter the set of instruction aliases we consider, based on the target
   1423       // instruction.
   1424       if (!StringRef(Alias->ResultInst->TheDef->getName())
   1425             .startswith( MatchPrefix))
   1426         continue;
   1427 
   1428       auto II = llvm::make_unique<MatchableInfo>(std::move(Alias));
   1429 
   1430       II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix,
   1431                      Variant);
   1432 
   1433       // Validate the alias definitions.
   1434       II->validate(CommentDelimiter, false);
   1435 
   1436       Matchables.push_back(std::move(II));
   1437     }
   1438   }
   1439 
   1440   // Build info for the register classes.
   1441   buildRegisterClasses(SingletonRegisters);
   1442 
   1443   // Build info for the user defined assembly operand classes.
   1444   buildOperandClasses();
   1445 
   1446   // Build the information about matchables, now that we have fully formed
   1447   // classes.
   1448   std::vector<std::unique_ptr<MatchableInfo>> NewMatchables;
   1449   for (auto &II : Matchables) {
   1450     // Parse the tokens after the mnemonic.
   1451     // Note: buildInstructionOperandReference may insert new AsmOperands, so
   1452     // don't precompute the loop bound.
   1453     for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
   1454       MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
   1455       StringRef Token = Op.Token;
   1456 
   1457       // Check for singleton registers.
   1458       if (Record *RegRecord = II->AsmOperands[i].SingletonReg) {
   1459         Op.Class = RegisterClasses[RegRecord];
   1460         assert(Op.Class && Op.Class->Registers.size() == 1 &&
   1461                "Unexpected class for singleton register");
   1462         continue;
   1463       }
   1464 
   1465       // Check for simple tokens.
   1466       if (Token[0] != '$') {
   1467         Op.Class = getTokenClass(Token);
   1468         continue;
   1469       }
   1470 
   1471       if (Token.size() > 1 && isdigit(Token[1])) {
   1472         Op.Class = getTokenClass(Token);
   1473         continue;
   1474       }
   1475 
   1476       // Otherwise this is an operand reference.
   1477       StringRef OperandName;
   1478       if (Token[1] == '{')
   1479         OperandName = Token.substr(2, Token.size() - 3);
   1480       else
   1481         OperandName = Token.substr(1);
   1482 
   1483       if (II->DefRec.is<const CodeGenInstruction*>())
   1484         buildInstructionOperandReference(II.get(), OperandName, i);
   1485       else
   1486         buildAliasOperandReference(II.get(), OperandName, Op);
   1487     }
   1488 
   1489     if (II->DefRec.is<const CodeGenInstruction*>()) {
   1490       II->buildInstructionResultOperands();
   1491       // If the instruction has a two-operand alias, build up the
   1492       // matchable here. We'll add them in bulk at the end to avoid
   1493       // confusing this loop.
   1494       std::string Constraint =
   1495         II->TheDef->getValueAsString("TwoOperandAliasConstraint");
   1496       if (Constraint != "") {
   1497         // Start by making a copy of the original matchable.
   1498         auto AliasII = llvm::make_unique<MatchableInfo>(*II);
   1499 
   1500         // Adjust it to be a two-operand alias.
   1501         AliasII->formTwoOperandAlias(Constraint);
   1502 
   1503         // Add the alias to the matchables list.
   1504         NewMatchables.push_back(std::move(AliasII));
   1505       }
   1506     } else
   1507       II->buildAliasResultOperands();
   1508   }
   1509   if (!NewMatchables.empty())
   1510     Matchables.insert(Matchables.end(),
   1511                       std::make_move_iterator(NewMatchables.begin()),
   1512                       std::make_move_iterator(NewMatchables.end()));
   1513 
   1514   // Process token alias definitions and set up the associated superclass
   1515   // information.
   1516   std::vector<Record*> AllTokenAliases =
   1517     Records.getAllDerivedDefinitions("TokenAlias");
   1518   for (unsigned i = 0, e = AllTokenAliases.size(); i != e; ++i) {
   1519     Record *Rec = AllTokenAliases[i];
   1520     ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
   1521     ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
   1522     if (FromClass == ToClass)
   1523       PrintFatalError(Rec->getLoc(),
   1524                     "error: Destination value identical to source value.");
   1525     FromClass->SuperClasses.push_back(ToClass);
   1526   }
   1527 
   1528   // Reorder classes so that classes precede super classes.
   1529   Classes.sort();
   1530 }
   1531 
   1532 /// buildInstructionOperandReference - The specified operand is a reference to a
   1533 /// named operand such as $src.  Resolve the Class and OperandInfo pointers.
   1534 void AsmMatcherInfo::
   1535 buildInstructionOperandReference(MatchableInfo *II,
   1536                                  StringRef OperandName,
   1537                                  unsigned AsmOpIdx) {
   1538   const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
   1539   const CGIOperandList &Operands = CGI.Operands;
   1540   MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
   1541 
   1542   // Map this token to an operand.
   1543   unsigned Idx;
   1544   if (!Operands.hasOperandNamed(OperandName, Idx))
   1545     PrintFatalError(II->TheDef->getLoc(),
   1546                     "error: unable to find operand: '" + OperandName + "'");
   1547 
   1548   // If the instruction operand has multiple suboperands, but the parser
   1549   // match class for the asm operand is still the default "ImmAsmOperand",
   1550   // then handle each suboperand separately.
   1551   if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
   1552     Record *Rec = Operands[Idx].Rec;
   1553     assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
   1554     Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
   1555     if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
   1556       // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
   1557       StringRef Token = Op->Token; // save this in case Op gets moved
   1558       for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
   1559         MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token);
   1560         NewAsmOp.SubOpIdx = SI;
   1561         II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
   1562       }
   1563       // Replace Op with first suboperand.
   1564       Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
   1565       Op->SubOpIdx = 0;
   1566     }
   1567   }
   1568 
   1569   // Set up the operand class.
   1570   Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
   1571 
   1572   // If the named operand is tied, canonicalize it to the untied operand.
   1573   // For example, something like:
   1574   //   (outs GPR:$dst), (ins GPR:$src)
   1575   // with an asmstring of
   1576   //   "inc $src"
   1577   // we want to canonicalize to:
   1578   //   "inc $dst"
   1579   // so that we know how to provide the $dst operand when filling in the result.
   1580   int OITied = -1;
   1581   if (Operands[Idx].MINumOperands == 1)
   1582     OITied = Operands[Idx].getTiedRegister();
   1583   if (OITied != -1) {
   1584     // The tied operand index is an MIOperand index, find the operand that
   1585     // contains it.
   1586     std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
   1587     OperandName = Operands[Idx.first].Name;
   1588     Op->SubOpIdx = Idx.second;
   1589   }
   1590 
   1591   Op->SrcOpName = OperandName;
   1592 }
   1593 
   1594 /// buildAliasOperandReference - When parsing an operand reference out of the
   1595 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the
   1596 /// operand reference is by looking it up in the result pattern definition.
   1597 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
   1598                                                 StringRef OperandName,
   1599                                                 MatchableInfo::AsmOperand &Op) {
   1600   const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
   1601 
   1602   // Set up the operand class.
   1603   for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
   1604     if (CGA.ResultOperands[i].isRecord() &&
   1605         CGA.ResultOperands[i].getName() == OperandName) {
   1606       // It's safe to go with the first one we find, because CodeGenInstAlias
   1607       // validates that all operands with the same name have the same record.
   1608       Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
   1609       // Use the match class from the Alias definition, not the
   1610       // destination instruction, as we may have an immediate that's
   1611       // being munged by the match class.
   1612       Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
   1613                                  Op.SubOpIdx);
   1614       Op.SrcOpName = OperandName;
   1615       return;
   1616     }
   1617 
   1618   PrintFatalError(II->TheDef->getLoc(),
   1619                   "error: unable to find operand: '" + OperandName + "'");
   1620 }
   1621 
   1622 void MatchableInfo::buildInstructionResultOperands() {
   1623   const CodeGenInstruction *ResultInst = getResultInst();
   1624 
   1625   // Loop over all operands of the result instruction, determining how to
   1626   // populate them.
   1627   for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
   1628     const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i];
   1629 
   1630     // If this is a tied operand, just copy from the previously handled operand.
   1631     int TiedOp = -1;
   1632     if (OpInfo.MINumOperands == 1)
   1633       TiedOp = OpInfo.getTiedRegister();
   1634     if (TiedOp != -1) {
   1635       ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
   1636       continue;
   1637     }
   1638 
   1639     // Find out what operand from the asmparser this MCInst operand comes from.
   1640     int SrcOperand = findAsmOperandNamed(OpInfo.Name);
   1641     if (OpInfo.Name.empty() || SrcOperand == -1) {
   1642       // This may happen for operands that are tied to a suboperand of a
   1643       // complex operand.  Simply use a dummy value here; nobody should
   1644       // use this operand slot.
   1645       // FIXME: The long term goal is for the MCOperand list to not contain
   1646       // tied operands at all.
   1647       ResOperands.push_back(ResOperand::getImmOp(0));
   1648       continue;
   1649     }
   1650 
   1651     // Check if the one AsmOperand populates the entire operand.
   1652     unsigned NumOperands = OpInfo.MINumOperands;
   1653     if (AsmOperands[SrcOperand].SubOpIdx == -1) {
   1654       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
   1655       continue;
   1656     }
   1657 
   1658     // Add a separate ResOperand for each suboperand.
   1659     for (unsigned AI = 0; AI < NumOperands; ++AI) {
   1660       assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
   1661              AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
   1662              "unexpected AsmOperands for suboperands");
   1663       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
   1664     }
   1665   }
   1666 }
   1667 
   1668 void MatchableInfo::buildAliasResultOperands() {
   1669   const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
   1670   const CodeGenInstruction *ResultInst = getResultInst();
   1671 
   1672   // Loop over all operands of the result instruction, determining how to
   1673   // populate them.
   1674   unsigned AliasOpNo = 0;
   1675   unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
   1676   for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
   1677     const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
   1678 
   1679     // If this is a tied operand, just copy from the previously handled operand.
   1680     int TiedOp = -1;
   1681     if (OpInfo->MINumOperands == 1)
   1682       TiedOp = OpInfo->getTiedRegister();
   1683     if (TiedOp != -1) {
   1684       ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
   1685       continue;
   1686     }
   1687 
   1688     // Handle all the suboperands for this operand.
   1689     const std::string &OpName = OpInfo->Name;
   1690     for ( ; AliasOpNo <  LastOpNo &&
   1691             CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
   1692       int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
   1693 
   1694       // Find out what operand from the asmparser that this MCInst operand
   1695       // comes from.
   1696       switch (CGA.ResultOperands[AliasOpNo].Kind) {
   1697       case CodeGenInstAlias::ResultOperand::K_Record: {
   1698         StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
   1699         int SrcOperand = findAsmOperand(Name, SubIdx);
   1700         if (SrcOperand == -1)
   1701           PrintFatalError(TheDef->getLoc(), "Instruction '" +
   1702                         TheDef->getName() + "' has operand '" + OpName +
   1703                         "' that doesn't appear in asm string!");
   1704         unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
   1705         ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
   1706                                                         NumOperands));
   1707         break;
   1708       }
   1709       case CodeGenInstAlias::ResultOperand::K_Imm: {
   1710         int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
   1711         ResOperands.push_back(ResOperand::getImmOp(ImmVal));
   1712         break;
   1713       }
   1714       case CodeGenInstAlias::ResultOperand::K_Reg: {
   1715         Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
   1716         ResOperands.push_back(ResOperand::getRegOp(Reg));
   1717         break;
   1718       }
   1719       }
   1720     }
   1721   }
   1722 }
   1723 
   1724 static unsigned getConverterOperandID(const std::string &Name,
   1725                                       SmallSetVector<std::string, 16> &Table,
   1726                                       bool &IsNew) {
   1727   IsNew = Table.insert(Name);
   1728 
   1729   unsigned ID = IsNew ? Table.size() - 1 :
   1730     std::find(Table.begin(), Table.end(), Name) - Table.begin();
   1731 
   1732   assert(ID < Table.size());
   1733 
   1734   return ID;
   1735 }
   1736 
   1737 
   1738 static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
   1739                              std::vector<std::unique_ptr<MatchableInfo>> &Infos,
   1740                              raw_ostream &OS) {
   1741   SmallSetVector<std::string, 16> OperandConversionKinds;
   1742   SmallSetVector<std::string, 16> InstructionConversionKinds;
   1743   std::vector<std::vector<uint8_t> > ConversionTable;
   1744   size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
   1745 
   1746   // TargetOperandClass - This is the target's operand class, like X86Operand.
   1747   std::string TargetOperandClass = Target.getName() + "Operand";
   1748 
   1749   // Write the convert function to a separate stream, so we can drop it after
   1750   // the enum. We'll build up the conversion handlers for the individual
   1751   // operand types opportunistically as we encounter them.
   1752   std::string ConvertFnBody;
   1753   raw_string_ostream CvtOS(ConvertFnBody);
   1754   // Start the unified conversion function.
   1755   CvtOS << "void " << Target.getName() << ClassName << "::\n"
   1756         << "convertToMCInst(unsigned Kind, MCInst &Inst, "
   1757         << "unsigned Opcode,\n"
   1758         << "                const OperandVector"
   1759         << " &Operands) {\n"
   1760         << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
   1761         << "  const uint8_t *Converter = ConversionTable[Kind];\n"
   1762         << "  Inst.setOpcode(Opcode);\n"
   1763         << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
   1764         << "    switch (*p) {\n"
   1765         << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
   1766         << "    case CVT_Reg:\n"
   1767         << "      static_cast<" << TargetOperandClass
   1768         << "&>(*Operands[*(p + 1)]).addRegOperands(Inst, 1);\n"
   1769         << "      break;\n"
   1770         << "    case CVT_Tied:\n"
   1771         << "      Inst.addOperand(Inst.getOperand(*(p + 1)));\n"
   1772         << "      break;\n";
   1773 
   1774   std::string OperandFnBody;
   1775   raw_string_ostream OpOS(OperandFnBody);
   1776   // Start the operand number lookup function.
   1777   OpOS << "void " << Target.getName() << ClassName << "::\n"
   1778        << "convertToMapAndConstraints(unsigned Kind,\n";
   1779   OpOS.indent(27);
   1780   OpOS << "const OperandVector &Operands) {\n"
   1781        << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
   1782        << "  unsigned NumMCOperands = 0;\n"
   1783        << "  const uint8_t *Converter = ConversionTable[Kind];\n"
   1784        << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
   1785        << "    switch (*p) {\n"
   1786        << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
   1787        << "    case CVT_Reg:\n"
   1788        << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
   1789        << "      Operands[*(p + 1)]->setConstraint(\"r\");\n"
   1790        << "      ++NumMCOperands;\n"
   1791        << "      break;\n"
   1792        << "    case CVT_Tied:\n"
   1793        << "      ++NumMCOperands;\n"
   1794        << "      break;\n";
   1795 
   1796   // Pre-populate the operand conversion kinds with the standard always
   1797   // available entries.
   1798   OperandConversionKinds.insert("CVT_Done");
   1799   OperandConversionKinds.insert("CVT_Reg");
   1800   OperandConversionKinds.insert("CVT_Tied");
   1801   enum { CVT_Done, CVT_Reg, CVT_Tied };
   1802 
   1803   for (auto &II : Infos) {
   1804     // Check if we have a custom match function.
   1805     std::string AsmMatchConverter =
   1806       II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
   1807     if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) {
   1808       std::string Signature = "ConvertCustom_" + AsmMatchConverter;
   1809       II->ConversionFnKind = Signature;
   1810 
   1811       // Check if we have already generated this signature.
   1812       if (!InstructionConversionKinds.insert(Signature))
   1813         continue;
   1814 
   1815       // Remember this converter for the kind enum.
   1816       unsigned KindID = OperandConversionKinds.size();
   1817       OperandConversionKinds.insert("CVT_" +
   1818                                     getEnumNameForToken(AsmMatchConverter));
   1819 
   1820       // Add the converter row for this instruction.
   1821       ConversionTable.emplace_back();
   1822       ConversionTable.back().push_back(KindID);
   1823       ConversionTable.back().push_back(CVT_Done);
   1824 
   1825       // Add the handler to the conversion driver function.
   1826       CvtOS << "    case CVT_"
   1827             << getEnumNameForToken(AsmMatchConverter) << ":\n"
   1828             << "      " << AsmMatchConverter << "(Inst, Operands);\n"
   1829             << "      break;\n";
   1830 
   1831       // FIXME: Handle the operand number lookup for custom match functions.
   1832       continue;
   1833     }
   1834 
   1835     // Build the conversion function signature.
   1836     std::string Signature = "Convert";
   1837 
   1838     std::vector<uint8_t> ConversionRow;
   1839 
   1840     // Compute the convert enum and the case body.
   1841     MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 );
   1842 
   1843     for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) {
   1844       const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i];
   1845 
   1846       // Generate code to populate each result operand.
   1847       switch (OpInfo.Kind) {
   1848       case MatchableInfo::ResOperand::RenderAsmOperand: {
   1849         // This comes from something we parsed.
   1850         const MatchableInfo::AsmOperand &Op =
   1851           II->AsmOperands[OpInfo.AsmOperandNum];
   1852 
   1853         // Registers are always converted the same, don't duplicate the
   1854         // conversion function based on them.
   1855         Signature += "__";
   1856         std::string Class;
   1857         Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
   1858         Signature += Class;
   1859         Signature += utostr(OpInfo.MINumOperands);
   1860         Signature += "_" + itostr(OpInfo.AsmOperandNum);
   1861 
   1862         // Add the conversion kind, if necessary, and get the associated ID
   1863         // the index of its entry in the vector).
   1864         std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
   1865                                      Op.Class->RenderMethod);
   1866         Name = getEnumNameForToken(Name);
   1867 
   1868         bool IsNewConverter = false;
   1869         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
   1870                                             IsNewConverter);
   1871 
   1872         // Add the operand entry to the instruction kind conversion row.
   1873         ConversionRow.push_back(ID);
   1874         ConversionRow.push_back(OpInfo.AsmOperandNum);
   1875 
   1876         if (!IsNewConverter)
   1877           break;
   1878 
   1879         // This is a new operand kind. Add a handler for it to the
   1880         // converter driver.
   1881         CvtOS << "    case " << Name << ":\n"
   1882               << "      static_cast<" << TargetOperandClass
   1883               << "&>(*Operands[*(p + 1)])." << Op.Class->RenderMethod
   1884               << "(Inst, " << OpInfo.MINumOperands << ");\n"
   1885               << "      break;\n";
   1886 
   1887         // Add a handler for the operand number lookup.
   1888         OpOS << "    case " << Name << ":\n"
   1889              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
   1890 
   1891         if (Op.Class->isRegisterClass())
   1892           OpOS << "      Operands[*(p + 1)]->setConstraint(\"r\");\n";
   1893         else
   1894           OpOS << "      Operands[*(p + 1)]->setConstraint(\"m\");\n";
   1895         OpOS << "      NumMCOperands += " << OpInfo.MINumOperands << ";\n"
   1896              << "      break;\n";
   1897         break;
   1898       }
   1899       case MatchableInfo::ResOperand::TiedOperand: {
   1900         // If this operand is tied to a previous one, just copy the MCInst
   1901         // operand from the earlier one.We can only tie single MCOperand values.
   1902         assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
   1903         unsigned TiedOp = OpInfo.TiedOperandNum;
   1904         assert(i > TiedOp && "Tied operand precedes its target!");
   1905         Signature += "__Tie" + utostr(TiedOp);
   1906         ConversionRow.push_back(CVT_Tied);
   1907         ConversionRow.push_back(TiedOp);
   1908         break;
   1909       }
   1910       case MatchableInfo::ResOperand::ImmOperand: {
   1911         int64_t Val = OpInfo.ImmVal;
   1912         std::string Ty = "imm_" + itostr(Val);
   1913         Ty = getEnumNameForToken(Ty);
   1914         Signature += "__" + Ty;
   1915 
   1916         std::string Name = "CVT_" + Ty;
   1917         bool IsNewConverter = false;
   1918         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
   1919                                             IsNewConverter);
   1920         // Add the operand entry to the instruction kind conversion row.
   1921         ConversionRow.push_back(ID);
   1922         ConversionRow.push_back(0);
   1923 
   1924         if (!IsNewConverter)
   1925           break;
   1926 
   1927         CvtOS << "    case " << Name << ":\n"
   1928               << "      Inst.addOperand(MCOperand::createImm(" << Val << "));\n"
   1929               << "      break;\n";
   1930 
   1931         OpOS << "    case " << Name << ":\n"
   1932              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
   1933              << "      Operands[*(p + 1)]->setConstraint(\"\");\n"
   1934              << "      ++NumMCOperands;\n"
   1935              << "      break;\n";
   1936         break;
   1937       }
   1938       case MatchableInfo::ResOperand::RegOperand: {
   1939         std::string Reg, Name;
   1940         if (!OpInfo.Register) {
   1941           Name = "reg0";
   1942           Reg = "0";
   1943         } else {
   1944           Reg = getQualifiedName(OpInfo.Register);
   1945           Name = "reg" + OpInfo.Register->getName();
   1946         }
   1947         Signature += "__" + Name;
   1948         Name = "CVT_" + Name;
   1949         bool IsNewConverter = false;
   1950         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
   1951                                             IsNewConverter);
   1952         // Add the operand entry to the instruction kind conversion row.
   1953         ConversionRow.push_back(ID);
   1954         ConversionRow.push_back(0);
   1955 
   1956         if (!IsNewConverter)
   1957           break;
   1958         CvtOS << "    case " << Name << ":\n"
   1959               << "      Inst.addOperand(MCOperand::createReg(" << Reg << "));\n"
   1960               << "      break;\n";
   1961 
   1962         OpOS << "    case " << Name << ":\n"
   1963              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
   1964              << "      Operands[*(p + 1)]->setConstraint(\"m\");\n"
   1965              << "      ++NumMCOperands;\n"
   1966              << "      break;\n";
   1967       }
   1968       }
   1969     }
   1970 
   1971     // If there were no operands, add to the signature to that effect
   1972     if (Signature == "Convert")
   1973       Signature += "_NoOperands";
   1974 
   1975     II->ConversionFnKind = Signature;
   1976 
   1977     // Save the signature. If we already have it, don't add a new row
   1978     // to the table.
   1979     if (!InstructionConversionKinds.insert(Signature))
   1980       continue;
   1981 
   1982     // Add the row to the table.
   1983     ConversionTable.push_back(std::move(ConversionRow));
   1984   }
   1985 
   1986   // Finish up the converter driver function.
   1987   CvtOS << "    }\n  }\n}\n\n";
   1988 
   1989   // Finish up the operand number lookup function.
   1990   OpOS << "    }\n  }\n}\n\n";
   1991 
   1992   OS << "namespace {\n";
   1993 
   1994   // Output the operand conversion kind enum.
   1995   OS << "enum OperatorConversionKind {\n";
   1996   for (unsigned i = 0, e = OperandConversionKinds.size(); i != e; ++i)
   1997     OS << "  " << OperandConversionKinds[i] << ",\n";
   1998   OS << "  CVT_NUM_CONVERTERS\n";
   1999   OS << "};\n\n";
   2000 
   2001   // Output the instruction conversion kind enum.
   2002   OS << "enum InstructionConversionKind {\n";
   2003   for (const std::string &Signature : InstructionConversionKinds)
   2004     OS << "  " << Signature << ",\n";
   2005   OS << "  CVT_NUM_SIGNATURES\n";
   2006   OS << "};\n\n";
   2007 
   2008 
   2009   OS << "} // end anonymous namespace\n\n";
   2010 
   2011   // Output the conversion table.
   2012   OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
   2013      << MaxRowLength << "] = {\n";
   2014 
   2015   for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
   2016     assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
   2017     OS << "  // " << InstructionConversionKinds[Row] << "\n";
   2018     OS << "  { ";
   2019     for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2)
   2020       OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "
   2021          << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
   2022     OS << "CVT_Done },\n";
   2023   }
   2024 
   2025   OS << "};\n\n";
   2026 
   2027   // Spit out the conversion driver function.
   2028   OS << CvtOS.str();
   2029 
   2030   // Spit out the operand number lookup function.
   2031   OS << OpOS.str();
   2032 }
   2033 
   2034 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
   2035 static void emitMatchClassEnumeration(CodeGenTarget &Target,
   2036                                       std::forward_list<ClassInfo> &Infos,
   2037                                       raw_ostream &OS) {
   2038   OS << "namespace {\n\n";
   2039 
   2040   OS << "/// MatchClassKind - The kinds of classes which participate in\n"
   2041      << "/// instruction matching.\n";
   2042   OS << "enum MatchClassKind {\n";
   2043   OS << "  InvalidMatchClass = 0,\n";
   2044   for (const auto &CI : Infos) {
   2045     OS << "  " << CI.Name << ", // ";
   2046     if (CI.Kind == ClassInfo::Token) {
   2047       OS << "'" << CI.ValueName << "'\n";
   2048     } else if (CI.isRegisterClass()) {
   2049       if (!CI.ValueName.empty())
   2050         OS << "register class '" << CI.ValueName << "'\n";
   2051       else
   2052         OS << "derived register class\n";
   2053     } else {
   2054       OS << "user defined class '" << CI.ValueName << "'\n";
   2055     }
   2056   }
   2057   OS << "  NumMatchClassKinds\n";
   2058   OS << "};\n\n";
   2059 
   2060   OS << "}\n\n";
   2061 }
   2062 
   2063 /// emitValidateOperandClass - Emit the function to validate an operand class.
   2064 static void emitValidateOperandClass(AsmMatcherInfo &Info,
   2065                                      raw_ostream &OS) {
   2066   OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, "
   2067      << "MatchClassKind Kind) {\n";
   2068   OS << "  " << Info.Target.getName() << "Operand &Operand = ("
   2069      << Info.Target.getName() << "Operand&)GOp;\n";
   2070 
   2071   // The InvalidMatchClass is not to match any operand.
   2072   OS << "  if (Kind == InvalidMatchClass)\n";
   2073   OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n\n";
   2074 
   2075   // Check for Token operands first.
   2076   // FIXME: Use a more specific diagnostic type.
   2077   OS << "  if (Operand.isToken())\n";
   2078   OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
   2079      << "             MCTargetAsmParser::Match_Success :\n"
   2080      << "             MCTargetAsmParser::Match_InvalidOperand;\n\n";
   2081 
   2082   // Check the user classes. We don't care what order since we're only
   2083   // actually matching against one of them.
   2084   for (const auto &CI : Info.Classes) {
   2085     if (!CI.isUserClass())
   2086       continue;
   2087 
   2088     OS << "  // '" << CI.ClassName << "' class\n";
   2089     OS << "  if (Kind == " << CI.Name << ") {\n";
   2090     OS << "    if (Operand." << CI.PredicateMethod << "())\n";
   2091     OS << "      return MCTargetAsmParser::Match_Success;\n";
   2092     if (!CI.DiagnosticType.empty())
   2093       OS << "    return " << Info.Target.getName() << "AsmParser::Match_"
   2094          << CI.DiagnosticType << ";\n";
   2095     OS << "  }\n\n";
   2096   }
   2097 
   2098   // Check for register operands, including sub-classes.
   2099   OS << "  if (Operand.isReg()) {\n";
   2100   OS << "    MatchClassKind OpKind;\n";
   2101   OS << "    switch (Operand.getReg()) {\n";
   2102   OS << "    default: OpKind = InvalidMatchClass; break;\n";
   2103   for (const auto &RC : Info.RegisterClasses)
   2104     OS << "    case " << Info.Target.getName() << "::"
   2105        << RC.first->getName() << ": OpKind = " << RC.second->Name
   2106        << "; break;\n";
   2107   OS << "    }\n";
   2108   OS << "    return isSubclass(OpKind, Kind) ? "
   2109      << "MCTargetAsmParser::Match_Success :\n                             "
   2110      << "         MCTargetAsmParser::Match_InvalidOperand;\n  }\n\n";
   2111 
   2112   // Generic fallthrough match failure case for operands that don't have
   2113   // specialized diagnostic types.
   2114   OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
   2115   OS << "}\n\n";
   2116 }
   2117 
   2118 /// emitIsSubclass - Emit the subclass predicate function.
   2119 static void emitIsSubclass(CodeGenTarget &Target,
   2120                            std::forward_list<ClassInfo> &Infos,
   2121                            raw_ostream &OS) {
   2122   OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
   2123   OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
   2124   OS << "  if (A == B)\n";
   2125   OS << "    return true;\n\n";
   2126 
   2127   std::string OStr;
   2128   raw_string_ostream SS(OStr);
   2129   unsigned Count = 0;
   2130   SS << "  switch (A) {\n";
   2131   SS << "  default:\n";
   2132   SS << "    return false;\n";
   2133   for (const auto &A : Infos) {
   2134     std::vector<StringRef> SuperClasses;
   2135     for (const auto &B : Infos) {
   2136       if (&A != &B && A.isSubsetOf(B))
   2137         SuperClasses.push_back(B.Name);
   2138     }
   2139 
   2140     if (SuperClasses.empty())
   2141       continue;
   2142     ++Count;
   2143 
   2144     SS << "\n  case " << A.Name << ":\n";
   2145 
   2146     if (SuperClasses.size() == 1) {
   2147       SS << "    return B == " << SuperClasses.back().str() << ";\n";
   2148       continue;
   2149     }
   2150 
   2151     if (!SuperClasses.empty()) {
   2152       SS << "    switch (B) {\n";
   2153       SS << "    default: return false;\n";
   2154       for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
   2155         SS << "    case " << SuperClasses[i].str() << ": return true;\n";
   2156       SS << "    }\n";
   2157     } else {
   2158       // No case statement to emit
   2159       SS << "    return false;\n";
   2160     }
   2161   }
   2162   SS << "  }\n";
   2163 
   2164   // If there were case statements emitted into the string stream, write them
   2165   // to the output stream, otherwise write the default.
   2166   if (Count)
   2167     OS << SS.str();
   2168   else
   2169     OS << "  return false;\n";
   2170 
   2171   OS << "}\n\n";
   2172 }
   2173 
   2174 /// emitMatchTokenString - Emit the function to match a token string to the
   2175 /// appropriate match class value.
   2176 static void emitMatchTokenString(CodeGenTarget &Target,
   2177                                  std::forward_list<ClassInfo> &Infos,
   2178                                  raw_ostream &OS) {
   2179   // Construct the match list.
   2180   std::vector<StringMatcher::StringPair> Matches;
   2181   for (const auto &CI : Infos) {
   2182     if (CI.Kind == ClassInfo::Token)
   2183       Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";");
   2184   }
   2185 
   2186   OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
   2187 
   2188   StringMatcher("Name", Matches, OS).Emit();
   2189 
   2190   OS << "  return InvalidMatchClass;\n";
   2191   OS << "}\n\n";
   2192 }
   2193 
   2194 /// emitMatchRegisterName - Emit the function to match a string to the target
   2195 /// specific register enum.
   2196 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
   2197                                   raw_ostream &OS) {
   2198   // Construct the match list.
   2199   std::vector<StringMatcher::StringPair> Matches;
   2200   const auto &Regs = Target.getRegBank().getRegisters();
   2201   for (const CodeGenRegister &Reg : Regs) {
   2202     if (Reg.TheDef->getValueAsString("AsmName").empty())
   2203       continue;
   2204 
   2205     Matches.emplace_back(Reg.TheDef->getValueAsString("AsmName"),
   2206                          "return " + utostr(Reg.EnumValue) + ";");
   2207   }
   2208 
   2209   OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
   2210 
   2211   StringMatcher("Name", Matches, OS).Emit();
   2212 
   2213   OS << "  return 0;\n";
   2214   OS << "}\n\n";
   2215 }
   2216 
   2217 static const char *getMinimalTypeForRange(uint64_t Range) {
   2218   assert(Range <= 0xFFFFFFFFFFFFFFFFULL && "Enum too large");
   2219   if (Range > 0xFFFFFFFFULL)
   2220     return "uint64_t";
   2221   if (Range > 0xFFFF)
   2222     return "uint32_t";
   2223   if (Range > 0xFF)
   2224     return "uint16_t";
   2225   return "uint8_t";
   2226 }
   2227 
   2228 static const char *getMinimalRequiredFeaturesType(const AsmMatcherInfo &Info) {
   2229   uint64_t MaxIndex = Info.SubtargetFeatures.size();
   2230   if (MaxIndex > 0)
   2231     MaxIndex--;
   2232   return getMinimalTypeForRange(1ULL << MaxIndex);
   2233 }
   2234 
   2235 /// emitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
   2236 /// definitions.
   2237 static void emitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
   2238                                                 raw_ostream &OS) {
   2239   OS << "// Flags for subtarget features that participate in "
   2240      << "instruction matching.\n";
   2241   OS << "enum SubtargetFeatureFlag : " << getMinimalRequiredFeaturesType(Info)
   2242      << " {\n";
   2243   for (const auto &SF : Info.SubtargetFeatures) {
   2244     const SubtargetFeatureInfo &SFI = SF.second;
   2245     OS << "  " << SFI.getEnumName() << " = (1ULL << " << SFI.Index << "),\n";
   2246   }
   2247   OS << "  Feature_None = 0\n";
   2248   OS << "};\n\n";
   2249 }
   2250 
   2251 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
   2252 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
   2253   // Get the set of diagnostic types from all of the operand classes.
   2254   std::set<StringRef> Types;
   2255   for (std::map<Record*, ClassInfo*>::const_iterator
   2256        I = Info.AsmOperandClasses.begin(),
   2257        E = Info.AsmOperandClasses.end(); I != E; ++I) {
   2258     if (!I->second->DiagnosticType.empty())
   2259       Types.insert(I->second->DiagnosticType);
   2260   }
   2261 
   2262   if (Types.empty()) return;
   2263 
   2264   // Now emit the enum entries.
   2265   for (std::set<StringRef>::const_iterator I = Types.begin(), E = Types.end();
   2266        I != E; ++I)
   2267     OS << "  Match_" << *I << ",\n";
   2268   OS << "  END_OPERAND_DIAGNOSTIC_TYPES\n";
   2269 }
   2270 
   2271 /// emitGetSubtargetFeatureName - Emit the helper function to get the
   2272 /// user-level name for a subtarget feature.
   2273 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
   2274   OS << "// User-level names for subtarget features that participate in\n"
   2275      << "// instruction matching.\n"
   2276      << "static const char *getSubtargetFeatureName(uint64_t Val) {\n";
   2277   if (!Info.SubtargetFeatures.empty()) {
   2278     OS << "  switch(Val) {\n";
   2279     for (const auto &SF : Info.SubtargetFeatures) {
   2280       const SubtargetFeatureInfo &SFI = SF.second;
   2281       // FIXME: Totally just a placeholder name to get the algorithm working.
   2282       OS << "  case " << SFI.getEnumName() << ": return \""
   2283          << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
   2284     }
   2285     OS << "  default: return \"(unknown)\";\n";
   2286     OS << "  }\n";
   2287   } else {
   2288     // Nothing to emit, so skip the switch
   2289     OS << "  return \"(unknown)\";\n";
   2290   }
   2291   OS << "}\n\n";
   2292 }
   2293 
   2294 /// emitComputeAvailableFeatures - Emit the function to compute the list of
   2295 /// available features given a subtarget.
   2296 static void emitComputeAvailableFeatures(AsmMatcherInfo &Info,
   2297                                          raw_ostream &OS) {
   2298   std::string ClassName =
   2299     Info.AsmParser->getValueAsString("AsmParserClassName");
   2300 
   2301   OS << "uint64_t " << Info.Target.getName() << ClassName << "::\n"
   2302      << "ComputeAvailableFeatures(const FeatureBitset& FB) const {\n";
   2303   OS << "  uint64_t Features = 0;\n";
   2304   for (const auto &SF : Info.SubtargetFeatures) {
   2305     const SubtargetFeatureInfo &SFI = SF.second;
   2306 
   2307     OS << "  if (";
   2308     std::string CondStorage =
   2309       SFI.TheDef->getValueAsString("AssemblerCondString");
   2310     StringRef Conds = CondStorage;
   2311     std::pair<StringRef,StringRef> Comma = Conds.split(',');
   2312     bool First = true;
   2313     do {
   2314       if (!First)
   2315         OS << " && ";
   2316 
   2317       bool Neg = false;
   2318       StringRef Cond = Comma.first;
   2319       if (Cond[0] == '!') {
   2320         Neg = true;
   2321         Cond = Cond.substr(1);
   2322       }
   2323 
   2324       OS << "(";
   2325       if (Neg)
   2326         OS << "!";
   2327       OS << "FB[" << Info.Target.getName() << "::" << Cond << "])";
   2328 
   2329       if (Comma.second.empty())
   2330         break;
   2331 
   2332       First = false;
   2333       Comma = Comma.second.split(',');
   2334     } while (true);
   2335 
   2336     OS << ")\n";
   2337     OS << "    Features |= " << SFI.getEnumName() << ";\n";
   2338   }
   2339   OS << "  return Features;\n";
   2340   OS << "}\n\n";
   2341 }
   2342 
   2343 static std::string GetAliasRequiredFeatures(Record *R,
   2344                                             const AsmMatcherInfo &Info) {
   2345   std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
   2346   std::string Result;
   2347   unsigned NumFeatures = 0;
   2348   for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
   2349     const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
   2350 
   2351     if (!F)
   2352       PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
   2353                     "' is not marked as an AssemblerPredicate!");
   2354 
   2355     if (NumFeatures)
   2356       Result += '|';
   2357 
   2358     Result += F->getEnumName();
   2359     ++NumFeatures;
   2360   }
   2361 
   2362   if (NumFeatures > 1)
   2363     Result = '(' + Result + ')';
   2364   return Result;
   2365 }
   2366 
   2367 static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info,
   2368                                      std::vector<Record*> &Aliases,
   2369                                      unsigned Indent = 0,
   2370                                   StringRef AsmParserVariantName = StringRef()){
   2371   // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
   2372   // iteration order of the map is stable.
   2373   std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
   2374 
   2375   for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
   2376     Record *R = Aliases[i];
   2377     // FIXME: Allow AssemblerVariantName to be a comma separated list.
   2378     std::string AsmVariantName = R->getValueAsString("AsmVariantName");
   2379     if (AsmVariantName != AsmParserVariantName)
   2380       continue;
   2381     AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
   2382   }
   2383   if (AliasesFromMnemonic.empty())
   2384     return;
   2385 
   2386   // Process each alias a "from" mnemonic at a time, building the code executed
   2387   // by the string remapper.
   2388   std::vector<StringMatcher::StringPair> Cases;
   2389   for (std::map<std::string, std::vector<Record*> >::iterator
   2390        I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
   2391        I != E; ++I) {
   2392     const std::vector<Record*> &ToVec = I->second;
   2393 
   2394     // Loop through each alias and emit code that handles each case.  If there
   2395     // are two instructions without predicates, emit an error.  If there is one,
   2396     // emit it last.
   2397     std::string MatchCode;
   2398     int AliasWithNoPredicate = -1;
   2399 
   2400     for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
   2401       Record *R = ToVec[i];
   2402       std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
   2403 
   2404       // If this unconditionally matches, remember it for later and diagnose
   2405       // duplicates.
   2406       if (FeatureMask.empty()) {
   2407         if (AliasWithNoPredicate != -1) {
   2408           // We can't have two aliases from the same mnemonic with no predicate.
   2409           PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
   2410                      "two MnemonicAliases with the same 'from' mnemonic!");
   2411           PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
   2412         }
   2413 
   2414         AliasWithNoPredicate = i;
   2415         continue;
   2416       }
   2417       if (R->getValueAsString("ToMnemonic") == I->first)
   2418         PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
   2419 
   2420       if (!MatchCode.empty())
   2421         MatchCode += "else ";
   2422       MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
   2423       MatchCode += "  Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
   2424     }
   2425 
   2426     if (AliasWithNoPredicate != -1) {
   2427       Record *R = ToVec[AliasWithNoPredicate];
   2428       if (!MatchCode.empty())
   2429         MatchCode += "else\n  ";
   2430       MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
   2431     }
   2432 
   2433     MatchCode += "return;";
   2434 
   2435     Cases.push_back(std::make_pair(I->first, MatchCode));
   2436   }
   2437   StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
   2438 }
   2439 
   2440 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
   2441 /// emit a function for them and return true, otherwise return false.
   2442 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
   2443                                 CodeGenTarget &Target) {
   2444   // Ignore aliases when match-prefix is set.
   2445   if (!MatchPrefix.empty())
   2446     return false;
   2447 
   2448   std::vector<Record*> Aliases =
   2449     Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
   2450   if (Aliases.empty()) return false;
   2451 
   2452   OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
   2453     "uint64_t Features, unsigned VariantID) {\n";
   2454   OS << "  switch (VariantID) {\n";
   2455   unsigned VariantCount = Target.getAsmParserVariantCount();
   2456   for (unsigned VC = 0; VC != VariantCount; ++VC) {
   2457     Record *AsmVariant = Target.getAsmParserVariant(VC);
   2458     int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
   2459     std::string AsmParserVariantName = AsmVariant->getValueAsString("Name");
   2460     OS << "    case " << AsmParserVariantNo << ":\n";
   2461     emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
   2462                              AsmParserVariantName);
   2463     OS << "    break;\n";
   2464   }
   2465   OS << "  }\n";
   2466 
   2467   // Emit aliases that apply to all variants.
   2468   emitMnemonicAliasVariant(OS, Info, Aliases);
   2469 
   2470   OS << "}\n\n";
   2471 
   2472   return true;
   2473 }
   2474 
   2475 static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
   2476                               const AsmMatcherInfo &Info, StringRef ClassName,
   2477                               StringToOffsetTable &StringTable,
   2478                               unsigned MaxMnemonicIndex) {
   2479   unsigned MaxMask = 0;
   2480   for (std::vector<OperandMatchEntry>::const_iterator it =
   2481        Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
   2482        it != ie; ++it) {
   2483     MaxMask |= it->OperandMask;
   2484   }
   2485 
   2486   // Emit the static custom operand parsing table;
   2487   OS << "namespace {\n";
   2488   OS << "  struct OperandMatchEntry {\n";
   2489   OS << "    " << getMinimalRequiredFeaturesType(Info)
   2490                << " RequiredFeatures;\n";
   2491   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
   2492                << " Mnemonic;\n";
   2493   OS << "    " << getMinimalTypeForRange(std::distance(
   2494                       Info.Classes.begin(), Info.Classes.end())) << " Class;\n";
   2495   OS << "    " << getMinimalTypeForRange(MaxMask)
   2496                << " OperandMask;\n\n";
   2497   OS << "    StringRef getMnemonic() const {\n";
   2498   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
   2499   OS << "                       MnemonicTable[Mnemonic]);\n";
   2500   OS << "    }\n";
   2501   OS << "  };\n\n";
   2502 
   2503   OS << "  // Predicate for searching for an opcode.\n";
   2504   OS << "  struct LessOpcodeOperand {\n";
   2505   OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
   2506   OS << "      return LHS.getMnemonic()  < RHS;\n";
   2507   OS << "    }\n";
   2508   OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
   2509   OS << "      return LHS < RHS.getMnemonic();\n";
   2510   OS << "    }\n";
   2511   OS << "    bool operator()(const OperandMatchEntry &LHS,";
   2512   OS << " const OperandMatchEntry &RHS) {\n";
   2513   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
   2514   OS << "    }\n";
   2515   OS << "  };\n";
   2516 
   2517   OS << "} // end anonymous namespace.\n\n";
   2518 
   2519   OS << "static const OperandMatchEntry OperandMatchTable["
   2520      << Info.OperandMatchInfo.size() << "] = {\n";
   2521 
   2522   OS << "  /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
   2523   for (std::vector<OperandMatchEntry>::const_iterator it =
   2524        Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
   2525        it != ie; ++it) {
   2526     const OperandMatchEntry &OMI = *it;
   2527     const MatchableInfo &II = *OMI.MI;
   2528 
   2529     OS << "  { ";
   2530 
   2531     // Write the required features mask.
   2532     if (!II.RequiredFeatures.empty()) {
   2533       for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
   2534         if (i) OS << "|";
   2535         OS << II.RequiredFeatures[i]->getEnumName();
   2536       }
   2537     } else
   2538       OS << "0";
   2539 
   2540     // Store a pascal-style length byte in the mnemonic.
   2541     std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
   2542     OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
   2543        << " /* " << II.Mnemonic << " */, ";
   2544 
   2545     OS << OMI.CI->Name;
   2546 
   2547     OS << ", " << OMI.OperandMask;
   2548     OS << " /* ";
   2549     bool printComma = false;
   2550     for (int i = 0, e = 31; i !=e; ++i)
   2551       if (OMI.OperandMask & (1 << i)) {
   2552         if (printComma)
   2553           OS << ", ";
   2554         OS << i;
   2555         printComma = true;
   2556       }
   2557     OS << " */";
   2558 
   2559     OS << " },\n";
   2560   }
   2561   OS << "};\n\n";
   2562 
   2563   // Emit the operand class switch to call the correct custom parser for
   2564   // the found operand class.
   2565   OS << Target.getName() << ClassName << "::OperandMatchResultTy "
   2566      << Target.getName() << ClassName << "::\n"
   2567      << "tryCustomParseOperand(OperandVector"
   2568      << " &Operands,\n                      unsigned MCK) {\n\n"
   2569      << "  switch(MCK) {\n";
   2570 
   2571   for (const auto &CI : Info.Classes) {
   2572     if (CI.ParserMethod.empty())
   2573       continue;
   2574     OS << "  case " << CI.Name << ":\n"
   2575        << "    return " << CI.ParserMethod << "(Operands);\n";
   2576   }
   2577 
   2578   OS << "  default:\n";
   2579   OS << "    return MatchOperand_NoMatch;\n";
   2580   OS << "  }\n";
   2581   OS << "  return MatchOperand_NoMatch;\n";
   2582   OS << "}\n\n";
   2583 
   2584   // Emit the static custom operand parser. This code is very similar with
   2585   // the other matcher. Also use MatchResultTy here just in case we go for
   2586   // a better error handling.
   2587   OS << Target.getName() << ClassName << "::OperandMatchResultTy "
   2588      << Target.getName() << ClassName << "::\n"
   2589      << "MatchOperandParserImpl(OperandVector"
   2590      << " &Operands,\n                       StringRef Mnemonic) {\n";
   2591 
   2592   // Emit code to get the available features.
   2593   OS << "  // Get the current feature set.\n";
   2594   OS << "  uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
   2595 
   2596   OS << "  // Get the next operand index.\n";
   2597   OS << "  unsigned NextOpNum = Operands.size();\n";
   2598 
   2599   // Emit code to search the table.
   2600   OS << "  // Search the table.\n";
   2601   OS << "  std::pair<const OperandMatchEntry*, const OperandMatchEntry*>";
   2602   OS << " MnemonicRange\n";
   2603   OS << "       (OperandMatchTable, OperandMatchTable+";
   2604   OS << Info.OperandMatchInfo.size() << ");\n";
   2605   OS << "  if(!Mnemonic.empty())\n";
   2606   OS << "    MnemonicRange = std::equal_range(OperandMatchTable,";
   2607   OS << " OperandMatchTable+"
   2608      << Info.OperandMatchInfo.size() << ", Mnemonic,\n"
   2609      << "                     LessOpcodeOperand());\n\n";
   2610 
   2611   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
   2612   OS << "    return MatchOperand_NoMatch;\n\n";
   2613 
   2614   OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n"
   2615      << "       *ie = MnemonicRange.second; it != ie; ++it) {\n";
   2616 
   2617   OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
   2618   OS << "    assert(Mnemonic == it->getMnemonic());\n\n";
   2619 
   2620   // Emit check that the required features are available.
   2621   OS << "    // check if the available features match\n";
   2622   OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
   2623      << "!= it->RequiredFeatures) {\n";
   2624   OS << "      continue;\n";
   2625   OS << "    }\n\n";
   2626 
   2627   // Emit check to ensure the operand number matches.
   2628   OS << "    // check if the operand in question has a custom parser.\n";
   2629   OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n";
   2630   OS << "      continue;\n\n";
   2631 
   2632   // Emit call to the custom parser method
   2633   OS << "    // call custom parse method to handle the operand\n";
   2634   OS << "    OperandMatchResultTy Result = ";
   2635   OS << "tryCustomParseOperand(Operands, it->Class);\n";
   2636   OS << "    if (Result != MatchOperand_NoMatch)\n";
   2637   OS << "      return Result;\n";
   2638   OS << "  }\n\n";
   2639 
   2640   OS << "  // Okay, we had no match.\n";
   2641   OS << "  return MatchOperand_NoMatch;\n";
   2642   OS << "}\n\n";
   2643 }
   2644 
   2645 void AsmMatcherEmitter::run(raw_ostream &OS) {
   2646   CodeGenTarget Target(Records);
   2647   Record *AsmParser = Target.getAsmParser();
   2648   std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
   2649 
   2650   // Compute the information on the instructions to match.
   2651   AsmMatcherInfo Info(AsmParser, Target, Records);
   2652   Info.buildInfo();
   2653 
   2654   // Sort the instruction table using the partial order on classes. We use
   2655   // stable_sort to ensure that ambiguous instructions are still
   2656   // deterministically ordered.
   2657   std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
   2658                    [](const std::unique_ptr<MatchableInfo> &a,
   2659                       const std::unique_ptr<MatchableInfo> &b){
   2660                      return *a < *b;});
   2661 
   2662   DEBUG_WITH_TYPE("instruction_info", {
   2663       for (const auto &MI : Info.Matchables)
   2664         MI->dump();
   2665     });
   2666 
   2667   // Check for ambiguous matchables.
   2668   DEBUG_WITH_TYPE("ambiguous_instrs", {
   2669     unsigned NumAmbiguous = 0;
   2670     for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
   2671          ++I) {
   2672       for (auto J = std::next(I); J != E; ++J) {
   2673         const MatchableInfo &A = **I;
   2674         const MatchableInfo &B = **J;
   2675 
   2676         if (A.couldMatchAmbiguouslyWith(B)) {
   2677           errs() << "warning: ambiguous matchables:\n";
   2678           A.dump();
   2679           errs() << "\nis incomparable with:\n";
   2680           B.dump();
   2681           errs() << "\n\n";
   2682           ++NumAmbiguous;
   2683         }
   2684       }
   2685     }
   2686     if (NumAmbiguous)
   2687       errs() << "warning: " << NumAmbiguous
   2688              << " ambiguous matchables!\n";
   2689   });
   2690 
   2691   // Compute the information on the custom operand parsing.
   2692   Info.buildOperandMatchInfo();
   2693 
   2694   // Write the output.
   2695 
   2696   // Information for the class declaration.
   2697   OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
   2698   OS << "#undef GET_ASSEMBLER_HEADER\n";
   2699   OS << "  // This should be included into the middle of the declaration of\n";
   2700   OS << "  // your subclasses implementation of MCTargetAsmParser.\n";
   2701   OS << "  uint64_t ComputeAvailableFeatures(const FeatureBitset& FB) const;\n";
   2702   OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
   2703      << "unsigned Opcode,\n"
   2704      << "                       const OperandVector "
   2705      << "&Operands);\n";
   2706   OS << "  void convertToMapAndConstraints(unsigned Kind,\n                ";
   2707   OS << "           const OperandVector &Operands) override;\n";
   2708   OS << "  bool mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) override;\n";
   2709   OS << "  unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
   2710      << "                                MCInst &Inst,\n"
   2711      << "                                uint64_t &ErrorInfo,"
   2712      << " bool matchingInlineAsm,\n"
   2713      << "                                unsigned VariantID = 0);\n";
   2714 
   2715   if (!Info.OperandMatchInfo.empty()) {
   2716     OS << "\n  enum OperandMatchResultTy {\n";
   2717     OS << "    MatchOperand_Success,    // operand matched successfully\n";
   2718     OS << "    MatchOperand_NoMatch,    // operand did not match\n";
   2719     OS << "    MatchOperand_ParseFail   // operand matched but had errors\n";
   2720     OS << "  };\n";
   2721     OS << "  OperandMatchResultTy MatchOperandParserImpl(\n";
   2722     OS << "    OperandVector &Operands,\n";
   2723     OS << "    StringRef Mnemonic);\n";
   2724 
   2725     OS << "  OperandMatchResultTy tryCustomParseOperand(\n";
   2726     OS << "    OperandVector &Operands,\n";
   2727     OS << "    unsigned MCK);\n\n";
   2728   }
   2729 
   2730   OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
   2731 
   2732   // Emit the operand match diagnostic enum names.
   2733   OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
   2734   OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
   2735   emitOperandDiagnosticTypes(Info, OS);
   2736   OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
   2737 
   2738 
   2739   OS << "\n#ifdef GET_REGISTER_MATCHER\n";
   2740   OS << "#undef GET_REGISTER_MATCHER\n\n";
   2741 
   2742   // Emit the subtarget feature enumeration.
   2743   emitSubtargetFeatureFlagEnumeration(Info, OS);
   2744 
   2745   // Emit the function to match a register name to number.
   2746   // This should be omitted for Mips target
   2747   if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
   2748     emitMatchRegisterName(Target, AsmParser, OS);
   2749 
   2750   OS << "#endif // GET_REGISTER_MATCHER\n\n";
   2751 
   2752   OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
   2753   OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
   2754 
   2755   // Generate the helper function to get the names for subtarget features.
   2756   emitGetSubtargetFeatureName(Info, OS);
   2757 
   2758   OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
   2759 
   2760   OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
   2761   OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
   2762 
   2763   // Generate the function that remaps for mnemonic aliases.
   2764   bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
   2765 
   2766   // Generate the convertToMCInst function to convert operands into an MCInst.
   2767   // Also, generate the convertToMapAndConstraints function for MS-style inline
   2768   // assembly.  The latter doesn't actually generate a MCInst.
   2769   emitConvertFuncs(Target, ClassName, Info.Matchables, OS);
   2770 
   2771   // Emit the enumeration for classes which participate in matching.
   2772   emitMatchClassEnumeration(Target, Info.Classes, OS);
   2773 
   2774   // Emit the routine to match token strings to their match class.
   2775   emitMatchTokenString(Target, Info.Classes, OS);
   2776 
   2777   // Emit the subclass predicate routine.
   2778   emitIsSubclass(Target, Info.Classes, OS);
   2779 
   2780   // Emit the routine to validate an operand against a match class.
   2781   emitValidateOperandClass(Info, OS);
   2782 
   2783   // Emit the available features compute function.
   2784   emitComputeAvailableFeatures(Info, OS);
   2785 
   2786 
   2787   StringToOffsetTable StringTable;
   2788 
   2789   size_t MaxNumOperands = 0;
   2790   unsigned MaxMnemonicIndex = 0;
   2791   bool HasDeprecation = false;
   2792   for (const auto &MI : Info.Matchables) {
   2793     MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
   2794     HasDeprecation |= MI->HasDeprecation;
   2795 
   2796     // Store a pascal-style length byte in the mnemonic.
   2797     std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
   2798     MaxMnemonicIndex = std::max(MaxMnemonicIndex,
   2799                         StringTable.GetOrAddStringOffset(LenMnemonic, false));
   2800   }
   2801 
   2802   OS << "static const char *const MnemonicTable =\n";
   2803   StringTable.EmitString(OS);
   2804   OS << ";\n\n";
   2805 
   2806   // Emit the static match table; unused classes get initalized to 0 which is
   2807   // guaranteed to be InvalidMatchClass.
   2808   //
   2809   // FIXME: We can reduce the size of this table very easily. First, we change
   2810   // it so that store the kinds in separate bit-fields for each index, which
   2811   // only needs to be the max width used for classes at that index (we also need
   2812   // to reject based on this during classification). If we then make sure to
   2813   // order the match kinds appropriately (putting mnemonics last), then we
   2814   // should only end up using a few bits for each class, especially the ones
   2815   // following the mnemonic.
   2816   OS << "namespace {\n";
   2817   OS << "  struct MatchEntry {\n";
   2818   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
   2819                << " Mnemonic;\n";
   2820   OS << "    uint16_t Opcode;\n";
   2821   OS << "    " << getMinimalTypeForRange(Info.Matchables.size())
   2822                << " ConvertFn;\n";
   2823   OS << "    " << getMinimalRequiredFeaturesType(Info)
   2824                << " RequiredFeatures;\n";
   2825   OS << "    " << getMinimalTypeForRange(
   2826                       std::distance(Info.Classes.begin(), Info.Classes.end()))
   2827      << " Classes[" << MaxNumOperands << "];\n";
   2828   OS << "    StringRef getMnemonic() const {\n";
   2829   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
   2830   OS << "                       MnemonicTable[Mnemonic]);\n";
   2831   OS << "    }\n";
   2832   OS << "  };\n\n";
   2833 
   2834   OS << "  // Predicate for searching for an opcode.\n";
   2835   OS << "  struct LessOpcode {\n";
   2836   OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
   2837   OS << "      return LHS.getMnemonic() < RHS;\n";
   2838   OS << "    }\n";
   2839   OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
   2840   OS << "      return LHS < RHS.getMnemonic();\n";
   2841   OS << "    }\n";
   2842   OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
   2843   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
   2844   OS << "    }\n";
   2845   OS << "  };\n";
   2846 
   2847   OS << "} // end anonymous namespace.\n\n";
   2848 
   2849   unsigned VariantCount = Target.getAsmParserVariantCount();
   2850   for (unsigned VC = 0; VC != VariantCount; ++VC) {
   2851     Record *AsmVariant = Target.getAsmParserVariant(VC);
   2852     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
   2853 
   2854     OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
   2855 
   2856     for (const auto &MI : Info.Matchables) {
   2857       if (MI->AsmVariantID != AsmVariantNo)
   2858         continue;
   2859 
   2860       // Store a pascal-style length byte in the mnemonic.
   2861       std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
   2862       OS << "  { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
   2863          << " /* " << MI->Mnemonic << " */, "
   2864          << Target.getName() << "::"
   2865          << MI->getResultInst()->TheDef->getName() << ", "
   2866          << MI->ConversionFnKind << ", ";
   2867 
   2868       // Write the required features mask.
   2869       if (!MI->RequiredFeatures.empty()) {
   2870         for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) {
   2871           if (i) OS << "|";
   2872           OS << MI->RequiredFeatures[i]->getEnumName();
   2873         }
   2874       } else
   2875         OS << "0";
   2876 
   2877       OS << ", { ";
   2878       for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
   2879         const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
   2880 
   2881         if (i) OS << ", ";
   2882         OS << Op.Class->Name;
   2883       }
   2884       OS << " }, },\n";
   2885     }
   2886 
   2887     OS << "};\n\n";
   2888   }
   2889 
   2890   // A method to determine if a mnemonic is in the list.
   2891   OS << "bool " << Target.getName() << ClassName << "::\n"
   2892      << "mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) {\n";
   2893   OS << "  // Find the appropriate table for this asm variant.\n";
   2894   OS << "  const MatchEntry *Start, *End;\n";
   2895   OS << "  switch (VariantID) {\n";
   2896   OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
   2897   for (unsigned VC = 0; VC != VariantCount; ++VC) {
   2898     Record *AsmVariant = Target.getAsmParserVariant(VC);
   2899     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
   2900     OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
   2901        << "); End = std::end(MatchTable" << VC << "); break;\n";
   2902   }
   2903   OS << "  }\n";
   2904   OS << "  // Search the table.\n";
   2905   OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
   2906   OS << "    std::equal_range(Start, End, Mnemonic, LessOpcode());\n";
   2907   OS << "  return MnemonicRange.first != MnemonicRange.second;\n";
   2908   OS << "}\n\n";
   2909 
   2910   // Finally, build the match function.
   2911   OS << "unsigned " << Target.getName() << ClassName << "::\n"
   2912      << "MatchInstructionImpl(const OperandVector &Operands,\n";
   2913   OS << "                     MCInst &Inst, uint64_t &ErrorInfo,\n"
   2914      << "                     bool matchingInlineAsm, unsigned VariantID) {\n";
   2915 
   2916   OS << "  // Eliminate obvious mismatches.\n";
   2917   OS << "  if (Operands.size() > " << MaxNumOperands << ") {\n";
   2918   OS << "    ErrorInfo = " << MaxNumOperands << ";\n";
   2919   OS << "    return Match_InvalidOperand;\n";
   2920   OS << "  }\n\n";
   2921 
   2922   // Emit code to get the available features.
   2923   OS << "  // Get the current feature set.\n";
   2924   OS << "  uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
   2925 
   2926   OS << "  // Get the instruction mnemonic, which is the first token.\n";
   2927   OS << "  StringRef Mnemonic;\n";
   2928   OS << "  if (Operands[0]->isToken())\n";
   2929   OS << "    Mnemonic = ((" << Target.getName()
   2930      << "Operand&)*Operands[0]).getToken();\n\n";
   2931 
   2932   if (HasMnemonicAliases) {
   2933     OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
   2934     OS << "  applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
   2935   }
   2936 
   2937   // Emit code to compute the class list for this operand vector.
   2938   OS << "  // Some state to try to produce better error messages.\n";
   2939   OS << "  bool HadMatchOtherThanFeatures = false;\n";
   2940   OS << "  bool HadMatchOtherThanPredicate = false;\n";
   2941   OS << "  unsigned RetCode = Match_InvalidOperand;\n";
   2942   OS << "  uint64_t MissingFeatures = ~0ULL;\n";
   2943   OS << "  // Set ErrorInfo to the operand that mismatches if it is\n";
   2944   OS << "  // wrong for all instances of the instruction.\n";
   2945   OS << "  ErrorInfo = ~0ULL;\n";
   2946 
   2947   // Emit code to search the table.
   2948   OS << "  // Find the appropriate table for this asm variant.\n";
   2949   OS << "  const MatchEntry *Start, *End;\n";
   2950   OS << "  switch (VariantID) {\n";
   2951   OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
   2952   for (unsigned VC = 0; VC != VariantCount; ++VC) {
   2953     Record *AsmVariant = Target.getAsmParserVariant(VC);
   2954     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
   2955     OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
   2956        << "); End = std::end(MatchTable" << VC << "); break;\n";
   2957   }
   2958   OS << "  }\n";
   2959   OS << "  // Search the table.\n";
   2960   OS << "  std::pair<const MatchEntry*, const MatchEntry*>"
   2961         "MnemonicRange(Start, End);\n";
   2962   OS << "  unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
   2963   OS << "  if (!Mnemonic.empty())\n";
   2964   OS << "    MnemonicRange = std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
   2965 
   2966   OS << "  // Return a more specific error code if no mnemonics match.\n";
   2967   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
   2968   OS << "    return Match_MnemonicFail;\n\n";
   2969 
   2970   OS << "  for (const MatchEntry *it = MnemonicRange.first, "
   2971      << "*ie = MnemonicRange.second;\n";
   2972   OS << "       it != ie; ++it) {\n";
   2973 
   2974   // Emit check that the subclasses match.
   2975   OS << "    bool OperandsValid = true;\n";
   2976   OS << "    for (unsigned i = SIndex; i != " << MaxNumOperands << "; ++i) {\n";
   2977   OS << "      auto Formal = static_cast<MatchClassKind>(it->Classes[i]);\n";
   2978   OS << "      if (i >= Operands.size()) {\n";
   2979   OS << "        OperandsValid = (Formal == " <<"InvalidMatchClass);\n";
   2980   OS << "        if (!OperandsValid) ErrorInfo = i;\n";
   2981   OS << "        break;\n";
   2982   OS << "      }\n";
   2983   OS << "      MCParsedAsmOperand &Actual = *Operands[i];\n";
   2984   OS << "      unsigned Diag = validateOperandClass(Actual, Formal);\n";
   2985   OS << "      if (Diag == Match_Success)\n";
   2986   OS << "        continue;\n";
   2987   OS << "      // If the generic handler indicates an invalid operand\n";
   2988   OS << "      // failure, check for a special case.\n";
   2989   OS << "      if (Diag == Match_InvalidOperand) {\n";
   2990   OS << "        Diag = validateTargetOperandClass(Actual, Formal);\n";
   2991   OS << "        if (Diag == Match_Success)\n";
   2992   OS << "          continue;\n";
   2993   OS << "      }\n";
   2994   OS << "      // If this operand is broken for all of the instances of this\n";
   2995   OS << "      // mnemonic, keep track of it so we can report loc info.\n";
   2996   OS << "      // If we already had a match that only failed due to a\n";
   2997   OS << "      // target predicate, that diagnostic is preferred.\n";
   2998   OS << "      if (!HadMatchOtherThanPredicate &&\n";
   2999   OS << "          (it == MnemonicRange.first || ErrorInfo <= i)) {\n";
   3000   OS << "        ErrorInfo = i;\n";
   3001   OS << "        // InvalidOperand is the default. Prefer specificity.\n";
   3002   OS << "        if (Diag != Match_InvalidOperand)\n";
   3003   OS << "          RetCode = Diag;\n";
   3004   OS << "      }\n";
   3005   OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
   3006   OS << "      OperandsValid = false;\n";
   3007   OS << "      break;\n";
   3008   OS << "    }\n\n";
   3009 
   3010   OS << "    if (!OperandsValid) continue;\n";
   3011 
   3012   // Emit check that the required features are available.
   3013   OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
   3014      << "!= it->RequiredFeatures) {\n";
   3015   OS << "      HadMatchOtherThanFeatures = true;\n";
   3016   OS << "      uint64_t NewMissingFeatures = it->RequiredFeatures & "
   3017         "~AvailableFeatures;\n";
   3018   OS << "      if (countPopulation(NewMissingFeatures) <=\n"
   3019         "          countPopulation(MissingFeatures))\n";
   3020   OS << "        MissingFeatures = NewMissingFeatures;\n";
   3021   OS << "      continue;\n";
   3022   OS << "    }\n";
   3023   OS << "\n";
   3024   OS << "    Inst.clear();\n\n";
   3025   OS << "    if (matchingInlineAsm) {\n";
   3026   OS << "      Inst.setOpcode(it->Opcode);\n";
   3027   OS << "      convertToMapAndConstraints(it->ConvertFn, Operands);\n";
   3028   OS << "      return Match_Success;\n";
   3029   OS << "    }\n\n";
   3030   OS << "    // We have selected a definite instruction, convert the parsed\n"
   3031      << "    // operands into the appropriate MCInst.\n";
   3032   OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
   3033   OS << "\n";
   3034 
   3035   // Verify the instruction with the target-specific match predicate function.
   3036   OS << "    // We have a potential match. Check the target predicate to\n"
   3037      << "    // handle any context sensitive constraints.\n"
   3038      << "    unsigned MatchResult;\n"
   3039      << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
   3040      << " Match_Success) {\n"
   3041      << "      Inst.clear();\n"
   3042      << "      RetCode = MatchResult;\n"
   3043      << "      HadMatchOtherThanPredicate = true;\n"
   3044      << "      continue;\n"
   3045      << "    }\n\n";
   3046 
   3047   // Call the post-processing function, if used.
   3048   std::string InsnCleanupFn =
   3049     AsmParser->getValueAsString("AsmParserInstCleanup");
   3050   if (!InsnCleanupFn.empty())
   3051     OS << "    " << InsnCleanupFn << "(Inst);\n";
   3052 
   3053   if (HasDeprecation) {
   3054     OS << "    std::string Info;\n";
   3055     OS << "    if (MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, getSTI(), Info)) {\n";
   3056     OS << "      SMLoc Loc = ((" << Target.getName()
   3057        << "Operand&)*Operands[0]).getStartLoc();\n";
   3058     OS << "      getParser().Warning(Loc, Info, None);\n";
   3059     OS << "    }\n";
   3060   }
   3061 
   3062   OS << "    return Match_Success;\n";
   3063   OS << "  }\n\n";
   3064 
   3065   OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
   3066   OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
   3067   OS << "    return RetCode;\n\n";
   3068   OS << "  // Missing feature matches return which features were missing\n";
   3069   OS << "  ErrorInfo = MissingFeatures;\n";
   3070   OS << "  return Match_MissingFeature;\n";
   3071   OS << "}\n\n";
   3072 
   3073   if (!Info.OperandMatchInfo.empty())
   3074     emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
   3075                              MaxMnemonicIndex);
   3076 
   3077   OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
   3078 }
   3079 
   3080 namespace llvm {
   3081 
   3082 void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
   3083   emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
   3084   AsmMatcherEmitter(RK).run(OS);
   3085 }
   3086 
   3087 } // End llvm namespace
   3088