Home | History | Annotate | Download | only in IR
      1 //===-- llvm/InlineAsm.h - Class to represent inline asm strings-*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This class represents the inline asm strings, which are Value*'s that are
     11 // used as the callee operand of call instructions.  InlineAsm's are uniqued
     12 // like constants, and created via InlineAsm::get(...).
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_IR_INLINEASM_H
     17 #define LLVM_IR_INLINEASM_H
     18 
     19 #include "llvm/ADT/StringRef.h"
     20 #include "llvm/IR/Value.h"
     21 #include <vector>
     22 
     23 namespace llvm {
     24 
     25 class PointerType;
     26 class FunctionType;
     27 class Module;
     28 
     29 struct InlineAsmKeyType;
     30 template <class ConstantClass> class ConstantUniqueMap;
     31 
     32 class InlineAsm : public Value {
     33 public:
     34   enum AsmDialect {
     35     AD_ATT,
     36     AD_Intel
     37   };
     38 
     39 private:
     40   friend struct InlineAsmKeyType;
     41   friend class ConstantUniqueMap<InlineAsm>;
     42 
     43   InlineAsm(const InlineAsm &) = delete;
     44   void operator=(const InlineAsm&) = delete;
     45 
     46   std::string AsmString, Constraints;
     47   FunctionType *FTy;
     48   bool HasSideEffects;
     49   bool IsAlignStack;
     50   AsmDialect Dialect;
     51 
     52   InlineAsm(FunctionType *Ty, const std::string &AsmString,
     53             const std::string &Constraints, bool hasSideEffects,
     54             bool isAlignStack, AsmDialect asmDialect);
     55   ~InlineAsm() override;
     56 
     57   /// When the ConstantUniqueMap merges two types and makes two InlineAsms
     58   /// identical, it destroys one of them with this method.
     59   void destroyConstant();
     60 
     61 public:
     62   /// InlineAsm::get - Return the specified uniqued inline asm string.
     63   ///
     64   static InlineAsm *get(FunctionType *Ty, StringRef AsmString,
     65                         StringRef Constraints, bool hasSideEffects,
     66                         bool isAlignStack = false,
     67                         AsmDialect asmDialect = AD_ATT);
     68 
     69   bool hasSideEffects() const { return HasSideEffects; }
     70   bool isAlignStack() const { return IsAlignStack; }
     71   AsmDialect getDialect() const { return Dialect; }
     72 
     73   /// getType - InlineAsm's are always pointers.
     74   ///
     75   PointerType *getType() const {
     76     return reinterpret_cast<PointerType*>(Value::getType());
     77   }
     78 
     79   /// getFunctionType - InlineAsm's are always pointers to functions.
     80   ///
     81   FunctionType *getFunctionType() const;
     82 
     83   const std::string &getAsmString() const { return AsmString; }
     84   const std::string &getConstraintString() const { return Constraints; }
     85 
     86   /// Verify - This static method can be used by the parser to check to see if
     87   /// the specified constraint string is legal for the type.  This returns true
     88   /// if legal, false if not.
     89   ///
     90   static bool Verify(FunctionType *Ty, StringRef Constraints);
     91 
     92   // Constraint String Parsing
     93   enum ConstraintPrefix {
     94     isInput,            // 'x'
     95     isOutput,           // '=x'
     96     isClobber           // '~x'
     97   };
     98 
     99   typedef std::vector<std::string> ConstraintCodeVector;
    100 
    101   struct SubConstraintInfo {
    102     /// MatchingInput - If this is not -1, this is an output constraint where an
    103     /// input constraint is required to match it (e.g. "0").  The value is the
    104     /// constraint number that matches this one (for example, if this is
    105     /// constraint #0 and constraint #4 has the value "0", this will be 4).
    106     signed char MatchingInput;
    107     /// Code - The constraint code, either the register name (in braces) or the
    108     /// constraint letter/number.
    109     ConstraintCodeVector Codes;
    110     /// Default constructor.
    111     SubConstraintInfo() : MatchingInput(-1) {}
    112   };
    113 
    114   typedef std::vector<SubConstraintInfo> SubConstraintInfoVector;
    115   struct ConstraintInfo;
    116   typedef std::vector<ConstraintInfo> ConstraintInfoVector;
    117 
    118   struct ConstraintInfo {
    119     /// Type - The basic type of the constraint: input/output/clobber
    120     ///
    121     ConstraintPrefix Type;
    122 
    123     /// isEarlyClobber - "&": output operand writes result before inputs are all
    124     /// read.  This is only ever set for an output operand.
    125     bool isEarlyClobber;
    126 
    127     /// MatchingInput - If this is not -1, this is an output constraint where an
    128     /// input constraint is required to match it (e.g. "0").  The value is the
    129     /// constraint number that matches this one (for example, if this is
    130     /// constraint #0 and constraint #4 has the value "0", this will be 4).
    131     signed char MatchingInput;
    132 
    133     /// hasMatchingInput - Return true if this is an output constraint that has
    134     /// a matching input constraint.
    135     bool hasMatchingInput() const { return MatchingInput != -1; }
    136 
    137     /// isCommutative - This is set to true for a constraint that is commutative
    138     /// with the next operand.
    139     bool isCommutative;
    140 
    141     /// isIndirect - True if this operand is an indirect operand.  This means
    142     /// that the address of the source or destination is present in the call
    143     /// instruction, instead of it being returned or passed in explicitly.  This
    144     /// is represented with a '*' in the asm string.
    145     bool isIndirect;
    146 
    147     /// Code - The constraint code, either the register name (in braces) or the
    148     /// constraint letter/number.
    149     ConstraintCodeVector Codes;
    150 
    151     /// isMultipleAlternative - '|': has multiple-alternative constraints.
    152     bool isMultipleAlternative;
    153 
    154     /// multipleAlternatives - If there are multiple alternative constraints,
    155     /// this array will contain them.  Otherwise it will be empty.
    156     SubConstraintInfoVector multipleAlternatives;
    157 
    158     /// The currently selected alternative constraint index.
    159     unsigned currentAlternativeIndex;
    160 
    161     /// Default constructor.
    162     ConstraintInfo();
    163 
    164     /// Parse - Analyze the specified string (e.g. "=*&{eax}") and fill in the
    165     /// fields in this structure.  If the constraint string is not understood,
    166     /// return true, otherwise return false.
    167     bool Parse(StringRef Str, ConstraintInfoVector &ConstraintsSoFar);
    168 
    169     /// selectAlternative - Point this constraint to the alternative constraint
    170     /// indicated by the index.
    171     void selectAlternative(unsigned index);
    172   };
    173 
    174   /// ParseConstraints - Split up the constraint string into the specific
    175   /// constraints and their prefixes.  If this returns an empty vector, and if
    176   /// the constraint string itself isn't empty, there was an error parsing.
    177   static ConstraintInfoVector ParseConstraints(StringRef ConstraintString);
    178 
    179   /// ParseConstraints - Parse the constraints of this inlineasm object,
    180   /// returning them the same way that ParseConstraints(str) does.
    181   ConstraintInfoVector ParseConstraints() const {
    182     return ParseConstraints(Constraints);
    183   }
    184 
    185   // Methods for support type inquiry through isa, cast, and dyn_cast:
    186   static inline bool classof(const Value *V) {
    187     return V->getValueID() == Value::InlineAsmVal;
    188   }
    189 
    190   // These are helper methods for dealing with flags in the INLINEASM SDNode
    191   // in the backend.
    192   //
    193   // The encoding of the flag word is currently:
    194   //   Bits 2-0 - A Kind_* value indicating the kind of the operand.
    195   //   Bits 15-3 - The number of SDNode operands associated with this inline
    196   //               assembly operand.
    197   //   If bit 31 is set:
    198   //     Bit 30-16 - The operand number that this operand must match.
    199   //                 When bits 2-0 are Kind_Mem, the Constraint_* value must be
    200   //                 obtained from the flags for this operand number.
    201   //   Else if bits 2-0 are Kind_Mem:
    202   //     Bit 30-16 - A Constraint_* value indicating the original constraint
    203   //                 code.
    204   //   Else:
    205   //     Bit 30-16 - The register class ID to use for the operand.
    206 
    207   enum : uint32_t {
    208     // Fixed operands on an INLINEASM SDNode.
    209     Op_InputChain = 0,
    210     Op_AsmString = 1,
    211     Op_MDNode = 2,
    212     Op_ExtraInfo = 3,    // HasSideEffects, IsAlignStack, AsmDialect.
    213     Op_FirstOperand = 4,
    214 
    215     // Fixed operands on an INLINEASM MachineInstr.
    216     MIOp_AsmString = 0,
    217     MIOp_ExtraInfo = 1,    // HasSideEffects, IsAlignStack, AsmDialect.
    218     MIOp_FirstOperand = 2,
    219 
    220     // Interpretation of the MIOp_ExtraInfo bit field.
    221     Extra_HasSideEffects = 1,
    222     Extra_IsAlignStack = 2,
    223     Extra_AsmDialect = 4,
    224     Extra_MayLoad = 8,
    225     Extra_MayStore = 16,
    226 
    227     // Inline asm operands map to multiple SDNode / MachineInstr operands.
    228     // The first operand is an immediate describing the asm operand, the low
    229     // bits is the kind:
    230     Kind_RegUse = 1,             // Input register, "r".
    231     Kind_RegDef = 2,             // Output register, "=r".
    232     Kind_RegDefEarlyClobber = 3, // Early-clobber output register, "=&r".
    233     Kind_Clobber = 4,            // Clobbered register, "~r".
    234     Kind_Imm = 5,                // Immediate.
    235     Kind_Mem = 6,                // Memory operand, "m".
    236 
    237     // Memory constraint codes.
    238     // These could be tablegenerated but there's little need to do that since
    239     // there's plenty of space in the encoding to support the union of all
    240     // constraint codes for all targets.
    241     Constraint_Unknown = 0,
    242     Constraint_es,
    243     Constraint_i,
    244     Constraint_m,
    245     Constraint_o,
    246     Constraint_v,
    247     Constraint_Q,
    248     Constraint_R,
    249     Constraint_S,
    250     Constraint_T,
    251     Constraint_Um,
    252     Constraint_Un,
    253     Constraint_Uq,
    254     Constraint_Us,
    255     Constraint_Ut,
    256     Constraint_Uv,
    257     Constraint_Uy,
    258     Constraint_X,
    259     Constraint_Z,
    260     Constraint_ZC,
    261     Constraint_Zy,
    262     Constraints_Max = Constraint_Zy,
    263     Constraints_ShiftAmount = 16,
    264 
    265     Flag_MatchingOperand = 0x80000000
    266   };
    267 
    268   static unsigned getFlagWord(unsigned Kind, unsigned NumOps) {
    269     assert(((NumOps << 3) & ~0xffff) == 0 && "Too many inline asm operands!");
    270     assert(Kind >= Kind_RegUse && Kind <= Kind_Mem && "Invalid Kind");
    271     return Kind | (NumOps << 3);
    272   }
    273 
    274   /// getFlagWordForMatchingOp - Augment an existing flag word returned by
    275   /// getFlagWord with information indicating that this input operand is tied
    276   /// to a previous output operand.
    277   static unsigned getFlagWordForMatchingOp(unsigned InputFlag,
    278                                            unsigned MatchedOperandNo) {
    279     assert(MatchedOperandNo <= 0x7fff && "Too big matched operand");
    280     assert((InputFlag & ~0xffff) == 0 && "High bits already contain data");
    281     return InputFlag | Flag_MatchingOperand | (MatchedOperandNo << 16);
    282   }
    283 
    284   /// getFlagWordForRegClass - Augment an existing flag word returned by
    285   /// getFlagWord with the required register class for the following register
    286   /// operands.
    287   /// A tied use operand cannot have a register class, use the register class
    288   /// from the def operand instead.
    289   static unsigned getFlagWordForRegClass(unsigned InputFlag, unsigned RC) {
    290     // Store RC + 1, reserve the value 0 to mean 'no register class'.
    291     ++RC;
    292     assert(RC <= 0x7fff && "Too large register class ID");
    293     assert((InputFlag & ~0xffff) == 0 && "High bits already contain data");
    294     return InputFlag | (RC << 16);
    295   }
    296 
    297   /// Augment an existing flag word returned by getFlagWord with the constraint
    298   /// code for a memory constraint.
    299   static unsigned getFlagWordForMem(unsigned InputFlag, unsigned Constraint) {
    300     assert(Constraint <= 0x7fff && "Too large a memory constraint ID");
    301     assert(Constraint <= Constraints_Max && "Unknown constraint ID");
    302     assert((InputFlag & ~0xffff) == 0 && "High bits already contain data");
    303     return InputFlag | (Constraint << Constraints_ShiftAmount);
    304   }
    305 
    306   static unsigned convertMemFlagWordToMatchingFlagWord(unsigned InputFlag) {
    307     assert(isMemKind(InputFlag));
    308     return InputFlag & ~(0x7fff << Constraints_ShiftAmount);
    309   }
    310 
    311   static unsigned getKind(unsigned Flags) {
    312     return Flags & 7;
    313   }
    314 
    315   static bool isRegDefKind(unsigned Flag){ return getKind(Flag) == Kind_RegDef;}
    316   static bool isImmKind(unsigned Flag) { return getKind(Flag) == Kind_Imm; }
    317   static bool isMemKind(unsigned Flag) { return getKind(Flag) == Kind_Mem; }
    318   static bool isRegDefEarlyClobberKind(unsigned Flag) {
    319     return getKind(Flag) == Kind_RegDefEarlyClobber;
    320   }
    321   static bool isClobberKind(unsigned Flag) {
    322     return getKind(Flag) == Kind_Clobber;
    323   }
    324 
    325   static unsigned getMemoryConstraintID(unsigned Flag) {
    326     assert(isMemKind(Flag));
    327     return (Flag >> Constraints_ShiftAmount) & 0x7fff;
    328   }
    329 
    330   /// getNumOperandRegisters - Extract the number of registers field from the
    331   /// inline asm operand flag.
    332   static unsigned getNumOperandRegisters(unsigned Flag) {
    333     return (Flag & 0xffff) >> 3;
    334   }
    335 
    336   /// isUseOperandTiedToDef - Return true if the flag of the inline asm
    337   /// operand indicates it is an use operand that's matched to a def operand.
    338   static bool isUseOperandTiedToDef(unsigned Flag, unsigned &Idx) {
    339     if ((Flag & Flag_MatchingOperand) == 0)
    340       return false;
    341     Idx = (Flag & ~Flag_MatchingOperand) >> 16;
    342     return true;
    343   }
    344 
    345   /// hasRegClassConstraint - Returns true if the flag contains a register
    346   /// class constraint.  Sets RC to the register class ID.
    347   static bool hasRegClassConstraint(unsigned Flag, unsigned &RC) {
    348     if (Flag & Flag_MatchingOperand)
    349       return false;
    350     unsigned High = Flag >> 16;
    351     // getFlagWordForRegClass() uses 0 to mean no register class, and otherwise
    352     // stores RC + 1.
    353     if (!High)
    354       return false;
    355     RC = High - 1;
    356     return true;
    357   }
    358 };
    359 
    360 } // End llvm namespace
    361 
    362 #endif
    363