Home | History | Annotate | Download | only in src
      1 // Copyright 2014 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/factory.h"
      6 
      7 #include "src/allocation-site-scopes.h"
      8 #include "src/base/bits.h"
      9 #include "src/bootstrapper.h"
     10 #include "src/conversions.h"
     11 #include "src/isolate-inl.h"
     12 #include "src/macro-assembler.h"
     13 
     14 namespace v8 {
     15 namespace internal {
     16 
     17 
     18 // Calls the FUNCTION_CALL function and retries it up to three times
     19 // to guarantee that any allocations performed during the call will
     20 // succeed if there's enough memory.
     21 //
     22 // Warning: Do not use the identifiers __object__, __maybe_object__,
     23 // __allocation__ or __scope__ in a call to this macro.
     24 
     25 #define RETURN_OBJECT_UNLESS_RETRY(ISOLATE, TYPE)         \
     26   if (__allocation__.To(&__object__)) {                   \
     27     DCHECK(__object__ != (ISOLATE)->heap()->exception()); \
     28     return Handle<TYPE>(TYPE::cast(__object__), ISOLATE); \
     29   }
     30 
     31 #define CALL_HEAP_FUNCTION(ISOLATE, FUNCTION_CALL, TYPE)                      \
     32   do {                                                                        \
     33     AllocationResult __allocation__ = FUNCTION_CALL;                          \
     34     Object* __object__ = NULL;                                                \
     35     RETURN_OBJECT_UNLESS_RETRY(ISOLATE, TYPE)                                 \
     36     /* Two GCs before panicking.  In newspace will almost always succeed. */  \
     37     for (int __i__ = 0; __i__ < 2; __i__++) {                                 \
     38       (ISOLATE)->heap()->CollectGarbage(__allocation__.RetrySpace(),          \
     39                                         "allocation failure");                \
     40       __allocation__ = FUNCTION_CALL;                                         \
     41       RETURN_OBJECT_UNLESS_RETRY(ISOLATE, TYPE)                               \
     42     }                                                                         \
     43     (ISOLATE)->counters()->gc_last_resort_from_handles()->Increment();        \
     44     (ISOLATE)->heap()->CollectAllAvailableGarbage("last resort gc");          \
     45     {                                                                         \
     46       AlwaysAllocateScope __scope__(ISOLATE);                                 \
     47       __allocation__ = FUNCTION_CALL;                                         \
     48     }                                                                         \
     49     RETURN_OBJECT_UNLESS_RETRY(ISOLATE, TYPE)                                 \
     50     /* TODO(1181417): Fix this. */                                            \
     51     v8::internal::Heap::FatalProcessOutOfMemory("CALL_AND_RETRY_LAST", true); \
     52     return Handle<TYPE>();                                                    \
     53   } while (false)
     54 
     55 
     56 template<typename T>
     57 Handle<T> Factory::New(Handle<Map> map, AllocationSpace space) {
     58   CALL_HEAP_FUNCTION(
     59       isolate(),
     60       isolate()->heap()->Allocate(*map, space),
     61       T);
     62 }
     63 
     64 
     65 template<typename T>
     66 Handle<T> Factory::New(Handle<Map> map,
     67                        AllocationSpace space,
     68                        Handle<AllocationSite> allocation_site) {
     69   CALL_HEAP_FUNCTION(
     70       isolate(),
     71       isolate()->heap()->Allocate(*map, space, *allocation_site),
     72       T);
     73 }
     74 
     75 
     76 Handle<HeapObject> Factory::NewFillerObject(int size,
     77                                             bool double_align,
     78                                             AllocationSpace space) {
     79   CALL_HEAP_FUNCTION(
     80       isolate(),
     81       isolate()->heap()->AllocateFillerObject(size, double_align, space),
     82       HeapObject);
     83 }
     84 
     85 
     86 Handle<Box> Factory::NewBox(Handle<Object> value) {
     87   Handle<Box> result = Handle<Box>::cast(NewStruct(BOX_TYPE));
     88   result->set_value(*value);
     89   return result;
     90 }
     91 
     92 
     93 Handle<PrototypeInfo> Factory::NewPrototypeInfo() {
     94   Handle<PrototypeInfo> result =
     95       Handle<PrototypeInfo>::cast(NewStruct(PROTOTYPE_INFO_TYPE));
     96   result->set_prototype_users(WeakFixedArray::Empty());
     97   result->set_registry_slot(PrototypeInfo::UNREGISTERED);
     98   result->set_validity_cell(Smi::FromInt(0));
     99   result->set_bit_field(0);
    100   return result;
    101 }
    102 
    103 
    104 Handle<SloppyBlockWithEvalContextExtension>
    105 Factory::NewSloppyBlockWithEvalContextExtension(
    106     Handle<ScopeInfo> scope_info, Handle<JSObject> extension) {
    107   DCHECK(scope_info->is_declaration_scope());
    108   Handle<SloppyBlockWithEvalContextExtension> result =
    109       Handle<SloppyBlockWithEvalContextExtension>::cast(
    110           NewStruct(SLOPPY_BLOCK_WITH_EVAL_CONTEXT_EXTENSION_TYPE));
    111   result->set_scope_info(*scope_info);
    112   result->set_extension(*extension);
    113   return result;
    114 }
    115 
    116 Handle<Oddball> Factory::NewOddball(Handle<Map> map, const char* to_string,
    117                                     Handle<Object> to_number, bool to_boolean,
    118                                     const char* type_of, byte kind) {
    119   Handle<Oddball> oddball = New<Oddball>(map, OLD_SPACE);
    120   Oddball::Initialize(isolate(), oddball, to_string, to_number, to_boolean,
    121                       type_of, kind);
    122   return oddball;
    123 }
    124 
    125 
    126 Handle<FixedArray> Factory::NewFixedArray(int size, PretenureFlag pretenure) {
    127   DCHECK(0 <= size);
    128   CALL_HEAP_FUNCTION(
    129       isolate(),
    130       isolate()->heap()->AllocateFixedArray(size, pretenure),
    131       FixedArray);
    132 }
    133 
    134 
    135 Handle<FixedArray> Factory::NewFixedArrayWithHoles(int size,
    136                                                    PretenureFlag pretenure) {
    137   DCHECK(0 <= size);
    138   CALL_HEAP_FUNCTION(
    139       isolate(),
    140       isolate()->heap()->AllocateFixedArrayWithFiller(size,
    141                                                       pretenure,
    142                                                       *the_hole_value()),
    143       FixedArray);
    144 }
    145 
    146 
    147 Handle<FixedArray> Factory::NewUninitializedFixedArray(int size) {
    148   CALL_HEAP_FUNCTION(
    149       isolate(),
    150       isolate()->heap()->AllocateUninitializedFixedArray(size),
    151       FixedArray);
    152 }
    153 
    154 
    155 Handle<FixedArrayBase> Factory::NewFixedDoubleArray(int size,
    156                                                     PretenureFlag pretenure) {
    157   DCHECK(0 <= size);
    158   CALL_HEAP_FUNCTION(
    159       isolate(),
    160       isolate()->heap()->AllocateUninitializedFixedDoubleArray(size, pretenure),
    161       FixedArrayBase);
    162 }
    163 
    164 
    165 Handle<FixedArrayBase> Factory::NewFixedDoubleArrayWithHoles(
    166     int size,
    167     PretenureFlag pretenure) {
    168   DCHECK(0 <= size);
    169   Handle<FixedArrayBase> array = NewFixedDoubleArray(size, pretenure);
    170   if (size > 0) {
    171     Handle<FixedDoubleArray> double_array =
    172         Handle<FixedDoubleArray>::cast(array);
    173     for (int i = 0; i < size; ++i) {
    174       double_array->set_the_hole(i);
    175     }
    176   }
    177   return array;
    178 }
    179 
    180 
    181 Handle<OrderedHashSet> Factory::NewOrderedHashSet() {
    182   return OrderedHashSet::Allocate(isolate(), OrderedHashSet::kMinCapacity);
    183 }
    184 
    185 
    186 Handle<OrderedHashMap> Factory::NewOrderedHashMap() {
    187   return OrderedHashMap::Allocate(isolate(), OrderedHashMap::kMinCapacity);
    188 }
    189 
    190 
    191 Handle<AccessorPair> Factory::NewAccessorPair() {
    192   Handle<AccessorPair> accessors =
    193       Handle<AccessorPair>::cast(NewStruct(ACCESSOR_PAIR_TYPE));
    194   accessors->set_getter(*null_value(), SKIP_WRITE_BARRIER);
    195   accessors->set_setter(*null_value(), SKIP_WRITE_BARRIER);
    196   return accessors;
    197 }
    198 
    199 
    200 Handle<TypeFeedbackInfo> Factory::NewTypeFeedbackInfo() {
    201   Handle<TypeFeedbackInfo> info =
    202       Handle<TypeFeedbackInfo>::cast(NewStruct(TYPE_FEEDBACK_INFO_TYPE));
    203   info->initialize_storage();
    204   return info;
    205 }
    206 
    207 
    208 // Internalized strings are created in the old generation (data space).
    209 Handle<String> Factory::InternalizeUtf8String(Vector<const char> string) {
    210   Utf8StringKey key(string, isolate()->heap()->HashSeed());
    211   return InternalizeStringWithKey(&key);
    212 }
    213 
    214 
    215 Handle<String> Factory::InternalizeOneByteString(Vector<const uint8_t> string) {
    216   OneByteStringKey key(string, isolate()->heap()->HashSeed());
    217   return InternalizeStringWithKey(&key);
    218 }
    219 
    220 
    221 Handle<String> Factory::InternalizeOneByteString(
    222     Handle<SeqOneByteString> string, int from, int length) {
    223   SeqOneByteSubStringKey key(string, from, length);
    224   return InternalizeStringWithKey(&key);
    225 }
    226 
    227 
    228 Handle<String> Factory::InternalizeTwoByteString(Vector<const uc16> string) {
    229   TwoByteStringKey key(string, isolate()->heap()->HashSeed());
    230   return InternalizeStringWithKey(&key);
    231 }
    232 
    233 
    234 template<class StringTableKey>
    235 Handle<String> Factory::InternalizeStringWithKey(StringTableKey* key) {
    236   return StringTable::LookupKey(isolate(), key);
    237 }
    238 
    239 
    240 MaybeHandle<String> Factory::NewStringFromOneByte(Vector<const uint8_t> string,
    241                                                   PretenureFlag pretenure) {
    242   int length = string.length();
    243   if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
    244   Handle<SeqOneByteString> result;
    245   ASSIGN_RETURN_ON_EXCEPTION(
    246       isolate(),
    247       result,
    248       NewRawOneByteString(string.length(), pretenure),
    249       String);
    250 
    251   DisallowHeapAllocation no_gc;
    252   // Copy the characters into the new object.
    253   CopyChars(SeqOneByteString::cast(*result)->GetChars(),
    254             string.start(),
    255             length);
    256   return result;
    257 }
    258 
    259 MaybeHandle<String> Factory::NewStringFromUtf8(Vector<const char> string,
    260                                                PretenureFlag pretenure) {
    261   // Check for ASCII first since this is the common case.
    262   const char* start = string.start();
    263   int length = string.length();
    264   int non_ascii_start = String::NonAsciiStart(start, length);
    265   if (non_ascii_start >= length) {
    266     // If the string is ASCII, we do not need to convert the characters
    267     // since UTF8 is backwards compatible with ASCII.
    268     return NewStringFromOneByte(Vector<const uint8_t>::cast(string), pretenure);
    269   }
    270 
    271   // Non-ASCII and we need to decode.
    272   Access<UnicodeCache::Utf8Decoder>
    273       decoder(isolate()->unicode_cache()->utf8_decoder());
    274   decoder->Reset(string.start() + non_ascii_start,
    275                  length - non_ascii_start);
    276   int utf16_length = static_cast<int>(decoder->Utf16Length());
    277   DCHECK(utf16_length > 0);
    278   // Allocate string.
    279   Handle<SeqTwoByteString> result;
    280   ASSIGN_RETURN_ON_EXCEPTION(
    281       isolate(), result,
    282       NewRawTwoByteString(non_ascii_start + utf16_length, pretenure),
    283       String);
    284   // Copy ASCII portion.
    285   uint16_t* data = result->GetChars();
    286   const char* ascii_data = string.start();
    287   for (int i = 0; i < non_ascii_start; i++) {
    288     *data++ = *ascii_data++;
    289   }
    290   // Now write the remainder.
    291   decoder->WriteUtf16(data, utf16_length);
    292   return result;
    293 }
    294 
    295 MaybeHandle<String> Factory::NewStringFromTwoByte(const uc16* string,
    296                                                   int length,
    297                                                   PretenureFlag pretenure) {
    298   if (String::IsOneByte(string, length)) {
    299     if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
    300     Handle<SeqOneByteString> result;
    301     ASSIGN_RETURN_ON_EXCEPTION(
    302         isolate(),
    303         result,
    304         NewRawOneByteString(length, pretenure),
    305         String);
    306     CopyChars(result->GetChars(), string, length);
    307     return result;
    308   } else {
    309     Handle<SeqTwoByteString> result;
    310     ASSIGN_RETURN_ON_EXCEPTION(
    311         isolate(),
    312         result,
    313         NewRawTwoByteString(length, pretenure),
    314         String);
    315     CopyChars(result->GetChars(), string, length);
    316     return result;
    317   }
    318 }
    319 
    320 MaybeHandle<String> Factory::NewStringFromTwoByte(Vector<const uc16> string,
    321                                                   PretenureFlag pretenure) {
    322   return NewStringFromTwoByte(string.start(), string.length(), pretenure);
    323 }
    324 
    325 MaybeHandle<String> Factory::NewStringFromTwoByte(
    326     const ZoneVector<uc16>* string, PretenureFlag pretenure) {
    327   return NewStringFromTwoByte(string->data(), static_cast<int>(string->size()),
    328                               pretenure);
    329 }
    330 
    331 Handle<String> Factory::NewInternalizedStringFromUtf8(Vector<const char> str,
    332                                                       int chars,
    333                                                       uint32_t hash_field) {
    334   CALL_HEAP_FUNCTION(
    335       isolate(),
    336       isolate()->heap()->AllocateInternalizedStringFromUtf8(
    337           str, chars, hash_field),
    338       String);
    339 }
    340 
    341 
    342 MUST_USE_RESULT Handle<String> Factory::NewOneByteInternalizedString(
    343       Vector<const uint8_t> str,
    344       uint32_t hash_field) {
    345   CALL_HEAP_FUNCTION(
    346       isolate(),
    347       isolate()->heap()->AllocateOneByteInternalizedString(str, hash_field),
    348       String);
    349 }
    350 
    351 
    352 MUST_USE_RESULT Handle<String> Factory::NewOneByteInternalizedSubString(
    353     Handle<SeqOneByteString> string, int offset, int length,
    354     uint32_t hash_field) {
    355   CALL_HEAP_FUNCTION(
    356       isolate(), isolate()->heap()->AllocateOneByteInternalizedString(
    357                      Vector<const uint8_t>(string->GetChars() + offset, length),
    358                      hash_field),
    359       String);
    360 }
    361 
    362 
    363 MUST_USE_RESULT Handle<String> Factory::NewTwoByteInternalizedString(
    364       Vector<const uc16> str,
    365       uint32_t hash_field) {
    366   CALL_HEAP_FUNCTION(
    367       isolate(),
    368       isolate()->heap()->AllocateTwoByteInternalizedString(str, hash_field),
    369       String);
    370 }
    371 
    372 
    373 Handle<String> Factory::NewInternalizedStringImpl(
    374     Handle<String> string, int chars, uint32_t hash_field) {
    375   CALL_HEAP_FUNCTION(
    376       isolate(),
    377       isolate()->heap()->AllocateInternalizedStringImpl(
    378           *string, chars, hash_field),
    379       String);
    380 }
    381 
    382 
    383 MaybeHandle<Map> Factory::InternalizedStringMapForString(
    384     Handle<String> string) {
    385   // If the string is in new space it cannot be used as internalized.
    386   if (isolate()->heap()->InNewSpace(*string)) return MaybeHandle<Map>();
    387 
    388   // Find the corresponding internalized string map for strings.
    389   switch (string->map()->instance_type()) {
    390     case STRING_TYPE: return internalized_string_map();
    391     case ONE_BYTE_STRING_TYPE:
    392       return one_byte_internalized_string_map();
    393     case EXTERNAL_STRING_TYPE: return external_internalized_string_map();
    394     case EXTERNAL_ONE_BYTE_STRING_TYPE:
    395       return external_one_byte_internalized_string_map();
    396     case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
    397       return external_internalized_string_with_one_byte_data_map();
    398     case SHORT_EXTERNAL_STRING_TYPE:
    399       return short_external_internalized_string_map();
    400     case SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE:
    401       return short_external_one_byte_internalized_string_map();
    402     case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
    403       return short_external_internalized_string_with_one_byte_data_map();
    404     default: return MaybeHandle<Map>();  // No match found.
    405   }
    406 }
    407 
    408 
    409 MaybeHandle<SeqOneByteString> Factory::NewRawOneByteString(
    410     int length, PretenureFlag pretenure) {
    411   if (length > String::kMaxLength || length < 0) {
    412     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqOneByteString);
    413   }
    414   CALL_HEAP_FUNCTION(
    415       isolate(),
    416       isolate()->heap()->AllocateRawOneByteString(length, pretenure),
    417       SeqOneByteString);
    418 }
    419 
    420 
    421 MaybeHandle<SeqTwoByteString> Factory::NewRawTwoByteString(
    422     int length, PretenureFlag pretenure) {
    423   if (length > String::kMaxLength || length < 0) {
    424     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqTwoByteString);
    425   }
    426   CALL_HEAP_FUNCTION(
    427       isolate(),
    428       isolate()->heap()->AllocateRawTwoByteString(length, pretenure),
    429       SeqTwoByteString);
    430 }
    431 
    432 
    433 Handle<String> Factory::LookupSingleCharacterStringFromCode(uint32_t code) {
    434   if (code <= String::kMaxOneByteCharCodeU) {
    435     {
    436       DisallowHeapAllocation no_allocation;
    437       Object* value = single_character_string_cache()->get(code);
    438       if (value != *undefined_value()) {
    439         return handle(String::cast(value), isolate());
    440       }
    441     }
    442     uint8_t buffer[1];
    443     buffer[0] = static_cast<uint8_t>(code);
    444     Handle<String> result =
    445         InternalizeOneByteString(Vector<const uint8_t>(buffer, 1));
    446     single_character_string_cache()->set(code, *result);
    447     return result;
    448   }
    449   DCHECK(code <= String::kMaxUtf16CodeUnitU);
    450 
    451   Handle<SeqTwoByteString> result = NewRawTwoByteString(1).ToHandleChecked();
    452   result->SeqTwoByteStringSet(0, static_cast<uint16_t>(code));
    453   return result;
    454 }
    455 
    456 
    457 // Returns true for a character in a range.  Both limits are inclusive.
    458 static inline bool Between(uint32_t character, uint32_t from, uint32_t to) {
    459   // This makes uses of the the unsigned wraparound.
    460   return character - from <= to - from;
    461 }
    462 
    463 
    464 static inline Handle<String> MakeOrFindTwoCharacterString(Isolate* isolate,
    465                                                           uint16_t c1,
    466                                                           uint16_t c2) {
    467   // Numeric strings have a different hash algorithm not known by
    468   // LookupTwoCharsStringIfExists, so we skip this step for such strings.
    469   if (!Between(c1, '0', '9') || !Between(c2, '0', '9')) {
    470     Handle<String> result;
    471     if (StringTable::LookupTwoCharsStringIfExists(isolate, c1, c2).
    472         ToHandle(&result)) {
    473       return result;
    474     }
    475   }
    476 
    477   // Now we know the length is 2, we might as well make use of that fact
    478   // when building the new string.
    479   if (static_cast<unsigned>(c1 | c2) <= String::kMaxOneByteCharCodeU) {
    480     // We can do this.
    481     DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCodeU +
    482                                       1));  // because of this.
    483     Handle<SeqOneByteString> str =
    484         isolate->factory()->NewRawOneByteString(2).ToHandleChecked();
    485     uint8_t* dest = str->GetChars();
    486     dest[0] = static_cast<uint8_t>(c1);
    487     dest[1] = static_cast<uint8_t>(c2);
    488     return str;
    489   } else {
    490     Handle<SeqTwoByteString> str =
    491         isolate->factory()->NewRawTwoByteString(2).ToHandleChecked();
    492     uc16* dest = str->GetChars();
    493     dest[0] = c1;
    494     dest[1] = c2;
    495     return str;
    496   }
    497 }
    498 
    499 
    500 template<typename SinkChar, typename StringType>
    501 Handle<String> ConcatStringContent(Handle<StringType> result,
    502                                    Handle<String> first,
    503                                    Handle<String> second) {
    504   DisallowHeapAllocation pointer_stays_valid;
    505   SinkChar* sink = result->GetChars();
    506   String::WriteToFlat(*first, sink, 0, first->length());
    507   String::WriteToFlat(*second, sink + first->length(), 0, second->length());
    508   return result;
    509 }
    510 
    511 
    512 MaybeHandle<String> Factory::NewConsString(Handle<String> left,
    513                                            Handle<String> right) {
    514   int left_length = left->length();
    515   if (left_length == 0) return right;
    516   int right_length = right->length();
    517   if (right_length == 0) return left;
    518 
    519   int length = left_length + right_length;
    520 
    521   if (length == 2) {
    522     uint16_t c1 = left->Get(0);
    523     uint16_t c2 = right->Get(0);
    524     return MakeOrFindTwoCharacterString(isolate(), c1, c2);
    525   }
    526 
    527   // Make sure that an out of memory exception is thrown if the length
    528   // of the new cons string is too large.
    529   if (length > String::kMaxLength || length < 0) {
    530     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
    531   }
    532 
    533   bool left_is_one_byte = left->IsOneByteRepresentation();
    534   bool right_is_one_byte = right->IsOneByteRepresentation();
    535   bool is_one_byte = left_is_one_byte && right_is_one_byte;
    536   bool is_one_byte_data_in_two_byte_string = false;
    537   if (!is_one_byte) {
    538     // At least one of the strings uses two-byte representation so we
    539     // can't use the fast case code for short one-byte strings below, but
    540     // we can try to save memory if all chars actually fit in one-byte.
    541     is_one_byte_data_in_two_byte_string =
    542         left->HasOnlyOneByteChars() && right->HasOnlyOneByteChars();
    543     if (is_one_byte_data_in_two_byte_string) {
    544       isolate()->counters()->string_add_runtime_ext_to_one_byte()->Increment();
    545     }
    546   }
    547 
    548   // If the resulting string is small make a flat string.
    549   if (length < ConsString::kMinLength) {
    550     // Note that neither of the two inputs can be a slice because:
    551     STATIC_ASSERT(ConsString::kMinLength <= SlicedString::kMinLength);
    552     DCHECK(left->IsFlat());
    553     DCHECK(right->IsFlat());
    554 
    555     STATIC_ASSERT(ConsString::kMinLength <= String::kMaxLength);
    556     if (is_one_byte) {
    557       Handle<SeqOneByteString> result =
    558           NewRawOneByteString(length).ToHandleChecked();
    559       DisallowHeapAllocation no_gc;
    560       uint8_t* dest = result->GetChars();
    561       // Copy left part.
    562       const uint8_t* src =
    563           left->IsExternalString()
    564               ? Handle<ExternalOneByteString>::cast(left)->GetChars()
    565               : Handle<SeqOneByteString>::cast(left)->GetChars();
    566       for (int i = 0; i < left_length; i++) *dest++ = src[i];
    567       // Copy right part.
    568       src = right->IsExternalString()
    569                 ? Handle<ExternalOneByteString>::cast(right)->GetChars()
    570                 : Handle<SeqOneByteString>::cast(right)->GetChars();
    571       for (int i = 0; i < right_length; i++) *dest++ = src[i];
    572       return result;
    573     }
    574 
    575     return (is_one_byte_data_in_two_byte_string)
    576         ? ConcatStringContent<uint8_t>(
    577             NewRawOneByteString(length).ToHandleChecked(), left, right)
    578         : ConcatStringContent<uc16>(
    579             NewRawTwoByteString(length).ToHandleChecked(), left, right);
    580   }
    581 
    582   Handle<ConsString> result =
    583       (is_one_byte || is_one_byte_data_in_two_byte_string)
    584           ? New<ConsString>(cons_one_byte_string_map(), NEW_SPACE)
    585           : New<ConsString>(cons_string_map(), NEW_SPACE);
    586 
    587   DisallowHeapAllocation no_gc;
    588   WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
    589 
    590   result->set_hash_field(String::kEmptyHashField);
    591   result->set_length(length);
    592   result->set_first(*left, mode);
    593   result->set_second(*right, mode);
    594   return result;
    595 }
    596 
    597 
    598 Handle<String> Factory::NewProperSubString(Handle<String> str,
    599                                            int begin,
    600                                            int end) {
    601 #if VERIFY_HEAP
    602   if (FLAG_verify_heap) str->StringVerify();
    603 #endif
    604   DCHECK(begin > 0 || end < str->length());
    605 
    606   str = String::Flatten(str);
    607 
    608   int length = end - begin;
    609   if (length <= 0) return empty_string();
    610   if (length == 1) {
    611     return LookupSingleCharacterStringFromCode(str->Get(begin));
    612   }
    613   if (length == 2) {
    614     // Optimization for 2-byte strings often used as keys in a decompression
    615     // dictionary.  Check whether we already have the string in the string
    616     // table to prevent creation of many unnecessary strings.
    617     uint16_t c1 = str->Get(begin);
    618     uint16_t c2 = str->Get(begin + 1);
    619     return MakeOrFindTwoCharacterString(isolate(), c1, c2);
    620   }
    621 
    622   if (!FLAG_string_slices || length < SlicedString::kMinLength) {
    623     if (str->IsOneByteRepresentation()) {
    624       Handle<SeqOneByteString> result =
    625           NewRawOneByteString(length).ToHandleChecked();
    626       uint8_t* dest = result->GetChars();
    627       DisallowHeapAllocation no_gc;
    628       String::WriteToFlat(*str, dest, begin, end);
    629       return result;
    630     } else {
    631       Handle<SeqTwoByteString> result =
    632           NewRawTwoByteString(length).ToHandleChecked();
    633       uc16* dest = result->GetChars();
    634       DisallowHeapAllocation no_gc;
    635       String::WriteToFlat(*str, dest, begin, end);
    636       return result;
    637     }
    638   }
    639 
    640   int offset = begin;
    641 
    642   if (str->IsSlicedString()) {
    643     Handle<SlicedString> slice = Handle<SlicedString>::cast(str);
    644     str = Handle<String>(slice->parent(), isolate());
    645     offset += slice->offset();
    646   }
    647 
    648   DCHECK(str->IsSeqString() || str->IsExternalString());
    649   Handle<Map> map = str->IsOneByteRepresentation()
    650                         ? sliced_one_byte_string_map()
    651                         : sliced_string_map();
    652   Handle<SlicedString> slice = New<SlicedString>(map, NEW_SPACE);
    653 
    654   slice->set_hash_field(String::kEmptyHashField);
    655   slice->set_length(length);
    656   slice->set_parent(*str);
    657   slice->set_offset(offset);
    658   return slice;
    659 }
    660 
    661 
    662 MaybeHandle<String> Factory::NewExternalStringFromOneByte(
    663     const ExternalOneByteString::Resource* resource) {
    664   size_t length = resource->length();
    665   if (length > static_cast<size_t>(String::kMaxLength)) {
    666     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
    667   }
    668 
    669   Handle<Map> map;
    670   if (resource->IsCompressible()) {
    671     // TODO(hajimehoshi): Rename this to 'uncached_external_one_byte_string_map'
    672     map = short_external_one_byte_string_map();
    673   } else {
    674     map = external_one_byte_string_map();
    675   }
    676   Handle<ExternalOneByteString> external_string =
    677       New<ExternalOneByteString>(map, NEW_SPACE);
    678   external_string->set_length(static_cast<int>(length));
    679   external_string->set_hash_field(String::kEmptyHashField);
    680   external_string->set_resource(resource);
    681 
    682   return external_string;
    683 }
    684 
    685 
    686 MaybeHandle<String> Factory::NewExternalStringFromTwoByte(
    687     const ExternalTwoByteString::Resource* resource) {
    688   size_t length = resource->length();
    689   if (length > static_cast<size_t>(String::kMaxLength)) {
    690     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
    691   }
    692 
    693   // For small strings we check whether the resource contains only
    694   // one byte characters.  If yes, we use a different string map.
    695   static const size_t kOneByteCheckLengthLimit = 32;
    696   bool is_one_byte = length <= kOneByteCheckLengthLimit &&
    697       String::IsOneByte(resource->data(), static_cast<int>(length));
    698   Handle<Map> map;
    699   if (resource->IsCompressible()) {
    700     // TODO(hajimehoshi): Rename these to 'uncached_external_string_...'.
    701     map = is_one_byte ? short_external_string_with_one_byte_data_map()
    702                       : short_external_string_map();
    703   } else {
    704     map = is_one_byte ? external_string_with_one_byte_data_map()
    705                       : external_string_map();
    706   }
    707   Handle<ExternalTwoByteString> external_string =
    708       New<ExternalTwoByteString>(map, NEW_SPACE);
    709   external_string->set_length(static_cast<int>(length));
    710   external_string->set_hash_field(String::kEmptyHashField);
    711   external_string->set_resource(resource);
    712 
    713   return external_string;
    714 }
    715 
    716 Handle<ExternalOneByteString> Factory::NewNativeSourceString(
    717     const ExternalOneByteString::Resource* resource) {
    718   size_t length = resource->length();
    719   DCHECK_LE(length, static_cast<size_t>(String::kMaxLength));
    720 
    721   Handle<Map> map = native_source_string_map();
    722   Handle<ExternalOneByteString> external_string =
    723       New<ExternalOneByteString>(map, OLD_SPACE);
    724   external_string->set_length(static_cast<int>(length));
    725   external_string->set_hash_field(String::kEmptyHashField);
    726   external_string->set_resource(resource);
    727 
    728   return external_string;
    729 }
    730 
    731 
    732 Handle<Symbol> Factory::NewSymbol() {
    733   CALL_HEAP_FUNCTION(
    734       isolate(),
    735       isolate()->heap()->AllocateSymbol(),
    736       Symbol);
    737 }
    738 
    739 
    740 Handle<Symbol> Factory::NewPrivateSymbol() {
    741   Handle<Symbol> symbol = NewSymbol();
    742   symbol->set_is_private(true);
    743   return symbol;
    744 }
    745 
    746 
    747 Handle<Context> Factory::NewNativeContext() {
    748   Handle<FixedArray> array =
    749       NewFixedArray(Context::NATIVE_CONTEXT_SLOTS, TENURED);
    750   array->set_map_no_write_barrier(*native_context_map());
    751   Handle<Context> context = Handle<Context>::cast(array);
    752   context->set_native_context(*context);
    753   context->set_errors_thrown(Smi::FromInt(0));
    754   Handle<WeakCell> weak_cell = NewWeakCell(context);
    755   context->set_self_weak_cell(*weak_cell);
    756   DCHECK(context->IsNativeContext());
    757   return context;
    758 }
    759 
    760 
    761 Handle<Context> Factory::NewScriptContext(Handle<JSFunction> function,
    762                                           Handle<ScopeInfo> scope_info) {
    763   Handle<FixedArray> array =
    764       NewFixedArray(scope_info->ContextLength(), TENURED);
    765   array->set_map_no_write_barrier(*script_context_map());
    766   Handle<Context> context = Handle<Context>::cast(array);
    767   context->set_closure(*function);
    768   context->set_previous(function->context());
    769   context->set_extension(*scope_info);
    770   context->set_native_context(function->native_context());
    771   DCHECK(context->IsScriptContext());
    772   return context;
    773 }
    774 
    775 
    776 Handle<ScriptContextTable> Factory::NewScriptContextTable() {
    777   Handle<FixedArray> array = NewFixedArray(1);
    778   array->set_map_no_write_barrier(*script_context_table_map());
    779   Handle<ScriptContextTable> context_table =
    780       Handle<ScriptContextTable>::cast(array);
    781   context_table->set_used(0);
    782   return context_table;
    783 }
    784 
    785 
    786 Handle<Context> Factory::NewModuleContext(Handle<ScopeInfo> scope_info) {
    787   Handle<FixedArray> array =
    788       NewFixedArray(scope_info->ContextLength(), TENURED);
    789   array->set_map_no_write_barrier(*module_context_map());
    790   // Instance link will be set later.
    791   Handle<Context> context = Handle<Context>::cast(array);
    792   context->set_extension(*the_hole_value());
    793   return context;
    794 }
    795 
    796 
    797 Handle<Context> Factory::NewFunctionContext(int length,
    798                                             Handle<JSFunction> function) {
    799   DCHECK(length >= Context::MIN_CONTEXT_SLOTS);
    800   Handle<FixedArray> array = NewFixedArray(length);
    801   array->set_map_no_write_barrier(*function_context_map());
    802   Handle<Context> context = Handle<Context>::cast(array);
    803   context->set_closure(*function);
    804   context->set_previous(function->context());
    805   context->set_extension(*the_hole_value());
    806   context->set_native_context(function->native_context());
    807   return context;
    808 }
    809 
    810 
    811 Handle<Context> Factory::NewCatchContext(Handle<JSFunction> function,
    812                                          Handle<Context> previous,
    813                                          Handle<String> name,
    814                                          Handle<Object> thrown_object) {
    815   STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX);
    816   Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS + 1);
    817   array->set_map_no_write_barrier(*catch_context_map());
    818   Handle<Context> context = Handle<Context>::cast(array);
    819   context->set_closure(*function);
    820   context->set_previous(*previous);
    821   context->set_extension(*name);
    822   context->set_native_context(previous->native_context());
    823   context->set(Context::THROWN_OBJECT_INDEX, *thrown_object);
    824   return context;
    825 }
    826 
    827 Handle<Context> Factory::NewDebugEvaluateContext(Handle<Context> previous,
    828                                                  Handle<JSReceiver> extension,
    829                                                  Handle<Context> wrapped,
    830                                                  Handle<StringSet> whitelist) {
    831   STATIC_ASSERT(Context::WHITE_LIST_INDEX == Context::MIN_CONTEXT_SLOTS + 1);
    832   Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS + 2);
    833   array->set_map_no_write_barrier(*debug_evaluate_context_map());
    834   Handle<Context> c = Handle<Context>::cast(array);
    835   c->set_closure(wrapped.is_null() ? previous->closure() : wrapped->closure());
    836   c->set_previous(*previous);
    837   c->set_native_context(previous->native_context());
    838   if (!extension.is_null()) c->set(Context::EXTENSION_INDEX, *extension);
    839   if (!wrapped.is_null()) c->set(Context::WRAPPED_CONTEXT_INDEX, *wrapped);
    840   if (!whitelist.is_null()) c->set(Context::WHITE_LIST_INDEX, *whitelist);
    841   return c;
    842 }
    843 
    844 Handle<Context> Factory::NewWithContext(Handle<JSFunction> function,
    845                                         Handle<Context> previous,
    846                                         Handle<JSReceiver> extension) {
    847   Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS);
    848   array->set_map_no_write_barrier(*with_context_map());
    849   Handle<Context> context = Handle<Context>::cast(array);
    850   context->set_closure(*function);
    851   context->set_previous(*previous);
    852   context->set_extension(*extension);
    853   context->set_native_context(previous->native_context());
    854   return context;
    855 }
    856 
    857 
    858 Handle<Context> Factory::NewBlockContext(Handle<JSFunction> function,
    859                                          Handle<Context> previous,
    860                                          Handle<ScopeInfo> scope_info) {
    861   Handle<FixedArray> array = NewFixedArray(scope_info->ContextLength());
    862   array->set_map_no_write_barrier(*block_context_map());
    863   Handle<Context> context = Handle<Context>::cast(array);
    864   context->set_closure(*function);
    865   context->set_previous(*previous);
    866   context->set_extension(*scope_info);
    867   context->set_native_context(previous->native_context());
    868   return context;
    869 }
    870 
    871 
    872 Handle<Struct> Factory::NewStruct(InstanceType type) {
    873   CALL_HEAP_FUNCTION(
    874       isolate(),
    875       isolate()->heap()->AllocateStruct(type),
    876       Struct);
    877 }
    878 
    879 
    880 Handle<AliasedArgumentsEntry> Factory::NewAliasedArgumentsEntry(
    881     int aliased_context_slot) {
    882   Handle<AliasedArgumentsEntry> entry = Handle<AliasedArgumentsEntry>::cast(
    883       NewStruct(ALIASED_ARGUMENTS_ENTRY_TYPE));
    884   entry->set_aliased_context_slot(aliased_context_slot);
    885   return entry;
    886 }
    887 
    888 
    889 Handle<AccessorInfo> Factory::NewAccessorInfo() {
    890   Handle<AccessorInfo> info =
    891       Handle<AccessorInfo>::cast(NewStruct(ACCESSOR_INFO_TYPE));
    892   info->set_flag(0);  // Must clear the flag, it was initialized as undefined.
    893   info->set_is_sloppy(true);
    894   return info;
    895 }
    896 
    897 
    898 Handle<Script> Factory::NewScript(Handle<String> source) {
    899   // Create and initialize script object.
    900   Heap* heap = isolate()->heap();
    901   Handle<Script> script = Handle<Script>::cast(NewStruct(SCRIPT_TYPE));
    902   script->set_source(*source);
    903   script->set_name(heap->undefined_value());
    904   script->set_id(isolate()->heap()->NextScriptId());
    905   script->set_line_offset(0);
    906   script->set_column_offset(0);
    907   script->set_context_data(heap->undefined_value());
    908   script->set_type(Script::TYPE_NORMAL);
    909   script->set_wrapper(heap->undefined_value());
    910   script->set_line_ends(heap->undefined_value());
    911   script->set_eval_from_shared(heap->undefined_value());
    912   script->set_eval_from_position(0);
    913   script->set_shared_function_infos(Smi::FromInt(0));
    914   script->set_flags(0);
    915 
    916   heap->set_script_list(*WeakFixedArray::Add(script_list(), script));
    917   return script;
    918 }
    919 
    920 
    921 Handle<Foreign> Factory::NewForeign(Address addr, PretenureFlag pretenure) {
    922   CALL_HEAP_FUNCTION(isolate(),
    923                      isolate()->heap()->AllocateForeign(addr, pretenure),
    924                      Foreign);
    925 }
    926 
    927 
    928 Handle<Foreign> Factory::NewForeign(const AccessorDescriptor* desc) {
    929   return NewForeign((Address) desc, TENURED);
    930 }
    931 
    932 
    933 Handle<ByteArray> Factory::NewByteArray(int length, PretenureFlag pretenure) {
    934   DCHECK(0 <= length);
    935   CALL_HEAP_FUNCTION(
    936       isolate(),
    937       isolate()->heap()->AllocateByteArray(length, pretenure),
    938       ByteArray);
    939 }
    940 
    941 
    942 Handle<BytecodeArray> Factory::NewBytecodeArray(
    943     int length, const byte* raw_bytecodes, int frame_size, int parameter_count,
    944     Handle<FixedArray> constant_pool) {
    945   DCHECK(0 <= length);
    946   CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateBytecodeArray(
    947                                     length, raw_bytecodes, frame_size,
    948                                     parameter_count, *constant_pool),
    949                      BytecodeArray);
    950 }
    951 
    952 
    953 Handle<FixedTypedArrayBase> Factory::NewFixedTypedArrayWithExternalPointer(
    954     int length, ExternalArrayType array_type, void* external_pointer,
    955     PretenureFlag pretenure) {
    956   DCHECK(0 <= length && length <= Smi::kMaxValue);
    957   CALL_HEAP_FUNCTION(
    958       isolate(), isolate()->heap()->AllocateFixedTypedArrayWithExternalPointer(
    959                      length, array_type, external_pointer, pretenure),
    960       FixedTypedArrayBase);
    961 }
    962 
    963 
    964 Handle<FixedTypedArrayBase> Factory::NewFixedTypedArray(
    965     int length, ExternalArrayType array_type, bool initialize,
    966     PretenureFlag pretenure) {
    967   DCHECK(0 <= length && length <= Smi::kMaxValue);
    968   CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateFixedTypedArray(
    969                                     length, array_type, initialize, pretenure),
    970                      FixedTypedArrayBase);
    971 }
    972 
    973 
    974 Handle<Cell> Factory::NewCell(Handle<Object> value) {
    975   AllowDeferredHandleDereference convert_to_cell;
    976   CALL_HEAP_FUNCTION(
    977       isolate(),
    978       isolate()->heap()->AllocateCell(*value),
    979       Cell);
    980 }
    981 
    982 
    983 Handle<PropertyCell> Factory::NewPropertyCell() {
    984   CALL_HEAP_FUNCTION(
    985       isolate(),
    986       isolate()->heap()->AllocatePropertyCell(),
    987       PropertyCell);
    988 }
    989 
    990 
    991 Handle<WeakCell> Factory::NewWeakCell(Handle<HeapObject> value) {
    992   // It is safe to dereference the value because we are embedding it
    993   // in cell and not inspecting its fields.
    994   AllowDeferredHandleDereference convert_to_cell;
    995   CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateWeakCell(*value),
    996                      WeakCell);
    997 }
    998 
    999 
   1000 Handle<TransitionArray> Factory::NewTransitionArray(int capacity) {
   1001   CALL_HEAP_FUNCTION(isolate(),
   1002                      isolate()->heap()->AllocateTransitionArray(capacity),
   1003                      TransitionArray);
   1004 }
   1005 
   1006 
   1007 Handle<AllocationSite> Factory::NewAllocationSite() {
   1008   Handle<Map> map = allocation_site_map();
   1009   Handle<AllocationSite> site = New<AllocationSite>(map, OLD_SPACE);
   1010   site->Initialize();
   1011 
   1012   // Link the site
   1013   site->set_weak_next(isolate()->heap()->allocation_sites_list());
   1014   isolate()->heap()->set_allocation_sites_list(*site);
   1015   return site;
   1016 }
   1017 
   1018 
   1019 Handle<Map> Factory::NewMap(InstanceType type,
   1020                             int instance_size,
   1021                             ElementsKind elements_kind) {
   1022   CALL_HEAP_FUNCTION(
   1023       isolate(),
   1024       isolate()->heap()->AllocateMap(type, instance_size, elements_kind),
   1025       Map);
   1026 }
   1027 
   1028 
   1029 Handle<JSObject> Factory::CopyJSObject(Handle<JSObject> object) {
   1030   CALL_HEAP_FUNCTION(isolate(),
   1031                      isolate()->heap()->CopyJSObject(*object, NULL),
   1032                      JSObject);
   1033 }
   1034 
   1035 
   1036 Handle<JSObject> Factory::CopyJSObjectWithAllocationSite(
   1037     Handle<JSObject> object,
   1038     Handle<AllocationSite> site) {
   1039   CALL_HEAP_FUNCTION(isolate(),
   1040                      isolate()->heap()->CopyJSObject(
   1041                          *object,
   1042                          site.is_null() ? NULL : *site),
   1043                      JSObject);
   1044 }
   1045 
   1046 
   1047 Handle<FixedArray> Factory::CopyFixedArrayWithMap(Handle<FixedArray> array,
   1048                                                   Handle<Map> map) {
   1049   CALL_HEAP_FUNCTION(isolate(),
   1050                      isolate()->heap()->CopyFixedArrayWithMap(*array, *map),
   1051                      FixedArray);
   1052 }
   1053 
   1054 
   1055 Handle<FixedArray> Factory::CopyFixedArrayAndGrow(Handle<FixedArray> array,
   1056                                                   int grow_by,
   1057                                                   PretenureFlag pretenure) {
   1058   CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->CopyFixedArrayAndGrow(
   1059                                     *array, grow_by, pretenure),
   1060                      FixedArray);
   1061 }
   1062 
   1063 Handle<FixedArray> Factory::CopyFixedArrayUpTo(Handle<FixedArray> array,
   1064                                                int new_len,
   1065                                                PretenureFlag pretenure) {
   1066   CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->CopyFixedArrayUpTo(
   1067                                     *array, new_len, pretenure),
   1068                      FixedArray);
   1069 }
   1070 
   1071 Handle<FixedArray> Factory::CopyFixedArray(Handle<FixedArray> array) {
   1072   CALL_HEAP_FUNCTION(isolate(),
   1073                      isolate()->heap()->CopyFixedArray(*array),
   1074                      FixedArray);
   1075 }
   1076 
   1077 
   1078 Handle<FixedArray> Factory::CopyAndTenureFixedCOWArray(
   1079     Handle<FixedArray> array) {
   1080   DCHECK(isolate()->heap()->InNewSpace(*array));
   1081   CALL_HEAP_FUNCTION(isolate(),
   1082                      isolate()->heap()->CopyAndTenureFixedCOWArray(*array),
   1083                      FixedArray);
   1084 }
   1085 
   1086 
   1087 Handle<FixedDoubleArray> Factory::CopyFixedDoubleArray(
   1088     Handle<FixedDoubleArray> array) {
   1089   CALL_HEAP_FUNCTION(isolate(),
   1090                      isolate()->heap()->CopyFixedDoubleArray(*array),
   1091                      FixedDoubleArray);
   1092 }
   1093 
   1094 
   1095 Handle<Object> Factory::NewNumber(double value,
   1096                                   PretenureFlag pretenure) {
   1097   // We need to distinguish the minus zero value and this cannot be
   1098   // done after conversion to int. Doing this by comparing bit
   1099   // patterns is faster than using fpclassify() et al.
   1100   if (IsMinusZero(value)) return NewHeapNumber(-0.0, IMMUTABLE, pretenure);
   1101 
   1102   int int_value = FastD2IChecked(value);
   1103   if (value == int_value && Smi::IsValid(int_value)) {
   1104     return handle(Smi::FromInt(int_value), isolate());
   1105   }
   1106 
   1107   // Materialize the value in the heap.
   1108   return NewHeapNumber(value, IMMUTABLE, pretenure);
   1109 }
   1110 
   1111 
   1112 Handle<Object> Factory::NewNumberFromInt(int32_t value,
   1113                                          PretenureFlag pretenure) {
   1114   if (Smi::IsValid(value)) return handle(Smi::FromInt(value), isolate());
   1115   // Bypass NewNumber to avoid various redundant checks.
   1116   return NewHeapNumber(FastI2D(value), IMMUTABLE, pretenure);
   1117 }
   1118 
   1119 
   1120 Handle<Object> Factory::NewNumberFromUint(uint32_t value,
   1121                                           PretenureFlag pretenure) {
   1122   int32_t int32v = static_cast<int32_t>(value);
   1123   if (int32v >= 0 && Smi::IsValid(int32v)) {
   1124     return handle(Smi::FromInt(int32v), isolate());
   1125   }
   1126   return NewHeapNumber(FastUI2D(value), IMMUTABLE, pretenure);
   1127 }
   1128 
   1129 
   1130 Handle<HeapNumber> Factory::NewHeapNumber(double value,
   1131                                           MutableMode mode,
   1132                                           PretenureFlag pretenure) {
   1133   CALL_HEAP_FUNCTION(
   1134       isolate(),
   1135       isolate()->heap()->AllocateHeapNumber(value, mode, pretenure),
   1136       HeapNumber);
   1137 }
   1138 
   1139 
   1140 #define SIMD128_NEW_DEF(TYPE, Type, type, lane_count, lane_type)               \
   1141   Handle<Type> Factory::New##Type(lane_type lanes[lane_count],                 \
   1142                                   PretenureFlag pretenure) {                   \
   1143     CALL_HEAP_FUNCTION(                                                        \
   1144         isolate(), isolate()->heap()->Allocate##Type(lanes, pretenure), Type); \
   1145   }
   1146 SIMD128_TYPES(SIMD128_NEW_DEF)
   1147 #undef SIMD128_NEW_DEF
   1148 
   1149 
   1150 Handle<Object> Factory::NewError(Handle<JSFunction> constructor,
   1151                                  MessageTemplate::Template template_index,
   1152                                  Handle<Object> arg0, Handle<Object> arg1,
   1153                                  Handle<Object> arg2) {
   1154   HandleScope scope(isolate());
   1155   if (isolate()->bootstrapper()->IsActive()) {
   1156     // During bootstrapping we cannot construct error objects.
   1157     return scope.CloseAndEscape(NewStringFromAsciiChecked(
   1158         MessageTemplate::TemplateString(template_index)));
   1159   }
   1160 
   1161   Handle<JSFunction> fun = isolate()->make_error_function();
   1162   Handle<Object> message_type(Smi::FromInt(template_index), isolate());
   1163   if (arg0.is_null()) arg0 = undefined_value();
   1164   if (arg1.is_null()) arg1 = undefined_value();
   1165   if (arg2.is_null()) arg2 = undefined_value();
   1166   Handle<Object> argv[] = {constructor, message_type, arg0, arg1, arg2};
   1167 
   1168   // Invoke the JavaScript factory method. If an exception is thrown while
   1169   // running the factory method, use the exception as the result.
   1170   Handle<Object> result;
   1171   MaybeHandle<Object> exception;
   1172   if (!Execution::TryCall(isolate(), fun, undefined_value(), arraysize(argv),
   1173                           argv, &exception)
   1174            .ToHandle(&result)) {
   1175     Handle<Object> exception_obj;
   1176     if (exception.ToHandle(&exception_obj)) {
   1177       result = exception_obj;
   1178     } else {
   1179       result = undefined_value();
   1180     }
   1181   }
   1182   return scope.CloseAndEscape(result);
   1183 }
   1184 
   1185 
   1186 Handle<Object> Factory::NewError(Handle<JSFunction> constructor,
   1187                                  Handle<String> message) {
   1188   Handle<Object> argv[] = { message };
   1189 
   1190   // Invoke the JavaScript factory method. If an exception is thrown while
   1191   // running the factory method, use the exception as the result.
   1192   Handle<Object> result;
   1193   MaybeHandle<Object> exception;
   1194   if (!Execution::TryCall(isolate(), constructor, undefined_value(),
   1195                           arraysize(argv), argv, &exception)
   1196            .ToHandle(&result)) {
   1197     Handle<Object> exception_obj;
   1198     if (exception.ToHandle(&exception_obj)) return exception_obj;
   1199     return undefined_value();
   1200   }
   1201   return result;
   1202 }
   1203 
   1204 
   1205 #define DEFINE_ERROR(NAME, name)                                              \
   1206   Handle<Object> Factory::New##NAME(MessageTemplate::Template template_index, \
   1207                                     Handle<Object> arg0, Handle<Object> arg1, \
   1208                                     Handle<Object> arg2) {                    \
   1209     return NewError(isolate()->name##_function(), template_index, arg0, arg1, \
   1210                     arg2);                                                    \
   1211   }
   1212 DEFINE_ERROR(Error, error)
   1213 DEFINE_ERROR(EvalError, eval_error)
   1214 DEFINE_ERROR(RangeError, range_error)
   1215 DEFINE_ERROR(ReferenceError, reference_error)
   1216 DEFINE_ERROR(SyntaxError, syntax_error)
   1217 DEFINE_ERROR(TypeError, type_error)
   1218 #undef DEFINE_ERROR
   1219 
   1220 
   1221 Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
   1222                                         Handle<SharedFunctionInfo> info,
   1223                                         Handle<Context> context,
   1224                                         PretenureFlag pretenure) {
   1225   AllocationSpace space = pretenure == TENURED ? OLD_SPACE : NEW_SPACE;
   1226   Handle<JSFunction> function = New<JSFunction>(map, space);
   1227 
   1228   function->initialize_properties();
   1229   function->initialize_elements();
   1230   function->set_shared(*info);
   1231   function->set_code(info->code());
   1232   function->set_context(*context);
   1233   function->set_prototype_or_initial_map(*the_hole_value());
   1234   function->set_literals(LiteralsArray::cast(*empty_literals_array()));
   1235   function->set_next_function_link(*undefined_value(), SKIP_WRITE_BARRIER);
   1236   isolate()->heap()->InitializeJSObjectBody(*function, *map, JSFunction::kSize);
   1237   return function;
   1238 }
   1239 
   1240 
   1241 Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
   1242                                         Handle<String> name,
   1243                                         MaybeHandle<Code> code) {
   1244   Handle<Context> context(isolate()->native_context());
   1245   Handle<SharedFunctionInfo> info =
   1246       NewSharedFunctionInfo(name, code, map->is_constructor());
   1247   DCHECK(is_sloppy(info->language_mode()));
   1248   DCHECK(!map->IsUndefined(isolate()));
   1249   DCHECK(
   1250       map.is_identical_to(isolate()->sloppy_function_map()) ||
   1251       map.is_identical_to(isolate()->sloppy_function_without_prototype_map()) ||
   1252       map.is_identical_to(
   1253           isolate()->sloppy_function_with_readonly_prototype_map()) ||
   1254       map.is_identical_to(isolate()->strict_function_map()) ||
   1255       map.is_identical_to(isolate()->strict_function_without_prototype_map()) ||
   1256       // TODO(titzer): wasm_function_map() could be undefined here. ugly.
   1257       (*map == context->get(Context::WASM_FUNCTION_MAP_INDEX)) ||
   1258       map.is_identical_to(isolate()->proxy_function_map()));
   1259   return NewFunction(map, info, context);
   1260 }
   1261 
   1262 
   1263 Handle<JSFunction> Factory::NewFunction(Handle<String> name) {
   1264   return NewFunction(
   1265       isolate()->sloppy_function_map(), name, MaybeHandle<Code>());
   1266 }
   1267 
   1268 
   1269 Handle<JSFunction> Factory::NewFunctionWithoutPrototype(Handle<String> name,
   1270                                                         Handle<Code> code,
   1271                                                         bool is_strict) {
   1272   Handle<Map> map = is_strict
   1273                         ? isolate()->strict_function_without_prototype_map()
   1274                         : isolate()->sloppy_function_without_prototype_map();
   1275   return NewFunction(map, name, code);
   1276 }
   1277 
   1278 
   1279 Handle<JSFunction> Factory::NewFunction(Handle<String> name, Handle<Code> code,
   1280                                         Handle<Object> prototype,
   1281                                         bool is_strict) {
   1282   Handle<Map> map = is_strict ? isolate()->strict_function_map()
   1283                               : isolate()->sloppy_function_map();
   1284   Handle<JSFunction> result = NewFunction(map, name, code);
   1285   result->set_prototype_or_initial_map(*prototype);
   1286   return result;
   1287 }
   1288 
   1289 
   1290 Handle<JSFunction> Factory::NewFunction(Handle<String> name, Handle<Code> code,
   1291                                         Handle<Object> prototype,
   1292                                         InstanceType type, int instance_size,
   1293                                         bool is_strict) {
   1294   // Allocate the function
   1295   Handle<JSFunction> function = NewFunction(name, code, prototype, is_strict);
   1296 
   1297   ElementsKind elements_kind =
   1298       type == JS_ARRAY_TYPE ? FAST_SMI_ELEMENTS : FAST_HOLEY_SMI_ELEMENTS;
   1299   Handle<Map> initial_map = NewMap(type, instance_size, elements_kind);
   1300   // TODO(littledan): Why do we have this is_generator test when
   1301   // NewFunctionPrototype already handles finding an appropriately
   1302   // shared prototype?
   1303   if (!function->shared()->is_resumable()) {
   1304     if (prototype->IsTheHole(isolate())) {
   1305       prototype = NewFunctionPrototype(function);
   1306     }
   1307   }
   1308 
   1309   JSFunction::SetInitialMap(function, initial_map,
   1310                             Handle<JSReceiver>::cast(prototype));
   1311 
   1312   return function;
   1313 }
   1314 
   1315 
   1316 Handle<JSFunction> Factory::NewFunction(Handle<String> name,
   1317                                         Handle<Code> code,
   1318                                         InstanceType type,
   1319                                         int instance_size) {
   1320   return NewFunction(name, code, the_hole_value(), type, instance_size);
   1321 }
   1322 
   1323 
   1324 Handle<JSObject> Factory::NewFunctionPrototype(Handle<JSFunction> function) {
   1325   // Make sure to use globals from the function's context, since the function
   1326   // can be from a different context.
   1327   Handle<Context> native_context(function->context()->native_context());
   1328   Handle<Map> new_map;
   1329   if (function->shared()->is_resumable()) {
   1330     // Generator and async function prototypes can share maps since they
   1331     // don't have "constructor" properties.
   1332     new_map = handle(native_context->generator_object_prototype_map());
   1333   } else {
   1334     CHECK(!function->shared()->is_async());
   1335     // Each function prototype gets a fresh map to avoid unwanted sharing of
   1336     // maps between prototypes of different constructors.
   1337     Handle<JSFunction> object_function(native_context->object_function());
   1338     DCHECK(object_function->has_initial_map());
   1339     new_map = handle(object_function->initial_map());
   1340   }
   1341 
   1342   DCHECK(!new_map->is_prototype_map());
   1343   Handle<JSObject> prototype = NewJSObjectFromMap(new_map);
   1344 
   1345   if (!function->shared()->is_resumable()) {
   1346     JSObject::AddProperty(prototype, constructor_string(), function, DONT_ENUM);
   1347   }
   1348 
   1349   return prototype;
   1350 }
   1351 
   1352 
   1353 Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
   1354     Handle<SharedFunctionInfo> info,
   1355     Handle<Context> context,
   1356     PretenureFlag pretenure) {
   1357   int map_index =
   1358       Context::FunctionMapIndex(info->language_mode(), info->kind());
   1359   Handle<Map> initial_map(Map::cast(context->native_context()->get(map_index)));
   1360 
   1361   return NewFunctionFromSharedFunctionInfo(initial_map, info, context,
   1362                                            pretenure);
   1363 }
   1364 
   1365 
   1366 Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
   1367     Handle<Map> initial_map, Handle<SharedFunctionInfo> info,
   1368     Handle<Context> context, PretenureFlag pretenure) {
   1369   DCHECK_EQ(JS_FUNCTION_TYPE, initial_map->instance_type());
   1370   Handle<JSFunction> result =
   1371       NewFunction(initial_map, info, context, pretenure);
   1372 
   1373   if (info->ic_age() != isolate()->heap()->global_ic_age()) {
   1374     info->ResetForNewContext(isolate()->heap()->global_ic_age());
   1375   }
   1376 
   1377   // Give compiler a chance to pre-initialize.
   1378   Compiler::PostInstantiation(result, pretenure);
   1379 
   1380   return result;
   1381 }
   1382 
   1383 
   1384 Handle<ScopeInfo> Factory::NewScopeInfo(int length) {
   1385   Handle<FixedArray> array = NewFixedArray(length, TENURED);
   1386   array->set_map_no_write_barrier(*scope_info_map());
   1387   Handle<ScopeInfo> scope_info = Handle<ScopeInfo>::cast(array);
   1388   return scope_info;
   1389 }
   1390 
   1391 
   1392 Handle<JSObject> Factory::NewExternal(void* value) {
   1393   Handle<Foreign> foreign = NewForeign(static_cast<Address>(value));
   1394   Handle<JSObject> external = NewJSObjectFromMap(external_map());
   1395   external->SetInternalField(0, *foreign);
   1396   return external;
   1397 }
   1398 
   1399 
   1400 Handle<Code> Factory::NewCodeRaw(int object_size, bool immovable) {
   1401   CALL_HEAP_FUNCTION(isolate(),
   1402                      isolate()->heap()->AllocateCode(object_size, immovable),
   1403                      Code);
   1404 }
   1405 
   1406 
   1407 Handle<Code> Factory::NewCode(const CodeDesc& desc,
   1408                               Code::Flags flags,
   1409                               Handle<Object> self_ref,
   1410                               bool immovable,
   1411                               bool crankshafted,
   1412                               int prologue_offset,
   1413                               bool is_debug) {
   1414   Handle<ByteArray> reloc_info = NewByteArray(desc.reloc_size, TENURED);
   1415 
   1416   bool has_unwinding_info = desc.unwinding_info != nullptr;
   1417   DCHECK((has_unwinding_info && desc.unwinding_info_size > 0) ||
   1418          (!has_unwinding_info && desc.unwinding_info_size == 0));
   1419 
   1420   // Compute size.
   1421   int body_size = desc.instr_size;
   1422   int unwinding_info_size_field_size = kInt64Size;
   1423   if (has_unwinding_info) {
   1424     body_size = RoundUp(body_size, kInt64Size) + desc.unwinding_info_size +
   1425                 unwinding_info_size_field_size;
   1426   }
   1427   int obj_size = Code::SizeFor(RoundUp(body_size, kObjectAlignment));
   1428 
   1429   Handle<Code> code = NewCodeRaw(obj_size, immovable);
   1430   DCHECK(!isolate()->heap()->memory_allocator()->code_range()->valid() ||
   1431          isolate()->heap()->memory_allocator()->code_range()->contains(
   1432              code->address()) ||
   1433          obj_size <= isolate()->heap()->code_space()->AreaSize());
   1434 
   1435   // The code object has not been fully initialized yet.  We rely on the
   1436   // fact that no allocation will happen from this point on.
   1437   DisallowHeapAllocation no_gc;
   1438   code->set_gc_metadata(Smi::FromInt(0));
   1439   code->set_ic_age(isolate()->heap()->global_ic_age());
   1440   code->set_instruction_size(desc.instr_size);
   1441   code->set_relocation_info(*reloc_info);
   1442   code->set_flags(flags);
   1443   code->set_has_unwinding_info(has_unwinding_info);
   1444   code->set_raw_kind_specific_flags1(0);
   1445   code->set_raw_kind_specific_flags2(0);
   1446   code->set_is_crankshafted(crankshafted);
   1447   code->set_deoptimization_data(*empty_fixed_array(), SKIP_WRITE_BARRIER);
   1448   code->set_raw_type_feedback_info(Smi::FromInt(0));
   1449   code->set_next_code_link(*undefined_value());
   1450   code->set_handler_table(*empty_fixed_array(), SKIP_WRITE_BARRIER);
   1451   code->set_prologue_offset(prologue_offset);
   1452   code->set_constant_pool_offset(desc.instr_size - desc.constant_pool_size);
   1453 
   1454   if (code->kind() == Code::OPTIMIZED_FUNCTION) {
   1455     code->set_marked_for_deoptimization(false);
   1456   }
   1457 
   1458   if (is_debug) {
   1459     DCHECK(code->kind() == Code::FUNCTION);
   1460     code->set_has_debug_break_slots(true);
   1461   }
   1462 
   1463   // Allow self references to created code object by patching the handle to
   1464   // point to the newly allocated Code object.
   1465   if (!self_ref.is_null()) *(self_ref.location()) = *code;
   1466 
   1467   // Migrate generated code.
   1468   // The generated code can contain Object** values (typically from handles)
   1469   // that are dereferenced during the copy to point directly to the actual heap
   1470   // objects. These pointers can include references to the code object itself,
   1471   // through the self_reference parameter.
   1472   code->CopyFrom(desc);
   1473 
   1474 #ifdef VERIFY_HEAP
   1475   if (FLAG_verify_heap) code->ObjectVerify();
   1476 #endif
   1477   return code;
   1478 }
   1479 
   1480 
   1481 Handle<Code> Factory::CopyCode(Handle<Code> code) {
   1482   CALL_HEAP_FUNCTION(isolate(),
   1483                      isolate()->heap()->CopyCode(*code),
   1484                      Code);
   1485 }
   1486 
   1487 
   1488 Handle<BytecodeArray> Factory::CopyBytecodeArray(
   1489     Handle<BytecodeArray> bytecode_array) {
   1490   CALL_HEAP_FUNCTION(isolate(),
   1491                      isolate()->heap()->CopyBytecodeArray(*bytecode_array),
   1492                      BytecodeArray);
   1493 }
   1494 
   1495 Handle<JSObject> Factory::NewJSObject(Handle<JSFunction> constructor,
   1496                                       PretenureFlag pretenure) {
   1497   JSFunction::EnsureHasInitialMap(constructor);
   1498   CALL_HEAP_FUNCTION(
   1499       isolate(),
   1500       isolate()->heap()->AllocateJSObject(*constructor, pretenure), JSObject);
   1501 }
   1502 
   1503 
   1504 Handle<JSObject> Factory::NewJSObjectWithMemento(
   1505     Handle<JSFunction> constructor,
   1506     Handle<AllocationSite> site) {
   1507   JSFunction::EnsureHasInitialMap(constructor);
   1508   CALL_HEAP_FUNCTION(
   1509       isolate(),
   1510       isolate()->heap()->AllocateJSObject(*constructor, NOT_TENURED, *site),
   1511       JSObject);
   1512 }
   1513 
   1514 Handle<JSObject> Factory::NewJSObjectWithNullProto() {
   1515   Handle<JSObject> result = NewJSObject(isolate()->object_function());
   1516   Handle<Map> new_map =
   1517       Map::Copy(Handle<Map>(result->map()), "ObjectWithNullProto");
   1518   Map::SetPrototype(new_map, null_value());
   1519   JSObject::MigrateToMap(result, new_map);
   1520   return result;
   1521 }
   1522 
   1523 Handle<JSModule> Factory::NewJSModule(Handle<Context> context,
   1524                                       Handle<ScopeInfo> scope_info) {
   1525   // Allocate a fresh map. Modules do not have a prototype.
   1526   Handle<Map> map = NewMap(JS_MODULE_TYPE, JSModule::kSize);
   1527   // Allocate the object based on the map.
   1528   Handle<JSModule> module =
   1529       Handle<JSModule>::cast(NewJSObjectFromMap(map, TENURED));
   1530   module->set_context(*context);
   1531   module->set_scope_info(*scope_info);
   1532   return module;
   1533 }
   1534 
   1535 
   1536 Handle<JSGlobalObject> Factory::NewJSGlobalObject(
   1537     Handle<JSFunction> constructor) {
   1538   DCHECK(constructor->has_initial_map());
   1539   Handle<Map> map(constructor->initial_map());
   1540   DCHECK(map->is_dictionary_map());
   1541 
   1542   // Make sure no field properties are described in the initial map.
   1543   // This guarantees us that normalizing the properties does not
   1544   // require us to change property values to PropertyCells.
   1545   DCHECK(map->NextFreePropertyIndex() == 0);
   1546 
   1547   // Make sure we don't have a ton of pre-allocated slots in the
   1548   // global objects. They will be unused once we normalize the object.
   1549   DCHECK(map->unused_property_fields() == 0);
   1550   DCHECK(map->GetInObjectProperties() == 0);
   1551 
   1552   // Initial size of the backing store to avoid resize of the storage during
   1553   // bootstrapping. The size differs between the JS global object ad the
   1554   // builtins object.
   1555   int initial_size = 64;
   1556 
   1557   // Allocate a dictionary object for backing storage.
   1558   int at_least_space_for = map->NumberOfOwnDescriptors() * 2 + initial_size;
   1559   Handle<GlobalDictionary> dictionary =
   1560       GlobalDictionary::New(isolate(), at_least_space_for);
   1561 
   1562   // The global object might be created from an object template with accessors.
   1563   // Fill these accessors into the dictionary.
   1564   Handle<DescriptorArray> descs(map->instance_descriptors());
   1565   for (int i = 0; i < map->NumberOfOwnDescriptors(); i++) {
   1566     PropertyDetails details = descs->GetDetails(i);
   1567     // Only accessors are expected.
   1568     DCHECK_EQ(ACCESSOR_CONSTANT, details.type());
   1569     PropertyDetails d(details.attributes(), ACCESSOR_CONSTANT, i + 1,
   1570                       PropertyCellType::kMutable);
   1571     Handle<Name> name(descs->GetKey(i));
   1572     Handle<PropertyCell> cell = NewPropertyCell();
   1573     cell->set_value(descs->GetCallbacksObject(i));
   1574     // |dictionary| already contains enough space for all properties.
   1575     USE(GlobalDictionary::Add(dictionary, name, cell, d));
   1576   }
   1577 
   1578   // Allocate the global object and initialize it with the backing store.
   1579   Handle<JSGlobalObject> global = New<JSGlobalObject>(map, OLD_SPACE);
   1580   isolate()->heap()->InitializeJSObjectFromMap(*global, *dictionary, *map);
   1581 
   1582   // Create a new map for the global object.
   1583   Handle<Map> new_map = Map::CopyDropDescriptors(map);
   1584   new_map->set_dictionary_map(true);
   1585 
   1586   // Set up the global object as a normalized object.
   1587   global->set_map(*new_map);
   1588   global->set_properties(*dictionary);
   1589 
   1590   // Make sure result is a global object with properties in dictionary.
   1591   DCHECK(global->IsJSGlobalObject() && !global->HasFastProperties());
   1592   return global;
   1593 }
   1594 
   1595 
   1596 Handle<JSObject> Factory::NewJSObjectFromMap(
   1597     Handle<Map> map,
   1598     PretenureFlag pretenure,
   1599     Handle<AllocationSite> allocation_site) {
   1600   CALL_HEAP_FUNCTION(
   1601       isolate(),
   1602       isolate()->heap()->AllocateJSObjectFromMap(
   1603           *map,
   1604           pretenure,
   1605           allocation_site.is_null() ? NULL : *allocation_site),
   1606       JSObject);
   1607 }
   1608 
   1609 
   1610 Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind,
   1611                                     PretenureFlag pretenure) {
   1612   Map* map = isolate()->get_initial_js_array_map(elements_kind);
   1613   if (map == nullptr) {
   1614     Context* native_context = isolate()->context()->native_context();
   1615     JSFunction* array_function = native_context->array_function();
   1616     map = array_function->initial_map();
   1617   }
   1618   return Handle<JSArray>::cast(NewJSObjectFromMap(handle(map), pretenure));
   1619 }
   1620 
   1621 Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind, int length,
   1622                                     int capacity,
   1623                                     ArrayStorageAllocationMode mode,
   1624                                     PretenureFlag pretenure) {
   1625   Handle<JSArray> array = NewJSArray(elements_kind, pretenure);
   1626   NewJSArrayStorage(array, length, capacity, mode);
   1627   return array;
   1628 }
   1629 
   1630 Handle<JSArray> Factory::NewJSArrayWithElements(Handle<FixedArrayBase> elements,
   1631                                                 ElementsKind elements_kind,
   1632                                                 int length,
   1633                                                 PretenureFlag pretenure) {
   1634   DCHECK(length <= elements->length());
   1635   Handle<JSArray> array = NewJSArray(elements_kind, pretenure);
   1636 
   1637   array->set_elements(*elements);
   1638   array->set_length(Smi::FromInt(length));
   1639   JSObject::ValidateElements(array);
   1640   return array;
   1641 }
   1642 
   1643 
   1644 void Factory::NewJSArrayStorage(Handle<JSArray> array,
   1645                                 int length,
   1646                                 int capacity,
   1647                                 ArrayStorageAllocationMode mode) {
   1648   DCHECK(capacity >= length);
   1649 
   1650   if (capacity == 0) {
   1651     array->set_length(Smi::FromInt(0));
   1652     array->set_elements(*empty_fixed_array());
   1653     return;
   1654   }
   1655 
   1656   HandleScope inner_scope(isolate());
   1657   Handle<FixedArrayBase> elms;
   1658   ElementsKind elements_kind = array->GetElementsKind();
   1659   if (IsFastDoubleElementsKind(elements_kind)) {
   1660     if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
   1661       elms = NewFixedDoubleArray(capacity);
   1662     } else {
   1663       DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
   1664       elms = NewFixedDoubleArrayWithHoles(capacity);
   1665     }
   1666   } else {
   1667     DCHECK(IsFastSmiOrObjectElementsKind(elements_kind));
   1668     if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
   1669       elms = NewUninitializedFixedArray(capacity);
   1670     } else {
   1671       DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
   1672       elms = NewFixedArrayWithHoles(capacity);
   1673     }
   1674   }
   1675 
   1676   array->set_elements(*elms);
   1677   array->set_length(Smi::FromInt(length));
   1678 }
   1679 
   1680 
   1681 Handle<JSGeneratorObject> Factory::NewJSGeneratorObject(
   1682     Handle<JSFunction> function) {
   1683   DCHECK(function->shared()->is_resumable());
   1684   JSFunction::EnsureHasInitialMap(function);
   1685   Handle<Map> map(function->initial_map());
   1686   DCHECK_EQ(JS_GENERATOR_OBJECT_TYPE, map->instance_type());
   1687   CALL_HEAP_FUNCTION(
   1688       isolate(),
   1689       isolate()->heap()->AllocateJSObjectFromMap(*map),
   1690       JSGeneratorObject);
   1691 }
   1692 
   1693 
   1694 Handle<JSArrayBuffer> Factory::NewJSArrayBuffer(SharedFlag shared,
   1695                                                 PretenureFlag pretenure) {
   1696   Handle<JSFunction> array_buffer_fun(
   1697       shared == SharedFlag::kShared
   1698           ? isolate()->native_context()->shared_array_buffer_fun()
   1699           : isolate()->native_context()->array_buffer_fun());
   1700   CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateJSObject(
   1701                                     *array_buffer_fun, pretenure),
   1702                      JSArrayBuffer);
   1703 }
   1704 
   1705 
   1706 Handle<JSDataView> Factory::NewJSDataView() {
   1707   Handle<JSFunction> data_view_fun(
   1708       isolate()->native_context()->data_view_fun());
   1709   CALL_HEAP_FUNCTION(
   1710       isolate(),
   1711       isolate()->heap()->AllocateJSObject(*data_view_fun),
   1712       JSDataView);
   1713 }
   1714 
   1715 
   1716 Handle<JSMap> Factory::NewJSMap() {
   1717   Handle<Map> map(isolate()->native_context()->js_map_map());
   1718   Handle<JSMap> js_map = Handle<JSMap>::cast(NewJSObjectFromMap(map));
   1719   JSMap::Initialize(js_map, isolate());
   1720   return js_map;
   1721 }
   1722 
   1723 
   1724 Handle<JSSet> Factory::NewJSSet() {
   1725   Handle<Map> map(isolate()->native_context()->js_set_map());
   1726   Handle<JSSet> js_set = Handle<JSSet>::cast(NewJSObjectFromMap(map));
   1727   JSSet::Initialize(js_set, isolate());
   1728   return js_set;
   1729 }
   1730 
   1731 
   1732 Handle<JSMapIterator> Factory::NewJSMapIterator() {
   1733   Handle<Map> map(isolate()->native_context()->map_iterator_map());
   1734   CALL_HEAP_FUNCTION(isolate(),
   1735                      isolate()->heap()->AllocateJSObjectFromMap(*map),
   1736                      JSMapIterator);
   1737 }
   1738 
   1739 
   1740 Handle<JSSetIterator> Factory::NewJSSetIterator() {
   1741   Handle<Map> map(isolate()->native_context()->set_iterator_map());
   1742   CALL_HEAP_FUNCTION(isolate(),
   1743                      isolate()->heap()->AllocateJSObjectFromMap(*map),
   1744                      JSSetIterator);
   1745 }
   1746 
   1747 
   1748 namespace {
   1749 
   1750 ElementsKind GetExternalArrayElementsKind(ExternalArrayType type) {
   1751   switch (type) {
   1752 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
   1753   case kExternal##Type##Array:                          \
   1754     return TYPE##_ELEMENTS;
   1755     TYPED_ARRAYS(TYPED_ARRAY_CASE)
   1756   }
   1757   UNREACHABLE();
   1758   return FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND;
   1759 #undef TYPED_ARRAY_CASE
   1760 }
   1761 
   1762 
   1763 size_t GetExternalArrayElementSize(ExternalArrayType type) {
   1764   switch (type) {
   1765 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
   1766   case kExternal##Type##Array:                          \
   1767     return size;
   1768     TYPED_ARRAYS(TYPED_ARRAY_CASE)
   1769     default:
   1770       UNREACHABLE();
   1771       return 0;
   1772   }
   1773 #undef TYPED_ARRAY_CASE
   1774 }
   1775 
   1776 
   1777 size_t GetFixedTypedArraysElementSize(ElementsKind kind) {
   1778   switch (kind) {
   1779 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
   1780   case TYPE##_ELEMENTS:                                 \
   1781     return size;
   1782     TYPED_ARRAYS(TYPED_ARRAY_CASE)
   1783     default:
   1784       UNREACHABLE();
   1785       return 0;
   1786   }
   1787 #undef TYPED_ARRAY_CASE
   1788 }
   1789 
   1790 
   1791 ExternalArrayType GetArrayTypeFromElementsKind(ElementsKind kind) {
   1792   switch (kind) {
   1793 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
   1794   case TYPE##_ELEMENTS:                                 \
   1795     return kExternal##Type##Array;
   1796     TYPED_ARRAYS(TYPED_ARRAY_CASE)
   1797     default:
   1798       UNREACHABLE();
   1799       return kExternalInt8Array;
   1800   }
   1801 #undef TYPED_ARRAY_CASE
   1802 }
   1803 
   1804 
   1805 JSFunction* GetTypedArrayFun(ExternalArrayType type, Isolate* isolate) {
   1806   Context* native_context = isolate->context()->native_context();
   1807   switch (type) {
   1808 #define TYPED_ARRAY_FUN(Type, type, TYPE, ctype, size)                        \
   1809     case kExternal##Type##Array:                                              \
   1810       return native_context->type##_array_fun();
   1811 
   1812     TYPED_ARRAYS(TYPED_ARRAY_FUN)
   1813 #undef TYPED_ARRAY_FUN
   1814 
   1815     default:
   1816       UNREACHABLE();
   1817       return NULL;
   1818   }
   1819 }
   1820 
   1821 
   1822 JSFunction* GetTypedArrayFun(ElementsKind elements_kind, Isolate* isolate) {
   1823   Context* native_context = isolate->context()->native_context();
   1824   switch (elements_kind) {
   1825 #define TYPED_ARRAY_FUN(Type, type, TYPE, ctype, size) \
   1826   case TYPE##_ELEMENTS:                                \
   1827     return native_context->type##_array_fun();
   1828 
   1829     TYPED_ARRAYS(TYPED_ARRAY_FUN)
   1830 #undef TYPED_ARRAY_FUN
   1831 
   1832     default:
   1833       UNREACHABLE();
   1834       return NULL;
   1835   }
   1836 }
   1837 
   1838 
   1839 void SetupArrayBufferView(i::Isolate* isolate,
   1840                           i::Handle<i::JSArrayBufferView> obj,
   1841                           i::Handle<i::JSArrayBuffer> buffer,
   1842                           size_t byte_offset, size_t byte_length,
   1843                           PretenureFlag pretenure = NOT_TENURED) {
   1844   DCHECK(byte_offset + byte_length <=
   1845          static_cast<size_t>(buffer->byte_length()->Number()));
   1846 
   1847   obj->set_buffer(*buffer);
   1848 
   1849   i::Handle<i::Object> byte_offset_object =
   1850       isolate->factory()->NewNumberFromSize(byte_offset, pretenure);
   1851   obj->set_byte_offset(*byte_offset_object);
   1852 
   1853   i::Handle<i::Object> byte_length_object =
   1854       isolate->factory()->NewNumberFromSize(byte_length, pretenure);
   1855   obj->set_byte_length(*byte_length_object);
   1856 }
   1857 
   1858 
   1859 }  // namespace
   1860 
   1861 
   1862 Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type,
   1863                                               PretenureFlag pretenure) {
   1864   Handle<JSFunction> typed_array_fun_handle(GetTypedArrayFun(type, isolate()));
   1865 
   1866   CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateJSObject(
   1867                                     *typed_array_fun_handle, pretenure),
   1868                      JSTypedArray);
   1869 }
   1870 
   1871 
   1872 Handle<JSTypedArray> Factory::NewJSTypedArray(ElementsKind elements_kind,
   1873                                               PretenureFlag pretenure) {
   1874   Handle<JSFunction> typed_array_fun_handle(
   1875       GetTypedArrayFun(elements_kind, isolate()));
   1876 
   1877   CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateJSObject(
   1878                                     *typed_array_fun_handle, pretenure),
   1879                      JSTypedArray);
   1880 }
   1881 
   1882 
   1883 Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type,
   1884                                               Handle<JSArrayBuffer> buffer,
   1885                                               size_t byte_offset, size_t length,
   1886                                               PretenureFlag pretenure) {
   1887   Handle<JSTypedArray> obj = NewJSTypedArray(type, pretenure);
   1888 
   1889   size_t element_size = GetExternalArrayElementSize(type);
   1890   ElementsKind elements_kind = GetExternalArrayElementsKind(type);
   1891 
   1892   CHECK(byte_offset % element_size == 0);
   1893 
   1894   CHECK(length <= (std::numeric_limits<size_t>::max() / element_size));
   1895   CHECK(length <= static_cast<size_t>(Smi::kMaxValue));
   1896   size_t byte_length = length * element_size;
   1897   SetupArrayBufferView(isolate(), obj, buffer, byte_offset, byte_length,
   1898                        pretenure);
   1899 
   1900   Handle<Object> length_object = NewNumberFromSize(length, pretenure);
   1901   obj->set_length(*length_object);
   1902 
   1903   Handle<FixedTypedArrayBase> elements = NewFixedTypedArrayWithExternalPointer(
   1904       static_cast<int>(length), type,
   1905       static_cast<uint8_t*>(buffer->backing_store()) + byte_offset, pretenure);
   1906   Handle<Map> map = JSObject::GetElementsTransitionMap(obj, elements_kind);
   1907   JSObject::SetMapAndElements(obj, map, elements);
   1908   return obj;
   1909 }
   1910 
   1911 
   1912 Handle<JSTypedArray> Factory::NewJSTypedArray(ElementsKind elements_kind,
   1913                                               size_t number_of_elements,
   1914                                               PretenureFlag pretenure) {
   1915   Handle<JSTypedArray> obj = NewJSTypedArray(elements_kind, pretenure);
   1916 
   1917   size_t element_size = GetFixedTypedArraysElementSize(elements_kind);
   1918   ExternalArrayType array_type = GetArrayTypeFromElementsKind(elements_kind);
   1919 
   1920   CHECK(number_of_elements <=
   1921         (std::numeric_limits<size_t>::max() / element_size));
   1922   CHECK(number_of_elements <= static_cast<size_t>(Smi::kMaxValue));
   1923   size_t byte_length = number_of_elements * element_size;
   1924 
   1925   obj->set_byte_offset(Smi::FromInt(0));
   1926   i::Handle<i::Object> byte_length_object =
   1927       NewNumberFromSize(byte_length, pretenure);
   1928   obj->set_byte_length(*byte_length_object);
   1929   Handle<Object> length_object =
   1930       NewNumberFromSize(number_of_elements, pretenure);
   1931   obj->set_length(*length_object);
   1932 
   1933   Handle<JSArrayBuffer> buffer =
   1934       NewJSArrayBuffer(SharedFlag::kNotShared, pretenure);
   1935   JSArrayBuffer::Setup(buffer, isolate(), true, NULL, byte_length,
   1936                        SharedFlag::kNotShared);
   1937   obj->set_buffer(*buffer);
   1938   Handle<FixedTypedArrayBase> elements = NewFixedTypedArray(
   1939       static_cast<int>(number_of_elements), array_type, true, pretenure);
   1940   obj->set_elements(*elements);
   1941   return obj;
   1942 }
   1943 
   1944 
   1945 Handle<JSDataView> Factory::NewJSDataView(Handle<JSArrayBuffer> buffer,
   1946                                           size_t byte_offset,
   1947                                           size_t byte_length) {
   1948   Handle<JSDataView> obj = NewJSDataView();
   1949   SetupArrayBufferView(isolate(), obj, buffer, byte_offset, byte_length);
   1950   return obj;
   1951 }
   1952 
   1953 
   1954 MaybeHandle<JSBoundFunction> Factory::NewJSBoundFunction(
   1955     Handle<JSReceiver> target_function, Handle<Object> bound_this,
   1956     Vector<Handle<Object>> bound_args) {
   1957   DCHECK(target_function->IsCallable());
   1958   STATIC_ASSERT(Code::kMaxArguments <= FixedArray::kMaxLength);
   1959   if (bound_args.length() >= Code::kMaxArguments) {
   1960     THROW_NEW_ERROR(isolate(),
   1961                     NewRangeError(MessageTemplate::kTooManyArguments),
   1962                     JSBoundFunction);
   1963   }
   1964 
   1965   // Determine the prototype of the {target_function}.
   1966   Handle<Object> prototype;
   1967   ASSIGN_RETURN_ON_EXCEPTION(
   1968       isolate(), prototype,
   1969       JSReceiver::GetPrototype(isolate(), target_function), JSBoundFunction);
   1970 
   1971   // Create the [[BoundArguments]] for the result.
   1972   Handle<FixedArray> bound_arguments;
   1973   if (bound_args.length() == 0) {
   1974     bound_arguments = empty_fixed_array();
   1975   } else {
   1976     bound_arguments = NewFixedArray(bound_args.length());
   1977     for (int i = 0; i < bound_args.length(); ++i) {
   1978       bound_arguments->set(i, *bound_args[i]);
   1979     }
   1980   }
   1981 
   1982   // Setup the map for the JSBoundFunction instance.
   1983   Handle<Map> map = target_function->IsConstructor()
   1984                         ? isolate()->bound_function_with_constructor_map()
   1985                         : isolate()->bound_function_without_constructor_map();
   1986   if (map->prototype() != *prototype) {
   1987     map = Map::TransitionToPrototype(map, prototype, REGULAR_PROTOTYPE);
   1988   }
   1989   DCHECK_EQ(target_function->IsConstructor(), map->is_constructor());
   1990 
   1991   // Setup the JSBoundFunction instance.
   1992   Handle<JSBoundFunction> result =
   1993       Handle<JSBoundFunction>::cast(NewJSObjectFromMap(map));
   1994   result->set_bound_target_function(*target_function);
   1995   result->set_bound_this(*bound_this);
   1996   result->set_bound_arguments(*bound_arguments);
   1997   return result;
   1998 }
   1999 
   2000 
   2001 // ES6 section 9.5.15 ProxyCreate (target, handler)
   2002 Handle<JSProxy> Factory::NewJSProxy(Handle<JSReceiver> target,
   2003                                     Handle<JSReceiver> handler) {
   2004   // Allocate the proxy object.
   2005   Handle<Map> map;
   2006   if (target->IsCallable()) {
   2007     if (target->IsConstructor()) {
   2008       map = Handle<Map>(isolate()->proxy_constructor_map());
   2009     } else {
   2010       map = Handle<Map>(isolate()->proxy_callable_map());
   2011     }
   2012   } else {
   2013     map = Handle<Map>(isolate()->proxy_map());
   2014   }
   2015   DCHECK(map->prototype()->IsNull(isolate()));
   2016   Handle<JSProxy> result = New<JSProxy>(map, NEW_SPACE);
   2017   result->initialize_properties();
   2018   result->set_target(*target);
   2019   result->set_handler(*handler);
   2020   result->set_hash(*undefined_value(), SKIP_WRITE_BARRIER);
   2021   return result;
   2022 }
   2023 
   2024 
   2025 Handle<JSGlobalProxy> Factory::NewUninitializedJSGlobalProxy() {
   2026   // Create an empty shell of a JSGlobalProxy that needs to be reinitialized
   2027   // via ReinitializeJSGlobalProxy later.
   2028   Handle<Map> map = NewMap(JS_GLOBAL_PROXY_TYPE, JSGlobalProxy::kSize);
   2029   // Maintain invariant expected from any JSGlobalProxy.
   2030   map->set_is_access_check_needed(true);
   2031   CALL_HEAP_FUNCTION(
   2032       isolate(), isolate()->heap()->AllocateJSObjectFromMap(*map, NOT_TENURED),
   2033       JSGlobalProxy);
   2034 }
   2035 
   2036 
   2037 void Factory::ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> object,
   2038                                         Handle<JSFunction> constructor) {
   2039   DCHECK(constructor->has_initial_map());
   2040   Handle<Map> map(constructor->initial_map(), isolate());
   2041   Handle<Map> old_map(object->map(), isolate());
   2042 
   2043   // The proxy's hash should be retained across reinitialization.
   2044   Handle<Object> hash(object->hash(), isolate());
   2045 
   2046   JSObject::InvalidatePrototypeChains(*old_map);
   2047   if (old_map->is_prototype_map()) {
   2048     map = Map::Copy(map, "CopyAsPrototypeForJSGlobalProxy");
   2049     map->set_is_prototype_map(true);
   2050   }
   2051   JSObject::UpdatePrototypeUserRegistration(old_map, map, isolate());
   2052 
   2053   // Check that the already allocated object has the same size and type as
   2054   // objects allocated using the constructor.
   2055   DCHECK(map->instance_size() == old_map->instance_size());
   2056   DCHECK(map->instance_type() == old_map->instance_type());
   2057 
   2058   // Allocate the backing storage for the properties.
   2059   Handle<FixedArray> properties = empty_fixed_array();
   2060 
   2061   // In order to keep heap in consistent state there must be no allocations
   2062   // before object re-initialization is finished.
   2063   DisallowHeapAllocation no_allocation;
   2064 
   2065   // Reset the map for the object.
   2066   object->synchronized_set_map(*map);
   2067 
   2068   Heap* heap = isolate()->heap();
   2069   // Reinitialize the object from the constructor map.
   2070   heap->InitializeJSObjectFromMap(*object, *properties, *map);
   2071 
   2072   // Restore the saved hash.
   2073   object->set_hash(*hash);
   2074 }
   2075 
   2076 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo(
   2077     Handle<String> name, int number_of_literals, FunctionKind kind,
   2078     Handle<Code> code, Handle<ScopeInfo> scope_info) {
   2079   DCHECK(IsValidFunctionKind(kind));
   2080   Handle<SharedFunctionInfo> shared = NewSharedFunctionInfo(
   2081       name, code, IsConstructable(kind, scope_info->language_mode()));
   2082   shared->set_scope_info(*scope_info);
   2083   shared->set_kind(kind);
   2084   shared->set_num_literals(number_of_literals);
   2085   if (IsGeneratorFunction(kind)) {
   2086     shared->set_instance_class_name(isolate()->heap()->Generator_string());
   2087   }
   2088   return shared;
   2089 }
   2090 
   2091 
   2092 Handle<JSMessageObject> Factory::NewJSMessageObject(
   2093     MessageTemplate::Template message, Handle<Object> argument,
   2094     int start_position, int end_position, Handle<Object> script,
   2095     Handle<Object> stack_frames) {
   2096   Handle<Map> map = message_object_map();
   2097   Handle<JSMessageObject> message_obj = New<JSMessageObject>(map, NEW_SPACE);
   2098   message_obj->set_properties(*empty_fixed_array(), SKIP_WRITE_BARRIER);
   2099   message_obj->initialize_elements();
   2100   message_obj->set_elements(*empty_fixed_array(), SKIP_WRITE_BARRIER);
   2101   message_obj->set_type(message);
   2102   message_obj->set_argument(*argument);
   2103   message_obj->set_start_position(start_position);
   2104   message_obj->set_end_position(end_position);
   2105   message_obj->set_script(*script);
   2106   message_obj->set_stack_frames(*stack_frames);
   2107   return message_obj;
   2108 }
   2109 
   2110 
   2111 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo(
   2112     Handle<String> name, MaybeHandle<Code> maybe_code, bool is_constructor) {
   2113   // Function names are assumed to be flat elsewhere. Must flatten before
   2114   // allocating SharedFunctionInfo to avoid GC seeing the uninitialized SFI.
   2115   name = String::Flatten(name, TENURED);
   2116 
   2117   Handle<Map> map = shared_function_info_map();
   2118   Handle<SharedFunctionInfo> share = New<SharedFunctionInfo>(map, OLD_SPACE);
   2119 
   2120   // Set pointer fields.
   2121   share->set_name(*name);
   2122   Handle<Code> code;
   2123   if (!maybe_code.ToHandle(&code)) {
   2124     code = isolate()->builtins()->Illegal();
   2125   }
   2126   share->set_code(*code);
   2127   share->set_optimized_code_map(*cleared_optimized_code_map());
   2128   share->set_scope_info(ScopeInfo::Empty(isolate()));
   2129   Handle<Code> construct_stub =
   2130       is_constructor ? isolate()->builtins()->JSConstructStubGeneric()
   2131                      : isolate()->builtins()->ConstructedNonConstructable();
   2132   share->set_construct_stub(*construct_stub);
   2133   share->set_instance_class_name(*Object_string());
   2134   share->set_function_data(*undefined_value(), SKIP_WRITE_BARRIER);
   2135   share->set_script(*undefined_value(), SKIP_WRITE_BARRIER);
   2136   share->set_debug_info(DebugInfo::uninitialized(), SKIP_WRITE_BARRIER);
   2137   share->set_function_identifier(*undefined_value(), SKIP_WRITE_BARRIER);
   2138   StaticFeedbackVectorSpec empty_spec;
   2139   Handle<TypeFeedbackMetadata> feedback_metadata =
   2140       TypeFeedbackMetadata::New(isolate(), &empty_spec);
   2141   share->set_feedback_metadata(*feedback_metadata, SKIP_WRITE_BARRIER);
   2142 #if TRACE_MAPS
   2143   share->set_unique_id(isolate()->GetNextUniqueSharedFunctionInfoId());
   2144 #endif
   2145   share->set_profiler_ticks(0);
   2146   share->set_ast_node_count(0);
   2147   share->set_counters(0);
   2148 
   2149   // Set integer fields (smi or int, depending on the architecture).
   2150   share->set_length(0);
   2151   share->set_internal_formal_parameter_count(0);
   2152   share->set_expected_nof_properties(0);
   2153   share->set_num_literals(0);
   2154   share->set_start_position_and_type(0);
   2155   share->set_end_position(0);
   2156   share->set_function_token_position(0);
   2157   // All compiler hints default to false or 0.
   2158   share->set_compiler_hints(0);
   2159   share->set_opt_count_and_bailout_reason(0);
   2160 
   2161   // Link into the list.
   2162   Handle<Object> new_noscript_list =
   2163       WeakFixedArray::Add(noscript_shared_function_infos(), share);
   2164   isolate()->heap()->set_noscript_shared_function_infos(*new_noscript_list);
   2165 
   2166   return share;
   2167 }
   2168 
   2169 
   2170 static inline int NumberCacheHash(Handle<FixedArray> cache,
   2171                                   Handle<Object> number) {
   2172   int mask = (cache->length() >> 1) - 1;
   2173   if (number->IsSmi()) {
   2174     return Handle<Smi>::cast(number)->value() & mask;
   2175   } else {
   2176     DoubleRepresentation rep(number->Number());
   2177     return
   2178         (static_cast<int>(rep.bits) ^ static_cast<int>(rep.bits >> 32)) & mask;
   2179   }
   2180 }
   2181 
   2182 
   2183 Handle<Object> Factory::GetNumberStringCache(Handle<Object> number) {
   2184   DisallowHeapAllocation no_gc;
   2185   int hash = NumberCacheHash(number_string_cache(), number);
   2186   Object* key = number_string_cache()->get(hash * 2);
   2187   if (key == *number || (key->IsHeapNumber() && number->IsHeapNumber() &&
   2188                          key->Number() == number->Number())) {
   2189     return Handle<String>(
   2190         String::cast(number_string_cache()->get(hash * 2 + 1)), isolate());
   2191   }
   2192   return undefined_value();
   2193 }
   2194 
   2195 
   2196 void Factory::SetNumberStringCache(Handle<Object> number,
   2197                                    Handle<String> string) {
   2198   int hash = NumberCacheHash(number_string_cache(), number);
   2199   if (number_string_cache()->get(hash * 2) != *undefined_value()) {
   2200     int full_size = isolate()->heap()->FullSizeNumberStringCacheLength();
   2201     if (number_string_cache()->length() != full_size) {
   2202       Handle<FixedArray> new_cache = NewFixedArray(full_size, TENURED);
   2203       isolate()->heap()->set_number_string_cache(*new_cache);
   2204       return;
   2205     }
   2206   }
   2207   number_string_cache()->set(hash * 2, *number);
   2208   number_string_cache()->set(hash * 2 + 1, *string);
   2209 }
   2210 
   2211 
   2212 Handle<String> Factory::NumberToString(Handle<Object> number,
   2213                                        bool check_number_string_cache) {
   2214   isolate()->counters()->number_to_string_runtime()->Increment();
   2215   if (check_number_string_cache) {
   2216     Handle<Object> cached = GetNumberStringCache(number);
   2217     if (!cached->IsUndefined(isolate())) return Handle<String>::cast(cached);
   2218   }
   2219 
   2220   char arr[100];
   2221   Vector<char> buffer(arr, arraysize(arr));
   2222   const char* str;
   2223   if (number->IsSmi()) {
   2224     int num = Handle<Smi>::cast(number)->value();
   2225     str = IntToCString(num, buffer);
   2226   } else {
   2227     double num = Handle<HeapNumber>::cast(number)->value();
   2228     str = DoubleToCString(num, buffer);
   2229   }
   2230 
   2231   // We tenure the allocated string since it is referenced from the
   2232   // number-string cache which lives in the old space.
   2233   Handle<String> js_string = NewStringFromAsciiChecked(str, TENURED);
   2234   SetNumberStringCache(number, js_string);
   2235   return js_string;
   2236 }
   2237 
   2238 
   2239 Handle<DebugInfo> Factory::NewDebugInfo(Handle<SharedFunctionInfo> shared) {
   2240   // Allocate initial fixed array for active break points before allocating the
   2241   // debug info object to avoid allocation while setting up the debug info
   2242   // object.
   2243   Handle<FixedArray> break_points(
   2244       NewFixedArray(DebugInfo::kEstimatedNofBreakPointsInFunction));
   2245 
   2246   // Create and set up the debug info object. Debug info contains function, a
   2247   // copy of the original code, the executing code and initial fixed array for
   2248   // active break points.
   2249   Handle<DebugInfo> debug_info =
   2250       Handle<DebugInfo>::cast(NewStruct(DEBUG_INFO_TYPE));
   2251   debug_info->set_shared(*shared);
   2252   if (shared->HasBytecodeArray()) {
   2253     // We need to create a copy, but delay since this may cause heap
   2254     // verification.
   2255     debug_info->set_abstract_code(AbstractCode::cast(shared->bytecode_array()));
   2256   } else {
   2257     debug_info->set_abstract_code(AbstractCode::cast(shared->code()));
   2258   }
   2259   debug_info->set_break_points(*break_points);
   2260   if (shared->HasBytecodeArray()) {
   2261     // Create a copy for debugging.
   2262     Handle<BytecodeArray> original(shared->bytecode_array());
   2263     Handle<BytecodeArray> copy = CopyBytecodeArray(original);
   2264     debug_info->set_abstract_code(AbstractCode::cast(*copy));
   2265   }
   2266 
   2267   // Link debug info to function.
   2268   shared->set_debug_info(*debug_info);
   2269 
   2270   return debug_info;
   2271 }
   2272 
   2273 
   2274 Handle<JSObject> Factory::NewArgumentsObject(Handle<JSFunction> callee,
   2275                                              int length) {
   2276   bool strict_mode_callee = is_strict(callee->shared()->language_mode()) ||
   2277                             !callee->shared()->has_simple_parameters();
   2278   Handle<Map> map = strict_mode_callee ? isolate()->strict_arguments_map()
   2279                                        : isolate()->sloppy_arguments_map();
   2280   AllocationSiteUsageContext context(isolate(), Handle<AllocationSite>(),
   2281                                      false);
   2282   DCHECK(!isolate()->has_pending_exception());
   2283   Handle<JSObject> result = NewJSObjectFromMap(map);
   2284   Handle<Smi> value(Smi::FromInt(length), isolate());
   2285   Object::SetProperty(result, length_string(), value, STRICT).Assert();
   2286   if (!strict_mode_callee) {
   2287     Object::SetProperty(result, callee_string(), callee, STRICT).Assert();
   2288   }
   2289   return result;
   2290 }
   2291 
   2292 
   2293 Handle<JSWeakMap> Factory::NewJSWeakMap() {
   2294   // TODO(adamk): Currently the map is only created three times per
   2295   // isolate. If it's created more often, the map should be moved into the
   2296   // strong root list.
   2297   Handle<Map> map = NewMap(JS_WEAK_MAP_TYPE, JSWeakMap::kSize);
   2298   return Handle<JSWeakMap>::cast(NewJSObjectFromMap(map));
   2299 }
   2300 
   2301 
   2302 Handle<Map> Factory::ObjectLiteralMapFromCache(Handle<Context> context,
   2303                                                int number_of_properties,
   2304                                                bool* is_result_from_cache) {
   2305   const int kMapCacheSize = 128;
   2306 
   2307   // We do not cache maps for too many properties or when running builtin code.
   2308   if (number_of_properties > kMapCacheSize ||
   2309       isolate()->bootstrapper()->IsActive()) {
   2310     *is_result_from_cache = false;
   2311     Handle<Map> map = Map::Create(isolate(), number_of_properties);
   2312     return map;
   2313   }
   2314   *is_result_from_cache = true;
   2315   if (number_of_properties == 0) {
   2316     // Reuse the initial map of the Object function if the literal has no
   2317     // predeclared properties.
   2318     return handle(context->object_function()->initial_map(), isolate());
   2319   }
   2320 
   2321   int cache_index = number_of_properties - 1;
   2322   Handle<Object> maybe_cache(context->map_cache(), isolate());
   2323   if (maybe_cache->IsUndefined(isolate())) {
   2324     // Allocate the new map cache for the native context.
   2325     maybe_cache = NewFixedArray(kMapCacheSize, TENURED);
   2326     context->set_map_cache(*maybe_cache);
   2327   } else {
   2328     // Check to see whether there is a matching element in the cache.
   2329     Handle<FixedArray> cache = Handle<FixedArray>::cast(maybe_cache);
   2330     Object* result = cache->get(cache_index);
   2331     if (result->IsWeakCell()) {
   2332       WeakCell* cell = WeakCell::cast(result);
   2333       if (!cell->cleared()) {
   2334         return handle(Map::cast(cell->value()), isolate());
   2335       }
   2336     }
   2337   }
   2338   // Create a new map and add it to the cache.
   2339   Handle<FixedArray> cache = Handle<FixedArray>::cast(maybe_cache);
   2340   Handle<Map> map = Map::Create(isolate(), number_of_properties);
   2341   Handle<WeakCell> cell = NewWeakCell(map);
   2342   cache->set(cache_index, *cell);
   2343   return map;
   2344 }
   2345 
   2346 
   2347 void Factory::SetRegExpAtomData(Handle<JSRegExp> regexp,
   2348                                 JSRegExp::Type type,
   2349                                 Handle<String> source,
   2350                                 JSRegExp::Flags flags,
   2351                                 Handle<Object> data) {
   2352   Handle<FixedArray> store = NewFixedArray(JSRegExp::kAtomDataSize);
   2353 
   2354   store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
   2355   store->set(JSRegExp::kSourceIndex, *source);
   2356   store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags));
   2357   store->set(JSRegExp::kAtomPatternIndex, *data);
   2358   regexp->set_data(*store);
   2359 }
   2360 
   2361 
   2362 void Factory::SetRegExpIrregexpData(Handle<JSRegExp> regexp,
   2363                                     JSRegExp::Type type,
   2364                                     Handle<String> source,
   2365                                     JSRegExp::Flags flags,
   2366                                     int capture_count) {
   2367   Handle<FixedArray> store = NewFixedArray(JSRegExp::kIrregexpDataSize);
   2368   Smi* uninitialized = Smi::FromInt(JSRegExp::kUninitializedValue);
   2369   store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
   2370   store->set(JSRegExp::kSourceIndex, *source);
   2371   store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags));
   2372   store->set(JSRegExp::kIrregexpLatin1CodeIndex, uninitialized);
   2373   store->set(JSRegExp::kIrregexpUC16CodeIndex, uninitialized);
   2374   store->set(JSRegExp::kIrregexpLatin1CodeSavedIndex, uninitialized);
   2375   store->set(JSRegExp::kIrregexpUC16CodeSavedIndex, uninitialized);
   2376   store->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(0));
   2377   store->set(JSRegExp::kIrregexpCaptureCountIndex,
   2378              Smi::FromInt(capture_count));
   2379   store->set(JSRegExp::kIrregexpCaptureNameMapIndex, uninitialized);
   2380   regexp->set_data(*store);
   2381 }
   2382 
   2383 
   2384 Handle<Object> Factory::GlobalConstantFor(Handle<Name> name) {
   2385   if (Name::Equals(name, undefined_string())) return undefined_value();
   2386   if (Name::Equals(name, nan_string())) return nan_value();
   2387   if (Name::Equals(name, infinity_string())) return infinity_value();
   2388   return Handle<Object>::null();
   2389 }
   2390 
   2391 
   2392 Handle<Object> Factory::ToBoolean(bool value) {
   2393   return value ? true_value() : false_value();
   2394 }
   2395 
   2396 
   2397 }  // namespace internal
   2398 }  // namespace v8
   2399