Home | History | Annotate | Download | only in src
      1 // Copyright 2015 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/objects.h"
      6 
      7 #include <cmath>
      8 #include <iomanip>
      9 #include <sstream>
     10 
     11 #include "src/objects-inl.h"
     12 
     13 #include "src/accessors.h"
     14 #include "src/allocation-site-scopes.h"
     15 #include "src/api-arguments-inl.h"
     16 #include "src/api-natives.h"
     17 #include "src/api.h"
     18 #include "src/base/bits.h"
     19 #include "src/base/utils/random-number-generator.h"
     20 #include "src/bootstrapper.h"
     21 #include "src/code-stubs.h"
     22 #include "src/codegen.h"
     23 #include "src/compilation-dependencies.h"
     24 #include "src/compiler.h"
     25 #include "src/counters-inl.h"
     26 #include "src/counters.h"
     27 #include "src/date.h"
     28 #include "src/debug/debug.h"
     29 #include "src/deoptimizer.h"
     30 #include "src/elements.h"
     31 #include "src/execution.h"
     32 #include "src/field-index-inl.h"
     33 #include "src/field-index.h"
     34 #include "src/field-type.h"
     35 #include "src/frames-inl.h"
     36 #include "src/full-codegen/full-codegen.h"
     37 #include "src/ic/ic.h"
     38 #include "src/identity-map.h"
     39 #include "src/interpreter/bytecode-array-iterator.h"
     40 #include "src/interpreter/interpreter.h"
     41 #include "src/interpreter/source-position-table.h"
     42 #include "src/isolate-inl.h"
     43 #include "src/keys.h"
     44 #include "src/list.h"
     45 #include "src/log.h"
     46 #include "src/lookup.h"
     47 #include "src/macro-assembler.h"
     48 #include "src/messages.h"
     49 #include "src/objects-body-descriptors-inl.h"
     50 #include "src/property-descriptor.h"
     51 #include "src/prototype.h"
     52 #include "src/regexp/jsregexp.h"
     53 #include "src/safepoint-table.h"
     54 #include "src/string-builder.h"
     55 #include "src/string-search.h"
     56 #include "src/string-stream.h"
     57 #include "src/utils.h"
     58 #include "src/zone.h"
     59 
     60 #ifdef ENABLE_DISASSEMBLER
     61 #include "src/disasm.h"
     62 #include "src/disassembler.h"
     63 #endif
     64 
     65 namespace v8 {
     66 namespace internal {
     67 
     68 std::ostream& operator<<(std::ostream& os, InstanceType instance_type) {
     69   switch (instance_type) {
     70 #define WRITE_TYPE(TYPE) \
     71   case TYPE:             \
     72     return os << #TYPE;
     73     INSTANCE_TYPE_LIST(WRITE_TYPE)
     74 #undef WRITE_TYPE
     75   }
     76   UNREACHABLE();
     77   return os << "UNKNOWN";  // Keep the compiler happy.
     78 }
     79 
     80 Handle<FieldType> Object::OptimalType(Isolate* isolate,
     81                                       Representation representation) {
     82   if (representation.IsNone()) return FieldType::None(isolate);
     83   if (FLAG_track_field_types) {
     84     if (representation.IsHeapObject() && IsHeapObject()) {
     85       // We can track only JavaScript objects with stable maps.
     86       Handle<Map> map(HeapObject::cast(this)->map(), isolate);
     87       if (map->is_stable() && map->IsJSReceiverMap()) {
     88         return FieldType::Class(map, isolate);
     89       }
     90     }
     91   }
     92   return FieldType::Any(isolate);
     93 }
     94 
     95 
     96 MaybeHandle<JSReceiver> Object::ToObject(Isolate* isolate,
     97                                          Handle<Object> object,
     98                                          Handle<Context> native_context) {
     99   if (object->IsJSReceiver()) return Handle<JSReceiver>::cast(object);
    100   Handle<JSFunction> constructor;
    101   if (object->IsSmi()) {
    102     constructor = handle(native_context->number_function(), isolate);
    103   } else {
    104     int constructor_function_index =
    105         Handle<HeapObject>::cast(object)->map()->GetConstructorFunctionIndex();
    106     if (constructor_function_index == Map::kNoConstructorFunctionIndex) {
    107       THROW_NEW_ERROR(isolate,
    108                       NewTypeError(MessageTemplate::kUndefinedOrNullToObject),
    109                       JSReceiver);
    110     }
    111     constructor = handle(
    112         JSFunction::cast(native_context->get(constructor_function_index)),
    113         isolate);
    114   }
    115   Handle<JSObject> result = isolate->factory()->NewJSObject(constructor);
    116   Handle<JSValue>::cast(result)->set_value(*object);
    117   return result;
    118 }
    119 
    120 // ES6 section 9.2.1.2, OrdinaryCallBindThis for sloppy callee.
    121 // static
    122 MaybeHandle<JSReceiver> Object::ConvertReceiver(Isolate* isolate,
    123                                                 Handle<Object> object) {
    124   if (object->IsJSReceiver()) return Handle<JSReceiver>::cast(object);
    125   if (*object == isolate->heap()->null_value() ||
    126       object->IsUndefined(isolate)) {
    127     return isolate->global_proxy();
    128   }
    129   return Object::ToObject(isolate, object);
    130 }
    131 
    132 // static
    133 MaybeHandle<Object> Object::ToNumber(Handle<Object> input) {
    134   while (true) {
    135     if (input->IsNumber()) {
    136       return input;
    137     }
    138     if (input->IsString()) {
    139       return String::ToNumber(Handle<String>::cast(input));
    140     }
    141     if (input->IsOddball()) {
    142       return Oddball::ToNumber(Handle<Oddball>::cast(input));
    143     }
    144     Isolate* const isolate = Handle<HeapObject>::cast(input)->GetIsolate();
    145     if (input->IsSymbol()) {
    146       THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kSymbolToNumber),
    147                       Object);
    148     }
    149     if (input->IsSimd128Value()) {
    150       THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kSimdToNumber),
    151                       Object);
    152     }
    153     ASSIGN_RETURN_ON_EXCEPTION(
    154         isolate, input, JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(input),
    155                                                 ToPrimitiveHint::kNumber),
    156         Object);
    157   }
    158 }
    159 
    160 
    161 // static
    162 MaybeHandle<Object> Object::ToInteger(Isolate* isolate, Handle<Object> input) {
    163   ASSIGN_RETURN_ON_EXCEPTION(isolate, input, ToNumber(input), Object);
    164   return isolate->factory()->NewNumber(DoubleToInteger(input->Number()));
    165 }
    166 
    167 
    168 // static
    169 MaybeHandle<Object> Object::ToInt32(Isolate* isolate, Handle<Object> input) {
    170   ASSIGN_RETURN_ON_EXCEPTION(isolate, input, ToNumber(input), Object);
    171   return isolate->factory()->NewNumberFromInt(DoubleToInt32(input->Number()));
    172 }
    173 
    174 
    175 // static
    176 MaybeHandle<Object> Object::ToUint32(Isolate* isolate, Handle<Object> input) {
    177   ASSIGN_RETURN_ON_EXCEPTION(isolate, input, ToNumber(input), Object);
    178   return isolate->factory()->NewNumberFromUint(DoubleToUint32(input->Number()));
    179 }
    180 
    181 
    182 // static
    183 MaybeHandle<Name> Object::ConvertToName(Isolate* isolate,
    184                                         Handle<Object> input) {
    185   ASSIGN_RETURN_ON_EXCEPTION(
    186       isolate, input, Object::ToPrimitive(input, ToPrimitiveHint::kString),
    187       Name);
    188   if (input->IsName()) return Handle<Name>::cast(input);
    189   return ToString(isolate, input);
    190 }
    191 
    192 // static
    193 MaybeHandle<String> Object::ToString(Isolate* isolate, Handle<Object> input) {
    194   while (true) {
    195     if (input->IsString()) {
    196       return Handle<String>::cast(input);
    197     }
    198     if (input->IsOddball()) {
    199       return handle(Handle<Oddball>::cast(input)->to_string(), isolate);
    200     }
    201     if (input->IsNumber()) {
    202       return isolate->factory()->NumberToString(input);
    203     }
    204     if (input->IsSymbol()) {
    205       THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kSymbolToString),
    206                       String);
    207     }
    208     if (input->IsSimd128Value()) {
    209       return Simd128Value::ToString(Handle<Simd128Value>::cast(input));
    210     }
    211     ASSIGN_RETURN_ON_EXCEPTION(
    212         isolate, input, JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(input),
    213                                                 ToPrimitiveHint::kString),
    214         String);
    215   }
    216 }
    217 
    218 
    219 // static
    220 MaybeHandle<Object> Object::ToLength(Isolate* isolate, Handle<Object> input) {
    221   ASSIGN_RETURN_ON_EXCEPTION(isolate, input, ToNumber(input), Object);
    222   double len = DoubleToInteger(input->Number());
    223   if (len <= 0.0) {
    224     len = 0.0;
    225   } else if (len >= kMaxSafeInteger) {
    226     len = kMaxSafeInteger;
    227   }
    228   return isolate->factory()->NewNumber(len);
    229 }
    230 
    231 
    232 bool Object::BooleanValue() {
    233   if (IsSmi()) return Smi::cast(this)->value() != 0;
    234   DCHECK(IsHeapObject());
    235   Isolate* isolate = HeapObject::cast(this)->GetIsolate();
    236   if (IsBoolean()) return IsTrue(isolate);
    237   if (IsUndefined(isolate) || IsNull(isolate)) return false;
    238   if (IsUndetectable()) return false;  // Undetectable object is false.
    239   if (IsString()) return String::cast(this)->length() != 0;
    240   if (IsHeapNumber()) return HeapNumber::cast(this)->HeapNumberBooleanValue();
    241   return true;
    242 }
    243 
    244 
    245 namespace {
    246 
    247 // TODO(bmeurer): Maybe we should introduce a marker interface Number,
    248 // where we put all these methods at some point?
    249 ComparisonResult NumberCompare(double x, double y) {
    250   if (std::isnan(x) || std::isnan(y)) {
    251     return ComparisonResult::kUndefined;
    252   } else if (x < y) {
    253     return ComparisonResult::kLessThan;
    254   } else if (x > y) {
    255     return ComparisonResult::kGreaterThan;
    256   } else {
    257     return ComparisonResult::kEqual;
    258   }
    259 }
    260 
    261 
    262 bool NumberEquals(double x, double y) {
    263   // Must check explicitly for NaN's on Windows, but -0 works fine.
    264   if (std::isnan(x)) return false;
    265   if (std::isnan(y)) return false;
    266   return x == y;
    267 }
    268 
    269 
    270 bool NumberEquals(const Object* x, const Object* y) {
    271   return NumberEquals(x->Number(), y->Number());
    272 }
    273 
    274 
    275 bool NumberEquals(Handle<Object> x, Handle<Object> y) {
    276   return NumberEquals(*x, *y);
    277 }
    278 
    279 }  // namespace
    280 
    281 
    282 // static
    283 Maybe<ComparisonResult> Object::Compare(Handle<Object> x, Handle<Object> y) {
    284   // ES6 section 7.2.11 Abstract Relational Comparison step 3 and 4.
    285   if (!Object::ToPrimitive(x, ToPrimitiveHint::kNumber).ToHandle(&x) ||
    286       !Object::ToPrimitive(y, ToPrimitiveHint::kNumber).ToHandle(&y)) {
    287     return Nothing<ComparisonResult>();
    288   }
    289   if (x->IsString() && y->IsString()) {
    290     // ES6 section 7.2.11 Abstract Relational Comparison step 5.
    291     return Just(
    292         String::Compare(Handle<String>::cast(x), Handle<String>::cast(y)));
    293   }
    294   // ES6 section 7.2.11 Abstract Relational Comparison step 6.
    295   if (!Object::ToNumber(x).ToHandle(&x) || !Object::ToNumber(y).ToHandle(&y)) {
    296     return Nothing<ComparisonResult>();
    297   }
    298   return Just(NumberCompare(x->Number(), y->Number()));
    299 }
    300 
    301 
    302 // static
    303 Maybe<bool> Object::Equals(Handle<Object> x, Handle<Object> y) {
    304   // This is the generic version of Abstract Equality Comparison; a version in
    305   // JavaScript land is available in the EqualStub and NotEqualStub. Whenever
    306   // you change something functionality wise in here, remember to update the
    307   // TurboFan code stubs as well.
    308   while (true) {
    309     if (x->IsNumber()) {
    310       if (y->IsNumber()) {
    311         return Just(NumberEquals(x, y));
    312       } else if (y->IsBoolean()) {
    313         return Just(NumberEquals(*x, Handle<Oddball>::cast(y)->to_number()));
    314       } else if (y->IsString()) {
    315         return Just(NumberEquals(x, String::ToNumber(Handle<String>::cast(y))));
    316       } else if (y->IsJSReceiver()) {
    317         if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(y))
    318                  .ToHandle(&y)) {
    319           return Nothing<bool>();
    320         }
    321       } else {
    322         return Just(false);
    323       }
    324     } else if (x->IsString()) {
    325       if (y->IsString()) {
    326         return Just(
    327             String::Equals(Handle<String>::cast(x), Handle<String>::cast(y)));
    328       } else if (y->IsNumber()) {
    329         x = String::ToNumber(Handle<String>::cast(x));
    330         return Just(NumberEquals(x, y));
    331       } else if (y->IsBoolean()) {
    332         x = String::ToNumber(Handle<String>::cast(x));
    333         return Just(NumberEquals(*x, Handle<Oddball>::cast(y)->to_number()));
    334       } else if (y->IsJSReceiver()) {
    335         if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(y))
    336                  .ToHandle(&y)) {
    337           return Nothing<bool>();
    338         }
    339       } else {
    340         return Just(false);
    341       }
    342     } else if (x->IsBoolean()) {
    343       if (y->IsOddball()) {
    344         return Just(x.is_identical_to(y));
    345       } else if (y->IsNumber()) {
    346         return Just(NumberEquals(Handle<Oddball>::cast(x)->to_number(), *y));
    347       } else if (y->IsString()) {
    348         y = String::ToNumber(Handle<String>::cast(y));
    349         return Just(NumberEquals(Handle<Oddball>::cast(x)->to_number(), *y));
    350       } else if (y->IsJSReceiver()) {
    351         if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(y))
    352                  .ToHandle(&y)) {
    353           return Nothing<bool>();
    354         }
    355         x = Oddball::ToNumber(Handle<Oddball>::cast(x));
    356       } else {
    357         return Just(false);
    358       }
    359     } else if (x->IsSymbol()) {
    360       if (y->IsSymbol()) {
    361         return Just(x.is_identical_to(y));
    362       } else if (y->IsJSReceiver()) {
    363         if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(y))
    364                  .ToHandle(&y)) {
    365           return Nothing<bool>();
    366         }
    367       } else {
    368         return Just(false);
    369       }
    370     } else if (x->IsSimd128Value()) {
    371       if (y->IsSimd128Value()) {
    372         return Just(Simd128Value::Equals(Handle<Simd128Value>::cast(x),
    373                                          Handle<Simd128Value>::cast(y)));
    374       } else if (y->IsJSReceiver()) {
    375         if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(y))
    376                  .ToHandle(&y)) {
    377           return Nothing<bool>();
    378         }
    379       } else {
    380         return Just(false);
    381       }
    382     } else if (x->IsJSReceiver()) {
    383       if (y->IsJSReceiver()) {
    384         return Just(x.is_identical_to(y));
    385       } else if (y->IsUndetectable()) {
    386         return Just(x->IsUndetectable());
    387       } else if (y->IsBoolean()) {
    388         y = Oddball::ToNumber(Handle<Oddball>::cast(y));
    389       } else if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(x))
    390                       .ToHandle(&x)) {
    391         return Nothing<bool>();
    392       }
    393     } else {
    394       return Just(x->IsUndetectable() && y->IsUndetectable());
    395     }
    396   }
    397 }
    398 
    399 
    400 bool Object::StrictEquals(Object* that) {
    401   if (this->IsNumber()) {
    402     if (!that->IsNumber()) return false;
    403     return NumberEquals(this, that);
    404   } else if (this->IsString()) {
    405     if (!that->IsString()) return false;
    406     return String::cast(this)->Equals(String::cast(that));
    407   } else if (this->IsSimd128Value()) {
    408     if (!that->IsSimd128Value()) return false;
    409     return Simd128Value::cast(this)->Equals(Simd128Value::cast(that));
    410   }
    411   return this == that;
    412 }
    413 
    414 
    415 // static
    416 Handle<String> Object::TypeOf(Isolate* isolate, Handle<Object> object) {
    417   if (object->IsNumber()) return isolate->factory()->number_string();
    418   if (object->IsOddball()) return handle(Oddball::cast(*object)->type_of());
    419   if (object->IsUndetectable()) {
    420     return isolate->factory()->undefined_string();
    421   }
    422   if (object->IsString()) return isolate->factory()->string_string();
    423   if (object->IsSymbol()) return isolate->factory()->symbol_string();
    424   if (object->IsString()) return isolate->factory()->string_string();
    425 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
    426   if (object->Is##Type()) return isolate->factory()->type##_string();
    427   SIMD128_TYPES(SIMD128_TYPE)
    428 #undef SIMD128_TYPE
    429   if (object->IsCallable()) return isolate->factory()->function_string();
    430   return isolate->factory()->object_string();
    431 }
    432 
    433 
    434 // static
    435 MaybeHandle<Object> Object::Multiply(Isolate* isolate, Handle<Object> lhs,
    436                                      Handle<Object> rhs) {
    437   if (!lhs->IsNumber() || !rhs->IsNumber()) {
    438     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
    439     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
    440   }
    441   return isolate->factory()->NewNumber(lhs->Number() * rhs->Number());
    442 }
    443 
    444 
    445 // static
    446 MaybeHandle<Object> Object::Divide(Isolate* isolate, Handle<Object> lhs,
    447                                    Handle<Object> rhs) {
    448   if (!lhs->IsNumber() || !rhs->IsNumber()) {
    449     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
    450     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
    451   }
    452   return isolate->factory()->NewNumber(lhs->Number() / rhs->Number());
    453 }
    454 
    455 
    456 // static
    457 MaybeHandle<Object> Object::Modulus(Isolate* isolate, Handle<Object> lhs,
    458                                     Handle<Object> rhs) {
    459   if (!lhs->IsNumber() || !rhs->IsNumber()) {
    460     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
    461     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
    462   }
    463   return isolate->factory()->NewNumber(modulo(lhs->Number(), rhs->Number()));
    464 }
    465 
    466 
    467 // static
    468 MaybeHandle<Object> Object::Add(Isolate* isolate, Handle<Object> lhs,
    469                                 Handle<Object> rhs) {
    470   if (lhs->IsNumber() && rhs->IsNumber()) {
    471     return isolate->factory()->NewNumber(lhs->Number() + rhs->Number());
    472   } else if (lhs->IsString() && rhs->IsString()) {
    473     return isolate->factory()->NewConsString(Handle<String>::cast(lhs),
    474                                              Handle<String>::cast(rhs));
    475   }
    476   ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToPrimitive(lhs), Object);
    477   ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToPrimitive(rhs), Object);
    478   if (lhs->IsString() || rhs->IsString()) {
    479     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToString(isolate, rhs),
    480                                Object);
    481     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToString(isolate, lhs),
    482                                Object);
    483     return isolate->factory()->NewConsString(Handle<String>::cast(lhs),
    484                                              Handle<String>::cast(rhs));
    485   }
    486   ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
    487   ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
    488   return isolate->factory()->NewNumber(lhs->Number() + rhs->Number());
    489 }
    490 
    491 
    492 // static
    493 MaybeHandle<Object> Object::Subtract(Isolate* isolate, Handle<Object> lhs,
    494                                      Handle<Object> rhs) {
    495   if (!lhs->IsNumber() || !rhs->IsNumber()) {
    496     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
    497     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
    498   }
    499   return isolate->factory()->NewNumber(lhs->Number() - rhs->Number());
    500 }
    501 
    502 
    503 // static
    504 MaybeHandle<Object> Object::ShiftLeft(Isolate* isolate, Handle<Object> lhs,
    505                                       Handle<Object> rhs) {
    506   if (!lhs->IsNumber() || !rhs->IsNumber()) {
    507     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
    508     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
    509   }
    510   return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs)
    511                                               << (NumberToUint32(*rhs) & 0x1F));
    512 }
    513 
    514 
    515 // static
    516 MaybeHandle<Object> Object::ShiftRight(Isolate* isolate, Handle<Object> lhs,
    517                                        Handle<Object> rhs) {
    518   if (!lhs->IsNumber() || !rhs->IsNumber()) {
    519     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
    520     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
    521   }
    522   return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs) >>
    523                                               (NumberToUint32(*rhs) & 0x1F));
    524 }
    525 
    526 
    527 // static
    528 MaybeHandle<Object> Object::ShiftRightLogical(Isolate* isolate,
    529                                               Handle<Object> lhs,
    530                                               Handle<Object> rhs) {
    531   if (!lhs->IsNumber() || !rhs->IsNumber()) {
    532     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
    533     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
    534   }
    535   return isolate->factory()->NewNumberFromUint(NumberToUint32(*lhs) >>
    536                                                (NumberToUint32(*rhs) & 0x1F));
    537 }
    538 
    539 
    540 // static
    541 MaybeHandle<Object> Object::BitwiseAnd(Isolate* isolate, Handle<Object> lhs,
    542                                        Handle<Object> rhs) {
    543   if (!lhs->IsNumber() || !rhs->IsNumber()) {
    544     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
    545     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
    546   }
    547   return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs) &
    548                                               NumberToInt32(*rhs));
    549 }
    550 
    551 
    552 // static
    553 MaybeHandle<Object> Object::BitwiseOr(Isolate* isolate, Handle<Object> lhs,
    554                                       Handle<Object> rhs) {
    555   if (!lhs->IsNumber() || !rhs->IsNumber()) {
    556     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
    557     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
    558   }
    559   return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs) |
    560                                               NumberToInt32(*rhs));
    561 }
    562 
    563 
    564 // static
    565 MaybeHandle<Object> Object::BitwiseXor(Isolate* isolate, Handle<Object> lhs,
    566                                        Handle<Object> rhs) {
    567   if (!lhs->IsNumber() || !rhs->IsNumber()) {
    568     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
    569     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
    570   }
    571   return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs) ^
    572                                               NumberToInt32(*rhs));
    573 }
    574 
    575 // static
    576 MaybeHandle<Object> Object::OrdinaryHasInstance(Isolate* isolate,
    577                                                 Handle<Object> callable,
    578                                                 Handle<Object> object) {
    579   // The {callable} must have a [[Call]] internal method.
    580   if (!callable->IsCallable()) return isolate->factory()->false_value();
    581 
    582   // Check if {callable} is a bound function, and if so retrieve its
    583   // [[BoundTargetFunction]] and use that instead of {callable}.
    584   if (callable->IsJSBoundFunction()) {
    585     Handle<Object> bound_callable(
    586         Handle<JSBoundFunction>::cast(callable)->bound_target_function(),
    587         isolate);
    588     return Object::InstanceOf(isolate, object, bound_callable);
    589   }
    590 
    591   // If {object} is not a receiver, return false.
    592   if (!object->IsJSReceiver()) return isolate->factory()->false_value();
    593 
    594   // Get the "prototype" of {callable}; raise an error if it's not a receiver.
    595   Handle<Object> prototype;
    596   ASSIGN_RETURN_ON_EXCEPTION(
    597       isolate, prototype,
    598       Object::GetProperty(callable, isolate->factory()->prototype_string()),
    599       Object);
    600   if (!prototype->IsJSReceiver()) {
    601     THROW_NEW_ERROR(
    602         isolate,
    603         NewTypeError(MessageTemplate::kInstanceofNonobjectProto, prototype),
    604         Object);
    605   }
    606 
    607   // Return whether or not {prototype} is in the prototype chain of {object}.
    608   Maybe<bool> result = JSReceiver::HasInPrototypeChain(
    609       isolate, Handle<JSReceiver>::cast(object), prototype);
    610   if (result.IsNothing()) return MaybeHandle<Object>();
    611   return isolate->factory()->ToBoolean(result.FromJust());
    612 }
    613 
    614 // static
    615 MaybeHandle<Object> Object::InstanceOf(Isolate* isolate, Handle<Object> object,
    616                                        Handle<Object> callable) {
    617   // The {callable} must be a receiver.
    618   if (!callable->IsJSReceiver()) {
    619     THROW_NEW_ERROR(isolate,
    620                     NewTypeError(MessageTemplate::kNonObjectInInstanceOfCheck),
    621                     Object);
    622   }
    623 
    624   // Lookup the @@hasInstance method on {callable}.
    625   Handle<Object> inst_of_handler;
    626   ASSIGN_RETURN_ON_EXCEPTION(
    627       isolate, inst_of_handler,
    628       JSReceiver::GetMethod(Handle<JSReceiver>::cast(callable),
    629                             isolate->factory()->has_instance_symbol()),
    630       Object);
    631   if (!inst_of_handler->IsUndefined(isolate)) {
    632     // Call the {inst_of_handler} on the {callable}.
    633     Handle<Object> result;
    634     ASSIGN_RETURN_ON_EXCEPTION(
    635         isolate, result,
    636         Execution::Call(isolate, inst_of_handler, callable, 1, &object),
    637         Object);
    638     return isolate->factory()->ToBoolean(result->BooleanValue());
    639   }
    640 
    641   // The {callable} must have a [[Call]] internal method.
    642   if (!callable->IsCallable()) {
    643     THROW_NEW_ERROR(
    644         isolate, NewTypeError(MessageTemplate::kNonCallableInInstanceOfCheck),
    645         Object);
    646   }
    647 
    648   // Fall back to OrdinaryHasInstance with {callable} and {object}.
    649   Handle<Object> result;
    650   ASSIGN_RETURN_ON_EXCEPTION(
    651       isolate, result,
    652       JSReceiver::OrdinaryHasInstance(isolate, callable, object), Object);
    653   return result;
    654 }
    655 
    656 Maybe<bool> Object::IsArray(Handle<Object> object) {
    657   if (object->IsJSArray()) return Just(true);
    658   if (object->IsJSProxy()) {
    659     Handle<JSProxy> proxy = Handle<JSProxy>::cast(object);
    660     Isolate* isolate = proxy->GetIsolate();
    661     if (proxy->IsRevoked()) {
    662       isolate->Throw(*isolate->factory()->NewTypeError(
    663           MessageTemplate::kProxyRevoked,
    664           isolate->factory()->NewStringFromAsciiChecked("IsArray")));
    665       return Nothing<bool>();
    666     }
    667     return Object::IsArray(handle(proxy->target(), isolate));
    668   }
    669   return Just(false);
    670 }
    671 
    672 
    673 // static
    674 MaybeHandle<Object> Object::GetMethod(Handle<JSReceiver> receiver,
    675                                       Handle<Name> name) {
    676   Handle<Object> func;
    677   Isolate* isolate = receiver->GetIsolate();
    678   ASSIGN_RETURN_ON_EXCEPTION(isolate, func,
    679                              JSReceiver::GetProperty(receiver, name), Object);
    680   if (func->IsNull(isolate) || func->IsUndefined(isolate)) {
    681     return isolate->factory()->undefined_value();
    682   }
    683   if (!func->IsCallable()) {
    684     THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kPropertyNotFunction,
    685                                           func, name, receiver),
    686                     Object);
    687   }
    688   return func;
    689 }
    690 
    691 
    692 // static
    693 MaybeHandle<FixedArray> Object::CreateListFromArrayLike(
    694     Isolate* isolate, Handle<Object> object, ElementTypes element_types) {
    695   // 1. ReturnIfAbrupt(object).
    696   // 2. (default elementTypes -- not applicable.)
    697   // 3. If Type(obj) is not Object, throw a TypeError exception.
    698   if (!object->IsJSReceiver()) {
    699     THROW_NEW_ERROR(isolate,
    700                     NewTypeError(MessageTemplate::kCalledOnNonObject,
    701                                  isolate->factory()->NewStringFromAsciiChecked(
    702                                      "CreateListFromArrayLike")),
    703                     FixedArray);
    704   }
    705   // 4. Let len be ? ToLength(? Get(obj, "length")).
    706   Handle<JSReceiver> receiver = Handle<JSReceiver>::cast(object);
    707   Handle<Object> raw_length_number;
    708   ASSIGN_RETURN_ON_EXCEPTION(isolate, raw_length_number,
    709                              Object::GetLengthFromArrayLike(isolate, receiver),
    710                              FixedArray);
    711   uint32_t len;
    712   if (!raw_length_number->ToUint32(&len) ||
    713       len > static_cast<uint32_t>(FixedArray::kMaxLength)) {
    714     THROW_NEW_ERROR(isolate,
    715                     NewRangeError(MessageTemplate::kInvalidArrayLength),
    716                     FixedArray);
    717   }
    718   // 5. Let list be an empty List.
    719   Handle<FixedArray> list = isolate->factory()->NewFixedArray(len);
    720   // 6. Let index be 0.
    721   // 7. Repeat while index < len:
    722   for (uint32_t index = 0; index < len; ++index) {
    723     // 7a. Let indexName be ToString(index).
    724     // 7b. Let next be ? Get(obj, indexName).
    725     Handle<Object> next;
    726     ASSIGN_RETURN_ON_EXCEPTION(isolate, next,
    727                                JSReceiver::GetElement(isolate, receiver, index),
    728                                FixedArray);
    729     switch (element_types) {
    730       case ElementTypes::kAll:
    731         // Nothing to do.
    732         break;
    733       case ElementTypes::kStringAndSymbol: {
    734         // 7c. If Type(next) is not an element of elementTypes, throw a
    735         //     TypeError exception.
    736         if (!next->IsName()) {
    737           THROW_NEW_ERROR(isolate,
    738                           NewTypeError(MessageTemplate::kNotPropertyName, next),
    739                           FixedArray);
    740         }
    741         // 7d. Append next as the last element of list.
    742         // Internalize on the fly so we can use pointer identity later.
    743         next = isolate->factory()->InternalizeName(Handle<Name>::cast(next));
    744         break;
    745       }
    746     }
    747     list->set(index, *next);
    748     // 7e. Set index to index + 1. (See loop header.)
    749   }
    750   // 8. Return list.
    751   return list;
    752 }
    753 
    754 
    755 // static
    756 MaybeHandle<Object> Object::GetLengthFromArrayLike(Isolate* isolate,
    757                                                    Handle<Object> object) {
    758   Handle<Object> val;
    759   Handle<Object> key = isolate->factory()->length_string();
    760   ASSIGN_RETURN_ON_EXCEPTION(
    761       isolate, val, Runtime::GetObjectProperty(isolate, object, key), Object);
    762   return Object::ToLength(isolate, val);
    763 }
    764 
    765 // static
    766 Maybe<bool> JSReceiver::HasProperty(LookupIterator* it) {
    767   for (; it->IsFound(); it->Next()) {
    768     switch (it->state()) {
    769       case LookupIterator::NOT_FOUND:
    770       case LookupIterator::TRANSITION:
    771         UNREACHABLE();
    772       case LookupIterator::JSPROXY:
    773         return JSProxy::HasProperty(it->isolate(), it->GetHolder<JSProxy>(),
    774                                     it->GetName());
    775       case LookupIterator::INTERCEPTOR: {
    776         Maybe<PropertyAttributes> result =
    777             JSObject::GetPropertyAttributesWithInterceptor(it);
    778         if (result.IsNothing()) return Nothing<bool>();
    779         if (result.FromJust() != ABSENT) return Just(true);
    780         break;
    781       }
    782       case LookupIterator::ACCESS_CHECK: {
    783         if (it->HasAccess()) break;
    784         Maybe<PropertyAttributes> result =
    785             JSObject::GetPropertyAttributesWithFailedAccessCheck(it);
    786         if (result.IsNothing()) return Nothing<bool>();
    787         return Just(result.FromJust() != ABSENT);
    788       }
    789       case LookupIterator::INTEGER_INDEXED_EXOTIC:
    790         // TypedArray out-of-bounds access.
    791         return Just(false);
    792       case LookupIterator::ACCESSOR:
    793       case LookupIterator::DATA:
    794         return Just(true);
    795     }
    796   }
    797   return Just(false);
    798 }
    799 
    800 
    801 // static
    802 MaybeHandle<Object> Object::GetProperty(LookupIterator* it) {
    803   for (; it->IsFound(); it->Next()) {
    804     switch (it->state()) {
    805       case LookupIterator::NOT_FOUND:
    806       case LookupIterator::TRANSITION:
    807         UNREACHABLE();
    808       case LookupIterator::JSPROXY: {
    809         bool was_found;
    810         MaybeHandle<Object> result =
    811             JSProxy::GetProperty(it->isolate(), it->GetHolder<JSProxy>(),
    812                                  it->GetName(), it->GetReceiver(), &was_found);
    813         if (!was_found) it->NotFound();
    814         return result;
    815       }
    816       case LookupIterator::INTERCEPTOR: {
    817         bool done;
    818         Handle<Object> result;
    819         ASSIGN_RETURN_ON_EXCEPTION(
    820             it->isolate(), result,
    821             JSObject::GetPropertyWithInterceptor(it, &done), Object);
    822         if (done) return result;
    823         break;
    824       }
    825       case LookupIterator::ACCESS_CHECK:
    826         if (it->HasAccess()) break;
    827         return JSObject::GetPropertyWithFailedAccessCheck(it);
    828       case LookupIterator::ACCESSOR:
    829         return GetPropertyWithAccessor(it);
    830       case LookupIterator::INTEGER_INDEXED_EXOTIC:
    831         return ReadAbsentProperty(it);
    832       case LookupIterator::DATA:
    833         return it->GetDataValue();
    834     }
    835   }
    836   return ReadAbsentProperty(it);
    837 }
    838 
    839 
    840 // static
    841 MaybeHandle<Object> JSProxy::GetProperty(Isolate* isolate,
    842                                          Handle<JSProxy> proxy,
    843                                          Handle<Name> name,
    844                                          Handle<Object> receiver,
    845                                          bool* was_found) {
    846   *was_found = true;
    847   if (receiver->IsJSGlobalObject()) {
    848     THROW_NEW_ERROR(
    849         isolate,
    850         NewTypeError(MessageTemplate::kReadGlobalReferenceThroughProxy, name),
    851         Object);
    852   }
    853 
    854   DCHECK(!name->IsPrivate());
    855   STACK_CHECK(isolate, MaybeHandle<Object>());
    856   Handle<Name> trap_name = isolate->factory()->get_string();
    857   // 1. Assert: IsPropertyKey(P) is true.
    858   // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O.
    859   Handle<Object> handler(proxy->handler(), isolate);
    860   // 3. If handler is null, throw a TypeError exception.
    861   // 4. Assert: Type(handler) is Object.
    862   if (proxy->IsRevoked()) {
    863     THROW_NEW_ERROR(isolate,
    864                     NewTypeError(MessageTemplate::kProxyRevoked, trap_name),
    865                     Object);
    866   }
    867   // 5. Let target be the value of the [[ProxyTarget]] internal slot of O.
    868   Handle<JSReceiver> target(proxy->target(), isolate);
    869   // 6. Let trap be ? GetMethod(handler, "get").
    870   Handle<Object> trap;
    871   ASSIGN_RETURN_ON_EXCEPTION(
    872       isolate, trap,
    873       Object::GetMethod(Handle<JSReceiver>::cast(handler), trap_name), Object);
    874   // 7. If trap is undefined, then
    875   if (trap->IsUndefined(isolate)) {
    876     // 7.a Return target.[[Get]](P, Receiver).
    877     LookupIterator it =
    878         LookupIterator::PropertyOrElement(isolate, receiver, name, target);
    879     MaybeHandle<Object> result = Object::GetProperty(&it);
    880     *was_found = it.IsFound();
    881     return result;
    882   }
    883   // 8. Let trapResult be ? Call(trap, handler, target, P, Receiver).
    884   Handle<Object> trap_result;
    885   Handle<Object> args[] = {target, name, receiver};
    886   ASSIGN_RETURN_ON_EXCEPTION(
    887       isolate, trap_result,
    888       Execution::Call(isolate, trap, handler, arraysize(args), args), Object);
    889   // 9. Let targetDesc be ? target.[[GetOwnProperty]](P).
    890   PropertyDescriptor target_desc;
    891   Maybe<bool> target_found =
    892       JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, &target_desc);
    893   MAYBE_RETURN_NULL(target_found);
    894   // 10. If targetDesc is not undefined, then
    895   if (target_found.FromJust()) {
    896     // 10.a. If IsDataDescriptor(targetDesc) and targetDesc.[[Configurable]] is
    897     //       false and targetDesc.[[Writable]] is false, then
    898     // 10.a.i. If SameValue(trapResult, targetDesc.[[Value]]) is false,
    899     //        throw a TypeError exception.
    900     bool inconsistent = PropertyDescriptor::IsDataDescriptor(&target_desc) &&
    901                         !target_desc.configurable() &&
    902                         !target_desc.writable() &&
    903                         !trap_result->SameValue(*target_desc.value());
    904     if (inconsistent) {
    905       THROW_NEW_ERROR(
    906           isolate, NewTypeError(MessageTemplate::kProxyGetNonConfigurableData,
    907                                 name, target_desc.value(), trap_result),
    908           Object);
    909     }
    910     // 10.b. If IsAccessorDescriptor(targetDesc) and targetDesc.[[Configurable]]
    911     //       is false and targetDesc.[[Get]] is undefined, then
    912     // 10.b.i. If trapResult is not undefined, throw a TypeError exception.
    913     inconsistent = PropertyDescriptor::IsAccessorDescriptor(&target_desc) &&
    914                    !target_desc.configurable() &&
    915                    target_desc.get()->IsUndefined(isolate) &&
    916                    !trap_result->IsUndefined(isolate);
    917     if (inconsistent) {
    918       THROW_NEW_ERROR(
    919           isolate,
    920           NewTypeError(MessageTemplate::kProxyGetNonConfigurableAccessor, name,
    921                        trap_result),
    922           Object);
    923     }
    924   }
    925   // 11. Return trap_result
    926   return trap_result;
    927 }
    928 
    929 
    930 Handle<Object> JSReceiver::GetDataProperty(LookupIterator* it) {
    931   for (; it->IsFound(); it->Next()) {
    932     switch (it->state()) {
    933       case LookupIterator::INTERCEPTOR:
    934       case LookupIterator::NOT_FOUND:
    935       case LookupIterator::TRANSITION:
    936         UNREACHABLE();
    937       case LookupIterator::ACCESS_CHECK:
    938         // Support calling this method without an active context, but refuse
    939         // access to access-checked objects in that case.
    940         if (it->isolate()->context() != nullptr && it->HasAccess()) continue;
    941       // Fall through.
    942       case LookupIterator::JSPROXY:
    943         it->NotFound();
    944         return it->isolate()->factory()->undefined_value();
    945       case LookupIterator::ACCESSOR:
    946         // TODO(verwaest): For now this doesn't call into AccessorInfo, since
    947         // clients don't need it. Update once relevant.
    948         it->NotFound();
    949         return it->isolate()->factory()->undefined_value();
    950       case LookupIterator::INTEGER_INDEXED_EXOTIC:
    951         return it->isolate()->factory()->undefined_value();
    952       case LookupIterator::DATA:
    953         return it->GetDataValue();
    954     }
    955   }
    956   return it->isolate()->factory()->undefined_value();
    957 }
    958 
    959 
    960 bool Object::ToInt32(int32_t* value) {
    961   if (IsSmi()) {
    962     *value = Smi::cast(this)->value();
    963     return true;
    964   }
    965   if (IsHeapNumber()) {
    966     double num = HeapNumber::cast(this)->value();
    967     if (FastI2D(FastD2I(num)) == num) {
    968       *value = FastD2I(num);
    969       return true;
    970     }
    971   }
    972   return false;
    973 }
    974 
    975 Handle<SharedFunctionInfo> FunctionTemplateInfo::GetOrCreateSharedFunctionInfo(
    976     Isolate* isolate, Handle<FunctionTemplateInfo> info) {
    977   Object* current_info = info->shared_function_info();
    978   if (current_info->IsSharedFunctionInfo()) {
    979     return handle(SharedFunctionInfo::cast(current_info), isolate);
    980   }
    981 
    982   Handle<Object> class_name(info->class_name(), isolate);
    983   Handle<String> name = class_name->IsString()
    984                             ? Handle<String>::cast(class_name)
    985                             : isolate->factory()->empty_string();
    986   Handle<Code> code;
    987   if (info->call_code()->IsCallHandlerInfo() &&
    988       CallHandlerInfo::cast(info->call_code())->fast_handler()->IsCode()) {
    989     code = isolate->builtins()->HandleFastApiCall();
    990   } else {
    991     code = isolate->builtins()->HandleApiCall();
    992   }
    993   bool is_constructor = !info->remove_prototype();
    994   Handle<SharedFunctionInfo> result =
    995       isolate->factory()->NewSharedFunctionInfo(name, code, is_constructor);
    996   if (is_constructor) {
    997     result->set_construct_stub(*isolate->builtins()->JSConstructStubApi());
    998   }
    999 
   1000   result->set_length(info->length());
   1001   if (class_name->IsString()) result->set_instance_class_name(*class_name);
   1002   result->set_api_func_data(*info);
   1003   result->DontAdaptArguments();
   1004   DCHECK(result->IsApiFunction());
   1005 
   1006   info->set_shared_function_info(*result);
   1007   return result;
   1008 }
   1009 
   1010 bool FunctionTemplateInfo::IsTemplateFor(Map* map) {
   1011   // There is a constraint on the object; check.
   1012   if (!map->IsJSObjectMap()) return false;
   1013   // Fetch the constructor function of the object.
   1014   Object* cons_obj = map->GetConstructor();
   1015   if (!cons_obj->IsJSFunction()) return false;
   1016   JSFunction* fun = JSFunction::cast(cons_obj);
   1017   // Iterate through the chain of inheriting function templates to
   1018   // see if the required one occurs.
   1019   for (Object* type = fun->shared()->function_data();
   1020        type->IsFunctionTemplateInfo();
   1021        type = FunctionTemplateInfo::cast(type)->parent_template()) {
   1022     if (type == this) return true;
   1023   }
   1024   // Didn't find the required type in the inheritance chain.
   1025   return false;
   1026 }
   1027 
   1028 
   1029 // static
   1030 MaybeHandle<JSObject> JSObject::New(Handle<JSFunction> constructor,
   1031                                     Handle<JSReceiver> new_target,
   1032                                     Handle<AllocationSite> site) {
   1033   // If called through new, new.target can be:
   1034   // - a subclass of constructor,
   1035   // - a proxy wrapper around constructor, or
   1036   // - the constructor itself.
   1037   // If called through Reflect.construct, it's guaranteed to be a constructor.
   1038   Isolate* const isolate = constructor->GetIsolate();
   1039   DCHECK(constructor->IsConstructor());
   1040   DCHECK(new_target->IsConstructor());
   1041   DCHECK(!constructor->has_initial_map() ||
   1042          constructor->initial_map()->instance_type() != JS_FUNCTION_TYPE);
   1043 
   1044   Handle<Map> initial_map;
   1045   ASSIGN_RETURN_ON_EXCEPTION(
   1046       isolate, initial_map,
   1047       JSFunction::GetDerivedMap(isolate, constructor, new_target), JSObject);
   1048   Handle<JSObject> result =
   1049       isolate->factory()->NewJSObjectFromMap(initial_map, NOT_TENURED, site);
   1050   isolate->counters()->constructed_objects()->Increment();
   1051   isolate->counters()->constructed_objects_runtime()->Increment();
   1052   return result;
   1053 }
   1054 
   1055 void JSObject::EnsureWritableFastElements(Handle<JSObject> object) {
   1056   DCHECK(object->HasFastSmiOrObjectElements() ||
   1057          object->HasFastStringWrapperElements());
   1058   FixedArray* raw_elems = FixedArray::cast(object->elements());
   1059   Heap* heap = object->GetHeap();
   1060   if (raw_elems->map() != heap->fixed_cow_array_map()) return;
   1061   Isolate* isolate = heap->isolate();
   1062   Handle<FixedArray> elems(raw_elems, isolate);
   1063   Handle<FixedArray> writable_elems = isolate->factory()->CopyFixedArrayWithMap(
   1064       elems, isolate->factory()->fixed_array_map());
   1065   object->set_elements(*writable_elems);
   1066   isolate->counters()->cow_arrays_converted()->Increment();
   1067 }
   1068 
   1069 
   1070 // ES6 9.5.1
   1071 // static
   1072 MaybeHandle<Object> JSProxy::GetPrototype(Handle<JSProxy> proxy) {
   1073   Isolate* isolate = proxy->GetIsolate();
   1074   Handle<String> trap_name = isolate->factory()->getPrototypeOf_string();
   1075 
   1076   STACK_CHECK(isolate, MaybeHandle<Object>());
   1077 
   1078   // 1. Let handler be the value of the [[ProxyHandler]] internal slot.
   1079   // 2. If handler is null, throw a TypeError exception.
   1080   // 3. Assert: Type(handler) is Object.
   1081   // 4. Let target be the value of the [[ProxyTarget]] internal slot.
   1082   if (proxy->IsRevoked()) {
   1083     THROW_NEW_ERROR(isolate,
   1084                     NewTypeError(MessageTemplate::kProxyRevoked, trap_name),
   1085                     Object);
   1086   }
   1087   Handle<JSReceiver> target(proxy->target(), isolate);
   1088   Handle<JSReceiver> handler(JSReceiver::cast(proxy->handler()), isolate);
   1089 
   1090   // 5. Let trap be ? GetMethod(handler, "getPrototypeOf").
   1091   Handle<Object> trap;
   1092   ASSIGN_RETURN_ON_EXCEPTION(isolate, trap, GetMethod(handler, trap_name),
   1093                              Object);
   1094   // 6. If trap is undefined, then return target.[[GetPrototypeOf]]().
   1095   if (trap->IsUndefined(isolate)) {
   1096     return JSReceiver::GetPrototype(isolate, target);
   1097   }
   1098   // 7. Let handlerProto be ? Call(trap, handler, target).
   1099   Handle<Object> argv[] = {target};
   1100   Handle<Object> handler_proto;
   1101   ASSIGN_RETURN_ON_EXCEPTION(
   1102       isolate, handler_proto,
   1103       Execution::Call(isolate, trap, handler, arraysize(argv), argv), Object);
   1104   // 8. If Type(handlerProto) is neither Object nor Null, throw a TypeError.
   1105   if (!(handler_proto->IsJSReceiver() || handler_proto->IsNull(isolate))) {
   1106     THROW_NEW_ERROR(isolate,
   1107                     NewTypeError(MessageTemplate::kProxyGetPrototypeOfInvalid),
   1108                     Object);
   1109   }
   1110   // 9. Let extensibleTarget be ? IsExtensible(target).
   1111   Maybe<bool> is_extensible = JSReceiver::IsExtensible(target);
   1112   MAYBE_RETURN_NULL(is_extensible);
   1113   // 10. If extensibleTarget is true, return handlerProto.
   1114   if (is_extensible.FromJust()) return handler_proto;
   1115   // 11. Let targetProto be ? target.[[GetPrototypeOf]]().
   1116   Handle<Object> target_proto;
   1117   ASSIGN_RETURN_ON_EXCEPTION(isolate, target_proto,
   1118                              JSReceiver::GetPrototype(isolate, target), Object);
   1119   // 12. If SameValue(handlerProto, targetProto) is false, throw a TypeError.
   1120   if (!handler_proto->SameValue(*target_proto)) {
   1121     THROW_NEW_ERROR(
   1122         isolate,
   1123         NewTypeError(MessageTemplate::kProxyGetPrototypeOfNonExtensible),
   1124         Object);
   1125   }
   1126   // 13. Return handlerProto.
   1127   return handler_proto;
   1128 }
   1129 
   1130 MaybeHandle<Object> Object::GetPropertyWithAccessor(LookupIterator* it) {
   1131   Isolate* isolate = it->isolate();
   1132   Handle<Object> structure = it->GetAccessors();
   1133   Handle<Object> receiver = it->GetReceiver();
   1134 
   1135   // We should never get here to initialize a const with the hole value since a
   1136   // const declaration would conflict with the getter.
   1137   DCHECK(!structure->IsForeign());
   1138 
   1139   // API style callbacks.
   1140   if (structure->IsAccessorInfo()) {
   1141     Handle<JSObject> holder = it->GetHolder<JSObject>();
   1142     Handle<Name> name = it->GetName();
   1143     Handle<AccessorInfo> info = Handle<AccessorInfo>::cast(structure);
   1144     if (!info->IsCompatibleReceiver(*receiver)) {
   1145       THROW_NEW_ERROR(isolate,
   1146                       NewTypeError(MessageTemplate::kIncompatibleMethodReceiver,
   1147                                    name, receiver),
   1148                       Object);
   1149     }
   1150 
   1151     v8::AccessorNameGetterCallback call_fun =
   1152         v8::ToCData<v8::AccessorNameGetterCallback>(info->getter());
   1153     if (call_fun == nullptr) return isolate->factory()->undefined_value();
   1154 
   1155     if (info->is_sloppy() && !receiver->IsJSReceiver()) {
   1156       ASSIGN_RETURN_ON_EXCEPTION(isolate, receiver,
   1157                                  Object::ConvertReceiver(isolate, receiver),
   1158                                  Object);
   1159     }
   1160 
   1161     PropertyCallbackArguments args(isolate, info->data(), *receiver, *holder,
   1162                                    Object::DONT_THROW);
   1163     Handle<Object> result = args.Call(call_fun, name);
   1164     RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
   1165     if (result.is_null()) return ReadAbsentProperty(isolate, receiver, name);
   1166     // Rebox handle before return.
   1167     return handle(*result, isolate);
   1168   }
   1169 
   1170   // Regular accessor.
   1171   Handle<Object> getter(AccessorPair::cast(*structure)->getter(), isolate);
   1172   if (getter->IsFunctionTemplateInfo()) {
   1173     return Builtins::InvokeApiFunction(
   1174         isolate, Handle<FunctionTemplateInfo>::cast(getter), receiver, 0,
   1175         nullptr);
   1176   } else if (getter->IsCallable()) {
   1177     // TODO(rossberg): nicer would be to cast to some JSCallable here...
   1178     return Object::GetPropertyWithDefinedGetter(
   1179         receiver, Handle<JSReceiver>::cast(getter));
   1180   }
   1181   // Getter is not a function.
   1182   return ReadAbsentProperty(isolate, receiver, it->GetName());
   1183 }
   1184 
   1185 // static
   1186 Address AccessorInfo::redirect(Isolate* isolate, Address address,
   1187                                AccessorComponent component) {
   1188   ApiFunction fun(address);
   1189   DCHECK_EQ(ACCESSOR_GETTER, component);
   1190   ExternalReference::Type type = ExternalReference::DIRECT_GETTER_CALL;
   1191   return ExternalReference(&fun, type, isolate).address();
   1192 }
   1193 
   1194 Address AccessorInfo::redirected_getter() const {
   1195   Address accessor = v8::ToCData<Address>(getter());
   1196   if (accessor == nullptr) return nullptr;
   1197   return redirect(GetIsolate(), accessor, ACCESSOR_GETTER);
   1198 }
   1199 
   1200 bool AccessorInfo::IsCompatibleReceiverMap(Isolate* isolate,
   1201                                            Handle<AccessorInfo> info,
   1202                                            Handle<Map> map) {
   1203   if (!info->HasExpectedReceiverType()) return true;
   1204   if (!map->IsJSObjectMap()) return false;
   1205   return FunctionTemplateInfo::cast(info->expected_receiver_type())
   1206       ->IsTemplateFor(*map);
   1207 }
   1208 
   1209 Maybe<bool> Object::SetPropertyWithAccessor(LookupIterator* it,
   1210                                             Handle<Object> value,
   1211                                             ShouldThrow should_throw) {
   1212   Isolate* isolate = it->isolate();
   1213   Handle<Object> structure = it->GetAccessors();
   1214   Handle<Object> receiver = it->GetReceiver();
   1215 
   1216   // We should never get here to initialize a const with the hole value since a
   1217   // const declaration would conflict with the setter.
   1218   DCHECK(!structure->IsForeign());
   1219 
   1220   // API style callbacks.
   1221   if (structure->IsAccessorInfo()) {
   1222     Handle<JSObject> holder = it->GetHolder<JSObject>();
   1223     Handle<Name> name = it->GetName();
   1224     Handle<AccessorInfo> info = Handle<AccessorInfo>::cast(structure);
   1225     if (!info->IsCompatibleReceiver(*receiver)) {
   1226       isolate->Throw(*isolate->factory()->NewTypeError(
   1227           MessageTemplate::kIncompatibleMethodReceiver, name, receiver));
   1228       return Nothing<bool>();
   1229     }
   1230 
   1231     v8::AccessorNameSetterCallback call_fun =
   1232         v8::ToCData<v8::AccessorNameSetterCallback>(info->setter());
   1233     // TODO(verwaest): We should not get here anymore once all AccessorInfos are
   1234     // marked as special_data_property. They cannot both be writable and not
   1235     // have a setter.
   1236     if (call_fun == nullptr) return Just(true);
   1237 
   1238     if (info->is_sloppy() && !receiver->IsJSReceiver()) {
   1239       ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   1240           isolate, receiver, Object::ConvertReceiver(isolate, receiver),
   1241           Nothing<bool>());
   1242     }
   1243 
   1244     PropertyCallbackArguments args(isolate, info->data(), *receiver, *holder,
   1245                                    should_throw);
   1246     args.Call(call_fun, name, value);
   1247     RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
   1248     return Just(true);
   1249   }
   1250 
   1251   // Regular accessor.
   1252   Handle<Object> setter(AccessorPair::cast(*structure)->setter(), isolate);
   1253   if (setter->IsFunctionTemplateInfo()) {
   1254     Handle<Object> argv[] = {value};
   1255     RETURN_ON_EXCEPTION_VALUE(
   1256         isolate, Builtins::InvokeApiFunction(
   1257                      isolate, Handle<FunctionTemplateInfo>::cast(setter),
   1258                      receiver, arraysize(argv), argv),
   1259         Nothing<bool>());
   1260     return Just(true);
   1261   } else if (setter->IsCallable()) {
   1262     // TODO(rossberg): nicer would be to cast to some JSCallable here...
   1263     return SetPropertyWithDefinedSetter(
   1264         receiver, Handle<JSReceiver>::cast(setter), value, should_throw);
   1265   }
   1266 
   1267   RETURN_FAILURE(isolate, should_throw,
   1268                  NewTypeError(MessageTemplate::kNoSetterInCallback,
   1269                               it->GetName(), it->GetHolder<JSObject>()));
   1270 }
   1271 
   1272 
   1273 MaybeHandle<Object> Object::GetPropertyWithDefinedGetter(
   1274     Handle<Object> receiver,
   1275     Handle<JSReceiver> getter) {
   1276   Isolate* isolate = getter->GetIsolate();
   1277 
   1278   // Platforms with simulators like arm/arm64 expose a funny issue. If the
   1279   // simulator has a separate JS stack pointer from the C++ stack pointer, it
   1280   // can miss C++ stack overflows in the stack guard at the start of JavaScript
   1281   // functions. It would be very expensive to check the C++ stack pointer at
   1282   // that location. The best solution seems to be to break the impasse by
   1283   // adding checks at possible recursion points. What's more, we don't put
   1284   // this stack check behind the USE_SIMULATOR define in order to keep
   1285   // behavior the same between hardware and simulators.
   1286   StackLimitCheck check(isolate);
   1287   if (check.JsHasOverflowed()) {
   1288     isolate->StackOverflow();
   1289     return MaybeHandle<Object>();
   1290   }
   1291 
   1292   return Execution::Call(isolate, getter, receiver, 0, NULL);
   1293 }
   1294 
   1295 
   1296 Maybe<bool> Object::SetPropertyWithDefinedSetter(Handle<Object> receiver,
   1297                                                  Handle<JSReceiver> setter,
   1298                                                  Handle<Object> value,
   1299                                                  ShouldThrow should_throw) {
   1300   Isolate* isolate = setter->GetIsolate();
   1301 
   1302   Handle<Object> argv[] = { value };
   1303   RETURN_ON_EXCEPTION_VALUE(isolate, Execution::Call(isolate, setter, receiver,
   1304                                                      arraysize(argv), argv),
   1305                             Nothing<bool>());
   1306   return Just(true);
   1307 }
   1308 
   1309 
   1310 // static
   1311 bool JSObject::AllCanRead(LookupIterator* it) {
   1312   // Skip current iteration, it's in state ACCESS_CHECK or INTERCEPTOR, both of
   1313   // which have already been checked.
   1314   DCHECK(it->state() == LookupIterator::ACCESS_CHECK ||
   1315          it->state() == LookupIterator::INTERCEPTOR);
   1316   for (it->Next(); it->IsFound(); it->Next()) {
   1317     if (it->state() == LookupIterator::ACCESSOR) {
   1318       auto accessors = it->GetAccessors();
   1319       if (accessors->IsAccessorInfo()) {
   1320         if (AccessorInfo::cast(*accessors)->all_can_read()) return true;
   1321       }
   1322     } else if (it->state() == LookupIterator::INTERCEPTOR) {
   1323       if (it->GetInterceptor()->all_can_read()) return true;
   1324     } else if (it->state() == LookupIterator::JSPROXY) {
   1325       // Stop lookupiterating. And no, AllCanNotRead.
   1326       return false;
   1327     }
   1328   }
   1329   return false;
   1330 }
   1331 
   1332 namespace {
   1333 
   1334 MaybeHandle<Object> GetPropertyWithInterceptorInternal(
   1335     LookupIterator* it, Handle<InterceptorInfo> interceptor, bool* done) {
   1336   *done = false;
   1337   Isolate* isolate = it->isolate();
   1338   // Make sure that the top context does not change when doing callbacks or
   1339   // interceptor calls.
   1340   AssertNoContextChange ncc(isolate);
   1341 
   1342   if (interceptor->getter()->IsUndefined(isolate)) {
   1343     return isolate->factory()->undefined_value();
   1344   }
   1345 
   1346   Handle<JSObject> holder = it->GetHolder<JSObject>();
   1347   Handle<Object> result;
   1348   Handle<Object> receiver = it->GetReceiver();
   1349   if (!receiver->IsJSReceiver()) {
   1350     ASSIGN_RETURN_ON_EXCEPTION(
   1351         isolate, receiver, Object::ConvertReceiver(isolate, receiver), Object);
   1352   }
   1353   PropertyCallbackArguments args(isolate, interceptor->data(), *receiver,
   1354                                  *holder, Object::DONT_THROW);
   1355 
   1356   if (it->IsElement()) {
   1357     uint32_t index = it->index();
   1358     v8::IndexedPropertyGetterCallback getter =
   1359         v8::ToCData<v8::IndexedPropertyGetterCallback>(interceptor->getter());
   1360     result = args.Call(getter, index);
   1361   } else {
   1362     Handle<Name> name = it->name();
   1363     DCHECK(!name->IsPrivate());
   1364 
   1365     if (name->IsSymbol() && !interceptor->can_intercept_symbols()) {
   1366       return isolate->factory()->undefined_value();
   1367     }
   1368 
   1369     v8::GenericNamedPropertyGetterCallback getter =
   1370         v8::ToCData<v8::GenericNamedPropertyGetterCallback>(
   1371             interceptor->getter());
   1372     result = args.Call(getter, name);
   1373   }
   1374 
   1375   RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
   1376   if (result.is_null()) return isolate->factory()->undefined_value();
   1377   *done = true;
   1378   // Rebox handle before return
   1379   return handle(*result, isolate);
   1380 }
   1381 
   1382 Maybe<PropertyAttributes> GetPropertyAttributesWithInterceptorInternal(
   1383     LookupIterator* it, Handle<InterceptorInfo> interceptor) {
   1384   Isolate* isolate = it->isolate();
   1385   // Make sure that the top context does not change when doing
   1386   // callbacks or interceptor calls.
   1387   AssertNoContextChange ncc(isolate);
   1388   HandleScope scope(isolate);
   1389 
   1390   Handle<JSObject> holder = it->GetHolder<JSObject>();
   1391   if (!it->IsElement() && it->name()->IsSymbol() &&
   1392       !interceptor->can_intercept_symbols()) {
   1393     return Just(ABSENT);
   1394   }
   1395   Handle<Object> receiver = it->GetReceiver();
   1396   if (!receiver->IsJSReceiver()) {
   1397     ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, receiver,
   1398                                      Object::ConvertReceiver(isolate, receiver),
   1399                                      Nothing<PropertyAttributes>());
   1400   }
   1401   PropertyCallbackArguments args(isolate, interceptor->data(), *receiver,
   1402                                  *holder, Object::DONT_THROW);
   1403   if (!interceptor->query()->IsUndefined(isolate)) {
   1404     Handle<Object> result;
   1405     if (it->IsElement()) {
   1406       uint32_t index = it->index();
   1407       v8::IndexedPropertyQueryCallback query =
   1408           v8::ToCData<v8::IndexedPropertyQueryCallback>(interceptor->query());
   1409       result = args.Call(query, index);
   1410     } else {
   1411       Handle<Name> name = it->name();
   1412       DCHECK(!name->IsPrivate());
   1413       v8::GenericNamedPropertyQueryCallback query =
   1414           v8::ToCData<v8::GenericNamedPropertyQueryCallback>(
   1415               interceptor->query());
   1416       result = args.Call(query, name);
   1417     }
   1418     if (!result.is_null()) {
   1419       int32_t value;
   1420       CHECK(result->ToInt32(&value));
   1421       return Just(static_cast<PropertyAttributes>(value));
   1422     }
   1423   } else if (!interceptor->getter()->IsUndefined(isolate)) {
   1424     // TODO(verwaest): Use GetPropertyWithInterceptor?
   1425     Handle<Object> result;
   1426     if (it->IsElement()) {
   1427       uint32_t index = it->index();
   1428       v8::IndexedPropertyGetterCallback getter =
   1429           v8::ToCData<v8::IndexedPropertyGetterCallback>(interceptor->getter());
   1430       result = args.Call(getter, index);
   1431     } else {
   1432       Handle<Name> name = it->name();
   1433       DCHECK(!name->IsPrivate());
   1434       v8::GenericNamedPropertyGetterCallback getter =
   1435           v8::ToCData<v8::GenericNamedPropertyGetterCallback>(
   1436               interceptor->getter());
   1437       result = args.Call(getter, name);
   1438     }
   1439     if (!result.is_null()) return Just(DONT_ENUM);
   1440   }
   1441 
   1442   RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<PropertyAttributes>());
   1443   return Just(ABSENT);
   1444 }
   1445 
   1446 Maybe<bool> SetPropertyWithInterceptorInternal(
   1447     LookupIterator* it, Handle<InterceptorInfo> interceptor,
   1448     Object::ShouldThrow should_throw, Handle<Object> value) {
   1449   Isolate* isolate = it->isolate();
   1450   // Make sure that the top context does not change when doing callbacks or
   1451   // interceptor calls.
   1452   AssertNoContextChange ncc(isolate);
   1453 
   1454   if (interceptor->setter()->IsUndefined(isolate)) return Just(false);
   1455 
   1456   Handle<JSObject> holder = it->GetHolder<JSObject>();
   1457   bool result;
   1458   Handle<Object> receiver = it->GetReceiver();
   1459   if (!receiver->IsJSReceiver()) {
   1460     ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, receiver,
   1461                                      Object::ConvertReceiver(isolate, receiver),
   1462                                      Nothing<bool>());
   1463   }
   1464   PropertyCallbackArguments args(isolate, interceptor->data(), *receiver,
   1465                                  *holder, should_throw);
   1466 
   1467   if (it->IsElement()) {
   1468     uint32_t index = it->index();
   1469     v8::IndexedPropertySetterCallback setter =
   1470         v8::ToCData<v8::IndexedPropertySetterCallback>(interceptor->setter());
   1471     // TODO(neis): In the future, we may want to actually return the
   1472     // interceptor's result, which then should be a boolean.
   1473     result = !args.Call(setter, index, value).is_null();
   1474   } else {
   1475     Handle<Name> name = it->name();
   1476     DCHECK(!name->IsPrivate());
   1477 
   1478     if (name->IsSymbol() && !interceptor->can_intercept_symbols()) {
   1479       return Just(false);
   1480     }
   1481 
   1482     v8::GenericNamedPropertySetterCallback setter =
   1483         v8::ToCData<v8::GenericNamedPropertySetterCallback>(
   1484             interceptor->setter());
   1485     result = !args.Call(setter, name, value).is_null();
   1486   }
   1487 
   1488   RETURN_VALUE_IF_SCHEDULED_EXCEPTION(it->isolate(), Nothing<bool>());
   1489   return Just(result);
   1490 }
   1491 
   1492 }  // namespace
   1493 
   1494 MaybeHandle<Object> JSObject::GetPropertyWithFailedAccessCheck(
   1495     LookupIterator* it) {
   1496   Isolate* isolate = it->isolate();
   1497   Handle<JSObject> checked = it->GetHolder<JSObject>();
   1498   Handle<InterceptorInfo> interceptor =
   1499       it->GetInterceptorForFailedAccessCheck();
   1500   if (interceptor.is_null()) {
   1501     while (AllCanRead(it)) {
   1502       if (it->state() == LookupIterator::ACCESSOR) {
   1503         return GetPropertyWithAccessor(it);
   1504       }
   1505       DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state());
   1506       bool done;
   1507       Handle<Object> result;
   1508       ASSIGN_RETURN_ON_EXCEPTION(isolate, result,
   1509                                  GetPropertyWithInterceptor(it, &done), Object);
   1510       if (done) return result;
   1511     }
   1512   } else {
   1513     MaybeHandle<Object> result;
   1514     bool done;
   1515     result = GetPropertyWithInterceptorInternal(it, interceptor, &done);
   1516     RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
   1517     if (done) return result;
   1518   }
   1519 
   1520   // Cross-Origin [[Get]] of Well-Known Symbols does not throw, and returns
   1521   // undefined.
   1522   Handle<Name> name = it->GetName();
   1523   if (name->IsSymbol() && Symbol::cast(*name)->is_well_known_symbol()) {
   1524     return it->factory()->undefined_value();
   1525   }
   1526 
   1527   isolate->ReportFailedAccessCheck(checked);
   1528   RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
   1529   return it->factory()->undefined_value();
   1530 }
   1531 
   1532 
   1533 Maybe<PropertyAttributes> JSObject::GetPropertyAttributesWithFailedAccessCheck(
   1534     LookupIterator* it) {
   1535   Isolate* isolate = it->isolate();
   1536   Handle<JSObject> checked = it->GetHolder<JSObject>();
   1537   Handle<InterceptorInfo> interceptor =
   1538       it->GetInterceptorForFailedAccessCheck();
   1539   if (interceptor.is_null()) {
   1540     while (AllCanRead(it)) {
   1541       if (it->state() == LookupIterator::ACCESSOR) {
   1542         return Just(it->property_attributes());
   1543       }
   1544       DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state());
   1545       auto result = GetPropertyAttributesWithInterceptor(it);
   1546       if (isolate->has_scheduled_exception()) break;
   1547       if (result.IsJust() && result.FromJust() != ABSENT) return result;
   1548     }
   1549   } else {
   1550     Maybe<PropertyAttributes> result =
   1551         GetPropertyAttributesWithInterceptorInternal(it, interceptor);
   1552     RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<PropertyAttributes>());
   1553     if (result.FromMaybe(ABSENT) != ABSENT) return result;
   1554   }
   1555   isolate->ReportFailedAccessCheck(checked);
   1556   RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<PropertyAttributes>());
   1557   return Just(ABSENT);
   1558 }
   1559 
   1560 
   1561 // static
   1562 bool JSObject::AllCanWrite(LookupIterator* it) {
   1563   for (; it->IsFound() && it->state() != LookupIterator::JSPROXY; it->Next()) {
   1564     if (it->state() == LookupIterator::ACCESSOR) {
   1565       Handle<Object> accessors = it->GetAccessors();
   1566       if (accessors->IsAccessorInfo()) {
   1567         if (AccessorInfo::cast(*accessors)->all_can_write()) return true;
   1568       }
   1569     }
   1570   }
   1571   return false;
   1572 }
   1573 
   1574 
   1575 Maybe<bool> JSObject::SetPropertyWithFailedAccessCheck(
   1576     LookupIterator* it, Handle<Object> value, ShouldThrow should_throw) {
   1577   Isolate* isolate = it->isolate();
   1578   Handle<JSObject> checked = it->GetHolder<JSObject>();
   1579   Handle<InterceptorInfo> interceptor =
   1580       it->GetInterceptorForFailedAccessCheck();
   1581   if (interceptor.is_null()) {
   1582     if (AllCanWrite(it)) {
   1583       return SetPropertyWithAccessor(it, value, should_throw);
   1584     }
   1585   } else {
   1586     Maybe<bool> result = SetPropertyWithInterceptorInternal(
   1587         it, interceptor, should_throw, value);
   1588     RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
   1589     if (result.IsJust()) return result;
   1590   }
   1591 
   1592   isolate->ReportFailedAccessCheck(checked);
   1593   RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
   1594   return Just(true);
   1595 }
   1596 
   1597 
   1598 void JSObject::SetNormalizedProperty(Handle<JSObject> object,
   1599                                      Handle<Name> name,
   1600                                      Handle<Object> value,
   1601                                      PropertyDetails details) {
   1602   DCHECK(!object->HasFastProperties());
   1603   if (!name->IsUniqueName()) {
   1604     name = object->GetIsolate()->factory()->InternalizeString(
   1605         Handle<String>::cast(name));
   1606   }
   1607 
   1608   if (object->IsJSGlobalObject()) {
   1609     Handle<GlobalDictionary> property_dictionary(object->global_dictionary());
   1610 
   1611     int entry = property_dictionary->FindEntry(name);
   1612     if (entry == GlobalDictionary::kNotFound) {
   1613       Isolate* isolate = object->GetIsolate();
   1614       auto cell = isolate->factory()->NewPropertyCell();
   1615       cell->set_value(*value);
   1616       auto cell_type = value->IsUndefined(isolate)
   1617                            ? PropertyCellType::kUndefined
   1618                            : PropertyCellType::kConstant;
   1619       details = details.set_cell_type(cell_type);
   1620       value = cell;
   1621       property_dictionary =
   1622           GlobalDictionary::Add(property_dictionary, name, value, details);
   1623       object->set_properties(*property_dictionary);
   1624     } else {
   1625       PropertyCell::UpdateCell(property_dictionary, entry, value, details);
   1626     }
   1627   } else {
   1628     Handle<NameDictionary> property_dictionary(object->property_dictionary());
   1629 
   1630     int entry = property_dictionary->FindEntry(name);
   1631     if (entry == NameDictionary::kNotFound) {
   1632       property_dictionary =
   1633           NameDictionary::Add(property_dictionary, name, value, details);
   1634       object->set_properties(*property_dictionary);
   1635     } else {
   1636       PropertyDetails original_details = property_dictionary->DetailsAt(entry);
   1637       int enumeration_index = original_details.dictionary_index();
   1638       DCHECK(enumeration_index > 0);
   1639       details = details.set_index(enumeration_index);
   1640       property_dictionary->SetEntry(entry, name, value, details);
   1641     }
   1642   }
   1643 }
   1644 
   1645 // static
   1646 Maybe<bool> JSReceiver::HasInPrototypeChain(Isolate* isolate,
   1647                                             Handle<JSReceiver> object,
   1648                                             Handle<Object> proto) {
   1649   PrototypeIterator iter(isolate, object, kStartAtReceiver);
   1650   while (true) {
   1651     if (!iter.AdvanceFollowingProxies()) return Nothing<bool>();
   1652     if (iter.IsAtEnd()) return Just(false);
   1653     if (PrototypeIterator::GetCurrent(iter).is_identical_to(proto)) {
   1654       return Just(true);
   1655     }
   1656   }
   1657 }
   1658 
   1659 Map* Object::GetRootMap(Isolate* isolate) {
   1660   DisallowHeapAllocation no_alloc;
   1661   if (IsSmi()) {
   1662     Context* native_context = isolate->context()->native_context();
   1663     return native_context->number_function()->initial_map();
   1664   }
   1665 
   1666   // The object is either a number, a string, a symbol, a boolean, a SIMD value,
   1667   // a real JS object, or a Harmony proxy.
   1668   HeapObject* heap_object = HeapObject::cast(this);
   1669   if (heap_object->IsJSReceiver()) {
   1670     return heap_object->map();
   1671   }
   1672   int constructor_function_index =
   1673       heap_object->map()->GetConstructorFunctionIndex();
   1674   if (constructor_function_index != Map::kNoConstructorFunctionIndex) {
   1675     Context* native_context = isolate->context()->native_context();
   1676     JSFunction* constructor_function =
   1677         JSFunction::cast(native_context->get(constructor_function_index));
   1678     return constructor_function->initial_map();
   1679   }
   1680   return isolate->heap()->null_value()->map();
   1681 }
   1682 
   1683 namespace {
   1684 
   1685 // Returns a non-SMI for JSObjects, but returns the hash code for simple
   1686 // objects.  This avoids a double lookup in the cases where we know we will
   1687 // add the hash to the JSObject if it does not already exist.
   1688 Object* GetSimpleHash(Object* object) {
   1689   // The object is either a Smi, a HeapNumber, a name, an odd-ball,
   1690   // a SIMD value type, a real JS object, or a Harmony proxy.
   1691   if (object->IsSmi()) {
   1692     uint32_t hash =
   1693         ComputeIntegerHash(Smi::cast(object)->value(), kZeroHashSeed);
   1694     return Smi::FromInt(hash & Smi::kMaxValue);
   1695   }
   1696   if (object->IsHeapNumber()) {
   1697     double num = HeapNumber::cast(object)->value();
   1698     if (std::isnan(num)) return Smi::FromInt(Smi::kMaxValue);
   1699     if (i::IsMinusZero(num)) num = 0;
   1700     if (IsSmiDouble(num)) {
   1701       return Smi::FromInt(FastD2I(num))->GetHash();
   1702     }
   1703     uint32_t hash = ComputeLongHash(double_to_uint64(num));
   1704     return Smi::FromInt(hash & Smi::kMaxValue);
   1705   }
   1706   if (object->IsName()) {
   1707     uint32_t hash = Name::cast(object)->Hash();
   1708     return Smi::FromInt(hash);
   1709   }
   1710   if (object->IsOddball()) {
   1711     uint32_t hash = Oddball::cast(object)->to_string()->Hash();
   1712     return Smi::FromInt(hash);
   1713   }
   1714   if (object->IsSimd128Value()) {
   1715     uint32_t hash = Simd128Value::cast(object)->Hash();
   1716     return Smi::FromInt(hash & Smi::kMaxValue);
   1717   }
   1718   DCHECK(object->IsJSReceiver());
   1719   // Simply return the receiver as it is guaranteed to not be a SMI.
   1720   return object;
   1721 }
   1722 
   1723 }  // namespace
   1724 
   1725 Object* Object::GetHash() {
   1726   Object* hash = GetSimpleHash(this);
   1727   if (hash->IsSmi()) return hash;
   1728 
   1729   DisallowHeapAllocation no_gc;
   1730   DCHECK(IsJSReceiver());
   1731   JSReceiver* receiver = JSReceiver::cast(this);
   1732   Isolate* isolate = receiver->GetIsolate();
   1733   return JSReceiver::GetIdentityHash(isolate, handle(receiver, isolate));
   1734 }
   1735 
   1736 Smi* Object::GetOrCreateHash(Isolate* isolate, Handle<Object> object) {
   1737   Object* hash = GetSimpleHash(*object);
   1738   if (hash->IsSmi()) return Smi::cast(hash);
   1739 
   1740   DCHECK(object->IsJSReceiver());
   1741   return JSReceiver::GetOrCreateIdentityHash(isolate,
   1742                                              Handle<JSReceiver>::cast(object));
   1743 }
   1744 
   1745 
   1746 bool Object::SameValue(Object* other) {
   1747   if (other == this) return true;
   1748 
   1749   // The object is either a number, a name, an odd-ball,
   1750   // a real JS object, or a Harmony proxy.
   1751   if (IsNumber() && other->IsNumber()) {
   1752     double this_value = Number();
   1753     double other_value = other->Number();
   1754     // SameValue(NaN, NaN) is true.
   1755     if (this_value != other_value) {
   1756       return std::isnan(this_value) && std::isnan(other_value);
   1757     }
   1758     // SameValue(0.0, -0.0) is false.
   1759     return (std::signbit(this_value) == std::signbit(other_value));
   1760   }
   1761   if (IsString() && other->IsString()) {
   1762     return String::cast(this)->Equals(String::cast(other));
   1763   }
   1764   if (IsFloat32x4() && other->IsFloat32x4()) {
   1765     Float32x4* a = Float32x4::cast(this);
   1766     Float32x4* b = Float32x4::cast(other);
   1767     for (int i = 0; i < 4; i++) {
   1768       float x = a->get_lane(i);
   1769       float y = b->get_lane(i);
   1770       // Implements the ES5 SameValue operation for floating point types.
   1771       // http://www.ecma-international.org/ecma-262/6.0/#sec-samevalue
   1772       if (x != y && !(std::isnan(x) && std::isnan(y))) return false;
   1773       if (std::signbit(x) != std::signbit(y)) return false;
   1774     }
   1775     return true;
   1776   } else if (IsSimd128Value() && other->IsSimd128Value()) {
   1777     Simd128Value* a = Simd128Value::cast(this);
   1778     Simd128Value* b = Simd128Value::cast(other);
   1779     return a->map() == b->map() && a->BitwiseEquals(b);
   1780   }
   1781   return false;
   1782 }
   1783 
   1784 
   1785 bool Object::SameValueZero(Object* other) {
   1786   if (other == this) return true;
   1787 
   1788   // The object is either a number, a name, an odd-ball,
   1789   // a real JS object, or a Harmony proxy.
   1790   if (IsNumber() && other->IsNumber()) {
   1791     double this_value = Number();
   1792     double other_value = other->Number();
   1793     // +0 == -0 is true
   1794     return this_value == other_value ||
   1795            (std::isnan(this_value) && std::isnan(other_value));
   1796   }
   1797   if (IsString() && other->IsString()) {
   1798     return String::cast(this)->Equals(String::cast(other));
   1799   }
   1800   if (IsFloat32x4() && other->IsFloat32x4()) {
   1801     Float32x4* a = Float32x4::cast(this);
   1802     Float32x4* b = Float32x4::cast(other);
   1803     for (int i = 0; i < 4; i++) {
   1804       float x = a->get_lane(i);
   1805       float y = b->get_lane(i);
   1806       // Implements the ES6 SameValueZero operation for floating point types.
   1807       // http://www.ecma-international.org/ecma-262/6.0/#sec-samevaluezero
   1808       if (x != y && !(std::isnan(x) && std::isnan(y))) return false;
   1809       // SameValueZero doesn't distinguish between 0 and -0.
   1810     }
   1811     return true;
   1812   } else if (IsSimd128Value() && other->IsSimd128Value()) {
   1813     Simd128Value* a = Simd128Value::cast(this);
   1814     Simd128Value* b = Simd128Value::cast(other);
   1815     return a->map() == b->map() && a->BitwiseEquals(b);
   1816   }
   1817   return false;
   1818 }
   1819 
   1820 
   1821 MaybeHandle<Object> Object::ArraySpeciesConstructor(
   1822     Isolate* isolate, Handle<Object> original_array) {
   1823   Handle<Object> default_species = isolate->array_function();
   1824   if (original_array->IsJSArray() &&
   1825       Handle<JSArray>::cast(original_array)->HasArrayPrototype(isolate) &&
   1826       isolate->IsArraySpeciesLookupChainIntact()) {
   1827     return default_species;
   1828   }
   1829   Handle<Object> constructor = isolate->factory()->undefined_value();
   1830   Maybe<bool> is_array = Object::IsArray(original_array);
   1831   MAYBE_RETURN_NULL(is_array);
   1832   if (is_array.FromJust()) {
   1833     ASSIGN_RETURN_ON_EXCEPTION(
   1834         isolate, constructor,
   1835         Object::GetProperty(original_array,
   1836                             isolate->factory()->constructor_string()),
   1837         Object);
   1838     if (constructor->IsConstructor()) {
   1839       Handle<Context> constructor_context;
   1840       ASSIGN_RETURN_ON_EXCEPTION(
   1841           isolate, constructor_context,
   1842           JSReceiver::GetFunctionRealm(Handle<JSReceiver>::cast(constructor)),
   1843           Object);
   1844       if (*constructor_context != *isolate->native_context() &&
   1845           *constructor == constructor_context->array_function()) {
   1846         constructor = isolate->factory()->undefined_value();
   1847       }
   1848     }
   1849     if (constructor->IsJSReceiver()) {
   1850       ASSIGN_RETURN_ON_EXCEPTION(
   1851           isolate, constructor,
   1852           JSReceiver::GetProperty(Handle<JSReceiver>::cast(constructor),
   1853                                   isolate->factory()->species_symbol()),
   1854           Object);
   1855       if (constructor->IsNull(isolate)) {
   1856         constructor = isolate->factory()->undefined_value();
   1857       }
   1858     }
   1859   }
   1860   if (constructor->IsUndefined(isolate)) {
   1861     return default_species;
   1862   } else {
   1863     if (!constructor->IsConstructor()) {
   1864       THROW_NEW_ERROR(isolate,
   1865           NewTypeError(MessageTemplate::kSpeciesNotConstructor),
   1866           Object);
   1867     }
   1868     return constructor;
   1869   }
   1870 }
   1871 
   1872 
   1873 void Object::ShortPrint(FILE* out) {
   1874   OFStream os(out);
   1875   os << Brief(this);
   1876 }
   1877 
   1878 
   1879 void Object::ShortPrint(StringStream* accumulator) {
   1880   std::ostringstream os;
   1881   os << Brief(this);
   1882   accumulator->Add(os.str().c_str());
   1883 }
   1884 
   1885 
   1886 void Object::ShortPrint(std::ostream& os) { os << Brief(this); }
   1887 
   1888 
   1889 std::ostream& operator<<(std::ostream& os, const Brief& v) {
   1890   if (v.value->IsSmi()) {
   1891     Smi::cast(v.value)->SmiPrint(os);
   1892   } else {
   1893     // TODO(svenpanne) Const-correct HeapObjectShortPrint!
   1894     HeapObject* obj = const_cast<HeapObject*>(HeapObject::cast(v.value));
   1895     obj->HeapObjectShortPrint(os);
   1896   }
   1897   return os;
   1898 }
   1899 
   1900 
   1901 void Smi::SmiPrint(std::ostream& os) const {  // NOLINT
   1902   os << value();
   1903 }
   1904 
   1905 
   1906 // Should a word be prefixed by 'a' or 'an' in order to read naturally in
   1907 // English?  Returns false for non-ASCII or words that don't start with
   1908 // a capital letter.  The a/an rule follows pronunciation in English.
   1909 // We don't use the BBC's overcorrect "an historic occasion" though if
   1910 // you speak a dialect you may well say "an 'istoric occasion".
   1911 static bool AnWord(String* str) {
   1912   if (str->length() == 0) return false;  // A nothing.
   1913   int c0 = str->Get(0);
   1914   int c1 = str->length() > 1 ? str->Get(1) : 0;
   1915   if (c0 == 'U') {
   1916     if (c1 > 'Z') {
   1917       return true;  // An Umpire, but a UTF8String, a U.
   1918     }
   1919   } else if (c0 == 'A' || c0 == 'E' || c0 == 'I' || c0 == 'O') {
   1920     return true;    // An Ape, an ABCBook.
   1921   } else if ((c1 == 0 || (c1 >= 'A' && c1 <= 'Z')) &&
   1922            (c0 == 'F' || c0 == 'H' || c0 == 'M' || c0 == 'N' || c0 == 'R' ||
   1923             c0 == 'S' || c0 == 'X')) {
   1924     return true;    // An MP3File, an M.
   1925   }
   1926   return false;
   1927 }
   1928 
   1929 
   1930 Handle<String> String::SlowFlatten(Handle<ConsString> cons,
   1931                                    PretenureFlag pretenure) {
   1932   DCHECK(AllowHeapAllocation::IsAllowed());
   1933   DCHECK(cons->second()->length() != 0);
   1934   Isolate* isolate = cons->GetIsolate();
   1935   int length = cons->length();
   1936   PretenureFlag tenure = isolate->heap()->InNewSpace(*cons) ? pretenure
   1937                                                             : TENURED;
   1938   Handle<SeqString> result;
   1939   if (cons->IsOneByteRepresentation()) {
   1940     Handle<SeqOneByteString> flat = isolate->factory()->NewRawOneByteString(
   1941         length, tenure).ToHandleChecked();
   1942     DisallowHeapAllocation no_gc;
   1943     WriteToFlat(*cons, flat->GetChars(), 0, length);
   1944     result = flat;
   1945   } else {
   1946     Handle<SeqTwoByteString> flat = isolate->factory()->NewRawTwoByteString(
   1947         length, tenure).ToHandleChecked();
   1948     DisallowHeapAllocation no_gc;
   1949     WriteToFlat(*cons, flat->GetChars(), 0, length);
   1950     result = flat;
   1951   }
   1952   cons->set_first(*result);
   1953   cons->set_second(isolate->heap()->empty_string());
   1954   DCHECK(result->IsFlat());
   1955   return result;
   1956 }
   1957 
   1958 
   1959 
   1960 bool String::MakeExternal(v8::String::ExternalStringResource* resource) {
   1961   // Externalizing twice leaks the external resource, so it's
   1962   // prohibited by the API.
   1963   DCHECK(!this->IsExternalString());
   1964   DCHECK(!resource->IsCompressible());
   1965 #ifdef ENABLE_SLOW_DCHECKS
   1966   if (FLAG_enable_slow_asserts) {
   1967     // Assert that the resource and the string are equivalent.
   1968     DCHECK(static_cast<size_t>(this->length()) == resource->length());
   1969     ScopedVector<uc16> smart_chars(this->length());
   1970     String::WriteToFlat(this, smart_chars.start(), 0, this->length());
   1971     DCHECK(memcmp(smart_chars.start(),
   1972                   resource->data(),
   1973                   resource->length() * sizeof(smart_chars[0])) == 0);
   1974   }
   1975 #endif  // DEBUG
   1976   int size = this->Size();  // Byte size of the original string.
   1977   // Abort if size does not allow in-place conversion.
   1978   if (size < ExternalString::kShortSize) return false;
   1979   Heap* heap = GetHeap();
   1980   bool is_one_byte = this->IsOneByteRepresentation();
   1981   bool is_internalized = this->IsInternalizedString();
   1982 
   1983   // Morph the string to an external string by replacing the map and
   1984   // reinitializing the fields.  This won't work if the space the existing
   1985   // string occupies is too small for a regular  external string.
   1986   // Instead, we resort to a short external string instead, omitting
   1987   // the field caching the address of the backing store.  When we encounter
   1988   // short external strings in generated code, we need to bailout to runtime.
   1989   Map* new_map;
   1990   if (size < ExternalString::kSize) {
   1991     new_map = is_internalized
   1992         ? (is_one_byte
   1993            ? heap->short_external_internalized_string_with_one_byte_data_map()
   1994            : heap->short_external_internalized_string_map())
   1995         : (is_one_byte ? heap->short_external_string_with_one_byte_data_map()
   1996                        : heap->short_external_string_map());
   1997   } else {
   1998     new_map = is_internalized
   1999         ? (is_one_byte
   2000            ? heap->external_internalized_string_with_one_byte_data_map()
   2001            : heap->external_internalized_string_map())
   2002         : (is_one_byte ? heap->external_string_with_one_byte_data_map()
   2003                        : heap->external_string_map());
   2004   }
   2005 
   2006   // Byte size of the external String object.
   2007   int new_size = this->SizeFromMap(new_map);
   2008   heap->CreateFillerObjectAt(this->address() + new_size, size - new_size,
   2009                              ClearRecordedSlots::kNo);
   2010 
   2011   // We are storing the new map using release store after creating a filler for
   2012   // the left-over space to avoid races with the sweeper thread.
   2013   this->synchronized_set_map(new_map);
   2014 
   2015   ExternalTwoByteString* self = ExternalTwoByteString::cast(this);
   2016   self->set_resource(resource);
   2017   if (is_internalized) self->Hash();  // Force regeneration of the hash value.
   2018 
   2019   heap->AdjustLiveBytes(this, new_size - size, Heap::CONCURRENT_TO_SWEEPER);
   2020   return true;
   2021 }
   2022 
   2023 
   2024 bool String::MakeExternal(v8::String::ExternalOneByteStringResource* resource) {
   2025   // Externalizing twice leaks the external resource, so it's
   2026   // prohibited by the API.
   2027   DCHECK(!this->IsExternalString());
   2028   DCHECK(!resource->IsCompressible());
   2029 #ifdef ENABLE_SLOW_DCHECKS
   2030   if (FLAG_enable_slow_asserts) {
   2031     // Assert that the resource and the string are equivalent.
   2032     DCHECK(static_cast<size_t>(this->length()) == resource->length());
   2033     if (this->IsTwoByteRepresentation()) {
   2034       ScopedVector<uint16_t> smart_chars(this->length());
   2035       String::WriteToFlat(this, smart_chars.start(), 0, this->length());
   2036       DCHECK(String::IsOneByte(smart_chars.start(), this->length()));
   2037     }
   2038     ScopedVector<char> smart_chars(this->length());
   2039     String::WriteToFlat(this, smart_chars.start(), 0, this->length());
   2040     DCHECK(memcmp(smart_chars.start(),
   2041                   resource->data(),
   2042                   resource->length() * sizeof(smart_chars[0])) == 0);
   2043   }
   2044 #endif  // DEBUG
   2045   int size = this->Size();  // Byte size of the original string.
   2046   // Abort if size does not allow in-place conversion.
   2047   if (size < ExternalString::kShortSize) return false;
   2048   Heap* heap = GetHeap();
   2049   bool is_internalized = this->IsInternalizedString();
   2050 
   2051   // Morph the string to an external string by replacing the map and
   2052   // reinitializing the fields.  This won't work if the space the existing
   2053   // string occupies is too small for a regular  external string.
   2054   // Instead, we resort to a short external string instead, omitting
   2055   // the field caching the address of the backing store.  When we encounter
   2056   // short external strings in generated code, we need to bailout to runtime.
   2057   Map* new_map;
   2058   if (size < ExternalString::kSize) {
   2059     new_map = is_internalized
   2060                   ? heap->short_external_one_byte_internalized_string_map()
   2061                   : heap->short_external_one_byte_string_map();
   2062   } else {
   2063     new_map = is_internalized
   2064                   ? heap->external_one_byte_internalized_string_map()
   2065                   : heap->external_one_byte_string_map();
   2066   }
   2067 
   2068   // Byte size of the external String object.
   2069   int new_size = this->SizeFromMap(new_map);
   2070   heap->CreateFillerObjectAt(this->address() + new_size, size - new_size,
   2071                              ClearRecordedSlots::kNo);
   2072 
   2073   // We are storing the new map using release store after creating a filler for
   2074   // the left-over space to avoid races with the sweeper thread.
   2075   this->synchronized_set_map(new_map);
   2076 
   2077   ExternalOneByteString* self = ExternalOneByteString::cast(this);
   2078   self->set_resource(resource);
   2079   if (is_internalized) self->Hash();  // Force regeneration of the hash value.
   2080 
   2081   heap->AdjustLiveBytes(this, new_size - size, Heap::CONCURRENT_TO_SWEEPER);
   2082   return true;
   2083 }
   2084 
   2085 void String::StringShortPrint(StringStream* accumulator, bool show_details) {
   2086   int len = length();
   2087   if (len > kMaxShortPrintLength) {
   2088     accumulator->Add("<Very long string[%u]>", len);
   2089     return;
   2090   }
   2091 
   2092   if (!LooksValid()) {
   2093     accumulator->Add("<Invalid String>");
   2094     return;
   2095   }
   2096 
   2097   StringCharacterStream stream(this);
   2098 
   2099   bool truncated = false;
   2100   if (len > kMaxShortPrintLength) {
   2101     len = kMaxShortPrintLength;
   2102     truncated = true;
   2103   }
   2104   bool one_byte = true;
   2105   for (int i = 0; i < len; i++) {
   2106     uint16_t c = stream.GetNext();
   2107 
   2108     if (c < 32 || c >= 127) {
   2109       one_byte = false;
   2110     }
   2111   }
   2112   stream.Reset(this);
   2113   if (one_byte) {
   2114     if (show_details) accumulator->Add("<String[%u]: ", length());
   2115     for (int i = 0; i < len; i++) {
   2116       accumulator->Put(static_cast<char>(stream.GetNext()));
   2117     }
   2118     if (show_details) accumulator->Put('>');
   2119   } else {
   2120     // Backslash indicates that the string contains control
   2121     // characters and that backslashes are therefore escaped.
   2122     if (show_details) accumulator->Add("<String[%u]\\: ", length());
   2123     for (int i = 0; i < len; i++) {
   2124       uint16_t c = stream.GetNext();
   2125       if (c == '\n') {
   2126         accumulator->Add("\\n");
   2127       } else if (c == '\r') {
   2128         accumulator->Add("\\r");
   2129       } else if (c == '\\') {
   2130         accumulator->Add("\\\\");
   2131       } else if (c < 32 || c > 126) {
   2132         accumulator->Add("\\x%02x", c);
   2133       } else {
   2134         accumulator->Put(static_cast<char>(c));
   2135       }
   2136     }
   2137     if (truncated) {
   2138       accumulator->Put('.');
   2139       accumulator->Put('.');
   2140       accumulator->Put('.');
   2141     }
   2142     if (show_details) accumulator->Put('>');
   2143   }
   2144   return;
   2145 }
   2146 
   2147 
   2148 void String::PrintUC16(std::ostream& os, int start, int end) {  // NOLINT
   2149   if (end < 0) end = length();
   2150   StringCharacterStream stream(this, start);
   2151   for (int i = start; i < end && stream.HasMore(); i++) {
   2152     os << AsUC16(stream.GetNext());
   2153   }
   2154 }
   2155 
   2156 
   2157 void JSObject::JSObjectShortPrint(StringStream* accumulator) {
   2158   switch (map()->instance_type()) {
   2159     case JS_ARRAY_TYPE: {
   2160       double length = JSArray::cast(this)->length()->IsUndefined(GetIsolate())
   2161                           ? 0
   2162                           : JSArray::cast(this)->length()->Number();
   2163       accumulator->Add("<JS Array[%u]>", static_cast<uint32_t>(length));
   2164       break;
   2165     }
   2166     case JS_BOUND_FUNCTION_TYPE: {
   2167       JSBoundFunction* bound_function = JSBoundFunction::cast(this);
   2168       accumulator->Add("<JS BoundFunction");
   2169       accumulator->Add(
   2170           " (BoundTargetFunction %p)>",
   2171           reinterpret_cast<void*>(bound_function->bound_target_function()));
   2172       break;
   2173     }
   2174     case JS_WEAK_MAP_TYPE: {
   2175       accumulator->Add("<JS WeakMap>");
   2176       break;
   2177     }
   2178     case JS_WEAK_SET_TYPE: {
   2179       accumulator->Add("<JS WeakSet>");
   2180       break;
   2181     }
   2182     case JS_REGEXP_TYPE: {
   2183       accumulator->Add("<JS RegExp>");
   2184       break;
   2185     }
   2186     case JS_FUNCTION_TYPE: {
   2187       JSFunction* function = JSFunction::cast(this);
   2188       Object* fun_name = function->shared()->DebugName();
   2189       bool printed = false;
   2190       if (fun_name->IsString()) {
   2191         String* str = String::cast(fun_name);
   2192         if (str->length() > 0) {
   2193           accumulator->Add("<JS Function ");
   2194           accumulator->Put(str);
   2195           printed = true;
   2196         }
   2197       }
   2198       if (!printed) {
   2199         accumulator->Add("<JS Function");
   2200       }
   2201       if (FLAG_trace_file_names) {
   2202         Object* source_name =
   2203             Script::cast(function->shared()->script())->name();
   2204         if (source_name->IsString()) {
   2205           String* str = String::cast(source_name);
   2206           if (str->length() > 0) {
   2207             accumulator->Add(" <");
   2208             accumulator->Put(str);
   2209             accumulator->Add(">");
   2210           }
   2211         }
   2212       }
   2213       accumulator->Add(" (SharedFunctionInfo %p)",
   2214                        reinterpret_cast<void*>(function->shared()));
   2215       accumulator->Put('>');
   2216       break;
   2217     }
   2218     case JS_GENERATOR_OBJECT_TYPE: {
   2219       accumulator->Add("<JS Generator>");
   2220       break;
   2221     }
   2222     case JS_MODULE_TYPE: {
   2223       accumulator->Add("<JS Module>");
   2224       break;
   2225     }
   2226     // All other JSObjects are rather similar to each other (JSObject,
   2227     // JSGlobalProxy, JSGlobalObject, JSUndetectable, JSValue).
   2228     default: {
   2229       Map* map_of_this = map();
   2230       Heap* heap = GetHeap();
   2231       Object* constructor = map_of_this->GetConstructor();
   2232       bool printed = false;
   2233       if (constructor->IsHeapObject() &&
   2234           !heap->Contains(HeapObject::cast(constructor))) {
   2235         accumulator->Add("!!!INVALID CONSTRUCTOR!!!");
   2236       } else {
   2237         bool global_object = IsJSGlobalProxy();
   2238         if (constructor->IsJSFunction()) {
   2239           if (!heap->Contains(JSFunction::cast(constructor)->shared())) {
   2240             accumulator->Add("!!!INVALID SHARED ON CONSTRUCTOR!!!");
   2241           } else {
   2242             Object* constructor_name =
   2243                 JSFunction::cast(constructor)->shared()->name();
   2244             if (constructor_name->IsString()) {
   2245               String* str = String::cast(constructor_name);
   2246               if (str->length() > 0) {
   2247                 bool vowel = AnWord(str);
   2248                 accumulator->Add("<%sa%s ",
   2249                        global_object ? "Global Object: " : "",
   2250                        vowel ? "n" : "");
   2251                 accumulator->Put(str);
   2252                 accumulator->Add(" with %smap %p",
   2253                     map_of_this->is_deprecated() ? "deprecated " : "",
   2254                     map_of_this);
   2255                 printed = true;
   2256               }
   2257             }
   2258           }
   2259         }
   2260         if (!printed) {
   2261           accumulator->Add("<JS %sObject", global_object ? "Global " : "");
   2262         }
   2263       }
   2264       if (IsJSValue()) {
   2265         accumulator->Add(" value = ");
   2266         JSValue::cast(this)->value()->ShortPrint(accumulator);
   2267       }
   2268       accumulator->Put('>');
   2269       break;
   2270     }
   2271   }
   2272 }
   2273 
   2274 
   2275 void JSObject::PrintElementsTransition(
   2276     FILE* file, Handle<JSObject> object,
   2277     ElementsKind from_kind, Handle<FixedArrayBase> from_elements,
   2278     ElementsKind to_kind, Handle<FixedArrayBase> to_elements) {
   2279   if (from_kind != to_kind) {
   2280     OFStream os(file);
   2281     os << "elements transition [" << ElementsKindToString(from_kind) << " -> "
   2282        << ElementsKindToString(to_kind) << "] in ";
   2283     JavaScriptFrame::PrintTop(object->GetIsolate(), file, false, true);
   2284     PrintF(file, " for ");
   2285     object->ShortPrint(file);
   2286     PrintF(file, " from ");
   2287     from_elements->ShortPrint(file);
   2288     PrintF(file, " to ");
   2289     to_elements->ShortPrint(file);
   2290     PrintF(file, "\n");
   2291   }
   2292 }
   2293 
   2294 
   2295 // static
   2296 MaybeHandle<JSFunction> Map::GetConstructorFunction(
   2297     Handle<Map> map, Handle<Context> native_context) {
   2298   if (map->IsPrimitiveMap()) {
   2299     int const constructor_function_index = map->GetConstructorFunctionIndex();
   2300     if (constructor_function_index != kNoConstructorFunctionIndex) {
   2301       return handle(
   2302           JSFunction::cast(native_context->get(constructor_function_index)));
   2303     }
   2304   }
   2305   return MaybeHandle<JSFunction>();
   2306 }
   2307 
   2308 
   2309 void Map::PrintReconfiguration(FILE* file, int modify_index, PropertyKind kind,
   2310                                PropertyAttributes attributes) {
   2311   OFStream os(file);
   2312   os << "[reconfiguring]";
   2313   Name* name = instance_descriptors()->GetKey(modify_index);
   2314   if (name->IsString()) {
   2315     String::cast(name)->PrintOn(file);
   2316   } else {
   2317     os << "{symbol " << static_cast<void*>(name) << "}";
   2318   }
   2319   os << ": " << (kind == kData ? "kData" : "ACCESSORS") << ", attrs: ";
   2320   os << attributes << " [";
   2321   JavaScriptFrame::PrintTop(GetIsolate(), file, false, true);
   2322   os << "]\n";
   2323 }
   2324 
   2325 void Map::PrintGeneralization(
   2326     FILE* file, const char* reason, int modify_index, int split,
   2327     int descriptors, bool constant_to_field, Representation old_representation,
   2328     Representation new_representation, MaybeHandle<FieldType> old_field_type,
   2329     MaybeHandle<Object> old_value, MaybeHandle<FieldType> new_field_type,
   2330     MaybeHandle<Object> new_value) {
   2331   OFStream os(file);
   2332   os << "[generalizing]";
   2333   Name* name = instance_descriptors()->GetKey(modify_index);
   2334   if (name->IsString()) {
   2335     String::cast(name)->PrintOn(file);
   2336   } else {
   2337     os << "{symbol " << static_cast<void*>(name) << "}";
   2338   }
   2339   os << ":";
   2340   if (constant_to_field) {
   2341     os << "c";
   2342   } else {
   2343     os << old_representation.Mnemonic() << "{";
   2344     if (old_field_type.is_null()) {
   2345       os << Brief(*(old_value.ToHandleChecked()));
   2346     } else {
   2347       old_field_type.ToHandleChecked()->PrintTo(os);
   2348     }
   2349     os << "}";
   2350   }
   2351   os << "->" << new_representation.Mnemonic() << "{";
   2352   if (new_field_type.is_null()) {
   2353     os << Brief(*(new_value.ToHandleChecked()));
   2354   } else {
   2355     new_field_type.ToHandleChecked()->PrintTo(os);
   2356   }
   2357   os << "} (";
   2358   if (strlen(reason) > 0) {
   2359     os << reason;
   2360   } else {
   2361     os << "+" << (descriptors - split) << " maps";
   2362   }
   2363   os << ") [";
   2364   JavaScriptFrame::PrintTop(GetIsolate(), file, false, true);
   2365   os << "]\n";
   2366 }
   2367 
   2368 
   2369 void JSObject::PrintInstanceMigration(FILE* file,
   2370                                       Map* original_map,
   2371                                       Map* new_map) {
   2372   PrintF(file, "[migrating]");
   2373   DescriptorArray* o = original_map->instance_descriptors();
   2374   DescriptorArray* n = new_map->instance_descriptors();
   2375   for (int i = 0; i < original_map->NumberOfOwnDescriptors(); i++) {
   2376     Representation o_r = o->GetDetails(i).representation();
   2377     Representation n_r = n->GetDetails(i).representation();
   2378     if (!o_r.Equals(n_r)) {
   2379       String::cast(o->GetKey(i))->PrintOn(file);
   2380       PrintF(file, ":%s->%s ", o_r.Mnemonic(), n_r.Mnemonic());
   2381     } else if (o->GetDetails(i).type() == DATA_CONSTANT &&
   2382                n->GetDetails(i).type() == DATA) {
   2383       Name* name = o->GetKey(i);
   2384       if (name->IsString()) {
   2385         String::cast(name)->PrintOn(file);
   2386       } else {
   2387         PrintF(file, "{symbol %p}", static_cast<void*>(name));
   2388       }
   2389       PrintF(file, " ");
   2390     }
   2391   }
   2392   PrintF(file, "\n");
   2393 }
   2394 
   2395 
   2396 void HeapObject::HeapObjectShortPrint(std::ostream& os) {  // NOLINT
   2397   Heap* heap = GetHeap();
   2398   Isolate* isolate = heap->isolate();
   2399   if (!heap->Contains(this)) {
   2400     os << "!!!INVALID POINTER!!!";
   2401     return;
   2402   }
   2403   if (!heap->Contains(map())) {
   2404     os << "!!!INVALID MAP!!!";
   2405     return;
   2406   }
   2407 
   2408   os << this << " ";
   2409 
   2410   if (IsString()) {
   2411     HeapStringAllocator allocator;
   2412     StringStream accumulator(&allocator);
   2413     String::cast(this)->StringShortPrint(&accumulator);
   2414     os << accumulator.ToCString().get();
   2415     return;
   2416   }
   2417   if (IsJSObject()) {
   2418     HeapStringAllocator allocator;
   2419     StringStream accumulator(&allocator);
   2420     JSObject::cast(this)->JSObjectShortPrint(&accumulator);
   2421     os << accumulator.ToCString().get();
   2422     return;
   2423   }
   2424   switch (map()->instance_type()) {
   2425     case MAP_TYPE:
   2426       os << "<Map(" << ElementsKindToString(Map::cast(this)->elements_kind())
   2427          << ")>";
   2428       break;
   2429     case FIXED_ARRAY_TYPE:
   2430       os << "<FixedArray[" << FixedArray::cast(this)->length() << "]>";
   2431       break;
   2432     case FIXED_DOUBLE_ARRAY_TYPE:
   2433       os << "<FixedDoubleArray[" << FixedDoubleArray::cast(this)->length()
   2434          << "]>";
   2435       break;
   2436     case BYTE_ARRAY_TYPE:
   2437       os << "<ByteArray[" << ByteArray::cast(this)->length() << "]>";
   2438       break;
   2439     case BYTECODE_ARRAY_TYPE:
   2440       os << "<BytecodeArray[" << BytecodeArray::cast(this)->length() << "]>";
   2441       break;
   2442     case TRANSITION_ARRAY_TYPE:
   2443       os << "<TransitionArray[" << TransitionArray::cast(this)->length()
   2444          << "]>";
   2445       break;
   2446     case FREE_SPACE_TYPE:
   2447       os << "<FreeSpace[" << FreeSpace::cast(this)->size() << "]>";
   2448       break;
   2449 #define TYPED_ARRAY_SHORT_PRINT(Type, type, TYPE, ctype, size)                \
   2450   case FIXED_##TYPE##_ARRAY_TYPE:                                             \
   2451     os << "<Fixed" #Type "Array[" << Fixed##Type##Array::cast(this)->length() \
   2452        << "]>";                                                               \
   2453     break;
   2454 
   2455     TYPED_ARRAYS(TYPED_ARRAY_SHORT_PRINT)
   2456 #undef TYPED_ARRAY_SHORT_PRINT
   2457 
   2458     case SHARED_FUNCTION_INFO_TYPE: {
   2459       SharedFunctionInfo* shared = SharedFunctionInfo::cast(this);
   2460       base::SmartArrayPointer<char> debug_name =
   2461           shared->DebugName()->ToCString();
   2462       if (debug_name[0] != 0) {
   2463         os << "<SharedFunctionInfo " << debug_name.get() << ">";
   2464       } else {
   2465         os << "<SharedFunctionInfo>";
   2466       }
   2467       break;
   2468     }
   2469     case JS_MESSAGE_OBJECT_TYPE:
   2470       os << "<JSMessageObject>";
   2471       break;
   2472 #define MAKE_STRUCT_CASE(NAME, Name, name) \
   2473   case NAME##_TYPE:                        \
   2474     os << "<" #Name ">";                   \
   2475     break;
   2476   STRUCT_LIST(MAKE_STRUCT_CASE)
   2477 #undef MAKE_STRUCT_CASE
   2478     case CODE_TYPE: {
   2479       Code* code = Code::cast(this);
   2480       os << "<Code: " << Code::Kind2String(code->kind()) << ">";
   2481       break;
   2482     }
   2483     case ODDBALL_TYPE: {
   2484       if (IsUndefined(isolate)) {
   2485         os << "<undefined>";
   2486       } else if (IsTheHole(isolate)) {
   2487         os << "<the hole>";
   2488       } else if (IsNull(isolate)) {
   2489         os << "<null>";
   2490       } else if (IsTrue(isolate)) {
   2491         os << "<true>";
   2492       } else if (IsFalse(isolate)) {
   2493         os << "<false>";
   2494       } else {
   2495         os << "<Odd Oddball: ";
   2496         os << Oddball::cast(this)->to_string()->ToCString().get();
   2497         os << ">";
   2498       }
   2499       break;
   2500     }
   2501     case SYMBOL_TYPE: {
   2502       Symbol* symbol = Symbol::cast(this);
   2503       symbol->SymbolShortPrint(os);
   2504       break;
   2505     }
   2506     case HEAP_NUMBER_TYPE: {
   2507       os << "<Number: ";
   2508       HeapNumber::cast(this)->HeapNumberPrint(os);
   2509       os << ">";
   2510       break;
   2511     }
   2512     case MUTABLE_HEAP_NUMBER_TYPE: {
   2513       os << "<MutableNumber: ";
   2514       HeapNumber::cast(this)->HeapNumberPrint(os);
   2515       os << '>';
   2516       break;
   2517     }
   2518     case SIMD128_VALUE_TYPE: {
   2519 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
   2520   if (Is##Type()) {                                           \
   2521     os << "<" #Type ">";                                      \
   2522     break;                                                    \
   2523   }
   2524       SIMD128_TYPES(SIMD128_TYPE)
   2525 #undef SIMD128_TYPE
   2526       UNREACHABLE();
   2527       break;
   2528     }
   2529     case JS_PROXY_TYPE:
   2530       os << "<JSProxy>";
   2531       break;
   2532     case FOREIGN_TYPE:
   2533       os << "<Foreign>";
   2534       break;
   2535     case CELL_TYPE: {
   2536       os << "Cell for ";
   2537       HeapStringAllocator allocator;
   2538       StringStream accumulator(&allocator);
   2539       Cell::cast(this)->value()->ShortPrint(&accumulator);
   2540       os << accumulator.ToCString().get();
   2541       break;
   2542     }
   2543     case PROPERTY_CELL_TYPE: {
   2544       os << "PropertyCell for ";
   2545       HeapStringAllocator allocator;
   2546       StringStream accumulator(&allocator);
   2547       PropertyCell* cell = PropertyCell::cast(this);
   2548       cell->value()->ShortPrint(&accumulator);
   2549       os << accumulator.ToCString().get();
   2550       break;
   2551     }
   2552     case WEAK_CELL_TYPE: {
   2553       os << "WeakCell for ";
   2554       HeapStringAllocator allocator;
   2555       StringStream accumulator(&allocator);
   2556       WeakCell::cast(this)->value()->ShortPrint(&accumulator);
   2557       os << accumulator.ToCString().get();
   2558       break;
   2559     }
   2560     default:
   2561       os << "<Other heap object (" << map()->instance_type() << ")>";
   2562       break;
   2563   }
   2564 }
   2565 
   2566 
   2567 void HeapObject::Iterate(ObjectVisitor* v) { IterateFast<ObjectVisitor>(v); }
   2568 
   2569 
   2570 void HeapObject::IterateBody(ObjectVisitor* v) {
   2571   Map* m = map();
   2572   IterateBodyFast<ObjectVisitor>(m->instance_type(), SizeFromMap(m), v);
   2573 }
   2574 
   2575 
   2576 void HeapObject::IterateBody(InstanceType type, int object_size,
   2577                              ObjectVisitor* v) {
   2578   IterateBodyFast<ObjectVisitor>(type, object_size, v);
   2579 }
   2580 
   2581 
   2582 struct CallIsValidSlot {
   2583   template <typename BodyDescriptor>
   2584   static bool apply(HeapObject* obj, int offset, int) {
   2585     return BodyDescriptor::IsValidSlot(obj, offset);
   2586   }
   2587 };
   2588 
   2589 
   2590 bool HeapObject::IsValidSlot(int offset) {
   2591   DCHECK_NE(0, offset);
   2592   return BodyDescriptorApply<CallIsValidSlot, bool>(map()->instance_type(),
   2593                                                     this, offset, 0);
   2594 }
   2595 
   2596 
   2597 bool HeapNumber::HeapNumberBooleanValue() {
   2598   return DoubleToBoolean(value());
   2599 }
   2600 
   2601 
   2602 void HeapNumber::HeapNumberPrint(std::ostream& os) {  // NOLINT
   2603   os << value();
   2604 }
   2605 
   2606 
   2607 #define FIELD_ADDR_CONST(p, offset) \
   2608   (reinterpret_cast<const byte*>(p) + offset - kHeapObjectTag)
   2609 
   2610 #define READ_INT32_FIELD(p, offset) \
   2611   (*reinterpret_cast<const int32_t*>(FIELD_ADDR_CONST(p, offset)))
   2612 
   2613 #define READ_INT64_FIELD(p, offset) \
   2614   (*reinterpret_cast<const int64_t*>(FIELD_ADDR_CONST(p, offset)))
   2615 
   2616 #define READ_BYTE_FIELD(p, offset) \
   2617   (*reinterpret_cast<const byte*>(FIELD_ADDR_CONST(p, offset)))
   2618 
   2619 
   2620 // static
   2621 Handle<String> Simd128Value::ToString(Handle<Simd128Value> input) {
   2622 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
   2623   if (input->Is##Type()) return Type::ToString(Handle<Type>::cast(input));
   2624   SIMD128_TYPES(SIMD128_TYPE)
   2625 #undef SIMD128_TYPE
   2626   UNREACHABLE();
   2627   return Handle<String>::null();
   2628 }
   2629 
   2630 
   2631 // static
   2632 Handle<String> Float32x4::ToString(Handle<Float32x4> input) {
   2633   Isolate* const isolate = input->GetIsolate();
   2634   char arr[100];
   2635   Vector<char> buffer(arr, arraysize(arr));
   2636   std::ostringstream os;
   2637   os << "SIMD.Float32x4("
   2638      << std::string(DoubleToCString(input->get_lane(0), buffer)) << ", "
   2639      << std::string(DoubleToCString(input->get_lane(1), buffer)) << ", "
   2640      << std::string(DoubleToCString(input->get_lane(2), buffer)) << ", "
   2641      << std::string(DoubleToCString(input->get_lane(3), buffer)) << ")";
   2642   return isolate->factory()->NewStringFromAsciiChecked(os.str().c_str());
   2643 }
   2644 
   2645 
   2646 #define SIMD128_BOOL_TO_STRING(Type, lane_count)                            \
   2647   Handle<String> Type::ToString(Handle<Type> input) {                       \
   2648     Isolate* const isolate = input->GetIsolate();                           \
   2649     std::ostringstream os;                                                  \
   2650     os << "SIMD." #Type "(";                                                \
   2651     os << (input->get_lane(0) ? "true" : "false");                          \
   2652     for (int i = 1; i < lane_count; i++) {                                  \
   2653       os << ", " << (input->get_lane(i) ? "true" : "false");                \
   2654     }                                                                       \
   2655     os << ")";                                                              \
   2656     return isolate->factory()->NewStringFromAsciiChecked(os.str().c_str()); \
   2657   }
   2658 SIMD128_BOOL_TO_STRING(Bool32x4, 4)
   2659 SIMD128_BOOL_TO_STRING(Bool16x8, 8)
   2660 SIMD128_BOOL_TO_STRING(Bool8x16, 16)
   2661 #undef SIMD128_BOOL_TO_STRING
   2662 
   2663 
   2664 #define SIMD128_INT_TO_STRING(Type, lane_count)                             \
   2665   Handle<String> Type::ToString(Handle<Type> input) {                       \
   2666     Isolate* const isolate = input->GetIsolate();                           \
   2667     char arr[100];                                                          \
   2668     Vector<char> buffer(arr, arraysize(arr));                               \
   2669     std::ostringstream os;                                                  \
   2670     os << "SIMD." #Type "(";                                                \
   2671     os << IntToCString(input->get_lane(0), buffer);                         \
   2672     for (int i = 1; i < lane_count; i++) {                                  \
   2673       os << ", " << IntToCString(input->get_lane(i), buffer);               \
   2674     }                                                                       \
   2675     os << ")";                                                              \
   2676     return isolate->factory()->NewStringFromAsciiChecked(os.str().c_str()); \
   2677   }
   2678 SIMD128_INT_TO_STRING(Int32x4, 4)
   2679 SIMD128_INT_TO_STRING(Uint32x4, 4)
   2680 SIMD128_INT_TO_STRING(Int16x8, 8)
   2681 SIMD128_INT_TO_STRING(Uint16x8, 8)
   2682 SIMD128_INT_TO_STRING(Int8x16, 16)
   2683 SIMD128_INT_TO_STRING(Uint8x16, 16)
   2684 #undef SIMD128_INT_TO_STRING
   2685 
   2686 
   2687 bool Simd128Value::BitwiseEquals(const Simd128Value* other) const {
   2688   return READ_INT64_FIELD(this, kValueOffset) ==
   2689              READ_INT64_FIELD(other, kValueOffset) &&
   2690          READ_INT64_FIELD(this, kValueOffset + kInt64Size) ==
   2691              READ_INT64_FIELD(other, kValueOffset + kInt64Size);
   2692 }
   2693 
   2694 
   2695 uint32_t Simd128Value::Hash() const {
   2696   uint32_t seed = v8::internal::kZeroHashSeed;
   2697   uint32_t hash;
   2698   hash = ComputeIntegerHash(READ_INT32_FIELD(this, kValueOffset), seed);
   2699   hash = ComputeIntegerHash(
   2700       READ_INT32_FIELD(this, kValueOffset + 1 * kInt32Size), hash * 31);
   2701   hash = ComputeIntegerHash(
   2702       READ_INT32_FIELD(this, kValueOffset + 2 * kInt32Size), hash * 31);
   2703   hash = ComputeIntegerHash(
   2704       READ_INT32_FIELD(this, kValueOffset + 3 * kInt32Size), hash * 31);
   2705   return hash;
   2706 }
   2707 
   2708 
   2709 void Simd128Value::CopyBits(void* destination) const {
   2710   memcpy(destination, &READ_BYTE_FIELD(this, kValueOffset), kSimd128Size);
   2711 }
   2712 
   2713 
   2714 String* JSReceiver::class_name() {
   2715   if (IsFunction()) {
   2716     return GetHeap()->Function_string();
   2717   }
   2718   Object* maybe_constructor = map()->GetConstructor();
   2719   if (maybe_constructor->IsJSFunction()) {
   2720     JSFunction* constructor = JSFunction::cast(maybe_constructor);
   2721     return String::cast(constructor->shared()->instance_class_name());
   2722   }
   2723   // If the constructor is not present, return "Object".
   2724   return GetHeap()->Object_string();
   2725 }
   2726 
   2727 
   2728 // static
   2729 Handle<String> JSReceiver::GetConstructorName(Handle<JSReceiver> receiver) {
   2730   Isolate* isolate = receiver->GetIsolate();
   2731 
   2732   // If the object was instantiated simply with base == new.target, the
   2733   // constructor on the map provides the most accurate name.
   2734   // Don't provide the info for prototypes, since their constructors are
   2735   // reclaimed and replaced by Object in OptimizeAsPrototype.
   2736   if (!receiver->IsJSProxy() && receiver->map()->new_target_is_base() &&
   2737       !receiver->map()->is_prototype_map()) {
   2738     Object* maybe_constructor = receiver->map()->GetConstructor();
   2739     if (maybe_constructor->IsJSFunction()) {
   2740       JSFunction* constructor = JSFunction::cast(maybe_constructor);
   2741       String* name = String::cast(constructor->shared()->name());
   2742       if (name->length() == 0) name = constructor->shared()->inferred_name();
   2743       if (name->length() != 0 &&
   2744           !name->Equals(isolate->heap()->Object_string())) {
   2745         return handle(name, isolate);
   2746       }
   2747     }
   2748   }
   2749 
   2750   Handle<Object> maybe_tag = JSReceiver::GetDataProperty(
   2751       receiver, isolate->factory()->to_string_tag_symbol());
   2752   if (maybe_tag->IsString()) return Handle<String>::cast(maybe_tag);
   2753 
   2754   PrototypeIterator iter(isolate, receiver);
   2755   if (iter.IsAtEnd()) return handle(receiver->class_name());
   2756   Handle<JSReceiver> start = PrototypeIterator::GetCurrent<JSReceiver>(iter);
   2757   LookupIterator it(receiver, isolate->factory()->constructor_string(), start,
   2758                     LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR);
   2759   Handle<Object> maybe_constructor = JSReceiver::GetDataProperty(&it);
   2760   Handle<String> result = isolate->factory()->Object_string();
   2761   if (maybe_constructor->IsJSFunction()) {
   2762     JSFunction* constructor = JSFunction::cast(*maybe_constructor);
   2763     String* name = String::cast(constructor->shared()->name());
   2764     if (name->length() == 0) name = constructor->shared()->inferred_name();
   2765     if (name->length() > 0) result = handle(name, isolate);
   2766   }
   2767 
   2768   return result.is_identical_to(isolate->factory()->Object_string())
   2769              ? handle(receiver->class_name())
   2770              : result;
   2771 }
   2772 
   2773 
   2774 Context* JSReceiver::GetCreationContext() {
   2775   JSReceiver* receiver = this;
   2776   while (receiver->IsJSBoundFunction()) {
   2777     receiver = JSBoundFunction::cast(receiver)->bound_target_function();
   2778   }
   2779   Object* constructor = receiver->map()->GetConstructor();
   2780   JSFunction* function;
   2781   if (constructor->IsJSFunction()) {
   2782     function = JSFunction::cast(constructor);
   2783   } else {
   2784     // Functions have null as a constructor,
   2785     // but any JSFunction knows its context immediately.
   2786     CHECK(receiver->IsJSFunction());
   2787     function = JSFunction::cast(receiver);
   2788   }
   2789 
   2790   return function->context()->native_context();
   2791 }
   2792 
   2793 static Handle<Object> WrapType(Handle<FieldType> type) {
   2794   if (type->IsClass()) return Map::WeakCellForMap(type->AsClass());
   2795   return type;
   2796 }
   2797 
   2798 MaybeHandle<Map> Map::CopyWithField(Handle<Map> map, Handle<Name> name,
   2799                                     Handle<FieldType> type,
   2800                                     PropertyAttributes attributes,
   2801                                     Representation representation,
   2802                                     TransitionFlag flag) {
   2803   DCHECK(DescriptorArray::kNotFound ==
   2804          map->instance_descriptors()->Search(
   2805              *name, map->NumberOfOwnDescriptors()));
   2806 
   2807   // Ensure the descriptor array does not get too big.
   2808   if (map->NumberOfOwnDescriptors() >= kMaxNumberOfDescriptors) {
   2809     return MaybeHandle<Map>();
   2810   }
   2811 
   2812   Isolate* isolate = map->GetIsolate();
   2813 
   2814   // Compute the new index for new field.
   2815   int index = map->NextFreePropertyIndex();
   2816 
   2817   if (map->instance_type() == JS_CONTEXT_EXTENSION_OBJECT_TYPE) {
   2818     representation = Representation::Tagged();
   2819     type = FieldType::Any(isolate);
   2820   }
   2821 
   2822   Handle<Object> wrapped_type(WrapType(type));
   2823 
   2824   DataDescriptor new_field_desc(name, index, wrapped_type, attributes,
   2825                                 representation);
   2826   Handle<Map> new_map = Map::CopyAddDescriptor(map, &new_field_desc, flag);
   2827   int unused_property_fields = new_map->unused_property_fields() - 1;
   2828   if (unused_property_fields < 0) {
   2829     unused_property_fields += JSObject::kFieldsAdded;
   2830   }
   2831   new_map->set_unused_property_fields(unused_property_fields);
   2832   return new_map;
   2833 }
   2834 
   2835 
   2836 MaybeHandle<Map> Map::CopyWithConstant(Handle<Map> map,
   2837                                        Handle<Name> name,
   2838                                        Handle<Object> constant,
   2839                                        PropertyAttributes attributes,
   2840                                        TransitionFlag flag) {
   2841   // Ensure the descriptor array does not get too big.
   2842   if (map->NumberOfOwnDescriptors() >= kMaxNumberOfDescriptors) {
   2843     return MaybeHandle<Map>();
   2844   }
   2845 
   2846   // Allocate new instance descriptors with (name, constant) added.
   2847   DataConstantDescriptor new_constant_desc(name, constant, attributes);
   2848   return Map::CopyAddDescriptor(map, &new_constant_desc, flag);
   2849 }
   2850 
   2851 
   2852 void JSObject::AddSlowProperty(Handle<JSObject> object,
   2853                                Handle<Name> name,
   2854                                Handle<Object> value,
   2855                                PropertyAttributes attributes) {
   2856   DCHECK(!object->HasFastProperties());
   2857   Isolate* isolate = object->GetIsolate();
   2858   if (object->IsJSGlobalObject()) {
   2859     Handle<GlobalDictionary> dict(object->global_dictionary());
   2860     PropertyDetails details(attributes, DATA, 0, PropertyCellType::kNoCell);
   2861     int entry = dict->FindEntry(name);
   2862     // If there's a cell there, just invalidate and set the property.
   2863     if (entry != GlobalDictionary::kNotFound) {
   2864       PropertyCell::UpdateCell(dict, entry, value, details);
   2865       // TODO(ishell): move this to UpdateCell.
   2866       // Need to adjust the details.
   2867       int index = dict->NextEnumerationIndex();
   2868       dict->SetNextEnumerationIndex(index + 1);
   2869       PropertyCell* cell = PropertyCell::cast(dict->ValueAt(entry));
   2870       details = cell->property_details().set_index(index);
   2871       cell->set_property_details(details);
   2872 
   2873     } else {
   2874       auto cell = isolate->factory()->NewPropertyCell();
   2875       cell->set_value(*value);
   2876       auto cell_type = value->IsUndefined(isolate)
   2877                            ? PropertyCellType::kUndefined
   2878                            : PropertyCellType::kConstant;
   2879       details = details.set_cell_type(cell_type);
   2880       value = cell;
   2881 
   2882       Handle<GlobalDictionary> result =
   2883           GlobalDictionary::Add(dict, name, value, details);
   2884       if (*dict != *result) object->set_properties(*result);
   2885     }
   2886   } else {
   2887     Handle<NameDictionary> dict(object->property_dictionary());
   2888     PropertyDetails details(attributes, DATA, 0, PropertyCellType::kNoCell);
   2889     Handle<NameDictionary> result =
   2890         NameDictionary::Add(dict, name, value, details);
   2891     if (*dict != *result) object->set_properties(*result);
   2892   }
   2893 }
   2894 
   2895 
   2896 const char* Representation::Mnemonic() const {
   2897   switch (kind_) {
   2898     case kNone: return "v";
   2899     case kTagged: return "t";
   2900     case kSmi: return "s";
   2901     case kDouble: return "d";
   2902     case kInteger32: return "i";
   2903     case kHeapObject: return "h";
   2904     case kExternal: return "x";
   2905     default:
   2906       UNREACHABLE();
   2907       return NULL;
   2908   }
   2909 }
   2910 
   2911 bool Map::InstancesNeedRewriting(Map* target) {
   2912   int target_number_of_fields = target->NumberOfFields();
   2913   int target_inobject = target->GetInObjectProperties();
   2914   int target_unused = target->unused_property_fields();
   2915   int old_number_of_fields;
   2916 
   2917   return InstancesNeedRewriting(target, target_number_of_fields,
   2918                                 target_inobject, target_unused,
   2919                                 &old_number_of_fields);
   2920 }
   2921 
   2922 bool Map::InstancesNeedRewriting(Map* target, int target_number_of_fields,
   2923                                  int target_inobject, int target_unused,
   2924                                  int* old_number_of_fields) {
   2925   // If fields were added (or removed), rewrite the instance.
   2926   *old_number_of_fields = NumberOfFields();
   2927   DCHECK(target_number_of_fields >= *old_number_of_fields);
   2928   if (target_number_of_fields != *old_number_of_fields) return true;
   2929 
   2930   // If smi descriptors were replaced by double descriptors, rewrite.
   2931   DescriptorArray* old_desc = instance_descriptors();
   2932   DescriptorArray* new_desc = target->instance_descriptors();
   2933   int limit = NumberOfOwnDescriptors();
   2934   for (int i = 0; i < limit; i++) {
   2935     if (new_desc->GetDetails(i).representation().IsDouble() !=
   2936         old_desc->GetDetails(i).representation().IsDouble()) {
   2937       return true;
   2938     }
   2939   }
   2940 
   2941   // If no fields were added, and no inobject properties were removed, setting
   2942   // the map is sufficient.
   2943   if (target_inobject == GetInObjectProperties()) return false;
   2944   // In-object slack tracking may have reduced the object size of the new map.
   2945   // In that case, succeed if all existing fields were inobject, and they still
   2946   // fit within the new inobject size.
   2947   DCHECK(target_inobject < GetInObjectProperties());
   2948   if (target_number_of_fields <= target_inobject) {
   2949     DCHECK(target_number_of_fields + target_unused == target_inobject);
   2950     return false;
   2951   }
   2952   // Otherwise, properties will need to be moved to the backing store.
   2953   return true;
   2954 }
   2955 
   2956 
   2957 // static
   2958 void JSObject::UpdatePrototypeUserRegistration(Handle<Map> old_map,
   2959                                                Handle<Map> new_map,
   2960                                                Isolate* isolate) {
   2961   if (!old_map->is_prototype_map()) return;
   2962   DCHECK(new_map->is_prototype_map());
   2963   bool was_registered = JSObject::UnregisterPrototypeUser(old_map, isolate);
   2964   new_map->set_prototype_info(old_map->prototype_info());
   2965   old_map->set_prototype_info(Smi::FromInt(0));
   2966   if (FLAG_trace_prototype_users) {
   2967     PrintF("Moving prototype_info %p from map %p to map %p.\n",
   2968            reinterpret_cast<void*>(new_map->prototype_info()),
   2969            reinterpret_cast<void*>(*old_map),
   2970            reinterpret_cast<void*>(*new_map));
   2971   }
   2972   if (was_registered) {
   2973     if (new_map->prototype_info()->IsPrototypeInfo()) {
   2974       // The new map isn't registered with its prototype yet; reflect this fact
   2975       // in the PrototypeInfo it just inherited from the old map.
   2976       PrototypeInfo::cast(new_map->prototype_info())
   2977           ->set_registry_slot(PrototypeInfo::UNREGISTERED);
   2978     }
   2979     JSObject::LazyRegisterPrototypeUser(new_map, isolate);
   2980   }
   2981 }
   2982 
   2983 namespace {
   2984 // To migrate a fast instance to a fast map:
   2985 // - First check whether the instance needs to be rewritten. If not, simply
   2986 //   change the map.
   2987 // - Otherwise, allocate a fixed array large enough to hold all fields, in
   2988 //   addition to unused space.
   2989 // - Copy all existing properties in, in the following order: backing store
   2990 //   properties, unused fields, inobject properties.
   2991 // - If all allocation succeeded, commit the state atomically:
   2992 //   * Copy inobject properties from the backing store back into the object.
   2993 //   * Trim the difference in instance size of the object. This also cleanly
   2994 //     frees inobject properties that moved to the backing store.
   2995 //   * If there are properties left in the backing store, trim of the space used
   2996 //     to temporarily store the inobject properties.
   2997 //   * If there are properties left in the backing store, install the backing
   2998 //     store.
   2999 void MigrateFastToFast(Handle<JSObject> object, Handle<Map> new_map) {
   3000   Isolate* isolate = object->GetIsolate();
   3001   Handle<Map> old_map(object->map());
   3002   // In case of a regular transition.
   3003   if (new_map->GetBackPointer() == *old_map) {
   3004     // If the map does not add named properties, simply set the map.
   3005     if (old_map->NumberOfOwnDescriptors() ==
   3006         new_map->NumberOfOwnDescriptors()) {
   3007       object->synchronized_set_map(*new_map);
   3008       return;
   3009     }
   3010 
   3011     PropertyDetails details = new_map->GetLastDescriptorDetails();
   3012     // Either new_map adds an kDescriptor property, or a kField property for
   3013     // which there is still space, and which does not require a mutable double
   3014     // box (an out-of-object double).
   3015     if (details.location() == kDescriptor ||
   3016         (old_map->unused_property_fields() > 0 &&
   3017          ((FLAG_unbox_double_fields && object->properties()->length() == 0) ||
   3018           !details.representation().IsDouble()))) {
   3019       object->synchronized_set_map(*new_map);
   3020       return;
   3021     }
   3022 
   3023     // If there is still space in the object, we need to allocate a mutable
   3024     // double box.
   3025     if (old_map->unused_property_fields() > 0) {
   3026       FieldIndex index =
   3027           FieldIndex::ForDescriptor(*new_map, new_map->LastAdded());
   3028       DCHECK(details.representation().IsDouble());
   3029       DCHECK(!new_map->IsUnboxedDoubleField(index));
   3030       Handle<Object> value = isolate->factory()->NewHeapNumber(0, MUTABLE);
   3031       object->RawFastPropertyAtPut(index, *value);
   3032       object->synchronized_set_map(*new_map);
   3033       return;
   3034     }
   3035 
   3036     // This migration is a transition from a map that has run out of property
   3037     // space. Extend the backing store.
   3038     int grow_by = new_map->unused_property_fields() + 1;
   3039     Handle<FixedArray> old_storage = handle(object->properties(), isolate);
   3040     Handle<FixedArray> new_storage =
   3041         isolate->factory()->CopyFixedArrayAndGrow(old_storage, grow_by);
   3042 
   3043     // Properly initialize newly added property.
   3044     Handle<Object> value;
   3045     if (details.representation().IsDouble()) {
   3046       value = isolate->factory()->NewHeapNumber(0, MUTABLE);
   3047     } else {
   3048       value = isolate->factory()->uninitialized_value();
   3049     }
   3050     DCHECK_EQ(DATA, details.type());
   3051     int target_index = details.field_index() - new_map->GetInObjectProperties();
   3052     DCHECK(target_index >= 0);  // Must be a backing store index.
   3053     new_storage->set(target_index, *value);
   3054 
   3055     // From here on we cannot fail and we shouldn't GC anymore.
   3056     DisallowHeapAllocation no_allocation;
   3057 
   3058     // Set the new property value and do the map transition.
   3059     object->set_properties(*new_storage);
   3060     object->synchronized_set_map(*new_map);
   3061     return;
   3062   }
   3063 
   3064   int old_number_of_fields;
   3065   int number_of_fields = new_map->NumberOfFields();
   3066   int inobject = new_map->GetInObjectProperties();
   3067   int unused = new_map->unused_property_fields();
   3068 
   3069   // Nothing to do if no functions were converted to fields and no smis were
   3070   // converted to doubles.
   3071   if (!old_map->InstancesNeedRewriting(*new_map, number_of_fields, inobject,
   3072                                        unused, &old_number_of_fields)) {
   3073     object->synchronized_set_map(*new_map);
   3074     return;
   3075   }
   3076 
   3077   int total_size = number_of_fields + unused;
   3078   int external = total_size - inobject;
   3079 
   3080   Handle<FixedArray> array = isolate->factory()->NewFixedArray(total_size);
   3081 
   3082   Handle<DescriptorArray> old_descriptors(old_map->instance_descriptors());
   3083   Handle<DescriptorArray> new_descriptors(new_map->instance_descriptors());
   3084   int old_nof = old_map->NumberOfOwnDescriptors();
   3085   int new_nof = new_map->NumberOfOwnDescriptors();
   3086 
   3087   // This method only supports generalizing instances to at least the same
   3088   // number of properties.
   3089   DCHECK(old_nof <= new_nof);
   3090 
   3091   for (int i = 0; i < old_nof; i++) {
   3092     PropertyDetails details = new_descriptors->GetDetails(i);
   3093     if (details.type() != DATA) continue;
   3094     PropertyDetails old_details = old_descriptors->GetDetails(i);
   3095     Representation old_representation = old_details.representation();
   3096     Representation representation = details.representation();
   3097     Handle<Object> value;
   3098     if (old_details.type() == ACCESSOR_CONSTANT) {
   3099       // In case of kAccessor -> kData property reconfiguration, the property
   3100       // must already be prepared for data or certain type.
   3101       DCHECK(!details.representation().IsNone());
   3102       if (details.representation().IsDouble()) {
   3103         value = isolate->factory()->NewHeapNumber(0, MUTABLE);
   3104       } else {
   3105         value = isolate->factory()->uninitialized_value();
   3106       }
   3107     } else if (old_details.type() == DATA_CONSTANT) {
   3108       value = handle(old_descriptors->GetValue(i), isolate);
   3109       DCHECK(!old_representation.IsDouble() && !representation.IsDouble());
   3110     } else {
   3111       FieldIndex index = FieldIndex::ForDescriptor(*old_map, i);
   3112       if (object->IsUnboxedDoubleField(index)) {
   3113         double old = object->RawFastDoublePropertyAt(index);
   3114         value = isolate->factory()->NewHeapNumber(
   3115             old, representation.IsDouble() ? MUTABLE : IMMUTABLE);
   3116 
   3117       } else {
   3118         value = handle(object->RawFastPropertyAt(index), isolate);
   3119         if (!old_representation.IsDouble() && representation.IsDouble()) {
   3120           if (old_representation.IsNone()) {
   3121             value = handle(Smi::FromInt(0), isolate);
   3122           }
   3123           value = Object::NewStorageFor(isolate, value, representation);
   3124         } else if (old_representation.IsDouble() &&
   3125                    !representation.IsDouble()) {
   3126           value = Object::WrapForRead(isolate, value, old_representation);
   3127         }
   3128       }
   3129     }
   3130     DCHECK(!(representation.IsDouble() && value->IsSmi()));
   3131     int target_index = new_descriptors->GetFieldIndex(i) - inobject;
   3132     if (target_index < 0) target_index += total_size;
   3133     array->set(target_index, *value);
   3134   }
   3135 
   3136   for (int i = old_nof; i < new_nof; i++) {
   3137     PropertyDetails details = new_descriptors->GetDetails(i);
   3138     if (details.type() != DATA) continue;
   3139     Handle<Object> value;
   3140     if (details.representation().IsDouble()) {
   3141       value = isolate->factory()->NewHeapNumber(0, MUTABLE);
   3142     } else {
   3143       value = isolate->factory()->uninitialized_value();
   3144     }
   3145     int target_index = new_descriptors->GetFieldIndex(i) - inobject;
   3146     if (target_index < 0) target_index += total_size;
   3147     array->set(target_index, *value);
   3148   }
   3149 
   3150   // From here on we cannot fail and we shouldn't GC anymore.
   3151   DisallowHeapAllocation no_allocation;
   3152 
   3153   Heap* heap = isolate->heap();
   3154 
   3155   // Copy (real) inobject properties. If necessary, stop at number_of_fields to
   3156   // avoid overwriting |one_pointer_filler_map|.
   3157   int limit = Min(inobject, number_of_fields);
   3158   for (int i = 0; i < limit; i++) {
   3159     FieldIndex index = FieldIndex::ForPropertyIndex(*new_map, i);
   3160     Object* value = array->get(external + i);
   3161     // Can't use JSObject::FastPropertyAtPut() because proper map was not set
   3162     // yet.
   3163     if (new_map->IsUnboxedDoubleField(index)) {
   3164       DCHECK(value->IsMutableHeapNumber());
   3165       object->RawFastDoublePropertyAtPut(index,
   3166                                          HeapNumber::cast(value)->value());
   3167       if (i < old_number_of_fields && !old_map->IsUnboxedDoubleField(index)) {
   3168         // Transition from tagged to untagged slot.
   3169         heap->ClearRecordedSlot(*object,
   3170                                 HeapObject::RawField(*object, index.offset()));
   3171       }
   3172     } else {
   3173       object->RawFastPropertyAtPut(index, value);
   3174     }
   3175   }
   3176 
   3177 
   3178   // If there are properties in the new backing store, trim it to the correct
   3179   // size and install the backing store into the object.
   3180   if (external > 0) {
   3181     heap->RightTrimFixedArray<Heap::CONCURRENT_TO_SWEEPER>(*array, inobject);
   3182     object->set_properties(*array);
   3183   }
   3184 
   3185   // Create filler object past the new instance size.
   3186   int new_instance_size = new_map->instance_size();
   3187   int instance_size_delta = old_map->instance_size() - new_instance_size;
   3188   DCHECK(instance_size_delta >= 0);
   3189 
   3190   if (instance_size_delta > 0) {
   3191     Address address = object->address();
   3192     heap->CreateFillerObjectAt(address + new_instance_size, instance_size_delta,
   3193                                ClearRecordedSlots::kYes);
   3194     heap->AdjustLiveBytes(*object, -instance_size_delta,
   3195                           Heap::CONCURRENT_TO_SWEEPER);
   3196   }
   3197 
   3198   // We are storing the new map using release store after creating a filler for
   3199   // the left-over space to avoid races with the sweeper thread.
   3200   object->synchronized_set_map(*new_map);
   3201 }
   3202 
   3203 void MigrateFastToSlow(Handle<JSObject> object, Handle<Map> new_map,
   3204                        int expected_additional_properties) {
   3205   // The global object is always normalized.
   3206   DCHECK(!object->IsJSGlobalObject());
   3207   // JSGlobalProxy must never be normalized
   3208   DCHECK(!object->IsJSGlobalProxy());
   3209 
   3210   Isolate* isolate = object->GetIsolate();
   3211   HandleScope scope(isolate);
   3212   Handle<Map> map(object->map());
   3213 
   3214   // Allocate new content.
   3215   int real_size = map->NumberOfOwnDescriptors();
   3216   int property_count = real_size;
   3217   if (expected_additional_properties > 0) {
   3218     property_count += expected_additional_properties;
   3219   } else {
   3220     property_count += 2;  // Make space for two more properties.
   3221   }
   3222   Handle<NameDictionary> dictionary =
   3223       NameDictionary::New(isolate, property_count);
   3224 
   3225   Handle<DescriptorArray> descs(map->instance_descriptors());
   3226   for (int i = 0; i < real_size; i++) {
   3227     PropertyDetails details = descs->GetDetails(i);
   3228     Handle<Name> key(descs->GetKey(i));
   3229     switch (details.type()) {
   3230       case DATA_CONSTANT: {
   3231         Handle<Object> value(descs->GetConstant(i), isolate);
   3232         PropertyDetails d(details.attributes(), DATA, i + 1,
   3233                           PropertyCellType::kNoCell);
   3234         dictionary = NameDictionary::Add(dictionary, key, value, d);
   3235         break;
   3236       }
   3237       case DATA: {
   3238         FieldIndex index = FieldIndex::ForDescriptor(*map, i);
   3239         Handle<Object> value;
   3240         if (object->IsUnboxedDoubleField(index)) {
   3241           double old_value = object->RawFastDoublePropertyAt(index);
   3242           value = isolate->factory()->NewHeapNumber(old_value);
   3243         } else {
   3244           value = handle(object->RawFastPropertyAt(index), isolate);
   3245           if (details.representation().IsDouble()) {
   3246             DCHECK(value->IsMutableHeapNumber());
   3247             Handle<HeapNumber> old = Handle<HeapNumber>::cast(value);
   3248             value = isolate->factory()->NewHeapNumber(old->value());
   3249           }
   3250         }
   3251         PropertyDetails d(details.attributes(), DATA, i + 1,
   3252                           PropertyCellType::kNoCell);
   3253         dictionary = NameDictionary::Add(dictionary, key, value, d);
   3254         break;
   3255       }
   3256       case ACCESSOR: {
   3257         FieldIndex index = FieldIndex::ForDescriptor(*map, i);
   3258         Handle<Object> value(object->RawFastPropertyAt(index), isolate);
   3259         PropertyDetails d(details.attributes(), ACCESSOR_CONSTANT, i + 1,
   3260                           PropertyCellType::kNoCell);
   3261         dictionary = NameDictionary::Add(dictionary, key, value, d);
   3262         break;
   3263       }
   3264       case ACCESSOR_CONSTANT: {
   3265         Handle<Object> value(descs->GetCallbacksObject(i), isolate);
   3266         PropertyDetails d(details.attributes(), ACCESSOR_CONSTANT, i + 1,
   3267                           PropertyCellType::kNoCell);
   3268         dictionary = NameDictionary::Add(dictionary, key, value, d);
   3269         break;
   3270       }
   3271     }
   3272   }
   3273 
   3274   // Copy the next enumeration index from instance descriptor.
   3275   dictionary->SetNextEnumerationIndex(real_size + 1);
   3276 
   3277   // From here on we cannot fail and we shouldn't GC anymore.
   3278   DisallowHeapAllocation no_allocation;
   3279 
   3280   // Resize the object in the heap if necessary.
   3281   int new_instance_size = new_map->instance_size();
   3282   int instance_size_delta = map->instance_size() - new_instance_size;
   3283   DCHECK(instance_size_delta >= 0);
   3284 
   3285   if (instance_size_delta > 0) {
   3286     Heap* heap = isolate->heap();
   3287     heap->CreateFillerObjectAt(object->address() + new_instance_size,
   3288                                instance_size_delta, ClearRecordedSlots::kYes);
   3289     heap->AdjustLiveBytes(*object, -instance_size_delta,
   3290                           Heap::CONCURRENT_TO_SWEEPER);
   3291   }
   3292 
   3293   // We are storing the new map using release store after creating a filler for
   3294   // the left-over space to avoid races with the sweeper thread.
   3295   object->synchronized_set_map(*new_map);
   3296 
   3297   object->set_properties(*dictionary);
   3298 
   3299   // Ensure that in-object space of slow-mode object does not contain random
   3300   // garbage.
   3301   int inobject_properties = new_map->GetInObjectProperties();
   3302   for (int i = 0; i < inobject_properties; i++) {
   3303     FieldIndex index = FieldIndex::ForPropertyIndex(*new_map, i);
   3304     object->RawFastPropertyAtPut(index, Smi::FromInt(0));
   3305   }
   3306 
   3307   isolate->counters()->props_to_dictionary()->Increment();
   3308 
   3309 #ifdef DEBUG
   3310   if (FLAG_trace_normalization) {
   3311     OFStream os(stdout);
   3312     os << "Object properties have been normalized:\n";
   3313     object->Print(os);
   3314   }
   3315 #endif
   3316 }
   3317 
   3318 }  // namespace
   3319 
   3320 void JSObject::MigrateToMap(Handle<JSObject> object, Handle<Map> new_map,
   3321                             int expected_additional_properties) {
   3322   if (object->map() == *new_map) return;
   3323   Handle<Map> old_map(object->map());
   3324   if (old_map->is_prototype_map()) {
   3325     // If this object is a prototype (the callee will check), invalidate any
   3326     // prototype chains involving it.
   3327     InvalidatePrototypeChains(object->map());
   3328 
   3329     // If the map was registered with its prototype before, ensure that it
   3330     // registers with its new prototype now. This preserves the invariant that
   3331     // when a map on a prototype chain is registered with its prototype, then
   3332     // all prototypes further up the chain are also registered with their
   3333     // respective prototypes.
   3334     UpdatePrototypeUserRegistration(old_map, new_map, new_map->GetIsolate());
   3335   }
   3336 
   3337   if (old_map->is_dictionary_map()) {
   3338     // For slow-to-fast migrations JSObject::MigrateSlowToFast()
   3339     // must be used instead.
   3340     CHECK(new_map->is_dictionary_map());
   3341 
   3342     // Slow-to-slow migration is trivial.
   3343     object->set_map(*new_map);
   3344   } else if (!new_map->is_dictionary_map()) {
   3345     MigrateFastToFast(object, new_map);
   3346     if (old_map->is_prototype_map()) {
   3347       DCHECK(!old_map->is_stable());
   3348       DCHECK(new_map->is_stable());
   3349       // Clear out the old descriptor array to avoid problems to sharing
   3350       // the descriptor array without using an explicit.
   3351       old_map->InitializeDescriptors(
   3352           old_map->GetHeap()->empty_descriptor_array(),
   3353           LayoutDescriptor::FastPointerLayout());
   3354       // Ensure that no transition was inserted for prototype migrations.
   3355       DCHECK_EQ(
   3356           0, TransitionArray::NumberOfTransitions(old_map->raw_transitions()));
   3357       DCHECK(new_map->GetBackPointer()->IsUndefined(new_map->GetIsolate()));
   3358     }
   3359   } else {
   3360     MigrateFastToSlow(object, new_map, expected_additional_properties);
   3361   }
   3362 
   3363   // Careful: Don't allocate here!
   3364   // For some callers of this method, |object| might be in an inconsistent
   3365   // state now: the new map might have a new elements_kind, but the object's
   3366   // elements pointer hasn't been updated yet. Callers will fix this, but in
   3367   // the meantime, (indirectly) calling JSObjectVerify() must be avoided.
   3368   // When adding code here, add a DisallowHeapAllocation too.
   3369 }
   3370 
   3371 int Map::NumberOfFields() {
   3372   DescriptorArray* descriptors = instance_descriptors();
   3373   int result = 0;
   3374   for (int i = 0; i < NumberOfOwnDescriptors(); i++) {
   3375     if (descriptors->GetDetails(i).location() == kField) result++;
   3376   }
   3377   return result;
   3378 }
   3379 
   3380 Handle<Map> Map::CopyGeneralizeAllRepresentations(
   3381     Handle<Map> map, ElementsKind elements_kind, int modify_index,
   3382     StoreMode store_mode, PropertyKind kind, PropertyAttributes attributes,
   3383     const char* reason) {
   3384   Isolate* isolate = map->GetIsolate();
   3385   Handle<DescriptorArray> old_descriptors(map->instance_descriptors(), isolate);
   3386   int number_of_own_descriptors = map->NumberOfOwnDescriptors();
   3387   Handle<DescriptorArray> descriptors =
   3388       DescriptorArray::CopyUpTo(old_descriptors, number_of_own_descriptors);
   3389 
   3390   for (int i = 0; i < number_of_own_descriptors; i++) {
   3391     descriptors->SetRepresentation(i, Representation::Tagged());
   3392     if (descriptors->GetDetails(i).type() == DATA) {
   3393       descriptors->SetValue(i, FieldType::Any());
   3394     }
   3395   }
   3396 
   3397   Handle<LayoutDescriptor> new_layout_descriptor(
   3398       LayoutDescriptor::FastPointerLayout(), isolate);
   3399   Handle<Map> new_map = CopyReplaceDescriptors(
   3400       map, descriptors, new_layout_descriptor, OMIT_TRANSITION,
   3401       MaybeHandle<Name>(), reason, SPECIAL_TRANSITION);
   3402 
   3403   // Unless the instance is being migrated, ensure that modify_index is a field.
   3404   if (modify_index >= 0) {
   3405     PropertyDetails details = descriptors->GetDetails(modify_index);
   3406     if (store_mode == FORCE_FIELD &&
   3407         (details.type() != DATA || details.attributes() != attributes)) {
   3408       int field_index = details.type() == DATA ? details.field_index()
   3409                                                : new_map->NumberOfFields();
   3410       DataDescriptor d(handle(descriptors->GetKey(modify_index), isolate),
   3411                        field_index, attributes, Representation::Tagged());
   3412       descriptors->Replace(modify_index, &d);
   3413       if (details.type() != DATA) {
   3414         int unused_property_fields = new_map->unused_property_fields() - 1;
   3415         if (unused_property_fields < 0) {
   3416           unused_property_fields += JSObject::kFieldsAdded;
   3417         }
   3418         new_map->set_unused_property_fields(unused_property_fields);
   3419       }
   3420     } else {
   3421       DCHECK(details.attributes() == attributes);
   3422     }
   3423 
   3424     if (FLAG_trace_generalization) {
   3425       MaybeHandle<FieldType> field_type = FieldType::None(isolate);
   3426       if (details.type() == DATA) {
   3427         field_type = handle(
   3428             map->instance_descriptors()->GetFieldType(modify_index), isolate);
   3429       }
   3430       map->PrintGeneralization(
   3431           stdout, reason, modify_index, new_map->NumberOfOwnDescriptors(),
   3432           new_map->NumberOfOwnDescriptors(),
   3433           details.type() == DATA_CONSTANT && store_mode == FORCE_FIELD,
   3434           details.representation(), Representation::Tagged(), field_type,
   3435           MaybeHandle<Object>(), FieldType::Any(isolate),
   3436           MaybeHandle<Object>());
   3437     }
   3438   }
   3439   new_map->set_elements_kind(elements_kind);
   3440   return new_map;
   3441 }
   3442 
   3443 
   3444 void Map::DeprecateTransitionTree() {
   3445   if (is_deprecated()) return;
   3446   Object* transitions = raw_transitions();
   3447   int num_transitions = TransitionArray::NumberOfTransitions(transitions);
   3448   for (int i = 0; i < num_transitions; ++i) {
   3449     TransitionArray::GetTarget(transitions, i)->DeprecateTransitionTree();
   3450   }
   3451   deprecate();
   3452   dependent_code()->DeoptimizeDependentCodeGroup(
   3453       GetIsolate(), DependentCode::kTransitionGroup);
   3454   NotifyLeafMapLayoutChange();
   3455 }
   3456 
   3457 
   3458 static inline bool EqualImmutableValues(Object* obj1, Object* obj2) {
   3459   if (obj1 == obj2) return true;  // Valid for both kData and kAccessor kinds.
   3460   // TODO(ishell): compare AccessorPairs.
   3461   return false;
   3462 }
   3463 
   3464 
   3465 // Installs |new_descriptors| over the current instance_descriptors to ensure
   3466 // proper sharing of descriptor arrays.
   3467 void Map::ReplaceDescriptors(DescriptorArray* new_descriptors,
   3468                              LayoutDescriptor* new_layout_descriptor) {
   3469   Isolate* isolate = GetIsolate();
   3470   // Don't overwrite the empty descriptor array or initial map's descriptors.
   3471   if (NumberOfOwnDescriptors() == 0 || GetBackPointer()->IsUndefined(isolate)) {
   3472     return;
   3473   }
   3474 
   3475   DescriptorArray* to_replace = instance_descriptors();
   3476   isolate->heap()->incremental_marking()->IterateBlackObject(to_replace);
   3477   Map* current = this;
   3478   while (current->instance_descriptors() == to_replace) {
   3479     Object* next = current->GetBackPointer();
   3480     if (next->IsUndefined(isolate)) break;  // Stop overwriting at initial map.
   3481     current->SetEnumLength(kInvalidEnumCacheSentinel);
   3482     current->UpdateDescriptors(new_descriptors, new_layout_descriptor);
   3483     current = Map::cast(next);
   3484   }
   3485   set_owns_descriptors(false);
   3486 }
   3487 
   3488 
   3489 Map* Map::FindRootMap() {
   3490   Map* result = this;
   3491   Isolate* isolate = GetIsolate();
   3492   while (true) {
   3493     Object* back = result->GetBackPointer();
   3494     if (back->IsUndefined(isolate)) {
   3495       // Initial map always owns descriptors and doesn't have unused entries
   3496       // in the descriptor array.
   3497       DCHECK(result->owns_descriptors());
   3498       DCHECK_EQ(result->NumberOfOwnDescriptors(),
   3499                 result->instance_descriptors()->number_of_descriptors());
   3500       return result;
   3501     }
   3502     result = Map::cast(back);
   3503   }
   3504 }
   3505 
   3506 
   3507 Map* Map::FindLastMatchMap(int verbatim,
   3508                            int length,
   3509                            DescriptorArray* descriptors) {
   3510   DisallowHeapAllocation no_allocation;
   3511 
   3512   // This can only be called on roots of transition trees.
   3513   DCHECK_EQ(verbatim, NumberOfOwnDescriptors());
   3514 
   3515   Map* current = this;
   3516 
   3517   for (int i = verbatim; i < length; i++) {
   3518     Name* name = descriptors->GetKey(i);
   3519     PropertyDetails details = descriptors->GetDetails(i);
   3520     Map* next = TransitionArray::SearchTransition(current, details.kind(), name,
   3521                                                   details.attributes());
   3522     if (next == NULL) break;
   3523     DescriptorArray* next_descriptors = next->instance_descriptors();
   3524 
   3525     PropertyDetails next_details = next_descriptors->GetDetails(i);
   3526     DCHECK_EQ(details.kind(), next_details.kind());
   3527     DCHECK_EQ(details.attributes(), next_details.attributes());
   3528     if (details.location() != next_details.location()) break;
   3529     if (!details.representation().Equals(next_details.representation())) break;
   3530 
   3531     if (next_details.location() == kField) {
   3532       FieldType* next_field_type = next_descriptors->GetFieldType(i);
   3533       if (!descriptors->GetFieldType(i)->NowIs(next_field_type)) {
   3534         break;
   3535       }
   3536     } else {
   3537       if (!EqualImmutableValues(descriptors->GetValue(i),
   3538                                 next_descriptors->GetValue(i))) {
   3539         break;
   3540       }
   3541     }
   3542     current = next;
   3543   }
   3544   return current;
   3545 }
   3546 
   3547 
   3548 Map* Map::FindFieldOwner(int descriptor) {
   3549   DisallowHeapAllocation no_allocation;
   3550   DCHECK_EQ(DATA, instance_descriptors()->GetDetails(descriptor).type());
   3551   Map* result = this;
   3552   Isolate* isolate = GetIsolate();
   3553   while (true) {
   3554     Object* back = result->GetBackPointer();
   3555     if (back->IsUndefined(isolate)) break;
   3556     Map* parent = Map::cast(back);
   3557     if (parent->NumberOfOwnDescriptors() <= descriptor) break;
   3558     result = parent;
   3559   }
   3560   return result;
   3561 }
   3562 
   3563 
   3564 void Map::UpdateFieldType(int descriptor, Handle<Name> name,
   3565                           Representation new_representation,
   3566                           Handle<Object> new_wrapped_type) {
   3567   DCHECK(new_wrapped_type->IsSmi() || new_wrapped_type->IsWeakCell());
   3568   // We store raw pointers in the queue, so no allocations are allowed.
   3569   DisallowHeapAllocation no_allocation;
   3570   PropertyDetails details = instance_descriptors()->GetDetails(descriptor);
   3571   if (details.type() != DATA) return;
   3572 
   3573   Zone zone(GetIsolate()->allocator());
   3574   ZoneQueue<Map*> backlog(&zone);
   3575   backlog.push(this);
   3576 
   3577   while (!backlog.empty()) {
   3578     Map* current = backlog.front();
   3579     backlog.pop();
   3580 
   3581     Object* transitions = current->raw_transitions();
   3582     int num_transitions = TransitionArray::NumberOfTransitions(transitions);
   3583     for (int i = 0; i < num_transitions; ++i) {
   3584       Map* target = TransitionArray::GetTarget(transitions, i);
   3585       backlog.push(target);
   3586     }
   3587     DescriptorArray* descriptors = current->instance_descriptors();
   3588     PropertyDetails details = descriptors->GetDetails(descriptor);
   3589 
   3590     // It is allowed to change representation here only from None to something.
   3591     DCHECK(details.representation().Equals(new_representation) ||
   3592            details.representation().IsNone());
   3593 
   3594     // Skip if already updated the shared descriptor.
   3595     if (descriptors->GetValue(descriptor) != *new_wrapped_type) {
   3596       DataDescriptor d(name, descriptors->GetFieldIndex(descriptor),
   3597                        new_wrapped_type, details.attributes(),
   3598                        new_representation);
   3599       descriptors->Replace(descriptor, &d);
   3600     }
   3601   }
   3602 }
   3603 
   3604 bool FieldTypeIsCleared(Representation rep, FieldType* type) {
   3605   return type->IsNone() && rep.IsHeapObject();
   3606 }
   3607 
   3608 
   3609 // static
   3610 Handle<FieldType> Map::GeneralizeFieldType(Representation rep1,
   3611                                            Handle<FieldType> type1,
   3612                                            Representation rep2,
   3613                                            Handle<FieldType> type2,
   3614                                            Isolate* isolate) {
   3615   // Cleared field types need special treatment. They represent lost knowledge,
   3616   // so we must be conservative, so their generalization with any other type
   3617   // is "Any".
   3618   if (FieldTypeIsCleared(rep1, *type1) || FieldTypeIsCleared(rep2, *type2)) {
   3619     return FieldType::Any(isolate);
   3620   }
   3621   if (type1->NowIs(type2)) return type2;
   3622   if (type2->NowIs(type1)) return type1;
   3623   return FieldType::Any(isolate);
   3624 }
   3625 
   3626 
   3627 // static
   3628 void Map::GeneralizeFieldType(Handle<Map> map, int modify_index,
   3629                               Representation new_representation,
   3630                               Handle<FieldType> new_field_type) {
   3631   Isolate* isolate = map->GetIsolate();
   3632 
   3633   // Check if we actually need to generalize the field type at all.
   3634   Handle<DescriptorArray> old_descriptors(map->instance_descriptors(), isolate);
   3635   Representation old_representation =
   3636       old_descriptors->GetDetails(modify_index).representation();
   3637   Handle<FieldType> old_field_type(old_descriptors->GetFieldType(modify_index),
   3638                                    isolate);
   3639 
   3640   if (old_representation.Equals(new_representation) &&
   3641       !FieldTypeIsCleared(new_representation, *new_field_type) &&
   3642       // Checking old_field_type for being cleared is not necessary because
   3643       // the NowIs check below would fail anyway in that case.
   3644       new_field_type->NowIs(old_field_type)) {
   3645     DCHECK(Map::GeneralizeFieldType(old_representation, old_field_type,
   3646                                     new_representation, new_field_type, isolate)
   3647                ->NowIs(old_field_type));
   3648     return;
   3649   }
   3650 
   3651   // Determine the field owner.
   3652   Handle<Map> field_owner(map->FindFieldOwner(modify_index), isolate);
   3653   Handle<DescriptorArray> descriptors(
   3654       field_owner->instance_descriptors(), isolate);
   3655   DCHECK_EQ(*old_field_type, descriptors->GetFieldType(modify_index));
   3656 
   3657   new_field_type =
   3658       Map::GeneralizeFieldType(old_representation, old_field_type,
   3659                                new_representation, new_field_type, isolate);
   3660 
   3661   PropertyDetails details = descriptors->GetDetails(modify_index);
   3662   Handle<Name> name(descriptors->GetKey(modify_index));
   3663 
   3664   Handle<Object> wrapped_type(WrapType(new_field_type));
   3665   field_owner->UpdateFieldType(modify_index, name, new_representation,
   3666                                wrapped_type);
   3667   field_owner->dependent_code()->DeoptimizeDependentCodeGroup(
   3668       isolate, DependentCode::kFieldTypeGroup);
   3669 
   3670   if (FLAG_trace_generalization) {
   3671     map->PrintGeneralization(
   3672         stdout, "field type generalization", modify_index,
   3673         map->NumberOfOwnDescriptors(), map->NumberOfOwnDescriptors(), false,
   3674         details.representation(), details.representation(), old_field_type,
   3675         MaybeHandle<Object>(), new_field_type, MaybeHandle<Object>());
   3676   }
   3677 }
   3678 
   3679 static inline Handle<FieldType> GetFieldType(
   3680     Isolate* isolate, Handle<DescriptorArray> descriptors, int descriptor,
   3681     PropertyLocation location, Representation representation) {
   3682 #ifdef DEBUG
   3683   PropertyDetails details = descriptors->GetDetails(descriptor);
   3684   DCHECK_EQ(kData, details.kind());
   3685   DCHECK_EQ(details.location(), location);
   3686 #endif
   3687   if (location == kField) {
   3688     return handle(descriptors->GetFieldType(descriptor), isolate);
   3689   } else {
   3690     return descriptors->GetValue(descriptor)
   3691         ->OptimalType(isolate, representation);
   3692   }
   3693 }
   3694 
   3695 // Reconfigures elements kind to |new_elements_kind| and/or property at
   3696 // |modify_index| with |new_kind|, |new_attributes|, |store_mode| and/or
   3697 // |new_representation|/|new_field_type|.
   3698 // If |modify_index| is negative then no properties are reconfigured but the
   3699 // map is migrated to the up-to-date non-deprecated state.
   3700 //
   3701 // This method rewrites or completes the transition tree to reflect the new
   3702 // change. To avoid high degrees over polymorphism, and to stabilize quickly,
   3703 // on every rewrite the new type is deduced by merging the current type with
   3704 // any potential new (partial) version of the type in the transition tree.
   3705 // To do this, on each rewrite:
   3706 // - Search the root of the transition tree using FindRootMap.
   3707 // - Find/create a |root_map| with requested |new_elements_kind|.
   3708 // - Find |target_map|, the newest matching version of this map using the
   3709 //   virtually "enhanced" |old_map|'s descriptor array (i.e. whose entry at
   3710 //   |modify_index| is considered to be of |new_kind| and having
   3711 //   |new_attributes|) to walk the transition tree.
   3712 // - Merge/generalize the "enhanced" descriptor array of the |old_map| and
   3713 //   descriptor array of the |target_map|.
   3714 // - Generalize the |modify_index| descriptor using |new_representation| and
   3715 //   |new_field_type|.
   3716 // - Walk the tree again starting from the root towards |target_map|. Stop at
   3717 //   |split_map|, the first map who's descriptor array does not match the merged
   3718 //   descriptor array.
   3719 // - If |target_map| == |split_map|, |target_map| is in the expected state.
   3720 //   Return it.
   3721 // - Otherwise, invalidate the outdated transition target from |target_map|, and
   3722 //   replace its transition tree with a new branch for the updated descriptors.
   3723 Handle<Map> Map::Reconfigure(Handle<Map> old_map,
   3724                              ElementsKind new_elements_kind, int modify_index,
   3725                              PropertyKind new_kind,
   3726                              PropertyAttributes new_attributes,
   3727                              Representation new_representation,
   3728                              Handle<FieldType> new_field_type,
   3729                              StoreMode store_mode) {
   3730   DCHECK_NE(kAccessor, new_kind);  // TODO(ishell): not supported yet.
   3731   DCHECK(store_mode != FORCE_FIELD || modify_index >= 0);
   3732   Isolate* isolate = old_map->GetIsolate();
   3733 
   3734   Handle<DescriptorArray> old_descriptors(
   3735       old_map->instance_descriptors(), isolate);
   3736   int old_nof = old_map->NumberOfOwnDescriptors();
   3737 
   3738   // If it's just a representation generalization case (i.e. property kind and
   3739   // attributes stays unchanged) it's fine to transition from None to anything
   3740   // but double without any modification to the object, because the default
   3741   // uninitialized value for representation None can be overwritten by both
   3742   // smi and tagged values. Doubles, however, would require a box allocation.
   3743   if (modify_index >= 0 && !new_representation.IsNone() &&
   3744       !new_representation.IsDouble() &&
   3745       old_map->elements_kind() == new_elements_kind) {
   3746     PropertyDetails old_details = old_descriptors->GetDetails(modify_index);
   3747     Representation old_representation = old_details.representation();
   3748 
   3749     if (old_representation.IsNone()) {
   3750       DCHECK_EQ(new_kind, old_details.kind());
   3751       DCHECK_EQ(new_attributes, old_details.attributes());
   3752       DCHECK_EQ(DATA, old_details.type());
   3753       if (FLAG_trace_generalization) {
   3754         old_map->PrintGeneralization(
   3755             stdout, "uninitialized field", modify_index,
   3756             old_map->NumberOfOwnDescriptors(),
   3757             old_map->NumberOfOwnDescriptors(), false, old_representation,
   3758             new_representation,
   3759             handle(old_descriptors->GetFieldType(modify_index), isolate),
   3760             MaybeHandle<Object>(), new_field_type, MaybeHandle<Object>());
   3761       }
   3762       Handle<Map> field_owner(old_map->FindFieldOwner(modify_index), isolate);
   3763 
   3764       GeneralizeFieldType(field_owner, modify_index, new_representation,
   3765                           new_field_type);
   3766       DCHECK(old_descriptors->GetDetails(modify_index)
   3767                  .representation()
   3768                  .Equals(new_representation));
   3769       DCHECK(
   3770           old_descriptors->GetFieldType(modify_index)->NowIs(new_field_type));
   3771       return old_map;
   3772     }
   3773   }
   3774 
   3775   // Check the state of the root map.
   3776   Handle<Map> root_map(old_map->FindRootMap(), isolate);
   3777   if (!old_map->EquivalentToForTransition(*root_map)) {
   3778     return CopyGeneralizeAllRepresentations(
   3779         old_map, new_elements_kind, modify_index, store_mode, new_kind,
   3780         new_attributes, "GenAll_NotEquivalent");
   3781   }
   3782 
   3783   ElementsKind from_kind = root_map->elements_kind();
   3784   ElementsKind to_kind = new_elements_kind;
   3785   // TODO(ishell): Add a test for SLOW_SLOPPY_ARGUMENTS_ELEMENTS.
   3786   if (from_kind != to_kind && to_kind != DICTIONARY_ELEMENTS &&
   3787       to_kind != SLOW_STRING_WRAPPER_ELEMENTS &&
   3788       to_kind != SLOW_SLOPPY_ARGUMENTS_ELEMENTS &&
   3789       !(IsTransitionableFastElementsKind(from_kind) &&
   3790         IsMoreGeneralElementsKindTransition(from_kind, to_kind))) {
   3791     return CopyGeneralizeAllRepresentations(
   3792         old_map, to_kind, modify_index, store_mode, new_kind, new_attributes,
   3793         "GenAll_InvalidElementsTransition");
   3794   }
   3795   int root_nof = root_map->NumberOfOwnDescriptors();
   3796   if (modify_index >= 0 && modify_index < root_nof) {
   3797     PropertyDetails old_details = old_descriptors->GetDetails(modify_index);
   3798     if (old_details.kind() != new_kind ||
   3799         old_details.attributes() != new_attributes) {
   3800       return CopyGeneralizeAllRepresentations(
   3801           old_map, to_kind, modify_index, store_mode, new_kind, new_attributes,
   3802           "GenAll_RootModification1");
   3803     }
   3804     if ((old_details.type() != DATA && store_mode == FORCE_FIELD) ||
   3805         (old_details.type() == DATA &&
   3806          (!new_field_type->NowIs(old_descriptors->GetFieldType(modify_index)) ||
   3807           !new_representation.fits_into(old_details.representation())))) {
   3808       return CopyGeneralizeAllRepresentations(
   3809           old_map, to_kind, modify_index, store_mode, new_kind, new_attributes,
   3810           "GenAll_RootModification2");
   3811     }
   3812   }
   3813 
   3814   // From here on, use the map with correct elements kind as root map.
   3815   if (from_kind != to_kind) {
   3816     root_map = Map::AsElementsKind(root_map, to_kind);
   3817   }
   3818 
   3819   Handle<Map> target_map = root_map;
   3820   for (int i = root_nof; i < old_nof; ++i) {
   3821     PropertyDetails old_details = old_descriptors->GetDetails(i);
   3822     PropertyKind next_kind;
   3823     PropertyLocation next_location;
   3824     PropertyAttributes next_attributes;
   3825     Representation next_representation;
   3826     bool property_kind_reconfiguration = false;
   3827 
   3828     if (modify_index == i) {
   3829       DCHECK_EQ(FORCE_FIELD, store_mode);
   3830       property_kind_reconfiguration = old_details.kind() != new_kind;
   3831 
   3832       next_kind = new_kind;
   3833       next_location = kField;
   3834       next_attributes = new_attributes;
   3835       // If property kind is not reconfigured merge the result with
   3836       // representation/field type from the old descriptor.
   3837       next_representation = new_representation;
   3838       if (!property_kind_reconfiguration) {
   3839         next_representation =
   3840             next_representation.generalize(old_details.representation());
   3841       }
   3842 
   3843     } else {
   3844       next_kind = old_details.kind();
   3845       next_location = old_details.location();
   3846       next_attributes = old_details.attributes();
   3847       next_representation = old_details.representation();
   3848     }
   3849     Map* transition = TransitionArray::SearchTransition(
   3850         *target_map, next_kind, old_descriptors->GetKey(i), next_attributes);
   3851     if (transition == NULL) break;
   3852     Handle<Map> tmp_map(transition, isolate);
   3853 
   3854     Handle<DescriptorArray> tmp_descriptors = handle(
   3855         tmp_map->instance_descriptors(), isolate);
   3856 
   3857     // Check if target map is incompatible.
   3858     PropertyDetails tmp_details = tmp_descriptors->GetDetails(i);
   3859     DCHECK_EQ(next_kind, tmp_details.kind());
   3860     DCHECK_EQ(next_attributes, tmp_details.attributes());
   3861     if (next_kind == kAccessor &&
   3862         !EqualImmutableValues(old_descriptors->GetValue(i),
   3863                               tmp_descriptors->GetValue(i))) {
   3864       return CopyGeneralizeAllRepresentations(
   3865           old_map, to_kind, modify_index, store_mode, new_kind, new_attributes,
   3866           "GenAll_Incompatible");
   3867     }
   3868     if (next_location == kField && tmp_details.location() == kDescriptor) break;
   3869 
   3870     Representation tmp_representation = tmp_details.representation();
   3871     if (!next_representation.fits_into(tmp_representation)) break;
   3872 
   3873     PropertyLocation old_location = old_details.location();
   3874     PropertyLocation tmp_location = tmp_details.location();
   3875     if (tmp_location == kField) {
   3876       if (next_kind == kData) {
   3877         Handle<FieldType> next_field_type;
   3878         if (modify_index == i) {
   3879           next_field_type = new_field_type;
   3880           if (!property_kind_reconfiguration) {
   3881             Handle<FieldType> old_field_type =
   3882                 GetFieldType(isolate, old_descriptors, i,
   3883                              old_details.location(), tmp_representation);
   3884             Representation old_representation = old_details.representation();
   3885             next_field_type = GeneralizeFieldType(
   3886                 old_representation, old_field_type, new_representation,
   3887                 next_field_type, isolate);
   3888           }
   3889         } else {
   3890           Handle<FieldType> old_field_type =
   3891               GetFieldType(isolate, old_descriptors, i, old_details.location(),
   3892                            tmp_representation);
   3893           next_field_type = old_field_type;
   3894         }
   3895         GeneralizeFieldType(tmp_map, i, tmp_representation, next_field_type);
   3896       }
   3897     } else if (old_location == kField ||
   3898                !EqualImmutableValues(old_descriptors->GetValue(i),
   3899                                      tmp_descriptors->GetValue(i))) {
   3900       break;
   3901     }
   3902     DCHECK(!tmp_map->is_deprecated());
   3903     target_map = tmp_map;
   3904   }
   3905 
   3906   // Directly change the map if the target map is more general.
   3907   Handle<DescriptorArray> target_descriptors(
   3908       target_map->instance_descriptors(), isolate);
   3909   int target_nof = target_map->NumberOfOwnDescriptors();
   3910   if (target_nof == old_nof &&
   3911       (store_mode != FORCE_FIELD ||
   3912        (modify_index >= 0 &&
   3913         target_descriptors->GetDetails(modify_index).location() == kField))) {
   3914 #ifdef DEBUG
   3915     if (modify_index >= 0) {
   3916       PropertyDetails details = target_descriptors->GetDetails(modify_index);
   3917       DCHECK_EQ(new_kind, details.kind());
   3918       DCHECK_EQ(new_attributes, details.attributes());
   3919       DCHECK(new_representation.fits_into(details.representation()));
   3920       DCHECK(details.location() != kField ||
   3921              new_field_type->NowIs(
   3922                  target_descriptors->GetFieldType(modify_index)));
   3923     }
   3924 #endif
   3925     if (*target_map != *old_map) {
   3926       old_map->NotifyLeafMapLayoutChange();
   3927     }
   3928     return target_map;
   3929   }
   3930 
   3931   // Find the last compatible target map in the transition tree.
   3932   for (int i = target_nof; i < old_nof; ++i) {
   3933     PropertyDetails old_details = old_descriptors->GetDetails(i);
   3934     PropertyKind next_kind;
   3935     PropertyAttributes next_attributes;
   3936     if (modify_index == i) {
   3937       next_kind = new_kind;
   3938       next_attributes = new_attributes;
   3939     } else {
   3940       next_kind = old_details.kind();
   3941       next_attributes = old_details.attributes();
   3942     }
   3943     Map* transition = TransitionArray::SearchTransition(
   3944         *target_map, next_kind, old_descriptors->GetKey(i), next_attributes);
   3945     if (transition == NULL) break;
   3946     Handle<Map> tmp_map(transition, isolate);
   3947     Handle<DescriptorArray> tmp_descriptors(
   3948         tmp_map->instance_descriptors(), isolate);
   3949 
   3950     // Check if target map is compatible.
   3951 #ifdef DEBUG
   3952     PropertyDetails tmp_details = tmp_descriptors->GetDetails(i);
   3953     DCHECK_EQ(next_kind, tmp_details.kind());
   3954     DCHECK_EQ(next_attributes, tmp_details.attributes());
   3955 #endif
   3956     if (next_kind == kAccessor &&
   3957         !EqualImmutableValues(old_descriptors->GetValue(i),
   3958                               tmp_descriptors->GetValue(i))) {
   3959       return CopyGeneralizeAllRepresentations(
   3960           old_map, to_kind, modify_index, store_mode, new_kind, new_attributes,
   3961           "GenAll_Incompatible");
   3962     }
   3963     DCHECK(!tmp_map->is_deprecated());
   3964     target_map = tmp_map;
   3965   }
   3966   target_nof = target_map->NumberOfOwnDescriptors();
   3967   target_descriptors = handle(target_map->instance_descriptors(), isolate);
   3968 
   3969   // Allocate a new descriptor array large enough to hold the required
   3970   // descriptors, with minimally the exact same size as the old descriptor
   3971   // array.
   3972   int new_slack = Max(
   3973       old_nof, old_descriptors->number_of_descriptors()) - old_nof;
   3974   Handle<DescriptorArray> new_descriptors = DescriptorArray::Allocate(
   3975       isolate, old_nof, new_slack);
   3976   DCHECK(new_descriptors->length() > target_descriptors->length() ||
   3977          new_descriptors->NumberOfSlackDescriptors() > 0 ||
   3978          new_descriptors->number_of_descriptors() ==
   3979          old_descriptors->number_of_descriptors());
   3980   DCHECK(new_descriptors->number_of_descriptors() == old_nof);
   3981 
   3982   // 0 -> |root_nof|
   3983   int current_offset = 0;
   3984   for (int i = 0; i < root_nof; ++i) {
   3985     PropertyDetails old_details = old_descriptors->GetDetails(i);
   3986     if (old_details.location() == kField) {
   3987       current_offset += old_details.field_width_in_words();
   3988     }
   3989     Descriptor d(handle(old_descriptors->GetKey(i), isolate),
   3990                  handle(old_descriptors->GetValue(i), isolate),
   3991                  old_details);
   3992     new_descriptors->Set(i, &d);
   3993   }
   3994 
   3995   // |root_nof| -> |target_nof|
   3996   for (int i = root_nof; i < target_nof; ++i) {
   3997     Handle<Name> target_key(target_descriptors->GetKey(i), isolate);
   3998     PropertyDetails old_details = old_descriptors->GetDetails(i);
   3999     PropertyDetails target_details = target_descriptors->GetDetails(i);
   4000 
   4001     PropertyKind next_kind;
   4002     PropertyAttributes next_attributes;
   4003     PropertyLocation next_location;
   4004     Representation next_representation;
   4005     bool property_kind_reconfiguration = false;
   4006 
   4007     if (modify_index == i) {
   4008       DCHECK_EQ(FORCE_FIELD, store_mode);
   4009       property_kind_reconfiguration = old_details.kind() != new_kind;
   4010 
   4011       next_kind = new_kind;
   4012       next_attributes = new_attributes;
   4013       next_location = kField;
   4014 
   4015       // Merge new representation/field type with ones from the target
   4016       // descriptor. If property kind is not reconfigured merge the result with
   4017       // representation/field type from the old descriptor.
   4018       next_representation =
   4019           new_representation.generalize(target_details.representation());
   4020       if (!property_kind_reconfiguration) {
   4021         next_representation =
   4022             next_representation.generalize(old_details.representation());
   4023       }
   4024     } else {
   4025       // Merge old_descriptor and target_descriptor entries.
   4026       DCHECK_EQ(target_details.kind(), old_details.kind());
   4027       next_kind = target_details.kind();
   4028       next_attributes = target_details.attributes();
   4029       next_location =
   4030           old_details.location() == kField ||
   4031                   target_details.location() == kField ||
   4032                   !EqualImmutableValues(target_descriptors->GetValue(i),
   4033                                         old_descriptors->GetValue(i))
   4034               ? kField
   4035               : kDescriptor;
   4036 
   4037       next_representation = old_details.representation().generalize(
   4038           target_details.representation());
   4039     }
   4040     DCHECK_EQ(next_kind, target_details.kind());
   4041     DCHECK_EQ(next_attributes, target_details.attributes());
   4042 
   4043     if (next_location == kField) {
   4044       if (next_kind == kData) {
   4045         Handle<FieldType> target_field_type =
   4046             GetFieldType(isolate, target_descriptors, i,
   4047                          target_details.location(), next_representation);
   4048 
   4049         Handle<FieldType> next_field_type;
   4050         if (modify_index == i) {
   4051           next_field_type = GeneralizeFieldType(
   4052               target_details.representation(), target_field_type,
   4053               new_representation, new_field_type, isolate);
   4054           if (!property_kind_reconfiguration) {
   4055             Handle<FieldType> old_field_type =
   4056                 GetFieldType(isolate, old_descriptors, i,
   4057                              old_details.location(), next_representation);
   4058             next_field_type = GeneralizeFieldType(
   4059                 old_details.representation(), old_field_type,
   4060                 next_representation, next_field_type, isolate);
   4061           }
   4062         } else {
   4063           Handle<FieldType> old_field_type =
   4064               GetFieldType(isolate, old_descriptors, i, old_details.location(),
   4065                            next_representation);
   4066           next_field_type = GeneralizeFieldType(
   4067               old_details.representation(), old_field_type, next_representation,
   4068               target_field_type, isolate);
   4069         }
   4070         Handle<Object> wrapped_type(WrapType(next_field_type));
   4071         DataDescriptor d(target_key, current_offset, wrapped_type,
   4072                          next_attributes, next_representation);
   4073         current_offset += d.GetDetails().field_width_in_words();
   4074         new_descriptors->Set(i, &d);
   4075       } else {
   4076         UNIMPLEMENTED();  // TODO(ishell): implement.
   4077       }
   4078     } else {
   4079       PropertyDetails details(next_attributes, next_kind, next_location,
   4080                               next_representation);
   4081       Descriptor d(target_key, handle(target_descriptors->GetValue(i), isolate),
   4082                    details);
   4083       new_descriptors->Set(i, &d);
   4084     }
   4085   }
   4086 
   4087   // |target_nof| -> |old_nof|
   4088   for (int i = target_nof; i < old_nof; ++i) {
   4089     PropertyDetails old_details = old_descriptors->GetDetails(i);
   4090     Handle<Name> old_key(old_descriptors->GetKey(i), isolate);
   4091 
   4092     // Merge old_descriptor entry and modified details together.
   4093     PropertyKind next_kind;
   4094     PropertyAttributes next_attributes;
   4095     PropertyLocation next_location;
   4096     Representation next_representation;
   4097     bool property_kind_reconfiguration = false;
   4098 
   4099     if (modify_index == i) {
   4100       DCHECK_EQ(FORCE_FIELD, store_mode);
   4101       // In case of property kind reconfiguration it is not necessary to
   4102       // take into account representation/field type of the old descriptor.
   4103       property_kind_reconfiguration = old_details.kind() != new_kind;
   4104 
   4105       next_kind = new_kind;
   4106       next_attributes = new_attributes;
   4107       next_location = kField;
   4108       next_representation = new_representation;
   4109       if (!property_kind_reconfiguration) {
   4110         next_representation =
   4111             next_representation.generalize(old_details.representation());
   4112       }
   4113     } else {
   4114       next_kind = old_details.kind();
   4115       next_attributes = old_details.attributes();
   4116       next_location = old_details.location();
   4117       next_representation = old_details.representation();
   4118     }
   4119 
   4120     if (next_location == kField) {
   4121       if (next_kind == kData) {
   4122         Handle<FieldType> next_field_type;
   4123         if (modify_index == i) {
   4124           next_field_type = new_field_type;
   4125           if (!property_kind_reconfiguration) {
   4126             Handle<FieldType> old_field_type =
   4127                 GetFieldType(isolate, old_descriptors, i,
   4128                              old_details.location(), next_representation);
   4129             next_field_type = GeneralizeFieldType(
   4130                 old_details.representation(), old_field_type,
   4131                 next_representation, next_field_type, isolate);
   4132           }
   4133         } else {
   4134           Handle<FieldType> old_field_type =
   4135               GetFieldType(isolate, old_descriptors, i, old_details.location(),
   4136                            next_representation);
   4137           next_field_type = old_field_type;
   4138         }
   4139 
   4140         Handle<Object> wrapped_type(WrapType(next_field_type));
   4141 
   4142         DataDescriptor d(old_key, current_offset, wrapped_type, next_attributes,
   4143                          next_representation);
   4144         current_offset += d.GetDetails().field_width_in_words();
   4145         new_descriptors->Set(i, &d);
   4146       } else {
   4147         UNIMPLEMENTED();  // TODO(ishell): implement.
   4148       }
   4149     } else {
   4150       PropertyDetails details(next_attributes, next_kind, next_location,
   4151                               next_representation);
   4152       Descriptor d(old_key, handle(old_descriptors->GetValue(i), isolate),
   4153                    details);
   4154       new_descriptors->Set(i, &d);
   4155     }
   4156   }
   4157 
   4158   new_descriptors->Sort();
   4159 
   4160   DCHECK(store_mode != FORCE_FIELD ||
   4161          new_descriptors->GetDetails(modify_index).location() == kField);
   4162 
   4163   Handle<Map> split_map(root_map->FindLastMatchMap(
   4164           root_nof, old_nof, *new_descriptors), isolate);
   4165   int split_nof = split_map->NumberOfOwnDescriptors();
   4166   DCHECK_NE(old_nof, split_nof);
   4167 
   4168   PropertyKind split_kind;
   4169   PropertyAttributes split_attributes;
   4170   if (modify_index == split_nof) {
   4171     split_kind = new_kind;
   4172     split_attributes = new_attributes;
   4173   } else {
   4174     PropertyDetails split_prop_details = old_descriptors->GetDetails(split_nof);
   4175     split_kind = split_prop_details.kind();
   4176     split_attributes = split_prop_details.attributes();
   4177   }
   4178 
   4179   // Invalidate a transition target at |key|.
   4180   Map* maybe_transition = TransitionArray::SearchTransition(
   4181       *split_map, split_kind, old_descriptors->GetKey(split_nof),
   4182       split_attributes);
   4183   if (maybe_transition != NULL) {
   4184     maybe_transition->DeprecateTransitionTree();
   4185   }
   4186 
   4187   // If |maybe_transition| is not NULL then the transition array already
   4188   // contains entry for given descriptor. This means that the transition
   4189   // could be inserted regardless of whether transitions array is full or not.
   4190   if (maybe_transition == NULL &&
   4191       !TransitionArray::CanHaveMoreTransitions(split_map)) {
   4192     return CopyGeneralizeAllRepresentations(
   4193         old_map, to_kind, modify_index, store_mode, new_kind, new_attributes,
   4194         "GenAll_CantHaveMoreTransitions");
   4195   }
   4196 
   4197   old_map->NotifyLeafMapLayoutChange();
   4198 
   4199   if (FLAG_trace_generalization && modify_index >= 0) {
   4200     PropertyDetails old_details = old_descriptors->GetDetails(modify_index);
   4201     PropertyDetails new_details = new_descriptors->GetDetails(modify_index);
   4202     MaybeHandle<FieldType> old_field_type;
   4203     MaybeHandle<FieldType> new_field_type;
   4204     MaybeHandle<Object> old_value;
   4205     MaybeHandle<Object> new_value;
   4206     if (old_details.type() == DATA) {
   4207       old_field_type =
   4208           handle(old_descriptors->GetFieldType(modify_index), isolate);
   4209     } else {
   4210       old_value = handle(old_descriptors->GetValue(modify_index), isolate);
   4211     }
   4212     if (new_details.type() == DATA) {
   4213       new_field_type =
   4214           handle(new_descriptors->GetFieldType(modify_index), isolate);
   4215     } else {
   4216       new_value = handle(new_descriptors->GetValue(modify_index), isolate);
   4217     }
   4218 
   4219     old_map->PrintGeneralization(
   4220         stdout, "", modify_index, split_nof, old_nof,
   4221         old_details.location() == kDescriptor && store_mode == FORCE_FIELD,
   4222         old_details.representation(), new_details.representation(),
   4223         old_field_type, old_value, new_field_type, new_value);
   4224   }
   4225 
   4226   Handle<LayoutDescriptor> new_layout_descriptor =
   4227       LayoutDescriptor::New(split_map, new_descriptors, old_nof);
   4228 
   4229   Handle<Map> new_map =
   4230       AddMissingTransitions(split_map, new_descriptors, new_layout_descriptor);
   4231 
   4232   // Deprecated part of the transition tree is no longer reachable, so replace
   4233   // current instance descriptors in the "survived" part of the tree with
   4234   // the new descriptors to maintain descriptors sharing invariant.
   4235   split_map->ReplaceDescriptors(*new_descriptors, *new_layout_descriptor);
   4236   return new_map;
   4237 }
   4238 
   4239 
   4240 // Generalize the representation of all DATA descriptors.
   4241 Handle<Map> Map::GeneralizeAllFieldRepresentations(
   4242     Handle<Map> map) {
   4243   Handle<DescriptorArray> descriptors(map->instance_descriptors());
   4244   for (int i = 0; i < map->NumberOfOwnDescriptors(); ++i) {
   4245     PropertyDetails details = descriptors->GetDetails(i);
   4246     if (details.type() == DATA) {
   4247       map = ReconfigureProperty(map, i, kData, details.attributes(),
   4248                                 Representation::Tagged(),
   4249                                 FieldType::Any(map->GetIsolate()), FORCE_FIELD);
   4250     }
   4251   }
   4252   return map;
   4253 }
   4254 
   4255 
   4256 // static
   4257 MaybeHandle<Map> Map::TryUpdate(Handle<Map> old_map) {
   4258   DisallowHeapAllocation no_allocation;
   4259   DisallowDeoptimization no_deoptimization(old_map->GetIsolate());
   4260 
   4261   if (!old_map->is_deprecated()) return old_map;
   4262 
   4263   // Check the state of the root map.
   4264   Map* root_map = old_map->FindRootMap();
   4265   if (!old_map->EquivalentToForTransition(root_map)) return MaybeHandle<Map>();
   4266 
   4267   ElementsKind from_kind = root_map->elements_kind();
   4268   ElementsKind to_kind = old_map->elements_kind();
   4269   if (from_kind != to_kind) {
   4270     // Try to follow existing elements kind transitions.
   4271     root_map = root_map->LookupElementsTransitionMap(to_kind);
   4272     if (root_map == NULL) return MaybeHandle<Map>();
   4273     // From here on, use the map with correct elements kind as root map.
   4274   }
   4275   Map* new_map = root_map->TryReplayPropertyTransitions(*old_map);
   4276   if (new_map == nullptr) return MaybeHandle<Map>();
   4277   return handle(new_map);
   4278 }
   4279 
   4280 Map* Map::TryReplayPropertyTransitions(Map* old_map) {
   4281   DisallowHeapAllocation no_allocation;
   4282   DisallowDeoptimization no_deoptimization(GetIsolate());
   4283 
   4284   int root_nof = NumberOfOwnDescriptors();
   4285 
   4286   int old_nof = old_map->NumberOfOwnDescriptors();
   4287   DescriptorArray* old_descriptors = old_map->instance_descriptors();
   4288 
   4289   Map* new_map = this;
   4290   for (int i = root_nof; i < old_nof; ++i) {
   4291     PropertyDetails old_details = old_descriptors->GetDetails(i);
   4292     Map* transition = TransitionArray::SearchTransition(
   4293         new_map, old_details.kind(), old_descriptors->GetKey(i),
   4294         old_details.attributes());
   4295     if (transition == NULL) return nullptr;
   4296     new_map = transition;
   4297     DescriptorArray* new_descriptors = new_map->instance_descriptors();
   4298 
   4299     PropertyDetails new_details = new_descriptors->GetDetails(i);
   4300     DCHECK_EQ(old_details.kind(), new_details.kind());
   4301     DCHECK_EQ(old_details.attributes(), new_details.attributes());
   4302     if (!old_details.representation().fits_into(new_details.representation())) {
   4303       return nullptr;
   4304     }
   4305     switch (new_details.type()) {
   4306       case DATA: {
   4307         FieldType* new_type = new_descriptors->GetFieldType(i);
   4308         // Cleared field types need special treatment. They represent lost
   4309         // knowledge, so we must first generalize the new_type to "Any".
   4310         if (FieldTypeIsCleared(new_details.representation(), new_type)) {
   4311           return nullptr;
   4312         }
   4313         PropertyType old_property_type = old_details.type();
   4314         if (old_property_type == DATA) {
   4315           FieldType* old_type = old_descriptors->GetFieldType(i);
   4316           if (FieldTypeIsCleared(old_details.representation(), old_type) ||
   4317               !old_type->NowIs(new_type)) {
   4318             return nullptr;
   4319           }
   4320         } else {
   4321           DCHECK(old_property_type == DATA_CONSTANT);
   4322           Object* old_value = old_descriptors->GetValue(i);
   4323           if (!new_type->NowContains(old_value)) {
   4324             return nullptr;
   4325           }
   4326         }
   4327         break;
   4328       }
   4329       case ACCESSOR: {
   4330 #ifdef DEBUG
   4331         FieldType* new_type = new_descriptors->GetFieldType(i);
   4332         DCHECK(new_type->IsAny());
   4333 #endif
   4334         break;
   4335       }
   4336 
   4337       case DATA_CONSTANT:
   4338       case ACCESSOR_CONSTANT: {
   4339         Object* old_value = old_descriptors->GetValue(i);
   4340         Object* new_value = new_descriptors->GetValue(i);
   4341         if (old_details.location() == kField || old_value != new_value) {
   4342           return nullptr;
   4343         }
   4344         break;
   4345       }
   4346     }
   4347   }
   4348   if (new_map->NumberOfOwnDescriptors() != old_nof) return nullptr;
   4349   return new_map;
   4350 }
   4351 
   4352 
   4353 // static
   4354 Handle<Map> Map::Update(Handle<Map> map) {
   4355   if (!map->is_deprecated()) return map;
   4356   return ReconfigureProperty(map, -1, kData, NONE, Representation::None(),
   4357                              FieldType::None(map->GetIsolate()),
   4358                              ALLOW_IN_DESCRIPTOR);
   4359 }
   4360 
   4361 Maybe<bool> JSObject::SetPropertyWithInterceptor(LookupIterator* it,
   4362                                                  ShouldThrow should_throw,
   4363                                                  Handle<Object> value) {
   4364   DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state());
   4365   return SetPropertyWithInterceptorInternal(it, it->GetInterceptor(),
   4366                                             should_throw, value);
   4367 }
   4368 
   4369 MaybeHandle<Object> Object::SetProperty(Handle<Object> object,
   4370                                         Handle<Name> name, Handle<Object> value,
   4371                                         LanguageMode language_mode,
   4372                                         StoreFromKeyed store_mode) {
   4373   LookupIterator it(object, name);
   4374   MAYBE_RETURN_NULL(SetProperty(&it, value, language_mode, store_mode));
   4375   return value;
   4376 }
   4377 
   4378 
   4379 Maybe<bool> Object::SetPropertyInternal(LookupIterator* it,
   4380                                         Handle<Object> value,
   4381                                         LanguageMode language_mode,
   4382                                         StoreFromKeyed store_mode,
   4383                                         bool* found) {
   4384   it->UpdateProtector();
   4385   DCHECK(it->IsFound());
   4386   ShouldThrow should_throw =
   4387       is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR;
   4388 
   4389   // Make sure that the top context does not change when doing callbacks or
   4390   // interceptor calls.
   4391   AssertNoContextChange ncc(it->isolate());
   4392 
   4393   do {
   4394     switch (it->state()) {
   4395       case LookupIterator::NOT_FOUND:
   4396         UNREACHABLE();
   4397 
   4398       case LookupIterator::ACCESS_CHECK:
   4399         if (it->HasAccess()) break;
   4400         // Check whether it makes sense to reuse the lookup iterator. Here it
   4401         // might still call into setters up the prototype chain.
   4402         return JSObject::SetPropertyWithFailedAccessCheck(it, value,
   4403                                                           should_throw);
   4404 
   4405       case LookupIterator::JSPROXY:
   4406         return JSProxy::SetProperty(it->GetHolder<JSProxy>(), it->GetName(),
   4407                                     value, it->GetReceiver(), language_mode);
   4408 
   4409       case LookupIterator::INTERCEPTOR: {
   4410         Handle<Map> store_target_map;
   4411         if (it->GetReceiver()->IsJSObject()) {
   4412           store_target_map = handle(it->GetStoreTarget()->map(), it->isolate());
   4413         }
   4414         if (it->HolderIsReceiverOrHiddenPrototype()) {
   4415           Maybe<bool> result =
   4416               JSObject::SetPropertyWithInterceptor(it, should_throw, value);
   4417           if (result.IsNothing() || result.FromJust()) return result;
   4418           // Interceptor modified the store target but failed to set the
   4419           // property.
   4420           Utils::ApiCheck(store_target_map.is_null() ||
   4421                               *store_target_map == it->GetStoreTarget()->map(),
   4422                           it->IsElement() ? "v8::IndexedPropertySetterCallback"
   4423                                           : "v8::NamedPropertySetterCallback",
   4424                           "Interceptor silently changed store target.");
   4425         } else {
   4426           Maybe<PropertyAttributes> maybe_attributes =
   4427               JSObject::GetPropertyAttributesWithInterceptor(it);
   4428           if (!maybe_attributes.IsJust()) return Nothing<bool>();
   4429           if ((maybe_attributes.FromJust() & READ_ONLY) != 0) {
   4430             return WriteToReadOnlyProperty(it, value, should_throw);
   4431           }
   4432           // Interceptor modified the store target but failed to set the
   4433           // property.
   4434           Utils::ApiCheck(store_target_map.is_null() ||
   4435                               *store_target_map == it->GetStoreTarget()->map(),
   4436                           it->IsElement() ? "v8::IndexedPropertySetterCallback"
   4437                                           : "v8::NamedPropertySetterCallback",
   4438                           "Interceptor silently changed store target.");
   4439           if (maybe_attributes.FromJust() == ABSENT) break;
   4440           *found = false;
   4441           return Nothing<bool>();
   4442         }
   4443         break;
   4444       }
   4445 
   4446       case LookupIterator::ACCESSOR: {
   4447         if (it->IsReadOnly()) {
   4448           return WriteToReadOnlyProperty(it, value, should_throw);
   4449         }
   4450         Handle<Object> accessors = it->GetAccessors();
   4451         if (accessors->IsAccessorInfo() &&
   4452             !it->HolderIsReceiverOrHiddenPrototype() &&
   4453             AccessorInfo::cast(*accessors)->is_special_data_property()) {
   4454           *found = false;
   4455           return Nothing<bool>();
   4456         }
   4457         return SetPropertyWithAccessor(it, value, should_throw);
   4458       }
   4459       case LookupIterator::INTEGER_INDEXED_EXOTIC:
   4460         // TODO(verwaest): We should throw an exception if holder is receiver.
   4461         return Just(true);
   4462 
   4463       case LookupIterator::DATA:
   4464         if (it->IsReadOnly()) {
   4465           return WriteToReadOnlyProperty(it, value, should_throw);
   4466         }
   4467         if (it->HolderIsReceiverOrHiddenPrototype()) {
   4468           return SetDataProperty(it, value);
   4469         }
   4470       // Fall through.
   4471       case LookupIterator::TRANSITION:
   4472         *found = false;
   4473         return Nothing<bool>();
   4474     }
   4475     it->Next();
   4476   } while (it->IsFound());
   4477 
   4478   *found = false;
   4479   return Nothing<bool>();
   4480 }
   4481 
   4482 
   4483 Maybe<bool> Object::SetProperty(LookupIterator* it, Handle<Object> value,
   4484                                 LanguageMode language_mode,
   4485                                 StoreFromKeyed store_mode) {
   4486   if (it->IsFound()) {
   4487     bool found = true;
   4488     Maybe<bool> result =
   4489         SetPropertyInternal(it, value, language_mode, store_mode, &found);
   4490     if (found) return result;
   4491   }
   4492 
   4493   // If the receiver is the JSGlobalObject, the store was contextual. In case
   4494   // the property did not exist yet on the global object itself, we have to
   4495   // throw a reference error in strict mode.  In sloppy mode, we continue.
   4496   if (is_strict(language_mode) && it->GetReceiver()->IsJSGlobalObject()) {
   4497     it->isolate()->Throw(*it->isolate()->factory()->NewReferenceError(
   4498         MessageTemplate::kNotDefined, it->name()));
   4499     return Nothing<bool>();
   4500   }
   4501 
   4502   ShouldThrow should_throw =
   4503       is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR;
   4504   return AddDataProperty(it, value, NONE, should_throw, store_mode);
   4505 }
   4506 
   4507 
   4508 Maybe<bool> Object::SetSuperProperty(LookupIterator* it, Handle<Object> value,
   4509                                      LanguageMode language_mode,
   4510                                      StoreFromKeyed store_mode) {
   4511   Isolate* isolate = it->isolate();
   4512 
   4513   if (it->IsFound()) {
   4514     bool found = true;
   4515     Maybe<bool> result =
   4516         SetPropertyInternal(it, value, language_mode, store_mode, &found);
   4517     if (found) return result;
   4518   }
   4519 
   4520   it->UpdateProtector();
   4521 
   4522   // The property either doesn't exist on the holder or exists there as a data
   4523   // property.
   4524 
   4525   ShouldThrow should_throw =
   4526       is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR;
   4527 
   4528   if (!it->GetReceiver()->IsJSReceiver()) {
   4529     return WriteToReadOnlyProperty(it, value, should_throw);
   4530   }
   4531   Handle<JSReceiver> receiver = Handle<JSReceiver>::cast(it->GetReceiver());
   4532 
   4533   LookupIterator::Configuration c = LookupIterator::OWN;
   4534   LookupIterator own_lookup =
   4535       it->IsElement() ? LookupIterator(isolate, receiver, it->index(), c)
   4536                       : LookupIterator(receiver, it->name(), c);
   4537 
   4538   for (; own_lookup.IsFound(); own_lookup.Next()) {
   4539     switch (own_lookup.state()) {
   4540       case LookupIterator::ACCESS_CHECK:
   4541         if (!own_lookup.HasAccess()) {
   4542           return JSObject::SetPropertyWithFailedAccessCheck(&own_lookup, value,
   4543                                                             should_throw);
   4544         }
   4545         break;
   4546 
   4547       case LookupIterator::ACCESSOR:
   4548         if (own_lookup.GetAccessors()->IsAccessorInfo()) {
   4549           if (own_lookup.IsReadOnly()) {
   4550             return WriteToReadOnlyProperty(&own_lookup, value, should_throw);
   4551           }
   4552           return JSObject::SetPropertyWithAccessor(&own_lookup, value,
   4553                                                    should_throw);
   4554         }
   4555       // Fall through.
   4556       case LookupIterator::INTEGER_INDEXED_EXOTIC:
   4557         return RedefineIncompatibleProperty(isolate, it->GetName(), value,
   4558                                             should_throw);
   4559 
   4560       case LookupIterator::DATA: {
   4561         if (own_lookup.IsReadOnly()) {
   4562           return WriteToReadOnlyProperty(&own_lookup, value, should_throw);
   4563         }
   4564         return SetDataProperty(&own_lookup, value);
   4565       }
   4566 
   4567       case LookupIterator::INTERCEPTOR:
   4568       case LookupIterator::JSPROXY: {
   4569         PropertyDescriptor desc;
   4570         Maybe<bool> owned =
   4571             JSReceiver::GetOwnPropertyDescriptor(&own_lookup, &desc);
   4572         MAYBE_RETURN(owned, Nothing<bool>());
   4573         if (!owned.FromJust()) {
   4574           return JSReceiver::CreateDataProperty(&own_lookup, value,
   4575                                                 should_throw);
   4576         }
   4577         if (PropertyDescriptor::IsAccessorDescriptor(&desc) ||
   4578             !desc.writable()) {
   4579           return RedefineIncompatibleProperty(isolate, it->GetName(), value,
   4580                                               should_throw);
   4581         }
   4582 
   4583         PropertyDescriptor value_desc;
   4584         value_desc.set_value(value);
   4585         return JSReceiver::DefineOwnProperty(isolate, receiver, it->GetName(),
   4586                                              &value_desc, should_throw);
   4587       }
   4588 
   4589       case LookupIterator::NOT_FOUND:
   4590       case LookupIterator::TRANSITION:
   4591         UNREACHABLE();
   4592     }
   4593   }
   4594 
   4595   return AddDataProperty(&own_lookup, value, NONE, should_throw, store_mode);
   4596 }
   4597 
   4598 MaybeHandle<Object> Object::ReadAbsentProperty(LookupIterator* it) {
   4599   return it->isolate()->factory()->undefined_value();
   4600 }
   4601 
   4602 MaybeHandle<Object> Object::ReadAbsentProperty(Isolate* isolate,
   4603                                                Handle<Object> receiver,
   4604                                                Handle<Object> name) {
   4605   return isolate->factory()->undefined_value();
   4606 }
   4607 
   4608 
   4609 Maybe<bool> Object::CannotCreateProperty(Isolate* isolate,
   4610                                          Handle<Object> receiver,
   4611                                          Handle<Object> name,
   4612                                          Handle<Object> value,
   4613                                          ShouldThrow should_throw) {
   4614   RETURN_FAILURE(
   4615       isolate, should_throw,
   4616       NewTypeError(MessageTemplate::kStrictCannotCreateProperty, name,
   4617                    Object::TypeOf(isolate, receiver), receiver));
   4618 }
   4619 
   4620 
   4621 Maybe<bool> Object::WriteToReadOnlyProperty(LookupIterator* it,
   4622                                             Handle<Object> value,
   4623                                             ShouldThrow should_throw) {
   4624   return WriteToReadOnlyProperty(it->isolate(), it->GetReceiver(),
   4625                                  it->GetName(), value, should_throw);
   4626 }
   4627 
   4628 
   4629 Maybe<bool> Object::WriteToReadOnlyProperty(Isolate* isolate,
   4630                                             Handle<Object> receiver,
   4631                                             Handle<Object> name,
   4632                                             Handle<Object> value,
   4633                                             ShouldThrow should_throw) {
   4634   RETURN_FAILURE(isolate, should_throw,
   4635                  NewTypeError(MessageTemplate::kStrictReadOnlyProperty, name,
   4636                               Object::TypeOf(isolate, receiver), receiver));
   4637 }
   4638 
   4639 
   4640 Maybe<bool> Object::RedefineIncompatibleProperty(Isolate* isolate,
   4641                                                  Handle<Object> name,
   4642                                                  Handle<Object> value,
   4643                                                  ShouldThrow should_throw) {
   4644   RETURN_FAILURE(isolate, should_throw,
   4645                  NewTypeError(MessageTemplate::kRedefineDisallowed, name));
   4646 }
   4647 
   4648 
   4649 Maybe<bool> Object::SetDataProperty(LookupIterator* it, Handle<Object> value) {
   4650   // Proxies are handled elsewhere. Other non-JSObjects cannot have own
   4651   // properties.
   4652   Handle<JSObject> receiver = Handle<JSObject>::cast(it->GetReceiver());
   4653 
   4654   // Store on the holder which may be hidden behind the receiver.
   4655   DCHECK(it->HolderIsReceiverOrHiddenPrototype());
   4656 
   4657   Handle<Object> to_assign = value;
   4658   // Convert the incoming value to a number for storing into typed arrays.
   4659   if (it->IsElement() && receiver->HasFixedTypedArrayElements()) {
   4660     if (!value->IsNumber() && !value->IsUndefined(it->isolate())) {
   4661       ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   4662           it->isolate(), to_assign, Object::ToNumber(value), Nothing<bool>());
   4663       // We have to recheck the length. However, it can only change if the
   4664       // underlying buffer was neutered, so just check that.
   4665       if (Handle<JSArrayBufferView>::cast(receiver)->WasNeutered()) {
   4666         return Just(true);
   4667         // TODO(neis): According to the spec, this should throw a TypeError.
   4668       }
   4669     }
   4670   }
   4671 
   4672   // Possibly migrate to the most up-to-date map that will be able to store
   4673   // |value| under it->name().
   4674   it->PrepareForDataProperty(to_assign);
   4675 
   4676   // Write the property value.
   4677   it->WriteDataValue(to_assign);
   4678 
   4679 #if VERIFY_HEAP
   4680   if (FLAG_verify_heap) {
   4681     receiver->JSObjectVerify();
   4682   }
   4683 #endif
   4684   return Just(true);
   4685 }
   4686 
   4687 
   4688 Maybe<bool> Object::AddDataProperty(LookupIterator* it, Handle<Object> value,
   4689                                     PropertyAttributes attributes,
   4690                                     ShouldThrow should_throw,
   4691                                     StoreFromKeyed store_mode) {
   4692   if (!it->GetReceiver()->IsJSObject()) {
   4693     if (it->GetReceiver()->IsJSProxy() && it->GetName()->IsPrivate()) {
   4694       RETURN_FAILURE(it->isolate(), should_throw,
   4695                      NewTypeError(MessageTemplate::kProxyPrivate));
   4696     }
   4697     return CannotCreateProperty(it->isolate(), it->GetReceiver(), it->GetName(),
   4698                                 value, should_throw);
   4699   }
   4700 
   4701   DCHECK_NE(LookupIterator::INTEGER_INDEXED_EXOTIC, it->state());
   4702 
   4703   Handle<JSObject> receiver = it->GetStoreTarget();
   4704 
   4705   // If the receiver is a JSGlobalProxy, store on the prototype (JSGlobalObject)
   4706   // instead. If the prototype is Null, the proxy is detached.
   4707   if (receiver->IsJSGlobalProxy()) return Just(true);
   4708 
   4709   Isolate* isolate = it->isolate();
   4710 
   4711   if (it->ExtendingNonExtensible(receiver)) {
   4712     RETURN_FAILURE(
   4713         isolate, should_throw,
   4714         NewTypeError(MessageTemplate::kObjectNotExtensible, it->GetName()));
   4715   }
   4716 
   4717   if (it->IsElement()) {
   4718     if (receiver->IsJSArray()) {
   4719       Handle<JSArray> array = Handle<JSArray>::cast(receiver);
   4720       if (JSArray::WouldChangeReadOnlyLength(array, it->index())) {
   4721         RETURN_FAILURE(array->GetIsolate(), should_throw,
   4722                        NewTypeError(MessageTemplate::kStrictReadOnlyProperty,
   4723                                     isolate->factory()->length_string(),
   4724                                     Object::TypeOf(isolate, array), array));
   4725       }
   4726 
   4727       if (FLAG_trace_external_array_abuse &&
   4728           array->HasFixedTypedArrayElements()) {
   4729         CheckArrayAbuse(array, "typed elements write", it->index(), true);
   4730       }
   4731 
   4732       if (FLAG_trace_js_array_abuse && !array->HasFixedTypedArrayElements()) {
   4733         CheckArrayAbuse(array, "elements write", it->index(), false);
   4734       }
   4735     }
   4736 
   4737     Maybe<bool> result = JSObject::AddDataElement(receiver, it->index(), value,
   4738                                                   attributes, should_throw);
   4739     JSObject::ValidateElements(receiver);
   4740     return result;
   4741   } else {
   4742     it->UpdateProtector();
   4743     // Migrate to the most up-to-date map that will be able to store |value|
   4744     // under it->name() with |attributes|.
   4745     it->PrepareTransitionToDataProperty(receiver, value, attributes,
   4746                                         store_mode);
   4747     DCHECK_EQ(LookupIterator::TRANSITION, it->state());
   4748     it->ApplyTransitionToDataProperty(receiver);
   4749 
   4750     // TODO(verwaest): Encapsulate dictionary handling better.
   4751     if (receiver->map()->is_dictionary_map()) {
   4752       // TODO(dcarney): just populate TransitionPropertyCell here?
   4753       JSObject::AddSlowProperty(receiver, it->name(), value, attributes);
   4754     } else {
   4755       // Write the property value.
   4756       it->WriteDataValue(value);
   4757     }
   4758 
   4759 #if VERIFY_HEAP
   4760     if (FLAG_verify_heap) {
   4761       receiver->JSObjectVerify();
   4762     }
   4763 #endif
   4764   }
   4765 
   4766   return Just(true);
   4767 }
   4768 
   4769 
   4770 void Map::EnsureDescriptorSlack(Handle<Map> map, int slack) {
   4771   // Only supports adding slack to owned descriptors.
   4772   DCHECK(map->owns_descriptors());
   4773 
   4774   Handle<DescriptorArray> descriptors(map->instance_descriptors());
   4775   int old_size = map->NumberOfOwnDescriptors();
   4776   if (slack <= descriptors->NumberOfSlackDescriptors()) return;
   4777 
   4778   Handle<DescriptorArray> new_descriptors = DescriptorArray::CopyUpTo(
   4779       descriptors, old_size, slack);
   4780 
   4781   DisallowHeapAllocation no_allocation;
   4782   // The descriptors are still the same, so keep the layout descriptor.
   4783   LayoutDescriptor* layout_descriptor = map->GetLayoutDescriptor();
   4784 
   4785   if (old_size == 0) {
   4786     map->UpdateDescriptors(*new_descriptors, layout_descriptor);
   4787     return;
   4788   }
   4789 
   4790   // If the source descriptors had an enum cache we copy it. This ensures
   4791   // that the maps to which we push the new descriptor array back can rely
   4792   // on a cache always being available once it is set. If the map has more
   4793   // enumerated descriptors than available in the original cache, the cache
   4794   // will be lazily replaced by the extended cache when needed.
   4795   if (descriptors->HasEnumCache()) {
   4796     new_descriptors->CopyEnumCacheFrom(*descriptors);
   4797   }
   4798 
   4799   Isolate* isolate = map->GetIsolate();
   4800   // Replace descriptors by new_descriptors in all maps that share it.
   4801   isolate->heap()->incremental_marking()->IterateBlackObject(*descriptors);
   4802 
   4803   Map* current = *map;
   4804   while (current->instance_descriptors() == *descriptors) {
   4805     Object* next = current->GetBackPointer();
   4806     if (next->IsUndefined(isolate)) break;  // Stop overwriting at initial map.
   4807     current->UpdateDescriptors(*new_descriptors, layout_descriptor);
   4808     current = Map::cast(next);
   4809   }
   4810   map->UpdateDescriptors(*new_descriptors, layout_descriptor);
   4811 }
   4812 
   4813 
   4814 template<class T>
   4815 static int AppendUniqueCallbacks(NeanderArray* callbacks,
   4816                                  Handle<typename T::Array> array,
   4817                                  int valid_descriptors) {
   4818   int nof_callbacks = callbacks->length();
   4819 
   4820   Isolate* isolate = array->GetIsolate();
   4821   // Ensure the keys are unique names before writing them into the
   4822   // instance descriptor. Since it may cause a GC, it has to be done before we
   4823   // temporarily put the heap in an invalid state while appending descriptors.
   4824   for (int i = 0; i < nof_callbacks; ++i) {
   4825     Handle<AccessorInfo> entry(AccessorInfo::cast(callbacks->get(i)));
   4826     if (entry->name()->IsUniqueName()) continue;
   4827     Handle<String> key =
   4828         isolate->factory()->InternalizeString(
   4829             Handle<String>(String::cast(entry->name())));
   4830     entry->set_name(*key);
   4831   }
   4832 
   4833   // Fill in new callback descriptors.  Process the callbacks from
   4834   // back to front so that the last callback with a given name takes
   4835   // precedence over previously added callbacks with that name.
   4836   for (int i = nof_callbacks - 1; i >= 0; i--) {
   4837     Handle<AccessorInfo> entry(AccessorInfo::cast(callbacks->get(i)));
   4838     Handle<Name> key(Name::cast(entry->name()));
   4839     // Check if a descriptor with this name already exists before writing.
   4840     if (!T::Contains(key, entry, valid_descriptors, array)) {
   4841       T::Insert(key, entry, valid_descriptors, array);
   4842       valid_descriptors++;
   4843     }
   4844   }
   4845 
   4846   return valid_descriptors;
   4847 }
   4848 
   4849 struct DescriptorArrayAppender {
   4850   typedef DescriptorArray Array;
   4851   static bool Contains(Handle<Name> key,
   4852                        Handle<AccessorInfo> entry,
   4853                        int valid_descriptors,
   4854                        Handle<DescriptorArray> array) {
   4855     DisallowHeapAllocation no_gc;
   4856     return array->Search(*key, valid_descriptors) != DescriptorArray::kNotFound;
   4857   }
   4858   static void Insert(Handle<Name> key,
   4859                      Handle<AccessorInfo> entry,
   4860                      int valid_descriptors,
   4861                      Handle<DescriptorArray> array) {
   4862     DisallowHeapAllocation no_gc;
   4863     AccessorConstantDescriptor desc(key, entry, entry->property_attributes());
   4864     array->Append(&desc);
   4865   }
   4866 };
   4867 
   4868 
   4869 struct FixedArrayAppender {
   4870   typedef FixedArray Array;
   4871   static bool Contains(Handle<Name> key,
   4872                        Handle<AccessorInfo> entry,
   4873                        int valid_descriptors,
   4874                        Handle<FixedArray> array) {
   4875     for (int i = 0; i < valid_descriptors; i++) {
   4876       if (*key == AccessorInfo::cast(array->get(i))->name()) return true;
   4877     }
   4878     return false;
   4879   }
   4880   static void Insert(Handle<Name> key,
   4881                      Handle<AccessorInfo> entry,
   4882                      int valid_descriptors,
   4883                      Handle<FixedArray> array) {
   4884     DisallowHeapAllocation no_gc;
   4885     array->set(valid_descriptors, *entry);
   4886   }
   4887 };
   4888 
   4889 
   4890 void Map::AppendCallbackDescriptors(Handle<Map> map,
   4891                                     Handle<Object> descriptors) {
   4892   int nof = map->NumberOfOwnDescriptors();
   4893   Handle<DescriptorArray> array(map->instance_descriptors());
   4894   NeanderArray callbacks(descriptors);
   4895   DCHECK(array->NumberOfSlackDescriptors() >= callbacks.length());
   4896   nof = AppendUniqueCallbacks<DescriptorArrayAppender>(&callbacks, array, nof);
   4897   map->SetNumberOfOwnDescriptors(nof);
   4898 }
   4899 
   4900 
   4901 int AccessorInfo::AppendUnique(Handle<Object> descriptors,
   4902                                Handle<FixedArray> array,
   4903                                int valid_descriptors) {
   4904   NeanderArray callbacks(descriptors);
   4905   DCHECK(array->length() >= callbacks.length() + valid_descriptors);
   4906   return AppendUniqueCallbacks<FixedArrayAppender>(&callbacks,
   4907                                                    array,
   4908                                                    valid_descriptors);
   4909 }
   4910 
   4911 
   4912 static bool ContainsMap(MapHandleList* maps, Map* map) {
   4913   DCHECK_NOT_NULL(map);
   4914   for (int i = 0; i < maps->length(); ++i) {
   4915     if (!maps->at(i).is_null() && *maps->at(i) == map) return true;
   4916   }
   4917   return false;
   4918 }
   4919 
   4920 Map* Map::FindElementsKindTransitionedMap(MapHandleList* candidates) {
   4921   DisallowHeapAllocation no_allocation;
   4922   DisallowDeoptimization no_deoptimization(GetIsolate());
   4923 
   4924   ElementsKind kind = elements_kind();
   4925   bool packed = IsFastPackedElementsKind(kind);
   4926 
   4927   Map* transition = nullptr;
   4928   if (IsTransitionableFastElementsKind(kind)) {
   4929     // Check the state of the root map.
   4930     Map* root_map = FindRootMap();
   4931     if (!EquivalentToForTransition(root_map)) return nullptr;
   4932     root_map = root_map->LookupElementsTransitionMap(kind);
   4933     DCHECK_NOT_NULL(root_map);
   4934     // Starting from the next existing elements kind transition try to
   4935     // replay the property transitions that does not involve instance rewriting
   4936     // (ElementsTransitionAndStoreStub does not support that).
   4937     for (root_map = root_map->ElementsTransitionMap();
   4938          root_map != nullptr && root_map->has_fast_elements();
   4939          root_map = root_map->ElementsTransitionMap()) {
   4940       Map* current = root_map->TryReplayPropertyTransitions(this);
   4941       if (current == nullptr) continue;
   4942       if (InstancesNeedRewriting(current)) continue;
   4943 
   4944       if (ContainsMap(candidates, current) &&
   4945           (packed || !IsFastPackedElementsKind(current->elements_kind()))) {
   4946         transition = current;
   4947         packed = packed && IsFastPackedElementsKind(current->elements_kind());
   4948       }
   4949     }
   4950   }
   4951   return transition;
   4952 }
   4953 
   4954 
   4955 static Map* FindClosestElementsTransition(Map* map, ElementsKind to_kind) {
   4956   // Ensure we are requested to search elements kind transition "near the root".
   4957   DCHECK_EQ(map->FindRootMap()->NumberOfOwnDescriptors(),
   4958             map->NumberOfOwnDescriptors());
   4959   Map* current_map = map;
   4960 
   4961   ElementsKind kind = map->elements_kind();
   4962   while (kind != to_kind) {
   4963     Map* next_map = current_map->ElementsTransitionMap();
   4964     if (next_map == nullptr) return current_map;
   4965     kind = next_map->elements_kind();
   4966     current_map = next_map;
   4967   }
   4968 
   4969   DCHECK_EQ(to_kind, current_map->elements_kind());
   4970   return current_map;
   4971 }
   4972 
   4973 
   4974 Map* Map::LookupElementsTransitionMap(ElementsKind to_kind) {
   4975   Map* to_map = FindClosestElementsTransition(this, to_kind);
   4976   if (to_map->elements_kind() == to_kind) return to_map;
   4977   return nullptr;
   4978 }
   4979 
   4980 
   4981 bool Map::IsMapInArrayPrototypeChain() {
   4982   Isolate* isolate = GetIsolate();
   4983   if (isolate->initial_array_prototype()->map() == this) {
   4984     return true;
   4985   }
   4986 
   4987   if (isolate->initial_object_prototype()->map() == this) {
   4988     return true;
   4989   }
   4990 
   4991   return false;
   4992 }
   4993 
   4994 
   4995 Handle<WeakCell> Map::WeakCellForMap(Handle<Map> map) {
   4996   Isolate* isolate = map->GetIsolate();
   4997   if (map->weak_cell_cache()->IsWeakCell()) {
   4998     return Handle<WeakCell>(WeakCell::cast(map->weak_cell_cache()));
   4999   }
   5000   Handle<WeakCell> weak_cell = isolate->factory()->NewWeakCell(map);
   5001   map->set_weak_cell_cache(*weak_cell);
   5002   return weak_cell;
   5003 }
   5004 
   5005 
   5006 static Handle<Map> AddMissingElementsTransitions(Handle<Map> map,
   5007                                                  ElementsKind to_kind) {
   5008   DCHECK(IsTransitionElementsKind(map->elements_kind()));
   5009 
   5010   Handle<Map> current_map = map;
   5011 
   5012   ElementsKind kind = map->elements_kind();
   5013   TransitionFlag flag;
   5014   if (map->is_prototype_map()) {
   5015     flag = OMIT_TRANSITION;
   5016   } else {
   5017     flag = INSERT_TRANSITION;
   5018     if (IsFastElementsKind(kind)) {
   5019       while (kind != to_kind && !IsTerminalElementsKind(kind)) {
   5020         kind = GetNextTransitionElementsKind(kind);
   5021         current_map = Map::CopyAsElementsKind(current_map, kind, flag);
   5022       }
   5023     }
   5024   }
   5025 
   5026   // In case we are exiting the fast elements kind system, just add the map in
   5027   // the end.
   5028   if (kind != to_kind) {
   5029     current_map = Map::CopyAsElementsKind(current_map, to_kind, flag);
   5030   }
   5031 
   5032   DCHECK(current_map->elements_kind() == to_kind);
   5033   return current_map;
   5034 }
   5035 
   5036 
   5037 Handle<Map> Map::TransitionElementsTo(Handle<Map> map,
   5038                                       ElementsKind to_kind) {
   5039   ElementsKind from_kind = map->elements_kind();
   5040   if (from_kind == to_kind) return map;
   5041 
   5042   Isolate* isolate = map->GetIsolate();
   5043   Context* native_context = isolate->context()->native_context();
   5044   if (from_kind == FAST_SLOPPY_ARGUMENTS_ELEMENTS) {
   5045     if (*map == native_context->fast_aliased_arguments_map()) {
   5046       DCHECK_EQ(SLOW_SLOPPY_ARGUMENTS_ELEMENTS, to_kind);
   5047       return handle(native_context->slow_aliased_arguments_map());
   5048     }
   5049   } else if (from_kind == SLOW_SLOPPY_ARGUMENTS_ELEMENTS) {
   5050     if (*map == native_context->slow_aliased_arguments_map()) {
   5051       DCHECK_EQ(FAST_SLOPPY_ARGUMENTS_ELEMENTS, to_kind);
   5052       return handle(native_context->fast_aliased_arguments_map());
   5053     }
   5054   } else if (IsFastElementsKind(from_kind) && IsFastElementsKind(to_kind)) {
   5055     // Reuse map transitions for JSArrays.
   5056     DisallowHeapAllocation no_gc;
   5057     if (native_context->get(Context::ArrayMapIndex(from_kind)) == *map) {
   5058       Object* maybe_transitioned_map =
   5059           native_context->get(Context::ArrayMapIndex(to_kind));
   5060       if (maybe_transitioned_map->IsMap()) {
   5061         return handle(Map::cast(maybe_transitioned_map), isolate);
   5062       }
   5063     }
   5064   }
   5065 
   5066   DCHECK(!map->IsUndefined(isolate));
   5067   // Check if we can go back in the elements kind transition chain.
   5068   if (IsHoleyElementsKind(from_kind) &&
   5069       to_kind == GetPackedElementsKind(from_kind) &&
   5070       map->GetBackPointer()->IsMap() &&
   5071       Map::cast(map->GetBackPointer())->elements_kind() == to_kind) {
   5072     return handle(Map::cast(map->GetBackPointer()));
   5073   }
   5074 
   5075   bool allow_store_transition = IsTransitionElementsKind(from_kind);
   5076   // Only store fast element maps in ascending generality.
   5077   if (IsFastElementsKind(to_kind)) {
   5078     allow_store_transition =
   5079         allow_store_transition && IsTransitionableFastElementsKind(from_kind) &&
   5080         IsMoreGeneralElementsKindTransition(from_kind, to_kind);
   5081   }
   5082 
   5083   if (!allow_store_transition) {
   5084     return Map::CopyAsElementsKind(map, to_kind, OMIT_TRANSITION);
   5085   }
   5086 
   5087   return Map::ReconfigureElementsKind(map, to_kind);
   5088 }
   5089 
   5090 
   5091 // static
   5092 Handle<Map> Map::AsElementsKind(Handle<Map> map, ElementsKind kind) {
   5093   Handle<Map> closest_map(FindClosestElementsTransition(*map, kind));
   5094 
   5095   if (closest_map->elements_kind() == kind) {
   5096     return closest_map;
   5097   }
   5098 
   5099   return AddMissingElementsTransitions(closest_map, kind);
   5100 }
   5101 
   5102 
   5103 Handle<Map> JSObject::GetElementsTransitionMap(Handle<JSObject> object,
   5104                                                ElementsKind to_kind) {
   5105   Handle<Map> map(object->map());
   5106   return Map::TransitionElementsTo(map, to_kind);
   5107 }
   5108 
   5109 
   5110 void JSProxy::Revoke(Handle<JSProxy> proxy) {
   5111   Isolate* isolate = proxy->GetIsolate();
   5112   if (!proxy->IsRevoked()) proxy->set_handler(isolate->heap()->null_value());
   5113   DCHECK(proxy->IsRevoked());
   5114 }
   5115 
   5116 
   5117 Maybe<bool> JSProxy::HasProperty(Isolate* isolate, Handle<JSProxy> proxy,
   5118                                  Handle<Name> name) {
   5119   DCHECK(!name->IsPrivate());
   5120   STACK_CHECK(isolate, Nothing<bool>());
   5121   // 1. (Assert)
   5122   // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O.
   5123   Handle<Object> handler(proxy->handler(), isolate);
   5124   // 3. If handler is null, throw a TypeError exception.
   5125   // 4. Assert: Type(handler) is Object.
   5126   if (proxy->IsRevoked()) {
   5127     isolate->Throw(*isolate->factory()->NewTypeError(
   5128         MessageTemplate::kProxyRevoked, isolate->factory()->has_string()));
   5129     return Nothing<bool>();
   5130   }
   5131   // 5. Let target be the value of the [[ProxyTarget]] internal slot of O.
   5132   Handle<JSReceiver> target(proxy->target(), isolate);
   5133   // 6. Let trap be ? GetMethod(handler, "has").
   5134   Handle<Object> trap;
   5135   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   5136       isolate, trap, Object::GetMethod(Handle<JSReceiver>::cast(handler),
   5137                                        isolate->factory()->has_string()),
   5138       Nothing<bool>());
   5139   // 7. If trap is undefined, then
   5140   if (trap->IsUndefined(isolate)) {
   5141     // 7a. Return target.[[HasProperty]](P).
   5142     return JSReceiver::HasProperty(target, name);
   5143   }
   5144   // 8. Let booleanTrapResult be ToBoolean(? Call(trap, handler, target, P)).
   5145   Handle<Object> trap_result_obj;
   5146   Handle<Object> args[] = {target, name};
   5147   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   5148       isolate, trap_result_obj,
   5149       Execution::Call(isolate, trap, handler, arraysize(args), args),
   5150       Nothing<bool>());
   5151   bool boolean_trap_result = trap_result_obj->BooleanValue();
   5152   // 9. If booleanTrapResult is false, then:
   5153   if (!boolean_trap_result) {
   5154     // 9a. Let targetDesc be ? target.[[GetOwnProperty]](P).
   5155     PropertyDescriptor target_desc;
   5156     Maybe<bool> target_found = JSReceiver::GetOwnPropertyDescriptor(
   5157         isolate, target, name, &target_desc);
   5158     MAYBE_RETURN(target_found, Nothing<bool>());
   5159     // 9b. If targetDesc is not undefined, then:
   5160     if (target_found.FromJust()) {
   5161       // 9b i. If targetDesc.[[Configurable]] is false, throw a TypeError
   5162       //       exception.
   5163       if (!target_desc.configurable()) {
   5164         isolate->Throw(*isolate->factory()->NewTypeError(
   5165             MessageTemplate::kProxyHasNonConfigurable, name));
   5166         return Nothing<bool>();
   5167       }
   5168       // 9b ii. Let extensibleTarget be ? IsExtensible(target).
   5169       Maybe<bool> extensible_target = JSReceiver::IsExtensible(target);
   5170       MAYBE_RETURN(extensible_target, Nothing<bool>());
   5171       // 9b iii. If extensibleTarget is false, throw a TypeError exception.
   5172       if (!extensible_target.FromJust()) {
   5173         isolate->Throw(*isolate->factory()->NewTypeError(
   5174             MessageTemplate::kProxyHasNonExtensible, name));
   5175         return Nothing<bool>();
   5176       }
   5177     }
   5178   }
   5179   // 10. Return booleanTrapResult.
   5180   return Just(boolean_trap_result);
   5181 }
   5182 
   5183 
   5184 Maybe<bool> JSProxy::SetProperty(Handle<JSProxy> proxy, Handle<Name> name,
   5185                                  Handle<Object> value, Handle<Object> receiver,
   5186                                  LanguageMode language_mode) {
   5187   DCHECK(!name->IsPrivate());
   5188   Isolate* isolate = proxy->GetIsolate();
   5189   STACK_CHECK(isolate, Nothing<bool>());
   5190   Factory* factory = isolate->factory();
   5191   Handle<String> trap_name = factory->set_string();
   5192   ShouldThrow should_throw =
   5193       is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR;
   5194 
   5195   if (proxy->IsRevoked()) {
   5196     isolate->Throw(
   5197         *factory->NewTypeError(MessageTemplate::kProxyRevoked, trap_name));
   5198     return Nothing<bool>();
   5199   }
   5200   Handle<JSReceiver> target(proxy->target(), isolate);
   5201   Handle<JSReceiver> handler(JSReceiver::cast(proxy->handler()), isolate);
   5202 
   5203   Handle<Object> trap;
   5204   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   5205       isolate, trap, Object::GetMethod(handler, trap_name), Nothing<bool>());
   5206   if (trap->IsUndefined(isolate)) {
   5207     LookupIterator it =
   5208         LookupIterator::PropertyOrElement(isolate, receiver, name, target);
   5209     return Object::SetSuperProperty(&it, value, language_mode,
   5210                                     Object::MAY_BE_STORE_FROM_KEYED);
   5211   }
   5212 
   5213   Handle<Object> trap_result;
   5214   Handle<Object> args[] = {target, name, value, receiver};
   5215   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   5216       isolate, trap_result,
   5217       Execution::Call(isolate, trap, handler, arraysize(args), args),
   5218       Nothing<bool>());
   5219   if (!trap_result->BooleanValue()) {
   5220     RETURN_FAILURE(isolate, should_throw,
   5221                    NewTypeError(MessageTemplate::kProxyTrapReturnedFalsishFor,
   5222                                 trap_name, name));
   5223   }
   5224 
   5225   // Enforce the invariant.
   5226   PropertyDescriptor target_desc;
   5227   Maybe<bool> owned =
   5228       JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, &target_desc);
   5229   MAYBE_RETURN(owned, Nothing<bool>());
   5230   if (owned.FromJust()) {
   5231     bool inconsistent = PropertyDescriptor::IsDataDescriptor(&target_desc) &&
   5232                         !target_desc.configurable() &&
   5233                         !target_desc.writable() &&
   5234                         !value->SameValue(*target_desc.value());
   5235     if (inconsistent) {
   5236       isolate->Throw(*isolate->factory()->NewTypeError(
   5237           MessageTemplate::kProxySetFrozenData, name));
   5238       return Nothing<bool>();
   5239     }
   5240     inconsistent = PropertyDescriptor::IsAccessorDescriptor(&target_desc) &&
   5241                    !target_desc.configurable() &&
   5242                    target_desc.set()->IsUndefined(isolate);
   5243     if (inconsistent) {
   5244       isolate->Throw(*isolate->factory()->NewTypeError(
   5245           MessageTemplate::kProxySetFrozenAccessor, name));
   5246       return Nothing<bool>();
   5247     }
   5248   }
   5249   return Just(true);
   5250 }
   5251 
   5252 
   5253 Maybe<bool> JSProxy::DeletePropertyOrElement(Handle<JSProxy> proxy,
   5254                                              Handle<Name> name,
   5255                                              LanguageMode language_mode) {
   5256   DCHECK(!name->IsPrivate());
   5257   ShouldThrow should_throw =
   5258       is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR;
   5259   Isolate* isolate = proxy->GetIsolate();
   5260   STACK_CHECK(isolate, Nothing<bool>());
   5261   Factory* factory = isolate->factory();
   5262   Handle<String> trap_name = factory->deleteProperty_string();
   5263 
   5264   if (proxy->IsRevoked()) {
   5265     isolate->Throw(
   5266         *factory->NewTypeError(MessageTemplate::kProxyRevoked, trap_name));
   5267     return Nothing<bool>();
   5268   }
   5269   Handle<JSReceiver> target(proxy->target(), isolate);
   5270   Handle<JSReceiver> handler(JSReceiver::cast(proxy->handler()), isolate);
   5271 
   5272   Handle<Object> trap;
   5273   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   5274       isolate, trap, Object::GetMethod(handler, trap_name), Nothing<bool>());
   5275   if (trap->IsUndefined(isolate)) {
   5276     return JSReceiver::DeletePropertyOrElement(target, name, language_mode);
   5277   }
   5278 
   5279   Handle<Object> trap_result;
   5280   Handle<Object> args[] = {target, name};
   5281   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   5282       isolate, trap_result,
   5283       Execution::Call(isolate, trap, handler, arraysize(args), args),
   5284       Nothing<bool>());
   5285   if (!trap_result->BooleanValue()) {
   5286     RETURN_FAILURE(isolate, should_throw,
   5287                    NewTypeError(MessageTemplate::kProxyTrapReturnedFalsishFor,
   5288                                 trap_name, name));
   5289   }
   5290 
   5291   // Enforce the invariant.
   5292   PropertyDescriptor target_desc;
   5293   Maybe<bool> owned =
   5294       JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, &target_desc);
   5295   MAYBE_RETURN(owned, Nothing<bool>());
   5296   if (owned.FromJust() && !target_desc.configurable()) {
   5297     isolate->Throw(*factory->NewTypeError(
   5298         MessageTemplate::kProxyDeletePropertyNonConfigurable, name));
   5299     return Nothing<bool>();
   5300   }
   5301   return Just(true);
   5302 }
   5303 
   5304 
   5305 // static
   5306 MaybeHandle<JSProxy> JSProxy::New(Isolate* isolate, Handle<Object> target,
   5307                                   Handle<Object> handler) {
   5308   if (!target->IsJSReceiver()) {
   5309     THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kProxyNonObject),
   5310                     JSProxy);
   5311   }
   5312   if (target->IsJSProxy() && JSProxy::cast(*target)->IsRevoked()) {
   5313     THROW_NEW_ERROR(isolate,
   5314                     NewTypeError(MessageTemplate::kProxyHandlerOrTargetRevoked),
   5315                     JSProxy);
   5316   }
   5317   if (!handler->IsJSReceiver()) {
   5318     THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kProxyNonObject),
   5319                     JSProxy);
   5320   }
   5321   if (handler->IsJSProxy() && JSProxy::cast(*handler)->IsRevoked()) {
   5322     THROW_NEW_ERROR(isolate,
   5323                     NewTypeError(MessageTemplate::kProxyHandlerOrTargetRevoked),
   5324                     JSProxy);
   5325   }
   5326   return isolate->factory()->NewJSProxy(Handle<JSReceiver>::cast(target),
   5327                                         Handle<JSReceiver>::cast(handler));
   5328 }
   5329 
   5330 
   5331 // static
   5332 MaybeHandle<Context> JSProxy::GetFunctionRealm(Handle<JSProxy> proxy) {
   5333   DCHECK(proxy->map()->is_constructor());
   5334   if (proxy->IsRevoked()) {
   5335     THROW_NEW_ERROR(proxy->GetIsolate(),
   5336                     NewTypeError(MessageTemplate::kProxyRevoked), Context);
   5337   }
   5338   Handle<JSReceiver> target(JSReceiver::cast(proxy->target()));
   5339   return JSReceiver::GetFunctionRealm(target);
   5340 }
   5341 
   5342 
   5343 // static
   5344 MaybeHandle<Context> JSBoundFunction::GetFunctionRealm(
   5345     Handle<JSBoundFunction> function) {
   5346   DCHECK(function->map()->is_constructor());
   5347   return JSReceiver::GetFunctionRealm(
   5348       handle(function->bound_target_function()));
   5349 }
   5350 
   5351 // static
   5352 MaybeHandle<String> JSBoundFunction::GetName(Isolate* isolate,
   5353                                              Handle<JSBoundFunction> function) {
   5354   Handle<String> prefix = isolate->factory()->bound__string();
   5355   if (!function->bound_target_function()->IsJSFunction()) return prefix;
   5356   Handle<JSFunction> target(JSFunction::cast(function->bound_target_function()),
   5357                             isolate);
   5358   Handle<Object> target_name = JSFunction::GetName(isolate, target);
   5359   if (!target_name->IsString()) return prefix;
   5360   Factory* factory = isolate->factory();
   5361   return factory->NewConsString(prefix, Handle<String>::cast(target_name));
   5362 }
   5363 
   5364 // static
   5365 Handle<Object> JSFunction::GetName(Isolate* isolate,
   5366                                    Handle<JSFunction> function) {
   5367   if (function->shared()->name_should_print_as_anonymous()) {
   5368     return isolate->factory()->anonymous_string();
   5369   }
   5370   return handle(function->shared()->name(), isolate);
   5371 }
   5372 
   5373 // static
   5374 MaybeHandle<Smi> JSFunction::GetLength(Isolate* isolate,
   5375                                        Handle<JSFunction> function) {
   5376   int length = 0;
   5377   if (function->shared()->is_compiled()) {
   5378     length = function->shared()->length();
   5379   } else {
   5380     // If the function isn't compiled yet, the length is not computed
   5381     // correctly yet. Compile it now and return the right length.
   5382     if (Compiler::Compile(function, Compiler::KEEP_EXCEPTION)) {
   5383       length = function->shared()->length();
   5384     }
   5385     if (isolate->has_pending_exception()) return MaybeHandle<Smi>();
   5386   }
   5387   return handle(Smi::FromInt(length), isolate);
   5388 }
   5389 
   5390 // static
   5391 Handle<Context> JSFunction::GetFunctionRealm(Handle<JSFunction> function) {
   5392   DCHECK(function->map()->is_constructor());
   5393   return handle(function->context()->native_context());
   5394 }
   5395 
   5396 
   5397 // static
   5398 MaybeHandle<Context> JSObject::GetFunctionRealm(Handle<JSObject> object) {
   5399   DCHECK(object->map()->is_constructor());
   5400   DCHECK(!object->IsJSFunction());
   5401   return handle(object->GetCreationContext());
   5402 }
   5403 
   5404 
   5405 // static
   5406 MaybeHandle<Context> JSReceiver::GetFunctionRealm(Handle<JSReceiver> receiver) {
   5407   if (receiver->IsJSProxy()) {
   5408     return JSProxy::GetFunctionRealm(Handle<JSProxy>::cast(receiver));
   5409   }
   5410 
   5411   if (receiver->IsJSFunction()) {
   5412     return JSFunction::GetFunctionRealm(Handle<JSFunction>::cast(receiver));
   5413   }
   5414 
   5415   if (receiver->IsJSBoundFunction()) {
   5416     return JSBoundFunction::GetFunctionRealm(
   5417         Handle<JSBoundFunction>::cast(receiver));
   5418   }
   5419 
   5420   return JSObject::GetFunctionRealm(Handle<JSObject>::cast(receiver));
   5421 }
   5422 
   5423 
   5424 Maybe<PropertyAttributes> JSProxy::GetPropertyAttributes(LookupIterator* it) {
   5425   PropertyDescriptor desc;
   5426   Maybe<bool> found = JSProxy::GetOwnPropertyDescriptor(
   5427       it->isolate(), it->GetHolder<JSProxy>(), it->GetName(), &desc);
   5428   MAYBE_RETURN(found, Nothing<PropertyAttributes>());
   5429   if (!found.FromJust()) return Just(ABSENT);
   5430   return Just(desc.ToAttributes());
   5431 }
   5432 
   5433 
   5434 void JSObject::AllocateStorageForMap(Handle<JSObject> object, Handle<Map> map) {
   5435   DCHECK(object->map()->GetInObjectProperties() ==
   5436          map->GetInObjectProperties());
   5437   ElementsKind obj_kind = object->map()->elements_kind();
   5438   ElementsKind map_kind = map->elements_kind();
   5439   if (map_kind != obj_kind) {
   5440     ElementsKind to_kind = GetMoreGeneralElementsKind(map_kind, obj_kind);
   5441     if (IsDictionaryElementsKind(obj_kind)) {
   5442       to_kind = obj_kind;
   5443     }
   5444     if (IsDictionaryElementsKind(to_kind)) {
   5445       NormalizeElements(object);
   5446     } else {
   5447       TransitionElementsKind(object, to_kind);
   5448     }
   5449     map = Map::ReconfigureElementsKind(map, to_kind);
   5450   }
   5451   JSObject::MigrateToMap(object, map);
   5452 }
   5453 
   5454 
   5455 void JSObject::MigrateInstance(Handle<JSObject> object) {
   5456   Handle<Map> original_map(object->map());
   5457   Handle<Map> map = Map::Update(original_map);
   5458   map->set_migration_target(true);
   5459   MigrateToMap(object, map);
   5460   if (FLAG_trace_migration) {
   5461     object->PrintInstanceMigration(stdout, *original_map, *map);
   5462   }
   5463 #if VERIFY_HEAP
   5464   if (FLAG_verify_heap) {
   5465     object->JSObjectVerify();
   5466   }
   5467 #endif
   5468 }
   5469 
   5470 
   5471 // static
   5472 bool JSObject::TryMigrateInstance(Handle<JSObject> object) {
   5473   Isolate* isolate = object->GetIsolate();
   5474   DisallowDeoptimization no_deoptimization(isolate);
   5475   Handle<Map> original_map(object->map(), isolate);
   5476   Handle<Map> new_map;
   5477   if (!Map::TryUpdate(original_map).ToHandle(&new_map)) {
   5478     return false;
   5479   }
   5480   JSObject::MigrateToMap(object, new_map);
   5481   if (FLAG_trace_migration) {
   5482     object->PrintInstanceMigration(stdout, *original_map, object->map());
   5483   }
   5484 #if VERIFY_HEAP
   5485   if (FLAG_verify_heap) {
   5486     object->JSObjectVerify();
   5487   }
   5488 #endif
   5489   return true;
   5490 }
   5491 
   5492 
   5493 void JSObject::AddProperty(Handle<JSObject> object, Handle<Name> name,
   5494                            Handle<Object> value,
   5495                            PropertyAttributes attributes) {
   5496   LookupIterator it(object, name, object, LookupIterator::OWN_SKIP_INTERCEPTOR);
   5497   CHECK_NE(LookupIterator::ACCESS_CHECK, it.state());
   5498 #ifdef DEBUG
   5499   uint32_t index;
   5500   DCHECK(!object->IsJSProxy());
   5501   DCHECK(!name->AsArrayIndex(&index));
   5502   Maybe<PropertyAttributes> maybe = GetPropertyAttributes(&it);
   5503   DCHECK(maybe.IsJust());
   5504   DCHECK(!it.IsFound());
   5505   DCHECK(object->map()->is_extensible() || name->IsPrivate());
   5506 #endif
   5507   CHECK(AddDataProperty(&it, value, attributes, THROW_ON_ERROR,
   5508                         CERTAINLY_NOT_STORE_FROM_KEYED)
   5509             .IsJust());
   5510 }
   5511 
   5512 
   5513 // Reconfigures a property to a data property with attributes, even if it is not
   5514 // reconfigurable.
   5515 // Requires a LookupIterator that does not look at the prototype chain beyond
   5516 // hidden prototypes.
   5517 MaybeHandle<Object> JSObject::DefineOwnPropertyIgnoreAttributes(
   5518     LookupIterator* it, Handle<Object> value, PropertyAttributes attributes,
   5519     AccessorInfoHandling handling) {
   5520   MAYBE_RETURN_NULL(DefineOwnPropertyIgnoreAttributes(
   5521       it, value, attributes, THROW_ON_ERROR, handling));
   5522   return value;
   5523 }
   5524 
   5525 
   5526 Maybe<bool> JSObject::DefineOwnPropertyIgnoreAttributes(
   5527     LookupIterator* it, Handle<Object> value, PropertyAttributes attributes,
   5528     ShouldThrow should_throw, AccessorInfoHandling handling) {
   5529   it->UpdateProtector();
   5530   Handle<JSObject> object = Handle<JSObject>::cast(it->GetReceiver());
   5531 
   5532   for (; it->IsFound(); it->Next()) {
   5533     switch (it->state()) {
   5534       case LookupIterator::JSPROXY:
   5535       case LookupIterator::NOT_FOUND:
   5536       case LookupIterator::TRANSITION:
   5537         UNREACHABLE();
   5538 
   5539       case LookupIterator::ACCESS_CHECK:
   5540         if (!it->HasAccess()) {
   5541           it->isolate()->ReportFailedAccessCheck(it->GetHolder<JSObject>());
   5542           RETURN_VALUE_IF_SCHEDULED_EXCEPTION(it->isolate(), Nothing<bool>());
   5543           return Just(true);
   5544         }
   5545         break;
   5546 
   5547       // If there's an interceptor, try to store the property with the
   5548       // interceptor.
   5549       // In case of success, the attributes will have been reset to the default
   5550       // attributes of the interceptor, rather than the incoming attributes.
   5551       //
   5552       // TODO(verwaest): JSProxy afterwards verify the attributes that the
   5553       // JSProxy claims it has, and verifies that they are compatible. If not,
   5554       // they throw. Here we should do the same.
   5555       case LookupIterator::INTERCEPTOR:
   5556         if (handling == DONT_FORCE_FIELD) {
   5557           Maybe<bool> result =
   5558               JSObject::SetPropertyWithInterceptor(it, should_throw, value);
   5559           if (result.IsNothing() || result.FromJust()) return result;
   5560         }
   5561         break;
   5562 
   5563       case LookupIterator::ACCESSOR: {
   5564         Handle<Object> accessors = it->GetAccessors();
   5565 
   5566         // Special handling for AccessorInfo, which behaves like a data
   5567         // property.
   5568         if (accessors->IsAccessorInfo() && handling == DONT_FORCE_FIELD) {
   5569           PropertyAttributes current_attributes = it->property_attributes();
   5570           // Ensure the context isn't changed after calling into accessors.
   5571           AssertNoContextChange ncc(it->isolate());
   5572 
   5573           // Update the attributes before calling the setter. The setter may
   5574           // later change the shape of the property.
   5575           if (current_attributes != attributes) {
   5576             it->TransitionToAccessorPair(accessors, attributes);
   5577           }
   5578 
   5579           Maybe<bool> result =
   5580               JSObject::SetPropertyWithAccessor(it, value, should_throw);
   5581 
   5582           if (current_attributes == attributes || result.IsNothing()) {
   5583             return result;
   5584           }
   5585 
   5586         } else {
   5587           it->ReconfigureDataProperty(value, attributes);
   5588         }
   5589 
   5590         return Just(true);
   5591       }
   5592       case LookupIterator::INTEGER_INDEXED_EXOTIC:
   5593         return RedefineIncompatibleProperty(it->isolate(), it->GetName(), value,
   5594                                             should_throw);
   5595 
   5596       case LookupIterator::DATA: {
   5597         // Regular property update if the attributes match.
   5598         if (it->property_attributes() == attributes) {
   5599           return SetDataProperty(it, value);
   5600         }
   5601 
   5602         // Special case: properties of typed arrays cannot be reconfigured to
   5603         // non-writable nor to non-enumerable.
   5604         if (it->IsElement() && object->HasFixedTypedArrayElements()) {
   5605           return RedefineIncompatibleProperty(it->isolate(), it->GetName(),
   5606                                               value, should_throw);
   5607         }
   5608 
   5609         // Reconfigure the data property if the attributes mismatch.
   5610         it->ReconfigureDataProperty(value, attributes);
   5611 
   5612         return Just(true);
   5613       }
   5614     }
   5615   }
   5616 
   5617   return AddDataProperty(it, value, attributes, should_throw,
   5618                          CERTAINLY_NOT_STORE_FROM_KEYED);
   5619 }
   5620 
   5621 MaybeHandle<Object> JSObject::SetOwnPropertyIgnoreAttributes(
   5622     Handle<JSObject> object, Handle<Name> name, Handle<Object> value,
   5623     PropertyAttributes attributes) {
   5624   DCHECK(!value->IsTheHole(object->GetIsolate()));
   5625   LookupIterator it(object, name, object, LookupIterator::OWN);
   5626   return DefineOwnPropertyIgnoreAttributes(&it, value, attributes);
   5627 }
   5628 
   5629 MaybeHandle<Object> JSObject::SetOwnElementIgnoreAttributes(
   5630     Handle<JSObject> object, uint32_t index, Handle<Object> value,
   5631     PropertyAttributes attributes) {
   5632   Isolate* isolate = object->GetIsolate();
   5633   LookupIterator it(isolate, object, index, object, LookupIterator::OWN);
   5634   return DefineOwnPropertyIgnoreAttributes(&it, value, attributes);
   5635 }
   5636 
   5637 MaybeHandle<Object> JSObject::DefinePropertyOrElementIgnoreAttributes(
   5638     Handle<JSObject> object, Handle<Name> name, Handle<Object> value,
   5639     PropertyAttributes attributes) {
   5640   Isolate* isolate = object->GetIsolate();
   5641   LookupIterator it = LookupIterator::PropertyOrElement(
   5642       isolate, object, name, object, LookupIterator::OWN);
   5643   return DefineOwnPropertyIgnoreAttributes(&it, value, attributes);
   5644 }
   5645 
   5646 Maybe<PropertyAttributes> JSObject::GetPropertyAttributesWithInterceptor(
   5647     LookupIterator* it) {
   5648   return GetPropertyAttributesWithInterceptorInternal(it, it->GetInterceptor());
   5649 }
   5650 
   5651 Maybe<PropertyAttributes> JSReceiver::GetPropertyAttributes(
   5652     LookupIterator* it) {
   5653   for (; it->IsFound(); it->Next()) {
   5654     switch (it->state()) {
   5655       case LookupIterator::NOT_FOUND:
   5656       case LookupIterator::TRANSITION:
   5657         UNREACHABLE();
   5658       case LookupIterator::JSPROXY:
   5659         return JSProxy::GetPropertyAttributes(it);
   5660       case LookupIterator::INTERCEPTOR: {
   5661         Maybe<PropertyAttributes> result =
   5662             JSObject::GetPropertyAttributesWithInterceptor(it);
   5663         if (!result.IsJust()) return result;
   5664         if (result.FromJust() != ABSENT) return result;
   5665         break;
   5666       }
   5667       case LookupIterator::ACCESS_CHECK:
   5668         if (it->HasAccess()) break;
   5669         return JSObject::GetPropertyAttributesWithFailedAccessCheck(it);
   5670       case LookupIterator::INTEGER_INDEXED_EXOTIC:
   5671         return Just(ABSENT);
   5672       case LookupIterator::ACCESSOR:
   5673       case LookupIterator::DATA:
   5674         return Just(it->property_attributes());
   5675     }
   5676   }
   5677   return Just(ABSENT);
   5678 }
   5679 
   5680 
   5681 Handle<NormalizedMapCache> NormalizedMapCache::New(Isolate* isolate) {
   5682   Handle<FixedArray> array(
   5683       isolate->factory()->NewFixedArray(kEntries, TENURED));
   5684   return Handle<NormalizedMapCache>::cast(array);
   5685 }
   5686 
   5687 
   5688 MaybeHandle<Map> NormalizedMapCache::Get(Handle<Map> fast_map,
   5689                                          PropertyNormalizationMode mode) {
   5690   DisallowHeapAllocation no_gc;
   5691   Object* value = FixedArray::get(GetIndex(fast_map));
   5692   if (!value->IsMap() ||
   5693       !Map::cast(value)->EquivalentToForNormalization(*fast_map, mode)) {
   5694     return MaybeHandle<Map>();
   5695   }
   5696   return handle(Map::cast(value));
   5697 }
   5698 
   5699 
   5700 void NormalizedMapCache::Set(Handle<Map> fast_map,
   5701                              Handle<Map> normalized_map) {
   5702   DisallowHeapAllocation no_gc;
   5703   DCHECK(normalized_map->is_dictionary_map());
   5704   FixedArray::set(GetIndex(fast_map), *normalized_map);
   5705 }
   5706 
   5707 
   5708 void NormalizedMapCache::Clear() {
   5709   int entries = length();
   5710   for (int i = 0; i != entries; i++) {
   5711     set_undefined(i);
   5712   }
   5713 }
   5714 
   5715 
   5716 void HeapObject::UpdateMapCodeCache(Handle<HeapObject> object,
   5717                                     Handle<Name> name,
   5718                                     Handle<Code> code) {
   5719   Handle<Map> map(object->map());
   5720   Map::UpdateCodeCache(map, name, code);
   5721 }
   5722 
   5723 
   5724 void JSObject::NormalizeProperties(Handle<JSObject> object,
   5725                                    PropertyNormalizationMode mode,
   5726                                    int expected_additional_properties,
   5727                                    const char* reason) {
   5728   if (!object->HasFastProperties()) return;
   5729 
   5730   Handle<Map> map(object->map());
   5731   Handle<Map> new_map = Map::Normalize(map, mode, reason);
   5732 
   5733   MigrateToMap(object, new_map, expected_additional_properties);
   5734 }
   5735 
   5736 
   5737 void JSObject::MigrateSlowToFast(Handle<JSObject> object,
   5738                                  int unused_property_fields,
   5739                                  const char* reason) {
   5740   if (object->HasFastProperties()) return;
   5741   DCHECK(!object->IsJSGlobalObject());
   5742   Isolate* isolate = object->GetIsolate();
   5743   Factory* factory = isolate->factory();
   5744   Handle<NameDictionary> dictionary(object->property_dictionary());
   5745 
   5746   // Make sure we preserve dictionary representation if there are too many
   5747   // descriptors.
   5748   int number_of_elements = dictionary->NumberOfElements();
   5749   if (number_of_elements > kMaxNumberOfDescriptors) return;
   5750 
   5751   Handle<FixedArray> iteration_order;
   5752   if (number_of_elements != dictionary->NextEnumerationIndex()) {
   5753     iteration_order =
   5754         NameDictionary::DoGenerateNewEnumerationIndices(dictionary);
   5755   } else {
   5756     iteration_order = NameDictionary::BuildIterationIndicesArray(dictionary);
   5757   }
   5758 
   5759   int instance_descriptor_length = iteration_order->length();
   5760   int number_of_fields = 0;
   5761 
   5762   // Compute the length of the instance descriptor.
   5763   for (int i = 0; i < instance_descriptor_length; i++) {
   5764     int index = Smi::cast(iteration_order->get(i))->value();
   5765     DCHECK(dictionary->IsKey(isolate, dictionary->KeyAt(index)));
   5766 
   5767     Object* value = dictionary->ValueAt(index);
   5768     PropertyType type = dictionary->DetailsAt(index).type();
   5769     if (type == DATA && !value->IsJSFunction()) {
   5770       number_of_fields += 1;
   5771     }
   5772   }
   5773 
   5774   Handle<Map> old_map(object->map(), isolate);
   5775 
   5776   int inobject_props = old_map->GetInObjectProperties();
   5777 
   5778   // Allocate new map.
   5779   Handle<Map> new_map = Map::CopyDropDescriptors(old_map);
   5780   new_map->set_dictionary_map(false);
   5781 
   5782   UpdatePrototypeUserRegistration(old_map, new_map, isolate);
   5783 
   5784 #if TRACE_MAPS
   5785   if (FLAG_trace_maps) {
   5786     PrintF("[TraceMaps: SlowToFast from= %p to= %p reason= %s ]\n",
   5787            reinterpret_cast<void*>(*old_map), reinterpret_cast<void*>(*new_map),
   5788            reason);
   5789   }
   5790 #endif
   5791 
   5792   if (instance_descriptor_length == 0) {
   5793     DisallowHeapAllocation no_gc;
   5794     DCHECK_LE(unused_property_fields, inobject_props);
   5795     // Transform the object.
   5796     new_map->set_unused_property_fields(inobject_props);
   5797     object->synchronized_set_map(*new_map);
   5798     object->set_properties(isolate->heap()->empty_fixed_array());
   5799     // Check that it really works.
   5800     DCHECK(object->HasFastProperties());
   5801     return;
   5802   }
   5803 
   5804   // Allocate the instance descriptor.
   5805   Handle<DescriptorArray> descriptors = DescriptorArray::Allocate(
   5806       isolate, instance_descriptor_length, 0, TENURED);
   5807 
   5808   int number_of_allocated_fields =
   5809       number_of_fields + unused_property_fields - inobject_props;
   5810   if (number_of_allocated_fields < 0) {
   5811     // There is enough inobject space for all fields (including unused).
   5812     number_of_allocated_fields = 0;
   5813     unused_property_fields = inobject_props - number_of_fields;
   5814   }
   5815 
   5816   // Allocate the fixed array for the fields.
   5817   Handle<FixedArray> fields = factory->NewFixedArray(
   5818       number_of_allocated_fields);
   5819 
   5820   // Fill in the instance descriptor and the fields.
   5821   int current_offset = 0;
   5822   for (int i = 0; i < instance_descriptor_length; i++) {
   5823     int index = Smi::cast(iteration_order->get(i))->value();
   5824     Object* k = dictionary->KeyAt(index);
   5825     DCHECK(dictionary->IsKey(k));
   5826     // Dictionary keys are internalized upon insertion.
   5827     // TODO(jkummerow): Turn this into a DCHECK if it's not hit in the wild.
   5828     CHECK(k->IsUniqueName());
   5829     Handle<Name> key(Name::cast(k), isolate);
   5830 
   5831     Object* value = dictionary->ValueAt(index);
   5832 
   5833     PropertyDetails details = dictionary->DetailsAt(index);
   5834     int enumeration_index = details.dictionary_index();
   5835     PropertyType type = details.type();
   5836 
   5837     if (value->IsJSFunction()) {
   5838       DataConstantDescriptor d(key, handle(value, isolate),
   5839                                details.attributes());
   5840       descriptors->Set(enumeration_index - 1, &d);
   5841     } else if (type == DATA) {
   5842       if (current_offset < inobject_props) {
   5843         object->InObjectPropertyAtPut(current_offset, value,
   5844                                       UPDATE_WRITE_BARRIER);
   5845       } else {
   5846         int offset = current_offset - inobject_props;
   5847         fields->set(offset, value);
   5848       }
   5849       DataDescriptor d(key, current_offset, details.attributes(),
   5850                        // TODO(verwaest): value->OptimalRepresentation();
   5851                        Representation::Tagged());
   5852       current_offset += d.GetDetails().field_width_in_words();
   5853       descriptors->Set(enumeration_index - 1, &d);
   5854     } else if (type == ACCESSOR_CONSTANT) {
   5855       AccessorConstantDescriptor d(key, handle(value, isolate),
   5856                                    details.attributes());
   5857       descriptors->Set(enumeration_index - 1, &d);
   5858     } else {
   5859       UNREACHABLE();
   5860     }
   5861   }
   5862   DCHECK(current_offset == number_of_fields);
   5863 
   5864   descriptors->Sort();
   5865 
   5866   Handle<LayoutDescriptor> layout_descriptor = LayoutDescriptor::New(
   5867       new_map, descriptors, descriptors->number_of_descriptors());
   5868 
   5869   DisallowHeapAllocation no_gc;
   5870   new_map->InitializeDescriptors(*descriptors, *layout_descriptor);
   5871   new_map->set_unused_property_fields(unused_property_fields);
   5872 
   5873   // Transform the object.
   5874   object->synchronized_set_map(*new_map);
   5875 
   5876   object->set_properties(*fields);
   5877   DCHECK(object->IsJSObject());
   5878 
   5879   // Check that it really works.
   5880   DCHECK(object->HasFastProperties());
   5881 }
   5882 
   5883 
   5884 void JSObject::ResetElements(Handle<JSObject> object) {
   5885   Isolate* isolate = object->GetIsolate();
   5886   CHECK(object->map() != isolate->heap()->sloppy_arguments_elements_map());
   5887   if (object->map()->has_dictionary_elements()) {
   5888     Handle<SeededNumberDictionary> new_elements =
   5889         SeededNumberDictionary::New(isolate, 0);
   5890     object->set_elements(*new_elements);
   5891   } else {
   5892     object->set_elements(object->map()->GetInitialElements());
   5893   }
   5894 }
   5895 
   5896 
   5897 void JSObject::RequireSlowElements(SeededNumberDictionary* dictionary) {
   5898   if (dictionary->requires_slow_elements()) return;
   5899   dictionary->set_requires_slow_elements();
   5900   // TODO(verwaest): Remove this hack.
   5901   if (map()->is_prototype_map()) {
   5902     TypeFeedbackVector::ClearAllKeyedStoreICs(GetIsolate());
   5903   }
   5904 }
   5905 
   5906 
   5907 Handle<SeededNumberDictionary> JSObject::NormalizeElements(
   5908     Handle<JSObject> object) {
   5909   DCHECK(!object->HasFixedTypedArrayElements());
   5910   Isolate* isolate = object->GetIsolate();
   5911   bool is_arguments = object->HasSloppyArgumentsElements();
   5912   {
   5913     DisallowHeapAllocation no_gc;
   5914     FixedArrayBase* elements = object->elements();
   5915 
   5916     if (is_arguments) {
   5917       FixedArray* parameter_map = FixedArray::cast(elements);
   5918       elements = FixedArrayBase::cast(parameter_map->get(1));
   5919     }
   5920 
   5921     if (elements->IsDictionary()) {
   5922       return handle(SeededNumberDictionary::cast(elements), isolate);
   5923     }
   5924   }
   5925 
   5926   DCHECK(object->HasFastSmiOrObjectElements() ||
   5927          object->HasFastDoubleElements() ||
   5928          object->HasFastArgumentsElements() ||
   5929          object->HasFastStringWrapperElements());
   5930 
   5931   Handle<SeededNumberDictionary> dictionary =
   5932       object->GetElementsAccessor()->Normalize(object);
   5933 
   5934   // Switch to using the dictionary as the backing storage for elements.
   5935   ElementsKind target_kind = is_arguments
   5936                                  ? SLOW_SLOPPY_ARGUMENTS_ELEMENTS
   5937                                  : object->HasFastStringWrapperElements()
   5938                                        ? SLOW_STRING_WRAPPER_ELEMENTS
   5939                                        : DICTIONARY_ELEMENTS;
   5940   Handle<Map> new_map = JSObject::GetElementsTransitionMap(object, target_kind);
   5941   // Set the new map first to satify the elements type assert in set_elements().
   5942   JSObject::MigrateToMap(object, new_map);
   5943 
   5944   if (is_arguments) {
   5945     FixedArray::cast(object->elements())->set(1, *dictionary);
   5946   } else {
   5947     object->set_elements(*dictionary);
   5948   }
   5949 
   5950   isolate->counters()->elements_to_dictionary()->Increment();
   5951 
   5952 #ifdef DEBUG
   5953   if (FLAG_trace_normalization) {
   5954     OFStream os(stdout);
   5955     os << "Object elements have been normalized:\n";
   5956     object->Print(os);
   5957   }
   5958 #endif
   5959 
   5960   DCHECK(object->HasDictionaryElements() ||
   5961          object->HasSlowArgumentsElements() ||
   5962          object->HasSlowStringWrapperElements());
   5963   return dictionary;
   5964 }
   5965 
   5966 
   5967 static Smi* GenerateIdentityHash(Isolate* isolate) {
   5968   int hash_value;
   5969   int attempts = 0;
   5970   do {
   5971     // Generate a random 32-bit hash value but limit range to fit
   5972     // within a smi.
   5973     hash_value = isolate->random_number_generator()->NextInt() & Smi::kMaxValue;
   5974     attempts++;
   5975   } while (hash_value == 0 && attempts < 30);
   5976   hash_value = hash_value != 0 ? hash_value : 1;  // never return 0
   5977 
   5978   return Smi::FromInt(hash_value);
   5979 }
   5980 
   5981 template <typename ProxyType>
   5982 static Smi* GetOrCreateIdentityHashHelper(Isolate* isolate,
   5983                                           Handle<ProxyType> proxy) {
   5984   Object* maybe_hash = proxy->hash();
   5985   if (maybe_hash->IsSmi()) return Smi::cast(maybe_hash);
   5986 
   5987   Smi* hash = GenerateIdentityHash(isolate);
   5988   proxy->set_hash(hash);
   5989   return hash;
   5990 }
   5991 
   5992 // static
   5993 Object* JSObject::GetIdentityHash(Isolate* isolate, Handle<JSObject> object) {
   5994   if (object->IsJSGlobalProxy()) {
   5995     return JSGlobalProxy::cast(*object)->hash();
   5996   }
   5997   Handle<Name> hash_code_symbol = isolate->factory()->hash_code_symbol();
   5998   return *JSReceiver::GetDataProperty(object, hash_code_symbol);
   5999 }
   6000 
   6001 // static
   6002 Smi* JSObject::GetOrCreateIdentityHash(Isolate* isolate,
   6003                                        Handle<JSObject> object) {
   6004   if (object->IsJSGlobalProxy()) {
   6005     return GetOrCreateIdentityHashHelper(isolate,
   6006                                          Handle<JSGlobalProxy>::cast(object));
   6007   }
   6008 
   6009   Handle<Name> hash_code_symbol = isolate->factory()->hash_code_symbol();
   6010   LookupIterator it(object, hash_code_symbol, object, LookupIterator::OWN);
   6011   if (it.IsFound()) {
   6012     DCHECK_EQ(LookupIterator::DATA, it.state());
   6013     Object* maybe_hash = *it.GetDataValue();
   6014     if (maybe_hash->IsSmi()) return Smi::cast(maybe_hash);
   6015   }
   6016 
   6017   Smi* hash = GenerateIdentityHash(isolate);
   6018   CHECK(AddDataProperty(&it, handle(hash, isolate), NONE, THROW_ON_ERROR,
   6019                         CERTAINLY_NOT_STORE_FROM_KEYED)
   6020             .IsJust());
   6021   return hash;
   6022 }
   6023 
   6024 // static
   6025 Object* JSProxy::GetIdentityHash(Handle<JSProxy> proxy) {
   6026   return proxy->hash();
   6027 }
   6028 
   6029 Smi* JSProxy::GetOrCreateIdentityHash(Isolate* isolate, Handle<JSProxy> proxy) {
   6030   return GetOrCreateIdentityHashHelper(isolate, proxy);
   6031 }
   6032 
   6033 
   6034 Maybe<bool> JSObject::DeletePropertyWithInterceptor(LookupIterator* it,
   6035                                                     ShouldThrow should_throw) {
   6036   Isolate* isolate = it->isolate();
   6037   // Make sure that the top context does not change when doing callbacks or
   6038   // interceptor calls.
   6039   AssertNoContextChange ncc(isolate);
   6040 
   6041   DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state());
   6042   Handle<InterceptorInfo> interceptor(it->GetInterceptor());
   6043   if (interceptor->deleter()->IsUndefined(isolate)) return Nothing<bool>();
   6044 
   6045   Handle<JSObject> holder = it->GetHolder<JSObject>();
   6046   Handle<Object> receiver = it->GetReceiver();
   6047   if (!receiver->IsJSReceiver()) {
   6048     ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, receiver,
   6049                                      Object::ConvertReceiver(isolate, receiver),
   6050                                      Nothing<bool>());
   6051   }
   6052 
   6053   PropertyCallbackArguments args(isolate, interceptor->data(), *receiver,
   6054                                  *holder, should_throw);
   6055   Handle<Object> result;
   6056   if (it->IsElement()) {
   6057     uint32_t index = it->index();
   6058     v8::IndexedPropertyDeleterCallback deleter =
   6059         v8::ToCData<v8::IndexedPropertyDeleterCallback>(interceptor->deleter());
   6060     result = args.Call(deleter, index);
   6061   } else if (it->name()->IsSymbol() && !interceptor->can_intercept_symbols()) {
   6062     return Nothing<bool>();
   6063   } else {
   6064     Handle<Name> name = it->name();
   6065     DCHECK(!name->IsPrivate());
   6066     v8::GenericNamedPropertyDeleterCallback deleter =
   6067         v8::ToCData<v8::GenericNamedPropertyDeleterCallback>(
   6068             interceptor->deleter());
   6069     result = args.Call(deleter, name);
   6070   }
   6071 
   6072   RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
   6073   if (result.is_null()) return Nothing<bool>();
   6074 
   6075   DCHECK(result->IsBoolean());
   6076   // Rebox CustomArguments::kReturnValueOffset before returning.
   6077   return Just(result->IsTrue(isolate));
   6078 }
   6079 
   6080 
   6081 void JSReceiver::DeleteNormalizedProperty(Handle<JSReceiver> object,
   6082                                           Handle<Name> name, int entry) {
   6083   DCHECK(!object->HasFastProperties());
   6084   Isolate* isolate = object->GetIsolate();
   6085 
   6086   if (object->IsJSGlobalObject()) {
   6087     // If we have a global object, invalidate the cell and swap in a new one.
   6088     Handle<GlobalDictionary> dictionary(
   6089         JSObject::cast(*object)->global_dictionary());
   6090     DCHECK_NE(GlobalDictionary::kNotFound, entry);
   6091 
   6092     auto cell = PropertyCell::InvalidateEntry(dictionary, entry);
   6093     cell->set_value(isolate->heap()->the_hole_value());
   6094     // TODO(ishell): InvalidateForDelete
   6095     cell->set_property_details(
   6096         cell->property_details().set_cell_type(PropertyCellType::kInvalidated));
   6097   } else {
   6098     Handle<NameDictionary> dictionary(object->property_dictionary());
   6099     DCHECK_NE(NameDictionary::kNotFound, entry);
   6100 
   6101     NameDictionary::DeleteProperty(dictionary, entry);
   6102     Handle<NameDictionary> new_properties =
   6103         NameDictionary::Shrink(dictionary, name);
   6104     object->set_properties(*new_properties);
   6105   }
   6106 }
   6107 
   6108 
   6109 Maybe<bool> JSReceiver::DeleteProperty(LookupIterator* it,
   6110                                        LanguageMode language_mode) {
   6111   it->UpdateProtector();
   6112 
   6113   Isolate* isolate = it->isolate();
   6114 
   6115   if (it->state() == LookupIterator::JSPROXY) {
   6116     return JSProxy::DeletePropertyOrElement(it->GetHolder<JSProxy>(),
   6117                                             it->GetName(), language_mode);
   6118   }
   6119 
   6120   if (it->GetReceiver()->IsJSProxy()) {
   6121     if (it->state() != LookupIterator::NOT_FOUND) {
   6122       DCHECK_EQ(LookupIterator::DATA, it->state());
   6123       DCHECK(it->name()->IsPrivate());
   6124       it->Delete();
   6125     }
   6126     return Just(true);
   6127   }
   6128   Handle<JSObject> receiver = Handle<JSObject>::cast(it->GetReceiver());
   6129 
   6130   for (; it->IsFound(); it->Next()) {
   6131     switch (it->state()) {
   6132       case LookupIterator::JSPROXY:
   6133       case LookupIterator::NOT_FOUND:
   6134       case LookupIterator::TRANSITION:
   6135         UNREACHABLE();
   6136       case LookupIterator::ACCESS_CHECK:
   6137         if (it->HasAccess()) break;
   6138         isolate->ReportFailedAccessCheck(it->GetHolder<JSObject>());
   6139         RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
   6140         return Just(false);
   6141       case LookupIterator::INTERCEPTOR: {
   6142         ShouldThrow should_throw =
   6143             is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR;
   6144         Maybe<bool> result =
   6145             JSObject::DeletePropertyWithInterceptor(it, should_throw);
   6146         // An exception was thrown in the interceptor. Propagate.
   6147         if (isolate->has_pending_exception()) return Nothing<bool>();
   6148         // Delete with interceptor succeeded. Return result.
   6149         // TODO(neis): In strict mode, we should probably throw if the
   6150         // interceptor returns false.
   6151         if (result.IsJust()) return result;
   6152         break;
   6153       }
   6154       case LookupIterator::INTEGER_INDEXED_EXOTIC:
   6155         return Just(true);
   6156       case LookupIterator::DATA:
   6157       case LookupIterator::ACCESSOR: {
   6158         if (!it->IsConfigurable()) {
   6159           // Fail if the property is not configurable.
   6160           if (is_strict(language_mode)) {
   6161             isolate->Throw(*isolate->factory()->NewTypeError(
   6162                 MessageTemplate::kStrictDeleteProperty, it->GetName(),
   6163                 receiver));
   6164             return Nothing<bool>();
   6165           }
   6166           return Just(false);
   6167         }
   6168 
   6169         it->Delete();
   6170 
   6171         return Just(true);
   6172       }
   6173     }
   6174   }
   6175 
   6176   return Just(true);
   6177 }
   6178 
   6179 
   6180 Maybe<bool> JSReceiver::DeleteElement(Handle<JSReceiver> object, uint32_t index,
   6181                                       LanguageMode language_mode) {
   6182   LookupIterator it(object->GetIsolate(), object, index, object,
   6183                     LookupIterator::OWN);
   6184   return DeleteProperty(&it, language_mode);
   6185 }
   6186 
   6187 
   6188 Maybe<bool> JSReceiver::DeleteProperty(Handle<JSReceiver> object,
   6189                                        Handle<Name> name,
   6190                                        LanguageMode language_mode) {
   6191   LookupIterator it(object, name, object, LookupIterator::OWN);
   6192   return DeleteProperty(&it, language_mode);
   6193 }
   6194 
   6195 
   6196 Maybe<bool> JSReceiver::DeletePropertyOrElement(Handle<JSReceiver> object,
   6197                                                 Handle<Name> name,
   6198                                                 LanguageMode language_mode) {
   6199   LookupIterator it = LookupIterator::PropertyOrElement(
   6200       name->GetIsolate(), object, name, object, LookupIterator::OWN);
   6201   return DeleteProperty(&it, language_mode);
   6202 }
   6203 
   6204 
   6205 // ES6 7.1.14
   6206 // static
   6207 MaybeHandle<Object> Object::ToPropertyKey(Isolate* isolate,
   6208                                           Handle<Object> value) {
   6209   // 1. Let key be ToPrimitive(argument, hint String).
   6210   MaybeHandle<Object> maybe_key =
   6211       Object::ToPrimitive(value, ToPrimitiveHint::kString);
   6212   // 2. ReturnIfAbrupt(key).
   6213   Handle<Object> key;
   6214   if (!maybe_key.ToHandle(&key)) return key;
   6215   // 3. If Type(key) is Symbol, then return key.
   6216   if (key->IsSymbol()) return key;
   6217   // 4. Return ToString(key).
   6218   // Extending spec'ed behavior, we'd be happy to return an element index.
   6219   if (key->IsSmi()) return key;
   6220   if (key->IsHeapNumber()) {
   6221     uint32_t uint_value;
   6222     if (value->ToArrayLength(&uint_value) &&
   6223         uint_value <= static_cast<uint32_t>(Smi::kMaxValue)) {
   6224       return handle(Smi::FromInt(static_cast<int>(uint_value)), isolate);
   6225     }
   6226   }
   6227   return Object::ToString(isolate, key);
   6228 }
   6229 
   6230 
   6231 // ES6 19.1.2.4
   6232 // static
   6233 Object* JSReceiver::DefineProperty(Isolate* isolate, Handle<Object> object,
   6234                                    Handle<Object> key,
   6235                                    Handle<Object> attributes) {
   6236   // 1. If Type(O) is not Object, throw a TypeError exception.
   6237   if (!object->IsJSReceiver()) {
   6238     Handle<String> fun_name =
   6239         isolate->factory()->InternalizeUtf8String("Object.defineProperty");
   6240     THROW_NEW_ERROR_RETURN_FAILURE(
   6241         isolate, NewTypeError(MessageTemplate::kCalledOnNonObject, fun_name));
   6242   }
   6243   // 2. Let key be ToPropertyKey(P).
   6244   // 3. ReturnIfAbrupt(key).
   6245   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, key, ToPropertyKey(isolate, key));
   6246   // 4. Let desc be ToPropertyDescriptor(Attributes).
   6247   // 5. ReturnIfAbrupt(desc).
   6248   PropertyDescriptor desc;
   6249   if (!PropertyDescriptor::ToPropertyDescriptor(isolate, attributes, &desc)) {
   6250     return isolate->heap()->exception();
   6251   }
   6252   // 6. Let success be DefinePropertyOrThrow(O,key, desc).
   6253   Maybe<bool> success = DefineOwnProperty(
   6254       isolate, Handle<JSReceiver>::cast(object), key, &desc, THROW_ON_ERROR);
   6255   // 7. ReturnIfAbrupt(success).
   6256   MAYBE_RETURN(success, isolate->heap()->exception());
   6257   CHECK(success.FromJust());
   6258   // 8. Return O.
   6259   return *object;
   6260 }
   6261 
   6262 
   6263 // ES6 19.1.2.3.1
   6264 // static
   6265 MaybeHandle<Object> JSReceiver::DefineProperties(Isolate* isolate,
   6266                                                  Handle<Object> object,
   6267                                                  Handle<Object> properties) {
   6268   // 1. If Type(O) is not Object, throw a TypeError exception.
   6269   if (!object->IsJSReceiver()) {
   6270     Handle<String> fun_name =
   6271         isolate->factory()->InternalizeUtf8String("Object.defineProperties");
   6272     THROW_NEW_ERROR(isolate,
   6273                     NewTypeError(MessageTemplate::kCalledOnNonObject, fun_name),
   6274                     Object);
   6275   }
   6276   // 2. Let props be ToObject(Properties).
   6277   // 3. ReturnIfAbrupt(props).
   6278   Handle<JSReceiver> props;
   6279   if (!Object::ToObject(isolate, properties).ToHandle(&props)) {
   6280     THROW_NEW_ERROR(isolate,
   6281                     NewTypeError(MessageTemplate::kUndefinedOrNullToObject),
   6282                     Object);
   6283   }
   6284   // 4. Let keys be props.[[OwnPropertyKeys]]().
   6285   // 5. ReturnIfAbrupt(keys).
   6286   Handle<FixedArray> keys;
   6287   ASSIGN_RETURN_ON_EXCEPTION(
   6288       isolate, keys, KeyAccumulator::GetKeys(props, KeyCollectionMode::kOwnOnly,
   6289                                              ALL_PROPERTIES),
   6290       Object);
   6291   // 6. Let descriptors be an empty List.
   6292   int capacity = keys->length();
   6293   std::vector<PropertyDescriptor> descriptors(capacity);
   6294   size_t descriptors_index = 0;
   6295   // 7. Repeat for each element nextKey of keys in List order,
   6296   for (int i = 0; i < keys->length(); ++i) {
   6297     Handle<Object> next_key(keys->get(i), isolate);
   6298     // 7a. Let propDesc be props.[[GetOwnProperty]](nextKey).
   6299     // 7b. ReturnIfAbrupt(propDesc).
   6300     bool success = false;
   6301     LookupIterator it = LookupIterator::PropertyOrElement(
   6302         isolate, props, next_key, &success, LookupIterator::OWN);
   6303     DCHECK(success);
   6304     Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
   6305     if (!maybe.IsJust()) return MaybeHandle<Object>();
   6306     PropertyAttributes attrs = maybe.FromJust();
   6307     // 7c. If propDesc is not undefined and propDesc.[[Enumerable]] is true:
   6308     if (attrs == ABSENT) continue;
   6309     if (attrs & DONT_ENUM) continue;
   6310     // 7c i. Let descObj be Get(props, nextKey).
   6311     // 7c ii. ReturnIfAbrupt(descObj).
   6312     Handle<Object> desc_obj;
   6313     ASSIGN_RETURN_ON_EXCEPTION(isolate, desc_obj, Object::GetProperty(&it),
   6314                                Object);
   6315     // 7c iii. Let desc be ToPropertyDescriptor(descObj).
   6316     success = PropertyDescriptor::ToPropertyDescriptor(
   6317         isolate, desc_obj, &descriptors[descriptors_index]);
   6318     // 7c iv. ReturnIfAbrupt(desc).
   6319     if (!success) return MaybeHandle<Object>();
   6320     // 7c v. Append the pair (a two element List) consisting of nextKey and
   6321     //       desc to the end of descriptors.
   6322     descriptors[descriptors_index].set_name(next_key);
   6323     descriptors_index++;
   6324   }
   6325   // 8. For each pair from descriptors in list order,
   6326   for (size_t i = 0; i < descriptors_index; ++i) {
   6327     PropertyDescriptor* desc = &descriptors[i];
   6328     // 8a. Let P be the first element of pair.
   6329     // 8b. Let desc be the second element of pair.
   6330     // 8c. Let status be DefinePropertyOrThrow(O, P, desc).
   6331     Maybe<bool> status =
   6332         DefineOwnProperty(isolate, Handle<JSReceiver>::cast(object),
   6333                           desc->name(), desc, THROW_ON_ERROR);
   6334     // 8d. ReturnIfAbrupt(status).
   6335     if (!status.IsJust()) return MaybeHandle<Object>();
   6336     CHECK(status.FromJust());
   6337   }
   6338   // 9. Return o.
   6339   return object;
   6340 }
   6341 
   6342 
   6343 // static
   6344 Maybe<bool> JSReceiver::DefineOwnProperty(Isolate* isolate,
   6345                                           Handle<JSReceiver> object,
   6346                                           Handle<Object> key,
   6347                                           PropertyDescriptor* desc,
   6348                                           ShouldThrow should_throw) {
   6349   if (object->IsJSArray()) {
   6350     return JSArray::DefineOwnProperty(isolate, Handle<JSArray>::cast(object),
   6351                                       key, desc, should_throw);
   6352   }
   6353   if (object->IsJSProxy()) {
   6354     return JSProxy::DefineOwnProperty(isolate, Handle<JSProxy>::cast(object),
   6355                                       key, desc, should_throw);
   6356   }
   6357   // TODO(jkummerow): Support Modules (ES6 9.4.6.6)
   6358 
   6359   // OrdinaryDefineOwnProperty, by virtue of calling
   6360   // DefineOwnPropertyIgnoreAttributes, can handle arguments (ES6 9.4.4.2)
   6361   // and IntegerIndexedExotics (ES6 9.4.5.3), with one exception:
   6362   // TODO(jkummerow): Setting an indexed accessor on a typed array should throw.
   6363   return OrdinaryDefineOwnProperty(isolate, Handle<JSObject>::cast(object), key,
   6364                                    desc, should_throw);
   6365 }
   6366 
   6367 
   6368 // static
   6369 Maybe<bool> JSReceiver::OrdinaryDefineOwnProperty(Isolate* isolate,
   6370                                                   Handle<JSObject> object,
   6371                                                   Handle<Object> key,
   6372                                                   PropertyDescriptor* desc,
   6373                                                   ShouldThrow should_throw) {
   6374   bool success = false;
   6375   DCHECK(key->IsName() || key->IsNumber());  // |key| is a PropertyKey...
   6376   LookupIterator it = LookupIterator::PropertyOrElement(
   6377       isolate, object, key, &success, LookupIterator::OWN);
   6378   DCHECK(success);  // ...so creating a LookupIterator can't fail.
   6379 
   6380   // Deal with access checks first.
   6381   if (it.state() == LookupIterator::ACCESS_CHECK) {
   6382     if (!it.HasAccess()) {
   6383       isolate->ReportFailedAccessCheck(it.GetHolder<JSObject>());
   6384       RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
   6385       return Just(true);
   6386     }
   6387     it.Next();
   6388   }
   6389 
   6390   return OrdinaryDefineOwnProperty(&it, desc, should_throw);
   6391 }
   6392 
   6393 
   6394 // ES6 9.1.6.1
   6395 // static
   6396 Maybe<bool> JSReceiver::OrdinaryDefineOwnProperty(LookupIterator* it,
   6397                                                   PropertyDescriptor* desc,
   6398                                                   ShouldThrow should_throw) {
   6399   Isolate* isolate = it->isolate();
   6400   // 1. Let current be O.[[GetOwnProperty]](P).
   6401   // 2. ReturnIfAbrupt(current).
   6402   PropertyDescriptor current;
   6403   MAYBE_RETURN(GetOwnPropertyDescriptor(it, &current), Nothing<bool>());
   6404 
   6405   // TODO(jkummerow/verwaest): It would be nice if we didn't have to reset
   6406   // the iterator every time. Currently, the reasons why we need it are:
   6407   // - handle interceptors correctly
   6408   // - handle accessors correctly (which might change the holder's map)
   6409   it->Restart();
   6410   // 3. Let extensible be the value of the [[Extensible]] internal slot of O.
   6411   Handle<JSObject> object = Handle<JSObject>::cast(it->GetReceiver());
   6412   bool extensible = JSObject::IsExtensible(object);
   6413 
   6414   return ValidateAndApplyPropertyDescriptor(isolate, it, extensible, desc,
   6415                                             &current, should_throw);
   6416 }
   6417 
   6418 
   6419 // ES6 9.1.6.2
   6420 // static
   6421 Maybe<bool> JSReceiver::IsCompatiblePropertyDescriptor(
   6422     Isolate* isolate, bool extensible, PropertyDescriptor* desc,
   6423     PropertyDescriptor* current, Handle<Name> property_name,
   6424     ShouldThrow should_throw) {
   6425   // 1. Return ValidateAndApplyPropertyDescriptor(undefined, undefined,
   6426   //    Extensible, Desc, Current).
   6427   return ValidateAndApplyPropertyDescriptor(
   6428       isolate, NULL, extensible, desc, current, should_throw, property_name);
   6429 }
   6430 
   6431 
   6432 // ES6 9.1.6.3
   6433 // static
   6434 Maybe<bool> JSReceiver::ValidateAndApplyPropertyDescriptor(
   6435     Isolate* isolate, LookupIterator* it, bool extensible,
   6436     PropertyDescriptor* desc, PropertyDescriptor* current,
   6437     ShouldThrow should_throw, Handle<Name> property_name) {
   6438   // We either need a LookupIterator, or a property name.
   6439   DCHECK((it == NULL) != property_name.is_null());
   6440   Handle<JSObject> object;
   6441   if (it != NULL) object = Handle<JSObject>::cast(it->GetReceiver());
   6442   bool desc_is_data_descriptor = PropertyDescriptor::IsDataDescriptor(desc);
   6443   bool desc_is_accessor_descriptor =
   6444       PropertyDescriptor::IsAccessorDescriptor(desc);
   6445   bool desc_is_generic_descriptor =
   6446       PropertyDescriptor::IsGenericDescriptor(desc);
   6447   // 1. (Assert)
   6448   // 2. If current is undefined, then
   6449   if (current->is_empty()) {
   6450     // 2a. If extensible is false, return false.
   6451     if (!extensible) {
   6452       RETURN_FAILURE(isolate, should_throw,
   6453                      NewTypeError(MessageTemplate::kDefineDisallowed,
   6454                                   it != NULL ? it->GetName() : property_name));
   6455     }
   6456     // 2c. If IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then:
   6457     // (This is equivalent to !IsAccessorDescriptor(desc).)
   6458     DCHECK((desc_is_generic_descriptor || desc_is_data_descriptor) ==
   6459            !desc_is_accessor_descriptor);
   6460     if (!desc_is_accessor_descriptor) {
   6461       // 2c i. If O is not undefined, create an own data property named P of
   6462       // object O whose [[Value]], [[Writable]], [[Enumerable]] and
   6463       // [[Configurable]] attribute values are described by Desc. If the value
   6464       // of an attribute field of Desc is absent, the attribute of the newly
   6465       // created property is set to its default value.
   6466       if (it != NULL) {
   6467         if (!desc->has_writable()) desc->set_writable(false);
   6468         if (!desc->has_enumerable()) desc->set_enumerable(false);
   6469         if (!desc->has_configurable()) desc->set_configurable(false);
   6470         Handle<Object> value(
   6471             desc->has_value()
   6472                 ? desc->value()
   6473                 : Handle<Object>::cast(isolate->factory()->undefined_value()));
   6474         MaybeHandle<Object> result =
   6475             JSObject::DefineOwnPropertyIgnoreAttributes(it, value,
   6476                                                         desc->ToAttributes());
   6477         if (result.is_null()) return Nothing<bool>();
   6478       }
   6479     } else {
   6480       // 2d. Else Desc must be an accessor Property Descriptor,
   6481       DCHECK(desc_is_accessor_descriptor);
   6482       // 2d i. If O is not undefined, create an own accessor property named P
   6483       // of object O whose [[Get]], [[Set]], [[Enumerable]] and
   6484       // [[Configurable]] attribute values are described by Desc. If the value
   6485       // of an attribute field of Desc is absent, the attribute of the newly
   6486       // created property is set to its default value.
   6487       if (it != NULL) {
   6488         if (!desc->has_enumerable()) desc->set_enumerable(false);
   6489         if (!desc->has_configurable()) desc->set_configurable(false);
   6490         Handle<Object> getter(
   6491             desc->has_get()
   6492                 ? desc->get()
   6493                 : Handle<Object>::cast(isolate->factory()->null_value()));
   6494         Handle<Object> setter(
   6495             desc->has_set()
   6496                 ? desc->set()
   6497                 : Handle<Object>::cast(isolate->factory()->null_value()));
   6498         MaybeHandle<Object> result =
   6499             JSObject::DefineAccessor(it, getter, setter, desc->ToAttributes());
   6500         if (result.is_null()) return Nothing<bool>();
   6501       }
   6502     }
   6503     // 2e. Return true.
   6504     return Just(true);
   6505   }
   6506   // 3. Return true, if every field in Desc is absent.
   6507   // 4. Return true, if every field in Desc also occurs in current and the
   6508   // value of every field in Desc is the same value as the corresponding field
   6509   // in current when compared using the SameValue algorithm.
   6510   if ((!desc->has_enumerable() ||
   6511        desc->enumerable() == current->enumerable()) &&
   6512       (!desc->has_configurable() ||
   6513        desc->configurable() == current->configurable()) &&
   6514       (!desc->has_value() ||
   6515        (current->has_value() && current->value()->SameValue(*desc->value()))) &&
   6516       (!desc->has_writable() ||
   6517        (current->has_writable() && current->writable() == desc->writable())) &&
   6518       (!desc->has_get() ||
   6519        (current->has_get() && current->get()->SameValue(*desc->get()))) &&
   6520       (!desc->has_set() ||
   6521        (current->has_set() && current->set()->SameValue(*desc->set())))) {
   6522     return Just(true);
   6523   }
   6524   // 5. If the [[Configurable]] field of current is false, then
   6525   if (!current->configurable()) {
   6526     // 5a. Return false, if the [[Configurable]] field of Desc is true.
   6527     if (desc->has_configurable() && desc->configurable()) {
   6528       RETURN_FAILURE(isolate, should_throw,
   6529                      NewTypeError(MessageTemplate::kRedefineDisallowed,
   6530                                   it != NULL ? it->GetName() : property_name));
   6531     }
   6532     // 5b. Return false, if the [[Enumerable]] field of Desc is present and the
   6533     // [[Enumerable]] fields of current and Desc are the Boolean negation of
   6534     // each other.
   6535     if (desc->has_enumerable() && desc->enumerable() != current->enumerable()) {
   6536       RETURN_FAILURE(isolate, should_throw,
   6537                      NewTypeError(MessageTemplate::kRedefineDisallowed,
   6538                                   it != NULL ? it->GetName() : property_name));
   6539     }
   6540   }
   6541 
   6542   bool current_is_data_descriptor =
   6543       PropertyDescriptor::IsDataDescriptor(current);
   6544   // 6. If IsGenericDescriptor(Desc) is true, no further validation is required.
   6545   if (desc_is_generic_descriptor) {
   6546     // Nothing to see here.
   6547 
   6548     // 7. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) have
   6549     // different results, then:
   6550   } else if (current_is_data_descriptor != desc_is_data_descriptor) {
   6551     // 7a. Return false, if the [[Configurable]] field of current is false.
   6552     if (!current->configurable()) {
   6553       RETURN_FAILURE(isolate, should_throw,
   6554                      NewTypeError(MessageTemplate::kRedefineDisallowed,
   6555                                   it != NULL ? it->GetName() : property_name));
   6556     }
   6557     // 7b. If IsDataDescriptor(current) is true, then:
   6558     if (current_is_data_descriptor) {
   6559       // 7b i. If O is not undefined, convert the property named P of object O
   6560       // from a data property to an accessor property. Preserve the existing
   6561       // values of the converted property's [[Configurable]] and [[Enumerable]]
   6562       // attributes and set the rest of the property's attributes to their
   6563       // default values.
   6564       // --> Folded into step 10.
   6565     } else {
   6566       // 7c i. If O is not undefined, convert the property named P of object O
   6567       // from an accessor property to a data property. Preserve the existing
   6568       // values of the converted propertys [[Configurable]] and [[Enumerable]]
   6569       // attributes and set the rest of the propertys attributes to their
   6570       // default values.
   6571       // --> Folded into step 10.
   6572     }
   6573 
   6574     // 8. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) are both
   6575     // true, then:
   6576   } else if (current_is_data_descriptor && desc_is_data_descriptor) {
   6577     // 8a. If the [[Configurable]] field of current is false, then:
   6578     if (!current->configurable()) {
   6579       // 8a i. Return false, if the [[Writable]] field of current is false and
   6580       // the [[Writable]] field of Desc is true.
   6581       if (!current->writable() && desc->has_writable() && desc->writable()) {
   6582         RETURN_FAILURE(
   6583             isolate, should_throw,
   6584             NewTypeError(MessageTemplate::kRedefineDisallowed,
   6585                          it != NULL ? it->GetName() : property_name));
   6586       }
   6587       // 8a ii. If the [[Writable]] field of current is false, then:
   6588       if (!current->writable()) {
   6589         // 8a ii 1. Return false, if the [[Value]] field of Desc is present and
   6590         // SameValue(Desc.[[Value]], current.[[Value]]) is false.
   6591         if (desc->has_value() && !desc->value()->SameValue(*current->value())) {
   6592           RETURN_FAILURE(
   6593               isolate, should_throw,
   6594               NewTypeError(MessageTemplate::kRedefineDisallowed,
   6595                            it != NULL ? it->GetName() : property_name));
   6596         }
   6597       }
   6598     }
   6599   } else {
   6600     // 9. Else IsAccessorDescriptor(current) and IsAccessorDescriptor(Desc)
   6601     // are both true,
   6602     DCHECK(PropertyDescriptor::IsAccessorDescriptor(current) &&
   6603            desc_is_accessor_descriptor);
   6604     // 9a. If the [[Configurable]] field of current is false, then:
   6605     if (!current->configurable()) {
   6606       // 9a i. Return false, if the [[Set]] field of Desc is present and
   6607       // SameValue(Desc.[[Set]], current.[[Set]]) is false.
   6608       if (desc->has_set() && !desc->set()->SameValue(*current->set())) {
   6609         RETURN_FAILURE(
   6610             isolate, should_throw,
   6611             NewTypeError(MessageTemplate::kRedefineDisallowed,
   6612                          it != NULL ? it->GetName() : property_name));
   6613       }
   6614       // 9a ii. Return false, if the [[Get]] field of Desc is present and
   6615       // SameValue(Desc.[[Get]], current.[[Get]]) is false.
   6616       if (desc->has_get() && !desc->get()->SameValue(*current->get())) {
   6617         RETURN_FAILURE(
   6618             isolate, should_throw,
   6619             NewTypeError(MessageTemplate::kRedefineDisallowed,
   6620                          it != NULL ? it->GetName() : property_name));
   6621       }
   6622     }
   6623   }
   6624 
   6625   // 10. If O is not undefined, then:
   6626   if (it != NULL) {
   6627     // 10a. For each field of Desc that is present, set the corresponding
   6628     // attribute of the property named P of object O to the value of the field.
   6629     PropertyAttributes attrs = NONE;
   6630 
   6631     if (desc->has_enumerable()) {
   6632       attrs = static_cast<PropertyAttributes>(
   6633           attrs | (desc->enumerable() ? NONE : DONT_ENUM));
   6634     } else {
   6635       attrs = static_cast<PropertyAttributes>(
   6636           attrs | (current->enumerable() ? NONE : DONT_ENUM));
   6637     }
   6638     if (desc->has_configurable()) {
   6639       attrs = static_cast<PropertyAttributes>(
   6640           attrs | (desc->configurable() ? NONE : DONT_DELETE));
   6641     } else {
   6642       attrs = static_cast<PropertyAttributes>(
   6643           attrs | (current->configurable() ? NONE : DONT_DELETE));
   6644     }
   6645     if (desc_is_data_descriptor ||
   6646         (desc_is_generic_descriptor && current_is_data_descriptor)) {
   6647       if (desc->has_writable()) {
   6648         attrs = static_cast<PropertyAttributes>(
   6649             attrs | (desc->writable() ? NONE : READ_ONLY));
   6650       } else {
   6651         attrs = static_cast<PropertyAttributes>(
   6652             attrs | (current->writable() ? NONE : READ_ONLY));
   6653       }
   6654       Handle<Object> value(
   6655           desc->has_value() ? desc->value()
   6656                             : current->has_value()
   6657                                   ? current->value()
   6658                                   : Handle<Object>::cast(
   6659                                         isolate->factory()->undefined_value()));
   6660       MaybeHandle<Object> result =
   6661           JSObject::DefineOwnPropertyIgnoreAttributes(it, value, attrs);
   6662       if (result.is_null()) return Nothing<bool>();
   6663     } else {
   6664       DCHECK(desc_is_accessor_descriptor ||
   6665              (desc_is_generic_descriptor &&
   6666               PropertyDescriptor::IsAccessorDescriptor(current)));
   6667       Handle<Object> getter(
   6668           desc->has_get()
   6669               ? desc->get()
   6670               : current->has_get()
   6671                     ? current->get()
   6672                     : Handle<Object>::cast(isolate->factory()->null_value()));
   6673       Handle<Object> setter(
   6674           desc->has_set()
   6675               ? desc->set()
   6676               : current->has_set()
   6677                     ? current->set()
   6678                     : Handle<Object>::cast(isolate->factory()->null_value()));
   6679       MaybeHandle<Object> result =
   6680           JSObject::DefineAccessor(it, getter, setter, attrs);
   6681       if (result.is_null()) return Nothing<bool>();
   6682     }
   6683   }
   6684 
   6685   // 11. Return true.
   6686   return Just(true);
   6687 }
   6688 
   6689 
   6690 // static
   6691 Maybe<bool> JSReceiver::CreateDataProperty(LookupIterator* it,
   6692                                            Handle<Object> value,
   6693                                            ShouldThrow should_throw) {
   6694   DCHECK(!it->check_prototype_chain());
   6695   Handle<JSReceiver> receiver = Handle<JSReceiver>::cast(it->GetReceiver());
   6696   Isolate* isolate = receiver->GetIsolate();
   6697 
   6698   if (receiver->IsJSObject()) {
   6699     return JSObject::CreateDataProperty(it, value, should_throw);  // Shortcut.
   6700   }
   6701 
   6702   PropertyDescriptor new_desc;
   6703   new_desc.set_value(value);
   6704   new_desc.set_writable(true);
   6705   new_desc.set_enumerable(true);
   6706   new_desc.set_configurable(true);
   6707 
   6708   return JSReceiver::DefineOwnProperty(isolate, receiver, it->GetName(),
   6709                                        &new_desc, should_throw);
   6710 }
   6711 
   6712 Maybe<bool> JSObject::CreateDataProperty(LookupIterator* it,
   6713                                          Handle<Object> value,
   6714                                          ShouldThrow should_throw) {
   6715   DCHECK(it->GetReceiver()->IsJSObject());
   6716   MAYBE_RETURN(JSReceiver::GetPropertyAttributes(it), Nothing<bool>());
   6717   Handle<JSReceiver> receiver = Handle<JSReceiver>::cast(it->GetReceiver());
   6718   Isolate* isolate = receiver->GetIsolate();
   6719 
   6720   if (it->IsFound()) {
   6721     Maybe<PropertyAttributes> attributes = GetPropertyAttributes(it);
   6722     MAYBE_RETURN(attributes, Nothing<bool>());
   6723     if ((attributes.FromJust() & DONT_DELETE) != 0) {
   6724       RETURN_FAILURE(
   6725           isolate, should_throw,
   6726           NewTypeError(MessageTemplate::kRedefineDisallowed, it->GetName()));
   6727     }
   6728   } else {
   6729     if (!JSObject::IsExtensible(Handle<JSObject>::cast(it->GetReceiver()))) {
   6730       RETURN_FAILURE(
   6731           isolate, should_throw,
   6732           NewTypeError(MessageTemplate::kDefineDisallowed, it->GetName()));
   6733     }
   6734   }
   6735 
   6736   RETURN_ON_EXCEPTION_VALUE(it->isolate(),
   6737                             DefineOwnPropertyIgnoreAttributes(it, value, NONE),
   6738                             Nothing<bool>());
   6739 
   6740   return Just(true);
   6741 }
   6742 
   6743 
   6744 // TODO(jkummerow): Consider unification with FastAsArrayLength() in
   6745 // accessors.cc.
   6746 bool PropertyKeyToArrayLength(Handle<Object> value, uint32_t* length) {
   6747   DCHECK(value->IsNumber() || value->IsName());
   6748   if (value->ToArrayLength(length)) return true;
   6749   if (value->IsString()) return String::cast(*value)->AsArrayIndex(length);
   6750   return false;
   6751 }
   6752 
   6753 
   6754 bool PropertyKeyToArrayIndex(Handle<Object> index_obj, uint32_t* output) {
   6755   return PropertyKeyToArrayLength(index_obj, output) && *output != kMaxUInt32;
   6756 }
   6757 
   6758 
   6759 // ES6 9.4.2.1
   6760 // static
   6761 Maybe<bool> JSArray::DefineOwnProperty(Isolate* isolate, Handle<JSArray> o,
   6762                                        Handle<Object> name,
   6763                                        PropertyDescriptor* desc,
   6764                                        ShouldThrow should_throw) {
   6765   // 1. Assert: IsPropertyKey(P) is true. ("P" is |name|.)
   6766   // 2. If P is "length", then:
   6767   // TODO(jkummerow): Check if we need slow string comparison.
   6768   if (*name == isolate->heap()->length_string()) {
   6769     // 2a. Return ArraySetLength(A, Desc).
   6770     return ArraySetLength(isolate, o, desc, should_throw);
   6771   }
   6772   // 3. Else if P is an array index, then:
   6773   uint32_t index = 0;
   6774   if (PropertyKeyToArrayIndex(name, &index)) {
   6775     // 3a. Let oldLenDesc be OrdinaryGetOwnProperty(A, "length").
   6776     PropertyDescriptor old_len_desc;
   6777     Maybe<bool> success = GetOwnPropertyDescriptor(
   6778         isolate, o, isolate->factory()->length_string(), &old_len_desc);
   6779     // 3b. (Assert)
   6780     DCHECK(success.FromJust());
   6781     USE(success);
   6782     // 3c. Let oldLen be oldLenDesc.[[Value]].
   6783     uint32_t old_len = 0;
   6784     CHECK(old_len_desc.value()->ToArrayLength(&old_len));
   6785     // 3d. Let index be ToUint32(P).
   6786     // (Already done above.)
   6787     // 3e. (Assert)
   6788     // 3f. If index >= oldLen and oldLenDesc.[[Writable]] is false,
   6789     //     return false.
   6790     if (index >= old_len && old_len_desc.has_writable() &&
   6791         !old_len_desc.writable()) {
   6792       RETURN_FAILURE(isolate, should_throw,
   6793                      NewTypeError(MessageTemplate::kDefineDisallowed, name));
   6794     }
   6795     // 3g. Let succeeded be OrdinaryDefineOwnProperty(A, P, Desc).
   6796     Maybe<bool> succeeded =
   6797         OrdinaryDefineOwnProperty(isolate, o, name, desc, should_throw);
   6798     // 3h. Assert: succeeded is not an abrupt completion.
   6799     //     In our case, if should_throw == THROW_ON_ERROR, it can be!
   6800     // 3i. If succeeded is false, return false.
   6801     if (succeeded.IsNothing() || !succeeded.FromJust()) return succeeded;
   6802     // 3j. If index >= oldLen, then:
   6803     if (index >= old_len) {
   6804       // 3j i. Set oldLenDesc.[[Value]] to index + 1.
   6805       old_len_desc.set_value(isolate->factory()->NewNumberFromUint(index + 1));
   6806       // 3j ii. Let succeeded be
   6807       //        OrdinaryDefineOwnProperty(A, "length", oldLenDesc).
   6808       succeeded = OrdinaryDefineOwnProperty(isolate, o,
   6809                                             isolate->factory()->length_string(),
   6810                                             &old_len_desc, should_throw);
   6811       // 3j iii. Assert: succeeded is true.
   6812       DCHECK(succeeded.FromJust());
   6813       USE(succeeded);
   6814     }
   6815     // 3k. Return true.
   6816     return Just(true);
   6817   }
   6818 
   6819   // 4. Return OrdinaryDefineOwnProperty(A, P, Desc).
   6820   return OrdinaryDefineOwnProperty(isolate, o, name, desc, should_throw);
   6821 }
   6822 
   6823 
   6824 // Part of ES6 9.4.2.4 ArraySetLength.
   6825 // static
   6826 bool JSArray::AnythingToArrayLength(Isolate* isolate,
   6827                                     Handle<Object> length_object,
   6828                                     uint32_t* output) {
   6829   // Fast path: check numbers and strings that can be converted directly
   6830   // and unobservably.
   6831   if (length_object->ToArrayLength(output)) return true;
   6832   if (length_object->IsString() &&
   6833       Handle<String>::cast(length_object)->AsArrayIndex(output)) {
   6834     return true;
   6835   }
   6836   // Slow path: follow steps in ES6 9.4.2.4 "ArraySetLength".
   6837   // 3. Let newLen be ToUint32(Desc.[[Value]]).
   6838   Handle<Object> uint32_v;
   6839   if (!Object::ToUint32(isolate, length_object).ToHandle(&uint32_v)) {
   6840     // 4. ReturnIfAbrupt(newLen).
   6841     return false;
   6842   }
   6843   // 5. Let numberLen be ToNumber(Desc.[[Value]]).
   6844   Handle<Object> number_v;
   6845   if (!Object::ToNumber(length_object).ToHandle(&number_v)) {
   6846     // 6. ReturnIfAbrupt(newLen).
   6847     return false;
   6848   }
   6849   // 7. If newLen != numberLen, throw a RangeError exception.
   6850   if (uint32_v->Number() != number_v->Number()) {
   6851     Handle<Object> exception =
   6852         isolate->factory()->NewRangeError(MessageTemplate::kInvalidArrayLength);
   6853     isolate->Throw(*exception);
   6854     return false;
   6855   }
   6856   CHECK(uint32_v->ToArrayLength(output));
   6857   return true;
   6858 }
   6859 
   6860 
   6861 // ES6 9.4.2.4
   6862 // static
   6863 Maybe<bool> JSArray::ArraySetLength(Isolate* isolate, Handle<JSArray> a,
   6864                                     PropertyDescriptor* desc,
   6865                                     ShouldThrow should_throw) {
   6866   // 1. If the [[Value]] field of Desc is absent, then
   6867   if (!desc->has_value()) {
   6868     // 1a. Return OrdinaryDefineOwnProperty(A, "length", Desc).
   6869     return OrdinaryDefineOwnProperty(
   6870         isolate, a, isolate->factory()->length_string(), desc, should_throw);
   6871   }
   6872   // 2. Let newLenDesc be a copy of Desc.
   6873   // (Actual copying is not necessary.)
   6874   PropertyDescriptor* new_len_desc = desc;
   6875   // 3. - 7. Convert Desc.[[Value]] to newLen.
   6876   uint32_t new_len = 0;
   6877   if (!AnythingToArrayLength(isolate, desc->value(), &new_len)) {
   6878     DCHECK(isolate->has_pending_exception());
   6879     return Nothing<bool>();
   6880   }
   6881   // 8. Set newLenDesc.[[Value]] to newLen.
   6882   // (Done below, if needed.)
   6883   // 9. Let oldLenDesc be OrdinaryGetOwnProperty(A, "length").
   6884   PropertyDescriptor old_len_desc;
   6885   Maybe<bool> success = GetOwnPropertyDescriptor(
   6886       isolate, a, isolate->factory()->length_string(), &old_len_desc);
   6887   // 10. (Assert)
   6888   DCHECK(success.FromJust());
   6889   USE(success);
   6890   // 11. Let oldLen be oldLenDesc.[[Value]].
   6891   uint32_t old_len = 0;
   6892   CHECK(old_len_desc.value()->ToArrayLength(&old_len));
   6893   // 12. If newLen >= oldLen, then
   6894   if (new_len >= old_len) {
   6895     // 8. Set newLenDesc.[[Value]] to newLen.
   6896     // 12a. Return OrdinaryDefineOwnProperty(A, "length", newLenDesc).
   6897     new_len_desc->set_value(isolate->factory()->NewNumberFromUint(new_len));
   6898     return OrdinaryDefineOwnProperty(isolate, a,
   6899                                      isolate->factory()->length_string(),
   6900                                      new_len_desc, should_throw);
   6901   }
   6902   // 13. If oldLenDesc.[[Writable]] is false, return false.
   6903   if (!old_len_desc.writable()) {
   6904     RETURN_FAILURE(isolate, should_throw,
   6905                    NewTypeError(MessageTemplate::kRedefineDisallowed,
   6906                                 isolate->factory()->length_string()));
   6907   }
   6908   // 14. If newLenDesc.[[Writable]] is absent or has the value true,
   6909   // let newWritable be true.
   6910   bool new_writable = false;
   6911   if (!new_len_desc->has_writable() || new_len_desc->writable()) {
   6912     new_writable = true;
   6913   } else {
   6914     // 15. Else,
   6915     // 15a. Need to defer setting the [[Writable]] attribute to false in case
   6916     //      any elements cannot be deleted.
   6917     // 15b. Let newWritable be false. (It's initialized as "false" anyway.)
   6918     // 15c. Set newLenDesc.[[Writable]] to true.
   6919     // (Not needed.)
   6920   }
   6921   // Most of steps 16 through 19 is implemented by JSArray::SetLength.
   6922   JSArray::SetLength(a, new_len);
   6923   // Steps 19d-ii, 20.
   6924   if (!new_writable) {
   6925     PropertyDescriptor readonly;
   6926     readonly.set_writable(false);
   6927     Maybe<bool> success = OrdinaryDefineOwnProperty(
   6928         isolate, a, isolate->factory()->length_string(), &readonly,
   6929         should_throw);
   6930     DCHECK(success.FromJust());
   6931     USE(success);
   6932   }
   6933   uint32_t actual_new_len = 0;
   6934   CHECK(a->length()->ToArrayLength(&actual_new_len));
   6935   // Steps 19d-v, 21. Return false if there were non-deletable elements.
   6936   bool result = actual_new_len == new_len;
   6937   if (!result) {
   6938     RETURN_FAILURE(
   6939         isolate, should_throw,
   6940         NewTypeError(MessageTemplate::kStrictDeleteProperty,
   6941                      isolate->factory()->NewNumberFromUint(actual_new_len - 1),
   6942                      a));
   6943   }
   6944   return Just(result);
   6945 }
   6946 
   6947 
   6948 // ES6 9.5.6
   6949 // static
   6950 Maybe<bool> JSProxy::DefineOwnProperty(Isolate* isolate, Handle<JSProxy> proxy,
   6951                                        Handle<Object> key,
   6952                                        PropertyDescriptor* desc,
   6953                                        ShouldThrow should_throw) {
   6954   STACK_CHECK(isolate, Nothing<bool>());
   6955   if (key->IsSymbol() && Handle<Symbol>::cast(key)->IsPrivate()) {
   6956     return SetPrivateProperty(isolate, proxy, Handle<Symbol>::cast(key), desc,
   6957                               should_throw);
   6958   }
   6959   Handle<String> trap_name = isolate->factory()->defineProperty_string();
   6960   // 1. Assert: IsPropertyKey(P) is true.
   6961   DCHECK(key->IsName() || key->IsNumber());
   6962   // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O.
   6963   Handle<Object> handler(proxy->handler(), isolate);
   6964   // 3. If handler is null, throw a TypeError exception.
   6965   // 4. Assert: Type(handler) is Object.
   6966   if (proxy->IsRevoked()) {
   6967     isolate->Throw(*isolate->factory()->NewTypeError(
   6968         MessageTemplate::kProxyRevoked, trap_name));
   6969     return Nothing<bool>();
   6970   }
   6971   // 5. Let target be the value of the [[ProxyTarget]] internal slot of O.
   6972   Handle<JSReceiver> target(proxy->target(), isolate);
   6973   // 6. Let trap be ? GetMethod(handler, "defineProperty").
   6974   Handle<Object> trap;
   6975   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   6976       isolate, trap,
   6977       Object::GetMethod(Handle<JSReceiver>::cast(handler), trap_name),
   6978       Nothing<bool>());
   6979   // 7. If trap is undefined, then:
   6980   if (trap->IsUndefined(isolate)) {
   6981     // 7a. Return target.[[DefineOwnProperty]](P, Desc).
   6982     return JSReceiver::DefineOwnProperty(isolate, target, key, desc,
   6983                                          should_throw);
   6984   }
   6985   // 8. Let descObj be FromPropertyDescriptor(Desc).
   6986   Handle<Object> desc_obj = desc->ToObject(isolate);
   6987   // 9. Let booleanTrapResult be
   6988   //    ToBoolean(? Call(trap, handler, target, P, descObj)).
   6989   Handle<Name> property_name =
   6990       key->IsName()
   6991           ? Handle<Name>::cast(key)
   6992           : Handle<Name>::cast(isolate->factory()->NumberToString(key));
   6993   // Do not leak private property names.
   6994   DCHECK(!property_name->IsPrivate());
   6995   Handle<Object> trap_result_obj;
   6996   Handle<Object> args[] = {target, property_name, desc_obj};
   6997   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   6998       isolate, trap_result_obj,
   6999       Execution::Call(isolate, trap, handler, arraysize(args), args),
   7000       Nothing<bool>());
   7001   // 10. If booleanTrapResult is false, return false.
   7002   if (!trap_result_obj->BooleanValue()) {
   7003     RETURN_FAILURE(isolate, should_throw,
   7004                    NewTypeError(MessageTemplate::kProxyTrapReturnedFalsishFor,
   7005                                 trap_name, property_name));
   7006   }
   7007   // 11. Let targetDesc be ? target.[[GetOwnProperty]](P).
   7008   PropertyDescriptor target_desc;
   7009   Maybe<bool> target_found =
   7010       JSReceiver::GetOwnPropertyDescriptor(isolate, target, key, &target_desc);
   7011   MAYBE_RETURN(target_found, Nothing<bool>());
   7012   // 12. Let extensibleTarget be ? IsExtensible(target).
   7013   Maybe<bool> maybe_extensible = JSReceiver::IsExtensible(target);
   7014   MAYBE_RETURN(maybe_extensible, Nothing<bool>());
   7015   bool extensible_target = maybe_extensible.FromJust();
   7016   // 13. If Desc has a [[Configurable]] field and if Desc.[[Configurable]]
   7017   //     is false, then:
   7018   // 13a. Let settingConfigFalse be true.
   7019   // 14. Else let settingConfigFalse be false.
   7020   bool setting_config_false = desc->has_configurable() && !desc->configurable();
   7021   // 15. If targetDesc is undefined, then
   7022   if (!target_found.FromJust()) {
   7023     // 15a. If extensibleTarget is false, throw a TypeError exception.
   7024     if (!extensible_target) {
   7025       isolate->Throw(*isolate->factory()->NewTypeError(
   7026           MessageTemplate::kProxyDefinePropertyNonExtensible, property_name));
   7027       return Nothing<bool>();
   7028     }
   7029     // 15b. If settingConfigFalse is true, throw a TypeError exception.
   7030     if (setting_config_false) {
   7031       isolate->Throw(*isolate->factory()->NewTypeError(
   7032           MessageTemplate::kProxyDefinePropertyNonConfigurable, property_name));
   7033       return Nothing<bool>();
   7034     }
   7035   } else {
   7036     // 16. Else targetDesc is not undefined,
   7037     // 16a. If IsCompatiblePropertyDescriptor(extensibleTarget, Desc,
   7038     //      targetDesc) is false, throw a TypeError exception.
   7039     Maybe<bool> valid =
   7040         IsCompatiblePropertyDescriptor(isolate, extensible_target, desc,
   7041                                        &target_desc, property_name, DONT_THROW);
   7042     MAYBE_RETURN(valid, Nothing<bool>());
   7043     if (!valid.FromJust()) {
   7044       isolate->Throw(*isolate->factory()->NewTypeError(
   7045           MessageTemplate::kProxyDefinePropertyIncompatible, property_name));
   7046       return Nothing<bool>();
   7047     }
   7048     // 16b. If settingConfigFalse is true and targetDesc.[[Configurable]] is
   7049     //      true, throw a TypeError exception.
   7050     if (setting_config_false && target_desc.configurable()) {
   7051       isolate->Throw(*isolate->factory()->NewTypeError(
   7052           MessageTemplate::kProxyDefinePropertyNonConfigurable, property_name));
   7053       return Nothing<bool>();
   7054     }
   7055   }
   7056   // 17. Return true.
   7057   return Just(true);
   7058 }
   7059 
   7060 
   7061 // static
   7062 Maybe<bool> JSProxy::SetPrivateProperty(Isolate* isolate, Handle<JSProxy> proxy,
   7063                                         Handle<Symbol> private_name,
   7064                                         PropertyDescriptor* desc,
   7065                                         ShouldThrow should_throw) {
   7066   // Despite the generic name, this can only add private data properties.
   7067   if (!PropertyDescriptor::IsDataDescriptor(desc) ||
   7068       desc->ToAttributes() != DONT_ENUM) {
   7069     RETURN_FAILURE(isolate, should_throw,
   7070                    NewTypeError(MessageTemplate::kProxyPrivate));
   7071   }
   7072   DCHECK(proxy->map()->is_dictionary_map());
   7073   Handle<Object> value =
   7074       desc->has_value()
   7075           ? desc->value()
   7076           : Handle<Object>::cast(isolate->factory()->undefined_value());
   7077 
   7078   LookupIterator it(proxy, private_name, proxy);
   7079 
   7080   if (it.IsFound()) {
   7081     DCHECK_EQ(LookupIterator::DATA, it.state());
   7082     DCHECK_EQ(DONT_ENUM, it.property_attributes());
   7083     it.WriteDataValue(value);
   7084     return Just(true);
   7085   }
   7086 
   7087   Handle<NameDictionary> dict(proxy->property_dictionary());
   7088   PropertyDetails details(DONT_ENUM, DATA, 0, PropertyCellType::kNoCell);
   7089   Handle<NameDictionary> result =
   7090       NameDictionary::Add(dict, private_name, value, details);
   7091   if (!dict.is_identical_to(result)) proxy->set_properties(*result);
   7092   return Just(true);
   7093 }
   7094 
   7095 
   7096 // static
   7097 Maybe<bool> JSReceiver::GetOwnPropertyDescriptor(Isolate* isolate,
   7098                                                  Handle<JSReceiver> object,
   7099                                                  Handle<Object> key,
   7100                                                  PropertyDescriptor* desc) {
   7101   bool success = false;
   7102   DCHECK(key->IsName() || key->IsNumber());  // |key| is a PropertyKey...
   7103   LookupIterator it = LookupIterator::PropertyOrElement(
   7104       isolate, object, key, &success, LookupIterator::OWN);
   7105   DCHECK(success);  // ...so creating a LookupIterator can't fail.
   7106   return GetOwnPropertyDescriptor(&it, desc);
   7107 }
   7108 
   7109 
   7110 // ES6 9.1.5.1
   7111 // Returns true on success, false if the property didn't exist, nothing if
   7112 // an exception was thrown.
   7113 // static
   7114 Maybe<bool> JSReceiver::GetOwnPropertyDescriptor(LookupIterator* it,
   7115                                                  PropertyDescriptor* desc) {
   7116   Isolate* isolate = it->isolate();
   7117   // "Virtual" dispatch.
   7118   if (it->IsFound() && it->GetHolder<JSReceiver>()->IsJSProxy()) {
   7119     return JSProxy::GetOwnPropertyDescriptor(isolate, it->GetHolder<JSProxy>(),
   7120                                              it->GetName(), desc);
   7121   }
   7122 
   7123   // 1. (Assert)
   7124   // 2. If O does not have an own property with key P, return undefined.
   7125   Maybe<PropertyAttributes> maybe = JSObject::GetPropertyAttributes(it);
   7126   MAYBE_RETURN(maybe, Nothing<bool>());
   7127   PropertyAttributes attrs = maybe.FromJust();
   7128   if (attrs == ABSENT) return Just(false);
   7129   DCHECK(!isolate->has_pending_exception());
   7130 
   7131   // 3. Let D be a newly created Property Descriptor with no fields.
   7132   DCHECK(desc->is_empty());
   7133   // 4. Let X be O's own property whose key is P.
   7134   // 5. If X is a data property, then
   7135   bool is_accessor_pair = it->state() == LookupIterator::ACCESSOR &&
   7136                           it->GetAccessors()->IsAccessorPair();
   7137   if (!is_accessor_pair) {
   7138     // 5a. Set D.[[Value]] to the value of X's [[Value]] attribute.
   7139     Handle<Object> value;
   7140     if (!Object::GetProperty(it).ToHandle(&value)) {
   7141       DCHECK(isolate->has_pending_exception());
   7142       return Nothing<bool>();
   7143     }
   7144     desc->set_value(value);
   7145     // 5b. Set D.[[Writable]] to the value of X's [[Writable]] attribute
   7146     desc->set_writable((attrs & READ_ONLY) == 0);
   7147   } else {
   7148     // 6. Else X is an accessor property, so
   7149     Handle<AccessorPair> accessors =
   7150         Handle<AccessorPair>::cast(it->GetAccessors());
   7151     // 6a. Set D.[[Get]] to the value of X's [[Get]] attribute.
   7152     desc->set_get(AccessorPair::GetComponent(accessors, ACCESSOR_GETTER));
   7153     // 6b. Set D.[[Set]] to the value of X's [[Set]] attribute.
   7154     desc->set_set(AccessorPair::GetComponent(accessors, ACCESSOR_SETTER));
   7155   }
   7156 
   7157   // 7. Set D.[[Enumerable]] to the value of X's [[Enumerable]] attribute.
   7158   desc->set_enumerable((attrs & DONT_ENUM) == 0);
   7159   // 8. Set D.[[Configurable]] to the value of X's [[Configurable]] attribute.
   7160   desc->set_configurable((attrs & DONT_DELETE) == 0);
   7161   // 9. Return D.
   7162   DCHECK(PropertyDescriptor::IsAccessorDescriptor(desc) !=
   7163          PropertyDescriptor::IsDataDescriptor(desc));
   7164   return Just(true);
   7165 }
   7166 
   7167 
   7168 // ES6 9.5.5
   7169 // static
   7170 Maybe<bool> JSProxy::GetOwnPropertyDescriptor(Isolate* isolate,
   7171                                               Handle<JSProxy> proxy,
   7172                                               Handle<Name> name,
   7173                                               PropertyDescriptor* desc) {
   7174   DCHECK(!name->IsPrivate());
   7175   STACK_CHECK(isolate, Nothing<bool>());
   7176 
   7177   Handle<String> trap_name =
   7178       isolate->factory()->getOwnPropertyDescriptor_string();
   7179   // 1. (Assert)
   7180   // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O.
   7181   Handle<Object> handler(proxy->handler(), isolate);
   7182   // 3. If handler is null, throw a TypeError exception.
   7183   // 4. Assert: Type(handler) is Object.
   7184   if (proxy->IsRevoked()) {
   7185     isolate->Throw(*isolate->factory()->NewTypeError(
   7186         MessageTemplate::kProxyRevoked, trap_name));
   7187     return Nothing<bool>();
   7188   }
   7189   // 5. Let target be the value of the [[ProxyTarget]] internal slot of O.
   7190   Handle<JSReceiver> target(proxy->target(), isolate);
   7191   // 6. Let trap be ? GetMethod(handler, "getOwnPropertyDescriptor").
   7192   Handle<Object> trap;
   7193   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   7194       isolate, trap,
   7195       Object::GetMethod(Handle<JSReceiver>::cast(handler), trap_name),
   7196       Nothing<bool>());
   7197   // 7. If trap is undefined, then
   7198   if (trap->IsUndefined(isolate)) {
   7199     // 7a. Return target.[[GetOwnProperty]](P).
   7200     return JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, desc);
   7201   }
   7202   // 8. Let trapResultObj be ? Call(trap, handler, target, P).
   7203   Handle<Object> trap_result_obj;
   7204   Handle<Object> args[] = {target, name};
   7205   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   7206       isolate, trap_result_obj,
   7207       Execution::Call(isolate, trap, handler, arraysize(args), args),
   7208       Nothing<bool>());
   7209   // 9. If Type(trapResultObj) is neither Object nor Undefined, throw a
   7210   //    TypeError exception.
   7211   if (!trap_result_obj->IsJSReceiver() &&
   7212       !trap_result_obj->IsUndefined(isolate)) {
   7213     isolate->Throw(*isolate->factory()->NewTypeError(
   7214         MessageTemplate::kProxyGetOwnPropertyDescriptorInvalid, name));
   7215     return Nothing<bool>();
   7216   }
   7217   // 10. Let targetDesc be ? target.[[GetOwnProperty]](P).
   7218   PropertyDescriptor target_desc;
   7219   Maybe<bool> found =
   7220       JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, &target_desc);
   7221   MAYBE_RETURN(found, Nothing<bool>());
   7222   // 11. If trapResultObj is undefined, then
   7223   if (trap_result_obj->IsUndefined(isolate)) {
   7224     // 11a. If targetDesc is undefined, return undefined.
   7225     if (!found.FromJust()) return Just(false);
   7226     // 11b. If targetDesc.[[Configurable]] is false, throw a TypeError
   7227     //      exception.
   7228     if (!target_desc.configurable()) {
   7229       isolate->Throw(*isolate->factory()->NewTypeError(
   7230           MessageTemplate::kProxyGetOwnPropertyDescriptorUndefined, name));
   7231       return Nothing<bool>();
   7232     }
   7233     // 11c. Let extensibleTarget be ? IsExtensible(target).
   7234     Maybe<bool> extensible_target = JSReceiver::IsExtensible(target);
   7235     MAYBE_RETURN(extensible_target, Nothing<bool>());
   7236     // 11d. (Assert)
   7237     // 11e. If extensibleTarget is false, throw a TypeError exception.
   7238     if (!extensible_target.FromJust()) {
   7239       isolate->Throw(*isolate->factory()->NewTypeError(
   7240           MessageTemplate::kProxyGetOwnPropertyDescriptorNonExtensible, name));
   7241       return Nothing<bool>();
   7242     }
   7243     // 11f. Return undefined.
   7244     return Just(false);
   7245   }
   7246   // 12. Let extensibleTarget be ? IsExtensible(target).
   7247   Maybe<bool> extensible_target = JSReceiver::IsExtensible(target);
   7248   MAYBE_RETURN(extensible_target, Nothing<bool>());
   7249   // 13. Let resultDesc be ? ToPropertyDescriptor(trapResultObj).
   7250   if (!PropertyDescriptor::ToPropertyDescriptor(isolate, trap_result_obj,
   7251                                                 desc)) {
   7252     DCHECK(isolate->has_pending_exception());
   7253     return Nothing<bool>();
   7254   }
   7255   // 14. Call CompletePropertyDescriptor(resultDesc).
   7256   PropertyDescriptor::CompletePropertyDescriptor(isolate, desc);
   7257   // 15. Let valid be IsCompatiblePropertyDescriptor (extensibleTarget,
   7258   //     resultDesc, targetDesc).
   7259   Maybe<bool> valid =
   7260       IsCompatiblePropertyDescriptor(isolate, extensible_target.FromJust(),
   7261                                      desc, &target_desc, name, DONT_THROW);
   7262   MAYBE_RETURN(valid, Nothing<bool>());
   7263   // 16. If valid is false, throw a TypeError exception.
   7264   if (!valid.FromJust()) {
   7265     isolate->Throw(*isolate->factory()->NewTypeError(
   7266         MessageTemplate::kProxyGetOwnPropertyDescriptorIncompatible, name));
   7267     return Nothing<bool>();
   7268   }
   7269   // 17. If resultDesc.[[Configurable]] is false, then
   7270   if (!desc->configurable()) {
   7271     // 17a. If targetDesc is undefined or targetDesc.[[Configurable]] is true:
   7272     if (target_desc.is_empty() || target_desc.configurable()) {
   7273       // 17a i. Throw a TypeError exception.
   7274       isolate->Throw(*isolate->factory()->NewTypeError(
   7275           MessageTemplate::kProxyGetOwnPropertyDescriptorNonConfigurable,
   7276           name));
   7277       return Nothing<bool>();
   7278     }
   7279   }
   7280   // 18. Return resultDesc.
   7281   return Just(true);
   7282 }
   7283 
   7284 
   7285 bool JSObject::ReferencesObjectFromElements(FixedArray* elements,
   7286                                             ElementsKind kind,
   7287                                             Object* object) {
   7288   Isolate* isolate = elements->GetIsolate();
   7289   if (IsFastObjectElementsKind(kind) || kind == FAST_STRING_WRAPPER_ELEMENTS) {
   7290     int length = IsJSArray()
   7291         ? Smi::cast(JSArray::cast(this)->length())->value()
   7292         : elements->length();
   7293     for (int i = 0; i < length; ++i) {
   7294       Object* element = elements->get(i);
   7295       if (!element->IsTheHole(isolate) && element == object) return true;
   7296     }
   7297   } else {
   7298     DCHECK(kind == DICTIONARY_ELEMENTS || kind == SLOW_STRING_WRAPPER_ELEMENTS);
   7299     Object* key =
   7300         SeededNumberDictionary::cast(elements)->SlowReverseLookup(object);
   7301     if (!key->IsUndefined(isolate)) return true;
   7302   }
   7303   return false;
   7304 }
   7305 
   7306 
   7307 // Check whether this object references another object.
   7308 bool JSObject::ReferencesObject(Object* obj) {
   7309   Map* map_of_this = map();
   7310   Heap* heap = GetHeap();
   7311   DisallowHeapAllocation no_allocation;
   7312 
   7313   // Is the object the constructor for this object?
   7314   if (map_of_this->GetConstructor() == obj) {
   7315     return true;
   7316   }
   7317 
   7318   // Is the object the prototype for this object?
   7319   if (map_of_this->prototype() == obj) {
   7320     return true;
   7321   }
   7322 
   7323   // Check if the object is among the named properties.
   7324   Object* key = SlowReverseLookup(obj);
   7325   if (!key->IsUndefined(heap->isolate())) {
   7326     return true;
   7327   }
   7328 
   7329   // Check if the object is among the indexed properties.
   7330   ElementsKind kind = GetElementsKind();
   7331   switch (kind) {
   7332     // Raw pixels and external arrays do not reference other
   7333     // objects.
   7334 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size)                        \
   7335     case TYPE##_ELEMENTS:                                                      \
   7336       break;
   7337 
   7338     TYPED_ARRAYS(TYPED_ARRAY_CASE)
   7339 #undef TYPED_ARRAY_CASE
   7340 
   7341     case FAST_DOUBLE_ELEMENTS:
   7342     case FAST_HOLEY_DOUBLE_ELEMENTS:
   7343       break;
   7344     case FAST_SMI_ELEMENTS:
   7345     case FAST_HOLEY_SMI_ELEMENTS:
   7346       break;
   7347     case FAST_ELEMENTS:
   7348     case FAST_HOLEY_ELEMENTS:
   7349     case DICTIONARY_ELEMENTS:
   7350     case FAST_STRING_WRAPPER_ELEMENTS:
   7351     case SLOW_STRING_WRAPPER_ELEMENTS: {
   7352       FixedArray* elements = FixedArray::cast(this->elements());
   7353       if (ReferencesObjectFromElements(elements, kind, obj)) return true;
   7354       break;
   7355     }
   7356     case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
   7357     case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: {
   7358       FixedArray* parameter_map = FixedArray::cast(elements());
   7359       // Check the mapped parameters.
   7360       int length = parameter_map->length();
   7361       for (int i = 2; i < length; ++i) {
   7362         Object* value = parameter_map->get(i);
   7363         if (!value->IsTheHole(heap->isolate()) && value == obj) return true;
   7364       }
   7365       // Check the arguments.
   7366       FixedArray* arguments = FixedArray::cast(parameter_map->get(1));
   7367       kind = arguments->IsDictionary() ? DICTIONARY_ELEMENTS :
   7368           FAST_HOLEY_ELEMENTS;
   7369       if (ReferencesObjectFromElements(arguments, kind, obj)) return true;
   7370       break;
   7371     }
   7372     case NO_ELEMENTS:
   7373       break;
   7374   }
   7375 
   7376   // For functions check the context.
   7377   if (IsJSFunction()) {
   7378     // Get the constructor function for arguments array.
   7379     Map* arguments_map =
   7380         heap->isolate()->context()->native_context()->sloppy_arguments_map();
   7381     JSFunction* arguments_function =
   7382         JSFunction::cast(arguments_map->GetConstructor());
   7383 
   7384     // Get the context and don't check if it is the native context.
   7385     JSFunction* f = JSFunction::cast(this);
   7386     Context* context = f->context();
   7387     if (context->IsNativeContext()) {
   7388       return false;
   7389     }
   7390 
   7391     // Check the non-special context slots.
   7392     for (int i = Context::MIN_CONTEXT_SLOTS; i < context->length(); i++) {
   7393       // Only check JS objects.
   7394       if (context->get(i)->IsJSObject()) {
   7395         JSObject* ctxobj = JSObject::cast(context->get(i));
   7396         // If it is an arguments array check the content.
   7397         if (ctxobj->map()->GetConstructor() == arguments_function) {
   7398           if (ctxobj->ReferencesObject(obj)) {
   7399             return true;
   7400           }
   7401         } else if (ctxobj == obj) {
   7402           return true;
   7403         }
   7404       }
   7405     }
   7406 
   7407     // Check the context extension (if any) if it can have references.
   7408     if (context->has_extension() && !context->IsCatchContext()) {
   7409       // With harmony scoping, a JSFunction may have a script context.
   7410       // TODO(mvstanton): walk into the ScopeInfo.
   7411       if (context->IsScriptContext()) {
   7412         return false;
   7413       }
   7414 
   7415       return context->extension_object()->ReferencesObject(obj);
   7416     }
   7417   }
   7418 
   7419   // No references to object.
   7420   return false;
   7421 }
   7422 
   7423 
   7424 Maybe<bool> JSReceiver::SetIntegrityLevel(Handle<JSReceiver> receiver,
   7425                                           IntegrityLevel level,
   7426                                           ShouldThrow should_throw) {
   7427   DCHECK(level == SEALED || level == FROZEN);
   7428 
   7429   if (receiver->IsJSObject()) {
   7430     Handle<JSObject> object = Handle<JSObject>::cast(receiver);
   7431     if (!object->HasSloppyArgumentsElements()) {  // Fast path.
   7432       if (level == SEALED) {
   7433         return JSObject::PreventExtensionsWithTransition<SEALED>(object,
   7434                                                                  should_throw);
   7435       } else {
   7436         return JSObject::PreventExtensionsWithTransition<FROZEN>(object,
   7437                                                                  should_throw);
   7438       }
   7439     }
   7440   }
   7441 
   7442   Isolate* isolate = receiver->GetIsolate();
   7443 
   7444   MAYBE_RETURN(JSReceiver::PreventExtensions(receiver, should_throw),
   7445                Nothing<bool>());
   7446 
   7447   Handle<FixedArray> keys;
   7448   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   7449       isolate, keys, JSReceiver::OwnPropertyKeys(receiver), Nothing<bool>());
   7450 
   7451   PropertyDescriptor no_conf;
   7452   no_conf.set_configurable(false);
   7453 
   7454   PropertyDescriptor no_conf_no_write;
   7455   no_conf_no_write.set_configurable(false);
   7456   no_conf_no_write.set_writable(false);
   7457 
   7458   if (level == SEALED) {
   7459     for (int i = 0; i < keys->length(); ++i) {
   7460       Handle<Object> key(keys->get(i), isolate);
   7461       MAYBE_RETURN(
   7462           DefineOwnProperty(isolate, receiver, key, &no_conf, THROW_ON_ERROR),
   7463           Nothing<bool>());
   7464     }
   7465     return Just(true);
   7466   }
   7467 
   7468   for (int i = 0; i < keys->length(); ++i) {
   7469     Handle<Object> key(keys->get(i), isolate);
   7470     PropertyDescriptor current_desc;
   7471     Maybe<bool> owned = JSReceiver::GetOwnPropertyDescriptor(
   7472         isolate, receiver, key, &current_desc);
   7473     MAYBE_RETURN(owned, Nothing<bool>());
   7474     if (owned.FromJust()) {
   7475       PropertyDescriptor desc =
   7476           PropertyDescriptor::IsAccessorDescriptor(&current_desc)
   7477               ? no_conf
   7478               : no_conf_no_write;
   7479       MAYBE_RETURN(
   7480           DefineOwnProperty(isolate, receiver, key, &desc, THROW_ON_ERROR),
   7481           Nothing<bool>());
   7482     }
   7483   }
   7484   return Just(true);
   7485 }
   7486 
   7487 
   7488 Maybe<bool> JSReceiver::TestIntegrityLevel(Handle<JSReceiver> object,
   7489                                            IntegrityLevel level) {
   7490   DCHECK(level == SEALED || level == FROZEN);
   7491   Isolate* isolate = object->GetIsolate();
   7492 
   7493   Maybe<bool> extensible = JSReceiver::IsExtensible(object);
   7494   MAYBE_RETURN(extensible, Nothing<bool>());
   7495   if (extensible.FromJust()) return Just(false);
   7496 
   7497   Handle<FixedArray> keys;
   7498   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   7499       isolate, keys, JSReceiver::OwnPropertyKeys(object), Nothing<bool>());
   7500 
   7501   for (int i = 0; i < keys->length(); ++i) {
   7502     Handle<Object> key(keys->get(i), isolate);
   7503     PropertyDescriptor current_desc;
   7504     Maybe<bool> owned = JSReceiver::GetOwnPropertyDescriptor(
   7505         isolate, object, key, &current_desc);
   7506     MAYBE_RETURN(owned, Nothing<bool>());
   7507     if (owned.FromJust()) {
   7508       if (current_desc.configurable()) return Just(false);
   7509       if (level == FROZEN &&
   7510           PropertyDescriptor::IsDataDescriptor(&current_desc) &&
   7511           current_desc.writable()) {
   7512         return Just(false);
   7513       }
   7514     }
   7515   }
   7516   return Just(true);
   7517 }
   7518 
   7519 
   7520 Maybe<bool> JSReceiver::PreventExtensions(Handle<JSReceiver> object,
   7521                                           ShouldThrow should_throw) {
   7522   if (object->IsJSProxy()) {
   7523     return JSProxy::PreventExtensions(Handle<JSProxy>::cast(object),
   7524                                       should_throw);
   7525   }
   7526   DCHECK(object->IsJSObject());
   7527   return JSObject::PreventExtensions(Handle<JSObject>::cast(object),
   7528                                      should_throw);
   7529 }
   7530 
   7531 
   7532 Maybe<bool> JSProxy::PreventExtensions(Handle<JSProxy> proxy,
   7533                                        ShouldThrow should_throw) {
   7534   Isolate* isolate = proxy->GetIsolate();
   7535   STACK_CHECK(isolate, Nothing<bool>());
   7536   Factory* factory = isolate->factory();
   7537   Handle<String> trap_name = factory->preventExtensions_string();
   7538 
   7539   if (proxy->IsRevoked()) {
   7540     isolate->Throw(
   7541         *factory->NewTypeError(MessageTemplate::kProxyRevoked, trap_name));
   7542     return Nothing<bool>();
   7543   }
   7544   Handle<JSReceiver> target(proxy->target(), isolate);
   7545   Handle<JSReceiver> handler(JSReceiver::cast(proxy->handler()), isolate);
   7546 
   7547   Handle<Object> trap;
   7548   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   7549       isolate, trap, Object::GetMethod(handler, trap_name), Nothing<bool>());
   7550   if (trap->IsUndefined(isolate)) {
   7551     return JSReceiver::PreventExtensions(target, should_throw);
   7552   }
   7553 
   7554   Handle<Object> trap_result;
   7555   Handle<Object> args[] = {target};
   7556   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   7557       isolate, trap_result,
   7558       Execution::Call(isolate, trap, handler, arraysize(args), args),
   7559       Nothing<bool>());
   7560   if (!trap_result->BooleanValue()) {
   7561     RETURN_FAILURE(
   7562         isolate, should_throw,
   7563         NewTypeError(MessageTemplate::kProxyTrapReturnedFalsish, trap_name));
   7564   }
   7565 
   7566   // Enforce the invariant.
   7567   Maybe<bool> target_result = JSReceiver::IsExtensible(target);
   7568   MAYBE_RETURN(target_result, Nothing<bool>());
   7569   if (target_result.FromJust()) {
   7570     isolate->Throw(*factory->NewTypeError(
   7571         MessageTemplate::kProxyPreventExtensionsExtensible));
   7572     return Nothing<bool>();
   7573   }
   7574   return Just(true);
   7575 }
   7576 
   7577 
   7578 Maybe<bool> JSObject::PreventExtensions(Handle<JSObject> object,
   7579                                         ShouldThrow should_throw) {
   7580   Isolate* isolate = object->GetIsolate();
   7581 
   7582   if (!object->HasSloppyArgumentsElements()) {
   7583     return PreventExtensionsWithTransition<NONE>(object, should_throw);
   7584   }
   7585 
   7586   if (object->IsAccessCheckNeeded() &&
   7587       !isolate->MayAccess(handle(isolate->context()), object)) {
   7588     isolate->ReportFailedAccessCheck(object);
   7589     RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
   7590     RETURN_FAILURE(isolate, should_throw,
   7591                    NewTypeError(MessageTemplate::kNoAccess));
   7592   }
   7593 
   7594   if (!object->map()->is_extensible()) return Just(true);
   7595 
   7596   if (object->IsJSGlobalProxy()) {
   7597     PrototypeIterator iter(isolate, object);
   7598     if (iter.IsAtEnd()) return Just(true);
   7599     DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject());
   7600     return PreventExtensions(PrototypeIterator::GetCurrent<JSObject>(iter),
   7601                              should_throw);
   7602   }
   7603 
   7604   if (!object->HasFixedTypedArrayElements()) {
   7605     // If there are fast elements we normalize.
   7606     Handle<SeededNumberDictionary> dictionary = NormalizeElements(object);
   7607     DCHECK(object->HasDictionaryElements() ||
   7608            object->HasSlowArgumentsElements());
   7609 
   7610     // Make sure that we never go back to fast case.
   7611     object->RequireSlowElements(*dictionary);
   7612   }
   7613 
   7614   // Do a map transition, other objects with this map may still
   7615   // be extensible.
   7616   // TODO(adamk): Extend the NormalizedMapCache to handle non-extensible maps.
   7617   Handle<Map> new_map = Map::Copy(handle(object->map()), "PreventExtensions");
   7618 
   7619   new_map->set_is_extensible(false);
   7620   JSObject::MigrateToMap(object, new_map);
   7621   DCHECK(!object->map()->is_extensible());
   7622 
   7623   return Just(true);
   7624 }
   7625 
   7626 
   7627 Maybe<bool> JSReceiver::IsExtensible(Handle<JSReceiver> object) {
   7628   if (object->IsJSProxy()) {
   7629     return JSProxy::IsExtensible(Handle<JSProxy>::cast(object));
   7630   }
   7631   return Just(JSObject::IsExtensible(Handle<JSObject>::cast(object)));
   7632 }
   7633 
   7634 
   7635 Maybe<bool> JSProxy::IsExtensible(Handle<JSProxy> proxy) {
   7636   Isolate* isolate = proxy->GetIsolate();
   7637   STACK_CHECK(isolate, Nothing<bool>());
   7638   Factory* factory = isolate->factory();
   7639   Handle<String> trap_name = factory->isExtensible_string();
   7640 
   7641   if (proxy->IsRevoked()) {
   7642     isolate->Throw(
   7643         *factory->NewTypeError(MessageTemplate::kProxyRevoked, trap_name));
   7644     return Nothing<bool>();
   7645   }
   7646   Handle<JSReceiver> target(proxy->target(), isolate);
   7647   Handle<JSReceiver> handler(JSReceiver::cast(proxy->handler()), isolate);
   7648 
   7649   Handle<Object> trap;
   7650   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   7651       isolate, trap, Object::GetMethod(handler, trap_name), Nothing<bool>());
   7652   if (trap->IsUndefined(isolate)) {
   7653     return JSReceiver::IsExtensible(target);
   7654   }
   7655 
   7656   Handle<Object> trap_result;
   7657   Handle<Object> args[] = {target};
   7658   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   7659       isolate, trap_result,
   7660       Execution::Call(isolate, trap, handler, arraysize(args), args),
   7661       Nothing<bool>());
   7662 
   7663   // Enforce the invariant.
   7664   Maybe<bool> target_result = JSReceiver::IsExtensible(target);
   7665   MAYBE_RETURN(target_result, Nothing<bool>());
   7666   if (target_result.FromJust() != trap_result->BooleanValue()) {
   7667     isolate->Throw(
   7668         *factory->NewTypeError(MessageTemplate::kProxyIsExtensibleInconsistent,
   7669                                factory->ToBoolean(target_result.FromJust())));
   7670     return Nothing<bool>();
   7671   }
   7672   return target_result;
   7673 }
   7674 
   7675 
   7676 bool JSObject::IsExtensible(Handle<JSObject> object) {
   7677   Isolate* isolate = object->GetIsolate();
   7678   if (object->IsAccessCheckNeeded() &&
   7679       !isolate->MayAccess(handle(isolate->context()), object)) {
   7680     return true;
   7681   }
   7682   if (object->IsJSGlobalProxy()) {
   7683     PrototypeIterator iter(isolate, *object);
   7684     if (iter.IsAtEnd()) return false;
   7685     DCHECK(iter.GetCurrent()->IsJSGlobalObject());
   7686     return iter.GetCurrent<JSObject>()->map()->is_extensible();
   7687   }
   7688   return object->map()->is_extensible();
   7689 }
   7690 
   7691 
   7692 template <typename Dictionary>
   7693 static void ApplyAttributesToDictionary(Dictionary* dictionary,
   7694                                         const PropertyAttributes attributes) {
   7695   int capacity = dictionary->Capacity();
   7696   Isolate* isolate = dictionary->GetIsolate();
   7697   for (int i = 0; i < capacity; i++) {
   7698     Object* k = dictionary->KeyAt(i);
   7699     if (dictionary->IsKey(isolate, k) &&
   7700         !(k->IsSymbol() && Symbol::cast(k)->is_private())) {
   7701       PropertyDetails details = dictionary->DetailsAt(i);
   7702       int attrs = attributes;
   7703       // READ_ONLY is an invalid attribute for JS setters/getters.
   7704       if ((attributes & READ_ONLY) && details.type() == ACCESSOR_CONSTANT) {
   7705         Object* v = dictionary->ValueAt(i);
   7706         if (v->IsPropertyCell()) v = PropertyCell::cast(v)->value();
   7707         if (v->IsAccessorPair()) attrs &= ~READ_ONLY;
   7708       }
   7709       details = details.CopyAddAttributes(
   7710           static_cast<PropertyAttributes>(attrs));
   7711       dictionary->DetailsAtPut(i, details);
   7712     }
   7713   }
   7714 }
   7715 
   7716 
   7717 template <PropertyAttributes attrs>
   7718 Maybe<bool> JSObject::PreventExtensionsWithTransition(
   7719     Handle<JSObject> object, ShouldThrow should_throw) {
   7720   STATIC_ASSERT(attrs == NONE || attrs == SEALED || attrs == FROZEN);
   7721 
   7722   // Sealing/freezing sloppy arguments should be handled elsewhere.
   7723   DCHECK(!object->HasSloppyArgumentsElements());
   7724 
   7725   Isolate* isolate = object->GetIsolate();
   7726   if (object->IsAccessCheckNeeded() &&
   7727       !isolate->MayAccess(handle(isolate->context()), object)) {
   7728     isolate->ReportFailedAccessCheck(object);
   7729     RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
   7730     RETURN_FAILURE(isolate, should_throw,
   7731                    NewTypeError(MessageTemplate::kNoAccess));
   7732   }
   7733 
   7734   if (attrs == NONE && !object->map()->is_extensible()) return Just(true);
   7735 
   7736   if (object->IsJSGlobalProxy()) {
   7737     PrototypeIterator iter(isolate, object);
   7738     if (iter.IsAtEnd()) return Just(true);
   7739     DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject());
   7740     return PreventExtensionsWithTransition<attrs>(
   7741         PrototypeIterator::GetCurrent<JSObject>(iter), should_throw);
   7742   }
   7743 
   7744   Handle<SeededNumberDictionary> new_element_dictionary;
   7745   if (!object->HasFixedTypedArrayElements() &&
   7746       !object->HasDictionaryElements() &&
   7747       !object->HasSlowStringWrapperElements()) {
   7748     int length =
   7749         object->IsJSArray()
   7750             ? Smi::cast(Handle<JSArray>::cast(object)->length())->value()
   7751             : object->elements()->length();
   7752     new_element_dictionary =
   7753         length == 0 ? isolate->factory()->empty_slow_element_dictionary()
   7754                     : object->GetElementsAccessor()->Normalize(object);
   7755   }
   7756 
   7757   Handle<Symbol> transition_marker;
   7758   if (attrs == NONE) {
   7759     transition_marker = isolate->factory()->nonextensible_symbol();
   7760   } else if (attrs == SEALED) {
   7761     transition_marker = isolate->factory()->sealed_symbol();
   7762   } else {
   7763     DCHECK(attrs == FROZEN);
   7764     transition_marker = isolate->factory()->frozen_symbol();
   7765   }
   7766 
   7767   Handle<Map> old_map(object->map(), isolate);
   7768   Map* transition =
   7769       TransitionArray::SearchSpecial(*old_map, *transition_marker);
   7770   if (transition != NULL) {
   7771     Handle<Map> transition_map(transition, isolate);
   7772     DCHECK(transition_map->has_dictionary_elements() ||
   7773            transition_map->has_fixed_typed_array_elements() ||
   7774            transition_map->elements_kind() == SLOW_STRING_WRAPPER_ELEMENTS);
   7775     DCHECK(!transition_map->is_extensible());
   7776     JSObject::MigrateToMap(object, transition_map);
   7777   } else if (TransitionArray::CanHaveMoreTransitions(old_map)) {
   7778     // Create a new descriptor array with the appropriate property attributes
   7779     Handle<Map> new_map = Map::CopyForPreventExtensions(
   7780         old_map, attrs, transition_marker, "CopyForPreventExtensions");
   7781     JSObject::MigrateToMap(object, new_map);
   7782   } else {
   7783     DCHECK(old_map->is_dictionary_map() || !old_map->is_prototype_map());
   7784     // Slow path: need to normalize properties for safety
   7785     NormalizeProperties(object, CLEAR_INOBJECT_PROPERTIES, 0,
   7786                         "SlowPreventExtensions");
   7787 
   7788     // Create a new map, since other objects with this map may be extensible.
   7789     // TODO(adamk): Extend the NormalizedMapCache to handle non-extensible maps.
   7790     Handle<Map> new_map =
   7791         Map::Copy(handle(object->map()), "SlowCopyForPreventExtensions");
   7792     new_map->set_is_extensible(false);
   7793     if (!new_element_dictionary.is_null()) {
   7794       ElementsKind new_kind =
   7795           IsStringWrapperElementsKind(old_map->elements_kind())
   7796               ? SLOW_STRING_WRAPPER_ELEMENTS
   7797               : DICTIONARY_ELEMENTS;
   7798       new_map->set_elements_kind(new_kind);
   7799     }
   7800     JSObject::MigrateToMap(object, new_map);
   7801 
   7802     if (attrs != NONE) {
   7803       if (object->IsJSGlobalObject()) {
   7804         ApplyAttributesToDictionary(object->global_dictionary(), attrs);
   7805       } else {
   7806         ApplyAttributesToDictionary(object->property_dictionary(), attrs);
   7807       }
   7808     }
   7809   }
   7810 
   7811   // Both seal and preventExtensions always go through without modifications to
   7812   // typed array elements. Freeze works only if there are no actual elements.
   7813   if (object->HasFixedTypedArrayElements()) {
   7814     if (attrs == FROZEN &&
   7815         JSArrayBufferView::cast(*object)->byte_length()->Number() > 0) {
   7816       isolate->Throw(*isolate->factory()->NewTypeError(
   7817           MessageTemplate::kCannotFreezeArrayBufferView));
   7818       return Nothing<bool>();
   7819     }
   7820     return Just(true);
   7821   }
   7822 
   7823   DCHECK(object->map()->has_dictionary_elements() ||
   7824          object->map()->elements_kind() == SLOW_STRING_WRAPPER_ELEMENTS);
   7825   if (!new_element_dictionary.is_null()) {
   7826     object->set_elements(*new_element_dictionary);
   7827   }
   7828 
   7829   if (object->elements() != isolate->heap()->empty_slow_element_dictionary()) {
   7830     SeededNumberDictionary* dictionary = object->element_dictionary();
   7831     // Make sure we never go back to the fast case
   7832     object->RequireSlowElements(dictionary);
   7833     if (attrs != NONE) {
   7834       ApplyAttributesToDictionary(dictionary, attrs);
   7835     }
   7836   }
   7837 
   7838   return Just(true);
   7839 }
   7840 
   7841 
   7842 Handle<Object> JSObject::FastPropertyAt(Handle<JSObject> object,
   7843                                         Representation representation,
   7844                                         FieldIndex index) {
   7845   Isolate* isolate = object->GetIsolate();
   7846   if (object->IsUnboxedDoubleField(index)) {
   7847     double value = object->RawFastDoublePropertyAt(index);
   7848     return isolate->factory()->NewHeapNumber(value);
   7849   }
   7850   Handle<Object> raw_value(object->RawFastPropertyAt(index), isolate);
   7851   return Object::WrapForRead(isolate, raw_value, representation);
   7852 }
   7853 
   7854 template <class ContextObject>
   7855 class JSObjectWalkVisitor {
   7856  public:
   7857   JSObjectWalkVisitor(ContextObject* site_context, bool copying,
   7858                       JSObject::DeepCopyHints hints)
   7859     : site_context_(site_context),
   7860       copying_(copying),
   7861       hints_(hints) {}
   7862 
   7863   MUST_USE_RESULT MaybeHandle<JSObject> StructureWalk(Handle<JSObject> object);
   7864 
   7865  protected:
   7866   MUST_USE_RESULT inline MaybeHandle<JSObject> VisitElementOrProperty(
   7867       Handle<JSObject> object,
   7868       Handle<JSObject> value) {
   7869     Handle<AllocationSite> current_site = site_context()->EnterNewScope();
   7870     MaybeHandle<JSObject> copy_of_value = StructureWalk(value);
   7871     site_context()->ExitScope(current_site, value);
   7872     return copy_of_value;
   7873   }
   7874 
   7875   inline ContextObject* site_context() { return site_context_; }
   7876   inline Isolate* isolate() { return site_context()->isolate(); }
   7877 
   7878   inline bool copying() const { return copying_; }
   7879 
   7880  private:
   7881   ContextObject* site_context_;
   7882   const bool copying_;
   7883   const JSObject::DeepCopyHints hints_;
   7884 };
   7885 
   7886 template <class ContextObject>
   7887 MaybeHandle<JSObject> JSObjectWalkVisitor<ContextObject>::StructureWalk(
   7888     Handle<JSObject> object) {
   7889   Isolate* isolate = this->isolate();
   7890   bool copying = this->copying();
   7891   bool shallow = hints_ == JSObject::kObjectIsShallow;
   7892 
   7893   if (!shallow) {
   7894     StackLimitCheck check(isolate);
   7895 
   7896     if (check.HasOverflowed()) {
   7897       isolate->StackOverflow();
   7898       return MaybeHandle<JSObject>();
   7899     }
   7900   }
   7901 
   7902   if (object->map()->is_deprecated()) {
   7903     JSObject::MigrateInstance(object);
   7904   }
   7905 
   7906   Handle<JSObject> copy;
   7907   if (copying) {
   7908     // JSFunction objects are not allowed to be in normal boilerplates at all.
   7909     DCHECK(!object->IsJSFunction());
   7910     Handle<AllocationSite> site_to_pass;
   7911     if (site_context()->ShouldCreateMemento(object)) {
   7912       site_to_pass = site_context()->current();
   7913     }
   7914     copy = isolate->factory()->CopyJSObjectWithAllocationSite(
   7915         object, site_to_pass);
   7916   } else {
   7917     copy = object;
   7918   }
   7919 
   7920   DCHECK(copying || copy.is_identical_to(object));
   7921 
   7922   ElementsKind kind = copy->GetElementsKind();
   7923   if (copying && IsFastSmiOrObjectElementsKind(kind) &&
   7924       FixedArray::cast(copy->elements())->map() ==
   7925         isolate->heap()->fixed_cow_array_map()) {
   7926     isolate->counters()->cow_arrays_created_runtime()->Increment();
   7927   }
   7928 
   7929   if (!shallow) {
   7930     HandleScope scope(isolate);
   7931 
   7932     // Deep copy own properties.
   7933     if (copy->HasFastProperties()) {
   7934       Handle<DescriptorArray> descriptors(copy->map()->instance_descriptors());
   7935       int limit = copy->map()->NumberOfOwnDescriptors();
   7936       for (int i = 0; i < limit; i++) {
   7937         PropertyDetails details = descriptors->GetDetails(i);
   7938         if (details.type() != DATA) continue;
   7939         FieldIndex index = FieldIndex::ForDescriptor(copy->map(), i);
   7940         if (object->IsUnboxedDoubleField(index)) {
   7941           if (copying) {
   7942             double value = object->RawFastDoublePropertyAt(index);
   7943             copy->RawFastDoublePropertyAtPut(index, value);
   7944           }
   7945         } else {
   7946           Handle<Object> value(object->RawFastPropertyAt(index), isolate);
   7947           if (value->IsJSObject()) {
   7948             ASSIGN_RETURN_ON_EXCEPTION(
   7949                 isolate, value,
   7950                 VisitElementOrProperty(copy, Handle<JSObject>::cast(value)),
   7951                 JSObject);
   7952             if (copying) {
   7953               copy->FastPropertyAtPut(index, *value);
   7954             }
   7955           } else {
   7956             if (copying) {
   7957               Representation representation = details.representation();
   7958               value = Object::NewStorageFor(isolate, value, representation);
   7959               copy->FastPropertyAtPut(index, *value);
   7960             }
   7961           }
   7962         }
   7963       }
   7964     } else {
   7965       // Only deep copy fields from the object literal expression.
   7966       // In particular, don't try to copy the length attribute of
   7967       // an array.
   7968       PropertyFilter filter = static_cast<PropertyFilter>(
   7969           ONLY_WRITABLE | ONLY_ENUMERABLE | ONLY_CONFIGURABLE);
   7970       KeyAccumulator accumulator(isolate, KeyCollectionMode::kOwnOnly, filter);
   7971       accumulator.CollectOwnPropertyNames(copy, copy);
   7972       Handle<FixedArray> names = accumulator.GetKeys();
   7973       for (int i = 0; i < names->length(); i++) {
   7974         DCHECK(names->get(i)->IsName());
   7975         Handle<Name> name(Name::cast(names->get(i)));
   7976         Handle<Object> value =
   7977             JSObject::GetProperty(copy, name).ToHandleChecked();
   7978         if (value->IsJSObject()) {
   7979           Handle<JSObject> result;
   7980           ASSIGN_RETURN_ON_EXCEPTION(
   7981               isolate, result,
   7982               VisitElementOrProperty(copy, Handle<JSObject>::cast(value)),
   7983               JSObject);
   7984           if (copying) {
   7985             // Creating object copy for literals. No strict mode needed.
   7986             JSObject::SetProperty(copy, name, result, SLOPPY).Assert();
   7987           }
   7988         }
   7989       }
   7990     }
   7991 
   7992     // Deep copy own elements.
   7993     switch (kind) {
   7994       case FAST_ELEMENTS:
   7995       case FAST_HOLEY_ELEMENTS: {
   7996         Handle<FixedArray> elements(FixedArray::cast(copy->elements()));
   7997         if (elements->map() == isolate->heap()->fixed_cow_array_map()) {
   7998 #ifdef DEBUG
   7999           for (int i = 0; i < elements->length(); i++) {
   8000             DCHECK(!elements->get(i)->IsJSObject());
   8001           }
   8002 #endif
   8003         } else {
   8004           for (int i = 0; i < elements->length(); i++) {
   8005             Handle<Object> value(elements->get(i), isolate);
   8006             if (value->IsJSObject()) {
   8007               Handle<JSObject> result;
   8008               ASSIGN_RETURN_ON_EXCEPTION(
   8009                   isolate, result,
   8010                   VisitElementOrProperty(copy, Handle<JSObject>::cast(value)),
   8011                   JSObject);
   8012               if (copying) {
   8013                 elements->set(i, *result);
   8014               }
   8015             }
   8016           }
   8017         }
   8018         break;
   8019       }
   8020       case DICTIONARY_ELEMENTS: {
   8021         Handle<SeededNumberDictionary> element_dictionary(
   8022             copy->element_dictionary());
   8023         int capacity = element_dictionary->Capacity();
   8024         for (int i = 0; i < capacity; i++) {
   8025           Object* k = element_dictionary->KeyAt(i);
   8026           if (element_dictionary->IsKey(isolate, k)) {
   8027             Handle<Object> value(element_dictionary->ValueAt(i), isolate);
   8028             if (value->IsJSObject()) {
   8029               Handle<JSObject> result;
   8030               ASSIGN_RETURN_ON_EXCEPTION(
   8031                   isolate, result,
   8032                   VisitElementOrProperty(copy, Handle<JSObject>::cast(value)),
   8033                   JSObject);
   8034               if (copying) {
   8035                 element_dictionary->ValueAtPut(i, *result);
   8036               }
   8037             }
   8038           }
   8039         }
   8040         break;
   8041       }
   8042       case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
   8043       case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
   8044         UNIMPLEMENTED();
   8045         break;
   8046       case FAST_STRING_WRAPPER_ELEMENTS:
   8047       case SLOW_STRING_WRAPPER_ELEMENTS:
   8048         UNREACHABLE();
   8049         break;
   8050 
   8051 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size)                        \
   8052       case TYPE##_ELEMENTS:                                                    \
   8053 
   8054       TYPED_ARRAYS(TYPED_ARRAY_CASE)
   8055 #undef TYPED_ARRAY_CASE
   8056       // Typed elements cannot be created using an object literal.
   8057       UNREACHABLE();
   8058       break;
   8059 
   8060       case FAST_SMI_ELEMENTS:
   8061       case FAST_HOLEY_SMI_ELEMENTS:
   8062       case FAST_DOUBLE_ELEMENTS:
   8063       case FAST_HOLEY_DOUBLE_ELEMENTS:
   8064       case NO_ELEMENTS:
   8065         // No contained objects, nothing to do.
   8066         break;
   8067     }
   8068   }
   8069 
   8070   return copy;
   8071 }
   8072 
   8073 
   8074 MaybeHandle<JSObject> JSObject::DeepWalk(
   8075     Handle<JSObject> object,
   8076     AllocationSiteCreationContext* site_context) {
   8077   JSObjectWalkVisitor<AllocationSiteCreationContext> v(site_context, false,
   8078                                                        kNoHints);
   8079   MaybeHandle<JSObject> result = v.StructureWalk(object);
   8080   Handle<JSObject> for_assert;
   8081   DCHECK(!result.ToHandle(&for_assert) || for_assert.is_identical_to(object));
   8082   return result;
   8083 }
   8084 
   8085 
   8086 MaybeHandle<JSObject> JSObject::DeepCopy(
   8087     Handle<JSObject> object,
   8088     AllocationSiteUsageContext* site_context,
   8089     DeepCopyHints hints) {
   8090   JSObjectWalkVisitor<AllocationSiteUsageContext> v(site_context, true, hints);
   8091   MaybeHandle<JSObject> copy = v.StructureWalk(object);
   8092   Handle<JSObject> for_assert;
   8093   DCHECK(!copy.ToHandle(&for_assert) || !for_assert.is_identical_to(object));
   8094   return copy;
   8095 }
   8096 
   8097 // static
   8098 MaybeHandle<Object> JSReceiver::ToPrimitive(Handle<JSReceiver> receiver,
   8099                                             ToPrimitiveHint hint) {
   8100   Isolate* const isolate = receiver->GetIsolate();
   8101   Handle<Object> exotic_to_prim;
   8102   ASSIGN_RETURN_ON_EXCEPTION(
   8103       isolate, exotic_to_prim,
   8104       GetMethod(receiver, isolate->factory()->to_primitive_symbol()), Object);
   8105   if (!exotic_to_prim->IsUndefined(isolate)) {
   8106     Handle<Object> hint_string;
   8107     switch (hint) {
   8108       case ToPrimitiveHint::kDefault:
   8109         hint_string = isolate->factory()->default_string();
   8110         break;
   8111       case ToPrimitiveHint::kNumber:
   8112         hint_string = isolate->factory()->number_string();
   8113         break;
   8114       case ToPrimitiveHint::kString:
   8115         hint_string = isolate->factory()->string_string();
   8116         break;
   8117     }
   8118     Handle<Object> result;
   8119     ASSIGN_RETURN_ON_EXCEPTION(
   8120         isolate, result,
   8121         Execution::Call(isolate, exotic_to_prim, receiver, 1, &hint_string),
   8122         Object);
   8123     if (result->IsPrimitive()) return result;
   8124     THROW_NEW_ERROR(isolate,
   8125                     NewTypeError(MessageTemplate::kCannotConvertToPrimitive),
   8126                     Object);
   8127   }
   8128   return OrdinaryToPrimitive(receiver, (hint == ToPrimitiveHint::kString)
   8129                                            ? OrdinaryToPrimitiveHint::kString
   8130                                            : OrdinaryToPrimitiveHint::kNumber);
   8131 }
   8132 
   8133 
   8134 // static
   8135 MaybeHandle<Object> JSReceiver::OrdinaryToPrimitive(
   8136     Handle<JSReceiver> receiver, OrdinaryToPrimitiveHint hint) {
   8137   Isolate* const isolate = receiver->GetIsolate();
   8138   Handle<String> method_names[2];
   8139   switch (hint) {
   8140     case OrdinaryToPrimitiveHint::kNumber:
   8141       method_names[0] = isolate->factory()->valueOf_string();
   8142       method_names[1] = isolate->factory()->toString_string();
   8143       break;
   8144     case OrdinaryToPrimitiveHint::kString:
   8145       method_names[0] = isolate->factory()->toString_string();
   8146       method_names[1] = isolate->factory()->valueOf_string();
   8147       break;
   8148   }
   8149   for (Handle<String> name : method_names) {
   8150     Handle<Object> method;
   8151     ASSIGN_RETURN_ON_EXCEPTION(isolate, method,
   8152                                JSReceiver::GetProperty(receiver, name), Object);
   8153     if (method->IsCallable()) {
   8154       Handle<Object> result;
   8155       ASSIGN_RETURN_ON_EXCEPTION(
   8156           isolate, result, Execution::Call(isolate, method, receiver, 0, NULL),
   8157           Object);
   8158       if (result->IsPrimitive()) return result;
   8159     }
   8160   }
   8161   THROW_NEW_ERROR(isolate,
   8162                   NewTypeError(MessageTemplate::kCannotConvertToPrimitive),
   8163                   Object);
   8164 }
   8165 
   8166 
   8167 // TODO(cbruni/jkummerow): Consider moving this into elements.cc.
   8168 bool JSObject::HasEnumerableElements() {
   8169   // TODO(cbruni): cleanup
   8170   JSObject* object = this;
   8171   switch (object->GetElementsKind()) {
   8172     case FAST_SMI_ELEMENTS:
   8173     case FAST_ELEMENTS:
   8174     case FAST_DOUBLE_ELEMENTS: {
   8175       int length = object->IsJSArray()
   8176                        ? Smi::cast(JSArray::cast(object)->length())->value()
   8177                        : object->elements()->length();
   8178       return length > 0;
   8179     }
   8180     case FAST_HOLEY_SMI_ELEMENTS:
   8181     case FAST_HOLEY_ELEMENTS: {
   8182       FixedArray* elements = FixedArray::cast(object->elements());
   8183       int length = object->IsJSArray()
   8184                        ? Smi::cast(JSArray::cast(object)->length())->value()
   8185                        : elements->length();
   8186       for (int i = 0; i < length; i++) {
   8187         if (!elements->is_the_hole(i)) return true;
   8188       }
   8189       return false;
   8190     }
   8191     case FAST_HOLEY_DOUBLE_ELEMENTS: {
   8192       int length = object->IsJSArray()
   8193                        ? Smi::cast(JSArray::cast(object)->length())->value()
   8194                        : object->elements()->length();
   8195       // Zero-length arrays would use the empty FixedArray...
   8196       if (length == 0) return false;
   8197       // ...so only cast to FixedDoubleArray otherwise.
   8198       FixedDoubleArray* elements = FixedDoubleArray::cast(object->elements());
   8199       for (int i = 0; i < length; i++) {
   8200         if (!elements->is_the_hole(i)) return true;
   8201       }
   8202       return false;
   8203     }
   8204 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
   8205     case TYPE##_ELEMENTS:
   8206 
   8207       TYPED_ARRAYS(TYPED_ARRAY_CASE)
   8208 #undef TYPED_ARRAY_CASE
   8209       {
   8210         int length = object->elements()->length();
   8211         return length > 0;
   8212       }
   8213     case DICTIONARY_ELEMENTS: {
   8214       SeededNumberDictionary* elements =
   8215           SeededNumberDictionary::cast(object->elements());
   8216       return elements->NumberOfElementsFilterAttributes(ONLY_ENUMERABLE) > 0;
   8217     }
   8218     case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
   8219     case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
   8220       // We're approximating non-empty arguments objects here.
   8221       return true;
   8222     case FAST_STRING_WRAPPER_ELEMENTS:
   8223     case SLOW_STRING_WRAPPER_ELEMENTS:
   8224       if (String::cast(JSValue::cast(object)->value())->length() > 0) {
   8225         return true;
   8226       }
   8227       return object->elements()->length() > 0;
   8228     case NO_ELEMENTS:
   8229       return false;
   8230   }
   8231   UNREACHABLE();
   8232   return true;
   8233 }
   8234 
   8235 
   8236 int Map::NumberOfDescribedProperties(DescriptorFlag which,
   8237                                      PropertyFilter filter) {
   8238   int result = 0;
   8239   DescriptorArray* descs = instance_descriptors();
   8240   int limit = which == ALL_DESCRIPTORS
   8241       ? descs->number_of_descriptors()
   8242       : NumberOfOwnDescriptors();
   8243   for (int i = 0; i < limit; i++) {
   8244     if ((descs->GetDetails(i).attributes() & filter) == 0 &&
   8245         !descs->GetKey(i)->FilterKey(filter)) {
   8246       result++;
   8247     }
   8248   }
   8249   return result;
   8250 }
   8251 
   8252 
   8253 int Map::NextFreePropertyIndex() {
   8254   int free_index = 0;
   8255   int number_of_own_descriptors = NumberOfOwnDescriptors();
   8256   DescriptorArray* descs = instance_descriptors();
   8257   for (int i = 0; i < number_of_own_descriptors; i++) {
   8258     PropertyDetails details = descs->GetDetails(i);
   8259     if (details.location() == kField) {
   8260       int candidate = details.field_index() + details.field_width_in_words();
   8261       if (candidate > free_index) free_index = candidate;
   8262     }
   8263   }
   8264   return free_index;
   8265 }
   8266 
   8267 
   8268 bool Map::OnlyHasSimpleProperties() {
   8269   // Wrapped string elements aren't explicitly stored in the elements backing
   8270   // store, but are loaded indirectly from the underlying string.
   8271   return !IsStringWrapperElementsKind(elements_kind()) &&
   8272          instance_type() > LAST_SPECIAL_RECEIVER_TYPE &&
   8273          !has_hidden_prototype() && !is_dictionary_map();
   8274 }
   8275 
   8276 MUST_USE_RESULT Maybe<bool> FastGetOwnValuesOrEntries(
   8277     Isolate* isolate, Handle<JSReceiver> receiver, bool get_entries,
   8278     Handle<FixedArray>* result) {
   8279   Handle<Map> map(JSReceiver::cast(*receiver)->map(), isolate);
   8280 
   8281   if (!map->IsJSObjectMap()) return Just(false);
   8282   if (!map->OnlyHasSimpleProperties()) return Just(false);
   8283 
   8284   Handle<JSObject> object(JSObject::cast(*receiver));
   8285 
   8286   Handle<DescriptorArray> descriptors(map->instance_descriptors(), isolate);
   8287   int number_of_own_descriptors = map->NumberOfOwnDescriptors();
   8288   int number_of_own_elements =
   8289       object->GetElementsAccessor()->GetCapacity(*object, object->elements());
   8290   Handle<FixedArray> values_or_entries = isolate->factory()->NewFixedArray(
   8291       number_of_own_descriptors + number_of_own_elements);
   8292   int count = 0;
   8293 
   8294   if (object->elements() != isolate->heap()->empty_fixed_array()) {
   8295     MAYBE_RETURN(object->GetElementsAccessor()->CollectValuesOrEntries(
   8296                      isolate, object, values_or_entries, get_entries, &count,
   8297                      ENUMERABLE_STRINGS),
   8298                  Nothing<bool>());
   8299   }
   8300 
   8301   bool stable = object->map() == *map;
   8302 
   8303   for (int index = 0; index < number_of_own_descriptors; index++) {
   8304     Handle<Name> next_key(descriptors->GetKey(index), isolate);
   8305     if (!next_key->IsString()) continue;
   8306     Handle<Object> prop_value;
   8307 
   8308     // Directly decode from the descriptor array if |from| did not change shape.
   8309     if (stable) {
   8310       PropertyDetails details = descriptors->GetDetails(index);
   8311       if (!details.IsEnumerable()) continue;
   8312       if (details.kind() == kData) {
   8313         if (details.location() == kDescriptor) {
   8314           prop_value = handle(descriptors->GetValue(index), isolate);
   8315         } else {
   8316           Representation representation = details.representation();
   8317           FieldIndex field_index = FieldIndex::ForDescriptor(*map, index);
   8318           prop_value =
   8319               JSObject::FastPropertyAt(object, representation, field_index);
   8320         }
   8321       } else {
   8322         ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   8323             isolate, prop_value, JSReceiver::GetProperty(object, next_key),
   8324             Nothing<bool>());
   8325         stable = object->map() == *map;
   8326       }
   8327     } else {
   8328       // If the map did change, do a slower lookup. We are still guaranteed that
   8329       // the object has a simple shape, and that the key is a name.
   8330       LookupIterator it(object, next_key, LookupIterator::OWN_SKIP_INTERCEPTOR);
   8331       if (!it.IsFound()) continue;
   8332       DCHECK(it.state() == LookupIterator::DATA ||
   8333              it.state() == LookupIterator::ACCESSOR);
   8334       if (!it.IsEnumerable()) continue;
   8335       ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   8336           isolate, prop_value, Object::GetProperty(&it), Nothing<bool>());
   8337     }
   8338 
   8339     if (get_entries) {
   8340       prop_value = MakeEntryPair(isolate, next_key, prop_value);
   8341     }
   8342 
   8343     values_or_entries->set(count, *prop_value);
   8344     count++;
   8345   }
   8346 
   8347   if (count < values_or_entries->length()) values_or_entries->Shrink(count);
   8348   *result = values_or_entries;
   8349   return Just(true);
   8350 }
   8351 
   8352 MaybeHandle<FixedArray> GetOwnValuesOrEntries(Isolate* isolate,
   8353                                               Handle<JSReceiver> object,
   8354                                               PropertyFilter filter,
   8355                                               bool get_entries) {
   8356   Handle<FixedArray> values_or_entries;
   8357   if (filter == ENUMERABLE_STRINGS) {
   8358     Maybe<bool> fast_values_or_entries = FastGetOwnValuesOrEntries(
   8359         isolate, object, get_entries, &values_or_entries);
   8360     if (fast_values_or_entries.IsNothing()) return MaybeHandle<FixedArray>();
   8361     if (fast_values_or_entries.FromJust()) return values_or_entries;
   8362   }
   8363 
   8364   PropertyFilter key_filter =
   8365       static_cast<PropertyFilter>(filter & ~ONLY_ENUMERABLE);
   8366 
   8367   Handle<FixedArray> keys;
   8368   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   8369       isolate, keys,
   8370       KeyAccumulator::GetKeys(object, KeyCollectionMode::kOwnOnly, key_filter,
   8371                               GetKeysConversion::kConvertToString),
   8372       MaybeHandle<FixedArray>());
   8373 
   8374   values_or_entries = isolate->factory()->NewFixedArray(keys->length());
   8375   int length = 0;
   8376 
   8377   for (int i = 0; i < keys->length(); ++i) {
   8378     Handle<Name> key = Handle<Name>::cast(handle(keys->get(i), isolate));
   8379 
   8380     if (filter & ONLY_ENUMERABLE) {
   8381       PropertyDescriptor descriptor;
   8382       Maybe<bool> did_get_descriptor = JSReceiver::GetOwnPropertyDescriptor(
   8383           isolate, object, key, &descriptor);
   8384       MAYBE_RETURN(did_get_descriptor, MaybeHandle<FixedArray>());
   8385       if (!did_get_descriptor.FromJust() || !descriptor.enumerable()) continue;
   8386     }
   8387 
   8388     Handle<Object> value;
   8389     ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   8390         isolate, value, JSReceiver::GetPropertyOrElement(object, key),
   8391         MaybeHandle<FixedArray>());
   8392 
   8393     if (get_entries) {
   8394       Handle<FixedArray> entry_storage =
   8395           isolate->factory()->NewUninitializedFixedArray(2);
   8396       entry_storage->set(0, *key);
   8397       entry_storage->set(1, *value);
   8398       value = isolate->factory()->NewJSArrayWithElements(entry_storage,
   8399                                                          FAST_ELEMENTS, 2);
   8400     }
   8401 
   8402     values_or_entries->set(length, *value);
   8403     length++;
   8404   }
   8405   if (length < values_or_entries->length()) values_or_entries->Shrink(length);
   8406   return values_or_entries;
   8407 }
   8408 
   8409 MaybeHandle<FixedArray> JSReceiver::GetOwnValues(Handle<JSReceiver> object,
   8410                                                  PropertyFilter filter) {
   8411   return GetOwnValuesOrEntries(object->GetIsolate(), object, filter, false);
   8412 }
   8413 
   8414 MaybeHandle<FixedArray> JSReceiver::GetOwnEntries(Handle<JSReceiver> object,
   8415                                                   PropertyFilter filter) {
   8416   return GetOwnValuesOrEntries(object->GetIsolate(), object, filter, true);
   8417 }
   8418 
   8419 bool Map::DictionaryElementsInPrototypeChainOnly() {
   8420   if (IsDictionaryElementsKind(elements_kind())) {
   8421     return false;
   8422   }
   8423 
   8424   for (PrototypeIterator iter(this); !iter.IsAtEnd(); iter.Advance()) {
   8425     // Be conservative, don't walk into proxies.
   8426     if (iter.GetCurrent()->IsJSProxy()) return true;
   8427     // String wrappers have non-configurable, non-writable elements.
   8428     if (iter.GetCurrent()->IsStringWrapper()) return true;
   8429     JSObject* current = iter.GetCurrent<JSObject>();
   8430 
   8431     if (current->HasDictionaryElements() &&
   8432         current->element_dictionary()->requires_slow_elements()) {
   8433       return true;
   8434     }
   8435 
   8436     if (current->HasSlowArgumentsElements()) {
   8437       FixedArray* parameter_map = FixedArray::cast(current->elements());
   8438       Object* arguments = parameter_map->get(1);
   8439       if (SeededNumberDictionary::cast(arguments)->requires_slow_elements()) {
   8440         return true;
   8441       }
   8442     }
   8443   }
   8444 
   8445   return false;
   8446 }
   8447 
   8448 
   8449 MaybeHandle<Object> JSObject::DefineAccessor(Handle<JSObject> object,
   8450                                              Handle<Name> name,
   8451                                              Handle<Object> getter,
   8452                                              Handle<Object> setter,
   8453                                              PropertyAttributes attributes) {
   8454   Isolate* isolate = object->GetIsolate();
   8455 
   8456   LookupIterator it = LookupIterator::PropertyOrElement(
   8457       isolate, object, name, LookupIterator::OWN_SKIP_INTERCEPTOR);
   8458   return DefineAccessor(&it, getter, setter, attributes);
   8459 }
   8460 
   8461 
   8462 MaybeHandle<Object> JSObject::DefineAccessor(LookupIterator* it,
   8463                                              Handle<Object> getter,
   8464                                              Handle<Object> setter,
   8465                                              PropertyAttributes attributes) {
   8466   Isolate* isolate = it->isolate();
   8467 
   8468   it->UpdateProtector();
   8469 
   8470   if (it->state() == LookupIterator::ACCESS_CHECK) {
   8471     if (!it->HasAccess()) {
   8472       isolate->ReportFailedAccessCheck(it->GetHolder<JSObject>());
   8473       RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
   8474       return isolate->factory()->undefined_value();
   8475     }
   8476     it->Next();
   8477   }
   8478 
   8479   Handle<JSObject> object = Handle<JSObject>::cast(it->GetReceiver());
   8480   // Ignore accessors on typed arrays.
   8481   if (it->IsElement() && object->HasFixedTypedArrayElements()) {
   8482     return it->factory()->undefined_value();
   8483   }
   8484 
   8485   DCHECK(getter->IsCallable() || getter->IsUndefined(isolate) ||
   8486          getter->IsNull(isolate) || getter->IsFunctionTemplateInfo());
   8487   DCHECK(setter->IsCallable() || setter->IsUndefined(isolate) ||
   8488          setter->IsNull(isolate) || getter->IsFunctionTemplateInfo());
   8489   it->TransitionToAccessorProperty(getter, setter, attributes);
   8490 
   8491   return isolate->factory()->undefined_value();
   8492 }
   8493 
   8494 
   8495 MaybeHandle<Object> JSObject::SetAccessor(Handle<JSObject> object,
   8496                                           Handle<AccessorInfo> info) {
   8497   Isolate* isolate = object->GetIsolate();
   8498   Handle<Name> name(Name::cast(info->name()), isolate);
   8499 
   8500   LookupIterator it = LookupIterator::PropertyOrElement(
   8501       isolate, object, name, LookupIterator::OWN_SKIP_INTERCEPTOR);
   8502 
   8503   // Duplicate ACCESS_CHECK outside of GetPropertyAttributes for the case that
   8504   // the FailedAccessCheckCallbackFunction doesn't throw an exception.
   8505   //
   8506   // TODO(verwaest): Force throw an exception if the callback doesn't, so we can
   8507   // remove reliance on default return values.
   8508   if (it.state() == LookupIterator::ACCESS_CHECK) {
   8509     if (!it.HasAccess()) {
   8510       isolate->ReportFailedAccessCheck(object);
   8511       RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
   8512       return it.factory()->undefined_value();
   8513     }
   8514     it.Next();
   8515   }
   8516 
   8517   // Ignore accessors on typed arrays.
   8518   if (it.IsElement() && object->HasFixedTypedArrayElements()) {
   8519     return it.factory()->undefined_value();
   8520   }
   8521 
   8522   CHECK(GetPropertyAttributes(&it).IsJust());
   8523 
   8524   // ES5 forbids turning a property into an accessor if it's not
   8525   // configurable. See 8.6.1 (Table 5).
   8526   if (it.IsFound() && !it.IsConfigurable()) {
   8527     return it.factory()->undefined_value();
   8528   }
   8529 
   8530   it.TransitionToAccessorPair(info, info->property_attributes());
   8531 
   8532   return object;
   8533 }
   8534 
   8535 Object* JSObject::SlowReverseLookup(Object* value) {
   8536   if (HasFastProperties()) {
   8537     int number_of_own_descriptors = map()->NumberOfOwnDescriptors();
   8538     DescriptorArray* descs = map()->instance_descriptors();
   8539     bool value_is_number = value->IsNumber();
   8540     for (int i = 0; i < number_of_own_descriptors; i++) {
   8541       if (descs->GetType(i) == DATA) {
   8542         FieldIndex field_index = FieldIndex::ForDescriptor(map(), i);
   8543         if (IsUnboxedDoubleField(field_index)) {
   8544           if (value_is_number) {
   8545             double property = RawFastDoublePropertyAt(field_index);
   8546             if (property == value->Number()) {
   8547               return descs->GetKey(i);
   8548             }
   8549           }
   8550         } else {
   8551           Object* property = RawFastPropertyAt(field_index);
   8552           if (field_index.is_double()) {
   8553             DCHECK(property->IsMutableHeapNumber());
   8554             if (value_is_number && property->Number() == value->Number()) {
   8555               return descs->GetKey(i);
   8556             }
   8557           } else if (property == value) {
   8558             return descs->GetKey(i);
   8559           }
   8560         }
   8561       } else if (descs->GetType(i) == DATA_CONSTANT) {
   8562         if (descs->GetConstant(i) == value) {
   8563           return descs->GetKey(i);
   8564         }
   8565       }
   8566     }
   8567     return GetHeap()->undefined_value();
   8568   } else if (IsJSGlobalObject()) {
   8569     return global_dictionary()->SlowReverseLookup(value);
   8570   } else {
   8571     return property_dictionary()->SlowReverseLookup(value);
   8572   }
   8573 }
   8574 
   8575 
   8576 Handle<Map> Map::RawCopy(Handle<Map> map, int instance_size) {
   8577   Isolate* isolate = map->GetIsolate();
   8578   Handle<Map> result =
   8579       isolate->factory()->NewMap(map->instance_type(), instance_size);
   8580   Handle<Object> prototype(map->prototype(), isolate);
   8581   Map::SetPrototype(result, prototype);
   8582   result->set_constructor_or_backpointer(map->GetConstructor());
   8583   result->set_bit_field(map->bit_field());
   8584   result->set_bit_field2(map->bit_field2());
   8585   int new_bit_field3 = map->bit_field3();
   8586   new_bit_field3 = OwnsDescriptors::update(new_bit_field3, true);
   8587   new_bit_field3 = NumberOfOwnDescriptorsBits::update(new_bit_field3, 0);
   8588   new_bit_field3 = EnumLengthBits::update(new_bit_field3,
   8589                                           kInvalidEnumCacheSentinel);
   8590   new_bit_field3 = Deprecated::update(new_bit_field3, false);
   8591   if (!map->is_dictionary_map()) {
   8592     new_bit_field3 = IsUnstable::update(new_bit_field3, false);
   8593   }
   8594   result->set_bit_field3(new_bit_field3);
   8595   return result;
   8596 }
   8597 
   8598 
   8599 Handle<Map> Map::Normalize(Handle<Map> fast_map, PropertyNormalizationMode mode,
   8600                            const char* reason) {
   8601   DCHECK(!fast_map->is_dictionary_map());
   8602 
   8603   Isolate* isolate = fast_map->GetIsolate();
   8604   Handle<Object> maybe_cache(isolate->native_context()->normalized_map_cache(),
   8605                              isolate);
   8606   bool use_cache =
   8607       !fast_map->is_prototype_map() && !maybe_cache->IsUndefined(isolate);
   8608   Handle<NormalizedMapCache> cache;
   8609   if (use_cache) cache = Handle<NormalizedMapCache>::cast(maybe_cache);
   8610 
   8611   Handle<Map> new_map;
   8612   if (use_cache && cache->Get(fast_map, mode).ToHandle(&new_map)) {
   8613 #ifdef VERIFY_HEAP
   8614     if (FLAG_verify_heap) new_map->DictionaryMapVerify();
   8615 #endif
   8616 #ifdef ENABLE_SLOW_DCHECKS
   8617     if (FLAG_enable_slow_asserts) {
   8618       // The cached map should match newly created normalized map bit-by-bit,
   8619       // except for the code cache, which can contain some ics which can be
   8620       // applied to the shared map, dependent code and weak cell cache.
   8621       Handle<Map> fresh = Map::CopyNormalized(fast_map, mode);
   8622 
   8623       if (new_map->is_prototype_map()) {
   8624         // For prototype maps, the PrototypeInfo is not copied.
   8625         DCHECK(memcmp(fresh->address(), new_map->address(),
   8626                       kTransitionsOrPrototypeInfoOffset) == 0);
   8627         DCHECK(fresh->raw_transitions() == Smi::FromInt(0));
   8628         STATIC_ASSERT(kDescriptorsOffset ==
   8629                       kTransitionsOrPrototypeInfoOffset + kPointerSize);
   8630         DCHECK(memcmp(HeapObject::RawField(*fresh, kDescriptorsOffset),
   8631                       HeapObject::RawField(*new_map, kDescriptorsOffset),
   8632                       kCodeCacheOffset - kDescriptorsOffset) == 0);
   8633       } else {
   8634         DCHECK(memcmp(fresh->address(), new_map->address(),
   8635                       Map::kCodeCacheOffset) == 0);
   8636       }
   8637       STATIC_ASSERT(Map::kDependentCodeOffset ==
   8638                     Map::kCodeCacheOffset + kPointerSize);
   8639       STATIC_ASSERT(Map::kWeakCellCacheOffset ==
   8640                     Map::kDependentCodeOffset + kPointerSize);
   8641       int offset = Map::kWeakCellCacheOffset + kPointerSize;
   8642       DCHECK(memcmp(fresh->address() + offset,
   8643                     new_map->address() + offset,
   8644                     Map::kSize - offset) == 0);
   8645     }
   8646 #endif
   8647   } else {
   8648     new_map = Map::CopyNormalized(fast_map, mode);
   8649     if (use_cache) {
   8650       cache->Set(fast_map, new_map);
   8651       isolate->counters()->maps_normalized()->Increment();
   8652     }
   8653 #if TRACE_MAPS
   8654     if (FLAG_trace_maps) {
   8655       PrintF("[TraceMaps: Normalize from= %p to= %p reason= %s ]\n",
   8656              reinterpret_cast<void*>(*fast_map),
   8657              reinterpret_cast<void*>(*new_map), reason);
   8658     }
   8659 #endif
   8660   }
   8661   fast_map->NotifyLeafMapLayoutChange();
   8662   return new_map;
   8663 }
   8664 
   8665 
   8666 Handle<Map> Map::CopyNormalized(Handle<Map> map,
   8667                                 PropertyNormalizationMode mode) {
   8668   int new_instance_size = map->instance_size();
   8669   if (mode == CLEAR_INOBJECT_PROPERTIES) {
   8670     new_instance_size -= map->GetInObjectProperties() * kPointerSize;
   8671   }
   8672 
   8673   Handle<Map> result = RawCopy(map, new_instance_size);
   8674 
   8675   if (mode != CLEAR_INOBJECT_PROPERTIES) {
   8676     result->SetInObjectProperties(map->GetInObjectProperties());
   8677   }
   8678 
   8679   result->set_dictionary_map(true);
   8680   result->set_migration_target(false);
   8681   result->set_construction_counter(kNoSlackTracking);
   8682 
   8683 #ifdef VERIFY_HEAP
   8684   if (FLAG_verify_heap) result->DictionaryMapVerify();
   8685 #endif
   8686 
   8687   return result;
   8688 }
   8689 
   8690 
   8691 Handle<Map> Map::CopyInitialMap(Handle<Map> map, int instance_size,
   8692                                 int in_object_properties,
   8693                                 int unused_property_fields) {
   8694 #ifdef DEBUG
   8695   Isolate* isolate = map->GetIsolate();
   8696   // Strict function maps have Function as a constructor but the
   8697   // Function's initial map is a sloppy function map. Same holds for
   8698   // GeneratorFunction and its initial map.
   8699   Object* constructor = map->GetConstructor();
   8700   DCHECK(constructor->IsJSFunction());
   8701   DCHECK(*map == JSFunction::cast(constructor)->initial_map() ||
   8702          *map == *isolate->strict_function_map() ||
   8703          *map == *isolate->strict_generator_function_map());
   8704 #endif
   8705   // Initial maps must always own their descriptors and it's descriptor array
   8706   // does not contain descriptors that do not belong to the map.
   8707   DCHECK(map->owns_descriptors());
   8708   DCHECK_EQ(map->NumberOfOwnDescriptors(),
   8709             map->instance_descriptors()->number_of_descriptors());
   8710 
   8711   Handle<Map> result = RawCopy(map, instance_size);
   8712 
   8713   // Please note instance_type and instance_size are set when allocated.
   8714   result->SetInObjectProperties(in_object_properties);
   8715   result->set_unused_property_fields(unused_property_fields);
   8716 
   8717   int number_of_own_descriptors = map->NumberOfOwnDescriptors();
   8718   if (number_of_own_descriptors > 0) {
   8719     // The copy will use the same descriptors array.
   8720     result->UpdateDescriptors(map->instance_descriptors(),
   8721                               map->GetLayoutDescriptor());
   8722     result->SetNumberOfOwnDescriptors(number_of_own_descriptors);
   8723 
   8724     DCHECK_EQ(result->NumberOfFields(),
   8725               in_object_properties - unused_property_fields);
   8726   }
   8727 
   8728   return result;
   8729 }
   8730 
   8731 
   8732 Handle<Map> Map::CopyDropDescriptors(Handle<Map> map) {
   8733   Handle<Map> result = RawCopy(map, map->instance_size());
   8734 
   8735   // Please note instance_type and instance_size are set when allocated.
   8736   if (map->IsJSObjectMap()) {
   8737     result->SetInObjectProperties(map->GetInObjectProperties());
   8738     result->set_unused_property_fields(map->unused_property_fields());
   8739   }
   8740   result->ClearCodeCache(map->GetHeap());
   8741   map->NotifyLeafMapLayoutChange();
   8742   return result;
   8743 }
   8744 
   8745 
   8746 Handle<Map> Map::ShareDescriptor(Handle<Map> map,
   8747                                  Handle<DescriptorArray> descriptors,
   8748                                  Descriptor* descriptor) {
   8749   // Sanity check. This path is only to be taken if the map owns its descriptor
   8750   // array, implying that its NumberOfOwnDescriptors equals the number of
   8751   // descriptors in the descriptor array.
   8752   DCHECK_EQ(map->NumberOfOwnDescriptors(),
   8753             map->instance_descriptors()->number_of_descriptors());
   8754 
   8755   Handle<Map> result = CopyDropDescriptors(map);
   8756   Handle<Name> name = descriptor->GetKey();
   8757 
   8758   // Ensure there's space for the new descriptor in the shared descriptor array.
   8759   if (descriptors->NumberOfSlackDescriptors() == 0) {
   8760     int old_size = descriptors->number_of_descriptors();
   8761     if (old_size == 0) {
   8762       descriptors = DescriptorArray::Allocate(map->GetIsolate(), 0, 1);
   8763     } else {
   8764       int slack = SlackForArraySize(old_size, kMaxNumberOfDescriptors);
   8765       EnsureDescriptorSlack(map, slack);
   8766       descriptors = handle(map->instance_descriptors());
   8767     }
   8768   }
   8769 
   8770   Handle<LayoutDescriptor> layout_descriptor =
   8771       FLAG_unbox_double_fields
   8772           ? LayoutDescriptor::ShareAppend(map, descriptor->GetDetails())
   8773           : handle(LayoutDescriptor::FastPointerLayout(), map->GetIsolate());
   8774 
   8775   {
   8776     DisallowHeapAllocation no_gc;
   8777     descriptors->Append(descriptor);
   8778     result->InitializeDescriptors(*descriptors, *layout_descriptor);
   8779   }
   8780 
   8781   DCHECK(result->NumberOfOwnDescriptors() == map->NumberOfOwnDescriptors() + 1);
   8782   ConnectTransition(map, result, name, SIMPLE_PROPERTY_TRANSITION);
   8783 
   8784   return result;
   8785 }
   8786 
   8787 
   8788 #if TRACE_MAPS
   8789 
   8790 // static
   8791 void Map::TraceTransition(const char* what, Map* from, Map* to, Name* name) {
   8792   if (FLAG_trace_maps) {
   8793     PrintF("[TraceMaps: %s from= %p to= %p name= ", what,
   8794            reinterpret_cast<void*>(from), reinterpret_cast<void*>(to));
   8795     name->NameShortPrint();
   8796     PrintF(" ]\n");
   8797   }
   8798 }
   8799 
   8800 
   8801 // static
   8802 void Map::TraceAllTransitions(Map* map) {
   8803   Object* transitions = map->raw_transitions();
   8804   int num_transitions = TransitionArray::NumberOfTransitions(transitions);
   8805   for (int i = -0; i < num_transitions; ++i) {
   8806     Map* target = TransitionArray::GetTarget(transitions, i);
   8807     Name* key = TransitionArray::GetKey(transitions, i);
   8808     Map::TraceTransition("Transition", map, target, key);
   8809     Map::TraceAllTransitions(target);
   8810   }
   8811 }
   8812 
   8813 #endif  // TRACE_MAPS
   8814 
   8815 
   8816 void Map::ConnectTransition(Handle<Map> parent, Handle<Map> child,
   8817                             Handle<Name> name, SimpleTransitionFlag flag) {
   8818   if (!parent->GetBackPointer()->IsUndefined(parent->GetIsolate())) {
   8819     parent->set_owns_descriptors(false);
   8820   } else {
   8821     // |parent| is initial map and it must keep the ownership, there must be no
   8822     // descriptors in the descriptors array that do not belong to the map.
   8823     DCHECK(parent->owns_descriptors());
   8824     DCHECK_EQ(parent->NumberOfOwnDescriptors(),
   8825               parent->instance_descriptors()->number_of_descriptors());
   8826   }
   8827   if (parent->is_prototype_map()) {
   8828     DCHECK(child->is_prototype_map());
   8829 #if TRACE_MAPS
   8830     Map::TraceTransition("NoTransition", *parent, *child, *name);
   8831 #endif
   8832   } else {
   8833     TransitionArray::Insert(parent, name, child, flag);
   8834 #if TRACE_MAPS
   8835     Map::TraceTransition("Transition", *parent, *child, *name);
   8836 #endif
   8837   }
   8838 }
   8839 
   8840 
   8841 Handle<Map> Map::CopyReplaceDescriptors(
   8842     Handle<Map> map, Handle<DescriptorArray> descriptors,
   8843     Handle<LayoutDescriptor> layout_descriptor, TransitionFlag flag,
   8844     MaybeHandle<Name> maybe_name, const char* reason,
   8845     SimpleTransitionFlag simple_flag) {
   8846   DCHECK(descriptors->IsSortedNoDuplicates());
   8847 
   8848   Handle<Map> result = CopyDropDescriptors(map);
   8849 
   8850   if (!map->is_prototype_map()) {
   8851     if (flag == INSERT_TRANSITION &&
   8852         TransitionArray::CanHaveMoreTransitions(map)) {
   8853       result->InitializeDescriptors(*descriptors, *layout_descriptor);
   8854 
   8855       Handle<Name> name;
   8856       CHECK(maybe_name.ToHandle(&name));
   8857       ConnectTransition(map, result, name, simple_flag);
   8858     } else {
   8859       int length = descriptors->number_of_descriptors();
   8860       for (int i = 0; i < length; i++) {
   8861         descriptors->SetRepresentation(i, Representation::Tagged());
   8862         if (descriptors->GetDetails(i).type() == DATA) {
   8863           descriptors->SetValue(i, FieldType::Any());
   8864         }
   8865       }
   8866       result->InitializeDescriptors(*descriptors,
   8867                                     LayoutDescriptor::FastPointerLayout());
   8868     }
   8869   } else {
   8870     result->InitializeDescriptors(*descriptors, *layout_descriptor);
   8871   }
   8872 #if TRACE_MAPS
   8873   if (FLAG_trace_maps &&
   8874       // Mirror conditions above that did not call ConnectTransition().
   8875       (map->is_prototype_map() ||
   8876        !(flag == INSERT_TRANSITION &&
   8877          TransitionArray::CanHaveMoreTransitions(map)))) {
   8878     PrintF("[TraceMaps: ReplaceDescriptors from= %p to= %p reason= %s ]\n",
   8879            reinterpret_cast<void*>(*map), reinterpret_cast<void*>(*result),
   8880            reason);
   8881   }
   8882 #endif
   8883 
   8884   return result;
   8885 }
   8886 
   8887 
   8888 // Creates transition tree starting from |split_map| and adding all descriptors
   8889 // starting from descriptor with index |split_map|.NumberOfOwnDescriptors().
   8890 // The way how it is done is tricky because of GC and special descriptors
   8891 // marking logic.
   8892 Handle<Map> Map::AddMissingTransitions(
   8893     Handle<Map> split_map, Handle<DescriptorArray> descriptors,
   8894     Handle<LayoutDescriptor> full_layout_descriptor) {
   8895   DCHECK(descriptors->IsSortedNoDuplicates());
   8896   int split_nof = split_map->NumberOfOwnDescriptors();
   8897   int nof_descriptors = descriptors->number_of_descriptors();
   8898   DCHECK_LT(split_nof, nof_descriptors);
   8899 
   8900   // Start with creating last map which will own full descriptors array.
   8901   // This is necessary to guarantee that GC will mark the whole descriptor
   8902   // array if any of the allocations happening below fail.
   8903   // Number of unused properties is temporarily incorrect and the layout
   8904   // descriptor could unnecessarily be in slow mode but we will fix after
   8905   // all the other intermediate maps are created.
   8906   Handle<Map> last_map = CopyDropDescriptors(split_map);
   8907   last_map->InitializeDescriptors(*descriptors, *full_layout_descriptor);
   8908   last_map->set_unused_property_fields(0);
   8909 
   8910   // During creation of intermediate maps we violate descriptors sharing
   8911   // invariant since the last map is not yet connected to the transition tree
   8912   // we create here. But it is safe because GC never trims map's descriptors
   8913   // if there are no dead transitions from that map and this is exactly the
   8914   // case for all the intermediate maps we create here.
   8915   Handle<Map> map = split_map;
   8916   for (int i = split_nof; i < nof_descriptors - 1; ++i) {
   8917     Handle<Map> new_map = CopyDropDescriptors(map);
   8918     InstallDescriptors(map, new_map, i, descriptors, full_layout_descriptor);
   8919     map = new_map;
   8920   }
   8921   map->NotifyLeafMapLayoutChange();
   8922   InstallDescriptors(map, last_map, nof_descriptors - 1, descriptors,
   8923                      full_layout_descriptor);
   8924   return last_map;
   8925 }
   8926 
   8927 
   8928 // Since this method is used to rewrite an existing transition tree, it can
   8929 // always insert transitions without checking.
   8930 void Map::InstallDescriptors(Handle<Map> parent, Handle<Map> child,
   8931                              int new_descriptor,
   8932                              Handle<DescriptorArray> descriptors,
   8933                              Handle<LayoutDescriptor> full_layout_descriptor) {
   8934   DCHECK(descriptors->IsSortedNoDuplicates());
   8935 
   8936   child->set_instance_descriptors(*descriptors);
   8937   child->SetNumberOfOwnDescriptors(new_descriptor + 1);
   8938 
   8939   int unused_property_fields = parent->unused_property_fields();
   8940   PropertyDetails details = descriptors->GetDetails(new_descriptor);
   8941   if (details.location() == kField) {
   8942     unused_property_fields = parent->unused_property_fields() - 1;
   8943     if (unused_property_fields < 0) {
   8944       unused_property_fields += JSObject::kFieldsAdded;
   8945     }
   8946   }
   8947   child->set_unused_property_fields(unused_property_fields);
   8948 
   8949   if (FLAG_unbox_double_fields) {
   8950     Handle<LayoutDescriptor> layout_descriptor =
   8951         LayoutDescriptor::AppendIfFastOrUseFull(parent, details,
   8952                                                 full_layout_descriptor);
   8953     child->set_layout_descriptor(*layout_descriptor);
   8954 #ifdef VERIFY_HEAP
   8955     // TODO(ishell): remove these checks from VERIFY_HEAP mode.
   8956     if (FLAG_verify_heap) {
   8957       CHECK(child->layout_descriptor()->IsConsistentWithMap(*child));
   8958     }
   8959 #else
   8960     SLOW_DCHECK(child->layout_descriptor()->IsConsistentWithMap(*child));
   8961 #endif
   8962     child->set_visitor_id(Heap::GetStaticVisitorIdForMap(*child));
   8963   }
   8964 
   8965   Handle<Name> name = handle(descriptors->GetKey(new_descriptor));
   8966   ConnectTransition(parent, child, name, SIMPLE_PROPERTY_TRANSITION);
   8967 }
   8968 
   8969 
   8970 Handle<Map> Map::CopyAsElementsKind(Handle<Map> map, ElementsKind kind,
   8971                                     TransitionFlag flag) {
   8972   Map* maybe_elements_transition_map = NULL;
   8973   if (flag == INSERT_TRANSITION) {
   8974     // Ensure we are requested to add elements kind transition "near the root".
   8975     DCHECK_EQ(map->FindRootMap()->NumberOfOwnDescriptors(),
   8976               map->NumberOfOwnDescriptors());
   8977 
   8978     maybe_elements_transition_map = map->ElementsTransitionMap();
   8979     DCHECK(maybe_elements_transition_map == NULL ||
   8980            (maybe_elements_transition_map->elements_kind() ==
   8981                 DICTIONARY_ELEMENTS &&
   8982             kind == DICTIONARY_ELEMENTS));
   8983     DCHECK(!IsFastElementsKind(kind) ||
   8984            IsMoreGeneralElementsKindTransition(map->elements_kind(), kind));
   8985     DCHECK(kind != map->elements_kind());
   8986   }
   8987 
   8988   bool insert_transition = flag == INSERT_TRANSITION &&
   8989                            TransitionArray::CanHaveMoreTransitions(map) &&
   8990                            maybe_elements_transition_map == NULL;
   8991 
   8992   if (insert_transition) {
   8993     Handle<Map> new_map = CopyForTransition(map, "CopyAsElementsKind");
   8994     new_map->set_elements_kind(kind);
   8995 
   8996     Isolate* isolate = map->GetIsolate();
   8997     Handle<Name> name = isolate->factory()->elements_transition_symbol();
   8998     ConnectTransition(map, new_map, name, SPECIAL_TRANSITION);
   8999     return new_map;
   9000   }
   9001 
   9002   // Create a new free-floating map only if we are not allowed to store it.
   9003   Handle<Map> new_map = Copy(map, "CopyAsElementsKind");
   9004   new_map->set_elements_kind(kind);
   9005   return new_map;
   9006 }
   9007 
   9008 
   9009 Handle<Map> Map::AsLanguageMode(Handle<Map> initial_map,
   9010                                 LanguageMode language_mode, FunctionKind kind) {
   9011   DCHECK_EQ(JS_FUNCTION_TYPE, initial_map->instance_type());
   9012   // Initial map for sloppy mode function is stored in the function
   9013   // constructor. Initial maps for strict mode are cached as special transitions
   9014   // using |strict_function_transition_symbol| as a key.
   9015   if (language_mode == SLOPPY) return initial_map;
   9016   Isolate* isolate = initial_map->GetIsolate();
   9017   Factory* factory = isolate->factory();
   9018   Handle<Symbol> transition_symbol;
   9019 
   9020   int map_index = Context::FunctionMapIndex(language_mode, kind);
   9021   Handle<Map> function_map(
   9022       Map::cast(isolate->native_context()->get(map_index)));
   9023 
   9024   STATIC_ASSERT(LANGUAGE_END == 3);
   9025   switch (language_mode) {
   9026     case STRICT:
   9027       transition_symbol = factory->strict_function_transition_symbol();
   9028       break;
   9029     default:
   9030       UNREACHABLE();
   9031       break;
   9032   }
   9033   Map* maybe_transition =
   9034       TransitionArray::SearchSpecial(*initial_map, *transition_symbol);
   9035   if (maybe_transition != NULL) {
   9036     return handle(maybe_transition, isolate);
   9037   }
   9038   initial_map->NotifyLeafMapLayoutChange();
   9039 
   9040   // Create new map taking descriptors from the |function_map| and all
   9041   // the other details from the |initial_map|.
   9042   Handle<Map> map =
   9043       Map::CopyInitialMap(function_map, initial_map->instance_size(),
   9044                           initial_map->GetInObjectProperties(),
   9045                           initial_map->unused_property_fields());
   9046   map->SetConstructor(initial_map->GetConstructor());
   9047   map->set_prototype(initial_map->prototype());
   9048 
   9049   if (TransitionArray::CanHaveMoreTransitions(initial_map)) {
   9050     Map::ConnectTransition(initial_map, map, transition_symbol,
   9051                            SPECIAL_TRANSITION);
   9052   }
   9053   return map;
   9054 }
   9055 
   9056 
   9057 Handle<Map> Map::CopyForTransition(Handle<Map> map, const char* reason) {
   9058   DCHECK(!map->is_prototype_map());
   9059   Handle<Map> new_map = CopyDropDescriptors(map);
   9060 
   9061   if (map->owns_descriptors()) {
   9062     // In case the map owned its own descriptors, share the descriptors and
   9063     // transfer ownership to the new map.
   9064     // The properties did not change, so reuse descriptors.
   9065     new_map->InitializeDescriptors(map->instance_descriptors(),
   9066                                    map->GetLayoutDescriptor());
   9067   } else {
   9068     // In case the map did not own its own descriptors, a split is forced by
   9069     // copying the map; creating a new descriptor array cell.
   9070     Handle<DescriptorArray> descriptors(map->instance_descriptors());
   9071     int number_of_own_descriptors = map->NumberOfOwnDescriptors();
   9072     Handle<DescriptorArray> new_descriptors =
   9073         DescriptorArray::CopyUpTo(descriptors, number_of_own_descriptors);
   9074     Handle<LayoutDescriptor> new_layout_descriptor(map->GetLayoutDescriptor(),
   9075                                                    map->GetIsolate());
   9076     new_map->InitializeDescriptors(*new_descriptors, *new_layout_descriptor);
   9077   }
   9078 
   9079 #if TRACE_MAPS
   9080   if (FLAG_trace_maps) {
   9081     PrintF("[TraceMaps: CopyForTransition from= %p to= %p reason= %s ]\n",
   9082            reinterpret_cast<void*>(*map), reinterpret_cast<void*>(*new_map),
   9083            reason);
   9084   }
   9085 #endif
   9086 
   9087   return new_map;
   9088 }
   9089 
   9090 
   9091 Handle<Map> Map::Copy(Handle<Map> map, const char* reason) {
   9092   Handle<DescriptorArray> descriptors(map->instance_descriptors());
   9093   int number_of_own_descriptors = map->NumberOfOwnDescriptors();
   9094   Handle<DescriptorArray> new_descriptors =
   9095       DescriptorArray::CopyUpTo(descriptors, number_of_own_descriptors);
   9096   Handle<LayoutDescriptor> new_layout_descriptor(map->GetLayoutDescriptor(),
   9097                                                  map->GetIsolate());
   9098   return CopyReplaceDescriptors(map, new_descriptors, new_layout_descriptor,
   9099                                 OMIT_TRANSITION, MaybeHandle<Name>(), reason,
   9100                                 SPECIAL_TRANSITION);
   9101 }
   9102 
   9103 
   9104 Handle<Map> Map::Create(Isolate* isolate, int inobject_properties) {
   9105   Handle<Map> copy =
   9106       Copy(handle(isolate->object_function()->initial_map()), "MapCreate");
   9107 
   9108   // Check that we do not overflow the instance size when adding the extra
   9109   // inobject properties. If the instance size overflows, we allocate as many
   9110   // properties as we can as inobject properties.
   9111   int max_extra_properties =
   9112       (JSObject::kMaxInstanceSize - JSObject::kHeaderSize) >> kPointerSizeLog2;
   9113 
   9114   if (inobject_properties > max_extra_properties) {
   9115     inobject_properties = max_extra_properties;
   9116   }
   9117 
   9118   int new_instance_size =
   9119       JSObject::kHeaderSize + kPointerSize * inobject_properties;
   9120 
   9121   // Adjust the map with the extra inobject properties.
   9122   copy->SetInObjectProperties(inobject_properties);
   9123   copy->set_unused_property_fields(inobject_properties);
   9124   copy->set_instance_size(new_instance_size);
   9125   copy->set_visitor_id(Heap::GetStaticVisitorIdForMap(*copy));
   9126   return copy;
   9127 }
   9128 
   9129 
   9130 Handle<Map> Map::CopyForPreventExtensions(Handle<Map> map,
   9131                                           PropertyAttributes attrs_to_add,
   9132                                           Handle<Symbol> transition_marker,
   9133                                           const char* reason) {
   9134   int num_descriptors = map->NumberOfOwnDescriptors();
   9135   Isolate* isolate = map->GetIsolate();
   9136   Handle<DescriptorArray> new_desc = DescriptorArray::CopyUpToAddAttributes(
   9137       handle(map->instance_descriptors(), isolate), num_descriptors,
   9138       attrs_to_add);
   9139   Handle<LayoutDescriptor> new_layout_descriptor(map->GetLayoutDescriptor(),
   9140                                                  isolate);
   9141   Handle<Map> new_map = CopyReplaceDescriptors(
   9142       map, new_desc, new_layout_descriptor, INSERT_TRANSITION,
   9143       transition_marker, reason, SPECIAL_TRANSITION);
   9144   new_map->set_is_extensible(false);
   9145   if (!IsFixedTypedArrayElementsKind(map->elements_kind())) {
   9146     ElementsKind new_kind = IsStringWrapperElementsKind(map->elements_kind())
   9147                                 ? SLOW_STRING_WRAPPER_ELEMENTS
   9148                                 : DICTIONARY_ELEMENTS;
   9149     new_map->set_elements_kind(new_kind);
   9150   }
   9151   return new_map;
   9152 }
   9153 
   9154 FieldType* DescriptorArray::GetFieldType(int descriptor_number) {
   9155   DCHECK(GetDetails(descriptor_number).location() == kField);
   9156   Object* value = GetValue(descriptor_number);
   9157   if (value->IsWeakCell()) {
   9158     if (WeakCell::cast(value)->cleared()) return FieldType::None();
   9159     value = WeakCell::cast(value)->value();
   9160   }
   9161   return FieldType::cast(value);
   9162 }
   9163 
   9164 namespace {
   9165 
   9166 bool CanHoldValue(DescriptorArray* descriptors, int descriptor, Object* value) {
   9167   PropertyDetails details = descriptors->GetDetails(descriptor);
   9168   switch (details.type()) {
   9169     case DATA:
   9170       return value->FitsRepresentation(details.representation()) &&
   9171              descriptors->GetFieldType(descriptor)->NowContains(value);
   9172 
   9173     case DATA_CONSTANT:
   9174       DCHECK(descriptors->GetConstant(descriptor) != value ||
   9175              value->FitsRepresentation(details.representation()));
   9176       return descriptors->GetConstant(descriptor) == value;
   9177 
   9178     case ACCESSOR:
   9179     case ACCESSOR_CONSTANT:
   9180       return false;
   9181   }
   9182 
   9183   UNREACHABLE();
   9184   return false;
   9185 }
   9186 
   9187 Handle<Map> UpdateDescriptorForValue(Handle<Map> map, int descriptor,
   9188                                      Handle<Object> value) {
   9189   if (CanHoldValue(map->instance_descriptors(), descriptor, *value)) return map;
   9190 
   9191   Isolate* isolate = map->GetIsolate();
   9192   PropertyAttributes attributes =
   9193       map->instance_descriptors()->GetDetails(descriptor).attributes();
   9194   Representation representation = value->OptimalRepresentation();
   9195   Handle<FieldType> type = value->OptimalType(isolate, representation);
   9196 
   9197   return Map::ReconfigureProperty(map, descriptor, kData, attributes,
   9198                                   representation, type, FORCE_FIELD);
   9199 }
   9200 
   9201 }  // namespace
   9202 
   9203 // static
   9204 Handle<Map> Map::PrepareForDataProperty(Handle<Map> map, int descriptor,
   9205                                         Handle<Object> value) {
   9206   // Dictionaries can store any property value.
   9207   DCHECK(!map->is_dictionary_map());
   9208   // Update to the newest map before storing the property.
   9209   return UpdateDescriptorForValue(Update(map), descriptor, value);
   9210 }
   9211 
   9212 
   9213 Handle<Map> Map::TransitionToDataProperty(Handle<Map> map, Handle<Name> name,
   9214                                           Handle<Object> value,
   9215                                           PropertyAttributes attributes,
   9216                                           StoreFromKeyed store_mode) {
   9217   RuntimeCallTimerScope stats_scope(
   9218       *map, map->is_prototype_map()
   9219                 ? &RuntimeCallStats::PrototypeMap_TransitionToDataProperty
   9220                 : &RuntimeCallStats::Map_TransitionToDataProperty);
   9221 
   9222   DCHECK(name->IsUniqueName());
   9223   DCHECK(!map->is_dictionary_map());
   9224 
   9225   // Migrate to the newest map before storing the property.
   9226   map = Update(map);
   9227 
   9228   Map* maybe_transition =
   9229       TransitionArray::SearchTransition(*map, kData, *name, attributes);
   9230   if (maybe_transition != NULL) {
   9231     Handle<Map> transition(maybe_transition);
   9232     int descriptor = transition->LastAdded();
   9233 
   9234     DCHECK_EQ(attributes, transition->instance_descriptors()
   9235                               ->GetDetails(descriptor)
   9236                               .attributes());
   9237 
   9238     return UpdateDescriptorForValue(transition, descriptor, value);
   9239   }
   9240 
   9241   TransitionFlag flag = INSERT_TRANSITION;
   9242   MaybeHandle<Map> maybe_map;
   9243   if (value->IsJSFunction()) {
   9244     maybe_map = Map::CopyWithConstant(map, name, value, attributes, flag);
   9245   } else if (!map->TooManyFastProperties(store_mode)) {
   9246     Isolate* isolate = name->GetIsolate();
   9247     Representation representation = value->OptimalRepresentation();
   9248     Handle<FieldType> type = value->OptimalType(isolate, representation);
   9249     maybe_map =
   9250         Map::CopyWithField(map, name, type, attributes, representation, flag);
   9251   }
   9252 
   9253   Handle<Map> result;
   9254   if (!maybe_map.ToHandle(&result)) {
   9255 #if TRACE_MAPS
   9256     if (FLAG_trace_maps) {
   9257       Vector<char> name_buffer = Vector<char>::New(100);
   9258       name->NameShortPrint(name_buffer);
   9259       Vector<char> buffer = Vector<char>::New(128);
   9260       SNPrintF(buffer, "TooManyFastProperties %s", name_buffer.start());
   9261       return Map::Normalize(map, CLEAR_INOBJECT_PROPERTIES, buffer.start());
   9262     }
   9263 #endif
   9264     return Map::Normalize(map, CLEAR_INOBJECT_PROPERTIES,
   9265                           "TooManyFastProperties");
   9266   }
   9267 
   9268   return result;
   9269 }
   9270 
   9271 
   9272 Handle<Map> Map::ReconfigureExistingProperty(Handle<Map> map, int descriptor,
   9273                                              PropertyKind kind,
   9274                                              PropertyAttributes attributes) {
   9275   // Dictionaries have to be reconfigured in-place.
   9276   DCHECK(!map->is_dictionary_map());
   9277 
   9278   if (!map->GetBackPointer()->IsMap()) {
   9279     // There is no benefit from reconstructing transition tree for maps without
   9280     // back pointers.
   9281     return CopyGeneralizeAllRepresentations(
   9282         map, map->elements_kind(), descriptor, FORCE_FIELD, kind, attributes,
   9283         "GenAll_AttributesMismatchProtoMap");
   9284   }
   9285 
   9286   if (FLAG_trace_generalization) {
   9287     map->PrintReconfiguration(stdout, descriptor, kind, attributes);
   9288   }
   9289 
   9290   Isolate* isolate = map->GetIsolate();
   9291   Handle<Map> new_map = ReconfigureProperty(
   9292       map, descriptor, kind, attributes, Representation::None(),
   9293       FieldType::None(isolate), FORCE_FIELD);
   9294   return new_map;
   9295 }
   9296 
   9297 Handle<Map> Map::TransitionToAccessorProperty(Isolate* isolate, Handle<Map> map,
   9298                                               Handle<Name> name, int descriptor,
   9299                                               Handle<Object> getter,
   9300                                               Handle<Object> setter,
   9301                                               PropertyAttributes attributes) {
   9302   RuntimeCallTimerScope stats_scope(
   9303       isolate,
   9304       map->is_prototype_map()
   9305           ? &RuntimeCallStats::PrototypeMap_TransitionToAccessorProperty
   9306           : &RuntimeCallStats::Map_TransitionToAccessorProperty);
   9307 
   9308   // At least one of the accessors needs to be a new value.
   9309   DCHECK(!getter->IsNull(isolate) || !setter->IsNull(isolate));
   9310   DCHECK(name->IsUniqueName());
   9311 
   9312   // Dictionary maps can always have additional data properties.
   9313   if (map->is_dictionary_map()) return map;
   9314 
   9315   // Migrate to the newest map before transitioning to the new property.
   9316   map = Update(map);
   9317 
   9318   PropertyNormalizationMode mode = map->is_prototype_map()
   9319                                        ? KEEP_INOBJECT_PROPERTIES
   9320                                        : CLEAR_INOBJECT_PROPERTIES;
   9321 
   9322   Map* maybe_transition =
   9323       TransitionArray::SearchTransition(*map, kAccessor, *name, attributes);
   9324   if (maybe_transition != NULL) {
   9325     Handle<Map> transition(maybe_transition, isolate);
   9326     DescriptorArray* descriptors = transition->instance_descriptors();
   9327     int descriptor = transition->LastAdded();
   9328     DCHECK(descriptors->GetKey(descriptor)->Equals(*name));
   9329 
   9330     DCHECK_EQ(kAccessor, descriptors->GetDetails(descriptor).kind());
   9331     DCHECK_EQ(attributes, descriptors->GetDetails(descriptor).attributes());
   9332 
   9333     Handle<Object> maybe_pair(descriptors->GetValue(descriptor), isolate);
   9334     if (!maybe_pair->IsAccessorPair()) {
   9335       return Map::Normalize(map, mode, "TransitionToAccessorFromNonPair");
   9336     }
   9337 
   9338     Handle<AccessorPair> pair = Handle<AccessorPair>::cast(maybe_pair);
   9339     if (!pair->Equals(*getter, *setter)) {
   9340       return Map::Normalize(map, mode, "TransitionToDifferentAccessor");
   9341     }
   9342 
   9343     return transition;
   9344   }
   9345 
   9346   Handle<AccessorPair> pair;
   9347   DescriptorArray* old_descriptors = map->instance_descriptors();
   9348   if (descriptor != DescriptorArray::kNotFound) {
   9349     if (descriptor != map->LastAdded()) {
   9350       return Map::Normalize(map, mode, "AccessorsOverwritingNonLast");
   9351     }
   9352     PropertyDetails old_details = old_descriptors->GetDetails(descriptor);
   9353     if (old_details.type() != ACCESSOR_CONSTANT) {
   9354       return Map::Normalize(map, mode, "AccessorsOverwritingNonAccessors");
   9355     }
   9356 
   9357     if (old_details.attributes() != attributes) {
   9358       return Map::Normalize(map, mode, "AccessorsWithAttributes");
   9359     }
   9360 
   9361     Handle<Object> maybe_pair(old_descriptors->GetValue(descriptor), isolate);
   9362     if (!maybe_pair->IsAccessorPair()) {
   9363       return Map::Normalize(map, mode, "AccessorsOverwritingNonPair");
   9364     }
   9365 
   9366     Handle<AccessorPair> current_pair = Handle<AccessorPair>::cast(maybe_pair);
   9367     if (current_pair->Equals(*getter, *setter)) return map;
   9368 
   9369     bool overwriting_accessor = false;
   9370     if (!getter->IsNull(isolate) &&
   9371         !current_pair->get(ACCESSOR_GETTER)->IsNull(isolate) &&
   9372         current_pair->get(ACCESSOR_GETTER) != *getter) {
   9373       overwriting_accessor = true;
   9374     }
   9375     if (!setter->IsNull(isolate) &&
   9376         !current_pair->get(ACCESSOR_SETTER)->IsNull(isolate) &&
   9377         current_pair->get(ACCESSOR_SETTER) != *setter) {
   9378       overwriting_accessor = true;
   9379     }
   9380     if (overwriting_accessor) {
   9381       return Map::Normalize(map, mode, "AccessorsOverwritingAccessors");
   9382     }
   9383 
   9384     pair = AccessorPair::Copy(Handle<AccessorPair>::cast(maybe_pair));
   9385   } else if (map->NumberOfOwnDescriptors() >= kMaxNumberOfDescriptors ||
   9386              map->TooManyFastProperties(CERTAINLY_NOT_STORE_FROM_KEYED)) {
   9387     return Map::Normalize(map, CLEAR_INOBJECT_PROPERTIES, "TooManyAccessors");
   9388   } else {
   9389     pair = isolate->factory()->NewAccessorPair();
   9390   }
   9391 
   9392   pair->SetComponents(*getter, *setter);
   9393 
   9394   TransitionFlag flag = INSERT_TRANSITION;
   9395   AccessorConstantDescriptor new_desc(name, pair, attributes);
   9396   return Map::CopyInsertDescriptor(map, &new_desc, flag);
   9397 }
   9398 
   9399 
   9400 Handle<Map> Map::CopyAddDescriptor(Handle<Map> map,
   9401                                    Descriptor* descriptor,
   9402                                    TransitionFlag flag) {
   9403   Handle<DescriptorArray> descriptors(map->instance_descriptors());
   9404 
   9405   // Share descriptors only if map owns descriptors and it not an initial map.
   9406   if (flag == INSERT_TRANSITION && map->owns_descriptors() &&
   9407       !map->GetBackPointer()->IsUndefined(map->GetIsolate()) &&
   9408       TransitionArray::CanHaveMoreTransitions(map)) {
   9409     return ShareDescriptor(map, descriptors, descriptor);
   9410   }
   9411 
   9412   int nof = map->NumberOfOwnDescriptors();
   9413   Handle<DescriptorArray> new_descriptors =
   9414       DescriptorArray::CopyUpTo(descriptors, nof, 1);
   9415   new_descriptors->Append(descriptor);
   9416 
   9417   Handle<LayoutDescriptor> new_layout_descriptor =
   9418       FLAG_unbox_double_fields
   9419           ? LayoutDescriptor::New(map, new_descriptors, nof + 1)
   9420           : handle(LayoutDescriptor::FastPointerLayout(), map->GetIsolate());
   9421 
   9422   return CopyReplaceDescriptors(map, new_descriptors, new_layout_descriptor,
   9423                                 flag, descriptor->GetKey(), "CopyAddDescriptor",
   9424                                 SIMPLE_PROPERTY_TRANSITION);
   9425 }
   9426 
   9427 
   9428 Handle<Map> Map::CopyInsertDescriptor(Handle<Map> map,
   9429                                       Descriptor* descriptor,
   9430                                       TransitionFlag flag) {
   9431   Handle<DescriptorArray> old_descriptors(map->instance_descriptors());
   9432 
   9433   // We replace the key if it is already present.
   9434   int index = old_descriptors->SearchWithCache(map->GetIsolate(),
   9435                                                *descriptor->GetKey(), *map);
   9436   if (index != DescriptorArray::kNotFound) {
   9437     return CopyReplaceDescriptor(map, old_descriptors, descriptor, index, flag);
   9438   }
   9439   return CopyAddDescriptor(map, descriptor, flag);
   9440 }
   9441 
   9442 
   9443 Handle<DescriptorArray> DescriptorArray::CopyUpTo(
   9444     Handle<DescriptorArray> desc,
   9445     int enumeration_index,
   9446     int slack) {
   9447   return DescriptorArray::CopyUpToAddAttributes(
   9448       desc, enumeration_index, NONE, slack);
   9449 }
   9450 
   9451 
   9452 Handle<DescriptorArray> DescriptorArray::CopyUpToAddAttributes(
   9453     Handle<DescriptorArray> desc,
   9454     int enumeration_index,
   9455     PropertyAttributes attributes,
   9456     int slack) {
   9457   if (enumeration_index + slack == 0) {
   9458     return desc->GetIsolate()->factory()->empty_descriptor_array();
   9459   }
   9460 
   9461   int size = enumeration_index;
   9462 
   9463   Handle<DescriptorArray> descriptors =
   9464       DescriptorArray::Allocate(desc->GetIsolate(), size, slack);
   9465 
   9466   if (attributes != NONE) {
   9467     for (int i = 0; i < size; ++i) {
   9468       Object* value = desc->GetValue(i);
   9469       Name* key = desc->GetKey(i);
   9470       PropertyDetails details = desc->GetDetails(i);
   9471       // Bulk attribute changes never affect private properties.
   9472       if (!key->IsPrivate()) {
   9473         int mask = DONT_DELETE | DONT_ENUM;
   9474         // READ_ONLY is an invalid attribute for JS setters/getters.
   9475         if (details.type() != ACCESSOR_CONSTANT || !value->IsAccessorPair()) {
   9476           mask |= READ_ONLY;
   9477         }
   9478         details = details.CopyAddAttributes(
   9479             static_cast<PropertyAttributes>(attributes & mask));
   9480       }
   9481       Descriptor inner_desc(
   9482           handle(key), handle(value, desc->GetIsolate()), details);
   9483       descriptors->SetDescriptor(i, &inner_desc);
   9484     }
   9485   } else {
   9486     for (int i = 0; i < size; ++i) {
   9487       descriptors->CopyFrom(i, *desc);
   9488     }
   9489   }
   9490 
   9491   if (desc->number_of_descriptors() != enumeration_index) descriptors->Sort();
   9492 
   9493   return descriptors;
   9494 }
   9495 
   9496 
   9497 bool DescriptorArray::IsEqualUpTo(DescriptorArray* desc, int nof_descriptors) {
   9498   for (int i = 0; i < nof_descriptors; i++) {
   9499     if (GetKey(i) != desc->GetKey(i) || GetValue(i) != desc->GetValue(i)) {
   9500       return false;
   9501     }
   9502     PropertyDetails details = GetDetails(i);
   9503     PropertyDetails other_details = desc->GetDetails(i);
   9504     if (details.type() != other_details.type() ||
   9505         !details.representation().Equals(other_details.representation())) {
   9506       return false;
   9507     }
   9508   }
   9509   return true;
   9510 }
   9511 
   9512 
   9513 Handle<Map> Map::CopyReplaceDescriptor(Handle<Map> map,
   9514                                        Handle<DescriptorArray> descriptors,
   9515                                        Descriptor* descriptor,
   9516                                        int insertion_index,
   9517                                        TransitionFlag flag) {
   9518   Handle<Name> key = descriptor->GetKey();
   9519   DCHECK(*key == descriptors->GetKey(insertion_index));
   9520 
   9521   Handle<DescriptorArray> new_descriptors = DescriptorArray::CopyUpTo(
   9522       descriptors, map->NumberOfOwnDescriptors());
   9523 
   9524   new_descriptors->Replace(insertion_index, descriptor);
   9525   Handle<LayoutDescriptor> new_layout_descriptor = LayoutDescriptor::New(
   9526       map, new_descriptors, new_descriptors->number_of_descriptors());
   9527 
   9528   SimpleTransitionFlag simple_flag =
   9529       (insertion_index == descriptors->number_of_descriptors() - 1)
   9530           ? SIMPLE_PROPERTY_TRANSITION
   9531           : PROPERTY_TRANSITION;
   9532   return CopyReplaceDescriptors(map, new_descriptors, new_layout_descriptor,
   9533                                 flag, key, "CopyReplaceDescriptor",
   9534                                 simple_flag);
   9535 }
   9536 
   9537 // Helper class to manage a Map's code cache. The layout depends on the number
   9538 // of entries; this is worthwhile because most code caches are very small,
   9539 // but some are huge (thousands of entries).
   9540 // For zero entries, the EmptyFixedArray is used.
   9541 // For one entry, we use a 2-element FixedArray containing [name, code].
   9542 // For 2..100 entries, we use a FixedArray with linear lookups, the layout is:
   9543 //   [0] - number of slots that are currently in use
   9544 //   [1] - first name
   9545 //   [2] - first code
   9546 //   [3] - second name
   9547 //   [4] - second code
   9548 //   etc.
   9549 // For more than 128 entries, we use a CodeCacheHashTable.
   9550 class CodeCache : public AllStatic {
   9551  public:
   9552   // Returns the new cache, to be stored on the map.
   9553   static Handle<FixedArray> Put(Isolate* isolate, Handle<FixedArray> cache,
   9554                                 Handle<Name> name, Handle<Code> code) {
   9555     int length = cache->length();
   9556     if (length == 0) return PutFirstElement(isolate, name, code);
   9557     if (length == kEntrySize) {
   9558       return PutSecondElement(isolate, cache, name, code);
   9559     }
   9560     if (length <= kLinearMaxSize) {
   9561       Handle<FixedArray> result = PutLinearElement(isolate, cache, name, code);
   9562       if (!result.is_null()) return result;
   9563       // Fall through if linear storage is getting too large.
   9564     }
   9565     return PutHashTableElement(isolate, cache, name, code);
   9566   }
   9567 
   9568   static Code* Lookup(FixedArray* cache, Name* name, Code::Flags flags) {
   9569     int length = cache->length();
   9570     if (length == 0) return nullptr;
   9571     if (length == kEntrySize) return OneElementLookup(cache, name, flags);
   9572     if (!cache->IsCodeCacheHashTable()) {
   9573       return LinearLookup(cache, name, flags);
   9574     } else {
   9575       return CodeCacheHashTable::cast(cache)->Lookup(name, flags);
   9576     }
   9577   }
   9578 
   9579  private:
   9580   static const int kNameIndex = 0;
   9581   static const int kCodeIndex = 1;
   9582   static const int kEntrySize = 2;
   9583 
   9584   static const int kLinearUsageIndex = 0;
   9585   static const int kLinearReservedSlots = 1;
   9586   static const int kLinearInitialCapacity = 2;
   9587   static const int kLinearMaxSize = 257;  // == LinearSizeFor(128);
   9588 
   9589   static const int kHashTableInitialCapacity = 200;  // Number of entries.
   9590 
   9591   static int LinearSizeFor(int entries) {
   9592     return kLinearReservedSlots + kEntrySize * entries;
   9593   }
   9594 
   9595   static int LinearNewSize(int old_size) {
   9596     int old_entries = (old_size - kLinearReservedSlots) / kEntrySize;
   9597     return LinearSizeFor(old_entries * 2);
   9598   }
   9599 
   9600   static Code* OneElementLookup(FixedArray* cache, Name* name,
   9601                                 Code::Flags flags) {
   9602     DCHECK_EQ(cache->length(), kEntrySize);
   9603     if (cache->get(kNameIndex) != name) return nullptr;
   9604     Code* maybe_code = Code::cast(cache->get(kCodeIndex));
   9605     if (maybe_code->flags() != flags) return nullptr;
   9606     return maybe_code;
   9607   }
   9608 
   9609   static Code* LinearLookup(FixedArray* cache, Name* name, Code::Flags flags) {
   9610     DCHECK_GE(cache->length(), kEntrySize);
   9611     DCHECK(!cache->IsCodeCacheHashTable());
   9612     int usage = GetLinearUsage(cache);
   9613     for (int i = kLinearReservedSlots; i < usage; i += kEntrySize) {
   9614       if (cache->get(i + kNameIndex) != name) continue;
   9615       Code* code = Code::cast(cache->get(i + kCodeIndex));
   9616       if (code->flags() == flags) return code;
   9617     }
   9618     return nullptr;
   9619   }
   9620 
   9621   static Handle<FixedArray> PutFirstElement(Isolate* isolate, Handle<Name> name,
   9622                                             Handle<Code> code) {
   9623     Handle<FixedArray> cache = isolate->factory()->NewFixedArray(kEntrySize);
   9624     cache->set(kNameIndex, *name);
   9625     cache->set(kCodeIndex, *code);
   9626     return cache;
   9627   }
   9628 
   9629   static Handle<FixedArray> PutSecondElement(Isolate* isolate,
   9630                                              Handle<FixedArray> cache,
   9631                                              Handle<Name> name,
   9632                                              Handle<Code> code) {
   9633     DCHECK_EQ(cache->length(), kEntrySize);
   9634     Handle<FixedArray> new_cache = isolate->factory()->NewFixedArray(
   9635         LinearSizeFor(kLinearInitialCapacity));
   9636     new_cache->set(kLinearReservedSlots + kNameIndex, cache->get(kNameIndex));
   9637     new_cache->set(kLinearReservedSlots + kCodeIndex, cache->get(kCodeIndex));
   9638     new_cache->set(LinearSizeFor(1) + kNameIndex, *name);
   9639     new_cache->set(LinearSizeFor(1) + kCodeIndex, *code);
   9640     new_cache->set(kLinearUsageIndex, Smi::FromInt(LinearSizeFor(2)));
   9641     return new_cache;
   9642   }
   9643 
   9644   static Handle<FixedArray> PutLinearElement(Isolate* isolate,
   9645                                              Handle<FixedArray> cache,
   9646                                              Handle<Name> name,
   9647                                              Handle<Code> code) {
   9648     int length = cache->length();
   9649     int usage = GetLinearUsage(*cache);
   9650     DCHECK_LE(usage, length);
   9651     // Check if we need to grow.
   9652     if (usage == length) {
   9653       int new_length = LinearNewSize(length);
   9654       if (new_length > kLinearMaxSize) return Handle<FixedArray>::null();
   9655       Handle<FixedArray> new_cache =
   9656           isolate->factory()->NewFixedArray(new_length);
   9657       for (int i = kLinearReservedSlots; i < length; i++) {
   9658         new_cache->set(i, cache->get(i));
   9659       }
   9660       cache = new_cache;
   9661     }
   9662     // Store new entry.
   9663     DCHECK_GE(cache->length(), usage + kEntrySize);
   9664     cache->set(usage + kNameIndex, *name);
   9665     cache->set(usage + kCodeIndex, *code);
   9666     cache->set(kLinearUsageIndex, Smi::FromInt(usage + kEntrySize));
   9667     return cache;
   9668   }
   9669 
   9670   static Handle<FixedArray> PutHashTableElement(Isolate* isolate,
   9671                                                 Handle<FixedArray> cache,
   9672                                                 Handle<Name> name,
   9673                                                 Handle<Code> code) {
   9674     // Check if we need to transition from linear to hash table storage.
   9675     if (!cache->IsCodeCacheHashTable()) {
   9676       // Check that the initial hash table capacity is large enough.
   9677       DCHECK_EQ(kLinearMaxSize, LinearSizeFor(128));
   9678       STATIC_ASSERT(kHashTableInitialCapacity > 128);
   9679 
   9680       int length = cache->length();
   9681       // Only migrate from linear storage when it's full.
   9682       DCHECK_EQ(length, GetLinearUsage(*cache));
   9683       DCHECK_EQ(length, kLinearMaxSize);
   9684       Handle<CodeCacheHashTable> table =
   9685           CodeCacheHashTable::New(isolate, kHashTableInitialCapacity);
   9686       HandleScope scope(isolate);
   9687       for (int i = kLinearReservedSlots; i < length; i += kEntrySize) {
   9688         Handle<Name> old_name(Name::cast(cache->get(i + kNameIndex)), isolate);
   9689         Handle<Code> old_code(Code::cast(cache->get(i + kCodeIndex)), isolate);
   9690         CodeCacheHashTable::Put(table, old_name, old_code);
   9691       }
   9692       cache = table;
   9693     }
   9694     // Store new entry.
   9695     DCHECK(cache->IsCodeCacheHashTable());
   9696     return CodeCacheHashTable::Put(Handle<CodeCacheHashTable>::cast(cache),
   9697                                    name, code);
   9698   }
   9699 
   9700   static inline int GetLinearUsage(FixedArray* linear_cache) {
   9701     DCHECK_GT(linear_cache->length(), kEntrySize);
   9702     return Smi::cast(linear_cache->get(kLinearUsageIndex))->value();
   9703   }
   9704 };
   9705 
   9706 void Map::UpdateCodeCache(Handle<Map> map,
   9707                           Handle<Name> name,
   9708                           Handle<Code> code) {
   9709   Isolate* isolate = map->GetIsolate();
   9710   Handle<FixedArray> cache(map->code_cache(), isolate);
   9711   Handle<FixedArray> new_cache = CodeCache::Put(isolate, cache, name, code);
   9712   map->set_code_cache(*new_cache);
   9713 }
   9714 
   9715 Code* Map::LookupInCodeCache(Name* name, Code::Flags flags) {
   9716   return CodeCache::Lookup(code_cache(), name, flags);
   9717 }
   9718 
   9719 
   9720 // The key in the code cache hash table consists of the property name and the
   9721 // code object. The actual match is on the name and the code flags. If a key
   9722 // is created using the flags and not a code object it can only be used for
   9723 // lookup not to create a new entry.
   9724 class CodeCacheHashTableKey : public HashTableKey {
   9725  public:
   9726   CodeCacheHashTableKey(Handle<Name> name, Code::Flags flags)
   9727       : name_(name), flags_(flags), code_() {
   9728     DCHECK(name_->IsUniqueName());
   9729   }
   9730 
   9731   CodeCacheHashTableKey(Handle<Name> name, Handle<Code> code)
   9732       : name_(name), flags_(code->flags()), code_(code) {
   9733     DCHECK(name_->IsUniqueName());
   9734   }
   9735 
   9736   bool IsMatch(Object* other) override {
   9737     DCHECK(other->IsFixedArray());
   9738     FixedArray* pair = FixedArray::cast(other);
   9739     Name* name = Name::cast(pair->get(0));
   9740     Code::Flags flags = Code::cast(pair->get(1))->flags();
   9741     if (flags != flags_) return false;
   9742     DCHECK(name->IsUniqueName());
   9743     return *name_ == name;
   9744   }
   9745 
   9746   static uint32_t NameFlagsHashHelper(Name* name, Code::Flags flags) {
   9747     return name->Hash() ^ flags;
   9748   }
   9749 
   9750   uint32_t Hash() override { return NameFlagsHashHelper(*name_, flags_); }
   9751 
   9752   uint32_t HashForObject(Object* obj) override {
   9753     FixedArray* pair = FixedArray::cast(obj);
   9754     Name* name = Name::cast(pair->get(0));
   9755     Code* code = Code::cast(pair->get(1));
   9756     return NameFlagsHashHelper(name, code->flags());
   9757   }
   9758 
   9759   MUST_USE_RESULT Handle<Object> AsHandle(Isolate* isolate) override {
   9760     Handle<Code> code = code_.ToHandleChecked();
   9761     Handle<FixedArray> pair = isolate->factory()->NewFixedArray(2);
   9762     pair->set(0, *name_);
   9763     pair->set(1, *code);
   9764     return pair;
   9765   }
   9766 
   9767  private:
   9768   Handle<Name> name_;
   9769   Code::Flags flags_;
   9770   // TODO(jkummerow): We should be able to get by without this.
   9771   MaybeHandle<Code> code_;
   9772 };
   9773 
   9774 
   9775 Handle<CodeCacheHashTable> CodeCacheHashTable::Put(
   9776     Handle<CodeCacheHashTable> cache, Handle<Name> name, Handle<Code> code) {
   9777   CodeCacheHashTableKey key(name, code);
   9778 
   9779   Handle<CodeCacheHashTable> new_cache = EnsureCapacity(cache, 1, &key);
   9780 
   9781   int entry = new_cache->FindInsertionEntry(key.Hash());
   9782   Handle<Object> k = key.AsHandle(cache->GetIsolate());
   9783 
   9784   new_cache->set(EntryToIndex(entry), *k);
   9785   new_cache->ElementAdded();
   9786   return new_cache;
   9787 }
   9788 
   9789 Code* CodeCacheHashTable::Lookup(Name* name, Code::Flags flags) {
   9790   DisallowHeapAllocation no_alloc;
   9791   CodeCacheHashTableKey key(handle(name), flags);
   9792   int entry = FindEntry(&key);
   9793   if (entry == kNotFound) return nullptr;
   9794   return Code::cast(FixedArray::cast(get(EntryToIndex(entry)))->get(1));
   9795 }
   9796 
   9797 void FixedArray::Shrink(int new_length) {
   9798   DCHECK(0 <= new_length && new_length <= length());
   9799   if (new_length < length()) {
   9800     GetHeap()->RightTrimFixedArray<Heap::CONCURRENT_TO_SWEEPER>(
   9801         this, length() - new_length);
   9802   }
   9803 }
   9804 
   9805 
   9806 void FixedArray::CopyTo(int pos, FixedArray* dest, int dest_pos, int len) {
   9807   DisallowHeapAllocation no_gc;
   9808   WriteBarrierMode mode = dest->GetWriteBarrierMode(no_gc);
   9809   for (int index = 0; index < len; index++) {
   9810     dest->set(dest_pos+index, get(pos+index), mode);
   9811   }
   9812 }
   9813 
   9814 
   9815 #ifdef DEBUG
   9816 bool FixedArray::IsEqualTo(FixedArray* other) {
   9817   if (length() != other->length()) return false;
   9818   for (int i = 0 ; i < length(); ++i) {
   9819     if (get(i) != other->get(i)) return false;
   9820   }
   9821   return true;
   9822 }
   9823 #endif
   9824 
   9825 
   9826 // static
   9827 void WeakFixedArray::Set(Handle<WeakFixedArray> array, int index,
   9828                          Handle<HeapObject> value) {
   9829   DCHECK(array->IsEmptySlot(index));  // Don't overwrite anything.
   9830   Handle<WeakCell> cell =
   9831       value->IsMap() ? Map::WeakCellForMap(Handle<Map>::cast(value))
   9832                      : array->GetIsolate()->factory()->NewWeakCell(value);
   9833   Handle<FixedArray>::cast(array)->set(index + kFirstIndex, *cell);
   9834   if (FLAG_trace_weak_arrays) {
   9835     PrintF("[WeakFixedArray: storing at index %d ]\n", index);
   9836   }
   9837   array->set_last_used_index(index);
   9838 }
   9839 
   9840 
   9841 // static
   9842 Handle<WeakFixedArray> WeakFixedArray::Add(Handle<Object> maybe_array,
   9843                                            Handle<HeapObject> value,
   9844                                            int* assigned_index) {
   9845   Handle<WeakFixedArray> array =
   9846       (maybe_array.is_null() || !maybe_array->IsWeakFixedArray())
   9847           ? Allocate(value->GetIsolate(), 1, Handle<WeakFixedArray>::null())
   9848           : Handle<WeakFixedArray>::cast(maybe_array);
   9849   // Try to store the new entry if there's room. Optimize for consecutive
   9850   // accesses.
   9851   int first_index = array->last_used_index();
   9852   int length = array->Length();
   9853   if (length > 0) {
   9854     for (int i = first_index;;) {
   9855       if (array->IsEmptySlot((i))) {
   9856         WeakFixedArray::Set(array, i, value);
   9857         if (assigned_index != NULL) *assigned_index = i;
   9858         return array;
   9859       }
   9860       if (FLAG_trace_weak_arrays) {
   9861         PrintF("[WeakFixedArray: searching for free slot]\n");
   9862       }
   9863       i = (i + 1) % length;
   9864       if (i == first_index) break;
   9865     }
   9866   }
   9867 
   9868   // No usable slot found, grow the array.
   9869   int new_length = length == 0 ? 1 : length + (length >> 1) + 4;
   9870   Handle<WeakFixedArray> new_array =
   9871       Allocate(array->GetIsolate(), new_length, array);
   9872   if (FLAG_trace_weak_arrays) {
   9873     PrintF("[WeakFixedArray: growing to size %d ]\n", new_length);
   9874   }
   9875   WeakFixedArray::Set(new_array, length, value);
   9876   if (assigned_index != NULL) *assigned_index = length;
   9877   return new_array;
   9878 }
   9879 
   9880 
   9881 template <class CompactionCallback>
   9882 void WeakFixedArray::Compact() {
   9883   FixedArray* array = FixedArray::cast(this);
   9884   int new_length = kFirstIndex;
   9885   for (int i = kFirstIndex; i < array->length(); i++) {
   9886     Object* element = array->get(i);
   9887     if (element->IsSmi()) continue;
   9888     if (WeakCell::cast(element)->cleared()) continue;
   9889     Object* value = WeakCell::cast(element)->value();
   9890     CompactionCallback::Callback(value, i - kFirstIndex,
   9891                                  new_length - kFirstIndex);
   9892     array->set(new_length++, element);
   9893   }
   9894   array->Shrink(new_length);
   9895   set_last_used_index(0);
   9896 }
   9897 
   9898 
   9899 void WeakFixedArray::Iterator::Reset(Object* maybe_array) {
   9900   if (maybe_array->IsWeakFixedArray()) {
   9901     list_ = WeakFixedArray::cast(maybe_array);
   9902     index_ = 0;
   9903 #ifdef DEBUG
   9904     last_used_index_ = list_->last_used_index();
   9905 #endif  // DEBUG
   9906   }
   9907 }
   9908 
   9909 
   9910 void JSObject::PrototypeRegistryCompactionCallback::Callback(Object* value,
   9911                                                              int old_index,
   9912                                                              int new_index) {
   9913   DCHECK(value->IsMap() && Map::cast(value)->is_prototype_map());
   9914   Map* map = Map::cast(value);
   9915   DCHECK(map->prototype_info()->IsPrototypeInfo());
   9916   PrototypeInfo* proto_info = PrototypeInfo::cast(map->prototype_info());
   9917   DCHECK_EQ(old_index, proto_info->registry_slot());
   9918   proto_info->set_registry_slot(new_index);
   9919 }
   9920 
   9921 
   9922 template void WeakFixedArray::Compact<WeakFixedArray::NullCallback>();
   9923 template void
   9924 WeakFixedArray::Compact<JSObject::PrototypeRegistryCompactionCallback>();
   9925 
   9926 
   9927 bool WeakFixedArray::Remove(Handle<HeapObject> value) {
   9928   if (Length() == 0) return false;
   9929   // Optimize for the most recently added element to be removed again.
   9930   int first_index = last_used_index();
   9931   for (int i = first_index;;) {
   9932     if (Get(i) == *value) {
   9933       Clear(i);
   9934       // Users of WeakFixedArray should make sure that there are no duplicates.
   9935       return true;
   9936     }
   9937     i = (i + 1) % Length();
   9938     if (i == first_index) return false;
   9939   }
   9940   UNREACHABLE();
   9941 }
   9942 
   9943 
   9944 // static
   9945 Handle<WeakFixedArray> WeakFixedArray::Allocate(
   9946     Isolate* isolate, int size, Handle<WeakFixedArray> initialize_from) {
   9947   DCHECK(0 <= size);
   9948   Handle<FixedArray> result =
   9949       isolate->factory()->NewUninitializedFixedArray(size + kFirstIndex);
   9950   int index = 0;
   9951   if (!initialize_from.is_null()) {
   9952     DCHECK(initialize_from->Length() <= size);
   9953     Handle<FixedArray> raw_source = Handle<FixedArray>::cast(initialize_from);
   9954     // Copy the entries without compacting, since the PrototypeInfo relies on
   9955     // the index of the entries not to change.
   9956     while (index < raw_source->length()) {
   9957       result->set(index, raw_source->get(index));
   9958       index++;
   9959     }
   9960   }
   9961   while (index < result->length()) {
   9962     result->set(index, Smi::FromInt(0));
   9963     index++;
   9964   }
   9965   return Handle<WeakFixedArray>::cast(result);
   9966 }
   9967 
   9968 
   9969 Handle<ArrayList> ArrayList::Add(Handle<ArrayList> array, Handle<Object> obj,
   9970                                  AddMode mode) {
   9971   int length = array->Length();
   9972   array = EnsureSpace(array, length + 1);
   9973   if (mode == kReloadLengthAfterAllocation) {
   9974     DCHECK(array->Length() <= length);
   9975     length = array->Length();
   9976   }
   9977   array->Set(length, *obj);
   9978   array->SetLength(length + 1);
   9979   return array;
   9980 }
   9981 
   9982 Handle<ArrayList> ArrayList::Add(Handle<ArrayList> array, Handle<Object> obj1,
   9983                                  Handle<Object> obj2, AddMode mode) {
   9984   int length = array->Length();
   9985   array = EnsureSpace(array, length + 2);
   9986   if (mode == kReloadLengthAfterAllocation) {
   9987     length = array->Length();
   9988   }
   9989   array->Set(length, *obj1);
   9990   array->Set(length + 1, *obj2);
   9991   array->SetLength(length + 2);
   9992   return array;
   9993 }
   9994 
   9995 
   9996 bool ArrayList::IsFull() {
   9997   int capacity = length();
   9998   return kFirstIndex + Length() == capacity;
   9999 }
   10000 
   10001 
   10002 Handle<ArrayList> ArrayList::EnsureSpace(Handle<ArrayList> array, int length) {
   10003   int capacity = array->length();
   10004   bool empty = (capacity == 0);
   10005   if (capacity < kFirstIndex + length) {
   10006     Isolate* isolate = array->GetIsolate();
   10007     int new_capacity = kFirstIndex + length;
   10008     new_capacity = new_capacity + Max(new_capacity / 2, 2);
   10009     int grow_by = new_capacity - capacity;
   10010     array = Handle<ArrayList>::cast(
   10011         isolate->factory()->CopyFixedArrayAndGrow(array, grow_by));
   10012     if (empty) array->SetLength(0);
   10013   }
   10014   return array;
   10015 }
   10016 
   10017 Handle<DescriptorArray> DescriptorArray::Allocate(Isolate* isolate,
   10018                                                   int number_of_descriptors,
   10019                                                   int slack,
   10020                                                   PretenureFlag pretenure) {
   10021   DCHECK(0 <= number_of_descriptors);
   10022   Factory* factory = isolate->factory();
   10023   // Do not use DescriptorArray::cast on incomplete object.
   10024   int size = number_of_descriptors + slack;
   10025   if (size == 0) return factory->empty_descriptor_array();
   10026   // Allocate the array of keys.
   10027   Handle<FixedArray> result =
   10028       factory->NewFixedArray(LengthFor(size), pretenure);
   10029 
   10030   result->set(kDescriptorLengthIndex, Smi::FromInt(number_of_descriptors));
   10031   result->set(kEnumCacheIndex, Smi::FromInt(0));
   10032   return Handle<DescriptorArray>::cast(result);
   10033 }
   10034 
   10035 
   10036 void DescriptorArray::ClearEnumCache() {
   10037   set(kEnumCacheIndex, Smi::FromInt(0));
   10038 }
   10039 
   10040 
   10041 void DescriptorArray::Replace(int index, Descriptor* descriptor) {
   10042   descriptor->SetSortedKeyIndex(GetSortedKeyIndex(index));
   10043   Set(index, descriptor);
   10044 }
   10045 
   10046 
   10047 // static
   10048 void DescriptorArray::SetEnumCache(Handle<DescriptorArray> descriptors,
   10049                                    Isolate* isolate,
   10050                                    Handle<FixedArray> new_cache,
   10051                                    Handle<FixedArray> new_index_cache) {
   10052   DCHECK(!descriptors->IsEmpty());
   10053   FixedArray* bridge_storage;
   10054   bool needs_new_enum_cache = !descriptors->HasEnumCache();
   10055   if (needs_new_enum_cache) {
   10056     bridge_storage = *isolate->factory()->NewFixedArray(
   10057         DescriptorArray::kEnumCacheBridgeLength);
   10058   } else {
   10059     bridge_storage = FixedArray::cast(descriptors->get(kEnumCacheIndex));
   10060   }
   10061   bridge_storage->set(kEnumCacheBridgeCacheIndex, *new_cache);
   10062   bridge_storage->set(kEnumCacheBridgeIndicesCacheIndex,
   10063                       new_index_cache.is_null() ? Object::cast(Smi::FromInt(0))
   10064                                                 : *new_index_cache);
   10065   if (needs_new_enum_cache) {
   10066     descriptors->set(kEnumCacheIndex, bridge_storage);
   10067   }
   10068 }
   10069 
   10070 
   10071 void DescriptorArray::CopyFrom(int index, DescriptorArray* src) {
   10072   Object* value = src->GetValue(index);
   10073   PropertyDetails details = src->GetDetails(index);
   10074   Descriptor desc(handle(src->GetKey(index)),
   10075                   handle(value, src->GetIsolate()),
   10076                   details);
   10077   SetDescriptor(index, &desc);
   10078 }
   10079 
   10080 
   10081 void DescriptorArray::Sort() {
   10082   // In-place heap sort.
   10083   int len = number_of_descriptors();
   10084   // Reset sorting since the descriptor array might contain invalid pointers.
   10085   for (int i = 0; i < len; ++i) SetSortedKey(i, i);
   10086   // Bottom-up max-heap construction.
   10087   // Index of the last node with children
   10088   const int max_parent_index = (len / 2) - 1;
   10089   for (int i = max_parent_index; i >= 0; --i) {
   10090     int parent_index = i;
   10091     const uint32_t parent_hash = GetSortedKey(i)->Hash();
   10092     while (parent_index <= max_parent_index) {
   10093       int child_index = 2 * parent_index + 1;
   10094       uint32_t child_hash = GetSortedKey(child_index)->Hash();
   10095       if (child_index + 1 < len) {
   10096         uint32_t right_child_hash = GetSortedKey(child_index + 1)->Hash();
   10097         if (right_child_hash > child_hash) {
   10098           child_index++;
   10099           child_hash = right_child_hash;
   10100         }
   10101       }
   10102       if (child_hash <= parent_hash) break;
   10103       SwapSortedKeys(parent_index, child_index);
   10104       // Now element at child_index could be < its children.
   10105       parent_index = child_index;  // parent_hash remains correct.
   10106     }
   10107   }
   10108 
   10109   // Extract elements and create sorted array.
   10110   for (int i = len - 1; i > 0; --i) {
   10111     // Put max element at the back of the array.
   10112     SwapSortedKeys(0, i);
   10113     // Shift down the new top element.
   10114     int parent_index = 0;
   10115     const uint32_t parent_hash = GetSortedKey(parent_index)->Hash();
   10116     const int max_parent_index = (i / 2) - 1;
   10117     while (parent_index <= max_parent_index) {
   10118       int child_index = parent_index * 2 + 1;
   10119       uint32_t child_hash = GetSortedKey(child_index)->Hash();
   10120       if (child_index + 1 < i) {
   10121         uint32_t right_child_hash = GetSortedKey(child_index + 1)->Hash();
   10122         if (right_child_hash > child_hash) {
   10123           child_index++;
   10124           child_hash = right_child_hash;
   10125         }
   10126       }
   10127       if (child_hash <= parent_hash) break;
   10128       SwapSortedKeys(parent_index, child_index);
   10129       parent_index = child_index;
   10130     }
   10131   }
   10132   DCHECK(IsSortedNoDuplicates());
   10133 }
   10134 
   10135 
   10136 Handle<AccessorPair> AccessorPair::Copy(Handle<AccessorPair> pair) {
   10137   Handle<AccessorPair> copy = pair->GetIsolate()->factory()->NewAccessorPair();
   10138   copy->set_getter(pair->getter());
   10139   copy->set_setter(pair->setter());
   10140   return copy;
   10141 }
   10142 
   10143 Handle<Object> AccessorPair::GetComponent(Handle<AccessorPair> accessor_pair,
   10144                                           AccessorComponent component) {
   10145   Object* accessor = accessor_pair->get(component);
   10146   if (accessor->IsFunctionTemplateInfo()) {
   10147     return ApiNatives::InstantiateFunction(
   10148                handle(FunctionTemplateInfo::cast(accessor)))
   10149         .ToHandleChecked();
   10150   }
   10151   Isolate* isolate = accessor_pair->GetIsolate();
   10152   if (accessor->IsNull(isolate)) {
   10153     return isolate->factory()->undefined_value();
   10154   }
   10155   return handle(accessor, isolate);
   10156 }
   10157 
   10158 Handle<DeoptimizationInputData> DeoptimizationInputData::New(
   10159     Isolate* isolate, int deopt_entry_count, PretenureFlag pretenure) {
   10160   return Handle<DeoptimizationInputData>::cast(
   10161       isolate->factory()->NewFixedArray(LengthFor(deopt_entry_count),
   10162                                         pretenure));
   10163 }
   10164 
   10165 
   10166 Handle<DeoptimizationOutputData> DeoptimizationOutputData::New(
   10167     Isolate* isolate,
   10168     int number_of_deopt_points,
   10169     PretenureFlag pretenure) {
   10170   Handle<FixedArray> result;
   10171   if (number_of_deopt_points == 0) {
   10172     result = isolate->factory()->empty_fixed_array();
   10173   } else {
   10174     result = isolate->factory()->NewFixedArray(
   10175         LengthOfFixedArray(number_of_deopt_points), pretenure);
   10176   }
   10177   return Handle<DeoptimizationOutputData>::cast(result);
   10178 }
   10179 
   10180 const int LiteralsArray::kFeedbackVectorOffset =
   10181     LiteralsArray::OffsetOfElementAt(LiteralsArray::kVectorIndex);
   10182 
   10183 const int LiteralsArray::kOffsetToFirstLiteral =
   10184     LiteralsArray::OffsetOfElementAt(LiteralsArray::kFirstLiteralIndex);
   10185 
   10186 // static
   10187 Handle<LiteralsArray> LiteralsArray::New(Isolate* isolate,
   10188                                          Handle<TypeFeedbackVector> vector,
   10189                                          int number_of_literals,
   10190                                          PretenureFlag pretenure) {
   10191   if (vector->is_empty() && number_of_literals == 0) {
   10192     return Handle<LiteralsArray>::cast(
   10193         isolate->factory()->empty_literals_array());
   10194   }
   10195   Handle<FixedArray> literals = isolate->factory()->NewFixedArray(
   10196       number_of_literals + kFirstLiteralIndex, pretenure);
   10197   Handle<LiteralsArray> casted_literals = Handle<LiteralsArray>::cast(literals);
   10198   casted_literals->set_feedback_vector(*vector);
   10199   return casted_literals;
   10200 }
   10201 
   10202 int HandlerTable::LookupRange(int pc_offset, int* data_out,
   10203                               CatchPrediction* prediction_out) {
   10204   int innermost_handler = -1;
   10205 #ifdef DEBUG
   10206   // Assuming that ranges are well nested, we don't need to track the innermost
   10207   // offsets. This is just to verify that the table is actually well nested.
   10208   int innermost_start = std::numeric_limits<int>::min();
   10209   int innermost_end = std::numeric_limits<int>::max();
   10210 #endif
   10211   for (int i = 0; i < length(); i += kRangeEntrySize) {
   10212     int start_offset = Smi::cast(get(i + kRangeStartIndex))->value();
   10213     int end_offset = Smi::cast(get(i + kRangeEndIndex))->value();
   10214     int handler_field = Smi::cast(get(i + kRangeHandlerIndex))->value();
   10215     int handler_offset = HandlerOffsetField::decode(handler_field);
   10216     CatchPrediction prediction = HandlerPredictionField::decode(handler_field);
   10217     int handler_data = Smi::cast(get(i + kRangeDataIndex))->value();
   10218     if (pc_offset > start_offset && pc_offset <= end_offset) {
   10219       DCHECK_GE(start_offset, innermost_start);
   10220       DCHECK_LT(end_offset, innermost_end);
   10221       innermost_handler = handler_offset;
   10222 #ifdef DEBUG
   10223       innermost_start = start_offset;
   10224       innermost_end = end_offset;
   10225 #endif
   10226       if (data_out) *data_out = handler_data;
   10227       if (prediction_out) *prediction_out = prediction;
   10228     }
   10229   }
   10230   return innermost_handler;
   10231 }
   10232 
   10233 
   10234 // TODO(turbofan): Make sure table is sorted and use binary search.
   10235 int HandlerTable::LookupReturn(int pc_offset, CatchPrediction* prediction_out) {
   10236   for (int i = 0; i < length(); i += kReturnEntrySize) {
   10237     int return_offset = Smi::cast(get(i + kReturnOffsetIndex))->value();
   10238     int handler_field = Smi::cast(get(i + kReturnHandlerIndex))->value();
   10239     if (pc_offset == return_offset) {
   10240       if (prediction_out) {
   10241         *prediction_out = HandlerPredictionField::decode(handler_field);
   10242       }
   10243       return HandlerOffsetField::decode(handler_field);
   10244     }
   10245   }
   10246   return -1;
   10247 }
   10248 
   10249 
   10250 #ifdef DEBUG
   10251 bool DescriptorArray::IsEqualTo(DescriptorArray* other) {
   10252   if (IsEmpty()) return other->IsEmpty();
   10253   if (other->IsEmpty()) return false;
   10254   if (length() != other->length()) return false;
   10255   for (int i = 0; i < length(); ++i) {
   10256     if (get(i) != other->get(i)) return false;
   10257   }
   10258   return true;
   10259 }
   10260 #endif
   10261 
   10262 // static
   10263 Handle<String> String::Trim(Handle<String> string, TrimMode mode) {
   10264   Isolate* const isolate = string->GetIsolate();
   10265   string = String::Flatten(string);
   10266   int const length = string->length();
   10267 
   10268   // Perform left trimming if requested.
   10269   int left = 0;
   10270   UnicodeCache* unicode_cache = isolate->unicode_cache();
   10271   if (mode == kTrim || mode == kTrimLeft) {
   10272     while (left < length &&
   10273            unicode_cache->IsWhiteSpaceOrLineTerminator(string->Get(left))) {
   10274       left++;
   10275     }
   10276   }
   10277 
   10278   // Perform right trimming if requested.
   10279   int right = length;
   10280   if (mode == kTrim || mode == kTrimRight) {
   10281     while (
   10282         right > left &&
   10283         unicode_cache->IsWhiteSpaceOrLineTerminator(string->Get(right - 1))) {
   10284       right--;
   10285     }
   10286   }
   10287 
   10288   return isolate->factory()->NewSubString(string, left, right);
   10289 }
   10290 
   10291 bool String::LooksValid() {
   10292   if (!GetIsolate()->heap()->Contains(this)) return false;
   10293   return true;
   10294 }
   10295 
   10296 
   10297 // static
   10298 MaybeHandle<String> Name::ToFunctionName(Handle<Name> name) {
   10299   if (name->IsString()) return Handle<String>::cast(name);
   10300   // ES6 section 9.2.11 SetFunctionName, step 4.
   10301   Isolate* const isolate = name->GetIsolate();
   10302   Handle<Object> description(Handle<Symbol>::cast(name)->name(), isolate);
   10303   if (description->IsUndefined(isolate)) {
   10304     return isolate->factory()->empty_string();
   10305   }
   10306   IncrementalStringBuilder builder(isolate);
   10307   builder.AppendCharacter('[');
   10308   builder.AppendString(Handle<String>::cast(description));
   10309   builder.AppendCharacter(']');
   10310   return builder.Finish();
   10311 }
   10312 
   10313 // static
   10314 MaybeHandle<String> Name::ToFunctionName(Handle<Name> name,
   10315                                          Handle<String> prefix) {
   10316   Handle<String> name_string;
   10317   Isolate* const isolate = name->GetIsolate();
   10318   ASSIGN_RETURN_ON_EXCEPTION(isolate, name_string, ToFunctionName(name),
   10319                              String);
   10320   IncrementalStringBuilder builder(isolate);
   10321   builder.AppendString(prefix);
   10322   builder.AppendCharacter(' ');
   10323   builder.AppendString(name_string);
   10324   return builder.Finish();
   10325 }
   10326 
   10327 namespace {
   10328 
   10329 bool AreDigits(const uint8_t* s, int from, int to) {
   10330   for (int i = from; i < to; i++) {
   10331     if (s[i] < '0' || s[i] > '9') return false;
   10332   }
   10333 
   10334   return true;
   10335 }
   10336 
   10337 
   10338 int ParseDecimalInteger(const uint8_t* s, int from, int to) {
   10339   DCHECK(to - from < 10);  // Overflow is not possible.
   10340   DCHECK(from < to);
   10341   int d = s[from] - '0';
   10342 
   10343   for (int i = from + 1; i < to; i++) {
   10344     d = 10 * d + (s[i] - '0');
   10345   }
   10346 
   10347   return d;
   10348 }
   10349 
   10350 }  // namespace
   10351 
   10352 
   10353 // static
   10354 Handle<Object> String::ToNumber(Handle<String> subject) {
   10355   Isolate* const isolate = subject->GetIsolate();
   10356 
   10357   // Flatten {subject} string first.
   10358   subject = String::Flatten(subject);
   10359 
   10360   // Fast array index case.
   10361   uint32_t index;
   10362   if (subject->AsArrayIndex(&index)) {
   10363     return isolate->factory()->NewNumberFromUint(index);
   10364   }
   10365 
   10366   // Fast case: short integer or some sorts of junk values.
   10367   if (subject->IsSeqOneByteString()) {
   10368     int len = subject->length();
   10369     if (len == 0) return handle(Smi::FromInt(0), isolate);
   10370 
   10371     DisallowHeapAllocation no_gc;
   10372     uint8_t const* data = Handle<SeqOneByteString>::cast(subject)->GetChars();
   10373     bool minus = (data[0] == '-');
   10374     int start_pos = (minus ? 1 : 0);
   10375 
   10376     if (start_pos == len) {
   10377       return isolate->factory()->nan_value();
   10378     } else if (data[start_pos] > '9') {
   10379       // Fast check for a junk value. A valid string may start from a
   10380       // whitespace, a sign ('+' or '-'), the decimal point, a decimal digit
   10381       // or the 'I' character ('Infinity'). All of that have codes not greater
   10382       // than '9' except 'I' and &nbsp;.
   10383       if (data[start_pos] != 'I' && data[start_pos] != 0xa0) {
   10384         return isolate->factory()->nan_value();
   10385       }
   10386     } else if (len - start_pos < 10 && AreDigits(data, start_pos, len)) {
   10387       // The maximal/minimal smi has 10 digits. If the string has less digits
   10388       // we know it will fit into the smi-data type.
   10389       int d = ParseDecimalInteger(data, start_pos, len);
   10390       if (minus) {
   10391         if (d == 0) return isolate->factory()->minus_zero_value();
   10392         d = -d;
   10393       } else if (!subject->HasHashCode() && len <= String::kMaxArrayIndexSize &&
   10394                  (len == 1 || data[0] != '0')) {
   10395         // String hash is not calculated yet but all the data are present.
   10396         // Update the hash field to speed up sequential convertions.
   10397         uint32_t hash = StringHasher::MakeArrayIndexHash(d, len);
   10398 #ifdef DEBUG
   10399         subject->Hash();  // Force hash calculation.
   10400         DCHECK_EQ(static_cast<int>(subject->hash_field()),
   10401                   static_cast<int>(hash));
   10402 #endif
   10403         subject->set_hash_field(hash);
   10404       }
   10405       return handle(Smi::FromInt(d), isolate);
   10406     }
   10407   }
   10408 
   10409   // Slower case.
   10410   int flags = ALLOW_HEX | ALLOW_OCTAL | ALLOW_BINARY;
   10411   return isolate->factory()->NewNumber(
   10412       StringToDouble(isolate->unicode_cache(), subject, flags));
   10413 }
   10414 
   10415 
   10416 String::FlatContent String::GetFlatContent() {
   10417   DCHECK(!AllowHeapAllocation::IsAllowed());
   10418   int length = this->length();
   10419   StringShape shape(this);
   10420   String* string = this;
   10421   int offset = 0;
   10422   if (shape.representation_tag() == kConsStringTag) {
   10423     ConsString* cons = ConsString::cast(string);
   10424     if (cons->second()->length() != 0) {
   10425       return FlatContent();
   10426     }
   10427     string = cons->first();
   10428     shape = StringShape(string);
   10429   }
   10430   if (shape.representation_tag() == kSlicedStringTag) {
   10431     SlicedString* slice = SlicedString::cast(string);
   10432     offset = slice->offset();
   10433     string = slice->parent();
   10434     shape = StringShape(string);
   10435     DCHECK(shape.representation_tag() != kConsStringTag &&
   10436            shape.representation_tag() != kSlicedStringTag);
   10437   }
   10438   if (shape.encoding_tag() == kOneByteStringTag) {
   10439     const uint8_t* start;
   10440     if (shape.representation_tag() == kSeqStringTag) {
   10441       start = SeqOneByteString::cast(string)->GetChars();
   10442     } else {
   10443       start = ExternalOneByteString::cast(string)->GetChars();
   10444     }
   10445     return FlatContent(start + offset, length);
   10446   } else {
   10447     DCHECK(shape.encoding_tag() == kTwoByteStringTag);
   10448     const uc16* start;
   10449     if (shape.representation_tag() == kSeqStringTag) {
   10450       start = SeqTwoByteString::cast(string)->GetChars();
   10451     } else {
   10452       start = ExternalTwoByteString::cast(string)->GetChars();
   10453     }
   10454     return FlatContent(start + offset, length);
   10455   }
   10456 }
   10457 
   10458 
   10459 base::SmartArrayPointer<char> String::ToCString(AllowNullsFlag allow_nulls,
   10460                                                 RobustnessFlag robust_flag,
   10461                                                 int offset, int length,
   10462                                                 int* length_return) {
   10463   if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) {
   10464     return base::SmartArrayPointer<char>(NULL);
   10465   }
   10466   // Negative length means the to the end of the string.
   10467   if (length < 0) length = kMaxInt - offset;
   10468 
   10469   // Compute the size of the UTF-8 string. Start at the specified offset.
   10470   StringCharacterStream stream(this, offset);
   10471   int character_position = offset;
   10472   int utf8_bytes = 0;
   10473   int last = unibrow::Utf16::kNoPreviousCharacter;
   10474   while (stream.HasMore() && character_position++ < offset + length) {
   10475     uint16_t character = stream.GetNext();
   10476     utf8_bytes += unibrow::Utf8::Length(character, last);
   10477     last = character;
   10478   }
   10479 
   10480   if (length_return) {
   10481     *length_return = utf8_bytes;
   10482   }
   10483 
   10484   char* result = NewArray<char>(utf8_bytes + 1);
   10485 
   10486   // Convert the UTF-16 string to a UTF-8 buffer. Start at the specified offset.
   10487   stream.Reset(this, offset);
   10488   character_position = offset;
   10489   int utf8_byte_position = 0;
   10490   last = unibrow::Utf16::kNoPreviousCharacter;
   10491   while (stream.HasMore() && character_position++ < offset + length) {
   10492     uint16_t character = stream.GetNext();
   10493     if (allow_nulls == DISALLOW_NULLS && character == 0) {
   10494       character = ' ';
   10495     }
   10496     utf8_byte_position +=
   10497         unibrow::Utf8::Encode(result + utf8_byte_position, character, last);
   10498     last = character;
   10499   }
   10500   result[utf8_byte_position] = 0;
   10501   return base::SmartArrayPointer<char>(result);
   10502 }
   10503 
   10504 
   10505 base::SmartArrayPointer<char> String::ToCString(AllowNullsFlag allow_nulls,
   10506                                                 RobustnessFlag robust_flag,
   10507                                                 int* length_return) {
   10508   return ToCString(allow_nulls, robust_flag, 0, -1, length_return);
   10509 }
   10510 
   10511 
   10512 const uc16* String::GetTwoByteData(unsigned start) {
   10513   DCHECK(!IsOneByteRepresentationUnderneath());
   10514   switch (StringShape(this).representation_tag()) {
   10515     case kSeqStringTag:
   10516       return SeqTwoByteString::cast(this)->SeqTwoByteStringGetData(start);
   10517     case kExternalStringTag:
   10518       return ExternalTwoByteString::cast(this)->
   10519         ExternalTwoByteStringGetData(start);
   10520     case kSlicedStringTag: {
   10521       SlicedString* slice = SlicedString::cast(this);
   10522       return slice->parent()->GetTwoByteData(start + slice->offset());
   10523     }
   10524     case kConsStringTag:
   10525       UNREACHABLE();
   10526       return NULL;
   10527   }
   10528   UNREACHABLE();
   10529   return NULL;
   10530 }
   10531 
   10532 
   10533 const uc16* SeqTwoByteString::SeqTwoByteStringGetData(unsigned start) {
   10534   return reinterpret_cast<uc16*>(
   10535       reinterpret_cast<char*>(this) - kHeapObjectTag + kHeaderSize) + start;
   10536 }
   10537 
   10538 
   10539 void Relocatable::PostGarbageCollectionProcessing(Isolate* isolate) {
   10540   Relocatable* current = isolate->relocatable_top();
   10541   while (current != NULL) {
   10542     current->PostGarbageCollection();
   10543     current = current->prev_;
   10544   }
   10545 }
   10546 
   10547 
   10548 // Reserve space for statics needing saving and restoring.
   10549 int Relocatable::ArchiveSpacePerThread() {
   10550   return sizeof(Relocatable*);  // NOLINT
   10551 }
   10552 
   10553 
   10554 // Archive statics that are thread-local.
   10555 char* Relocatable::ArchiveState(Isolate* isolate, char* to) {
   10556   *reinterpret_cast<Relocatable**>(to) = isolate->relocatable_top();
   10557   isolate->set_relocatable_top(NULL);
   10558   return to + ArchiveSpacePerThread();
   10559 }
   10560 
   10561 
   10562 // Restore statics that are thread-local.
   10563 char* Relocatable::RestoreState(Isolate* isolate, char* from) {
   10564   isolate->set_relocatable_top(*reinterpret_cast<Relocatable**>(from));
   10565   return from + ArchiveSpacePerThread();
   10566 }
   10567 
   10568 
   10569 char* Relocatable::Iterate(ObjectVisitor* v, char* thread_storage) {
   10570   Relocatable* top = *reinterpret_cast<Relocatable**>(thread_storage);
   10571   Iterate(v, top);
   10572   return thread_storage + ArchiveSpacePerThread();
   10573 }
   10574 
   10575 
   10576 void Relocatable::Iterate(Isolate* isolate, ObjectVisitor* v) {
   10577   Iterate(v, isolate->relocatable_top());
   10578 }
   10579 
   10580 
   10581 void Relocatable::Iterate(ObjectVisitor* v, Relocatable* top) {
   10582   Relocatable* current = top;
   10583   while (current != NULL) {
   10584     current->IterateInstance(v);
   10585     current = current->prev_;
   10586   }
   10587 }
   10588 
   10589 
   10590 FlatStringReader::FlatStringReader(Isolate* isolate, Handle<String> str)
   10591     : Relocatable(isolate),
   10592       str_(str.location()),
   10593       length_(str->length()) {
   10594   PostGarbageCollection();
   10595 }
   10596 
   10597 
   10598 FlatStringReader::FlatStringReader(Isolate* isolate, Vector<const char> input)
   10599     : Relocatable(isolate),
   10600       str_(0),
   10601       is_one_byte_(true),
   10602       length_(input.length()),
   10603       start_(input.start()) {}
   10604 
   10605 
   10606 void FlatStringReader::PostGarbageCollection() {
   10607   if (str_ == NULL) return;
   10608   Handle<String> str(str_);
   10609   DCHECK(str->IsFlat());
   10610   DisallowHeapAllocation no_gc;
   10611   // This does not actually prevent the vector from being relocated later.
   10612   String::FlatContent content = str->GetFlatContent();
   10613   DCHECK(content.IsFlat());
   10614   is_one_byte_ = content.IsOneByte();
   10615   if (is_one_byte_) {
   10616     start_ = content.ToOneByteVector().start();
   10617   } else {
   10618     start_ = content.ToUC16Vector().start();
   10619   }
   10620 }
   10621 
   10622 
   10623 void ConsStringIterator::Initialize(ConsString* cons_string, int offset) {
   10624   DCHECK(cons_string != NULL);
   10625   root_ = cons_string;
   10626   consumed_ = offset;
   10627   // Force stack blown condition to trigger restart.
   10628   depth_ = 1;
   10629   maximum_depth_ = kStackSize + depth_;
   10630   DCHECK(StackBlown());
   10631 }
   10632 
   10633 
   10634 String* ConsStringIterator::Continue(int* offset_out) {
   10635   DCHECK(depth_ != 0);
   10636   DCHECK_EQ(0, *offset_out);
   10637   bool blew_stack = StackBlown();
   10638   String* string = NULL;
   10639   // Get the next leaf if there is one.
   10640   if (!blew_stack) string = NextLeaf(&blew_stack);
   10641   // Restart search from root.
   10642   if (blew_stack) {
   10643     DCHECK(string == NULL);
   10644     string = Search(offset_out);
   10645   }
   10646   // Ensure future calls return null immediately.
   10647   if (string == NULL) Reset(NULL);
   10648   return string;
   10649 }
   10650 
   10651 
   10652 String* ConsStringIterator::Search(int* offset_out) {
   10653   ConsString* cons_string = root_;
   10654   // Reset the stack, pushing the root string.
   10655   depth_ = 1;
   10656   maximum_depth_ = 1;
   10657   frames_[0] = cons_string;
   10658   const int consumed = consumed_;
   10659   int offset = 0;
   10660   while (true) {
   10661     // Loop until the string is found which contains the target offset.
   10662     String* string = cons_string->first();
   10663     int length = string->length();
   10664     int32_t type;
   10665     if (consumed < offset + length) {
   10666       // Target offset is in the left branch.
   10667       // Keep going if we're still in a ConString.
   10668       type = string->map()->instance_type();
   10669       if ((type & kStringRepresentationMask) == kConsStringTag) {
   10670         cons_string = ConsString::cast(string);
   10671         PushLeft(cons_string);
   10672         continue;
   10673       }
   10674       // Tell the stack we're done descending.
   10675       AdjustMaximumDepth();
   10676     } else {
   10677       // Descend right.
   10678       // Update progress through the string.
   10679       offset += length;
   10680       // Keep going if we're still in a ConString.
   10681       string = cons_string->second();
   10682       type = string->map()->instance_type();
   10683       if ((type & kStringRepresentationMask) == kConsStringTag) {
   10684         cons_string = ConsString::cast(string);
   10685         PushRight(cons_string);
   10686         continue;
   10687       }
   10688       // Need this to be updated for the current string.
   10689       length = string->length();
   10690       // Account for the possibility of an empty right leaf.
   10691       // This happens only if we have asked for an offset outside the string.
   10692       if (length == 0) {
   10693         // Reset so future operations will return null immediately.
   10694         Reset(NULL);
   10695         return NULL;
   10696       }
   10697       // Tell the stack we're done descending.
   10698       AdjustMaximumDepth();
   10699       // Pop stack so next iteration is in correct place.
   10700       Pop();
   10701     }
   10702     DCHECK(length != 0);
   10703     // Adjust return values and exit.
   10704     consumed_ = offset + length;
   10705     *offset_out = consumed - offset;
   10706     return string;
   10707   }
   10708   UNREACHABLE();
   10709   return NULL;
   10710 }
   10711 
   10712 
   10713 String* ConsStringIterator::NextLeaf(bool* blew_stack) {
   10714   while (true) {
   10715     // Tree traversal complete.
   10716     if (depth_ == 0) {
   10717       *blew_stack = false;
   10718       return NULL;
   10719     }
   10720     // We've lost track of higher nodes.
   10721     if (StackBlown()) {
   10722       *blew_stack = true;
   10723       return NULL;
   10724     }
   10725     // Go right.
   10726     ConsString* cons_string = frames_[OffsetForDepth(depth_ - 1)];
   10727     String* string = cons_string->second();
   10728     int32_t type = string->map()->instance_type();
   10729     if ((type & kStringRepresentationMask) != kConsStringTag) {
   10730       // Pop stack so next iteration is in correct place.
   10731       Pop();
   10732       int length = string->length();
   10733       // Could be a flattened ConsString.
   10734       if (length == 0) continue;
   10735       consumed_ += length;
   10736       return string;
   10737     }
   10738     cons_string = ConsString::cast(string);
   10739     PushRight(cons_string);
   10740     // Need to traverse all the way left.
   10741     while (true) {
   10742       // Continue left.
   10743       string = cons_string->first();
   10744       type = string->map()->instance_type();
   10745       if ((type & kStringRepresentationMask) != kConsStringTag) {
   10746         AdjustMaximumDepth();
   10747         int length = string->length();
   10748         DCHECK(length != 0);
   10749         consumed_ += length;
   10750         return string;
   10751       }
   10752       cons_string = ConsString::cast(string);
   10753       PushLeft(cons_string);
   10754     }
   10755   }
   10756   UNREACHABLE();
   10757   return NULL;
   10758 }
   10759 
   10760 
   10761 uint16_t ConsString::ConsStringGet(int index) {
   10762   DCHECK(index >= 0 && index < this->length());
   10763 
   10764   // Check for a flattened cons string
   10765   if (second()->length() == 0) {
   10766     String* left = first();
   10767     return left->Get(index);
   10768   }
   10769 
   10770   String* string = String::cast(this);
   10771 
   10772   while (true) {
   10773     if (StringShape(string).IsCons()) {
   10774       ConsString* cons_string = ConsString::cast(string);
   10775       String* left = cons_string->first();
   10776       if (left->length() > index) {
   10777         string = left;
   10778       } else {
   10779         index -= left->length();
   10780         string = cons_string->second();
   10781       }
   10782     } else {
   10783       return string->Get(index);
   10784     }
   10785   }
   10786 
   10787   UNREACHABLE();
   10788   return 0;
   10789 }
   10790 
   10791 
   10792 uint16_t SlicedString::SlicedStringGet(int index) {
   10793   return parent()->Get(offset() + index);
   10794 }
   10795 
   10796 
   10797 template <typename sinkchar>
   10798 void String::WriteToFlat(String* src,
   10799                          sinkchar* sink,
   10800                          int f,
   10801                          int t) {
   10802   String* source = src;
   10803   int from = f;
   10804   int to = t;
   10805   while (true) {
   10806     DCHECK(0 <= from && from <= to && to <= source->length());
   10807     switch (StringShape(source).full_representation_tag()) {
   10808       case kOneByteStringTag | kExternalStringTag: {
   10809         CopyChars(sink, ExternalOneByteString::cast(source)->GetChars() + from,
   10810                   to - from);
   10811         return;
   10812       }
   10813       case kTwoByteStringTag | kExternalStringTag: {
   10814         const uc16* data =
   10815             ExternalTwoByteString::cast(source)->GetChars();
   10816         CopyChars(sink,
   10817                   data + from,
   10818                   to - from);
   10819         return;
   10820       }
   10821       case kOneByteStringTag | kSeqStringTag: {
   10822         CopyChars(sink,
   10823                   SeqOneByteString::cast(source)->GetChars() + from,
   10824                   to - from);
   10825         return;
   10826       }
   10827       case kTwoByteStringTag | kSeqStringTag: {
   10828         CopyChars(sink,
   10829                   SeqTwoByteString::cast(source)->GetChars() + from,
   10830                   to - from);
   10831         return;
   10832       }
   10833       case kOneByteStringTag | kConsStringTag:
   10834       case kTwoByteStringTag | kConsStringTag: {
   10835         ConsString* cons_string = ConsString::cast(source);
   10836         String* first = cons_string->first();
   10837         int boundary = first->length();
   10838         if (to - boundary >= boundary - from) {
   10839           // Right hand side is longer.  Recurse over left.
   10840           if (from < boundary) {
   10841             WriteToFlat(first, sink, from, boundary);
   10842             if (from == 0 && cons_string->second() == first) {
   10843               CopyChars(sink + boundary, sink, boundary);
   10844               return;
   10845             }
   10846             sink += boundary - from;
   10847             from = 0;
   10848           } else {
   10849             from -= boundary;
   10850           }
   10851           to -= boundary;
   10852           source = cons_string->second();
   10853         } else {
   10854           // Left hand side is longer.  Recurse over right.
   10855           if (to > boundary) {
   10856             String* second = cons_string->second();
   10857             // When repeatedly appending to a string, we get a cons string that
   10858             // is unbalanced to the left, a list, essentially.  We inline the
   10859             // common case of sequential one-byte right child.
   10860             if (to - boundary == 1) {
   10861               sink[boundary - from] = static_cast<sinkchar>(second->Get(0));
   10862             } else if (second->IsSeqOneByteString()) {
   10863               CopyChars(sink + boundary - from,
   10864                         SeqOneByteString::cast(second)->GetChars(),
   10865                         to - boundary);
   10866             } else {
   10867               WriteToFlat(second,
   10868                           sink + boundary - from,
   10869                           0,
   10870                           to - boundary);
   10871             }
   10872             to = boundary;
   10873           }
   10874           source = first;
   10875         }
   10876         break;
   10877       }
   10878       case kOneByteStringTag | kSlicedStringTag:
   10879       case kTwoByteStringTag | kSlicedStringTag: {
   10880         SlicedString* slice = SlicedString::cast(source);
   10881         unsigned offset = slice->offset();
   10882         WriteToFlat(slice->parent(), sink, from + offset, to + offset);
   10883         return;
   10884       }
   10885     }
   10886   }
   10887 }
   10888 
   10889 
   10890 
   10891 template <typename SourceChar>
   10892 static void CalculateLineEndsImpl(Isolate* isolate,
   10893                                   List<int>* line_ends,
   10894                                   Vector<const SourceChar> src,
   10895                                   bool include_ending_line) {
   10896   const int src_len = src.length();
   10897   UnicodeCache* cache = isolate->unicode_cache();
   10898   for (int i = 0; i < src_len - 1; i++) {
   10899     SourceChar current = src[i];
   10900     SourceChar next = src[i + 1];
   10901     if (cache->IsLineTerminatorSequence(current, next)) line_ends->Add(i);
   10902   }
   10903 
   10904   if (src_len > 0 && cache->IsLineTerminatorSequence(src[src_len - 1], 0)) {
   10905     line_ends->Add(src_len - 1);
   10906   }
   10907   if (include_ending_line) {
   10908     // Include one character beyond the end of script. The rewriter uses that
   10909     // position for the implicit return statement.
   10910     line_ends->Add(src_len);
   10911   }
   10912 }
   10913 
   10914 
   10915 Handle<FixedArray> String::CalculateLineEnds(Handle<String> src,
   10916                                              bool include_ending_line) {
   10917   src = Flatten(src);
   10918   // Rough estimate of line count based on a roughly estimated average
   10919   // length of (unpacked) code.
   10920   int line_count_estimate = src->length() >> 4;
   10921   List<int> line_ends(line_count_estimate);
   10922   Isolate* isolate = src->GetIsolate();
   10923   { DisallowHeapAllocation no_allocation;  // ensure vectors stay valid.
   10924     // Dispatch on type of strings.
   10925     String::FlatContent content = src->GetFlatContent();
   10926     DCHECK(content.IsFlat());
   10927     if (content.IsOneByte()) {
   10928       CalculateLineEndsImpl(isolate,
   10929                             &line_ends,
   10930                             content.ToOneByteVector(),
   10931                             include_ending_line);
   10932     } else {
   10933       CalculateLineEndsImpl(isolate,
   10934                             &line_ends,
   10935                             content.ToUC16Vector(),
   10936                             include_ending_line);
   10937     }
   10938   }
   10939   int line_count = line_ends.length();
   10940   Handle<FixedArray> array = isolate->factory()->NewFixedArray(line_count);
   10941   for (int i = 0; i < line_count; i++) {
   10942     array->set(i, Smi::FromInt(line_ends[i]));
   10943   }
   10944   return array;
   10945 }
   10946 
   10947 
   10948 // Compares the contents of two strings by reading and comparing
   10949 // int-sized blocks of characters.
   10950 template <typename Char>
   10951 static inline bool CompareRawStringContents(const Char* const a,
   10952                                             const Char* const b,
   10953                                             int length) {
   10954   return CompareChars(a, b, length) == 0;
   10955 }
   10956 
   10957 
   10958 template<typename Chars1, typename Chars2>
   10959 class RawStringComparator : public AllStatic {
   10960  public:
   10961   static inline bool compare(const Chars1* a, const Chars2* b, int len) {
   10962     DCHECK(sizeof(Chars1) != sizeof(Chars2));
   10963     for (int i = 0; i < len; i++) {
   10964       if (a[i] != b[i]) {
   10965         return false;
   10966       }
   10967     }
   10968     return true;
   10969   }
   10970 };
   10971 
   10972 
   10973 template<>
   10974 class RawStringComparator<uint16_t, uint16_t> {
   10975  public:
   10976   static inline bool compare(const uint16_t* a, const uint16_t* b, int len) {
   10977     return CompareRawStringContents(a, b, len);
   10978   }
   10979 };
   10980 
   10981 
   10982 template<>
   10983 class RawStringComparator<uint8_t, uint8_t> {
   10984  public:
   10985   static inline bool compare(const uint8_t* a, const uint8_t* b, int len) {
   10986     return CompareRawStringContents(a, b, len);
   10987   }
   10988 };
   10989 
   10990 
   10991 class StringComparator {
   10992   class State {
   10993    public:
   10994     State() : is_one_byte_(true), length_(0), buffer8_(NULL) {}
   10995 
   10996     void Init(String* string) {
   10997       ConsString* cons_string = String::VisitFlat(this, string);
   10998       iter_.Reset(cons_string);
   10999       if (cons_string != NULL) {
   11000         int offset;
   11001         string = iter_.Next(&offset);
   11002         String::VisitFlat(this, string, offset);
   11003       }
   11004     }
   11005 
   11006     inline void VisitOneByteString(const uint8_t* chars, int length) {
   11007       is_one_byte_ = true;
   11008       buffer8_ = chars;
   11009       length_ = length;
   11010     }
   11011 
   11012     inline void VisitTwoByteString(const uint16_t* chars, int length) {
   11013       is_one_byte_ = false;
   11014       buffer16_ = chars;
   11015       length_ = length;
   11016     }
   11017 
   11018     void Advance(int consumed) {
   11019       DCHECK(consumed <= length_);
   11020       // Still in buffer.
   11021       if (length_ != consumed) {
   11022         if (is_one_byte_) {
   11023           buffer8_ += consumed;
   11024         } else {
   11025           buffer16_ += consumed;
   11026         }
   11027         length_ -= consumed;
   11028         return;
   11029       }
   11030       // Advance state.
   11031       int offset;
   11032       String* next = iter_.Next(&offset);
   11033       DCHECK_EQ(0, offset);
   11034       DCHECK(next != NULL);
   11035       String::VisitFlat(this, next);
   11036     }
   11037 
   11038     ConsStringIterator iter_;
   11039     bool is_one_byte_;
   11040     int length_;
   11041     union {
   11042       const uint8_t* buffer8_;
   11043       const uint16_t* buffer16_;
   11044     };
   11045 
   11046    private:
   11047     DISALLOW_COPY_AND_ASSIGN(State);
   11048   };
   11049 
   11050  public:
   11051   inline StringComparator() {}
   11052 
   11053   template<typename Chars1, typename Chars2>
   11054   static inline bool Equals(State* state_1, State* state_2, int to_check) {
   11055     const Chars1* a = reinterpret_cast<const Chars1*>(state_1->buffer8_);
   11056     const Chars2* b = reinterpret_cast<const Chars2*>(state_2->buffer8_);
   11057     return RawStringComparator<Chars1, Chars2>::compare(a, b, to_check);
   11058   }
   11059 
   11060   bool Equals(String* string_1, String* string_2) {
   11061     int length = string_1->length();
   11062     state_1_.Init(string_1);
   11063     state_2_.Init(string_2);
   11064     while (true) {
   11065       int to_check = Min(state_1_.length_, state_2_.length_);
   11066       DCHECK(to_check > 0 && to_check <= length);
   11067       bool is_equal;
   11068       if (state_1_.is_one_byte_) {
   11069         if (state_2_.is_one_byte_) {
   11070           is_equal = Equals<uint8_t, uint8_t>(&state_1_, &state_2_, to_check);
   11071         } else {
   11072           is_equal = Equals<uint8_t, uint16_t>(&state_1_, &state_2_, to_check);
   11073         }
   11074       } else {
   11075         if (state_2_.is_one_byte_) {
   11076           is_equal = Equals<uint16_t, uint8_t>(&state_1_, &state_2_, to_check);
   11077         } else {
   11078           is_equal = Equals<uint16_t, uint16_t>(&state_1_, &state_2_, to_check);
   11079         }
   11080       }
   11081       // Looping done.
   11082       if (!is_equal) return false;
   11083       length -= to_check;
   11084       // Exit condition. Strings are equal.
   11085       if (length == 0) return true;
   11086       state_1_.Advance(to_check);
   11087       state_2_.Advance(to_check);
   11088     }
   11089   }
   11090 
   11091  private:
   11092   State state_1_;
   11093   State state_2_;
   11094 
   11095   DISALLOW_COPY_AND_ASSIGN(StringComparator);
   11096 };
   11097 
   11098 
   11099 bool String::SlowEquals(String* other) {
   11100   DisallowHeapAllocation no_gc;
   11101   // Fast check: negative check with lengths.
   11102   int len = length();
   11103   if (len != other->length()) return false;
   11104   if (len == 0) return true;
   11105 
   11106   // Fast check: if hash code is computed for both strings
   11107   // a fast negative check can be performed.
   11108   if (HasHashCode() && other->HasHashCode()) {
   11109 #ifdef ENABLE_SLOW_DCHECKS
   11110     if (FLAG_enable_slow_asserts) {
   11111       if (Hash() != other->Hash()) {
   11112         bool found_difference = false;
   11113         for (int i = 0; i < len; i++) {
   11114           if (Get(i) != other->Get(i)) {
   11115             found_difference = true;
   11116             break;
   11117           }
   11118         }
   11119         DCHECK(found_difference);
   11120       }
   11121     }
   11122 #endif
   11123     if (Hash() != other->Hash()) return false;
   11124   }
   11125 
   11126   // We know the strings are both non-empty. Compare the first chars
   11127   // before we try to flatten the strings.
   11128   if (this->Get(0) != other->Get(0)) return false;
   11129 
   11130   if (IsSeqOneByteString() && other->IsSeqOneByteString()) {
   11131     const uint8_t* str1 = SeqOneByteString::cast(this)->GetChars();
   11132     const uint8_t* str2 = SeqOneByteString::cast(other)->GetChars();
   11133     return CompareRawStringContents(str1, str2, len);
   11134   }
   11135 
   11136   StringComparator comparator;
   11137   return comparator.Equals(this, other);
   11138 }
   11139 
   11140 
   11141 bool String::SlowEquals(Handle<String> one, Handle<String> two) {
   11142   // Fast check: negative check with lengths.
   11143   int one_length = one->length();
   11144   if (one_length != two->length()) return false;
   11145   if (one_length == 0) return true;
   11146 
   11147   // Fast check: if hash code is computed for both strings
   11148   // a fast negative check can be performed.
   11149   if (one->HasHashCode() && two->HasHashCode()) {
   11150 #ifdef ENABLE_SLOW_DCHECKS
   11151     if (FLAG_enable_slow_asserts) {
   11152       if (one->Hash() != two->Hash()) {
   11153         bool found_difference = false;
   11154         for (int i = 0; i < one_length; i++) {
   11155           if (one->Get(i) != two->Get(i)) {
   11156             found_difference = true;
   11157             break;
   11158           }
   11159         }
   11160         DCHECK(found_difference);
   11161       }
   11162     }
   11163 #endif
   11164     if (one->Hash() != two->Hash()) return false;
   11165   }
   11166 
   11167   // We know the strings are both non-empty. Compare the first chars
   11168   // before we try to flatten the strings.
   11169   if (one->Get(0) != two->Get(0)) return false;
   11170 
   11171   one = String::Flatten(one);
   11172   two = String::Flatten(two);
   11173 
   11174   DisallowHeapAllocation no_gc;
   11175   String::FlatContent flat1 = one->GetFlatContent();
   11176   String::FlatContent flat2 = two->GetFlatContent();
   11177 
   11178   if (flat1.IsOneByte() && flat2.IsOneByte()) {
   11179       return CompareRawStringContents(flat1.ToOneByteVector().start(),
   11180                                       flat2.ToOneByteVector().start(),
   11181                                       one_length);
   11182   } else {
   11183     for (int i = 0; i < one_length; i++) {
   11184       if (flat1.Get(i) != flat2.Get(i)) return false;
   11185     }
   11186     return true;
   11187   }
   11188 }
   11189 
   11190 
   11191 // static
   11192 ComparisonResult String::Compare(Handle<String> x, Handle<String> y) {
   11193   // A few fast case tests before we flatten.
   11194   if (x.is_identical_to(y)) {
   11195     return ComparisonResult::kEqual;
   11196   } else if (y->length() == 0) {
   11197     return x->length() == 0 ? ComparisonResult::kEqual
   11198                             : ComparisonResult::kGreaterThan;
   11199   } else if (x->length() == 0) {
   11200     return ComparisonResult::kLessThan;
   11201   }
   11202 
   11203   int const d = x->Get(0) - y->Get(0);
   11204   if (d < 0) {
   11205     return ComparisonResult::kLessThan;
   11206   } else if (d > 0) {
   11207     return ComparisonResult::kGreaterThan;
   11208   }
   11209 
   11210   // Slow case.
   11211   x = String::Flatten(x);
   11212   y = String::Flatten(y);
   11213 
   11214   DisallowHeapAllocation no_gc;
   11215   ComparisonResult result = ComparisonResult::kEqual;
   11216   int prefix_length = x->length();
   11217   if (y->length() < prefix_length) {
   11218     prefix_length = y->length();
   11219     result = ComparisonResult::kGreaterThan;
   11220   } else if (y->length() > prefix_length) {
   11221     result = ComparisonResult::kLessThan;
   11222   }
   11223   int r;
   11224   String::FlatContent x_content = x->GetFlatContent();
   11225   String::FlatContent y_content = y->GetFlatContent();
   11226   if (x_content.IsOneByte()) {
   11227     Vector<const uint8_t> x_chars = x_content.ToOneByteVector();
   11228     if (y_content.IsOneByte()) {
   11229       Vector<const uint8_t> y_chars = y_content.ToOneByteVector();
   11230       r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
   11231     } else {
   11232       Vector<const uc16> y_chars = y_content.ToUC16Vector();
   11233       r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
   11234     }
   11235   } else {
   11236     Vector<const uc16> x_chars = x_content.ToUC16Vector();
   11237     if (y_content.IsOneByte()) {
   11238       Vector<const uint8_t> y_chars = y_content.ToOneByteVector();
   11239       r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
   11240     } else {
   11241       Vector<const uc16> y_chars = y_content.ToUC16Vector();
   11242       r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
   11243     }
   11244   }
   11245   if (r < 0) {
   11246     result = ComparisonResult::kLessThan;
   11247   } else if (r > 0) {
   11248     result = ComparisonResult::kGreaterThan;
   11249   }
   11250   return result;
   11251 }
   11252 
   11253 
   11254 bool String::IsUtf8EqualTo(Vector<const char> str, bool allow_prefix_match) {
   11255   int slen = length();
   11256   // Can't check exact length equality, but we can check bounds.
   11257   int str_len = str.length();
   11258   if (!allow_prefix_match &&
   11259       (str_len < slen ||
   11260           str_len > slen*static_cast<int>(unibrow::Utf8::kMaxEncodedSize))) {
   11261     return false;
   11262   }
   11263   int i;
   11264   size_t remaining_in_str = static_cast<size_t>(str_len);
   11265   const uint8_t* utf8_data = reinterpret_cast<const uint8_t*>(str.start());
   11266   for (i = 0; i < slen && remaining_in_str > 0; i++) {
   11267     size_t cursor = 0;
   11268     uint32_t r = unibrow::Utf8::ValueOf(utf8_data, remaining_in_str, &cursor);
   11269     DCHECK(cursor > 0 && cursor <= remaining_in_str);
   11270     if (r > unibrow::Utf16::kMaxNonSurrogateCharCode) {
   11271       if (i > slen - 1) return false;
   11272       if (Get(i++) != unibrow::Utf16::LeadSurrogate(r)) return false;
   11273       if (Get(i) != unibrow::Utf16::TrailSurrogate(r)) return false;
   11274     } else {
   11275       if (Get(i) != r) return false;
   11276     }
   11277     utf8_data += cursor;
   11278     remaining_in_str -= cursor;
   11279   }
   11280   return (allow_prefix_match || i == slen) && remaining_in_str == 0;
   11281 }
   11282 
   11283 
   11284 bool String::IsOneByteEqualTo(Vector<const uint8_t> str) {
   11285   int slen = length();
   11286   if (str.length() != slen) return false;
   11287   DisallowHeapAllocation no_gc;
   11288   FlatContent content = GetFlatContent();
   11289   if (content.IsOneByte()) {
   11290     return CompareChars(content.ToOneByteVector().start(),
   11291                         str.start(), slen) == 0;
   11292   }
   11293   for (int i = 0; i < slen; i++) {
   11294     if (Get(i) != static_cast<uint16_t>(str[i])) return false;
   11295   }
   11296   return true;
   11297 }
   11298 
   11299 
   11300 bool String::IsTwoByteEqualTo(Vector<const uc16> str) {
   11301   int slen = length();
   11302   if (str.length() != slen) return false;
   11303   DisallowHeapAllocation no_gc;
   11304   FlatContent content = GetFlatContent();
   11305   if (content.IsTwoByte()) {
   11306     return CompareChars(content.ToUC16Vector().start(), str.start(), slen) == 0;
   11307   }
   11308   for (int i = 0; i < slen; i++) {
   11309     if (Get(i) != str[i]) return false;
   11310   }
   11311   return true;
   11312 }
   11313 
   11314 
   11315 uint32_t String::ComputeAndSetHash() {
   11316   // Should only be called if hash code has not yet been computed.
   11317   DCHECK(!HasHashCode());
   11318 
   11319   // Store the hash code in the object.
   11320   uint32_t field = IteratingStringHasher::Hash(this, GetHeap()->HashSeed());
   11321   set_hash_field(field);
   11322 
   11323   // Check the hash code is there.
   11324   DCHECK(HasHashCode());
   11325   uint32_t result = field >> kHashShift;
   11326   DCHECK(result != 0);  // Ensure that the hash value of 0 is never computed.
   11327   return result;
   11328 }
   11329 
   11330 
   11331 bool String::ComputeArrayIndex(uint32_t* index) {
   11332   int length = this->length();
   11333   if (length == 0 || length > kMaxArrayIndexSize) return false;
   11334   StringCharacterStream stream(this);
   11335   return StringToArrayIndex(&stream, index);
   11336 }
   11337 
   11338 
   11339 bool String::SlowAsArrayIndex(uint32_t* index) {
   11340   if (length() <= kMaxCachedArrayIndexLength) {
   11341     Hash();  // force computation of hash code
   11342     uint32_t field = hash_field();
   11343     if ((field & kIsNotArrayIndexMask) != 0) return false;
   11344     // Isolate the array index form the full hash field.
   11345     *index = ArrayIndexValueBits::decode(field);
   11346     return true;
   11347   } else {
   11348     return ComputeArrayIndex(index);
   11349   }
   11350 }
   11351 
   11352 
   11353 Handle<String> SeqString::Truncate(Handle<SeqString> string, int new_length) {
   11354   int new_size, old_size;
   11355   int old_length = string->length();
   11356   if (old_length <= new_length) return string;
   11357 
   11358   if (string->IsSeqOneByteString()) {
   11359     old_size = SeqOneByteString::SizeFor(old_length);
   11360     new_size = SeqOneByteString::SizeFor(new_length);
   11361   } else {
   11362     DCHECK(string->IsSeqTwoByteString());
   11363     old_size = SeqTwoByteString::SizeFor(old_length);
   11364     new_size = SeqTwoByteString::SizeFor(new_length);
   11365   }
   11366 
   11367   int delta = old_size - new_size;
   11368 
   11369   Address start_of_string = string->address();
   11370   DCHECK_OBJECT_ALIGNED(start_of_string);
   11371   DCHECK_OBJECT_ALIGNED(start_of_string + new_size);
   11372 
   11373   Heap* heap = string->GetHeap();
   11374   // Sizes are pointer size aligned, so that we can use filler objects
   11375   // that are a multiple of pointer size.
   11376   heap->CreateFillerObjectAt(start_of_string + new_size, delta,
   11377                              ClearRecordedSlots::kNo);
   11378   heap->AdjustLiveBytes(*string, -delta, Heap::CONCURRENT_TO_SWEEPER);
   11379 
   11380   // We are storing the new length using release store after creating a filler
   11381   // for the left-over space to avoid races with the sweeper thread.
   11382   string->synchronized_set_length(new_length);
   11383 
   11384   if (new_length == 0) return heap->isolate()->factory()->empty_string();
   11385   return string;
   11386 }
   11387 
   11388 
   11389 uint32_t StringHasher::MakeArrayIndexHash(uint32_t value, int length) {
   11390   // For array indexes mix the length into the hash as an array index could
   11391   // be zero.
   11392   DCHECK(length > 0);
   11393   DCHECK(length <= String::kMaxArrayIndexSize);
   11394   DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) <
   11395          (1 << String::kArrayIndexValueBits));
   11396 
   11397   value <<= String::ArrayIndexValueBits::kShift;
   11398   value |= length << String::ArrayIndexLengthBits::kShift;
   11399 
   11400   DCHECK((value & String::kIsNotArrayIndexMask) == 0);
   11401   DCHECK_EQ(length <= String::kMaxCachedArrayIndexLength,
   11402             (value & String::kContainsCachedArrayIndexMask) == 0);
   11403   return value;
   11404 }
   11405 
   11406 
   11407 uint32_t StringHasher::GetHashField() {
   11408   if (length_ <= String::kMaxHashCalcLength) {
   11409     if (is_array_index_) {
   11410       return MakeArrayIndexHash(array_index_, length_);
   11411     }
   11412     return (GetHashCore(raw_running_hash_) << String::kHashShift) |
   11413            String::kIsNotArrayIndexMask;
   11414   } else {
   11415     return (length_ << String::kHashShift) | String::kIsNotArrayIndexMask;
   11416   }
   11417 }
   11418 
   11419 
   11420 uint32_t StringHasher::ComputeUtf8Hash(Vector<const char> chars,
   11421                                        uint32_t seed,
   11422                                        int* utf16_length_out) {
   11423   int vector_length = chars.length();
   11424   // Handle some edge cases
   11425   if (vector_length <= 1) {
   11426     DCHECK(vector_length == 0 ||
   11427            static_cast<uint8_t>(chars.start()[0]) <=
   11428                unibrow::Utf8::kMaxOneByteChar);
   11429     *utf16_length_out = vector_length;
   11430     return HashSequentialString(chars.start(), vector_length, seed);
   11431   }
   11432   // Start with a fake length which won't affect computation.
   11433   // It will be updated later.
   11434   StringHasher hasher(String::kMaxArrayIndexSize, seed);
   11435   size_t remaining = static_cast<size_t>(vector_length);
   11436   const uint8_t* stream = reinterpret_cast<const uint8_t*>(chars.start());
   11437   int utf16_length = 0;
   11438   bool is_index = true;
   11439   DCHECK(hasher.is_array_index_);
   11440   while (remaining > 0) {
   11441     size_t consumed = 0;
   11442     uint32_t c = unibrow::Utf8::ValueOf(stream, remaining, &consumed);
   11443     DCHECK(consumed > 0 && consumed <= remaining);
   11444     stream += consumed;
   11445     remaining -= consumed;
   11446     bool is_two_characters = c > unibrow::Utf16::kMaxNonSurrogateCharCode;
   11447     utf16_length += is_two_characters ? 2 : 1;
   11448     // No need to keep hashing. But we do need to calculate utf16_length.
   11449     if (utf16_length > String::kMaxHashCalcLength) continue;
   11450     if (is_two_characters) {
   11451       uint16_t c1 = unibrow::Utf16::LeadSurrogate(c);
   11452       uint16_t c2 = unibrow::Utf16::TrailSurrogate(c);
   11453       hasher.AddCharacter(c1);
   11454       hasher.AddCharacter(c2);
   11455       if (is_index) is_index = hasher.UpdateIndex(c1);
   11456       if (is_index) is_index = hasher.UpdateIndex(c2);
   11457     } else {
   11458       hasher.AddCharacter(c);
   11459       if (is_index) is_index = hasher.UpdateIndex(c);
   11460     }
   11461   }
   11462   *utf16_length_out = static_cast<int>(utf16_length);
   11463   // Must set length here so that hash computation is correct.
   11464   hasher.length_ = utf16_length;
   11465   return hasher.GetHashField();
   11466 }
   11467 
   11468 
   11469 void IteratingStringHasher::VisitConsString(ConsString* cons_string) {
   11470   // Run small ConsStrings through ConsStringIterator.
   11471   if (cons_string->length() < 64) {
   11472     ConsStringIterator iter(cons_string);
   11473     int offset;
   11474     String* string;
   11475     while (nullptr != (string = iter.Next(&offset))) {
   11476       DCHECK_EQ(0, offset);
   11477       String::VisitFlat(this, string, 0);
   11478     }
   11479     return;
   11480   }
   11481   // Slow case.
   11482   const int max_length = String::kMaxHashCalcLength;
   11483   int length = std::min(cons_string->length(), max_length);
   11484   if (cons_string->HasOnlyOneByteChars()) {
   11485     uint8_t* buffer = new uint8_t[length];
   11486     String::WriteToFlat(cons_string, buffer, 0, length);
   11487     AddCharacters(buffer, length);
   11488     delete[] buffer;
   11489   } else {
   11490     uint16_t* buffer = new uint16_t[length];
   11491     String::WriteToFlat(cons_string, buffer, 0, length);
   11492     AddCharacters(buffer, length);
   11493     delete[] buffer;
   11494   }
   11495 }
   11496 
   11497 
   11498 void String::PrintOn(FILE* file) {
   11499   int length = this->length();
   11500   for (int i = 0; i < length; i++) {
   11501     PrintF(file, "%c", Get(i));
   11502   }
   11503 }
   11504 
   11505 
   11506 int Map::Hash() {
   11507   // For performance reasons we only hash the 3 most variable fields of a map:
   11508   // constructor, prototype and bit_field2. For predictability reasons we
   11509   // use objects' offsets in respective pages for hashing instead of raw
   11510   // addresses.
   11511 
   11512   // Shift away the tag.
   11513   int hash = ObjectAddressForHashing(GetConstructor()) >> 2;
   11514 
   11515   // XOR-ing the prototype and constructor directly yields too many zero bits
   11516   // when the two pointers are close (which is fairly common).
   11517   // To avoid this we shift the prototype bits relatively to the constructor.
   11518   hash ^= ObjectAddressForHashing(prototype()) << (32 - kPageSizeBits);
   11519 
   11520   return hash ^ (hash >> 16) ^ bit_field2();
   11521 }
   11522 
   11523 
   11524 namespace {
   11525 
   11526 bool CheckEquivalent(Map* first, Map* second) {
   11527   return first->GetConstructor() == second->GetConstructor() &&
   11528          first->prototype() == second->prototype() &&
   11529          first->instance_type() == second->instance_type() &&
   11530          first->bit_field() == second->bit_field() &&
   11531          first->is_extensible() == second->is_extensible() &&
   11532          first->new_target_is_base() == second->new_target_is_base() &&
   11533          first->has_hidden_prototype() == second->has_hidden_prototype();
   11534 }
   11535 
   11536 }  // namespace
   11537 
   11538 
   11539 bool Map::EquivalentToForTransition(Map* other) {
   11540   if (!CheckEquivalent(this, other)) return false;
   11541   if (instance_type() == JS_FUNCTION_TYPE) {
   11542     // JSFunctions require more checks to ensure that sloppy function is
   11543     // not equvalent to strict function.
   11544     int nof = Min(NumberOfOwnDescriptors(), other->NumberOfOwnDescriptors());
   11545     return instance_descriptors()->IsEqualUpTo(other->instance_descriptors(),
   11546                                                nof);
   11547   }
   11548   return true;
   11549 }
   11550 
   11551 
   11552 bool Map::EquivalentToForNormalization(Map* other,
   11553                                        PropertyNormalizationMode mode) {
   11554   int properties =
   11555       mode == CLEAR_INOBJECT_PROPERTIES ? 0 : other->GetInObjectProperties();
   11556   return CheckEquivalent(this, other) && bit_field2() == other->bit_field2() &&
   11557          GetInObjectProperties() == properties;
   11558 }
   11559 
   11560 
   11561 bool JSFunction::Inlines(SharedFunctionInfo* candidate) {
   11562   DisallowHeapAllocation no_gc;
   11563   if (shared() == candidate) return true;
   11564   if (code()->kind() != Code::OPTIMIZED_FUNCTION) return false;
   11565   DeoptimizationInputData* const data =
   11566       DeoptimizationInputData::cast(code()->deoptimization_data());
   11567   if (data->length() == 0) return false;
   11568   FixedArray* const literals = data->LiteralArray();
   11569   int const inlined_count = data->InlinedFunctionCount()->value();
   11570   for (int i = 0; i < inlined_count; ++i) {
   11571     if (SharedFunctionInfo::cast(literals->get(i)) == candidate) {
   11572       return true;
   11573     }
   11574   }
   11575   return false;
   11576 }
   11577 
   11578 void JSFunction::MarkForBaseline() {
   11579   Isolate* isolate = GetIsolate();
   11580   set_code_no_write_barrier(
   11581       isolate->builtins()->builtin(Builtins::kCompileBaseline));
   11582   // No write barrier required, since the builtin is part of the root set.
   11583 }
   11584 
   11585 void JSFunction::MarkForOptimization() {
   11586   Isolate* isolate = GetIsolate();
   11587   DCHECK(!IsOptimized());
   11588   DCHECK(shared()->allows_lazy_compilation() ||
   11589          !shared()->optimization_disabled());
   11590   set_code_no_write_barrier(
   11591       isolate->builtins()->builtin(Builtins::kCompileOptimized));
   11592   // No write barrier required, since the builtin is part of the root set.
   11593 }
   11594 
   11595 
   11596 void JSFunction::AttemptConcurrentOptimization() {
   11597   Isolate* isolate = GetIsolate();
   11598   if (!isolate->concurrent_recompilation_enabled() ||
   11599       isolate->bootstrapper()->IsActive()) {
   11600     MarkForOptimization();
   11601     return;
   11602   }
   11603   DCHECK(!IsInOptimizationQueue());
   11604   DCHECK(!IsOptimized());
   11605   DCHECK(shared()->allows_lazy_compilation() ||
   11606          !shared()->optimization_disabled());
   11607   DCHECK(isolate->concurrent_recompilation_enabled());
   11608   if (FLAG_trace_concurrent_recompilation) {
   11609     PrintF("  ** Marking ");
   11610     ShortPrint();
   11611     PrintF(" for concurrent recompilation.\n");
   11612   }
   11613   set_code_no_write_barrier(
   11614       isolate->builtins()->builtin(Builtins::kCompileOptimizedConcurrent));
   11615   // No write barrier required, since the builtin is part of the root set.
   11616 }
   11617 
   11618 // static
   11619 Handle<LiteralsArray> SharedFunctionInfo::FindOrCreateLiterals(
   11620     Handle<SharedFunctionInfo> shared, Handle<Context> native_context) {
   11621   Isolate* isolate = shared->GetIsolate();
   11622   CodeAndLiterals result =
   11623       shared->SearchOptimizedCodeMap(*native_context, BailoutId::None());
   11624   if (result.literals != nullptr) {
   11625     DCHECK(shared->feedback_metadata()->is_empty() ||
   11626            !result.literals->feedback_vector()->is_empty());
   11627     return handle(result.literals, isolate);
   11628   }
   11629 
   11630   Handle<TypeFeedbackVector> feedback_vector =
   11631       TypeFeedbackVector::New(isolate, handle(shared->feedback_metadata()));
   11632   Handle<LiteralsArray> literals = LiteralsArray::New(
   11633       isolate, feedback_vector, shared->num_literals(), TENURED);
   11634   Handle<Code> code;
   11635   if (result.code != nullptr) {
   11636     code = Handle<Code>(result.code, isolate);
   11637   }
   11638   AddToOptimizedCodeMap(shared, native_context, code, literals,
   11639                         BailoutId::None());
   11640   return literals;
   11641 }
   11642 
   11643 void SharedFunctionInfo::AddSharedCodeToOptimizedCodeMap(
   11644     Handle<SharedFunctionInfo> shared, Handle<Code> code) {
   11645   Isolate* isolate = shared->GetIsolate();
   11646   if (isolate->serializer_enabled()) return;
   11647   DCHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
   11648   // Empty code maps are unsupported.
   11649   if (!shared->OptimizedCodeMapIsCleared()) {
   11650     Handle<WeakCell> cell = isolate->factory()->NewWeakCell(code);
   11651     // A collection may have occured and cleared the optimized code map in the
   11652     // allocation above.
   11653     if (!shared->OptimizedCodeMapIsCleared()) {
   11654       shared->optimized_code_map()->set(kSharedCodeIndex, *cell);
   11655     }
   11656   }
   11657 }
   11658 
   11659 // static
   11660 void SharedFunctionInfo::AddToOptimizedCodeMap(
   11661     Handle<SharedFunctionInfo> shared, Handle<Context> native_context,
   11662     MaybeHandle<Code> code, Handle<LiteralsArray> literals,
   11663     BailoutId osr_ast_id) {
   11664   Isolate* isolate = shared->GetIsolate();
   11665   if (isolate->serializer_enabled()) return;
   11666   DCHECK(code.is_null() ||
   11667          code.ToHandleChecked()->kind() == Code::OPTIMIZED_FUNCTION);
   11668   DCHECK(native_context->IsNativeContext());
   11669   STATIC_ASSERT(kEntryLength == 4);
   11670   Handle<FixedArray> new_code_map;
   11671   int entry;
   11672 
   11673   if (shared->OptimizedCodeMapIsCleared()) {
   11674     new_code_map = isolate->factory()->NewFixedArray(kInitialLength, TENURED);
   11675     new_code_map->set(kSharedCodeIndex, *isolate->factory()->empty_weak_cell(),
   11676                       SKIP_WRITE_BARRIER);
   11677     entry = kEntriesStart;
   11678   } else {
   11679     Handle<FixedArray> old_code_map(shared->optimized_code_map(), isolate);
   11680     entry = shared->SearchOptimizedCodeMapEntry(*native_context, osr_ast_id);
   11681     if (entry > kSharedCodeIndex) {
   11682       // Just set the code and literals of the entry.
   11683       if (!code.is_null()) {
   11684         Handle<WeakCell> code_cell =
   11685             isolate->factory()->NewWeakCell(code.ToHandleChecked());
   11686         old_code_map->set(entry + kCachedCodeOffset, *code_cell);
   11687       }
   11688       if (literals->literals_count() == 0) {
   11689         old_code_map->set(entry + kLiteralsOffset, *literals);
   11690       } else {
   11691         Handle<WeakCell> literals_cell =
   11692             isolate->factory()->NewWeakCell(literals);
   11693         old_code_map->set(entry + kLiteralsOffset, *literals_cell);
   11694       }
   11695       return;
   11696     }
   11697 
   11698     // Can we reuse an entry?
   11699     DCHECK(entry < kEntriesStart);
   11700     int length = old_code_map->length();
   11701     for (int i = kEntriesStart; i < length; i += kEntryLength) {
   11702       if (WeakCell::cast(old_code_map->get(i + kContextOffset))->cleared()) {
   11703         new_code_map = old_code_map;
   11704         entry = i;
   11705         break;
   11706       }
   11707     }
   11708 
   11709     if (entry < kEntriesStart) {
   11710       // Copy old optimized code map and append one new entry.
   11711       new_code_map = isolate->factory()->CopyFixedArrayAndGrow(
   11712           old_code_map, kEntryLength, TENURED);
   11713       // TODO(mstarzinger): Temporary workaround. The allocation above might
   11714       // have flushed the optimized code map and the copy we created is full of
   11715       // holes. For now we just give up on adding the entry and pretend it got
   11716       // flushed.
   11717       if (shared->OptimizedCodeMapIsCleared()) return;
   11718       entry = old_code_map->length();
   11719     }
   11720   }
   11721 
   11722   Handle<WeakCell> code_cell =
   11723       code.is_null() ? isolate->factory()->empty_weak_cell()
   11724                      : isolate->factory()->NewWeakCell(code.ToHandleChecked());
   11725   WeakCell* context_cell = native_context->self_weak_cell();
   11726 
   11727   new_code_map->set(entry + kContextOffset, context_cell);
   11728   new_code_map->set(entry + kCachedCodeOffset, *code_cell);
   11729 
   11730   if (literals->literals_count() == 0) {
   11731     new_code_map->set(entry + kLiteralsOffset, *literals);
   11732   } else {
   11733     Handle<WeakCell> literals_cell = isolate->factory()->NewWeakCell(literals);
   11734     new_code_map->set(entry + kLiteralsOffset, *literals_cell);
   11735   }
   11736 
   11737   new_code_map->set(entry + kOsrAstIdOffset, Smi::FromInt(osr_ast_id.ToInt()));
   11738 
   11739 #ifdef DEBUG
   11740   for (int i = kEntriesStart; i < new_code_map->length(); i += kEntryLength) {
   11741     WeakCell* cell = WeakCell::cast(new_code_map->get(i + kContextOffset));
   11742     DCHECK(cell->cleared() || cell->value()->IsNativeContext());
   11743     cell = WeakCell::cast(new_code_map->get(i + kCachedCodeOffset));
   11744     DCHECK(cell->cleared() ||
   11745            (cell->value()->IsCode() &&
   11746             Code::cast(cell->value())->kind() == Code::OPTIMIZED_FUNCTION));
   11747     Object* lits = new_code_map->get(i + kLiteralsOffset);
   11748     if (lits->IsWeakCell()) {
   11749       cell = WeakCell::cast(lits);
   11750       DCHECK(cell->cleared() ||
   11751              (cell->value()->IsLiteralsArray() &&
   11752               LiteralsArray::cast(cell->value())->literals_count() > 0));
   11753     } else {
   11754       DCHECK(lits->IsLiteralsArray() &&
   11755              LiteralsArray::cast(lits)->literals_count() == 0);
   11756     }
   11757     DCHECK(new_code_map->get(i + kOsrAstIdOffset)->IsSmi());
   11758   }
   11759 #endif
   11760 
   11761   FixedArray* old_code_map = shared->optimized_code_map();
   11762   if (old_code_map != *new_code_map) {
   11763     shared->set_optimized_code_map(*new_code_map);
   11764   }
   11765 }
   11766 
   11767 
   11768 void SharedFunctionInfo::ClearOptimizedCodeMap() {
   11769   FixedArray* cleared_map = GetHeap()->cleared_optimized_code_map();
   11770   set_optimized_code_map(cleared_map, SKIP_WRITE_BARRIER);
   11771 }
   11772 
   11773 
   11774 void SharedFunctionInfo::EvictFromOptimizedCodeMap(Code* optimized_code,
   11775                                                    const char* reason) {
   11776   DisallowHeapAllocation no_gc;
   11777   if (OptimizedCodeMapIsCleared()) return;
   11778 
   11779   Heap* heap = GetHeap();
   11780   FixedArray* code_map = optimized_code_map();
   11781   int dst = kEntriesStart;
   11782   int length = code_map->length();
   11783   for (int src = kEntriesStart; src < length; src += kEntryLength) {
   11784     DCHECK(WeakCell::cast(code_map->get(src))->cleared() ||
   11785            WeakCell::cast(code_map->get(src))->value()->IsNativeContext());
   11786     if (WeakCell::cast(code_map->get(src + kCachedCodeOffset))->value() ==
   11787         optimized_code) {
   11788       BailoutId osr(Smi::cast(code_map->get(src + kOsrAstIdOffset))->value());
   11789       if (FLAG_trace_opt) {
   11790         PrintF("[evicting entry from optimizing code map (%s) for ", reason);
   11791         ShortPrint();
   11792         if (osr.IsNone()) {
   11793           PrintF("]\n");
   11794         } else {
   11795           PrintF(" (osr ast id %d)]\n", osr.ToInt());
   11796         }
   11797       }
   11798       if (!osr.IsNone()) {
   11799         // Evict the src entry by not copying it to the dst entry.
   11800         continue;
   11801       }
   11802       // In case of non-OSR entry just clear the code in order to proceed
   11803       // sharing literals.
   11804       code_map->set(src + kCachedCodeOffset, heap->empty_weak_cell(),
   11805                     SKIP_WRITE_BARRIER);
   11806     }
   11807 
   11808     // Keep the src entry by copying it to the dst entry.
   11809     if (dst != src) {
   11810       code_map->set(dst + kContextOffset, code_map->get(src + kContextOffset));
   11811       code_map->set(dst + kCachedCodeOffset,
   11812                     code_map->get(src + kCachedCodeOffset));
   11813       code_map->set(dst + kLiteralsOffset,
   11814                     code_map->get(src + kLiteralsOffset));
   11815       code_map->set(dst + kOsrAstIdOffset,
   11816                     code_map->get(src + kOsrAstIdOffset));
   11817     }
   11818     dst += kEntryLength;
   11819   }
   11820   if (WeakCell::cast(code_map->get(kSharedCodeIndex))->value() ==
   11821       optimized_code) {
   11822     // Evict context-independent code as well.
   11823     code_map->set(kSharedCodeIndex, heap->empty_weak_cell(),
   11824                   SKIP_WRITE_BARRIER);
   11825     if (FLAG_trace_opt) {
   11826       PrintF("[evicting entry from optimizing code map (%s) for ", reason);
   11827       ShortPrint();
   11828       PrintF(" (context-independent code)]\n");
   11829     }
   11830   }
   11831   if (dst != length) {
   11832     // Always trim even when array is cleared because of heap verifier.
   11833     heap->RightTrimFixedArray<Heap::CONCURRENT_TO_SWEEPER>(code_map,
   11834                                                            length - dst);
   11835     if (code_map->length() == kEntriesStart &&
   11836         WeakCell::cast(code_map->get(kSharedCodeIndex))->cleared()) {
   11837       ClearOptimizedCodeMap();
   11838     }
   11839   }
   11840 }
   11841 
   11842 
   11843 void SharedFunctionInfo::TrimOptimizedCodeMap(int shrink_by) {
   11844   FixedArray* code_map = optimized_code_map();
   11845   DCHECK(shrink_by % kEntryLength == 0);
   11846   DCHECK(shrink_by <= code_map->length() - kEntriesStart);
   11847   // Always trim even when array is cleared because of heap verifier.
   11848   GetHeap()->RightTrimFixedArray<Heap::SEQUENTIAL_TO_SWEEPER>(code_map,
   11849                                                               shrink_by);
   11850   if (code_map->length() == kEntriesStart &&
   11851       WeakCell::cast(code_map->get(kSharedCodeIndex))->cleared()) {
   11852     ClearOptimizedCodeMap();
   11853   }
   11854 }
   11855 
   11856 // static
   11857 void JSFunction::EnsureLiterals(Handle<JSFunction> function) {
   11858   Handle<SharedFunctionInfo> shared(function->shared());
   11859   Handle<Context> native_context(function->context()->native_context());
   11860   if (function->literals() ==
   11861       function->GetIsolate()->heap()->empty_literals_array()) {
   11862     Handle<LiteralsArray> literals =
   11863         SharedFunctionInfo::FindOrCreateLiterals(shared, native_context);
   11864     function->set_literals(*literals);
   11865   }
   11866 }
   11867 
   11868 static void GetMinInobjectSlack(Map* map, void* data) {
   11869   int slack = map->unused_property_fields();
   11870   if (*reinterpret_cast<int*>(data) > slack) {
   11871     *reinterpret_cast<int*>(data) = slack;
   11872   }
   11873 }
   11874 
   11875 
   11876 static void ShrinkInstanceSize(Map* map, void* data) {
   11877   int slack = *reinterpret_cast<int*>(data);
   11878   map->SetInObjectProperties(map->GetInObjectProperties() - slack);
   11879   map->set_unused_property_fields(map->unused_property_fields() - slack);
   11880   map->set_instance_size(map->instance_size() - slack * kPointerSize);
   11881   map->set_construction_counter(Map::kNoSlackTracking);
   11882 
   11883   // Visitor id might depend on the instance size, recalculate it.
   11884   map->set_visitor_id(Heap::GetStaticVisitorIdForMap(map));
   11885 }
   11886 
   11887 static void StopSlackTracking(Map* map, void* data) {
   11888   map->set_construction_counter(Map::kNoSlackTracking);
   11889 }
   11890 
   11891 void Map::CompleteInobjectSlackTracking() {
   11892   // Has to be an initial map.
   11893   DCHECK(GetBackPointer()->IsUndefined(GetIsolate()));
   11894 
   11895   int slack = unused_property_fields();
   11896   TransitionArray::TraverseTransitionTree(this, &GetMinInobjectSlack, &slack);
   11897   if (slack != 0) {
   11898     // Resize the initial map and all maps in its transition tree.
   11899     TransitionArray::TraverseTransitionTree(this, &ShrinkInstanceSize, &slack);
   11900   } else {
   11901     TransitionArray::TraverseTransitionTree(this, &StopSlackTracking, nullptr);
   11902   }
   11903 }
   11904 
   11905 
   11906 static bool PrototypeBenefitsFromNormalization(Handle<JSObject> object) {
   11907   DisallowHeapAllocation no_gc;
   11908   if (!object->HasFastProperties()) return false;
   11909   Map* map = object->map();
   11910   if (map->is_prototype_map()) return false;
   11911   DescriptorArray* descriptors = map->instance_descriptors();
   11912   for (int i = 0; i < map->NumberOfOwnDescriptors(); i++) {
   11913     PropertyDetails details = descriptors->GetDetails(i);
   11914     if (details.location() == kDescriptor) continue;
   11915     if (details.representation().IsHeapObject() ||
   11916         details.representation().IsTagged()) {
   11917       FieldIndex index = FieldIndex::ForDescriptor(map, i);
   11918       if (object->RawFastPropertyAt(index)->IsJSFunction()) return true;
   11919     }
   11920   }
   11921   return false;
   11922 }
   11923 
   11924 // static
   11925 void JSObject::MakePrototypesFast(Handle<Object> receiver,
   11926                                   WhereToStart where_to_start,
   11927                                   Isolate* isolate) {
   11928   if (!receiver->IsJSReceiver()) return;
   11929   for (PrototypeIterator iter(isolate, Handle<JSReceiver>::cast(receiver),
   11930                               where_to_start);
   11931        !iter.IsAtEnd(); iter.Advance()) {
   11932     Handle<Object> current = PrototypeIterator::GetCurrent(iter);
   11933     if (!current->IsJSObject()) return;
   11934     Handle<JSObject> current_obj = Handle<JSObject>::cast(current);
   11935     Map* current_map = current_obj->map();
   11936     if (current_map->is_prototype_map() &&
   11937         !current_map->should_be_fast_prototype_map()) {
   11938       Handle<Map> map(current_map);
   11939       Map::SetShouldBeFastPrototypeMap(map, true, isolate);
   11940       JSObject::OptimizeAsPrototype(current_obj, FAST_PROTOTYPE);
   11941     }
   11942   }
   11943 }
   11944 
   11945 // static
   11946 void JSObject::OptimizeAsPrototype(Handle<JSObject> object,
   11947                                    PrototypeOptimizationMode mode) {
   11948   if (object->IsJSGlobalObject()) return;
   11949   if (mode == FAST_PROTOTYPE && PrototypeBenefitsFromNormalization(object)) {
   11950     // First normalize to ensure all JSFunctions are DATA_CONSTANT.
   11951     JSObject::NormalizeProperties(object, KEEP_INOBJECT_PROPERTIES, 0,
   11952                                   "NormalizeAsPrototype");
   11953   }
   11954   Handle<Map> previous_map(object->map());
   11955   if (object->map()->is_prototype_map()) {
   11956     if (object->map()->should_be_fast_prototype_map() &&
   11957         !object->HasFastProperties()) {
   11958       JSObject::MigrateSlowToFast(object, 0, "OptimizeAsPrototype");
   11959     }
   11960   } else {
   11961     if (object->map() == *previous_map) {
   11962       Handle<Map> new_map = Map::Copy(handle(object->map()), "CopyAsPrototype");
   11963       JSObject::MigrateToMap(object, new_map);
   11964     }
   11965     object->map()->set_is_prototype_map(true);
   11966 
   11967     // Replace the pointer to the exact constructor with the Object function
   11968     // from the same context if undetectable from JS. This is to avoid keeping
   11969     // memory alive unnecessarily.
   11970     Object* maybe_constructor = object->map()->GetConstructor();
   11971     if (maybe_constructor->IsJSFunction()) {
   11972       JSFunction* constructor = JSFunction::cast(maybe_constructor);
   11973       Isolate* isolate = object->GetIsolate();
   11974       if (!constructor->shared()->IsApiFunction() &&
   11975           object->class_name() == isolate->heap()->Object_string()) {
   11976         Context* context = constructor->context()->native_context();
   11977         JSFunction* object_function = context->object_function();
   11978         object->map()->SetConstructor(object_function);
   11979       }
   11980     }
   11981   }
   11982 }
   11983 
   11984 
   11985 // static
   11986 void JSObject::ReoptimizeIfPrototype(Handle<JSObject> object) {
   11987   if (!object->map()->is_prototype_map()) return;
   11988   if (!object->map()->should_be_fast_prototype_map()) return;
   11989   OptimizeAsPrototype(object, FAST_PROTOTYPE);
   11990 }
   11991 
   11992 
   11993 // static
   11994 void JSObject::LazyRegisterPrototypeUser(Handle<Map> user, Isolate* isolate) {
   11995   // Contract: In line with InvalidatePrototypeChains()'s requirements,
   11996   // leaf maps don't need to register as users, only prototypes do.
   11997   DCHECK(user->is_prototype_map());
   11998 
   11999   Handle<Map> current_user = user;
   12000   Handle<PrototypeInfo> current_user_info =
   12001       Map::GetOrCreatePrototypeInfo(user, isolate);
   12002   for (PrototypeIterator iter(user); !iter.IsAtEnd(); iter.Advance()) {
   12003     // Walk up the prototype chain as far as links haven't been registered yet.
   12004     if (current_user_info->registry_slot() != PrototypeInfo::UNREGISTERED) {
   12005       break;
   12006     }
   12007     Handle<Object> maybe_proto = PrototypeIterator::GetCurrent(iter);
   12008     // Proxies on the prototype chain are not supported. They make it
   12009     // impossible to make any assumptions about the prototype chain anyway.
   12010     if (maybe_proto->IsJSProxy()) return;
   12011     Handle<JSObject> proto = Handle<JSObject>::cast(maybe_proto);
   12012     Handle<PrototypeInfo> proto_info =
   12013         Map::GetOrCreatePrototypeInfo(proto, isolate);
   12014     Handle<Object> maybe_registry(proto_info->prototype_users(), isolate);
   12015     int slot = 0;
   12016     Handle<WeakFixedArray> new_array =
   12017         WeakFixedArray::Add(maybe_registry, current_user, &slot);
   12018     current_user_info->set_registry_slot(slot);
   12019     if (!maybe_registry.is_identical_to(new_array)) {
   12020       proto_info->set_prototype_users(*new_array);
   12021     }
   12022     if (FLAG_trace_prototype_users) {
   12023       PrintF("Registering %p as a user of prototype %p (map=%p).\n",
   12024              reinterpret_cast<void*>(*current_user),
   12025              reinterpret_cast<void*>(*proto),
   12026              reinterpret_cast<void*>(proto->map()));
   12027     }
   12028 
   12029     current_user = handle(proto->map(), isolate);
   12030     current_user_info = proto_info;
   12031   }
   12032 }
   12033 
   12034 
   12035 // Can be called regardless of whether |user| was actually registered with
   12036 // |prototype|. Returns true when there was a registration.
   12037 // static
   12038 bool JSObject::UnregisterPrototypeUser(Handle<Map> user, Isolate* isolate) {
   12039   DCHECK(user->is_prototype_map());
   12040   // If it doesn't have a PrototypeInfo, it was never registered.
   12041   if (!user->prototype_info()->IsPrototypeInfo()) return false;
   12042   // If it had no prototype before, see if it had users that might expect
   12043   // registration.
   12044   if (!user->prototype()->IsJSObject()) {
   12045     Object* users =
   12046         PrototypeInfo::cast(user->prototype_info())->prototype_users();
   12047     return users->IsWeakFixedArray();
   12048   }
   12049   Handle<JSObject> prototype(JSObject::cast(user->prototype()), isolate);
   12050   Handle<PrototypeInfo> user_info =
   12051       Map::GetOrCreatePrototypeInfo(user, isolate);
   12052   int slot = user_info->registry_slot();
   12053   if (slot == PrototypeInfo::UNREGISTERED) return false;
   12054   DCHECK(prototype->map()->is_prototype_map());
   12055   Object* maybe_proto_info = prototype->map()->prototype_info();
   12056   // User knows its registry slot, prototype info and user registry must exist.
   12057   DCHECK(maybe_proto_info->IsPrototypeInfo());
   12058   Handle<PrototypeInfo> proto_info(PrototypeInfo::cast(maybe_proto_info),
   12059                                    isolate);
   12060   Object* maybe_registry = proto_info->prototype_users();
   12061   DCHECK(maybe_registry->IsWeakFixedArray());
   12062   DCHECK(WeakFixedArray::cast(maybe_registry)->Get(slot) == *user);
   12063   WeakFixedArray::cast(maybe_registry)->Clear(slot);
   12064   if (FLAG_trace_prototype_users) {
   12065     PrintF("Unregistering %p as a user of prototype %p.\n",
   12066            reinterpret_cast<void*>(*user), reinterpret_cast<void*>(*prototype));
   12067   }
   12068   return true;
   12069 }
   12070 
   12071 
   12072 static void InvalidatePrototypeChainsInternal(Map* map) {
   12073   if (!map->is_prototype_map()) return;
   12074   if (FLAG_trace_prototype_users) {
   12075     PrintF("Invalidating prototype map %p 's cell\n",
   12076            reinterpret_cast<void*>(map));
   12077   }
   12078   Object* maybe_proto_info = map->prototype_info();
   12079   if (!maybe_proto_info->IsPrototypeInfo()) return;
   12080   PrototypeInfo* proto_info = PrototypeInfo::cast(maybe_proto_info);
   12081   Object* maybe_cell = proto_info->validity_cell();
   12082   if (maybe_cell->IsCell()) {
   12083     // Just set the value; the cell will be replaced lazily.
   12084     Cell* cell = Cell::cast(maybe_cell);
   12085     cell->set_value(Smi::FromInt(Map::kPrototypeChainInvalid));
   12086   }
   12087 
   12088   WeakFixedArray::Iterator iterator(proto_info->prototype_users());
   12089   // For now, only maps register themselves as users.
   12090   Map* user;
   12091   while ((user = iterator.Next<Map>())) {
   12092     // Walk the prototype chain (backwards, towards leaf objects) if necessary.
   12093     InvalidatePrototypeChainsInternal(user);
   12094   }
   12095 }
   12096 
   12097 
   12098 // static
   12099 void JSObject::InvalidatePrototypeChains(Map* map) {
   12100   DisallowHeapAllocation no_gc;
   12101   InvalidatePrototypeChainsInternal(map);
   12102 }
   12103 
   12104 
   12105 // static
   12106 Handle<PrototypeInfo> Map::GetOrCreatePrototypeInfo(Handle<JSObject> prototype,
   12107                                                     Isolate* isolate) {
   12108   Object* maybe_proto_info = prototype->map()->prototype_info();
   12109   if (maybe_proto_info->IsPrototypeInfo()) {
   12110     return handle(PrototypeInfo::cast(maybe_proto_info), isolate);
   12111   }
   12112   Handle<PrototypeInfo> proto_info = isolate->factory()->NewPrototypeInfo();
   12113   prototype->map()->set_prototype_info(*proto_info);
   12114   return proto_info;
   12115 }
   12116 
   12117 
   12118 // static
   12119 Handle<PrototypeInfo> Map::GetOrCreatePrototypeInfo(Handle<Map> prototype_map,
   12120                                                     Isolate* isolate) {
   12121   Object* maybe_proto_info = prototype_map->prototype_info();
   12122   if (maybe_proto_info->IsPrototypeInfo()) {
   12123     return handle(PrototypeInfo::cast(maybe_proto_info), isolate);
   12124   }
   12125   Handle<PrototypeInfo> proto_info = isolate->factory()->NewPrototypeInfo();
   12126   prototype_map->set_prototype_info(*proto_info);
   12127   return proto_info;
   12128 }
   12129 
   12130 // static
   12131 void Map::SetShouldBeFastPrototypeMap(Handle<Map> map, bool value,
   12132                                       Isolate* isolate) {
   12133   if (value == false && !map->prototype_info()->IsPrototypeInfo()) {
   12134     // "False" is the implicit default value, so there's nothing to do.
   12135     return;
   12136   }
   12137   GetOrCreatePrototypeInfo(map, isolate)->set_should_be_fast_map(value);
   12138 }
   12139 
   12140 // static
   12141 Handle<Cell> Map::GetOrCreatePrototypeChainValidityCell(Handle<Map> map,
   12142                                                         Isolate* isolate) {
   12143   Handle<Object> maybe_prototype(map->prototype(), isolate);
   12144   if (!maybe_prototype->IsJSObject()) return Handle<Cell>::null();
   12145   Handle<JSObject> prototype = Handle<JSObject>::cast(maybe_prototype);
   12146   // Ensure the prototype is registered with its own prototypes so its cell
   12147   // will be invalidated when necessary.
   12148   JSObject::LazyRegisterPrototypeUser(handle(prototype->map(), isolate),
   12149                                       isolate);
   12150   Handle<PrototypeInfo> proto_info =
   12151       GetOrCreatePrototypeInfo(prototype, isolate);
   12152   Object* maybe_cell = proto_info->validity_cell();
   12153   // Return existing cell if it's still valid.
   12154   if (maybe_cell->IsCell()) {
   12155     Handle<Cell> cell(Cell::cast(maybe_cell), isolate);
   12156     if (cell->value() == Smi::FromInt(Map::kPrototypeChainValid)) {
   12157       return cell;
   12158     }
   12159   }
   12160   // Otherwise create a new cell.
   12161   Handle<Cell> cell = isolate->factory()->NewCell(
   12162       handle(Smi::FromInt(Map::kPrototypeChainValid), isolate));
   12163   proto_info->set_validity_cell(*cell);
   12164   return cell;
   12165 }
   12166 
   12167 
   12168 // static
   12169 void Map::SetPrototype(Handle<Map> map, Handle<Object> prototype,
   12170                        PrototypeOptimizationMode proto_mode) {
   12171   RuntimeCallTimerScope stats_scope(*map, &RuntimeCallStats::Map_SetPrototype);
   12172 
   12173   bool is_hidden = false;
   12174   if (prototype->IsJSObject()) {
   12175     Handle<JSObject> prototype_jsobj = Handle<JSObject>::cast(prototype);
   12176     JSObject::OptimizeAsPrototype(prototype_jsobj, proto_mode);
   12177 
   12178     Object* maybe_constructor = prototype_jsobj->map()->GetConstructor();
   12179     if (maybe_constructor->IsJSFunction()) {
   12180       JSFunction* constructor = JSFunction::cast(maybe_constructor);
   12181       Object* data = constructor->shared()->function_data();
   12182       is_hidden = (data->IsFunctionTemplateInfo() &&
   12183                    FunctionTemplateInfo::cast(data)->hidden_prototype()) ||
   12184                   prototype->IsJSGlobalObject();
   12185     }
   12186   }
   12187   map->set_has_hidden_prototype(is_hidden);
   12188 
   12189   WriteBarrierMode wb_mode = prototype->IsNull(map->GetIsolate())
   12190                                  ? SKIP_WRITE_BARRIER
   12191                                  : UPDATE_WRITE_BARRIER;
   12192   map->set_prototype(*prototype, wb_mode);
   12193 }
   12194 
   12195 
   12196 Handle<Object> CacheInitialJSArrayMaps(
   12197     Handle<Context> native_context, Handle<Map> initial_map) {
   12198   // Replace all of the cached initial array maps in the native context with
   12199   // the appropriate transitioned elements kind maps.
   12200   Handle<Map> current_map = initial_map;
   12201   ElementsKind kind = current_map->elements_kind();
   12202   DCHECK_EQ(GetInitialFastElementsKind(), kind);
   12203   native_context->set(Context::ArrayMapIndex(kind), *current_map);
   12204   for (int i = GetSequenceIndexFromFastElementsKind(kind) + 1;
   12205        i < kFastElementsKindCount; ++i) {
   12206     Handle<Map> new_map;
   12207     ElementsKind next_kind = GetFastElementsKindFromSequenceIndex(i);
   12208     if (Map* maybe_elements_transition = current_map->ElementsTransitionMap()) {
   12209       new_map = handle(maybe_elements_transition);
   12210     } else {
   12211       new_map = Map::CopyAsElementsKind(
   12212           current_map, next_kind, INSERT_TRANSITION);
   12213     }
   12214     DCHECK_EQ(next_kind, new_map->elements_kind());
   12215     native_context->set(Context::ArrayMapIndex(next_kind), *new_map);
   12216     current_map = new_map;
   12217   }
   12218   return initial_map;
   12219 }
   12220 
   12221 
   12222 void JSFunction::SetInstancePrototype(Handle<JSFunction> function,
   12223                                       Handle<Object> value) {
   12224   Isolate* isolate = function->GetIsolate();
   12225 
   12226   DCHECK(value->IsJSReceiver());
   12227 
   12228   // Now some logic for the maps of the objects that are created by using this
   12229   // function as a constructor.
   12230   if (function->has_initial_map()) {
   12231     // If the function has allocated the initial map replace it with a
   12232     // copy containing the new prototype.  Also complete any in-object
   12233     // slack tracking that is in progress at this point because it is
   12234     // still tracking the old copy.
   12235     function->CompleteInobjectSlackTrackingIfActive();
   12236 
   12237     Handle<Map> initial_map(function->initial_map(), isolate);
   12238 
   12239     if (!initial_map->GetIsolate()->bootstrapper()->IsActive() &&
   12240         initial_map->instance_type() == JS_OBJECT_TYPE) {
   12241       // Put the value in the initial map field until an initial map is needed.
   12242       // At that point, a new initial map is created and the prototype is put
   12243       // into the initial map where it belongs.
   12244       function->set_prototype_or_initial_map(*value);
   12245     } else {
   12246       Handle<Map> new_map = Map::Copy(initial_map, "SetInstancePrototype");
   12247       JSFunction::SetInitialMap(function, new_map, value);
   12248 
   12249       // If the function is used as the global Array function, cache the
   12250       // updated initial maps (and transitioned versions) in the native context.
   12251       Handle<Context> native_context(function->context()->native_context(),
   12252                                      isolate);
   12253       Handle<Object> array_function(
   12254           native_context->get(Context::ARRAY_FUNCTION_INDEX), isolate);
   12255       if (array_function->IsJSFunction() &&
   12256           *function == JSFunction::cast(*array_function)) {
   12257         CacheInitialJSArrayMaps(native_context, new_map);
   12258       }
   12259     }
   12260 
   12261     // Deoptimize all code that embeds the previous initial map.
   12262     initial_map->dependent_code()->DeoptimizeDependentCodeGroup(
   12263         isolate, DependentCode::kInitialMapChangedGroup);
   12264   } else {
   12265     // Put the value in the initial map field until an initial map is
   12266     // needed.  At that point, a new initial map is created and the
   12267     // prototype is put into the initial map where it belongs.
   12268     function->set_prototype_or_initial_map(*value);
   12269     if (value->IsJSObject()) {
   12270       // Optimize as prototype to detach it from its transition tree.
   12271       JSObject::OptimizeAsPrototype(Handle<JSObject>::cast(value),
   12272                                     FAST_PROTOTYPE);
   12273     }
   12274   }
   12275   isolate->heap()->ClearInstanceofCache();
   12276 }
   12277 
   12278 
   12279 void JSFunction::SetPrototype(Handle<JSFunction> function,
   12280                               Handle<Object> value) {
   12281   DCHECK(function->IsConstructor() ||
   12282          IsGeneratorFunction(function->shared()->kind()));
   12283   Handle<Object> construct_prototype = value;
   12284 
   12285   // If the value is not a JSReceiver, store the value in the map's
   12286   // constructor field so it can be accessed.  Also, set the prototype
   12287   // used for constructing objects to the original object prototype.
   12288   // See ECMA-262 13.2.2.
   12289   if (!value->IsJSReceiver()) {
   12290     // Copy the map so this does not affect unrelated functions.
   12291     // Remove map transitions because they point to maps with a
   12292     // different prototype.
   12293     Handle<Map> new_map = Map::Copy(handle(function->map()), "SetPrototype");
   12294 
   12295     JSObject::MigrateToMap(function, new_map);
   12296     new_map->SetConstructor(*value);
   12297     new_map->set_non_instance_prototype(true);
   12298     Isolate* isolate = new_map->GetIsolate();
   12299 
   12300     construct_prototype = handle(
   12301         IsGeneratorFunction(function->shared()->kind())
   12302             ? function->context()
   12303                   ->native_context()
   12304                   ->initial_generator_prototype()
   12305             : function->context()->native_context()->initial_object_prototype(),
   12306         isolate);
   12307   } else {
   12308     function->map()->set_non_instance_prototype(false);
   12309   }
   12310 
   12311   return SetInstancePrototype(function, construct_prototype);
   12312 }
   12313 
   12314 
   12315 bool JSFunction::RemovePrototype() {
   12316   Context* native_context = context()->native_context();
   12317   Map* no_prototype_map =
   12318       is_strict(shared()->language_mode())
   12319           ? native_context->strict_function_without_prototype_map()
   12320           : native_context->sloppy_function_without_prototype_map();
   12321 
   12322   if (map() == no_prototype_map) return true;
   12323 
   12324 #ifdef DEBUG
   12325   if (map() != (is_strict(shared()->language_mode())
   12326                     ? native_context->strict_function_map()
   12327                     : native_context->sloppy_function_map())) {
   12328     return false;
   12329   }
   12330 #endif
   12331 
   12332   set_map(no_prototype_map);
   12333   set_prototype_or_initial_map(no_prototype_map->GetHeap()->the_hole_value());
   12334   return true;
   12335 }
   12336 
   12337 
   12338 void JSFunction::SetInitialMap(Handle<JSFunction> function, Handle<Map> map,
   12339                                Handle<Object> prototype) {
   12340   if (map->prototype() != *prototype) {
   12341     Map::SetPrototype(map, prototype, FAST_PROTOTYPE);
   12342   }
   12343   function->set_prototype_or_initial_map(*map);
   12344   map->SetConstructor(*function);
   12345 #if TRACE_MAPS
   12346   if (FLAG_trace_maps) {
   12347     PrintF("[TraceMaps: InitialMap map= %p SFI= %d_%s ]\n",
   12348            reinterpret_cast<void*>(*map), function->shared()->unique_id(),
   12349            function->shared()->DebugName()->ToCString().get());
   12350   }
   12351 #endif
   12352 }
   12353 
   12354 
   12355 #ifdef DEBUG
   12356 namespace {
   12357 
   12358 bool CanSubclassHaveInobjectProperties(InstanceType instance_type) {
   12359   switch (instance_type) {
   12360     case JS_API_OBJECT_TYPE:
   12361     case JS_ARRAY_BUFFER_TYPE:
   12362     case JS_ARRAY_TYPE:
   12363     case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
   12364     case JS_DATA_VIEW_TYPE:
   12365     case JS_DATE_TYPE:
   12366     case JS_FUNCTION_TYPE:
   12367     case JS_GENERATOR_OBJECT_TYPE:
   12368     case JS_MAP_ITERATOR_TYPE:
   12369     case JS_MAP_TYPE:
   12370     case JS_MESSAGE_OBJECT_TYPE:
   12371     case JS_MODULE_TYPE:
   12372     case JS_OBJECT_TYPE:
   12373     case JS_ERROR_TYPE:
   12374     case JS_ARGUMENTS_TYPE:
   12375     case JS_PROMISE_TYPE:
   12376     case JS_REGEXP_TYPE:
   12377     case JS_SET_ITERATOR_TYPE:
   12378     case JS_SET_TYPE:
   12379     case JS_SPECIAL_API_OBJECT_TYPE:
   12380     case JS_TYPED_ARRAY_TYPE:
   12381     case JS_VALUE_TYPE:
   12382     case JS_WEAK_MAP_TYPE:
   12383     case JS_WEAK_SET_TYPE:
   12384       return true;
   12385 
   12386     case BYTECODE_ARRAY_TYPE:
   12387     case BYTE_ARRAY_TYPE:
   12388     case CELL_TYPE:
   12389     case CODE_TYPE:
   12390     case FILLER_TYPE:
   12391     case FIXED_ARRAY_TYPE:
   12392     case FIXED_DOUBLE_ARRAY_TYPE:
   12393     case FOREIGN_TYPE:
   12394     case FREE_SPACE_TYPE:
   12395     case HEAP_NUMBER_TYPE:
   12396     case JS_BOUND_FUNCTION_TYPE:
   12397     case JS_GLOBAL_OBJECT_TYPE:
   12398     case JS_GLOBAL_PROXY_TYPE:
   12399     case JS_PROXY_TYPE:
   12400     case MAP_TYPE:
   12401     case MUTABLE_HEAP_NUMBER_TYPE:
   12402     case ODDBALL_TYPE:
   12403     case PROPERTY_CELL_TYPE:
   12404     case SHARED_FUNCTION_INFO_TYPE:
   12405     case SIMD128_VALUE_TYPE:
   12406     case SYMBOL_TYPE:
   12407     case WEAK_CELL_TYPE:
   12408 
   12409 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
   12410   case FIXED_##TYPE##_ARRAY_TYPE:
   12411 #undef TYPED_ARRAY_CASE
   12412 
   12413 #define MAKE_STRUCT_CASE(NAME, Name, name) case NAME##_TYPE:
   12414       STRUCT_LIST(MAKE_STRUCT_CASE)
   12415 #undef MAKE_STRUCT_CASE
   12416       // We must not end up here for these instance types at all.
   12417       UNREACHABLE();
   12418     // Fall through.
   12419     default:
   12420       return false;
   12421   }
   12422 }
   12423 
   12424 }  // namespace
   12425 #endif
   12426 
   12427 
   12428 void JSFunction::EnsureHasInitialMap(Handle<JSFunction> function) {
   12429   DCHECK(function->IsConstructor() || function->shared()->is_resumable());
   12430   if (function->has_initial_map()) return;
   12431   Isolate* isolate = function->GetIsolate();
   12432 
   12433   // The constructor should be compiled for the optimization hints to be
   12434   // available.
   12435   Compiler::Compile(function, Compiler::CLEAR_EXCEPTION);
   12436 
   12437   // First create a new map with the size and number of in-object properties
   12438   // suggested by the function.
   12439   InstanceType instance_type;
   12440   if (function->shared()->is_resumable()) {
   12441     instance_type = JS_GENERATOR_OBJECT_TYPE;
   12442   } else {
   12443     instance_type = JS_OBJECT_TYPE;
   12444   }
   12445   int instance_size;
   12446   int in_object_properties;
   12447   function->CalculateInstanceSize(instance_type, 0, &instance_size,
   12448                                   &in_object_properties);
   12449 
   12450   Handle<Map> map = isolate->factory()->NewMap(instance_type, instance_size);
   12451 
   12452   // Fetch or allocate prototype.
   12453   Handle<Object> prototype;
   12454   if (function->has_instance_prototype()) {
   12455     prototype = handle(function->instance_prototype(), isolate);
   12456   } else {
   12457     prototype = isolate->factory()->NewFunctionPrototype(function);
   12458   }
   12459   map->SetInObjectProperties(in_object_properties);
   12460   map->set_unused_property_fields(in_object_properties);
   12461   DCHECK(map->has_fast_object_elements());
   12462 
   12463   // Finally link initial map and constructor function.
   12464   DCHECK(prototype->IsJSReceiver());
   12465   JSFunction::SetInitialMap(function, map, prototype);
   12466   map->StartInobjectSlackTracking();
   12467 }
   12468 
   12469 
   12470 // static
   12471 MaybeHandle<Map> JSFunction::GetDerivedMap(Isolate* isolate,
   12472                                            Handle<JSFunction> constructor,
   12473                                            Handle<JSReceiver> new_target) {
   12474   EnsureHasInitialMap(constructor);
   12475 
   12476   Handle<Map> constructor_initial_map(constructor->initial_map(), isolate);
   12477   if (*new_target == *constructor) return constructor_initial_map;
   12478 
   12479   // Fast case, new.target is a subclass of constructor. The map is cacheable
   12480   // (and may already have been cached). new.target.prototype is guaranteed to
   12481   // be a JSReceiver.
   12482   if (new_target->IsJSFunction()) {
   12483     Handle<JSFunction> function = Handle<JSFunction>::cast(new_target);
   12484 
   12485     // Check that |function|'s initial map still in sync with the |constructor|,
   12486     // otherwise we must create a new initial map for |function|.
   12487     if (function->has_initial_map() &&
   12488         function->initial_map()->GetConstructor() == *constructor) {
   12489       return handle(function->initial_map(), isolate);
   12490     }
   12491 
   12492     // Create a new map with the size and number of in-object properties
   12493     // suggested by |function|.
   12494 
   12495     // Link initial map and constructor function if the new.target is actually a
   12496     // subclass constructor.
   12497     if (IsSubclassConstructor(function->shared()->kind())) {
   12498       Handle<Object> prototype(function->instance_prototype(), isolate);
   12499       InstanceType instance_type = constructor_initial_map->instance_type();
   12500       DCHECK(CanSubclassHaveInobjectProperties(instance_type));
   12501       int internal_fields =
   12502           JSObject::GetInternalFieldCount(*constructor_initial_map);
   12503       int pre_allocated = constructor_initial_map->GetInObjectProperties() -
   12504                           constructor_initial_map->unused_property_fields();
   12505       int instance_size;
   12506       int in_object_properties;
   12507       function->CalculateInstanceSizeForDerivedClass(
   12508           instance_type, internal_fields, &instance_size,
   12509           &in_object_properties);
   12510 
   12511       int unused_property_fields = in_object_properties - pre_allocated;
   12512       Handle<Map> map =
   12513           Map::CopyInitialMap(constructor_initial_map, instance_size,
   12514                               in_object_properties, unused_property_fields);
   12515       map->set_new_target_is_base(false);
   12516 
   12517       JSFunction::SetInitialMap(function, map, prototype);
   12518       map->SetConstructor(*constructor);
   12519       map->set_construction_counter(Map::kNoSlackTracking);
   12520       map->StartInobjectSlackTracking();
   12521       return map;
   12522     }
   12523   }
   12524 
   12525   // Slow path, new.target is either a proxy or can't cache the map.
   12526   // new.target.prototype is not guaranteed to be a JSReceiver, and may need to
   12527   // fall back to the intrinsicDefaultProto.
   12528   Handle<Object> prototype;
   12529   if (new_target->IsJSFunction()) {
   12530     Handle<JSFunction> function = Handle<JSFunction>::cast(new_target);
   12531     // Make sure the new.target.prototype is cached.
   12532     EnsureHasInitialMap(function);
   12533     prototype = handle(function->prototype(), isolate);
   12534   } else {
   12535     Handle<String> prototype_string = isolate->factory()->prototype_string();
   12536     ASSIGN_RETURN_ON_EXCEPTION(
   12537         isolate, prototype,
   12538         JSReceiver::GetProperty(new_target, prototype_string), Map);
   12539     // The above prototype lookup might change the constructor and its
   12540     // prototype, hence we have to reload the initial map.
   12541     EnsureHasInitialMap(constructor);
   12542     constructor_initial_map = handle(constructor->initial_map(), isolate);
   12543   }
   12544 
   12545   // If prototype is not a JSReceiver, fetch the intrinsicDefaultProto from the
   12546   // correct realm. Rather than directly fetching the .prototype, we fetch the
   12547   // constructor that points to the .prototype. This relies on
   12548   // constructor.prototype being FROZEN for those constructors.
   12549   if (!prototype->IsJSReceiver()) {
   12550     Handle<Context> context;
   12551     ASSIGN_RETURN_ON_EXCEPTION(isolate, context,
   12552                                JSReceiver::GetFunctionRealm(new_target), Map);
   12553     DCHECK(context->IsNativeContext());
   12554     Handle<Object> maybe_index = JSReceiver::GetDataProperty(
   12555         constructor, isolate->factory()->native_context_index_symbol());
   12556     int index = maybe_index->IsSmi() ? Smi::cast(*maybe_index)->value()
   12557                                      : Context::OBJECT_FUNCTION_INDEX;
   12558     Handle<JSFunction> realm_constructor(JSFunction::cast(context->get(index)));
   12559     prototype = handle(realm_constructor->prototype(), isolate);
   12560   }
   12561 
   12562   Handle<Map> map = Map::CopyInitialMap(constructor_initial_map);
   12563   map->set_new_target_is_base(false);
   12564   DCHECK(prototype->IsJSReceiver());
   12565   if (map->prototype() != *prototype) {
   12566     Map::SetPrototype(map, prototype, FAST_PROTOTYPE);
   12567   }
   12568   map->SetConstructor(*constructor);
   12569   return map;
   12570 }
   12571 
   12572 
   12573 void JSFunction::PrintName(FILE* out) {
   12574   base::SmartArrayPointer<char> name = shared()->DebugName()->ToCString();
   12575   PrintF(out, "%s", name.get());
   12576 }
   12577 
   12578 
   12579 Handle<String> JSFunction::GetName(Handle<JSFunction> function) {
   12580   Isolate* isolate = function->GetIsolate();
   12581   Handle<Object> name =
   12582       JSReceiver::GetDataProperty(function, isolate->factory()->name_string());
   12583   if (name->IsString()) return Handle<String>::cast(name);
   12584   return handle(function->shared()->DebugName(), isolate);
   12585 }
   12586 
   12587 
   12588 Handle<String> JSFunction::GetDebugName(Handle<JSFunction> function) {
   12589   Isolate* isolate = function->GetIsolate();
   12590   Handle<Object> name = JSReceiver::GetDataProperty(
   12591       function, isolate->factory()->display_name_string());
   12592   if (name->IsString()) return Handle<String>::cast(name);
   12593   return JSFunction::GetName(function);
   12594 }
   12595 
   12596 void JSFunction::SetName(Handle<JSFunction> function, Handle<Name> name,
   12597                          Handle<String> prefix) {
   12598   Isolate* isolate = function->GetIsolate();
   12599   Handle<String> function_name = Name::ToFunctionName(name).ToHandleChecked();
   12600   if (prefix->length() > 0) {
   12601     IncrementalStringBuilder builder(isolate);
   12602     builder.AppendString(prefix);
   12603     builder.AppendCharacter(' ');
   12604     builder.AppendString(function_name);
   12605     function_name = builder.Finish().ToHandleChecked();
   12606   }
   12607   JSObject::DefinePropertyOrElementIgnoreAttributes(
   12608       function, isolate->factory()->name_string(), function_name,
   12609       static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY))
   12610       .ToHandleChecked();
   12611 }
   12612 
   12613 namespace {
   12614 
   12615 char const kNativeCodeSource[] = "function () { [native code] }";
   12616 
   12617 
   12618 Handle<String> NativeCodeFunctionSourceString(
   12619     Handle<SharedFunctionInfo> shared_info) {
   12620   Isolate* const isolate = shared_info->GetIsolate();
   12621   if (shared_info->name()->IsString()) {
   12622     IncrementalStringBuilder builder(isolate);
   12623     builder.AppendCString("function ");
   12624     builder.AppendString(handle(String::cast(shared_info->name()), isolate));
   12625     builder.AppendCString("() { [native code] }");
   12626     return builder.Finish().ToHandleChecked();
   12627   }
   12628   return isolate->factory()->NewStringFromAsciiChecked(kNativeCodeSource);
   12629 }
   12630 
   12631 }  // namespace
   12632 
   12633 
   12634 // static
   12635 Handle<String> JSBoundFunction::ToString(Handle<JSBoundFunction> function) {
   12636   Isolate* const isolate = function->GetIsolate();
   12637   return isolate->factory()->NewStringFromAsciiChecked(kNativeCodeSource);
   12638 }
   12639 
   12640 
   12641 // static
   12642 Handle<String> JSFunction::ToString(Handle<JSFunction> function) {
   12643   Isolate* const isolate = function->GetIsolate();
   12644   Handle<SharedFunctionInfo> shared_info(function->shared(), isolate);
   12645 
   12646   // Check if {function} should hide its source code.
   12647   if (!shared_info->script()->IsScript() ||
   12648       Script::cast(shared_info->script())->hide_source()) {
   12649     return NativeCodeFunctionSourceString(shared_info);
   12650   }
   12651 
   12652   // Check if we should print {function} as a class.
   12653   Handle<Object> class_start_position = JSReceiver::GetDataProperty(
   12654       function, isolate->factory()->class_start_position_symbol());
   12655   if (class_start_position->IsSmi()) {
   12656     Handle<Object> class_end_position = JSReceiver::GetDataProperty(
   12657         function, isolate->factory()->class_end_position_symbol());
   12658     Handle<String> script_source(
   12659         String::cast(Script::cast(shared_info->script())->source()), isolate);
   12660     return isolate->factory()->NewSubString(
   12661         script_source, Handle<Smi>::cast(class_start_position)->value(),
   12662         Handle<Smi>::cast(class_end_position)->value());
   12663   }
   12664 
   12665   // Check if we have source code for the {function}.
   12666   if (!shared_info->HasSourceCode()) {
   12667     return NativeCodeFunctionSourceString(shared_info);
   12668   }
   12669 
   12670   IncrementalStringBuilder builder(isolate);
   12671   if (!shared_info->is_arrow()) {
   12672     if (shared_info->is_concise_method()) {
   12673       if (shared_info->is_generator()) {
   12674         builder.AppendCharacter('*');
   12675       } else if (shared_info->is_async()) {
   12676         builder.AppendCString("async ");
   12677       }
   12678     } else {
   12679       if (shared_info->is_generator()) {
   12680         builder.AppendCString("function* ");
   12681       } else if (shared_info->is_async()) {
   12682         builder.AppendCString("async function ");
   12683       } else {
   12684         builder.AppendCString("function ");
   12685       }
   12686     }
   12687     if (shared_info->name_should_print_as_anonymous()) {
   12688       builder.AppendCString("anonymous");
   12689     } else if (!shared_info->is_anonymous_expression()) {
   12690       builder.AppendString(handle(String::cast(shared_info->name()), isolate));
   12691     }
   12692   }
   12693   builder.AppendString(Handle<String>::cast(shared_info->GetSourceCode()));
   12694   return builder.Finish().ToHandleChecked();
   12695 }
   12696 
   12697 void Oddball::Initialize(Isolate* isolate, Handle<Oddball> oddball,
   12698                          const char* to_string, Handle<Object> to_number,
   12699                          bool to_boolean, const char* type_of, byte kind) {
   12700   Handle<String> internalized_to_string =
   12701       isolate->factory()->InternalizeUtf8String(to_string);
   12702   Handle<String> internalized_type_of =
   12703       isolate->factory()->InternalizeUtf8String(type_of);
   12704   oddball->set_to_number_raw(to_number->Number());
   12705   oddball->set_to_boolean(isolate->heap()->ToBoolean(to_boolean));
   12706   oddball->set_to_number(*to_number);
   12707   oddball->set_to_string(*internalized_to_string);
   12708   oddball->set_type_of(*internalized_type_of);
   12709   oddball->set_kind(kind);
   12710 }
   12711 
   12712 void Script::SetEvalOrigin(Handle<Script> script,
   12713                            Handle<SharedFunctionInfo> outer_info,
   12714                            int eval_position) {
   12715   if (eval_position == RelocInfo::kNoPosition) {
   12716     // If the position is missing, attempt to get the code offset from the
   12717     // current activation.  Do not translate the code offset into source
   12718     // position, but store it as negative value for lazy translation.
   12719     StackTraceFrameIterator it(script->GetIsolate());
   12720     if (!it.done() && it.is_javascript()) {
   12721       FrameSummary summary = FrameSummary::GetFirst(it.javascript_frame());
   12722       script->set_eval_from_shared(summary.function()->shared());
   12723       script->set_eval_from_position(-summary.code_offset());
   12724       return;
   12725     }
   12726     eval_position = 0;
   12727   }
   12728   script->set_eval_from_shared(*outer_info);
   12729   script->set_eval_from_position(eval_position);
   12730 }
   12731 
   12732 int Script::GetEvalPosition() {
   12733   DisallowHeapAllocation no_gc;
   12734   DCHECK(compilation_type() == Script::COMPILATION_TYPE_EVAL);
   12735   int position = eval_from_position();
   12736   if (position < 0) {
   12737     // Due to laziness, the position may not have been translated from code
   12738     // offset yet, which would be encoded as negative integer. In that case,
   12739     // translate and set the position.
   12740     if (eval_from_shared()->IsUndefined(GetIsolate())) {
   12741       position = 0;
   12742     } else {
   12743       SharedFunctionInfo* shared = SharedFunctionInfo::cast(eval_from_shared());
   12744       position = shared->abstract_code()->SourcePosition(-position);
   12745     }
   12746     DCHECK(position >= 0);
   12747     set_eval_from_position(position);
   12748   }
   12749   return position;
   12750 }
   12751 
   12752 void Script::InitLineEnds(Handle<Script> script) {
   12753   Isolate* isolate = script->GetIsolate();
   12754   if (!script->line_ends()->IsUndefined(isolate)) return;
   12755 
   12756   if (!script->source()->IsString()) {
   12757     DCHECK(script->source()->IsUndefined(isolate));
   12758     Handle<FixedArray> empty = isolate->factory()->NewFixedArray(0);
   12759     script->set_line_ends(*empty);
   12760     DCHECK(script->line_ends()->IsFixedArray());
   12761     return;
   12762   }
   12763 
   12764   Handle<String> src(String::cast(script->source()), isolate);
   12765 
   12766   Handle<FixedArray> array = String::CalculateLineEnds(src, true);
   12767 
   12768   if (*array != isolate->heap()->empty_fixed_array()) {
   12769     array->set_map(isolate->heap()->fixed_cow_array_map());
   12770   }
   12771 
   12772   script->set_line_ends(*array);
   12773   DCHECK(script->line_ends()->IsFixedArray());
   12774 }
   12775 
   12776 #define SMI_VALUE(x) (Smi::cast(x)->value())
   12777 bool Script::GetPositionInfo(int position, PositionInfo* info,
   12778                              OffsetFlag offset_flag) {
   12779   Handle<Script> script(this);
   12780   InitLineEnds(script);
   12781 
   12782   DisallowHeapAllocation no_allocation;
   12783 
   12784   DCHECK(script->line_ends()->IsFixedArray());
   12785   FixedArray* ends = FixedArray::cast(script->line_ends());
   12786 
   12787   const int ends_len = ends->length();
   12788   if (ends_len == 0) return false;
   12789 
   12790   // Return early on invalid positions. Negative positions behave as if 0 was
   12791   // passed, and positions beyond the end of the script return as failure.
   12792   if (position < 0) {
   12793     position = 0;
   12794   } else if (position > SMI_VALUE(ends->get(ends_len - 1))) {
   12795     return false;
   12796   }
   12797 
   12798   // Determine line number by doing a binary search on the line ends array.
   12799   if (SMI_VALUE(ends->get(0)) >= position) {
   12800     info->line = 0;
   12801     info->line_start = 0;
   12802     info->column = position;
   12803   } else {
   12804     int left = 0;
   12805     int right = ends_len - 1;
   12806 
   12807     while (right > 0) {
   12808       DCHECK_LE(left, right);
   12809       const int mid = (left + right) / 2;
   12810       if (position > SMI_VALUE(ends->get(mid))) {
   12811         left = mid + 1;
   12812       } else if (position <= SMI_VALUE(ends->get(mid - 1))) {
   12813         right = mid - 1;
   12814       } else {
   12815         info->line = mid;
   12816         break;
   12817       }
   12818     }
   12819     DCHECK(SMI_VALUE(ends->get(info->line)) >= position &&
   12820            SMI_VALUE(ends->get(info->line - 1)) < position);
   12821     info->line_start = SMI_VALUE(ends->get(info->line - 1)) + 1;
   12822     info->column = position - info->line_start;
   12823   }
   12824 
   12825   // Line end is position of the linebreak character.
   12826   info->line_end = SMI_VALUE(ends->get(info->line));
   12827   if (info->line_end > 0) {
   12828     DCHECK(script->source()->IsString());
   12829     Handle<String> src(String::cast(script->source()));
   12830     if (src->Get(info->line_end - 1) == '\r') {
   12831       info->line_end--;
   12832     }
   12833   }
   12834 
   12835   // Add offsets if requested.
   12836   if (offset_flag == WITH_OFFSET) {
   12837     if (info->line == 0) {
   12838       info->column += script->column_offset();
   12839     }
   12840     info->line += script->line_offset();
   12841   }
   12842 
   12843   return true;
   12844 }
   12845 #undef SMI_VALUE
   12846 
   12847 int Script::GetColumnNumber(Handle<Script> script, int code_pos) {
   12848   PositionInfo info;
   12849   if (!script->GetPositionInfo(code_pos, &info, WITH_OFFSET)) {
   12850     return -1;
   12851   }
   12852 
   12853   return info.column;
   12854 }
   12855 
   12856 int Script::GetLineNumberWithArray(int code_pos) {
   12857   PositionInfo info;
   12858   if (!GetPositionInfo(code_pos, &info, WITH_OFFSET)) {
   12859     return -1;
   12860   }
   12861 
   12862   return info.line;
   12863 }
   12864 
   12865 
   12866 int Script::GetLineNumber(Handle<Script> script, int code_pos) {
   12867   InitLineEnds(script);
   12868   return script->GetLineNumberWithArray(code_pos);
   12869 }
   12870 
   12871 
   12872 int Script::GetLineNumber(int code_pos) {
   12873   DisallowHeapAllocation no_allocation;
   12874   if (!line_ends()->IsUndefined(GetIsolate())) {
   12875     return GetLineNumberWithArray(code_pos);
   12876   }
   12877 
   12878   // Slow mode: we do not have line_ends. We have to iterate through source.
   12879   if (!source()->IsString()) return -1;
   12880 
   12881   String* source_string = String::cast(source());
   12882   int line = 0;
   12883   int len = source_string->length();
   12884   for (int pos = 0; pos < len; pos++) {
   12885     if (pos == code_pos) break;
   12886     if (source_string->Get(pos) == '\n') line++;
   12887   }
   12888   return line;
   12889 }
   12890 
   12891 
   12892 Handle<Object> Script::GetNameOrSourceURL(Handle<Script> script) {
   12893   Isolate* isolate = script->GetIsolate();
   12894   Handle<String> name_or_source_url_key =
   12895       isolate->factory()->InternalizeOneByteString(
   12896           STATIC_CHAR_VECTOR("nameOrSourceURL"));
   12897   Handle<JSObject> script_wrapper = Script::GetWrapper(script);
   12898   Handle<Object> property =
   12899       JSReceiver::GetProperty(script_wrapper, name_or_source_url_key)
   12900           .ToHandleChecked();
   12901   DCHECK(property->IsJSFunction());
   12902   Handle<Object> result;
   12903   // Do not check against pending exception, since this function may be called
   12904   // when an exception has already been pending.
   12905   if (!Execution::TryCall(isolate, property, script_wrapper, 0, NULL)
   12906            .ToHandle(&result)) {
   12907     return isolate->factory()->undefined_value();
   12908   }
   12909   return result;
   12910 }
   12911 
   12912 
   12913 Handle<JSObject> Script::GetWrapper(Handle<Script> script) {
   12914   Isolate* isolate = script->GetIsolate();
   12915   if (!script->wrapper()->IsUndefined(isolate)) {
   12916     DCHECK(script->wrapper()->IsWeakCell());
   12917     Handle<WeakCell> cell(WeakCell::cast(script->wrapper()));
   12918     if (!cell->cleared()) {
   12919       // Return a handle for the existing script wrapper from the cache.
   12920       return handle(JSObject::cast(cell->value()));
   12921     }
   12922     // If we found an empty WeakCell, that means the script wrapper was
   12923     // GCed.  We are not notified directly of that, so we decrement here
   12924     // so that we at least don't count double for any given script.
   12925     isolate->counters()->script_wrappers()->Decrement();
   12926   }
   12927   // Construct a new script wrapper.
   12928   isolate->counters()->script_wrappers()->Increment();
   12929   Handle<JSFunction> constructor = isolate->script_function();
   12930   Handle<JSValue> result =
   12931       Handle<JSValue>::cast(isolate->factory()->NewJSObject(constructor));
   12932   result->set_value(*script);
   12933   Handle<WeakCell> cell = isolate->factory()->NewWeakCell(result);
   12934   script->set_wrapper(*cell);
   12935   return result;
   12936 }
   12937 
   12938 
   12939 MaybeHandle<SharedFunctionInfo> Script::FindSharedFunctionInfo(
   12940     FunctionLiteral* fun) {
   12941   WeakFixedArray::Iterator iterator(shared_function_infos());
   12942   SharedFunctionInfo* shared;
   12943   while ((shared = iterator.Next<SharedFunctionInfo>())) {
   12944     if (fun->function_token_position() == shared->function_token_position() &&
   12945         fun->start_position() == shared->start_position() &&
   12946         fun->end_position() == shared->end_position()) {
   12947       return Handle<SharedFunctionInfo>(shared);
   12948     }
   12949   }
   12950   return MaybeHandle<SharedFunctionInfo>();
   12951 }
   12952 
   12953 
   12954 Script::Iterator::Iterator(Isolate* isolate)
   12955     : iterator_(isolate->heap()->script_list()) {}
   12956 
   12957 
   12958 Script* Script::Iterator::Next() { return iterator_.Next<Script>(); }
   12959 
   12960 
   12961 SharedFunctionInfo::Iterator::Iterator(Isolate* isolate)
   12962     : script_iterator_(isolate),
   12963       sfi_iterator_(isolate->heap()->noscript_shared_function_infos()) {}
   12964 
   12965 
   12966 bool SharedFunctionInfo::Iterator::NextScript() {
   12967   Script* script = script_iterator_.Next();
   12968   if (script == NULL) return false;
   12969   sfi_iterator_.Reset(script->shared_function_infos());
   12970   return true;
   12971 }
   12972 
   12973 
   12974 SharedFunctionInfo* SharedFunctionInfo::Iterator::Next() {
   12975   do {
   12976     SharedFunctionInfo* next = sfi_iterator_.Next<SharedFunctionInfo>();
   12977     if (next != NULL) return next;
   12978   } while (NextScript());
   12979   return NULL;
   12980 }
   12981 
   12982 
   12983 void SharedFunctionInfo::SetScript(Handle<SharedFunctionInfo> shared,
   12984                                    Handle<Object> script_object) {
   12985   if (shared->script() == *script_object) return;
   12986   Isolate* isolate = shared->GetIsolate();
   12987 
   12988   // Add shared function info to new script's list. If a collection occurs,
   12989   // the shared function info may be temporarily in two lists.
   12990   // This is okay because the gc-time processing of these lists can tolerate
   12991   // duplicates.
   12992   Handle<Object> list;
   12993   if (script_object->IsScript()) {
   12994     Handle<Script> script = Handle<Script>::cast(script_object);
   12995     list = handle(script->shared_function_infos(), isolate);
   12996   } else {
   12997     list = isolate->factory()->noscript_shared_function_infos();
   12998   }
   12999 
   13000 #ifdef DEBUG
   13001   if (FLAG_enable_slow_asserts) {
   13002     WeakFixedArray::Iterator iterator(*list);
   13003     SharedFunctionInfo* next;
   13004     while ((next = iterator.Next<SharedFunctionInfo>())) {
   13005       DCHECK_NE(next, *shared);
   13006     }
   13007   }
   13008 #endif  // DEBUG
   13009   list = WeakFixedArray::Add(list, shared);
   13010 
   13011   if (script_object->IsScript()) {
   13012     Handle<Script> script = Handle<Script>::cast(script_object);
   13013     script->set_shared_function_infos(*list);
   13014   } else {
   13015     isolate->heap()->SetRootNoScriptSharedFunctionInfos(*list);
   13016   }
   13017 
   13018   // Remove shared function info from old script's list.
   13019   if (shared->script()->IsScript()) {
   13020     Script* old_script = Script::cast(shared->script());
   13021     if (old_script->shared_function_infos()->IsWeakFixedArray()) {
   13022       WeakFixedArray* list =
   13023           WeakFixedArray::cast(old_script->shared_function_infos());
   13024       list->Remove(shared);
   13025     }
   13026   } else {
   13027     // Remove shared function info from root array.
   13028     Object* list = isolate->heap()->noscript_shared_function_infos();
   13029     CHECK(WeakFixedArray::cast(list)->Remove(shared));
   13030   }
   13031 
   13032   // Finally set new script.
   13033   shared->set_script(*script_object);
   13034 }
   13035 
   13036 
   13037 String* SharedFunctionInfo::DebugName() {
   13038   Object* n = name();
   13039   if (!n->IsString() || String::cast(n)->length() == 0) return inferred_name();
   13040   return String::cast(n);
   13041 }
   13042 
   13043 // The filter is a pattern that matches function names in this way:
   13044 //   "*"      all; the default
   13045 //   "-"      all but the top-level function
   13046 //   "-name"  all but the function "name"
   13047 //   ""       only the top-level function
   13048 //   "name"   only the function "name"
   13049 //   "name*"  only functions starting with "name"
   13050 //   "~"      none; the tilde is not an identifier
   13051 bool SharedFunctionInfo::PassesFilter(const char* raw_filter) {
   13052   if (*raw_filter == '*') return true;
   13053   String* name = DebugName();
   13054   Vector<const char> filter = CStrVector(raw_filter);
   13055   if (filter.length() == 0) return name->length() == 0;
   13056   if (filter[0] == '-') {
   13057     // Negative filter.
   13058     if (filter.length() == 1) {
   13059       return (name->length() != 0);
   13060     } else if (name->IsUtf8EqualTo(filter.SubVector(1, filter.length()))) {
   13061       return false;
   13062     }
   13063     if (filter[filter.length() - 1] == '*' &&
   13064         name->IsUtf8EqualTo(filter.SubVector(1, filter.length() - 1), true)) {
   13065       return false;
   13066     }
   13067     return true;
   13068 
   13069   } else if (name->IsUtf8EqualTo(filter)) {
   13070     return true;
   13071   }
   13072   if (filter[filter.length() - 1] == '*' &&
   13073       name->IsUtf8EqualTo(filter.SubVector(0, filter.length() - 1), true)) {
   13074     return true;
   13075   }
   13076   return false;
   13077 }
   13078 
   13079 bool SharedFunctionInfo::HasSourceCode() const {
   13080   Isolate* isolate = GetIsolate();
   13081   return !script()->IsUndefined(isolate) &&
   13082          !reinterpret_cast<Script*>(script())->source()->IsUndefined(isolate);
   13083 }
   13084 
   13085 
   13086 Handle<Object> SharedFunctionInfo::GetSourceCode() {
   13087   if (!HasSourceCode()) return GetIsolate()->factory()->undefined_value();
   13088   Handle<String> source(String::cast(Script::cast(script())->source()));
   13089   return GetIsolate()->factory()->NewSubString(
   13090       source, start_position(), end_position());
   13091 }
   13092 
   13093 
   13094 bool SharedFunctionInfo::IsInlineable() {
   13095   // Check that the function has a script associated with it.
   13096   if (!script()->IsScript()) return false;
   13097   return !optimization_disabled();
   13098 }
   13099 
   13100 
   13101 int SharedFunctionInfo::SourceSize() {
   13102   return end_position() - start_position();
   13103 }
   13104 
   13105 void JSFunction::CalculateInstanceSizeHelper(InstanceType instance_type,
   13106                                              int requested_internal_fields,
   13107                                              int requested_in_object_properties,
   13108                                              int* instance_size,
   13109                                              int* in_object_properties) {
   13110   int header_size = JSObject::GetHeaderSize(instance_type);
   13111   DCHECK_LE(requested_internal_fields,
   13112             (JSObject::kMaxInstanceSize - header_size) >> kPointerSizeLog2);
   13113   *instance_size =
   13114       Min(header_size +
   13115               ((requested_internal_fields + requested_in_object_properties)
   13116                << kPointerSizeLog2),
   13117           JSObject::kMaxInstanceSize);
   13118   *in_object_properties = ((*instance_size - header_size) >> kPointerSizeLog2) -
   13119                           requested_internal_fields;
   13120 }
   13121 
   13122 
   13123 void JSFunction::CalculateInstanceSize(InstanceType instance_type,
   13124                                        int requested_internal_fields,
   13125                                        int* instance_size,
   13126                                        int* in_object_properties) {
   13127   CalculateInstanceSizeHelper(instance_type, requested_internal_fields,
   13128                               shared()->expected_nof_properties(),
   13129                               instance_size, in_object_properties);
   13130 }
   13131 
   13132 
   13133 void JSFunction::CalculateInstanceSizeForDerivedClass(
   13134     InstanceType instance_type, int requested_internal_fields,
   13135     int* instance_size, int* in_object_properties) {
   13136   Isolate* isolate = GetIsolate();
   13137   int expected_nof_properties = 0;
   13138   for (PrototypeIterator iter(isolate, this, kStartAtReceiver); !iter.IsAtEnd();
   13139        iter.Advance()) {
   13140     JSReceiver* current = iter.GetCurrent<JSReceiver>();
   13141     if (!current->IsJSFunction()) break;
   13142     JSFunction* func = JSFunction::cast(current);
   13143     SharedFunctionInfo* shared = func->shared();
   13144     expected_nof_properties += shared->expected_nof_properties();
   13145     if (!IsSubclassConstructor(shared->kind())) {
   13146       break;
   13147     }
   13148   }
   13149   CalculateInstanceSizeHelper(instance_type, requested_internal_fields,
   13150                               expected_nof_properties, instance_size,
   13151                               in_object_properties);
   13152 }
   13153 
   13154 
   13155 // Output the source code without any allocation in the heap.
   13156 std::ostream& operator<<(std::ostream& os, const SourceCodeOf& v) {
   13157   const SharedFunctionInfo* s = v.value;
   13158   // For some native functions there is no source.
   13159   if (!s->HasSourceCode()) return os << "<No Source>";
   13160 
   13161   // Get the source for the script which this function came from.
   13162   // Don't use String::cast because we don't want more assertion errors while
   13163   // we are already creating a stack dump.
   13164   String* script_source =
   13165       reinterpret_cast<String*>(Script::cast(s->script())->source());
   13166 
   13167   if (!script_source->LooksValid()) return os << "<Invalid Source>";
   13168 
   13169   if (!s->is_toplevel()) {
   13170     os << "function ";
   13171     Object* name = s->name();
   13172     if (name->IsString() && String::cast(name)->length() > 0) {
   13173       String::cast(name)->PrintUC16(os);
   13174     }
   13175   }
   13176 
   13177   int len = s->end_position() - s->start_position();
   13178   if (len <= v.max_length || v.max_length < 0) {
   13179     script_source->PrintUC16(os, s->start_position(), s->end_position());
   13180     return os;
   13181   } else {
   13182     script_source->PrintUC16(os, s->start_position(),
   13183                              s->start_position() + v.max_length);
   13184     return os << "...\n";
   13185   }
   13186 }
   13187 
   13188 
   13189 static bool IsCodeEquivalent(Code* code, Code* recompiled) {
   13190   if (code->instruction_size() != recompiled->instruction_size()) return false;
   13191   ByteArray* code_relocation = code->relocation_info();
   13192   ByteArray* recompiled_relocation = recompiled->relocation_info();
   13193   int length = code_relocation->length();
   13194   if (length != recompiled_relocation->length()) return false;
   13195   int compare = memcmp(code_relocation->GetDataStartAddress(),
   13196                        recompiled_relocation->GetDataStartAddress(),
   13197                        length);
   13198   return compare == 0;
   13199 }
   13200 
   13201 
   13202 void SharedFunctionInfo::EnableDeoptimizationSupport(Code* recompiled) {
   13203   DCHECK(!has_deoptimization_support());
   13204   DisallowHeapAllocation no_allocation;
   13205   Code* code = this->code();
   13206   if (IsCodeEquivalent(code, recompiled)) {
   13207     // Copy the deoptimization data from the recompiled code.
   13208     code->set_deoptimization_data(recompiled->deoptimization_data());
   13209     code->set_has_deoptimization_support(true);
   13210   } else {
   13211     // TODO(3025757): In case the recompiled isn't equivalent to the
   13212     // old code, we have to replace it. We should try to avoid this
   13213     // altogether because it flushes valuable type feedback by
   13214     // effectively resetting all IC state.
   13215     ReplaceCode(recompiled);
   13216   }
   13217   DCHECK(has_deoptimization_support());
   13218 }
   13219 
   13220 
   13221 void SharedFunctionInfo::DisableOptimization(BailoutReason reason) {
   13222   // Disable optimization for the shared function info and mark the
   13223   // code as non-optimizable. The marker on the shared function info
   13224   // is there because we flush non-optimized code thereby loosing the
   13225   // non-optimizable information for the code. When the code is
   13226   // regenerated and set on the shared function info it is marked as
   13227   // non-optimizable if optimization is disabled for the shared
   13228   // function info.
   13229   DCHECK(reason != kNoReason);
   13230   set_optimization_disabled(true);
   13231   set_disable_optimization_reason(reason);
   13232   // Code should be the lazy compilation stub or else unoptimized.
   13233   DCHECK(abstract_code()->kind() == AbstractCode::FUNCTION ||
   13234          abstract_code()->kind() == AbstractCode::INTERPRETED_FUNCTION ||
   13235          abstract_code()->kind() == AbstractCode::BUILTIN);
   13236   PROFILE(GetIsolate(), CodeDisableOptEvent(abstract_code(), this));
   13237   if (FLAG_trace_opt) {
   13238     PrintF("[disabled optimization for ");
   13239     ShortPrint();
   13240     PrintF(", reason: %s]\n", GetBailoutReason(reason));
   13241   }
   13242 }
   13243 
   13244 namespace {
   13245 
   13246 // Sets the expected number of properties based on estimate from parser.
   13247 void SetExpectedNofPropertiesFromEstimate(Handle<SharedFunctionInfo> shared,
   13248                                           FunctionLiteral* literal) {
   13249   int estimate = literal->expected_property_count();
   13250 
   13251   // If no properties are added in the constructor, they are more likely
   13252   // to be added later.
   13253   if (estimate == 0) estimate = 2;
   13254 
   13255   // TODO(yangguo): check whether those heuristics are still up-to-date.
   13256   // We do not shrink objects that go into a snapshot (yet), so we adjust
   13257   // the estimate conservatively.
   13258   if (shared->GetIsolate()->serializer_enabled()) {
   13259     estimate += 2;
   13260   } else {
   13261     // Inobject slack tracking will reclaim redundant inobject space later,
   13262     // so we can afford to adjust the estimate generously.
   13263     estimate += 8;
   13264   }
   13265 
   13266   shared->set_expected_nof_properties(estimate);
   13267 }
   13268 
   13269 }  // namespace
   13270 
   13271 void SharedFunctionInfo::InitFromFunctionLiteral(
   13272     Handle<SharedFunctionInfo> shared_info, FunctionLiteral* lit) {
   13273   shared_info->set_length(lit->scope()->default_function_length());
   13274   shared_info->set_internal_formal_parameter_count(lit->parameter_count());
   13275   shared_info->set_function_token_position(lit->function_token_position());
   13276   shared_info->set_start_position(lit->start_position());
   13277   shared_info->set_end_position(lit->end_position());
   13278   shared_info->set_is_declaration(lit->is_declaration());
   13279   shared_info->set_is_named_expression(lit->is_named_expression());
   13280   shared_info->set_is_anonymous_expression(lit->is_anonymous_expression());
   13281   shared_info->set_inferred_name(*lit->inferred_name());
   13282   shared_info->set_allows_lazy_compilation(lit->AllowsLazyCompilation());
   13283   shared_info->set_allows_lazy_compilation_without_context(
   13284       lit->AllowsLazyCompilationWithoutContext());
   13285   shared_info->set_language_mode(lit->language_mode());
   13286   shared_info->set_uses_arguments(lit->scope()->arguments() != NULL);
   13287   shared_info->set_has_duplicate_parameters(lit->has_duplicate_parameters());
   13288   shared_info->set_is_function(lit->is_function());
   13289   shared_info->set_never_compiled(true);
   13290   shared_info->set_kind(lit->kind());
   13291   if (!IsConstructable(lit->kind(), lit->language_mode())) {
   13292     shared_info->set_construct_stub(
   13293         *shared_info->GetIsolate()->builtins()->ConstructedNonConstructable());
   13294   }
   13295   shared_info->set_needs_home_object(lit->scope()->NeedsHomeObject());
   13296   shared_info->set_asm_function(lit->scope()->asm_function());
   13297   SetExpectedNofPropertiesFromEstimate(shared_info, lit);
   13298 }
   13299 
   13300 
   13301 bool SharedFunctionInfo::VerifyBailoutId(BailoutId id) {
   13302   DCHECK(!id.IsNone());
   13303   Code* unoptimized = code();
   13304   DeoptimizationOutputData* data =
   13305       DeoptimizationOutputData::cast(unoptimized->deoptimization_data());
   13306   unsigned ignore = Deoptimizer::GetOutputInfo(data, id, this);
   13307   USE(ignore);
   13308   return true;  // Return true if there was no DCHECK.
   13309 }
   13310 
   13311 
   13312 void Map::StartInobjectSlackTracking() {
   13313   DCHECK(!IsInobjectSlackTrackingInProgress());
   13314 
   13315   // No tracking during the snapshot construction phase.
   13316   Isolate* isolate = GetIsolate();
   13317   if (isolate->serializer_enabled()) return;
   13318 
   13319   if (unused_property_fields() == 0) return;
   13320 
   13321   set_construction_counter(Map::kSlackTrackingCounterStart);
   13322 }
   13323 
   13324 
   13325 void SharedFunctionInfo::ResetForNewContext(int new_ic_age) {
   13326   code()->ClearInlineCaches();
   13327   set_ic_age(new_ic_age);
   13328   if (code()->kind() == Code::FUNCTION) {
   13329     code()->set_profiler_ticks(0);
   13330     if (optimization_disabled() && opt_count() >= FLAG_max_opt_count) {
   13331       // Re-enable optimizations if they were disabled due to opt_count limit.
   13332       set_optimization_disabled(false);
   13333     }
   13334     set_opt_count(0);
   13335     set_deopt_count(0);
   13336   } else if (code()->is_interpreter_trampoline_builtin()) {
   13337     set_profiler_ticks(0);
   13338     if (optimization_disabled() && opt_count() >= FLAG_max_opt_count) {
   13339       // Re-enable optimizations if they were disabled due to opt_count limit.
   13340       set_optimization_disabled(false);
   13341     }
   13342     set_opt_count(0);
   13343     set_deopt_count(0);
   13344   }
   13345 }
   13346 
   13347 
   13348 int SharedFunctionInfo::SearchOptimizedCodeMapEntry(Context* native_context,
   13349                                                     BailoutId osr_ast_id) {
   13350   DisallowHeapAllocation no_gc;
   13351   DCHECK(native_context->IsNativeContext());
   13352   if (!OptimizedCodeMapIsCleared()) {
   13353     FixedArray* optimized_code_map = this->optimized_code_map();
   13354     int length = optimized_code_map->length();
   13355     Smi* osr_ast_id_smi = Smi::FromInt(osr_ast_id.ToInt());
   13356     for (int i = kEntriesStart; i < length; i += kEntryLength) {
   13357       if (WeakCell::cast(optimized_code_map->get(i + kContextOffset))
   13358                   ->value() == native_context &&
   13359           optimized_code_map->get(i + kOsrAstIdOffset) == osr_ast_id_smi) {
   13360         return i;
   13361       }
   13362     }
   13363     Object* shared_code =
   13364         WeakCell::cast(optimized_code_map->get(kSharedCodeIndex))->value();
   13365     if (shared_code->IsCode() && osr_ast_id.IsNone()) {
   13366       return kSharedCodeIndex;
   13367     }
   13368   }
   13369   return -1;
   13370 }
   13371 
   13372 void SharedFunctionInfo::ClearCodeFromOptimizedCodeMap() {
   13373   if (!OptimizedCodeMapIsCleared()) {
   13374     FixedArray* optimized_code_map = this->optimized_code_map();
   13375     int length = optimized_code_map->length();
   13376     WeakCell* empty_weak_cell = GetHeap()->empty_weak_cell();
   13377     for (int i = kEntriesStart; i < length; i += kEntryLength) {
   13378       optimized_code_map->set(i + kCachedCodeOffset, empty_weak_cell,
   13379                               SKIP_WRITE_BARRIER);
   13380     }
   13381     optimized_code_map->set(kSharedCodeIndex, empty_weak_cell,
   13382                             SKIP_WRITE_BARRIER);
   13383   }
   13384 }
   13385 
   13386 CodeAndLiterals SharedFunctionInfo::SearchOptimizedCodeMap(
   13387     Context* native_context, BailoutId osr_ast_id) {
   13388   CodeAndLiterals result = {nullptr, nullptr};
   13389   int entry = SearchOptimizedCodeMapEntry(native_context, osr_ast_id);
   13390   if (entry != kNotFound) {
   13391     FixedArray* code_map = optimized_code_map();
   13392     if (entry == kSharedCodeIndex) {
   13393       // We know the weak cell isn't cleared because we made sure of it in
   13394       // SearchOptimizedCodeMapEntry and performed no allocations since that
   13395       // call.
   13396       result = {
   13397           Code::cast(WeakCell::cast(code_map->get(kSharedCodeIndex))->value()),
   13398           nullptr};
   13399     } else {
   13400       DCHECK_LE(entry + kEntryLength, code_map->length());
   13401       WeakCell* cell = WeakCell::cast(code_map->get(entry + kCachedCodeOffset));
   13402       Object* lits = code_map->get(entry + kLiteralsOffset);
   13403       LiteralsArray* literals = nullptr;
   13404       if (lits->IsWeakCell()) {
   13405         WeakCell* literal_cell = WeakCell::cast(lits);
   13406         if (!literal_cell->cleared()) {
   13407           literals = LiteralsArray::cast(literal_cell->value());
   13408         }
   13409       } else {
   13410         literals = LiteralsArray::cast(lits);
   13411       }
   13412       result = {cell->cleared() ? nullptr : Code::cast(cell->value()),
   13413                 literals};
   13414     }
   13415   }
   13416   return result;
   13417 }
   13418 
   13419 
   13420 #define DECLARE_TAG(ignore1, name, ignore2) name,
   13421 const char* const VisitorSynchronization::kTags[
   13422     VisitorSynchronization::kNumberOfSyncTags] = {
   13423   VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_TAG)
   13424 };
   13425 #undef DECLARE_TAG
   13426 
   13427 
   13428 #define DECLARE_TAG(ignore1, ignore2, name) name,
   13429 const char* const VisitorSynchronization::kTagNames[
   13430     VisitorSynchronization::kNumberOfSyncTags] = {
   13431   VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_TAG)
   13432 };
   13433 #undef DECLARE_TAG
   13434 
   13435 
   13436 void ObjectVisitor::VisitCodeTarget(RelocInfo* rinfo) {
   13437   DCHECK(RelocInfo::IsCodeTarget(rinfo->rmode()));
   13438   Object* old_pointer = Code::GetCodeFromTargetAddress(rinfo->target_address());
   13439   Object* new_pointer = old_pointer;
   13440   VisitPointer(&new_pointer);
   13441   DCHECK_EQ(old_pointer, new_pointer);
   13442 }
   13443 
   13444 
   13445 void ObjectVisitor::VisitCodeAgeSequence(RelocInfo* rinfo) {
   13446   DCHECK(RelocInfo::IsCodeAgeSequence(rinfo->rmode()));
   13447   Object* old_pointer = rinfo->code_age_stub();
   13448   Object* new_pointer = old_pointer;
   13449   if (old_pointer != nullptr) {
   13450     VisitPointer(&new_pointer);
   13451     DCHECK_EQ(old_pointer, new_pointer);
   13452   }
   13453 }
   13454 
   13455 
   13456 void ObjectVisitor::VisitCodeEntry(Address entry_address) {
   13457   Object* old_pointer = Code::GetObjectFromEntryAddress(entry_address);
   13458   Object* new_pointer = old_pointer;
   13459   VisitPointer(&new_pointer);
   13460   DCHECK_EQ(old_pointer, new_pointer);
   13461 }
   13462 
   13463 
   13464 void ObjectVisitor::VisitCell(RelocInfo* rinfo) {
   13465   DCHECK(rinfo->rmode() == RelocInfo::CELL);
   13466   Object* old_pointer = rinfo->target_cell();
   13467   Object* new_pointer = old_pointer;
   13468   VisitPointer(&new_pointer);
   13469   DCHECK_EQ(old_pointer, new_pointer);
   13470 }
   13471 
   13472 
   13473 void ObjectVisitor::VisitDebugTarget(RelocInfo* rinfo) {
   13474   DCHECK(RelocInfo::IsDebugBreakSlot(rinfo->rmode()) &&
   13475          rinfo->IsPatchedDebugBreakSlotSequence());
   13476   Object* old_pointer =
   13477       Code::GetCodeFromTargetAddress(rinfo->debug_call_address());
   13478   Object* new_pointer = old_pointer;
   13479   VisitPointer(&new_pointer);
   13480   DCHECK_EQ(old_pointer, new_pointer);
   13481 }
   13482 
   13483 
   13484 void ObjectVisitor::VisitEmbeddedPointer(RelocInfo* rinfo) {
   13485   DCHECK(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT);
   13486   Object* old_pointer = rinfo->target_object();
   13487   Object* new_pointer = old_pointer;
   13488   VisitPointer(&new_pointer);
   13489   DCHECK_EQ(old_pointer, new_pointer);
   13490 }
   13491 
   13492 
   13493 void ObjectVisitor::VisitExternalReference(RelocInfo* rinfo) {
   13494   Address old_reference = rinfo->target_external_reference();
   13495   Address new_reference = old_reference;
   13496   VisitExternalReference(&new_reference);
   13497   DCHECK_EQ(old_reference, new_reference);
   13498 }
   13499 
   13500 
   13501 void Code::InvalidateRelocation() {
   13502   InvalidateEmbeddedObjects();
   13503   set_relocation_info(GetHeap()->empty_byte_array());
   13504 }
   13505 
   13506 
   13507 void Code::InvalidateEmbeddedObjects() {
   13508   Object* undefined = GetHeap()->undefined_value();
   13509   Cell* undefined_cell = GetHeap()->undefined_cell();
   13510   int mode_mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
   13511                   RelocInfo::ModeMask(RelocInfo::CELL);
   13512   for (RelocIterator it(this, mode_mask); !it.done(); it.next()) {
   13513     RelocInfo::Mode mode = it.rinfo()->rmode();
   13514     if (mode == RelocInfo::EMBEDDED_OBJECT) {
   13515       it.rinfo()->set_target_object(undefined, SKIP_WRITE_BARRIER);
   13516     } else if (mode == RelocInfo::CELL) {
   13517       it.rinfo()->set_target_cell(undefined_cell, SKIP_WRITE_BARRIER);
   13518     }
   13519   }
   13520 }
   13521 
   13522 
   13523 void Code::Relocate(intptr_t delta) {
   13524   for (RelocIterator it(this, RelocInfo::kApplyMask); !it.done(); it.next()) {
   13525     it.rinfo()->apply(delta);
   13526   }
   13527   Assembler::FlushICache(GetIsolate(), instruction_start(), instruction_size());
   13528 }
   13529 
   13530 
   13531 void Code::CopyFrom(const CodeDesc& desc) {
   13532   // copy code
   13533   CopyBytes(instruction_start(), desc.buffer,
   13534             static_cast<size_t>(desc.instr_size));
   13535 
   13536   // copy unwinding info, if any
   13537   if (desc.unwinding_info) {
   13538     DCHECK_GT(desc.unwinding_info_size, 0);
   13539     set_unwinding_info_size(desc.unwinding_info_size);
   13540     CopyBytes(unwinding_info_start(), desc.unwinding_info,
   13541               static_cast<size_t>(desc.unwinding_info_size));
   13542   }
   13543 
   13544   // copy reloc info
   13545   CopyBytes(relocation_start(),
   13546             desc.buffer + desc.buffer_size - desc.reloc_size,
   13547             static_cast<size_t>(desc.reloc_size));
   13548 
   13549   // unbox handles and relocate
   13550   intptr_t delta = instruction_start() - desc.buffer;
   13551   int mode_mask = RelocInfo::kCodeTargetMask |
   13552                   RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
   13553                   RelocInfo::ModeMask(RelocInfo::CELL) |
   13554                   RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) |
   13555                   RelocInfo::kApplyMask;
   13556   // Needed to find target_object and runtime_entry on X64
   13557   Assembler* origin = desc.origin;
   13558   AllowDeferredHandleDereference embedding_raw_address;
   13559   for (RelocIterator it(this, mode_mask); !it.done(); it.next()) {
   13560     RelocInfo::Mode mode = it.rinfo()->rmode();
   13561     if (mode == RelocInfo::EMBEDDED_OBJECT) {
   13562       Handle<Object> p = it.rinfo()->target_object_handle(origin);
   13563       it.rinfo()->set_target_object(*p, UPDATE_WRITE_BARRIER,
   13564                                     SKIP_ICACHE_FLUSH);
   13565     } else if (mode == RelocInfo::CELL) {
   13566       Handle<Cell> cell  = it.rinfo()->target_cell_handle();
   13567       it.rinfo()->set_target_cell(*cell, UPDATE_WRITE_BARRIER,
   13568                                   SKIP_ICACHE_FLUSH);
   13569     } else if (RelocInfo::IsCodeTarget(mode)) {
   13570       // rewrite code handles in inline cache targets to direct
   13571       // pointers to the first instruction in the code object
   13572       Handle<Object> p = it.rinfo()->target_object_handle(origin);
   13573       Code* code = Code::cast(*p);
   13574       it.rinfo()->set_target_address(code->instruction_start(),
   13575                                      UPDATE_WRITE_BARRIER, SKIP_ICACHE_FLUSH);
   13576     } else if (RelocInfo::IsRuntimeEntry(mode)) {
   13577       Address p = it.rinfo()->target_runtime_entry(origin);
   13578       it.rinfo()->set_target_runtime_entry(p, UPDATE_WRITE_BARRIER,
   13579                                            SKIP_ICACHE_FLUSH);
   13580     } else if (mode == RelocInfo::CODE_AGE_SEQUENCE) {
   13581       Handle<Object> p = it.rinfo()->code_age_stub_handle(origin);
   13582       Code* code = Code::cast(*p);
   13583       it.rinfo()->set_code_age_stub(code, SKIP_ICACHE_FLUSH);
   13584     } else {
   13585       it.rinfo()->apply(delta);
   13586     }
   13587   }
   13588   Assembler::FlushICache(GetIsolate(), instruction_start(), instruction_size());
   13589 }
   13590 
   13591 // Locate the source position which is closest to the code offset. This is
   13592 // using the source position information embedded in the relocation info.
   13593 // The position returned is relative to the beginning of the script where the
   13594 // source for this function is found.
   13595 int Code::SourcePosition(int code_offset) {
   13596   // Subtract one because the current PC is one instruction after the call site.
   13597   Address pc = instruction_start() + code_offset - 1;
   13598   int position = RelocInfo::kNoPosition;  // Initially no position found.
   13599   // Find the closest position attached to a pc lower or equal to the current.
   13600   // Note that the pc of reloc infos grow monotonically.
   13601   for (RelocIterator it(this, RelocInfo::kPositionMask);
   13602        !it.done() && it.rinfo()->pc() <= pc; it.next()) {
   13603     position = static_cast<int>(it.rinfo()->data());
   13604   }
   13605   DCHECK(kind() == FUNCTION || (is_optimized_code() && is_turbofanned()) ||
   13606          is_wasm_code() || position == RelocInfo::kNoPosition);
   13607   return position;
   13608 }
   13609 
   13610 
   13611 // Same as Code::SourcePosition above except it only looks for statement
   13612 // positions.
   13613 int Code::SourceStatementPosition(int code_offset) {
   13614   // First find the closest position.
   13615   int position = SourcePosition(code_offset);
   13616   // Now find the closest statement position before the position.
   13617   int statement_position = 0;
   13618   for (RelocIterator it(this, RelocInfo::kPositionMask); !it.done();
   13619        it.next()) {
   13620     if (RelocInfo::IsStatementPosition(it.rinfo()->rmode())) {
   13621       int p = static_cast<int>(it.rinfo()->data());
   13622       if (statement_position < p && p <= position) {
   13623         statement_position = p;
   13624       }
   13625     }
   13626   }
   13627   return statement_position;
   13628 }
   13629 
   13630 
   13631 SafepointEntry Code::GetSafepointEntry(Address pc) {
   13632   SafepointTable table(this);
   13633   return table.FindEntry(pc);
   13634 }
   13635 
   13636 
   13637 Object* Code::FindNthObject(int n, Map* match_map) {
   13638   DCHECK(is_inline_cache_stub());
   13639   DisallowHeapAllocation no_allocation;
   13640   int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
   13641   for (RelocIterator it(this, mask); !it.done(); it.next()) {
   13642     RelocInfo* info = it.rinfo();
   13643     Object* object = info->target_object();
   13644     if (object->IsWeakCell()) object = WeakCell::cast(object)->value();
   13645     if (object->IsHeapObject()) {
   13646       if (HeapObject::cast(object)->map() == match_map) {
   13647         if (--n == 0) return object;
   13648       }
   13649     }
   13650   }
   13651   return NULL;
   13652 }
   13653 
   13654 
   13655 AllocationSite* Code::FindFirstAllocationSite() {
   13656   Object* result = FindNthObject(1, GetHeap()->allocation_site_map());
   13657   return (result != NULL) ? AllocationSite::cast(result) : NULL;
   13658 }
   13659 
   13660 
   13661 Map* Code::FindFirstMap() {
   13662   Object* result = FindNthObject(1, GetHeap()->meta_map());
   13663   return (result != NULL) ? Map::cast(result) : NULL;
   13664 }
   13665 
   13666 
   13667 void Code::FindAndReplace(const FindAndReplacePattern& pattern) {
   13668   DCHECK(is_inline_cache_stub() || is_handler());
   13669   DisallowHeapAllocation no_allocation;
   13670   int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
   13671   STATIC_ASSERT(FindAndReplacePattern::kMaxCount < 32);
   13672   int current_pattern = 0;
   13673   for (RelocIterator it(this, mask); !it.done(); it.next()) {
   13674     RelocInfo* info = it.rinfo();
   13675     Object* object = info->target_object();
   13676     if (object->IsHeapObject()) {
   13677       if (object->IsWeakCell()) {
   13678         object = HeapObject::cast(WeakCell::cast(object)->value());
   13679       }
   13680       Map* map = HeapObject::cast(object)->map();
   13681       if (map == *pattern.find_[current_pattern]) {
   13682         info->set_target_object(*pattern.replace_[current_pattern]);
   13683         if (++current_pattern == pattern.count_) return;
   13684       }
   13685     }
   13686   }
   13687   UNREACHABLE();
   13688 }
   13689 
   13690 
   13691 void Code::ClearInlineCaches() {
   13692   int mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET) |
   13693              RelocInfo::ModeMask(RelocInfo::CODE_TARGET_WITH_ID);
   13694   for (RelocIterator it(this, mask); !it.done(); it.next()) {
   13695     RelocInfo* info = it.rinfo();
   13696     Code* target(Code::GetCodeFromTargetAddress(info->target_address()));
   13697     if (target->is_inline_cache_stub()) {
   13698       IC::Clear(this->GetIsolate(), info->pc(), info->host()->constant_pool());
   13699     }
   13700   }
   13701 }
   13702 
   13703 int AbstractCode::SourcePosition(int offset) {
   13704   return IsBytecodeArray() ? GetBytecodeArray()->SourcePosition(offset)
   13705                            : GetCode()->SourcePosition(offset);
   13706 }
   13707 
   13708 int AbstractCode::SourceStatementPosition(int offset) {
   13709   return IsBytecodeArray() ? GetBytecodeArray()->SourceStatementPosition(offset)
   13710                            : GetCode()->SourceStatementPosition(offset);
   13711 }
   13712 
   13713 void JSFunction::ClearTypeFeedbackInfo() {
   13714   feedback_vector()->ClearSlots(shared());
   13715 }
   13716 
   13717 void JSFunction::ClearTypeFeedbackInfoAtGCTime() {
   13718   feedback_vector()->ClearSlotsAtGCTime(shared());
   13719 }
   13720 
   13721 BailoutId Code::TranslatePcOffsetToAstId(uint32_t pc_offset) {
   13722   DisallowHeapAllocation no_gc;
   13723   DCHECK(kind() == FUNCTION);
   13724   BackEdgeTable back_edges(this, &no_gc);
   13725   for (uint32_t i = 0; i < back_edges.length(); i++) {
   13726     if (back_edges.pc_offset(i) == pc_offset) return back_edges.ast_id(i);
   13727   }
   13728   return BailoutId::None();
   13729 }
   13730 
   13731 
   13732 uint32_t Code::TranslateAstIdToPcOffset(BailoutId ast_id) {
   13733   DisallowHeapAllocation no_gc;
   13734   DCHECK(kind() == FUNCTION);
   13735   BackEdgeTable back_edges(this, &no_gc);
   13736   for (uint32_t i = 0; i < back_edges.length(); i++) {
   13737     if (back_edges.ast_id(i) == ast_id) return back_edges.pc_offset(i);
   13738   }
   13739   UNREACHABLE();  // We expect to find the back edge.
   13740   return 0;
   13741 }
   13742 
   13743 
   13744 void Code::MakeCodeAgeSequenceYoung(byte* sequence, Isolate* isolate) {
   13745   PatchPlatformCodeAge(isolate, sequence, kNoAgeCodeAge, NO_MARKING_PARITY);
   13746 }
   13747 
   13748 
   13749 void Code::MarkCodeAsExecuted(byte* sequence, Isolate* isolate) {
   13750   PatchPlatformCodeAge(isolate, sequence, kExecutedOnceCodeAge,
   13751       NO_MARKING_PARITY);
   13752 }
   13753 
   13754 
   13755 // NextAge defines the Code::Age state transitions during a GC cycle.
   13756 static Code::Age NextAge(Code::Age age) {
   13757   switch (age) {
   13758     case Code::kNotExecutedCodeAge:  // Keep, until we've been executed.
   13759     case Code::kToBeExecutedOnceCodeAge:  // Keep, until we've been executed.
   13760     case Code::kLastCodeAge:  // Clamp at last Code::Age value.
   13761       return age;
   13762     case Code::kExecutedOnceCodeAge:
   13763       // Pre-age code that has only been executed once.
   13764       return static_cast<Code::Age>(Code::kPreAgedCodeAge + 1);
   13765     default:
   13766       return static_cast<Code::Age>(age + 1);  // Default case: Increase age.
   13767   }
   13768 }
   13769 
   13770 
   13771 // IsOldAge defines the collection criteria for a Code object.
   13772 static bool IsOldAge(Code::Age age) {
   13773   return age >= Code::kIsOldCodeAge || age == Code::kNotExecutedCodeAge;
   13774 }
   13775 
   13776 
   13777 void Code::MakeYoung(Isolate* isolate) {
   13778   byte* sequence = FindCodeAgeSequence();
   13779   if (sequence != NULL) MakeCodeAgeSequenceYoung(sequence, isolate);
   13780 }
   13781 
   13782 void Code::PreAge(Isolate* isolate) {
   13783   byte* sequence = FindCodeAgeSequence();
   13784   if (sequence != NULL) {
   13785     PatchPlatformCodeAge(isolate, sequence, kPreAgedCodeAge, NO_MARKING_PARITY);
   13786   }
   13787 }
   13788 
   13789 void Code::MarkToBeExecutedOnce(Isolate* isolate) {
   13790   byte* sequence = FindCodeAgeSequence();
   13791   if (sequence != NULL) {
   13792     PatchPlatformCodeAge(isolate, sequence, kToBeExecutedOnceCodeAge,
   13793                          NO_MARKING_PARITY);
   13794   }
   13795 }
   13796 
   13797 void Code::MakeOlder(MarkingParity current_parity) {
   13798   byte* sequence = FindCodeAgeSequence();
   13799   if (sequence != NULL) {
   13800     Age age;
   13801     MarkingParity code_parity;
   13802     Isolate* isolate = GetIsolate();
   13803     GetCodeAgeAndParity(isolate, sequence, &age, &code_parity);
   13804     Age next_age = NextAge(age);
   13805     if (age != next_age && code_parity != current_parity) {
   13806       PatchPlatformCodeAge(isolate, sequence, next_age, current_parity);
   13807     }
   13808   }
   13809 }
   13810 
   13811 
   13812 bool Code::IsOld() {
   13813   return IsOldAge(GetAge());
   13814 }
   13815 
   13816 
   13817 byte* Code::FindCodeAgeSequence() {
   13818   return FLAG_age_code &&
   13819       prologue_offset() != Code::kPrologueOffsetNotSet &&
   13820       (kind() == OPTIMIZED_FUNCTION ||
   13821        (kind() == FUNCTION && !has_debug_break_slots()))
   13822       ? instruction_start() + prologue_offset()
   13823       : NULL;
   13824 }
   13825 
   13826 
   13827 Code::Age Code::GetAge() {
   13828   byte* sequence = FindCodeAgeSequence();
   13829   if (sequence == NULL) {
   13830     return kNoAgeCodeAge;
   13831   }
   13832   Age age;
   13833   MarkingParity parity;
   13834   GetCodeAgeAndParity(GetIsolate(), sequence, &age, &parity);
   13835   return age;
   13836 }
   13837 
   13838 
   13839 void Code::GetCodeAgeAndParity(Code* code, Age* age,
   13840                                MarkingParity* parity) {
   13841   Isolate* isolate = code->GetIsolate();
   13842   Builtins* builtins = isolate->builtins();
   13843   Code* stub = NULL;
   13844 #define HANDLE_CODE_AGE(AGE)                                            \
   13845   stub = *builtins->Make##AGE##CodeYoungAgainEvenMarking();             \
   13846   if (code == stub) {                                                   \
   13847     *age = k##AGE##CodeAge;                                             \
   13848     *parity = EVEN_MARKING_PARITY;                                      \
   13849     return;                                                             \
   13850   }                                                                     \
   13851   stub = *builtins->Make##AGE##CodeYoungAgainOddMarking();              \
   13852   if (code == stub) {                                                   \
   13853     *age = k##AGE##CodeAge;                                             \
   13854     *parity = ODD_MARKING_PARITY;                                       \
   13855     return;                                                             \
   13856   }
   13857   CODE_AGE_LIST(HANDLE_CODE_AGE)
   13858 #undef HANDLE_CODE_AGE
   13859   stub = *builtins->MarkCodeAsExecutedOnce();
   13860   if (code == stub) {
   13861     *age = kNotExecutedCodeAge;
   13862     *parity = NO_MARKING_PARITY;
   13863     return;
   13864   }
   13865   stub = *builtins->MarkCodeAsExecutedTwice();
   13866   if (code == stub) {
   13867     *age = kExecutedOnceCodeAge;
   13868     *parity = NO_MARKING_PARITY;
   13869     return;
   13870   }
   13871   stub = *builtins->MarkCodeAsToBeExecutedOnce();
   13872   if (code == stub) {
   13873     *age = kToBeExecutedOnceCodeAge;
   13874     *parity = NO_MARKING_PARITY;
   13875     return;
   13876   }
   13877   UNREACHABLE();
   13878 }
   13879 
   13880 
   13881 Code* Code::GetCodeAgeStub(Isolate* isolate, Age age, MarkingParity parity) {
   13882   Builtins* builtins = isolate->builtins();
   13883   switch (age) {
   13884 #define HANDLE_CODE_AGE(AGE)                                            \
   13885     case k##AGE##CodeAge: {                                             \
   13886       Code* stub = parity == EVEN_MARKING_PARITY                        \
   13887           ? *builtins->Make##AGE##CodeYoungAgainEvenMarking()           \
   13888           : *builtins->Make##AGE##CodeYoungAgainOddMarking();           \
   13889       return stub;                                                      \
   13890     }
   13891     CODE_AGE_LIST(HANDLE_CODE_AGE)
   13892 #undef HANDLE_CODE_AGE
   13893     case kNotExecutedCodeAge: {
   13894       DCHECK(parity == NO_MARKING_PARITY);
   13895       return *builtins->MarkCodeAsExecutedOnce();
   13896     }
   13897     case kExecutedOnceCodeAge: {
   13898       DCHECK(parity == NO_MARKING_PARITY);
   13899       return *builtins->MarkCodeAsExecutedTwice();
   13900     }
   13901     case kToBeExecutedOnceCodeAge: {
   13902       DCHECK(parity == NO_MARKING_PARITY);
   13903       return *builtins->MarkCodeAsToBeExecutedOnce();
   13904     }
   13905     default:
   13906       UNREACHABLE();
   13907       break;
   13908   }
   13909   return NULL;
   13910 }
   13911 
   13912 
   13913 void Code::PrintDeoptLocation(FILE* out, Address pc) {
   13914   Deoptimizer::DeoptInfo info = Deoptimizer::GetDeoptInfo(this, pc);
   13915   class SourcePosition pos = info.position;
   13916   if (info.deopt_reason != Deoptimizer::kNoReason || !pos.IsUnknown()) {
   13917     if (FLAG_hydrogen_track_positions) {
   13918       PrintF(out, "            ;;; deoptimize at %d_%d: %s\n",
   13919              pos.inlining_id(), pos.position(),
   13920              Deoptimizer::GetDeoptReason(info.deopt_reason));
   13921     } else {
   13922       PrintF(out, "            ;;; deoptimize at %d: %s\n", pos.raw(),
   13923              Deoptimizer::GetDeoptReason(info.deopt_reason));
   13924     }
   13925   }
   13926 }
   13927 
   13928 
   13929 bool Code::CanDeoptAt(Address pc) {
   13930   DeoptimizationInputData* deopt_data =
   13931       DeoptimizationInputData::cast(deoptimization_data());
   13932   Address code_start_address = instruction_start();
   13933   for (int i = 0; i < deopt_data->DeoptCount(); i++) {
   13934     if (deopt_data->Pc(i)->value() == -1) continue;
   13935     Address address = code_start_address + deopt_data->Pc(i)->value();
   13936     if (address == pc && deopt_data->AstId(i) != BailoutId::None()) {
   13937       return true;
   13938     }
   13939   }
   13940   return false;
   13941 }
   13942 
   13943 
   13944 // Identify kind of code.
   13945 const char* Code::Kind2String(Kind kind) {
   13946   switch (kind) {
   13947 #define CASE(name) case name: return #name;
   13948     CODE_KIND_LIST(CASE)
   13949 #undef CASE
   13950     case NUMBER_OF_KINDS: break;
   13951   }
   13952   UNREACHABLE();
   13953   return NULL;
   13954 }
   13955 
   13956 // Identify kind of code.
   13957 const char* AbstractCode::Kind2String(Kind kind) {
   13958   if (kind < AbstractCode::INTERPRETED_FUNCTION)
   13959     return Code::Kind2String((Code::Kind)kind);
   13960   if (kind == AbstractCode::INTERPRETED_FUNCTION) return "INTERPRETED_FUNCTION";
   13961   UNREACHABLE();
   13962   return NULL;
   13963 }
   13964 
   13965 Handle<WeakCell> Code::WeakCellFor(Handle<Code> code) {
   13966   DCHECK(code->kind() == OPTIMIZED_FUNCTION);
   13967   WeakCell* raw_cell = code->CachedWeakCell();
   13968   if (raw_cell != NULL) return Handle<WeakCell>(raw_cell);
   13969   Handle<WeakCell> cell = code->GetIsolate()->factory()->NewWeakCell(code);
   13970   DeoptimizationInputData::cast(code->deoptimization_data())
   13971       ->SetWeakCellCache(*cell);
   13972   return cell;
   13973 }
   13974 
   13975 
   13976 WeakCell* Code::CachedWeakCell() {
   13977   DCHECK(kind() == OPTIMIZED_FUNCTION);
   13978   Object* weak_cell_cache =
   13979       DeoptimizationInputData::cast(deoptimization_data())->WeakCellCache();
   13980   if (weak_cell_cache->IsWeakCell()) {
   13981     DCHECK(this == WeakCell::cast(weak_cell_cache)->value());
   13982     return WeakCell::cast(weak_cell_cache);
   13983   }
   13984   return NULL;
   13985 }
   13986 
   13987 #ifdef ENABLE_DISASSEMBLER
   13988 
   13989 void DeoptimizationInputData::DeoptimizationInputDataPrint(
   13990     std::ostream& os) {  // NOLINT
   13991   disasm::NameConverter converter;
   13992   int const inlined_function_count = InlinedFunctionCount()->value();
   13993   os << "Inlined functions (count = " << inlined_function_count << ")\n";
   13994   for (int id = 0; id < inlined_function_count; ++id) {
   13995     Object* info = LiteralArray()->get(id);
   13996     os << " " << Brief(SharedFunctionInfo::cast(info)) << "\n";
   13997   }
   13998   os << "\n";
   13999   int deopt_count = DeoptCount();
   14000   os << "Deoptimization Input Data (deopt points = " << deopt_count << ")\n";
   14001   if (0 != deopt_count) {
   14002     os << " index  ast id    argc     pc";
   14003     if (FLAG_print_code_verbose) os << "  commands";
   14004     os << "\n";
   14005   }
   14006   for (int i = 0; i < deopt_count; i++) {
   14007     os << std::setw(6) << i << "  " << std::setw(6) << AstId(i).ToInt() << "  "
   14008        << std::setw(6) << ArgumentsStackHeight(i)->value() << " "
   14009        << std::setw(6) << Pc(i)->value();
   14010 
   14011     if (!FLAG_print_code_verbose) {
   14012       os << "\n";
   14013       continue;
   14014     }
   14015     // Print details of the frame translation.
   14016     int translation_index = TranslationIndex(i)->value();
   14017     TranslationIterator iterator(TranslationByteArray(), translation_index);
   14018     Translation::Opcode opcode =
   14019         static_cast<Translation::Opcode>(iterator.Next());
   14020     DCHECK(Translation::BEGIN == opcode);
   14021     int frame_count = iterator.Next();
   14022     int jsframe_count = iterator.Next();
   14023     os << "  " << Translation::StringFor(opcode)
   14024        << " {frame count=" << frame_count
   14025        << ", js frame count=" << jsframe_count << "}\n";
   14026 
   14027     while (iterator.HasNext() &&
   14028            Translation::BEGIN !=
   14029            (opcode = static_cast<Translation::Opcode>(iterator.Next()))) {
   14030       os << std::setw(31) << "    " << Translation::StringFor(opcode) << " ";
   14031 
   14032       switch (opcode) {
   14033         case Translation::BEGIN:
   14034           UNREACHABLE();
   14035           break;
   14036 
   14037         case Translation::JS_FRAME: {
   14038           int ast_id = iterator.Next();
   14039           int shared_info_id = iterator.Next();
   14040           unsigned height = iterator.Next();
   14041           Object* shared_info = LiteralArray()->get(shared_info_id);
   14042           os << "{ast_id=" << ast_id << ", function="
   14043              << Brief(SharedFunctionInfo::cast(shared_info)->DebugName())
   14044              << ", height=" << height << "}";
   14045           break;
   14046         }
   14047 
   14048         case Translation::INTERPRETED_FRAME: {
   14049           int bytecode_offset = iterator.Next();
   14050           int shared_info_id = iterator.Next();
   14051           unsigned height = iterator.Next();
   14052           Object* shared_info = LiteralArray()->get(shared_info_id);
   14053           os << "{bytecode_offset=" << bytecode_offset << ", function="
   14054              << Brief(SharedFunctionInfo::cast(shared_info)->DebugName())
   14055              << ", height=" << height << "}";
   14056           break;
   14057         }
   14058 
   14059         case Translation::COMPILED_STUB_FRAME: {
   14060           Code::Kind stub_kind = static_cast<Code::Kind>(iterator.Next());
   14061           os << "{kind=" << stub_kind << "}";
   14062           break;
   14063         }
   14064 
   14065         case Translation::ARGUMENTS_ADAPTOR_FRAME:
   14066         case Translation::CONSTRUCT_STUB_FRAME: {
   14067           int shared_info_id = iterator.Next();
   14068           Object* shared_info = LiteralArray()->get(shared_info_id);
   14069           unsigned height = iterator.Next();
   14070           os << "{function="
   14071              << Brief(SharedFunctionInfo::cast(shared_info)->DebugName())
   14072              << ", height=" << height << "}";
   14073           break;
   14074         }
   14075 
   14076         case Translation::TAIL_CALLER_FRAME: {
   14077           int shared_info_id = iterator.Next();
   14078           Object* shared_info = LiteralArray()->get(shared_info_id);
   14079           os << "{function="
   14080              << Brief(SharedFunctionInfo::cast(shared_info)->DebugName())
   14081              << "}";
   14082           break;
   14083         }
   14084 
   14085         case Translation::GETTER_STUB_FRAME:
   14086         case Translation::SETTER_STUB_FRAME: {
   14087           int shared_info_id = iterator.Next();
   14088           Object* shared_info = LiteralArray()->get(shared_info_id);
   14089           os << "{function=" << Brief(SharedFunctionInfo::cast(shared_info)
   14090                                           ->DebugName()) << "}";
   14091           break;
   14092         }
   14093 
   14094         case Translation::REGISTER: {
   14095           int reg_code = iterator.Next();
   14096           os << "{input=" << converter.NameOfCPURegister(reg_code) << "}";
   14097           break;
   14098         }
   14099 
   14100         case Translation::INT32_REGISTER: {
   14101           int reg_code = iterator.Next();
   14102           os << "{input=" << converter.NameOfCPURegister(reg_code) << "}";
   14103           break;
   14104         }
   14105 
   14106         case Translation::UINT32_REGISTER: {
   14107           int reg_code = iterator.Next();
   14108           os << "{input=" << converter.NameOfCPURegister(reg_code)
   14109              << " (unsigned)}";
   14110           break;
   14111         }
   14112 
   14113         case Translation::BOOL_REGISTER: {
   14114           int reg_code = iterator.Next();
   14115           os << "{input=" << converter.NameOfCPURegister(reg_code)
   14116              << " (bool)}";
   14117           break;
   14118         }
   14119 
   14120         case Translation::FLOAT_REGISTER: {
   14121           int reg_code = iterator.Next();
   14122           os << "{input="
   14123              << RegisterConfiguration::Crankshaft()->GetFloatRegisterName(
   14124                     reg_code)
   14125              << "}";
   14126           break;
   14127         }
   14128 
   14129         case Translation::DOUBLE_REGISTER: {
   14130           int reg_code = iterator.Next();
   14131           os << "{input="
   14132              << RegisterConfiguration::Crankshaft()->GetDoubleRegisterName(
   14133                     reg_code)
   14134              << "}";
   14135           break;
   14136         }
   14137 
   14138         case Translation::STACK_SLOT: {
   14139           int input_slot_index = iterator.Next();
   14140           os << "{input=" << input_slot_index << "}";
   14141           break;
   14142         }
   14143 
   14144         case Translation::INT32_STACK_SLOT: {
   14145           int input_slot_index = iterator.Next();
   14146           os << "{input=" << input_slot_index << "}";
   14147           break;
   14148         }
   14149 
   14150         case Translation::UINT32_STACK_SLOT: {
   14151           int input_slot_index = iterator.Next();
   14152           os << "{input=" << input_slot_index << " (unsigned)}";
   14153           break;
   14154         }
   14155 
   14156         case Translation::BOOL_STACK_SLOT: {
   14157           int input_slot_index = iterator.Next();
   14158           os << "{input=" << input_slot_index << " (bool)}";
   14159           break;
   14160         }
   14161 
   14162         case Translation::FLOAT_STACK_SLOT:
   14163         case Translation::DOUBLE_STACK_SLOT: {
   14164           int input_slot_index = iterator.Next();
   14165           os << "{input=" << input_slot_index << "}";
   14166           break;
   14167         }
   14168 
   14169         case Translation::LITERAL: {
   14170           int literal_index = iterator.Next();
   14171           Object* literal_value = LiteralArray()->get(literal_index);
   14172           os << "{literal_id=" << literal_index << " (" << Brief(literal_value)
   14173              << ")}";
   14174           break;
   14175         }
   14176 
   14177         case Translation::DUPLICATED_OBJECT: {
   14178           int object_index = iterator.Next();
   14179           os << "{object_index=" << object_index << "}";
   14180           break;
   14181         }
   14182 
   14183         case Translation::ARGUMENTS_OBJECT:
   14184         case Translation::CAPTURED_OBJECT: {
   14185           int args_length = iterator.Next();
   14186           os << "{length=" << args_length << "}";
   14187           break;
   14188         }
   14189       }
   14190       os << "\n";
   14191     }
   14192   }
   14193 }
   14194 
   14195 
   14196 void DeoptimizationOutputData::DeoptimizationOutputDataPrint(
   14197     std::ostream& os) {  // NOLINT
   14198   os << "Deoptimization Output Data (deopt points = " << this->DeoptPoints()
   14199      << ")\n";
   14200   if (this->DeoptPoints() == 0) return;
   14201 
   14202   os << "ast id        pc  state\n";
   14203   for (int i = 0; i < this->DeoptPoints(); i++) {
   14204     int pc_and_state = this->PcAndState(i)->value();
   14205     os << std::setw(6) << this->AstId(i).ToInt() << "  " << std::setw(8)
   14206        << FullCodeGenerator::PcField::decode(pc_and_state) << "  "
   14207        << Deoptimizer::BailoutStateToString(
   14208               FullCodeGenerator::BailoutStateField::decode(pc_and_state))
   14209        << "\n";
   14210   }
   14211 }
   14212 
   14213 
   14214 void HandlerTable::HandlerTableRangePrint(std::ostream& os) {
   14215   os << "   from   to       hdlr\n";
   14216   for (int i = 0; i < length(); i += kRangeEntrySize) {
   14217     int pc_start = Smi::cast(get(i + kRangeStartIndex))->value();
   14218     int pc_end = Smi::cast(get(i + kRangeEndIndex))->value();
   14219     int handler_field = Smi::cast(get(i + kRangeHandlerIndex))->value();
   14220     int handler_offset = HandlerOffsetField::decode(handler_field);
   14221     CatchPrediction prediction = HandlerPredictionField::decode(handler_field);
   14222     int data = Smi::cast(get(i + kRangeDataIndex))->value();
   14223     os << "  (" << std::setw(4) << pc_start << "," << std::setw(4) << pc_end
   14224        << ")  ->  " << std::setw(4) << handler_offset
   14225        << " (prediction=" << prediction << ", data=" << data << ")\n";
   14226   }
   14227 }
   14228 
   14229 
   14230 void HandlerTable::HandlerTableReturnPrint(std::ostream& os) {
   14231   os << "   off      hdlr (c)\n";
   14232   for (int i = 0; i < length(); i += kReturnEntrySize) {
   14233     int pc_offset = Smi::cast(get(i + kReturnOffsetIndex))->value();
   14234     int handler_field = Smi::cast(get(i + kReturnHandlerIndex))->value();
   14235     int handler_offset = HandlerOffsetField::decode(handler_field);
   14236     CatchPrediction prediction = HandlerPredictionField::decode(handler_field);
   14237     os << "  " << std::setw(4) << pc_offset << "  ->  " << std::setw(4)
   14238        << handler_offset << " (prediction=" << prediction << ")\n";
   14239   }
   14240 }
   14241 
   14242 
   14243 const char* Code::ICState2String(InlineCacheState state) {
   14244   switch (state) {
   14245     case UNINITIALIZED: return "UNINITIALIZED";
   14246     case PREMONOMORPHIC: return "PREMONOMORPHIC";
   14247     case MONOMORPHIC: return "MONOMORPHIC";
   14248     case RECOMPUTE_HANDLER:
   14249       return "RECOMPUTE_HANDLER";
   14250     case POLYMORPHIC: return "POLYMORPHIC";
   14251     case MEGAMORPHIC: return "MEGAMORPHIC";
   14252     case GENERIC: return "GENERIC";
   14253   }
   14254   UNREACHABLE();
   14255   return NULL;
   14256 }
   14257 
   14258 
   14259 void Code::PrintExtraICState(std::ostream& os,  // NOLINT
   14260                              Kind kind, ExtraICState extra) {
   14261   os << "extra_ic_state = ";
   14262   if ((kind == STORE_IC || kind == KEYED_STORE_IC) &&
   14263       is_strict(static_cast<LanguageMode>(extra))) {
   14264     os << "STRICT\n";
   14265   } else {
   14266     os << extra << "\n";
   14267   }
   14268 }
   14269 
   14270 
   14271 void Code::Disassemble(const char* name, std::ostream& os) {  // NOLINT
   14272   os << "kind = " << Kind2String(kind()) << "\n";
   14273   if (IsCodeStubOrIC()) {
   14274     const char* n = CodeStub::MajorName(CodeStub::GetMajorKey(this));
   14275     os << "major_key = " << (n == NULL ? "null" : n) << "\n";
   14276   }
   14277   if (is_inline_cache_stub()) {
   14278     if (!IC::ICUseVector(kind())) {
   14279       InlineCacheState ic_state = IC::StateFromCode(this);
   14280       os << "ic_state = " << ICState2String(ic_state) << "\n";
   14281     }
   14282     PrintExtraICState(os, kind(), extra_ic_state());
   14283     if (is_compare_ic_stub()) {
   14284       DCHECK(CodeStub::GetMajorKey(this) == CodeStub::CompareIC);
   14285       CompareICStub stub(stub_key(), GetIsolate());
   14286       os << "compare_state = " << CompareICState::GetStateName(stub.left())
   14287          << "*" << CompareICState::GetStateName(stub.right()) << " -> "
   14288          << CompareICState::GetStateName(stub.state()) << "\n";
   14289       os << "compare_operation = " << Token::Name(stub.op()) << "\n";
   14290     }
   14291   }
   14292   if ((name != nullptr) && (name[0] != '\0')) {
   14293     os << "name = " << name << "\n";
   14294   } else if (kind() == BUILTIN) {
   14295     name = GetIsolate()->builtins()->Lookup(instruction_start());
   14296     if (name != nullptr) {
   14297       os << "name = " << name << "\n";
   14298     }
   14299   } else if (kind() == BYTECODE_HANDLER) {
   14300     name = GetIsolate()->interpreter()->LookupNameOfBytecodeHandler(this);
   14301     if (name != nullptr) {
   14302       os << "name = " << name << "\n";
   14303     }
   14304   }
   14305   if (kind() == OPTIMIZED_FUNCTION) {
   14306     os << "stack_slots = " << stack_slots() << "\n";
   14307   }
   14308   os << "compiler = " << (is_turbofanned()
   14309                               ? "turbofan"
   14310                               : is_crankshafted() ? "crankshaft"
   14311                                                   : kind() == Code::FUNCTION
   14312                                                         ? "full-codegen"
   14313                                                         : "unknown") << "\n";
   14314 
   14315   os << "Instructions (size = " << instruction_size() << ")\n";
   14316   {
   14317     Isolate* isolate = GetIsolate();
   14318     int size = instruction_size();
   14319     int safepoint_offset =
   14320         is_crankshafted() ? static_cast<int>(safepoint_table_offset()) : size;
   14321     int back_edge_offset = (kind() == Code::FUNCTION)
   14322                                ? static_cast<int>(back_edge_table_offset())
   14323                                : size;
   14324     int constant_pool_offset = FLAG_enable_embedded_constant_pool
   14325                                    ? this->constant_pool_offset()
   14326                                    : size;
   14327 
   14328     // Stop before reaching any embedded tables
   14329     int code_size = Min(safepoint_offset, back_edge_offset);
   14330     code_size = Min(code_size, constant_pool_offset);
   14331     byte* begin = instruction_start();
   14332     byte* end = begin + code_size;
   14333     Disassembler::Decode(isolate, &os, begin, end, this);
   14334 
   14335     if (constant_pool_offset < size) {
   14336       int constant_pool_size = size - constant_pool_offset;
   14337       DCHECK((constant_pool_size & kPointerAlignmentMask) == 0);
   14338       os << "\nConstant Pool (size = " << constant_pool_size << ")\n";
   14339       Vector<char> buf = Vector<char>::New(50);
   14340       intptr_t* ptr = reinterpret_cast<intptr_t*>(begin + constant_pool_offset);
   14341       for (int i = 0; i < constant_pool_size; i += kPointerSize, ptr++) {
   14342         SNPrintF(buf, "%4d %08" V8PRIxPTR, i, *ptr);
   14343         os << static_cast<const void*>(ptr) << "  " << buf.start() << "\n";
   14344       }
   14345     }
   14346   }
   14347   os << "\n";
   14348 
   14349   if (kind() == FUNCTION) {
   14350     DeoptimizationOutputData* data =
   14351         DeoptimizationOutputData::cast(this->deoptimization_data());
   14352     data->DeoptimizationOutputDataPrint(os);
   14353   } else if (kind() == OPTIMIZED_FUNCTION) {
   14354     DeoptimizationInputData* data =
   14355         DeoptimizationInputData::cast(this->deoptimization_data());
   14356     data->DeoptimizationInputDataPrint(os);
   14357   }
   14358   os << "\n";
   14359 
   14360   if (is_crankshafted()) {
   14361     SafepointTable table(this);
   14362     os << "Safepoints (size = " << table.size() << ")\n";
   14363     for (unsigned i = 0; i < table.length(); i++) {
   14364       unsigned pc_offset = table.GetPcOffset(i);
   14365       os << static_cast<const void*>(instruction_start() + pc_offset) << "  ";
   14366       os << std::setw(4) << pc_offset << "  ";
   14367       table.PrintEntry(i, os);
   14368       os << " (sp -> fp)  ";
   14369       SafepointEntry entry = table.GetEntry(i);
   14370       if (entry.deoptimization_index() != Safepoint::kNoDeoptimizationIndex) {
   14371         os << std::setw(6) << entry.deoptimization_index();
   14372       } else {
   14373         os << "<none>";
   14374       }
   14375       if (entry.argument_count() > 0) {
   14376         os << " argc: " << entry.argument_count();
   14377       }
   14378       os << "\n";
   14379     }
   14380     os << "\n";
   14381   } else if (kind() == FUNCTION) {
   14382     unsigned offset = back_edge_table_offset();
   14383     // If there is no back edge table, the "table start" will be at or after
   14384     // (due to alignment) the end of the instruction stream.
   14385     if (static_cast<int>(offset) < instruction_size()) {
   14386       DisallowHeapAllocation no_gc;
   14387       BackEdgeTable back_edges(this, &no_gc);
   14388 
   14389       os << "Back edges (size = " << back_edges.length() << ")\n";
   14390       os << "ast_id  pc_offset  loop_depth\n";
   14391 
   14392       for (uint32_t i = 0; i < back_edges.length(); i++) {
   14393         os << std::setw(6) << back_edges.ast_id(i).ToInt() << "  "
   14394            << std::setw(9) << back_edges.pc_offset(i) << "  " << std::setw(10)
   14395            << back_edges.loop_depth(i) << "\n";
   14396       }
   14397 
   14398       os << "\n";
   14399     }
   14400 #ifdef OBJECT_PRINT
   14401     if (!type_feedback_info()->IsUndefined(GetIsolate())) {
   14402       TypeFeedbackInfo::cast(type_feedback_info())->TypeFeedbackInfoPrint(os);
   14403       os << "\n";
   14404     }
   14405 #endif
   14406   }
   14407 
   14408   if (handler_table()->length() > 0) {
   14409     os << "Handler Table (size = " << handler_table()->Size() << ")\n";
   14410     if (kind() == FUNCTION) {
   14411       HandlerTable::cast(handler_table())->HandlerTableRangePrint(os);
   14412     } else if (kind() == OPTIMIZED_FUNCTION) {
   14413       HandlerTable::cast(handler_table())->HandlerTableReturnPrint(os);
   14414     }
   14415     os << "\n";
   14416   }
   14417 
   14418   os << "RelocInfo (size = " << relocation_size() << ")\n";
   14419   for (RelocIterator it(this); !it.done(); it.next()) {
   14420     it.rinfo()->Print(GetIsolate(), os);
   14421   }
   14422   os << "\n";
   14423 }
   14424 #endif  // ENABLE_DISASSEMBLER
   14425 
   14426 int BytecodeArray::SourcePosition(int offset) {
   14427   int last_position = 0;
   14428   for (interpreter::SourcePositionTableIterator iterator(
   14429            source_position_table());
   14430        !iterator.done() && iterator.bytecode_offset() <= offset;
   14431        iterator.Advance()) {
   14432     last_position = iterator.source_position();
   14433   }
   14434   return last_position;
   14435 }
   14436 
   14437 int BytecodeArray::SourceStatementPosition(int offset) {
   14438   // First find the closest position.
   14439   int position = SourcePosition(offset);
   14440   // Now find the closest statement position before the position.
   14441   int statement_position = 0;
   14442   for (interpreter::SourcePositionTableIterator it(source_position_table());
   14443        !it.done(); it.Advance()) {
   14444     if (it.is_statement()) {
   14445       int p = it.source_position();
   14446       if (statement_position < p && p <= position) {
   14447         statement_position = p;
   14448       }
   14449     }
   14450   }
   14451   return statement_position;
   14452 }
   14453 
   14454 void BytecodeArray::Disassemble(std::ostream& os) {
   14455   os << "Parameter count " << parameter_count() << "\n";
   14456   os << "Frame size " << frame_size() << "\n";
   14457 
   14458   const uint8_t* base_address = GetFirstBytecodeAddress();
   14459   interpreter::SourcePositionTableIterator source_positions(
   14460       source_position_table());
   14461 
   14462   interpreter::BytecodeArrayIterator iterator(handle(this));
   14463   while (!iterator.done()) {
   14464     if (!source_positions.done() &&
   14465         iterator.current_offset() == source_positions.bytecode_offset()) {
   14466       os << std::setw(5) << source_positions.source_position();
   14467       os << (source_positions.is_statement() ? " S> " : " E> ");
   14468       source_positions.Advance();
   14469     } else {
   14470       os << "         ";
   14471     }
   14472     const uint8_t* current_address = base_address + iterator.current_offset();
   14473     os << reinterpret_cast<const void*>(current_address) << " @ "
   14474        << std::setw(4) << iterator.current_offset() << " : ";
   14475     interpreter::Bytecodes::Decode(os, current_address, parameter_count());
   14476     if (interpreter::Bytecodes::IsJump(iterator.current_bytecode())) {
   14477       const void* jump_target = base_address + iterator.GetJumpTargetOffset();
   14478       os << " (" << jump_target << " @ " << iterator.GetJumpTargetOffset()
   14479          << ")";
   14480     }
   14481     os << std::endl;
   14482     iterator.Advance();
   14483   }
   14484 
   14485   if (constant_pool()->length() > 0) {
   14486     os << "Constant pool (size = " << constant_pool()->length() << ")\n";
   14487     constant_pool()->Print();
   14488   }
   14489 
   14490 #ifdef ENABLE_DISASSEMBLER
   14491   if (handler_table()->length() > 0) {
   14492     os << "Handler Table (size = " << handler_table()->Size() << ")\n";
   14493     HandlerTable::cast(handler_table())->HandlerTableRangePrint(os);
   14494   }
   14495 #endif
   14496 }
   14497 
   14498 void BytecodeArray::CopyBytecodesTo(BytecodeArray* to) {
   14499   BytecodeArray* from = this;
   14500   DCHECK_EQ(from->length(), to->length());
   14501   CopyBytes(to->GetFirstBytecodeAddress(), from->GetFirstBytecodeAddress(),
   14502             from->length());
   14503 }
   14504 
   14505 // static
   14506 void JSArray::Initialize(Handle<JSArray> array, int capacity, int length) {
   14507   DCHECK(capacity >= 0);
   14508   array->GetIsolate()->factory()->NewJSArrayStorage(
   14509       array, length, capacity, INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
   14510 }
   14511 
   14512 void JSArray::SetLength(Handle<JSArray> array, uint32_t new_length) {
   14513   // We should never end in here with a pixel or external array.
   14514   DCHECK(array->AllowsSetLength());
   14515   if (array->SetLengthWouldNormalize(new_length)) {
   14516     JSObject::NormalizeElements(array);
   14517   }
   14518   array->GetElementsAccessor()->SetLength(array, new_length);
   14519 }
   14520 
   14521 
   14522 // static
   14523 void Map::AddDependentCode(Handle<Map> map,
   14524                            DependentCode::DependencyGroup group,
   14525                            Handle<Code> code) {
   14526   Handle<WeakCell> cell = Code::WeakCellFor(code);
   14527   Handle<DependentCode> codes = DependentCode::InsertWeakCode(
   14528       Handle<DependentCode>(map->dependent_code()), group, cell);
   14529   if (*codes != map->dependent_code()) map->set_dependent_code(*codes);
   14530 }
   14531 
   14532 
   14533 Handle<DependentCode> DependentCode::InsertCompilationDependencies(
   14534     Handle<DependentCode> entries, DependencyGroup group,
   14535     Handle<Foreign> info) {
   14536   return Insert(entries, group, info);
   14537 }
   14538 
   14539 
   14540 Handle<DependentCode> DependentCode::InsertWeakCode(
   14541     Handle<DependentCode> entries, DependencyGroup group,
   14542     Handle<WeakCell> code_cell) {
   14543   return Insert(entries, group, code_cell);
   14544 }
   14545 
   14546 
   14547 Handle<DependentCode> DependentCode::Insert(Handle<DependentCode> entries,
   14548                                             DependencyGroup group,
   14549                                             Handle<Object> object) {
   14550   if (entries->length() == 0 || entries->group() > group) {
   14551     // There is no such group.
   14552     return DependentCode::New(group, object, entries);
   14553   }
   14554   if (entries->group() < group) {
   14555     // The group comes later in the list.
   14556     Handle<DependentCode> old_next(entries->next_link());
   14557     Handle<DependentCode> new_next = Insert(old_next, group, object);
   14558     if (!old_next.is_identical_to(new_next)) {
   14559       entries->set_next_link(*new_next);
   14560     }
   14561     return entries;
   14562   }
   14563   DCHECK_EQ(group, entries->group());
   14564   int count = entries->count();
   14565   // Check for existing entry to avoid duplicates.
   14566   for (int i = 0; i < count; i++) {
   14567     if (entries->object_at(i) == *object) return entries;
   14568   }
   14569   if (entries->length() < kCodesStartIndex + count + 1) {
   14570     entries = EnsureSpace(entries);
   14571     // Count could have changed, reload it.
   14572     count = entries->count();
   14573   }
   14574   entries->set_object_at(count, *object);
   14575   entries->set_count(count + 1);
   14576   return entries;
   14577 }
   14578 
   14579 
   14580 Handle<DependentCode> DependentCode::New(DependencyGroup group,
   14581                                          Handle<Object> object,
   14582                                          Handle<DependentCode> next) {
   14583   Isolate* isolate = next->GetIsolate();
   14584   Handle<DependentCode> result = Handle<DependentCode>::cast(
   14585       isolate->factory()->NewFixedArray(kCodesStartIndex + 1, TENURED));
   14586   result->set_next_link(*next);
   14587   result->set_flags(GroupField::encode(group) | CountField::encode(1));
   14588   result->set_object_at(0, *object);
   14589   return result;
   14590 }
   14591 
   14592 
   14593 Handle<DependentCode> DependentCode::EnsureSpace(
   14594     Handle<DependentCode> entries) {
   14595   if (entries->Compact()) return entries;
   14596   Isolate* isolate = entries->GetIsolate();
   14597   int capacity = kCodesStartIndex + DependentCode::Grow(entries->count());
   14598   int grow_by = capacity - entries->length();
   14599   return Handle<DependentCode>::cast(
   14600       isolate->factory()->CopyFixedArrayAndGrow(entries, grow_by, TENURED));
   14601 }
   14602 
   14603 
   14604 bool DependentCode::Compact() {
   14605   int old_count = count();
   14606   int new_count = 0;
   14607   for (int i = 0; i < old_count; i++) {
   14608     Object* obj = object_at(i);
   14609     if (!obj->IsWeakCell() || !WeakCell::cast(obj)->cleared()) {
   14610       if (i != new_count) {
   14611         copy(i, new_count);
   14612       }
   14613       new_count++;
   14614     }
   14615   }
   14616   set_count(new_count);
   14617   for (int i = new_count; i < old_count; i++) {
   14618     clear_at(i);
   14619   }
   14620   return new_count < old_count;
   14621 }
   14622 
   14623 
   14624 void DependentCode::UpdateToFinishedCode(DependencyGroup group, Foreign* info,
   14625                                          WeakCell* code_cell) {
   14626   if (this->length() == 0 || this->group() > group) {
   14627     // There is no such group.
   14628     return;
   14629   }
   14630   if (this->group() < group) {
   14631     // The group comes later in the list.
   14632     next_link()->UpdateToFinishedCode(group, info, code_cell);
   14633     return;
   14634   }
   14635   DCHECK_EQ(group, this->group());
   14636   DisallowHeapAllocation no_gc;
   14637   int count = this->count();
   14638   for (int i = 0; i < count; i++) {
   14639     if (object_at(i) == info) {
   14640       set_object_at(i, code_cell);
   14641       break;
   14642     }
   14643   }
   14644 #ifdef DEBUG
   14645   for (int i = 0; i < count; i++) {
   14646     DCHECK(object_at(i) != info);
   14647   }
   14648 #endif
   14649 }
   14650 
   14651 
   14652 void DependentCode::RemoveCompilationDependencies(
   14653     DependentCode::DependencyGroup group, Foreign* info) {
   14654   if (this->length() == 0 || this->group() > group) {
   14655     // There is no such group.
   14656     return;
   14657   }
   14658   if (this->group() < group) {
   14659     // The group comes later in the list.
   14660     next_link()->RemoveCompilationDependencies(group, info);
   14661     return;
   14662   }
   14663   DCHECK_EQ(group, this->group());
   14664   DisallowHeapAllocation no_allocation;
   14665   int old_count = count();
   14666   // Find compilation info wrapper.
   14667   int info_pos = -1;
   14668   for (int i = 0; i < old_count; i++) {
   14669     if (object_at(i) == info) {
   14670       info_pos = i;
   14671       break;
   14672     }
   14673   }
   14674   if (info_pos == -1) return;  // Not found.
   14675   // Use the last code to fill the gap.
   14676   if (info_pos < old_count - 1) {
   14677     copy(old_count - 1, info_pos);
   14678   }
   14679   clear_at(old_count - 1);
   14680   set_count(old_count - 1);
   14681 
   14682 #ifdef DEBUG
   14683   for (int i = 0; i < old_count - 1; i++) {
   14684     DCHECK(object_at(i) != info);
   14685   }
   14686 #endif
   14687 }
   14688 
   14689 
   14690 bool DependentCode::Contains(DependencyGroup group, WeakCell* code_cell) {
   14691   if (this->length() == 0 || this->group() > group) {
   14692     // There is no such group.
   14693     return false;
   14694   }
   14695   if (this->group() < group) {
   14696     // The group comes later in the list.
   14697     return next_link()->Contains(group, code_cell);
   14698   }
   14699   DCHECK_EQ(group, this->group());
   14700   int count = this->count();
   14701   for (int i = 0; i < count; i++) {
   14702     if (object_at(i) == code_cell) return true;
   14703   }
   14704   return false;
   14705 }
   14706 
   14707 
   14708 bool DependentCode::IsEmpty(DependencyGroup group) {
   14709   if (this->length() == 0 || this->group() > group) {
   14710     // There is no such group.
   14711     return true;
   14712   }
   14713   if (this->group() < group) {
   14714     // The group comes later in the list.
   14715     return next_link()->IsEmpty(group);
   14716   }
   14717   DCHECK_EQ(group, this->group());
   14718   return count() == 0;
   14719 }
   14720 
   14721 
   14722 bool DependentCode::MarkCodeForDeoptimization(
   14723     Isolate* isolate,
   14724     DependentCode::DependencyGroup group) {
   14725   if (this->length() == 0 || this->group() > group) {
   14726     // There is no such group.
   14727     return false;
   14728   }
   14729   if (this->group() < group) {
   14730     // The group comes later in the list.
   14731     return next_link()->MarkCodeForDeoptimization(isolate, group);
   14732   }
   14733   DCHECK_EQ(group, this->group());
   14734   DisallowHeapAllocation no_allocation_scope;
   14735   // Mark all the code that needs to be deoptimized.
   14736   bool marked = false;
   14737   bool invalidate_embedded_objects = group == kWeakCodeGroup;
   14738   int count = this->count();
   14739   for (int i = 0; i < count; i++) {
   14740     Object* obj = object_at(i);
   14741     if (obj->IsWeakCell()) {
   14742       WeakCell* cell = WeakCell::cast(obj);
   14743       if (cell->cleared()) continue;
   14744       Code* code = Code::cast(cell->value());
   14745       if (!code->marked_for_deoptimization()) {
   14746         SetMarkedForDeoptimization(code, group);
   14747         if (invalidate_embedded_objects) {
   14748           code->InvalidateEmbeddedObjects();
   14749         }
   14750         marked = true;
   14751       }
   14752     } else {
   14753       DCHECK(obj->IsForeign());
   14754       CompilationDependencies* info =
   14755           reinterpret_cast<CompilationDependencies*>(
   14756               Foreign::cast(obj)->foreign_address());
   14757       info->Abort();
   14758     }
   14759   }
   14760   for (int i = 0; i < count; i++) {
   14761     clear_at(i);
   14762   }
   14763   set_count(0);
   14764   return marked;
   14765 }
   14766 
   14767 
   14768 void DependentCode::DeoptimizeDependentCodeGroup(
   14769     Isolate* isolate,
   14770     DependentCode::DependencyGroup group) {
   14771   DCHECK(AllowCodeDependencyChange::IsAllowed());
   14772   DisallowHeapAllocation no_allocation_scope;
   14773   bool marked = MarkCodeForDeoptimization(isolate, group);
   14774   if (marked) Deoptimizer::DeoptimizeMarkedCode(isolate);
   14775 }
   14776 
   14777 
   14778 void DependentCode::SetMarkedForDeoptimization(Code* code,
   14779                                                DependencyGroup group) {
   14780   code->set_marked_for_deoptimization(true);
   14781   if (FLAG_trace_deopt &&
   14782       (code->deoptimization_data() != code->GetHeap()->empty_fixed_array())) {
   14783     DeoptimizationInputData* deopt_data =
   14784         DeoptimizationInputData::cast(code->deoptimization_data());
   14785     CodeTracer::Scope scope(code->GetHeap()->isolate()->GetCodeTracer());
   14786     PrintF(scope.file(), "[marking dependent code 0x%08" V8PRIxPTR
   14787                          " (opt #%d) for deoptimization, reason: %s]\n",
   14788            reinterpret_cast<intptr_t>(code),
   14789            deopt_data->OptimizationId()->value(), DependencyGroupName(group));
   14790   }
   14791 }
   14792 
   14793 
   14794 const char* DependentCode::DependencyGroupName(DependencyGroup group) {
   14795   switch (group) {
   14796     case kWeakCodeGroup:
   14797       return "weak-code";
   14798     case kTransitionGroup:
   14799       return "transition";
   14800     case kPrototypeCheckGroup:
   14801       return "prototype-check";
   14802     case kPropertyCellChangedGroup:
   14803       return "property-cell-changed";
   14804     case kFieldTypeGroup:
   14805       return "field-type";
   14806     case kInitialMapChangedGroup:
   14807       return "initial-map-changed";
   14808     case kAllocationSiteTenuringChangedGroup:
   14809       return "allocation-site-tenuring-changed";
   14810     case kAllocationSiteTransitionChangedGroup:
   14811       return "allocation-site-transition-changed";
   14812   }
   14813   UNREACHABLE();
   14814   return "?";
   14815 }
   14816 
   14817 
   14818 Handle<Map> Map::TransitionToPrototype(Handle<Map> map,
   14819                                        Handle<Object> prototype,
   14820                                        PrototypeOptimizationMode mode) {
   14821   Handle<Map> new_map = TransitionArray::GetPrototypeTransition(map, prototype);
   14822   if (new_map.is_null()) {
   14823     new_map = Copy(map, "TransitionToPrototype");
   14824     TransitionArray::PutPrototypeTransition(map, prototype, new_map);
   14825     Map::SetPrototype(new_map, prototype, mode);
   14826   }
   14827   return new_map;
   14828 }
   14829 
   14830 
   14831 Maybe<bool> JSReceiver::SetPrototype(Handle<JSReceiver> object,
   14832                                      Handle<Object> value, bool from_javascript,
   14833                                      ShouldThrow should_throw) {
   14834   if (object->IsJSProxy()) {
   14835     return JSProxy::SetPrototype(Handle<JSProxy>::cast(object), value,
   14836                                  from_javascript, should_throw);
   14837   }
   14838   return JSObject::SetPrototype(Handle<JSObject>::cast(object), value,
   14839                                 from_javascript, should_throw);
   14840 }
   14841 
   14842 
   14843 // ES6: 9.5.2 [[SetPrototypeOf]] (V)
   14844 // static
   14845 Maybe<bool> JSProxy::SetPrototype(Handle<JSProxy> proxy, Handle<Object> value,
   14846                                   bool from_javascript,
   14847                                   ShouldThrow should_throw) {
   14848   Isolate* isolate = proxy->GetIsolate();
   14849   STACK_CHECK(isolate, Nothing<bool>());
   14850   Handle<Name> trap_name = isolate->factory()->setPrototypeOf_string();
   14851   // 1. Assert: Either Type(V) is Object or Type(V) is Null.
   14852   DCHECK(value->IsJSReceiver() || value->IsNull(isolate));
   14853   // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O.
   14854   Handle<Object> handler(proxy->handler(), isolate);
   14855   // 3. If handler is null, throw a TypeError exception.
   14856   // 4. Assert: Type(handler) is Object.
   14857   if (proxy->IsRevoked()) {
   14858     isolate->Throw(*isolate->factory()->NewTypeError(
   14859         MessageTemplate::kProxyRevoked, trap_name));
   14860     return Nothing<bool>();
   14861   }
   14862   // 5. Let target be the value of the [[ProxyTarget]] internal slot.
   14863   Handle<JSReceiver> target(proxy->target(), isolate);
   14864   // 6. Let trap be ? GetMethod(handler, "getPrototypeOf").
   14865   Handle<Object> trap;
   14866   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   14867       isolate, trap,
   14868       Object::GetMethod(Handle<JSReceiver>::cast(handler), trap_name),
   14869       Nothing<bool>());
   14870   // 7. If trap is undefined, then return target.[[SetPrototypeOf]]().
   14871   if (trap->IsUndefined(isolate)) {
   14872     return JSReceiver::SetPrototype(target, value, from_javascript,
   14873                                     should_throw);
   14874   }
   14875   // 8. Let booleanTrapResult be ToBoolean(? Call(trap, handler, target, V)).
   14876   Handle<Object> argv[] = {target, value};
   14877   Handle<Object> trap_result;
   14878   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   14879       isolate, trap_result,
   14880       Execution::Call(isolate, trap, handler, arraysize(argv), argv),
   14881       Nothing<bool>());
   14882   bool bool_trap_result = trap_result->BooleanValue();
   14883   // 9. If booleanTrapResult is false, return false.
   14884   if (!bool_trap_result) {
   14885     RETURN_FAILURE(
   14886         isolate, should_throw,
   14887         NewTypeError(MessageTemplate::kProxyTrapReturnedFalsish, trap_name));
   14888   }
   14889   // 10. Let extensibleTarget be ? IsExtensible(target).
   14890   Maybe<bool> is_extensible = JSReceiver::IsExtensible(target);
   14891   if (is_extensible.IsNothing()) return Nothing<bool>();
   14892   // 11. If extensibleTarget is true, return true.
   14893   if (is_extensible.FromJust()) {
   14894     if (bool_trap_result) return Just(true);
   14895     RETURN_FAILURE(
   14896         isolate, should_throw,
   14897         NewTypeError(MessageTemplate::kProxyTrapReturnedFalsish, trap_name));
   14898   }
   14899   // 12. Let targetProto be ? target.[[GetPrototypeOf]]().
   14900   Handle<Object> target_proto;
   14901   ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, target_proto,
   14902                                    JSReceiver::GetPrototype(isolate, target),
   14903                                    Nothing<bool>());
   14904   // 13. If SameValue(V, targetProto) is false, throw a TypeError exception.
   14905   if (bool_trap_result && !value->SameValue(*target_proto)) {
   14906     isolate->Throw(*isolate->factory()->NewTypeError(
   14907         MessageTemplate::kProxySetPrototypeOfNonExtensible));
   14908     return Nothing<bool>();
   14909   }
   14910   // 14. Return true.
   14911   return Just(true);
   14912 }
   14913 
   14914 
   14915 Maybe<bool> JSObject::SetPrototype(Handle<JSObject> object,
   14916                                    Handle<Object> value, bool from_javascript,
   14917                                    ShouldThrow should_throw) {
   14918   Isolate* isolate = object->GetIsolate();
   14919 
   14920 #ifdef DEBUG
   14921   int size = object->Size();
   14922 #endif
   14923 
   14924   if (from_javascript) {
   14925     if (object->IsAccessCheckNeeded() &&
   14926         !isolate->MayAccess(handle(isolate->context()), object)) {
   14927       isolate->ReportFailedAccessCheck(object);
   14928       RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
   14929       RETURN_FAILURE(isolate, should_throw,
   14930                      NewTypeError(MessageTemplate::kNoAccess));
   14931     }
   14932   } else {
   14933     DCHECK(!object->IsAccessCheckNeeded());
   14934   }
   14935 
   14936   Heap* heap = isolate->heap();
   14937   // Silently ignore the change if value is not a JSObject or null.
   14938   // SpiderMonkey behaves this way.
   14939   if (!value->IsJSReceiver() && !value->IsNull(isolate)) return Just(true);
   14940 
   14941   bool dictionary_elements_in_chain =
   14942       object->map()->DictionaryElementsInPrototypeChainOnly();
   14943 
   14944   bool all_extensible = object->map()->is_extensible();
   14945   Handle<JSObject> real_receiver = object;
   14946   if (from_javascript) {
   14947     // Find the first object in the chain whose prototype object is not
   14948     // hidden.
   14949     PrototypeIterator iter(isolate, real_receiver, kStartAtPrototype,
   14950                            PrototypeIterator::END_AT_NON_HIDDEN);
   14951     while (!iter.IsAtEnd()) {
   14952       // Casting to JSObject is fine because hidden prototypes are never
   14953       // JSProxies.
   14954       real_receiver = PrototypeIterator::GetCurrent<JSObject>(iter);
   14955       iter.Advance();
   14956       all_extensible = all_extensible && real_receiver->map()->is_extensible();
   14957     }
   14958   }
   14959   Handle<Map> map(real_receiver->map());
   14960 
   14961   // Nothing to do if prototype is already set.
   14962   if (map->prototype() == *value) return Just(true);
   14963 
   14964   // From 8.6.2 Object Internal Methods
   14965   // ...
   14966   // In addition, if [[Extensible]] is false the value of the [[Class]] and
   14967   // [[Prototype]] internal properties of the object may not be modified.
   14968   // ...
   14969   // Implementation specific extensions that modify [[Class]], [[Prototype]]
   14970   // or [[Extensible]] must not violate the invariants defined in the preceding
   14971   // paragraph.
   14972   if (!all_extensible) {
   14973     RETURN_FAILURE(isolate, should_throw,
   14974                    NewTypeError(MessageTemplate::kNonExtensibleProto, object));
   14975   }
   14976 
   14977   // Before we can set the prototype we need to be sure prototype cycles are
   14978   // prevented.  It is sufficient to validate that the receiver is not in the
   14979   // new prototype chain.
   14980   if (value->IsJSReceiver()) {
   14981     for (PrototypeIterator iter(isolate, JSReceiver::cast(*value),
   14982                                 kStartAtReceiver);
   14983          !iter.IsAtEnd(); iter.Advance()) {
   14984       if (iter.GetCurrent<JSReceiver>() == *object) {
   14985         // Cycle detected.
   14986         RETURN_FAILURE(isolate, should_throw,
   14987                        NewTypeError(MessageTemplate::kCyclicProto));
   14988       }
   14989     }
   14990   }
   14991 
   14992   // Set the new prototype of the object.
   14993 
   14994   isolate->UpdateArrayProtectorOnSetPrototype(real_receiver);
   14995 
   14996   PrototypeOptimizationMode mode =
   14997       from_javascript ? REGULAR_PROTOTYPE : FAST_PROTOTYPE;
   14998   Handle<Map> new_map = Map::TransitionToPrototype(map, value, mode);
   14999   DCHECK(new_map->prototype() == *value);
   15000   JSObject::MigrateToMap(real_receiver, new_map);
   15001 
   15002   if (from_javascript && !dictionary_elements_in_chain &&
   15003       new_map->DictionaryElementsInPrototypeChainOnly()) {
   15004     // If the prototype chain didn't previously have element callbacks, then
   15005     // KeyedStoreICs need to be cleared to ensure any that involve this
   15006     // map go generic.
   15007     TypeFeedbackVector::ClearAllKeyedStoreICs(isolate);
   15008   }
   15009 
   15010   heap->ClearInstanceofCache();
   15011   DCHECK(size == object->Size());
   15012   return Just(true);
   15013 }
   15014 
   15015 
   15016 void JSObject::EnsureCanContainElements(Handle<JSObject> object,
   15017                                         Arguments* args,
   15018                                         uint32_t first_arg,
   15019                                         uint32_t arg_count,
   15020                                         EnsureElementsMode mode) {
   15021   // Elements in |Arguments| are ordered backwards (because they're on the
   15022   // stack), but the method that's called here iterates over them in forward
   15023   // direction.
   15024   return EnsureCanContainElements(
   15025       object, args->arguments() - first_arg - (arg_count - 1), arg_count, mode);
   15026 }
   15027 
   15028 
   15029 ElementsAccessor* JSObject::GetElementsAccessor() {
   15030   return ElementsAccessor::ForKind(GetElementsKind());
   15031 }
   15032 
   15033 
   15034 void JSObject::ValidateElements(Handle<JSObject> object) {
   15035 #ifdef ENABLE_SLOW_DCHECKS
   15036   if (FLAG_enable_slow_asserts) {
   15037     ElementsAccessor* accessor = object->GetElementsAccessor();
   15038     accessor->Validate(object);
   15039   }
   15040 #endif
   15041 }
   15042 
   15043 
   15044 static bool ShouldConvertToSlowElements(JSObject* object, uint32_t capacity,
   15045                                         uint32_t index,
   15046                                         uint32_t* new_capacity) {
   15047   STATIC_ASSERT(JSObject::kMaxUncheckedOldFastElementsLength <=
   15048                 JSObject::kMaxUncheckedFastElementsLength);
   15049   if (index < capacity) {
   15050     *new_capacity = capacity;
   15051     return false;
   15052   }
   15053   if (index - capacity >= JSObject::kMaxGap) return true;
   15054   *new_capacity = JSObject::NewElementsCapacity(index + 1);
   15055   DCHECK_LT(index, *new_capacity);
   15056   if (*new_capacity <= JSObject::kMaxUncheckedOldFastElementsLength ||
   15057       (*new_capacity <= JSObject::kMaxUncheckedFastElementsLength &&
   15058        object->GetHeap()->InNewSpace(object))) {
   15059     return false;
   15060   }
   15061   // If the fast-case backing storage takes up roughly three times as
   15062   // much space (in machine words) as a dictionary backing storage
   15063   // would, the object should have slow elements.
   15064   int used_elements = object->GetFastElementsUsage();
   15065   int dictionary_size = SeededNumberDictionary::ComputeCapacity(used_elements) *
   15066                         SeededNumberDictionary::kEntrySize;
   15067   return 3 * static_cast<uint32_t>(dictionary_size) <= *new_capacity;
   15068 }
   15069 
   15070 
   15071 bool JSObject::WouldConvertToSlowElements(uint32_t index) {
   15072   if (HasFastElements()) {
   15073     Handle<FixedArrayBase> backing_store(FixedArrayBase::cast(elements()));
   15074     uint32_t capacity = static_cast<uint32_t>(backing_store->length());
   15075     uint32_t new_capacity;
   15076     return ShouldConvertToSlowElements(this, capacity, index, &new_capacity);
   15077   }
   15078   return false;
   15079 }
   15080 
   15081 
   15082 static ElementsKind BestFittingFastElementsKind(JSObject* object) {
   15083   if (object->HasSloppyArgumentsElements()) {
   15084     return FAST_SLOPPY_ARGUMENTS_ELEMENTS;
   15085   }
   15086   if (object->HasStringWrapperElements()) {
   15087     return FAST_STRING_WRAPPER_ELEMENTS;
   15088   }
   15089   DCHECK(object->HasDictionaryElements());
   15090   SeededNumberDictionary* dictionary = object->element_dictionary();
   15091   ElementsKind kind = FAST_HOLEY_SMI_ELEMENTS;
   15092   for (int i = 0; i < dictionary->Capacity(); i++) {
   15093     Object* key = dictionary->KeyAt(i);
   15094     if (key->IsNumber()) {
   15095       Object* value = dictionary->ValueAt(i);
   15096       if (!value->IsNumber()) return FAST_HOLEY_ELEMENTS;
   15097       if (!value->IsSmi()) {
   15098         if (!FLAG_unbox_double_arrays) return FAST_HOLEY_ELEMENTS;
   15099         kind = FAST_HOLEY_DOUBLE_ELEMENTS;
   15100       }
   15101     }
   15102   }
   15103   return kind;
   15104 }
   15105 
   15106 
   15107 static bool ShouldConvertToFastElements(JSObject* object,
   15108                                         SeededNumberDictionary* dictionary,
   15109                                         uint32_t index,
   15110                                         uint32_t* new_capacity) {
   15111   // If properties with non-standard attributes or accessors were added, we
   15112   // cannot go back to fast elements.
   15113   if (dictionary->requires_slow_elements()) return false;
   15114 
   15115   // Adding a property with this index will require slow elements.
   15116   if (index >= static_cast<uint32_t>(Smi::kMaxValue)) return false;
   15117 
   15118   if (object->IsJSArray()) {
   15119     Object* length = JSArray::cast(object)->length();
   15120     if (!length->IsSmi()) return false;
   15121     *new_capacity = static_cast<uint32_t>(Smi::cast(length)->value());
   15122   } else {
   15123     *new_capacity = dictionary->max_number_key() + 1;
   15124   }
   15125   *new_capacity = Max(index + 1, *new_capacity);
   15126 
   15127   uint32_t dictionary_size = static_cast<uint32_t>(dictionary->Capacity()) *
   15128                              SeededNumberDictionary::kEntrySize;
   15129 
   15130   // Turn fast if the dictionary only saves 50% space.
   15131   return 2 * dictionary_size >= *new_capacity;
   15132 }
   15133 
   15134 
   15135 // static
   15136 MaybeHandle<Object> JSObject::AddDataElement(Handle<JSObject> object,
   15137                                              uint32_t index,
   15138                                              Handle<Object> value,
   15139                                              PropertyAttributes attributes) {
   15140   MAYBE_RETURN_NULL(
   15141       AddDataElement(object, index, value, attributes, THROW_ON_ERROR));
   15142   return value;
   15143 }
   15144 
   15145 
   15146 // static
   15147 Maybe<bool> JSObject::AddDataElement(Handle<JSObject> object, uint32_t index,
   15148                                      Handle<Object> value,
   15149                                      PropertyAttributes attributes,
   15150                                      ShouldThrow should_throw) {
   15151   DCHECK(object->map()->is_extensible());
   15152 
   15153   Isolate* isolate = object->GetIsolate();
   15154 
   15155   uint32_t old_length = 0;
   15156   uint32_t new_capacity = 0;
   15157 
   15158   if (object->IsJSArray()) {
   15159     CHECK(JSArray::cast(*object)->length()->ToArrayLength(&old_length));
   15160   }
   15161 
   15162   ElementsKind kind = object->GetElementsKind();
   15163   FixedArrayBase* elements = object->elements();
   15164   ElementsKind dictionary_kind = DICTIONARY_ELEMENTS;
   15165   if (IsSloppyArgumentsElements(kind)) {
   15166     elements = FixedArrayBase::cast(FixedArray::cast(elements)->get(1));
   15167     dictionary_kind = SLOW_SLOPPY_ARGUMENTS_ELEMENTS;
   15168   } else if (IsStringWrapperElementsKind(kind)) {
   15169     dictionary_kind = SLOW_STRING_WRAPPER_ELEMENTS;
   15170   }
   15171 
   15172   if (attributes != NONE) {
   15173     kind = dictionary_kind;
   15174   } else if (elements->IsSeededNumberDictionary()) {
   15175     kind = ShouldConvertToFastElements(*object,
   15176                                        SeededNumberDictionary::cast(elements),
   15177                                        index, &new_capacity)
   15178                ? BestFittingFastElementsKind(*object)
   15179                : dictionary_kind;  // Overwrite in case of arguments.
   15180   } else if (ShouldConvertToSlowElements(
   15181                  *object, static_cast<uint32_t>(elements->length()), index,
   15182                  &new_capacity)) {
   15183     kind = dictionary_kind;
   15184   }
   15185 
   15186   ElementsKind to = value->OptimalElementsKind();
   15187   if (IsHoleyElementsKind(kind) || !object->IsJSArray() || index > old_length) {
   15188     to = GetHoleyElementsKind(to);
   15189     kind = GetHoleyElementsKind(kind);
   15190   }
   15191   to = GetMoreGeneralElementsKind(kind, to);
   15192   ElementsAccessor* accessor = ElementsAccessor::ForKind(to);
   15193   accessor->Add(object, index, value, attributes, new_capacity);
   15194 
   15195   uint32_t new_length = old_length;
   15196   Handle<Object> new_length_handle;
   15197   if (object->IsJSArray() && index >= old_length) {
   15198     new_length = index + 1;
   15199     new_length_handle = isolate->factory()->NewNumberFromUint(new_length);
   15200     JSArray::cast(*object)->set_length(*new_length_handle);
   15201   }
   15202 
   15203   return Just(true);
   15204 }
   15205 
   15206 
   15207 bool JSArray::SetLengthWouldNormalize(uint32_t new_length) {
   15208   if (!HasFastElements()) return false;
   15209   uint32_t capacity = static_cast<uint32_t>(elements()->length());
   15210   uint32_t new_capacity;
   15211   return JSArray::SetLengthWouldNormalize(GetHeap(), new_length) &&
   15212          ShouldConvertToSlowElements(this, capacity, new_length - 1,
   15213                                      &new_capacity);
   15214 }
   15215 
   15216 
   15217 const double AllocationSite::kPretenureRatio = 0.85;
   15218 
   15219 
   15220 void AllocationSite::ResetPretenureDecision() {
   15221   set_pretenure_decision(kUndecided);
   15222   set_memento_found_count(0);
   15223   set_memento_create_count(0);
   15224 }
   15225 
   15226 
   15227 PretenureFlag AllocationSite::GetPretenureMode() {
   15228   PretenureDecision mode = pretenure_decision();
   15229   // Zombie objects "decide" to be untenured.
   15230   return mode == kTenure ? TENURED : NOT_TENURED;
   15231 }
   15232 
   15233 
   15234 bool AllocationSite::IsNestedSite() {
   15235   DCHECK(FLAG_trace_track_allocation_sites);
   15236   Object* current = GetHeap()->allocation_sites_list();
   15237   while (current->IsAllocationSite()) {
   15238     AllocationSite* current_site = AllocationSite::cast(current);
   15239     if (current_site->nested_site() == this) {
   15240       return true;
   15241     }
   15242     current = current_site->weak_next();
   15243   }
   15244   return false;
   15245 }
   15246 
   15247 
   15248 void AllocationSite::DigestTransitionFeedback(Handle<AllocationSite> site,
   15249                                               ElementsKind to_kind) {
   15250   Isolate* isolate = site->GetIsolate();
   15251 
   15252   if (site->SitePointsToLiteral() && site->transition_info()->IsJSArray()) {
   15253     Handle<JSArray> transition_info =
   15254         handle(JSArray::cast(site->transition_info()));
   15255     ElementsKind kind = transition_info->GetElementsKind();
   15256     // if kind is holey ensure that to_kind is as well.
   15257     if (IsHoleyElementsKind(kind)) {
   15258       to_kind = GetHoleyElementsKind(to_kind);
   15259     }
   15260     if (IsMoreGeneralElementsKindTransition(kind, to_kind)) {
   15261       // If the array is huge, it's not likely to be defined in a local
   15262       // function, so we shouldn't make new instances of it very often.
   15263       uint32_t length = 0;
   15264       CHECK(transition_info->length()->ToArrayLength(&length));
   15265       if (length <= kMaximumArrayBytesToPretransition) {
   15266         if (FLAG_trace_track_allocation_sites) {
   15267           bool is_nested = site->IsNestedSite();
   15268           PrintF(
   15269               "AllocationSite: JSArray %p boilerplate %s updated %s->%s\n",
   15270               reinterpret_cast<void*>(*site),
   15271               is_nested ? "(nested)" : "",
   15272               ElementsKindToString(kind),
   15273               ElementsKindToString(to_kind));
   15274         }
   15275         JSObject::TransitionElementsKind(transition_info, to_kind);
   15276         site->dependent_code()->DeoptimizeDependentCodeGroup(
   15277             isolate, DependentCode::kAllocationSiteTransitionChangedGroup);
   15278       }
   15279     }
   15280   } else {
   15281     ElementsKind kind = site->GetElementsKind();
   15282     // if kind is holey ensure that to_kind is as well.
   15283     if (IsHoleyElementsKind(kind)) {
   15284       to_kind = GetHoleyElementsKind(to_kind);
   15285     }
   15286     if (IsMoreGeneralElementsKindTransition(kind, to_kind)) {
   15287       if (FLAG_trace_track_allocation_sites) {
   15288         PrintF("AllocationSite: JSArray %p site updated %s->%s\n",
   15289                reinterpret_cast<void*>(*site),
   15290                ElementsKindToString(kind),
   15291                ElementsKindToString(to_kind));
   15292       }
   15293       site->SetElementsKind(to_kind);
   15294       site->dependent_code()->DeoptimizeDependentCodeGroup(
   15295           isolate, DependentCode::kAllocationSiteTransitionChangedGroup);
   15296     }
   15297   }
   15298 }
   15299 
   15300 
   15301 const char* AllocationSite::PretenureDecisionName(PretenureDecision decision) {
   15302   switch (decision) {
   15303     case kUndecided: return "undecided";
   15304     case kDontTenure: return "don't tenure";
   15305     case kMaybeTenure: return "maybe tenure";
   15306     case kTenure: return "tenure";
   15307     case kZombie: return "zombie";
   15308     default: UNREACHABLE();
   15309   }
   15310   return NULL;
   15311 }
   15312 
   15313 
   15314 void JSObject::UpdateAllocationSite(Handle<JSObject> object,
   15315                                     ElementsKind to_kind) {
   15316   if (!object->IsJSArray()) return;
   15317 
   15318   Heap* heap = object->GetHeap();
   15319   if (!heap->InNewSpace(*object)) return;
   15320 
   15321   Handle<AllocationSite> site;
   15322   {
   15323     DisallowHeapAllocation no_allocation;
   15324 
   15325     AllocationMemento* memento =
   15326         heap->FindAllocationMemento<Heap::kForRuntime>(*object);
   15327     if (memento == NULL) return;
   15328 
   15329     // Walk through to the Allocation Site
   15330     site = handle(memento->GetAllocationSite());
   15331   }
   15332   AllocationSite::DigestTransitionFeedback(site, to_kind);
   15333 }
   15334 
   15335 
   15336 void JSObject::TransitionElementsKind(Handle<JSObject> object,
   15337                                       ElementsKind to_kind) {
   15338   ElementsKind from_kind = object->GetElementsKind();
   15339 
   15340   if (IsFastHoleyElementsKind(from_kind)) {
   15341     to_kind = GetHoleyElementsKind(to_kind);
   15342   }
   15343 
   15344   if (from_kind == to_kind) return;
   15345 
   15346   // This method should never be called for any other case.
   15347   DCHECK(IsFastElementsKind(from_kind));
   15348   DCHECK(IsFastElementsKind(to_kind));
   15349   DCHECK_NE(TERMINAL_FAST_ELEMENTS_KIND, from_kind);
   15350 
   15351   UpdateAllocationSite(object, to_kind);
   15352   if (object->elements() == object->GetHeap()->empty_fixed_array() ||
   15353       IsFastDoubleElementsKind(from_kind) ==
   15354           IsFastDoubleElementsKind(to_kind)) {
   15355     // No change is needed to the elements() buffer, the transition
   15356     // only requires a map change.
   15357     Handle<Map> new_map = GetElementsTransitionMap(object, to_kind);
   15358     MigrateToMap(object, new_map);
   15359     if (FLAG_trace_elements_transitions) {
   15360       Handle<FixedArrayBase> elms(object->elements());
   15361       PrintElementsTransition(stdout, object, from_kind, elms, to_kind, elms);
   15362     }
   15363   } else {
   15364     DCHECK((IsFastSmiElementsKind(from_kind) &&
   15365             IsFastDoubleElementsKind(to_kind)) ||
   15366            (IsFastDoubleElementsKind(from_kind) &&
   15367             IsFastObjectElementsKind(to_kind)));
   15368     uint32_t c = static_cast<uint32_t>(object->elements()->length());
   15369     ElementsAccessor::ForKind(to_kind)->GrowCapacityAndConvert(object, c);
   15370   }
   15371 }
   15372 
   15373 
   15374 // static
   15375 bool Map::IsValidElementsTransition(ElementsKind from_kind,
   15376                                     ElementsKind to_kind) {
   15377   // Transitions can't go backwards.
   15378   if (!IsMoreGeneralElementsKindTransition(from_kind, to_kind)) {
   15379     return false;
   15380   }
   15381 
   15382   // Transitions from HOLEY -> PACKED are not allowed.
   15383   return !IsFastHoleyElementsKind(from_kind) ||
   15384       IsFastHoleyElementsKind(to_kind);
   15385 }
   15386 
   15387 
   15388 bool JSArray::HasReadOnlyLength(Handle<JSArray> array) {
   15389   Map* map = array->map();
   15390   // Fast path: "length" is the first fast property of arrays. Since it's not
   15391   // configurable, it's guaranteed to be the first in the descriptor array.
   15392   if (!map->is_dictionary_map()) {
   15393     DCHECK(map->instance_descriptors()->GetKey(0) ==
   15394            array->GetHeap()->length_string());
   15395     return map->instance_descriptors()->GetDetails(0).IsReadOnly();
   15396   }
   15397 
   15398   Isolate* isolate = array->GetIsolate();
   15399   LookupIterator it(array, isolate->factory()->length_string(), array,
   15400                     LookupIterator::OWN_SKIP_INTERCEPTOR);
   15401   CHECK_EQ(LookupIterator::ACCESSOR, it.state());
   15402   return it.IsReadOnly();
   15403 }
   15404 
   15405 
   15406 bool JSArray::WouldChangeReadOnlyLength(Handle<JSArray> array,
   15407                                         uint32_t index) {
   15408   uint32_t length = 0;
   15409   CHECK(array->length()->ToArrayLength(&length));
   15410   if (length <= index) return HasReadOnlyLength(array);
   15411   return false;
   15412 }
   15413 
   15414 
   15415 template <typename BackingStore>
   15416 static int FastHoleyElementsUsage(JSObject* object, BackingStore* store) {
   15417   int limit = object->IsJSArray()
   15418                   ? Smi::cast(JSArray::cast(object)->length())->value()
   15419                   : store->length();
   15420   int used = 0;
   15421   for (int i = 0; i < limit; ++i) {
   15422     if (!store->is_the_hole(i)) ++used;
   15423   }
   15424   return used;
   15425 }
   15426 
   15427 
   15428 int JSObject::GetFastElementsUsage() {
   15429   FixedArrayBase* store = elements();
   15430   switch (GetElementsKind()) {
   15431     case FAST_SMI_ELEMENTS:
   15432     case FAST_DOUBLE_ELEMENTS:
   15433     case FAST_ELEMENTS:
   15434       return IsJSArray() ? Smi::cast(JSArray::cast(this)->length())->value()
   15435                          : store->length();
   15436     case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
   15437       store = FixedArray::cast(FixedArray::cast(store)->get(1));
   15438     // Fall through.
   15439     case FAST_HOLEY_SMI_ELEMENTS:
   15440     case FAST_HOLEY_ELEMENTS:
   15441     case FAST_STRING_WRAPPER_ELEMENTS:
   15442       return FastHoleyElementsUsage(this, FixedArray::cast(store));
   15443     case FAST_HOLEY_DOUBLE_ELEMENTS:
   15444       if (elements()->length() == 0) return 0;
   15445       return FastHoleyElementsUsage(this, FixedDoubleArray::cast(store));
   15446 
   15447     case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
   15448     case SLOW_STRING_WRAPPER_ELEMENTS:
   15449     case DICTIONARY_ELEMENTS:
   15450     case NO_ELEMENTS:
   15451 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size)                      \
   15452     case TYPE##_ELEMENTS:                                                    \
   15453 
   15454     TYPED_ARRAYS(TYPED_ARRAY_CASE)
   15455 #undef TYPED_ARRAY_CASE
   15456     UNREACHABLE();
   15457   }
   15458   return 0;
   15459 }
   15460 
   15461 
   15462 // Certain compilers request function template instantiation when they
   15463 // see the definition of the other template functions in the
   15464 // class. This requires us to have the template functions put
   15465 // together, so even though this function belongs in objects-debug.cc,
   15466 // we keep it here instead to satisfy certain compilers.
   15467 #ifdef OBJECT_PRINT
   15468 template <typename Derived, typename Shape, typename Key>
   15469 void Dictionary<Derived, Shape, Key>::Print(std::ostream& os) {  // NOLINT
   15470   Isolate* isolate = this->GetIsolate();
   15471   int capacity = this->Capacity();
   15472   for (int i = 0; i < capacity; i++) {
   15473     Object* k = this->KeyAt(i);
   15474     if (this->IsKey(isolate, k)) {
   15475       os << "\n   ";
   15476       if (k->IsString()) {
   15477         String::cast(k)->StringPrint(os);
   15478       } else {
   15479         os << Brief(k);
   15480       }
   15481       os << ": " << Brief(this->ValueAt(i)) << " " << this->DetailsAt(i);
   15482     }
   15483   }
   15484 }
   15485 template <typename Derived, typename Shape, typename Key>
   15486 void Dictionary<Derived, Shape, Key>::Print() {
   15487   OFStream os(stdout);
   15488   Print(os);
   15489 }
   15490 #endif
   15491 
   15492 
   15493 template<typename Derived, typename Shape, typename Key>
   15494 void Dictionary<Derived, Shape, Key>::CopyValuesTo(FixedArray* elements) {
   15495   Isolate* isolate = this->GetIsolate();
   15496   int pos = 0;
   15497   int capacity = this->Capacity();
   15498   DisallowHeapAllocation no_gc;
   15499   WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc);
   15500   for (int i = 0; i < capacity; i++) {
   15501     Object* k = this->KeyAt(i);
   15502     if (this->IsKey(isolate, k)) {
   15503       elements->set(pos++, this->ValueAt(i), mode);
   15504     }
   15505   }
   15506   DCHECK(pos == elements->length());
   15507 }
   15508 
   15509 
   15510 MaybeHandle<Object> JSObject::GetPropertyWithInterceptor(LookupIterator* it,
   15511                                                          bool* done) {
   15512   DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state());
   15513   return GetPropertyWithInterceptorInternal(it, it->GetInterceptor(), done);
   15514 }
   15515 
   15516 Maybe<bool> JSObject::HasRealNamedProperty(Handle<JSObject> object,
   15517                                            Handle<Name> name) {
   15518   LookupIterator it = LookupIterator::PropertyOrElement(
   15519       name->GetIsolate(), object, name, LookupIterator::OWN_SKIP_INTERCEPTOR);
   15520   return HasProperty(&it);
   15521 }
   15522 
   15523 
   15524 Maybe<bool> JSObject::HasRealElementProperty(Handle<JSObject> object,
   15525                                              uint32_t index) {
   15526   Isolate* isolate = object->GetIsolate();
   15527   LookupIterator it(isolate, object, index, object,
   15528                     LookupIterator::OWN_SKIP_INTERCEPTOR);
   15529   return HasProperty(&it);
   15530 }
   15531 
   15532 
   15533 Maybe<bool> JSObject::HasRealNamedCallbackProperty(Handle<JSObject> object,
   15534                                                    Handle<Name> name) {
   15535   LookupIterator it = LookupIterator::PropertyOrElement(
   15536       name->GetIsolate(), object, name, LookupIterator::OWN_SKIP_INTERCEPTOR);
   15537   Maybe<PropertyAttributes> maybe_result = GetPropertyAttributes(&it);
   15538   return maybe_result.IsJust() ? Just(it.state() == LookupIterator::ACCESSOR)
   15539                                : Nothing<bool>();
   15540 }
   15541 
   15542 
   15543 void FixedArray::SwapPairs(FixedArray* numbers, int i, int j) {
   15544   Object* temp = get(i);
   15545   set(i, get(j));
   15546   set(j, temp);
   15547   if (this != numbers) {
   15548     temp = numbers->get(i);
   15549     numbers->set(i, Smi::cast(numbers->get(j)));
   15550     numbers->set(j, Smi::cast(temp));
   15551   }
   15552 }
   15553 
   15554 
   15555 static void InsertionSortPairs(FixedArray* content,
   15556                                FixedArray* numbers,
   15557                                int len) {
   15558   for (int i = 1; i < len; i++) {
   15559     int j = i;
   15560     while (j > 0 &&
   15561            (NumberToUint32(numbers->get(j - 1)) >
   15562             NumberToUint32(numbers->get(j)))) {
   15563       content->SwapPairs(numbers, j - 1, j);
   15564       j--;
   15565     }
   15566   }
   15567 }
   15568 
   15569 
   15570 void HeapSortPairs(FixedArray* content, FixedArray* numbers, int len) {
   15571   // In-place heap sort.
   15572   DCHECK(content->length() == numbers->length());
   15573 
   15574   // Bottom-up max-heap construction.
   15575   for (int i = 1; i < len; ++i) {
   15576     int child_index = i;
   15577     while (child_index > 0) {
   15578       int parent_index = ((child_index + 1) >> 1) - 1;
   15579       uint32_t parent_value = NumberToUint32(numbers->get(parent_index));
   15580       uint32_t child_value = NumberToUint32(numbers->get(child_index));
   15581       if (parent_value < child_value) {
   15582         content->SwapPairs(numbers, parent_index, child_index);
   15583       } else {
   15584         break;
   15585       }
   15586       child_index = parent_index;
   15587     }
   15588   }
   15589 
   15590   // Extract elements and create sorted array.
   15591   for (int i = len - 1; i > 0; --i) {
   15592     // Put max element at the back of the array.
   15593     content->SwapPairs(numbers, 0, i);
   15594     // Sift down the new top element.
   15595     int parent_index = 0;
   15596     while (true) {
   15597       int child_index = ((parent_index + 1) << 1) - 1;
   15598       if (child_index >= i) break;
   15599       uint32_t child1_value = NumberToUint32(numbers->get(child_index));
   15600       uint32_t child2_value = NumberToUint32(numbers->get(child_index + 1));
   15601       uint32_t parent_value = NumberToUint32(numbers->get(parent_index));
   15602       if (child_index + 1 >= i || child1_value > child2_value) {
   15603         if (parent_value > child1_value) break;
   15604         content->SwapPairs(numbers, parent_index, child_index);
   15605         parent_index = child_index;
   15606       } else {
   15607         if (parent_value > child2_value) break;
   15608         content->SwapPairs(numbers, parent_index, child_index + 1);
   15609         parent_index = child_index + 1;
   15610       }
   15611     }
   15612   }
   15613 }
   15614 
   15615 
   15616 // Sort this array and the numbers as pairs wrt. the (distinct) numbers.
   15617 void FixedArray::SortPairs(FixedArray* numbers, uint32_t len) {
   15618   DCHECK(this->length() == numbers->length());
   15619   // For small arrays, simply use insertion sort.
   15620   if (len <= 10) {
   15621     InsertionSortPairs(this, numbers, len);
   15622     return;
   15623   }
   15624   // Check the range of indices.
   15625   uint32_t min_index = NumberToUint32(numbers->get(0));
   15626   uint32_t max_index = min_index;
   15627   uint32_t i;
   15628   for (i = 1; i < len; i++) {
   15629     if (NumberToUint32(numbers->get(i)) < min_index) {
   15630       min_index = NumberToUint32(numbers->get(i));
   15631     } else if (NumberToUint32(numbers->get(i)) > max_index) {
   15632       max_index = NumberToUint32(numbers->get(i));
   15633     }
   15634   }
   15635   if (max_index - min_index + 1 == len) {
   15636     // Indices form a contiguous range, unless there are duplicates.
   15637     // Do an in-place linear time sort assuming distinct numbers, but
   15638     // avoid hanging in case they are not.
   15639     for (i = 0; i < len; i++) {
   15640       uint32_t p;
   15641       uint32_t j = 0;
   15642       // While the current element at i is not at its correct position p,
   15643       // swap the elements at these two positions.
   15644       while ((p = NumberToUint32(numbers->get(i)) - min_index) != i &&
   15645              j++ < len) {
   15646         SwapPairs(numbers, i, p);
   15647       }
   15648     }
   15649   } else {
   15650     HeapSortPairs(this, numbers, len);
   15651     return;
   15652   }
   15653 }
   15654 
   15655 bool JSObject::WasConstructedFromApiFunction() {
   15656   auto instance_type = map()->instance_type();
   15657   bool is_api_object = instance_type == JS_API_OBJECT_TYPE ||
   15658                        instance_type == JS_SPECIAL_API_OBJECT_TYPE;
   15659 #ifdef ENABLE_SLOW_DCHECKS
   15660   if (FLAG_enable_slow_asserts) {
   15661     Object* maybe_constructor = map()->GetConstructor();
   15662     if (!maybe_constructor->IsJSFunction()) return false;
   15663     JSFunction* constructor = JSFunction::cast(maybe_constructor);
   15664     if (constructor->shared()->IsApiFunction()) {
   15665       DCHECK(is_api_object);
   15666     } else {
   15667       DCHECK(!is_api_object);
   15668     }
   15669   }
   15670 #endif
   15671   return is_api_object;
   15672 }
   15673 
   15674 MaybeHandle<String> Object::ObjectProtoToString(Isolate* isolate,
   15675                                                 Handle<Object> object) {
   15676   if (*object == isolate->heap()->undefined_value()) {
   15677     return isolate->factory()->undefined_to_string();
   15678   }
   15679   if (*object == isolate->heap()->null_value()) {
   15680     return isolate->factory()->null_to_string();
   15681   }
   15682 
   15683   Handle<JSReceiver> receiver =
   15684       Object::ToObject(isolate, object).ToHandleChecked();
   15685 
   15686   // For proxies, we must check IsArray() before get(toStringTag) to comply
   15687   // with the specification
   15688   Maybe<bool> is_array = Nothing<bool>();
   15689   InstanceType instance_type = receiver->map()->instance_type();
   15690   if (instance_type == JS_PROXY_TYPE) {
   15691     is_array = Object::IsArray(receiver);
   15692     MAYBE_RETURN(is_array, MaybeHandle<String>());
   15693   }
   15694 
   15695   Handle<String> tag;
   15696   Handle<Object> to_string_tag;
   15697   ASSIGN_RETURN_ON_EXCEPTION(
   15698       isolate, to_string_tag,
   15699       JSReceiver::GetProperty(receiver,
   15700                               isolate->factory()->to_string_tag_symbol()),
   15701       String);
   15702   if (to_string_tag->IsString()) {
   15703     tag = Handle<String>::cast(to_string_tag);
   15704   } else {
   15705     switch (instance_type) {
   15706       case JS_API_OBJECT_TYPE:
   15707       case JS_SPECIAL_API_OBJECT_TYPE:
   15708         tag = handle(receiver->class_name(), isolate);
   15709         break;
   15710       case JS_ARGUMENTS_TYPE:
   15711         return isolate->factory()->arguments_to_string();
   15712       case JS_ARRAY_TYPE:
   15713         return isolate->factory()->array_to_string();
   15714       case JS_BOUND_FUNCTION_TYPE:
   15715       case JS_FUNCTION_TYPE:
   15716         return isolate->factory()->function_to_string();
   15717       case JS_ERROR_TYPE:
   15718         return isolate->factory()->error_to_string();
   15719       case JS_DATE_TYPE:
   15720         return isolate->factory()->date_to_string();
   15721       case JS_REGEXP_TYPE:
   15722         return isolate->factory()->regexp_to_string();
   15723       case JS_PROXY_TYPE: {
   15724         if (is_array.FromJust()) {
   15725           return isolate->factory()->array_to_string();
   15726         }
   15727         if (receiver->IsCallable()) {
   15728           return isolate->factory()->function_to_string();
   15729         }
   15730         return isolate->factory()->object_to_string();
   15731       }
   15732       case JS_VALUE_TYPE: {
   15733         Object* value = JSValue::cast(*receiver)->value();
   15734         if (value->IsString()) {
   15735           return isolate->factory()->string_to_string();
   15736         }
   15737         if (value->IsNumber()) {
   15738           return isolate->factory()->number_to_string();
   15739         }
   15740         if (value->IsBoolean()) {
   15741           return isolate->factory()->boolean_to_string();
   15742         }
   15743         if (value->IsSymbol()) {
   15744           return isolate->factory()->object_to_string();
   15745         }
   15746         UNREACHABLE();
   15747         tag = handle(receiver->class_name(), isolate);
   15748         break;
   15749       }
   15750       default:
   15751         return isolate->factory()->object_to_string();
   15752     }
   15753   }
   15754 
   15755   IncrementalStringBuilder builder(isolate);
   15756   builder.AppendCString("[object ");
   15757   builder.AppendString(tag);
   15758   builder.AppendCharacter(']');
   15759   return builder.Finish();
   15760 }
   15761 
   15762 const char* Symbol::PrivateSymbolToName() const {
   15763   Heap* heap = GetIsolate()->heap();
   15764 #define SYMBOL_CHECK_AND_PRINT(name) \
   15765   if (this == heap->name()) return #name;
   15766   PRIVATE_SYMBOL_LIST(SYMBOL_CHECK_AND_PRINT)
   15767 #undef SYMBOL_CHECK_AND_PRINT
   15768   return "UNKNOWN";
   15769 }
   15770 
   15771 
   15772 void Symbol::SymbolShortPrint(std::ostream& os) {
   15773   os << "<Symbol:";
   15774   if (!name()->IsUndefined(GetIsolate())) {
   15775     os << " ";
   15776     HeapStringAllocator allocator;
   15777     StringStream accumulator(&allocator);
   15778     String::cast(name())->StringShortPrint(&accumulator, false);
   15779     os << accumulator.ToCString().get();
   15780   } else {
   15781     os << " (" << PrivateSymbolToName() << ")";
   15782   }
   15783   os << ">";
   15784 }
   15785 
   15786 
   15787 // StringSharedKeys are used as keys in the eval cache.
   15788 class StringSharedKey : public HashTableKey {
   15789  public:
   15790   StringSharedKey(Handle<String> source, Handle<SharedFunctionInfo> shared,
   15791                   LanguageMode language_mode, int scope_position)
   15792       : source_(source),
   15793         shared_(shared),
   15794         language_mode_(language_mode),
   15795         scope_position_(scope_position) {}
   15796 
   15797   bool IsMatch(Object* other) override {
   15798     DisallowHeapAllocation no_allocation;
   15799     if (!other->IsFixedArray()) {
   15800       if (!other->IsNumber()) return false;
   15801       uint32_t other_hash = static_cast<uint32_t>(other->Number());
   15802       return Hash() == other_hash;
   15803     }
   15804     FixedArray* other_array = FixedArray::cast(other);
   15805     SharedFunctionInfo* shared = SharedFunctionInfo::cast(other_array->get(0));
   15806     if (shared != *shared_) return false;
   15807     int language_unchecked = Smi::cast(other_array->get(2))->value();
   15808     DCHECK(is_valid_language_mode(language_unchecked));
   15809     LanguageMode language_mode = static_cast<LanguageMode>(language_unchecked);
   15810     if (language_mode != language_mode_) return false;
   15811     int scope_position = Smi::cast(other_array->get(3))->value();
   15812     if (scope_position != scope_position_) return false;
   15813     String* source = String::cast(other_array->get(1));
   15814     return source->Equals(*source_);
   15815   }
   15816 
   15817   static uint32_t StringSharedHashHelper(String* source,
   15818                                          SharedFunctionInfo* shared,
   15819                                          LanguageMode language_mode,
   15820                                          int scope_position) {
   15821     uint32_t hash = source->Hash();
   15822     if (shared->HasSourceCode()) {
   15823       // Instead of using the SharedFunctionInfo pointer in the hash
   15824       // code computation, we use a combination of the hash of the
   15825       // script source code and the start position of the calling scope.
   15826       // We do this to ensure that the cache entries can survive garbage
   15827       // collection.
   15828       Script* script(Script::cast(shared->script()));
   15829       hash ^= String::cast(script->source())->Hash();
   15830       STATIC_ASSERT(LANGUAGE_END == 3);
   15831       if (is_strict(language_mode)) hash ^= 0x8000;
   15832       hash += scope_position;
   15833     }
   15834     return hash;
   15835   }
   15836 
   15837   uint32_t Hash() override {
   15838     return StringSharedHashHelper(*source_, *shared_, language_mode_,
   15839                                   scope_position_);
   15840   }
   15841 
   15842   uint32_t HashForObject(Object* obj) override {
   15843     DisallowHeapAllocation no_allocation;
   15844     if (obj->IsNumber()) {
   15845       return static_cast<uint32_t>(obj->Number());
   15846     }
   15847     FixedArray* other_array = FixedArray::cast(obj);
   15848     SharedFunctionInfo* shared = SharedFunctionInfo::cast(other_array->get(0));
   15849     String* source = String::cast(other_array->get(1));
   15850     int language_unchecked = Smi::cast(other_array->get(2))->value();
   15851     DCHECK(is_valid_language_mode(language_unchecked));
   15852     LanguageMode language_mode = static_cast<LanguageMode>(language_unchecked);
   15853     int scope_position = Smi::cast(other_array->get(3))->value();
   15854     return StringSharedHashHelper(source, shared, language_mode,
   15855                                   scope_position);
   15856   }
   15857 
   15858 
   15859   Handle<Object> AsHandle(Isolate* isolate) override {
   15860     Handle<FixedArray> array = isolate->factory()->NewFixedArray(4);
   15861     array->set(0, *shared_);
   15862     array->set(1, *source_);
   15863     array->set(2, Smi::FromInt(language_mode_));
   15864     array->set(3, Smi::FromInt(scope_position_));
   15865     return array;
   15866   }
   15867 
   15868  private:
   15869   Handle<String> source_;
   15870   Handle<SharedFunctionInfo> shared_;
   15871   LanguageMode language_mode_;
   15872   int scope_position_;
   15873 };
   15874 
   15875 
   15876 namespace {
   15877 
   15878 JSRegExp::Flags RegExpFlagsFromString(Handle<String> flags, bool* success) {
   15879   JSRegExp::Flags value = JSRegExp::kNone;
   15880   int length = flags->length();
   15881   // A longer flags string cannot be valid.
   15882   if (length > 5) return JSRegExp::Flags(0);
   15883   for (int i = 0; i < length; i++) {
   15884     JSRegExp::Flag flag = JSRegExp::kNone;
   15885     switch (flags->Get(i)) {
   15886       case 'g':
   15887         flag = JSRegExp::kGlobal;
   15888         break;
   15889       case 'i':
   15890         flag = JSRegExp::kIgnoreCase;
   15891         break;
   15892       case 'm':
   15893         flag = JSRegExp::kMultiline;
   15894         break;
   15895       case 'u':
   15896         flag = JSRegExp::kUnicode;
   15897         break;
   15898       case 'y':
   15899         flag = JSRegExp::kSticky;
   15900         break;
   15901       default:
   15902         return JSRegExp::Flags(0);
   15903     }
   15904     // Duplicate flag.
   15905     if (value & flag) return JSRegExp::Flags(0);
   15906     value |= flag;
   15907   }
   15908   *success = true;
   15909   return value;
   15910 }
   15911 
   15912 }  // namespace
   15913 
   15914 
   15915 // static
   15916 MaybeHandle<JSRegExp> JSRegExp::New(Handle<String> pattern, Flags flags) {
   15917   Isolate* isolate = pattern->GetIsolate();
   15918   Handle<JSFunction> constructor = isolate->regexp_function();
   15919   Handle<JSRegExp> regexp =
   15920       Handle<JSRegExp>::cast(isolate->factory()->NewJSObject(constructor));
   15921 
   15922   return JSRegExp::Initialize(regexp, pattern, flags);
   15923 }
   15924 
   15925 
   15926 // static
   15927 Handle<JSRegExp> JSRegExp::Copy(Handle<JSRegExp> regexp) {
   15928   Isolate* const isolate = regexp->GetIsolate();
   15929   return Handle<JSRegExp>::cast(isolate->factory()->CopyJSObject(regexp));
   15930 }
   15931 
   15932 
   15933 template <typename Char>
   15934 inline int CountRequiredEscapes(Handle<String> source) {
   15935   DisallowHeapAllocation no_gc;
   15936   int escapes = 0;
   15937   Vector<const Char> src = source->GetCharVector<Char>();
   15938   for (int i = 0; i < src.length(); i++) {
   15939     if (src[i] == '/' && (i == 0 || src[i - 1] != '\\')) escapes++;
   15940   }
   15941   return escapes;
   15942 }
   15943 
   15944 
   15945 template <typename Char, typename StringType>
   15946 inline Handle<StringType> WriteEscapedRegExpSource(Handle<String> source,
   15947                                                    Handle<StringType> result) {
   15948   DisallowHeapAllocation no_gc;
   15949   Vector<const Char> src = source->GetCharVector<Char>();
   15950   Vector<Char> dst(result->GetChars(), result->length());
   15951   int s = 0;
   15952   int d = 0;
   15953   while (s < src.length()) {
   15954     if (src[s] == '/' && (s == 0 || src[s - 1] != '\\')) dst[d++] = '\\';
   15955     dst[d++] = src[s++];
   15956   }
   15957   DCHECK_EQ(result->length(), d);
   15958   return result;
   15959 }
   15960 
   15961 
   15962 MaybeHandle<String> EscapeRegExpSource(Isolate* isolate,
   15963                                        Handle<String> source) {
   15964   String::Flatten(source);
   15965   if (source->length() == 0) return isolate->factory()->query_colon_string();
   15966   bool one_byte = source->IsOneByteRepresentationUnderneath();
   15967   int escapes = one_byte ? CountRequiredEscapes<uint8_t>(source)
   15968                          : CountRequiredEscapes<uc16>(source);
   15969   if (escapes == 0) return source;
   15970   int length = source->length() + escapes;
   15971   if (one_byte) {
   15972     Handle<SeqOneByteString> result;
   15973     ASSIGN_RETURN_ON_EXCEPTION(isolate, result,
   15974                                isolate->factory()->NewRawOneByteString(length),
   15975                                String);
   15976     return WriteEscapedRegExpSource<uint8_t>(source, result);
   15977   } else {
   15978     Handle<SeqTwoByteString> result;
   15979     ASSIGN_RETURN_ON_EXCEPTION(isolate, result,
   15980                                isolate->factory()->NewRawTwoByteString(length),
   15981                                String);
   15982     return WriteEscapedRegExpSource<uc16>(source, result);
   15983   }
   15984 }
   15985 
   15986 
   15987 // static
   15988 MaybeHandle<JSRegExp> JSRegExp::Initialize(Handle<JSRegExp> regexp,
   15989                                            Handle<String> source,
   15990                                            Handle<String> flags_string) {
   15991   Isolate* isolate = source->GetIsolate();
   15992   bool success = false;
   15993   Flags flags = RegExpFlagsFromString(flags_string, &success);
   15994   if (!success) {
   15995     THROW_NEW_ERROR(
   15996         isolate,
   15997         NewSyntaxError(MessageTemplate::kInvalidRegExpFlags, flags_string),
   15998         JSRegExp);
   15999   }
   16000   return Initialize(regexp, source, flags);
   16001 }
   16002 
   16003 
   16004 // static
   16005 MaybeHandle<JSRegExp> JSRegExp::Initialize(Handle<JSRegExp> regexp,
   16006                                            Handle<String> source, Flags flags) {
   16007   Isolate* isolate = regexp->GetIsolate();
   16008   Factory* factory = isolate->factory();
   16009   // If source is the empty string we set it to "(?:)" instead as
   16010   // suggested by ECMA-262, 5th, section 15.10.4.1.
   16011   if (source->length() == 0) source = factory->query_colon_string();
   16012 
   16013   Handle<String> escaped_source;
   16014   ASSIGN_RETURN_ON_EXCEPTION(isolate, escaped_source,
   16015                              EscapeRegExpSource(isolate, source), JSRegExp);
   16016 
   16017   RETURN_ON_EXCEPTION(isolate, RegExpImpl::Compile(regexp, source, flags),
   16018                       JSRegExp);
   16019 
   16020   regexp->set_source(*escaped_source);
   16021   regexp->set_flags(Smi::FromInt(flags));
   16022 
   16023   Map* map = regexp->map();
   16024   Object* constructor = map->GetConstructor();
   16025   if (constructor->IsJSFunction() &&
   16026       JSFunction::cast(constructor)->initial_map() == map) {
   16027     // If we still have the original map, set in-object properties directly.
   16028     regexp->InObjectPropertyAtPut(JSRegExp::kLastIndexFieldIndex,
   16029                                   Smi::FromInt(0), SKIP_WRITE_BARRIER);
   16030   } else {
   16031     // Map has changed, so use generic, but slower, method.
   16032     PropertyAttributes writable =
   16033         static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE);
   16034     JSObject::SetOwnPropertyIgnoreAttributes(
   16035         regexp, factory->last_index_string(),
   16036         Handle<Smi>(Smi::FromInt(0), isolate), writable)
   16037         .Check();
   16038   }
   16039 
   16040   return regexp;
   16041 }
   16042 
   16043 
   16044 // RegExpKey carries the source and flags of a regular expression as key.
   16045 class RegExpKey : public HashTableKey {
   16046  public:
   16047   RegExpKey(Handle<String> string, JSRegExp::Flags flags)
   16048       : string_(string), flags_(Smi::FromInt(flags)) {}
   16049 
   16050   // Rather than storing the key in the hash table, a pointer to the
   16051   // stored value is stored where the key should be.  IsMatch then
   16052   // compares the search key to the found object, rather than comparing
   16053   // a key to a key.
   16054   bool IsMatch(Object* obj) override {
   16055     FixedArray* val = FixedArray::cast(obj);
   16056     return string_->Equals(String::cast(val->get(JSRegExp::kSourceIndex)))
   16057         && (flags_ == val->get(JSRegExp::kFlagsIndex));
   16058   }
   16059 
   16060   uint32_t Hash() override { return RegExpHash(*string_, flags_); }
   16061 
   16062   Handle<Object> AsHandle(Isolate* isolate) override {
   16063     // Plain hash maps, which is where regexp keys are used, don't
   16064     // use this function.
   16065     UNREACHABLE();
   16066     return MaybeHandle<Object>().ToHandleChecked();
   16067   }
   16068 
   16069   uint32_t HashForObject(Object* obj) override {
   16070     FixedArray* val = FixedArray::cast(obj);
   16071     return RegExpHash(String::cast(val->get(JSRegExp::kSourceIndex)),
   16072                       Smi::cast(val->get(JSRegExp::kFlagsIndex)));
   16073   }
   16074 
   16075   static uint32_t RegExpHash(String* string, Smi* flags) {
   16076     return string->Hash() + flags->value();
   16077   }
   16078 
   16079   Handle<String> string_;
   16080   Smi* flags_;
   16081 };
   16082 
   16083 
   16084 Handle<Object> OneByteStringKey::AsHandle(Isolate* isolate) {
   16085   if (hash_field_ == 0) Hash();
   16086   return isolate->factory()->NewOneByteInternalizedString(string_, hash_field_);
   16087 }
   16088 
   16089 
   16090 Handle<Object> TwoByteStringKey::AsHandle(Isolate* isolate) {
   16091   if (hash_field_ == 0) Hash();
   16092   return isolate->factory()->NewTwoByteInternalizedString(string_, hash_field_);
   16093 }
   16094 
   16095 
   16096 Handle<Object> SeqOneByteSubStringKey::AsHandle(Isolate* isolate) {
   16097   if (hash_field_ == 0) Hash();
   16098   return isolate->factory()->NewOneByteInternalizedSubString(
   16099       string_, from_, length_, hash_field_);
   16100 }
   16101 
   16102 
   16103 bool SeqOneByteSubStringKey::IsMatch(Object* string) {
   16104   Vector<const uint8_t> chars(string_->GetChars() + from_, length_);
   16105   return String::cast(string)->IsOneByteEqualTo(chars);
   16106 }
   16107 
   16108 
   16109 // InternalizedStringKey carries a string/internalized-string object as key.
   16110 class InternalizedStringKey : public HashTableKey {
   16111  public:
   16112   explicit InternalizedStringKey(Handle<String> string)
   16113       : string_(String::Flatten(string)) {}
   16114 
   16115   bool IsMatch(Object* string) override {
   16116     return String::cast(string)->Equals(*string_);
   16117   }
   16118 
   16119   uint32_t Hash() override { return string_->Hash(); }
   16120 
   16121   uint32_t HashForObject(Object* other) override {
   16122     return String::cast(other)->Hash();
   16123   }
   16124 
   16125   Handle<Object> AsHandle(Isolate* isolate) override {
   16126     // Internalize the string if possible.
   16127     MaybeHandle<Map> maybe_map =
   16128         isolate->factory()->InternalizedStringMapForString(string_);
   16129     Handle<Map> map;
   16130     if (maybe_map.ToHandle(&map)) {
   16131       string_->set_map_no_write_barrier(*map);
   16132       DCHECK(string_->IsInternalizedString());
   16133       return string_;
   16134     }
   16135     // Otherwise allocate a new internalized string.
   16136     return isolate->factory()->NewInternalizedStringImpl(
   16137         string_, string_->length(), string_->hash_field());
   16138   }
   16139 
   16140   static uint32_t StringHash(Object* obj) {
   16141     return String::cast(obj)->Hash();
   16142   }
   16143 
   16144   Handle<String> string_;
   16145 };
   16146 
   16147 
   16148 template<typename Derived, typename Shape, typename Key>
   16149 void HashTable<Derived, Shape, Key>::IteratePrefix(ObjectVisitor* v) {
   16150   BodyDescriptorBase::IteratePointers(this, 0, kElementsStartOffset, v);
   16151 }
   16152 
   16153 
   16154 template<typename Derived, typename Shape, typename Key>
   16155 void HashTable<Derived, Shape, Key>::IterateElements(ObjectVisitor* v) {
   16156   BodyDescriptorBase::IteratePointers(this, kElementsStartOffset,
   16157                                       kHeaderSize + length() * kPointerSize, v);
   16158 }
   16159 
   16160 
   16161 template<typename Derived, typename Shape, typename Key>
   16162 Handle<Derived> HashTable<Derived, Shape, Key>::New(
   16163     Isolate* isolate,
   16164     int at_least_space_for,
   16165     MinimumCapacity capacity_option,
   16166     PretenureFlag pretenure) {
   16167   DCHECK(0 <= at_least_space_for);
   16168   DCHECK(!capacity_option || base::bits::IsPowerOfTwo32(at_least_space_for));
   16169 
   16170   int capacity = (capacity_option == USE_CUSTOM_MINIMUM_CAPACITY)
   16171                      ? at_least_space_for
   16172                      : ComputeCapacity(at_least_space_for);
   16173   if (capacity > HashTable::kMaxCapacity) {
   16174     v8::internal::Heap::FatalProcessOutOfMemory("invalid table size", true);
   16175   }
   16176 
   16177   Factory* factory = isolate->factory();
   16178   int length = EntryToIndex(capacity);
   16179   Handle<FixedArray> array = factory->NewFixedArray(length, pretenure);
   16180   array->set_map_no_write_barrier(*factory->hash_table_map());
   16181   Handle<Derived> table = Handle<Derived>::cast(array);
   16182 
   16183   table->SetNumberOfElements(0);
   16184   table->SetNumberOfDeletedElements(0);
   16185   table->SetCapacity(capacity);
   16186   return table;
   16187 }
   16188 
   16189 
   16190 // Find entry for key otherwise return kNotFound.
   16191 template <typename Derived, typename Shape>
   16192 int NameDictionaryBase<Derived, Shape>::FindEntry(Handle<Name> key) {
   16193   if (!key->IsUniqueName()) {
   16194     return DerivedDictionary::FindEntry(key);
   16195   }
   16196 
   16197   // Optimized for unique names. Knowledge of the key type allows:
   16198   // 1. Move the check if the key is unique out of the loop.
   16199   // 2. Avoid comparing hash codes in unique-to-unique comparison.
   16200   // 3. Detect a case when a dictionary key is not unique but the key is.
   16201   //    In case of positive result the dictionary key may be replaced by the
   16202   //    internalized string with minimal performance penalty. It gives a chance
   16203   //    to perform further lookups in code stubs (and significant performance
   16204   //    boost a certain style of code).
   16205 
   16206   // EnsureCapacity will guarantee the hash table is never full.
   16207   uint32_t capacity = this->Capacity();
   16208   uint32_t entry = Derived::FirstProbe(key->Hash(), capacity);
   16209   uint32_t count = 1;
   16210   Isolate* isolate = this->GetIsolate();
   16211   while (true) {
   16212     Object* element = this->KeyAt(entry);
   16213     if (element->IsUndefined(isolate)) break;  // Empty entry.
   16214     if (*key == element) return entry;
   16215     DCHECK(element->IsTheHole(isolate) || element->IsUniqueName());
   16216     entry = Derived::NextProbe(entry, count++, capacity);
   16217   }
   16218   return Derived::kNotFound;
   16219 }
   16220 
   16221 
   16222 template<typename Derived, typename Shape, typename Key>
   16223 void HashTable<Derived, Shape, Key>::Rehash(
   16224     Handle<Derived> new_table,
   16225     Key key) {
   16226   DCHECK(NumberOfElements() < new_table->Capacity());
   16227 
   16228   DisallowHeapAllocation no_gc;
   16229   WriteBarrierMode mode = new_table->GetWriteBarrierMode(no_gc);
   16230 
   16231   // Copy prefix to new array.
   16232   for (int i = kPrefixStartIndex;
   16233        i < kPrefixStartIndex + Shape::kPrefixSize;
   16234        i++) {
   16235     new_table->set(i, get(i), mode);
   16236   }
   16237 
   16238   // Rehash the elements.
   16239   int capacity = this->Capacity();
   16240   Heap* heap = new_table->GetHeap();
   16241   Object* the_hole = heap->the_hole_value();
   16242   Object* undefined = heap->undefined_value();
   16243   for (int i = 0; i < capacity; i++) {
   16244     uint32_t from_index = EntryToIndex(i);
   16245     Object* k = this->get(from_index);
   16246     if (k != the_hole && k != undefined) {
   16247       uint32_t hash = this->HashForObject(key, k);
   16248       uint32_t insertion_index =
   16249           EntryToIndex(new_table->FindInsertionEntry(hash));
   16250       for (int j = 0; j < Shape::kEntrySize; j++) {
   16251         new_table->set(insertion_index + j, get(from_index + j), mode);
   16252       }
   16253     }
   16254   }
   16255   new_table->SetNumberOfElements(NumberOfElements());
   16256   new_table->SetNumberOfDeletedElements(0);
   16257 }
   16258 
   16259 
   16260 template<typename Derived, typename Shape, typename Key>
   16261 uint32_t HashTable<Derived, Shape, Key>::EntryForProbe(
   16262     Key key,
   16263     Object* k,
   16264     int probe,
   16265     uint32_t expected) {
   16266   uint32_t hash = this->HashForObject(key, k);
   16267   uint32_t capacity = this->Capacity();
   16268   uint32_t entry = FirstProbe(hash, capacity);
   16269   for (int i = 1; i < probe; i++) {
   16270     if (entry == expected) return expected;
   16271     entry = NextProbe(entry, i, capacity);
   16272   }
   16273   return entry;
   16274 }
   16275 
   16276 
   16277 template<typename Derived, typename Shape, typename Key>
   16278 void HashTable<Derived, Shape, Key>::Swap(uint32_t entry1,
   16279                                           uint32_t entry2,
   16280                                           WriteBarrierMode mode) {
   16281   int index1 = EntryToIndex(entry1);
   16282   int index2 = EntryToIndex(entry2);
   16283   Object* temp[Shape::kEntrySize];
   16284   for (int j = 0; j < Shape::kEntrySize; j++) {
   16285     temp[j] = get(index1 + j);
   16286   }
   16287   for (int j = 0; j < Shape::kEntrySize; j++) {
   16288     set(index1 + j, get(index2 + j), mode);
   16289   }
   16290   for (int j = 0; j < Shape::kEntrySize; j++) {
   16291     set(index2 + j, temp[j], mode);
   16292   }
   16293 }
   16294 
   16295 
   16296 template<typename Derived, typename Shape, typename Key>
   16297 void HashTable<Derived, Shape, Key>::Rehash(Key key) {
   16298   DisallowHeapAllocation no_gc;
   16299   WriteBarrierMode mode = GetWriteBarrierMode(no_gc);
   16300   Isolate* isolate = GetIsolate();
   16301   uint32_t capacity = Capacity();
   16302   bool done = false;
   16303   for (int probe = 1; !done; probe++) {
   16304     // All elements at entries given by one of the first _probe_ probes
   16305     // are placed correctly. Other elements might need to be moved.
   16306     done = true;
   16307     for (uint32_t current = 0; current < capacity; current++) {
   16308       Object* current_key = KeyAt(current);
   16309       if (IsKey(isolate, current_key)) {
   16310         uint32_t target = EntryForProbe(key, current_key, probe, current);
   16311         if (current == target) continue;
   16312         Object* target_key = KeyAt(target);
   16313         if (!IsKey(target_key) ||
   16314             EntryForProbe(key, target_key, probe, target) != target) {
   16315           // Put the current element into the correct position.
   16316           Swap(current, target, mode);
   16317           // The other element will be processed on the next iteration.
   16318           current--;
   16319         } else {
   16320           // The place for the current element is occupied. Leave the element
   16321           // for the next probe.
   16322           done = false;
   16323         }
   16324       }
   16325     }
   16326   }
   16327   // Wipe deleted entries.
   16328   Object* the_hole = isolate->heap()->the_hole_value();
   16329   Object* undefined = isolate->heap()->undefined_value();
   16330   for (uint32_t current = 0; current < capacity; current++) {
   16331     if (KeyAt(current) == the_hole) {
   16332       set(EntryToIndex(current) + Derived::kEntryKeyIndex, undefined);
   16333     }
   16334   }
   16335   SetNumberOfDeletedElements(0);
   16336 }
   16337 
   16338 
   16339 template<typename Derived, typename Shape, typename Key>
   16340 Handle<Derived> HashTable<Derived, Shape, Key>::EnsureCapacity(
   16341     Handle<Derived> table,
   16342     int n,
   16343     Key key,
   16344     PretenureFlag pretenure) {
   16345   Isolate* isolate = table->GetIsolate();
   16346   int capacity = table->Capacity();
   16347   int nof = table->NumberOfElements() + n;
   16348 
   16349   if (table->HasSufficientCapacityToAdd(n)) return table;
   16350 
   16351   const int kMinCapacityForPretenure = 256;
   16352   bool should_pretenure = pretenure == TENURED ||
   16353       ((capacity > kMinCapacityForPretenure) &&
   16354           !isolate->heap()->InNewSpace(*table));
   16355   Handle<Derived> new_table = HashTable::New(
   16356       isolate,
   16357       nof * 2,
   16358       USE_DEFAULT_MINIMUM_CAPACITY,
   16359       should_pretenure ? TENURED : NOT_TENURED);
   16360 
   16361   table->Rehash(new_table, key);
   16362   return new_table;
   16363 }
   16364 
   16365 template <typename Derived, typename Shape, typename Key>
   16366 bool HashTable<Derived, Shape, Key>::HasSufficientCapacityToAdd(
   16367     int number_of_additional_elements) {
   16368   int capacity = Capacity();
   16369   int nof = NumberOfElements() + number_of_additional_elements;
   16370   int nod = NumberOfDeletedElements();
   16371   // Return true if:
   16372   //   50% is still free after adding number_of_additional_elements elements and
   16373   //   at most 50% of the free elements are deleted elements.
   16374   if ((nof < capacity) && ((nod <= (capacity - nof) >> 1))) {
   16375     int needed_free = nof >> 1;
   16376     if (nof + needed_free <= capacity) return true;
   16377   }
   16378   return false;
   16379 }
   16380 
   16381 
   16382 template<typename Derived, typename Shape, typename Key>
   16383 Handle<Derived> HashTable<Derived, Shape, Key>::Shrink(Handle<Derived> table,
   16384                                                        Key key) {
   16385   int capacity = table->Capacity();
   16386   int nof = table->NumberOfElements();
   16387 
   16388   // Shrink to fit the number of elements if only a quarter of the
   16389   // capacity is filled with elements.
   16390   if (nof > (capacity >> 2)) return table;
   16391   // Allocate a new dictionary with room for at least the current
   16392   // number of elements. The allocation method will make sure that
   16393   // there is extra room in the dictionary for additions. Don't go
   16394   // lower than room for 16 elements.
   16395   int at_least_room_for = nof;
   16396   if (at_least_room_for < 16) return table;
   16397 
   16398   Isolate* isolate = table->GetIsolate();
   16399   const int kMinCapacityForPretenure = 256;
   16400   bool pretenure =
   16401       (at_least_room_for > kMinCapacityForPretenure) &&
   16402       !isolate->heap()->InNewSpace(*table);
   16403   Handle<Derived> new_table = HashTable::New(
   16404       isolate,
   16405       at_least_room_for,
   16406       USE_DEFAULT_MINIMUM_CAPACITY,
   16407       pretenure ? TENURED : NOT_TENURED);
   16408 
   16409   table->Rehash(new_table, key);
   16410   return new_table;
   16411 }
   16412 
   16413 
   16414 template<typename Derived, typename Shape, typename Key>
   16415 uint32_t HashTable<Derived, Shape, Key>::FindInsertionEntry(uint32_t hash) {
   16416   uint32_t capacity = Capacity();
   16417   uint32_t entry = FirstProbe(hash, capacity);
   16418   uint32_t count = 1;
   16419   // EnsureCapacity will guarantee the hash table is never full.
   16420   Isolate* isolate = GetIsolate();
   16421   while (true) {
   16422     Object* element = KeyAt(entry);
   16423     if (!IsKey(isolate, element)) break;
   16424     entry = NextProbe(entry, count++, capacity);
   16425   }
   16426   return entry;
   16427 }
   16428 
   16429 
   16430 // Force instantiation of template instances class.
   16431 // Please note this list is compiler dependent.
   16432 
   16433 template class HashTable<StringTable, StringTableShape, HashTableKey*>;
   16434 
   16435 template class HashTable<CompilationCacheTable,
   16436                          CompilationCacheShape,
   16437                          HashTableKey*>;
   16438 
   16439 template class HashTable<ObjectHashTable,
   16440                          ObjectHashTableShape,
   16441                          Handle<Object> >;
   16442 
   16443 template class HashTable<WeakHashTable, WeakHashTableShape<2>, Handle<Object> >;
   16444 
   16445 template class Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >;
   16446 
   16447 template class Dictionary<GlobalDictionary, GlobalDictionaryShape,
   16448                           Handle<Name> >;
   16449 
   16450 template class Dictionary<SeededNumberDictionary,
   16451                           SeededNumberDictionaryShape,
   16452                           uint32_t>;
   16453 
   16454 template class Dictionary<UnseededNumberDictionary,
   16455                           UnseededNumberDictionaryShape,
   16456                           uint32_t>;
   16457 
   16458 template Handle<SeededNumberDictionary>
   16459 Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>::
   16460     New(Isolate*, int at_least_space_for, PretenureFlag pretenure);
   16461 
   16462 template Handle<UnseededNumberDictionary>
   16463 Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t>::
   16464     New(Isolate*, int at_least_space_for, PretenureFlag pretenure);
   16465 
   16466 template Handle<NameDictionary>
   16467 Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >::
   16468     New(Isolate*, int n, PretenureFlag pretenure);
   16469 
   16470 template Handle<GlobalDictionary>
   16471 Dictionary<GlobalDictionary, GlobalDictionaryShape, Handle<Name> >::New(
   16472     Isolate*, int n, PretenureFlag pretenure);
   16473 
   16474 template Handle<SeededNumberDictionary>
   16475 Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>::
   16476     AtPut(Handle<SeededNumberDictionary>, uint32_t, Handle<Object>);
   16477 
   16478 template Handle<UnseededNumberDictionary>
   16479 Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t>::
   16480     AtPut(Handle<UnseededNumberDictionary>, uint32_t, Handle<Object>);
   16481 
   16482 template Object*
   16483 Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>::
   16484     SlowReverseLookup(Object* value);
   16485 
   16486 template Object*
   16487 Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >::
   16488     SlowReverseLookup(Object* value);
   16489 
   16490 template Handle<Object>
   16491 Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >::DeleteProperty(
   16492     Handle<NameDictionary>, int);
   16493 
   16494 template Handle<Object>
   16495 Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape,
   16496            uint32_t>::DeleteProperty(Handle<SeededNumberDictionary>, int);
   16497 
   16498 template Handle<Object>
   16499 Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape,
   16500            uint32_t>::DeleteProperty(Handle<UnseededNumberDictionary>, int);
   16501 
   16502 template Handle<NameDictionary>
   16503 HashTable<NameDictionary, NameDictionaryShape, Handle<Name> >::
   16504     New(Isolate*, int, MinimumCapacity, PretenureFlag);
   16505 
   16506 template Handle<NameDictionary>
   16507 HashTable<NameDictionary, NameDictionaryShape, Handle<Name> >::
   16508     Shrink(Handle<NameDictionary>, Handle<Name>);
   16509 
   16510 template Handle<SeededNumberDictionary>
   16511 HashTable<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>::
   16512     Shrink(Handle<SeededNumberDictionary>, uint32_t);
   16513 
   16514 template Handle<UnseededNumberDictionary>
   16515     HashTable<UnseededNumberDictionary, UnseededNumberDictionaryShape,
   16516               uint32_t>::Shrink(Handle<UnseededNumberDictionary>, uint32_t);
   16517 
   16518 template Handle<NameDictionary>
   16519 Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >::Add(
   16520     Handle<NameDictionary>, Handle<Name>, Handle<Object>, PropertyDetails);
   16521 
   16522 template Handle<GlobalDictionary>
   16523     Dictionary<GlobalDictionary, GlobalDictionaryShape, Handle<Name> >::Add(
   16524         Handle<GlobalDictionary>, Handle<Name>, Handle<Object>,
   16525         PropertyDetails);
   16526 
   16527 template Handle<FixedArray> Dictionary<
   16528     NameDictionary, NameDictionaryShape,
   16529     Handle<Name> >::BuildIterationIndicesArray(Handle<NameDictionary>);
   16530 
   16531 template Handle<FixedArray> Dictionary<
   16532     NameDictionary, NameDictionaryShape,
   16533     Handle<Name> >::GenerateNewEnumerationIndices(Handle<NameDictionary>);
   16534 
   16535 template Handle<SeededNumberDictionary>
   16536 Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>::
   16537     Add(Handle<SeededNumberDictionary>,
   16538         uint32_t,
   16539         Handle<Object>,
   16540         PropertyDetails);
   16541 
   16542 template Handle<UnseededNumberDictionary>
   16543 Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t>::
   16544     Add(Handle<UnseededNumberDictionary>,
   16545         uint32_t,
   16546         Handle<Object>,
   16547         PropertyDetails);
   16548 
   16549 template Handle<SeededNumberDictionary>
   16550 Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>::
   16551     EnsureCapacity(Handle<SeededNumberDictionary>, int, uint32_t);
   16552 
   16553 template Handle<UnseededNumberDictionary>
   16554 Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t>::
   16555     EnsureCapacity(Handle<UnseededNumberDictionary>, int, uint32_t);
   16556 
   16557 template void Dictionary<NameDictionary, NameDictionaryShape,
   16558                          Handle<Name> >::SetRequiresCopyOnCapacityChange();
   16559 
   16560 template Handle<NameDictionary>
   16561 Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >::
   16562     EnsureCapacity(Handle<NameDictionary>, int, Handle<Name>);
   16563 
   16564 template int HashTable<SeededNumberDictionary, SeededNumberDictionaryShape,
   16565                        uint32_t>::FindEntry(uint32_t);
   16566 
   16567 template int NameDictionaryBase<NameDictionary, NameDictionaryShape>::FindEntry(
   16568     Handle<Name>);
   16569 
   16570 template int Dictionary<GlobalDictionary, GlobalDictionaryShape, Handle<Name>>::
   16571     NumberOfElementsFilterAttributes(PropertyFilter filter);
   16572 
   16573 template int Dictionary<NameDictionary, NameDictionaryShape, Handle<Name>>::
   16574     NumberOfElementsFilterAttributes(PropertyFilter filter);
   16575 
   16576 template void Dictionary<GlobalDictionary, GlobalDictionaryShape,
   16577                          Handle<Name>>::CopyEnumKeysTo(FixedArray* storage);
   16578 
   16579 template void Dictionary<NameDictionary, NameDictionaryShape,
   16580                          Handle<Name>>::CopyEnumKeysTo(FixedArray* storage);
   16581 
   16582 template void
   16583 Dictionary<GlobalDictionary, GlobalDictionaryShape, Handle<Name>>::
   16584     CollectKeysTo(Handle<Dictionary<GlobalDictionary, GlobalDictionaryShape,
   16585                                     Handle<Name>>>
   16586                       dictionary,
   16587                   KeyAccumulator* keys, PropertyFilter filter);
   16588 
   16589 template void
   16590 Dictionary<NameDictionary, NameDictionaryShape, Handle<Name>>::CollectKeysTo(
   16591     Handle<Dictionary<NameDictionary, NameDictionaryShape, Handle<Name>>>
   16592         dictionary,
   16593     KeyAccumulator* keys, PropertyFilter filter);
   16594 
   16595 Handle<Object> JSObject::PrepareSlowElementsForSort(
   16596     Handle<JSObject> object, uint32_t limit) {
   16597   DCHECK(object->HasDictionaryElements());
   16598   Isolate* isolate = object->GetIsolate();
   16599   // Must stay in dictionary mode, either because of requires_slow_elements,
   16600   // or because we are not going to sort (and therefore compact) all of the
   16601   // elements.
   16602   Handle<SeededNumberDictionary> dict(object->element_dictionary(), isolate);
   16603   Handle<SeededNumberDictionary> new_dict =
   16604       SeededNumberDictionary::New(isolate, dict->NumberOfElements());
   16605 
   16606   uint32_t pos = 0;
   16607   uint32_t undefs = 0;
   16608   int capacity = dict->Capacity();
   16609   Handle<Smi> bailout(Smi::FromInt(-1), isolate);
   16610   // Entry to the new dictionary does not cause it to grow, as we have
   16611   // allocated one that is large enough for all entries.
   16612   DisallowHeapAllocation no_gc;
   16613   for (int i = 0; i < capacity; i++) {
   16614     Object* k = dict->KeyAt(i);
   16615     if (!dict->IsKey(isolate, k)) continue;
   16616 
   16617     DCHECK(k->IsNumber());
   16618     DCHECK(!k->IsSmi() || Smi::cast(k)->value() >= 0);
   16619     DCHECK(!k->IsHeapNumber() || HeapNumber::cast(k)->value() >= 0);
   16620     DCHECK(!k->IsHeapNumber() || HeapNumber::cast(k)->value() <= kMaxUInt32);
   16621 
   16622     HandleScope scope(isolate);
   16623     Handle<Object> value(dict->ValueAt(i), isolate);
   16624     PropertyDetails details = dict->DetailsAt(i);
   16625     if (details.type() == ACCESSOR_CONSTANT || details.IsReadOnly()) {
   16626       // Bail out and do the sorting of undefineds and array holes in JS.
   16627       // Also bail out if the element is not supposed to be moved.
   16628       return bailout;
   16629     }
   16630 
   16631     uint32_t key = NumberToUint32(k);
   16632     if (key < limit) {
   16633       if (value->IsUndefined(isolate)) {
   16634         undefs++;
   16635       } else if (pos > static_cast<uint32_t>(Smi::kMaxValue)) {
   16636         // Adding an entry with the key beyond smi-range requires
   16637         // allocation. Bailout.
   16638         return bailout;
   16639       } else {
   16640         Handle<Object> result = SeededNumberDictionary::AddNumberEntry(
   16641             new_dict, pos, value, details, object->map()->is_prototype_map());
   16642         DCHECK(result.is_identical_to(new_dict));
   16643         USE(result);
   16644         pos++;
   16645       }
   16646     } else if (key > static_cast<uint32_t>(Smi::kMaxValue)) {
   16647       // Adding an entry with the key beyond smi-range requires
   16648       // allocation. Bailout.
   16649       return bailout;
   16650     } else {
   16651       Handle<Object> result = SeededNumberDictionary::AddNumberEntry(
   16652           new_dict, key, value, details, object->map()->is_prototype_map());
   16653       DCHECK(result.is_identical_to(new_dict));
   16654       USE(result);
   16655     }
   16656   }
   16657 
   16658   uint32_t result = pos;
   16659   PropertyDetails no_details = PropertyDetails::Empty();
   16660   while (undefs > 0) {
   16661     if (pos > static_cast<uint32_t>(Smi::kMaxValue)) {
   16662       // Adding an entry with the key beyond smi-range requires
   16663       // allocation. Bailout.
   16664       return bailout;
   16665     }
   16666     HandleScope scope(isolate);
   16667     Handle<Object> result = SeededNumberDictionary::AddNumberEntry(
   16668         new_dict, pos, isolate->factory()->undefined_value(), no_details,
   16669         object->map()->is_prototype_map());
   16670     DCHECK(result.is_identical_to(new_dict));
   16671     USE(result);
   16672     pos++;
   16673     undefs--;
   16674   }
   16675 
   16676   object->set_elements(*new_dict);
   16677 
   16678   AllowHeapAllocation allocate_return_value;
   16679   return isolate->factory()->NewNumberFromUint(result);
   16680 }
   16681 
   16682 
   16683 // Collects all defined (non-hole) and non-undefined (array) elements at
   16684 // the start of the elements array.
   16685 // If the object is in dictionary mode, it is converted to fast elements
   16686 // mode.
   16687 Handle<Object> JSObject::PrepareElementsForSort(Handle<JSObject> object,
   16688                                                 uint32_t limit) {
   16689   Isolate* isolate = object->GetIsolate();
   16690   if (object->HasSloppyArgumentsElements()) {
   16691     return handle(Smi::FromInt(-1), isolate);
   16692   }
   16693 
   16694   if (object->HasStringWrapperElements()) {
   16695     int len = String::cast(Handle<JSValue>::cast(object)->value())->length();
   16696     return handle(Smi::FromInt(len), isolate);
   16697   }
   16698 
   16699   if (object->HasDictionaryElements()) {
   16700     // Convert to fast elements containing only the existing properties.
   16701     // Ordering is irrelevant, since we are going to sort anyway.
   16702     Handle<SeededNumberDictionary> dict(object->element_dictionary());
   16703     if (object->IsJSArray() || dict->requires_slow_elements() ||
   16704         dict->max_number_key() >= limit) {
   16705       return JSObject::PrepareSlowElementsForSort(object, limit);
   16706     }
   16707     // Convert to fast elements.
   16708 
   16709     Handle<Map> new_map =
   16710         JSObject::GetElementsTransitionMap(object, FAST_HOLEY_ELEMENTS);
   16711 
   16712     PretenureFlag tenure = isolate->heap()->InNewSpace(*object) ?
   16713         NOT_TENURED: TENURED;
   16714     Handle<FixedArray> fast_elements =
   16715         isolate->factory()->NewFixedArray(dict->NumberOfElements(), tenure);
   16716     dict->CopyValuesTo(*fast_elements);
   16717     JSObject::ValidateElements(object);
   16718 
   16719     JSObject::SetMapAndElements(object, new_map, fast_elements);
   16720   } else if (object->HasFixedTypedArrayElements()) {
   16721     // Typed arrays cannot have holes or undefined elements.
   16722     return handle(Smi::FromInt(
   16723         FixedArrayBase::cast(object->elements())->length()), isolate);
   16724   } else if (!object->HasFastDoubleElements()) {
   16725     EnsureWritableFastElements(object);
   16726   }
   16727   DCHECK(object->HasFastSmiOrObjectElements() ||
   16728          object->HasFastDoubleElements());
   16729 
   16730   // Collect holes at the end, undefined before that and the rest at the
   16731   // start, and return the number of non-hole, non-undefined values.
   16732 
   16733   Handle<FixedArrayBase> elements_base(object->elements());
   16734   uint32_t elements_length = static_cast<uint32_t>(elements_base->length());
   16735   if (limit > elements_length) {
   16736     limit = elements_length;
   16737   }
   16738   if (limit == 0) {
   16739     return handle(Smi::FromInt(0), isolate);
   16740   }
   16741 
   16742   uint32_t result = 0;
   16743   if (elements_base->map() == isolate->heap()->fixed_double_array_map()) {
   16744     FixedDoubleArray* elements = FixedDoubleArray::cast(*elements_base);
   16745     // Split elements into defined and the_hole, in that order.
   16746     unsigned int holes = limit;
   16747     // Assume most arrays contain no holes and undefined values, so minimize the
   16748     // number of stores of non-undefined, non-the-hole values.
   16749     for (unsigned int i = 0; i < holes; i++) {
   16750       if (elements->is_the_hole(i)) {
   16751         holes--;
   16752       } else {
   16753         continue;
   16754       }
   16755       // Position i needs to be filled.
   16756       while (holes > i) {
   16757         if (elements->is_the_hole(holes)) {
   16758           holes--;
   16759         } else {
   16760           elements->set(i, elements->get_scalar(holes));
   16761           break;
   16762         }
   16763       }
   16764     }
   16765     result = holes;
   16766     while (holes < limit) {
   16767       elements->set_the_hole(holes);
   16768       holes++;
   16769     }
   16770   } else {
   16771     FixedArray* elements = FixedArray::cast(*elements_base);
   16772     DisallowHeapAllocation no_gc;
   16773 
   16774     // Split elements into defined, undefined and the_hole, in that order.  Only
   16775     // count locations for undefined and the hole, and fill them afterwards.
   16776     WriteBarrierMode write_barrier = elements->GetWriteBarrierMode(no_gc);
   16777     unsigned int undefs = limit;
   16778     unsigned int holes = limit;
   16779     // Assume most arrays contain no holes and undefined values, so minimize the
   16780     // number of stores of non-undefined, non-the-hole values.
   16781     for (unsigned int i = 0; i < undefs; i++) {
   16782       Object* current = elements->get(i);
   16783       if (current->IsTheHole(isolate)) {
   16784         holes--;
   16785         undefs--;
   16786       } else if (current->IsUndefined(isolate)) {
   16787         undefs--;
   16788       } else {
   16789         continue;
   16790       }
   16791       // Position i needs to be filled.
   16792       while (undefs > i) {
   16793         current = elements->get(undefs);
   16794         if (current->IsTheHole(isolate)) {
   16795           holes--;
   16796           undefs--;
   16797         } else if (current->IsUndefined(isolate)) {
   16798           undefs--;
   16799         } else {
   16800           elements->set(i, current, write_barrier);
   16801           break;
   16802         }
   16803       }
   16804     }
   16805     result = undefs;
   16806     while (undefs < holes) {
   16807       elements->set_undefined(undefs);
   16808       undefs++;
   16809     }
   16810     while (holes < limit) {
   16811       elements->set_the_hole(holes);
   16812       holes++;
   16813     }
   16814   }
   16815 
   16816   return isolate->factory()->NewNumberFromUint(result);
   16817 }
   16818 
   16819 
   16820 ExternalArrayType JSTypedArray::type() {
   16821   switch (elements()->map()->instance_type()) {
   16822 #define INSTANCE_TYPE_TO_ARRAY_TYPE(Type, type, TYPE, ctype, size)            \
   16823     case FIXED_##TYPE##_ARRAY_TYPE:                                           \
   16824       return kExternal##Type##Array;
   16825 
   16826     TYPED_ARRAYS(INSTANCE_TYPE_TO_ARRAY_TYPE)
   16827 #undef INSTANCE_TYPE_TO_ARRAY_TYPE
   16828 
   16829     default:
   16830       UNREACHABLE();
   16831       return static_cast<ExternalArrayType>(-1);
   16832   }
   16833 }
   16834 
   16835 
   16836 size_t JSTypedArray::element_size() {
   16837   switch (elements()->map()->instance_type()) {
   16838 #define INSTANCE_TYPE_TO_ELEMENT_SIZE(Type, type, TYPE, ctype, size) \
   16839   case FIXED_##TYPE##_ARRAY_TYPE:                                    \
   16840     return size;
   16841 
   16842     TYPED_ARRAYS(INSTANCE_TYPE_TO_ELEMENT_SIZE)
   16843 #undef INSTANCE_TYPE_TO_ELEMENT_SIZE
   16844 
   16845     default:
   16846       UNREACHABLE();
   16847       return 0;
   16848   }
   16849 }
   16850 
   16851 
   16852 void JSGlobalObject::InvalidatePropertyCell(Handle<JSGlobalObject> global,
   16853                                             Handle<Name> name) {
   16854   DCHECK(!global->HasFastProperties());
   16855   auto dictionary = handle(global->global_dictionary());
   16856   int entry = dictionary->FindEntry(name);
   16857   if (entry == GlobalDictionary::kNotFound) return;
   16858   PropertyCell::InvalidateEntry(dictionary, entry);
   16859 }
   16860 
   16861 
   16862 // TODO(ishell): rename to EnsureEmptyPropertyCell or something.
   16863 Handle<PropertyCell> JSGlobalObject::EnsurePropertyCell(
   16864     Handle<JSGlobalObject> global, Handle<Name> name) {
   16865   Isolate* isolate = global->GetIsolate();
   16866   DCHECK(!global->HasFastProperties());
   16867   auto dictionary = handle(global->global_dictionary(), isolate);
   16868   int entry = dictionary->FindEntry(name);
   16869   Handle<PropertyCell> cell;
   16870   if (entry != GlobalDictionary::kNotFound) {
   16871     // This call should be idempotent.
   16872     DCHECK(dictionary->ValueAt(entry)->IsPropertyCell());
   16873     cell = handle(PropertyCell::cast(dictionary->ValueAt(entry)));
   16874     DCHECK(cell->property_details().cell_type() ==
   16875                PropertyCellType::kUninitialized ||
   16876            cell->property_details().cell_type() ==
   16877                PropertyCellType::kInvalidated);
   16878     DCHECK(cell->value()->IsTheHole(isolate));
   16879     return cell;
   16880   }
   16881   cell = isolate->factory()->NewPropertyCell();
   16882   PropertyDetails details(NONE, DATA, 0, PropertyCellType::kUninitialized);
   16883   dictionary = GlobalDictionary::Add(dictionary, name, cell, details);
   16884   global->set_properties(*dictionary);
   16885   return cell;
   16886 }
   16887 
   16888 
   16889 // This class is used for looking up two character strings in the string table.
   16890 // If we don't have a hit we don't want to waste much time so we unroll the
   16891 // string hash calculation loop here for speed.  Doesn't work if the two
   16892 // characters form a decimal integer, since such strings have a different hash
   16893 // algorithm.
   16894 class TwoCharHashTableKey : public HashTableKey {
   16895  public:
   16896   TwoCharHashTableKey(uint16_t c1, uint16_t c2, uint32_t seed)
   16897     : c1_(c1), c2_(c2) {
   16898     // Char 1.
   16899     uint32_t hash = seed;
   16900     hash += c1;
   16901     hash += hash << 10;
   16902     hash ^= hash >> 6;
   16903     // Char 2.
   16904     hash += c2;
   16905     hash += hash << 10;
   16906     hash ^= hash >> 6;
   16907     // GetHash.
   16908     hash += hash << 3;
   16909     hash ^= hash >> 11;
   16910     hash += hash << 15;
   16911     if ((hash & String::kHashBitMask) == 0) hash = StringHasher::kZeroHash;
   16912     hash_ = hash;
   16913 #ifdef DEBUG
   16914     // If this assert fails then we failed to reproduce the two-character
   16915     // version of the string hashing algorithm above.  One reason could be
   16916     // that we were passed two digits as characters, since the hash
   16917     // algorithm is different in that case.
   16918     uint16_t chars[2] = {c1, c2};
   16919     uint32_t check_hash = StringHasher::HashSequentialString(chars, 2, seed);
   16920     hash = (hash << String::kHashShift) | String::kIsNotArrayIndexMask;
   16921     DCHECK_EQ(static_cast<int32_t>(hash), static_cast<int32_t>(check_hash));
   16922 #endif
   16923   }
   16924 
   16925   bool IsMatch(Object* o) override {
   16926     if (!o->IsString()) return false;
   16927     String* other = String::cast(o);
   16928     if (other->length() != 2) return false;
   16929     if (other->Get(0) != c1_) return false;
   16930     return other->Get(1) == c2_;
   16931   }
   16932 
   16933   uint32_t Hash() override { return hash_; }
   16934   uint32_t HashForObject(Object* key) override {
   16935     if (!key->IsString()) return 0;
   16936     return String::cast(key)->Hash();
   16937   }
   16938 
   16939   Handle<Object> AsHandle(Isolate* isolate) override {
   16940     // The TwoCharHashTableKey is only used for looking in the string
   16941     // table, not for adding to it.
   16942     UNREACHABLE();
   16943     return MaybeHandle<Object>().ToHandleChecked();
   16944   }
   16945 
   16946  private:
   16947   uint16_t c1_;
   16948   uint16_t c2_;
   16949   uint32_t hash_;
   16950 };
   16951 
   16952 
   16953 MaybeHandle<String> StringTable::InternalizeStringIfExists(
   16954     Isolate* isolate,
   16955     Handle<String> string) {
   16956   if (string->IsInternalizedString()) {
   16957     return string;
   16958   }
   16959   return LookupStringIfExists(isolate, string);
   16960 }
   16961 
   16962 
   16963 MaybeHandle<String> StringTable::LookupStringIfExists(
   16964     Isolate* isolate,
   16965     Handle<String> string) {
   16966   Handle<StringTable> string_table = isolate->factory()->string_table();
   16967   InternalizedStringKey key(string);
   16968   int entry = string_table->FindEntry(&key);
   16969   if (entry == kNotFound) {
   16970     return MaybeHandle<String>();
   16971   } else {
   16972     Handle<String> result(String::cast(string_table->KeyAt(entry)), isolate);
   16973     DCHECK(StringShape(*result).IsInternalized());
   16974     return result;
   16975   }
   16976 }
   16977 
   16978 
   16979 MaybeHandle<String> StringTable::LookupTwoCharsStringIfExists(
   16980     Isolate* isolate,
   16981     uint16_t c1,
   16982     uint16_t c2) {
   16983   Handle<StringTable> string_table = isolate->factory()->string_table();
   16984   TwoCharHashTableKey key(c1, c2, isolate->heap()->HashSeed());
   16985   int entry = string_table->FindEntry(&key);
   16986   if (entry == kNotFound) {
   16987     return MaybeHandle<String>();
   16988   } else {
   16989     Handle<String> result(String::cast(string_table->KeyAt(entry)), isolate);
   16990     DCHECK(StringShape(*result).IsInternalized());
   16991     return result;
   16992   }
   16993 }
   16994 
   16995 
   16996 void StringTable::EnsureCapacityForDeserialization(Isolate* isolate,
   16997                                                    int expected) {
   16998   Handle<StringTable> table = isolate->factory()->string_table();
   16999   // We need a key instance for the virtual hash function.
   17000   InternalizedStringKey dummy_key(isolate->factory()->empty_string());
   17001   table = StringTable::EnsureCapacity(table, expected, &dummy_key);
   17002   isolate->heap()->SetRootStringTable(*table);
   17003 }
   17004 
   17005 
   17006 Handle<String> StringTable::LookupString(Isolate* isolate,
   17007                                          Handle<String> string) {
   17008   if (string->IsConsString() && string->IsFlat()) {
   17009     string = String::Flatten(string);
   17010     if (string->IsInternalizedString()) return string;
   17011   }
   17012 
   17013   InternalizedStringKey key(string);
   17014   Handle<String> result = LookupKey(isolate, &key);
   17015 
   17016   if (string->IsConsString()) {
   17017     Handle<ConsString> cons = Handle<ConsString>::cast(string);
   17018     cons->set_first(*result);
   17019     cons->set_second(isolate->heap()->empty_string());
   17020   } else if (string->IsSlicedString()) {
   17021     STATIC_ASSERT(ConsString::kSize == SlicedString::kSize);
   17022     DisallowHeapAllocation no_gc;
   17023     bool one_byte = result->IsOneByteRepresentation();
   17024     Handle<Map> map = one_byte ? isolate->factory()->cons_one_byte_string_map()
   17025                                : isolate->factory()->cons_string_map();
   17026     string->set_map(*map);
   17027     Handle<ConsString> cons = Handle<ConsString>::cast(string);
   17028     cons->set_first(*result);
   17029     cons->set_second(isolate->heap()->empty_string());
   17030   }
   17031   return result;
   17032 }
   17033 
   17034 
   17035 Handle<String> StringTable::LookupKey(Isolate* isolate, HashTableKey* key) {
   17036   Handle<StringTable> table = isolate->factory()->string_table();
   17037   int entry = table->FindEntry(key);
   17038 
   17039   // String already in table.
   17040   if (entry != kNotFound) {
   17041     return handle(String::cast(table->KeyAt(entry)), isolate);
   17042   }
   17043 
   17044   // Adding new string. Grow table if needed.
   17045   table = StringTable::EnsureCapacity(table, 1, key);
   17046 
   17047   // Create string object.
   17048   Handle<Object> string = key->AsHandle(isolate);
   17049   // There must be no attempts to internalize strings that could throw
   17050   // InvalidStringLength error.
   17051   CHECK(!string.is_null());
   17052 
   17053   // Add the new string and return it along with the string table.
   17054   entry = table->FindInsertionEntry(key->Hash());
   17055   table->set(EntryToIndex(entry), *string);
   17056   table->ElementAdded();
   17057 
   17058   isolate->heap()->SetRootStringTable(*table);
   17059   return Handle<String>::cast(string);
   17060 }
   17061 
   17062 
   17063 String* StringTable::LookupKeyIfExists(Isolate* isolate, HashTableKey* key) {
   17064   Handle<StringTable> table = isolate->factory()->string_table();
   17065   int entry = table->FindEntry(key);
   17066   if (entry != kNotFound) return String::cast(table->KeyAt(entry));
   17067   return NULL;
   17068 }
   17069 
   17070 Handle<StringSet> StringSet::New(Isolate* isolate) {
   17071   return HashTable::New(isolate, 0);
   17072 }
   17073 
   17074 Handle<StringSet> StringSet::Add(Handle<StringSet> stringset,
   17075                                  Handle<String> name) {
   17076   if (!stringset->Has(name)) {
   17077     stringset = EnsureCapacity(stringset, 1, *name);
   17078     uint32_t hash = StringSetShape::Hash(*name);
   17079     int entry = stringset->FindInsertionEntry(hash);
   17080     stringset->set(EntryToIndex(entry), *name);
   17081     stringset->ElementAdded();
   17082   }
   17083   return stringset;
   17084 }
   17085 
   17086 bool StringSet::Has(Handle<String> name) {
   17087   return FindEntry(*name) != kNotFound;
   17088 }
   17089 
   17090 Handle<Object> CompilationCacheTable::Lookup(Handle<String> src,
   17091                                              Handle<Context> context,
   17092                                              LanguageMode language_mode) {
   17093   Isolate* isolate = GetIsolate();
   17094   Handle<SharedFunctionInfo> shared(context->closure()->shared());
   17095   StringSharedKey key(src, shared, language_mode, RelocInfo::kNoPosition);
   17096   int entry = FindEntry(&key);
   17097   if (entry == kNotFound) return isolate->factory()->undefined_value();
   17098   int index = EntryToIndex(entry);
   17099   if (!get(index)->IsFixedArray()) return isolate->factory()->undefined_value();
   17100   return Handle<Object>(get(index + 1), isolate);
   17101 }
   17102 
   17103 
   17104 Handle<Object> CompilationCacheTable::LookupEval(
   17105     Handle<String> src, Handle<SharedFunctionInfo> outer_info,
   17106     LanguageMode language_mode, int scope_position) {
   17107   Isolate* isolate = GetIsolate();
   17108   // Cache key is the tuple (source, outer shared function info, scope position)
   17109   // to unambiguously identify the context chain the cached eval code assumes.
   17110   StringSharedKey key(src, outer_info, language_mode, scope_position);
   17111   int entry = FindEntry(&key);
   17112   if (entry == kNotFound) return isolate->factory()->undefined_value();
   17113   int index = EntryToIndex(entry);
   17114   if (!get(index)->IsFixedArray()) return isolate->factory()->undefined_value();
   17115   return Handle<Object>(get(EntryToIndex(entry) + 1), isolate);
   17116 }
   17117 
   17118 
   17119 Handle<Object> CompilationCacheTable::LookupRegExp(Handle<String> src,
   17120                                                    JSRegExp::Flags flags) {
   17121   Isolate* isolate = GetIsolate();
   17122   DisallowHeapAllocation no_allocation;
   17123   RegExpKey key(src, flags);
   17124   int entry = FindEntry(&key);
   17125   if (entry == kNotFound) return isolate->factory()->undefined_value();
   17126   return Handle<Object>(get(EntryToIndex(entry) + 1), isolate);
   17127 }
   17128 
   17129 
   17130 Handle<CompilationCacheTable> CompilationCacheTable::Put(
   17131     Handle<CompilationCacheTable> cache, Handle<String> src,
   17132     Handle<Context> context, LanguageMode language_mode, Handle<Object> value) {
   17133   Isolate* isolate = cache->GetIsolate();
   17134   Handle<SharedFunctionInfo> shared(context->closure()->shared());
   17135   StringSharedKey key(src, shared, language_mode, RelocInfo::kNoPosition);
   17136   Handle<Object> k = key.AsHandle(isolate);
   17137   cache = EnsureCapacity(cache, 1, &key);
   17138   int entry = cache->FindInsertionEntry(key.Hash());
   17139   cache->set(EntryToIndex(entry), *k);
   17140   cache->set(EntryToIndex(entry) + 1, *value);
   17141   cache->ElementAdded();
   17142   return cache;
   17143 }
   17144 
   17145 
   17146 Handle<CompilationCacheTable> CompilationCacheTable::PutEval(
   17147     Handle<CompilationCacheTable> cache, Handle<String> src,
   17148     Handle<SharedFunctionInfo> outer_info, Handle<SharedFunctionInfo> value,
   17149     int scope_position) {
   17150   Isolate* isolate = cache->GetIsolate();
   17151   StringSharedKey key(src, outer_info, value->language_mode(), scope_position);
   17152   {
   17153     Handle<Object> k = key.AsHandle(isolate);
   17154     DisallowHeapAllocation no_allocation_scope;
   17155     int entry = cache->FindEntry(&key);
   17156     if (entry != kNotFound) {
   17157       cache->set(EntryToIndex(entry), *k);
   17158       cache->set(EntryToIndex(entry) + 1, *value);
   17159       return cache;
   17160     }
   17161   }
   17162 
   17163   cache = EnsureCapacity(cache, 1, &key);
   17164   int entry = cache->FindInsertionEntry(key.Hash());
   17165   Handle<Object> k =
   17166       isolate->factory()->NewNumber(static_cast<double>(key.Hash()));
   17167   cache->set(EntryToIndex(entry), *k);
   17168   cache->set(EntryToIndex(entry) + 1, Smi::FromInt(kHashGenerations));
   17169   cache->ElementAdded();
   17170   return cache;
   17171 }
   17172 
   17173 
   17174 Handle<CompilationCacheTable> CompilationCacheTable::PutRegExp(
   17175       Handle<CompilationCacheTable> cache, Handle<String> src,
   17176       JSRegExp::Flags flags, Handle<FixedArray> value) {
   17177   RegExpKey key(src, flags);
   17178   cache = EnsureCapacity(cache, 1, &key);
   17179   int entry = cache->FindInsertionEntry(key.Hash());
   17180   // We store the value in the key slot, and compare the search key
   17181   // to the stored value with a custon IsMatch function during lookups.
   17182   cache->set(EntryToIndex(entry), *value);
   17183   cache->set(EntryToIndex(entry) + 1, *value);
   17184   cache->ElementAdded();
   17185   return cache;
   17186 }
   17187 
   17188 
   17189 void CompilationCacheTable::Age() {
   17190   DisallowHeapAllocation no_allocation;
   17191   Object* the_hole_value = GetHeap()->the_hole_value();
   17192   uint32_t capacity = Capacity();
   17193   for (int entry = 0, size = capacity; entry < size; entry++) {
   17194     int entry_index = EntryToIndex(entry);
   17195     int value_index = entry_index + 1;
   17196 
   17197     if (get(entry_index)->IsNumber()) {
   17198       Smi* count = Smi::cast(get(value_index));
   17199       count = Smi::FromInt(count->value() - 1);
   17200       if (count->value() == 0) {
   17201         NoWriteBarrierSet(this, entry_index, the_hole_value);
   17202         NoWriteBarrierSet(this, value_index, the_hole_value);
   17203         ElementRemoved();
   17204       } else {
   17205         NoWriteBarrierSet(this, value_index, count);
   17206       }
   17207     } else if (get(entry_index)->IsFixedArray()) {
   17208       SharedFunctionInfo* info = SharedFunctionInfo::cast(get(value_index));
   17209       if (info->code()->kind() != Code::FUNCTION || info->code()->IsOld()) {
   17210         NoWriteBarrierSet(this, entry_index, the_hole_value);
   17211         NoWriteBarrierSet(this, value_index, the_hole_value);
   17212         ElementRemoved();
   17213       }
   17214     }
   17215   }
   17216   // Wipe deleted entries.
   17217   Heap* heap = GetHeap();
   17218   Object* the_hole = heap->the_hole_value();
   17219   Object* undefined = heap->undefined_value();
   17220   for (uint32_t current = 0; current < capacity; current++) {
   17221     if (get(EntryToIndex(current)) == the_hole) {
   17222       set(EntryToIndex(current), undefined);
   17223     }
   17224   }
   17225   SetNumberOfDeletedElements(0);
   17226 }
   17227 
   17228 
   17229 void CompilationCacheTable::Remove(Object* value) {
   17230   DisallowHeapAllocation no_allocation;
   17231   Object* the_hole_value = GetHeap()->the_hole_value();
   17232   for (int entry = 0, size = Capacity(); entry < size; entry++) {
   17233     int entry_index = EntryToIndex(entry);
   17234     int value_index = entry_index + 1;
   17235     if (get(value_index) == value) {
   17236       NoWriteBarrierSet(this, entry_index, the_hole_value);
   17237       NoWriteBarrierSet(this, value_index, the_hole_value);
   17238       ElementRemoved();
   17239     }
   17240   }
   17241   return;
   17242 }
   17243 
   17244 
   17245 template<typename Derived, typename Shape, typename Key>
   17246 Handle<Derived> Dictionary<Derived, Shape, Key>::New(
   17247     Isolate* isolate,
   17248     int at_least_space_for,
   17249     PretenureFlag pretenure) {
   17250   DCHECK(0 <= at_least_space_for);
   17251   Handle<Derived> dict = DerivedHashTable::New(isolate,
   17252                                                at_least_space_for,
   17253                                                USE_DEFAULT_MINIMUM_CAPACITY,
   17254                                                pretenure);
   17255 
   17256   // Initialize the next enumeration index.
   17257   dict->SetNextEnumerationIndex(PropertyDetails::kInitialIndex);
   17258   return dict;
   17259 }
   17260 
   17261 
   17262 template <typename Derived, typename Shape, typename Key>
   17263 Handle<FixedArray> Dictionary<Derived, Shape, Key>::BuildIterationIndicesArray(
   17264     Handle<Derived> dictionary) {
   17265   Isolate* isolate = dictionary->GetIsolate();
   17266   Factory* factory = isolate->factory();
   17267   int length = dictionary->NumberOfElements();
   17268 
   17269   Handle<FixedArray> iteration_order = factory->NewFixedArray(length);
   17270   Handle<FixedArray> enumeration_order = factory->NewFixedArray(length);
   17271 
   17272   // Fill both the iteration order array and the enumeration order array
   17273   // with property details.
   17274   int capacity = dictionary->Capacity();
   17275   int pos = 0;
   17276   for (int i = 0; i < capacity; i++) {
   17277     if (dictionary->IsKey(isolate, dictionary->KeyAt(i))) {
   17278       int index = dictionary->DetailsAt(i).dictionary_index();
   17279       iteration_order->set(pos, Smi::FromInt(i));
   17280       enumeration_order->set(pos, Smi::FromInt(index));
   17281       pos++;
   17282     }
   17283   }
   17284   DCHECK(pos == length);
   17285 
   17286   // Sort the arrays wrt. enumeration order.
   17287   iteration_order->SortPairs(*enumeration_order, enumeration_order->length());
   17288   return iteration_order;
   17289 }
   17290 
   17291 
   17292 template <typename Derived, typename Shape, typename Key>
   17293 Handle<FixedArray>
   17294 Dictionary<Derived, Shape, Key>::GenerateNewEnumerationIndices(
   17295     Handle<Derived> dictionary) {
   17296   int length = dictionary->NumberOfElements();
   17297 
   17298   Handle<FixedArray> iteration_order = BuildIterationIndicesArray(dictionary);
   17299   DCHECK(iteration_order->length() == length);
   17300 
   17301   // Iterate over the dictionary using the enumeration order and update
   17302   // the dictionary with new enumeration indices.
   17303   for (int i = 0; i < length; i++) {
   17304     int index = Smi::cast(iteration_order->get(i))->value();
   17305     DCHECK(dictionary->IsKey(dictionary->KeyAt(index)));
   17306 
   17307     int enum_index = PropertyDetails::kInitialIndex + i;
   17308 
   17309     PropertyDetails details = dictionary->DetailsAt(index);
   17310     PropertyDetails new_details = details.set_index(enum_index);
   17311     dictionary->DetailsAtPut(index, new_details);
   17312   }
   17313 
   17314   // Set the next enumeration index.
   17315   dictionary->SetNextEnumerationIndex(PropertyDetails::kInitialIndex+length);
   17316   return iteration_order;
   17317 }
   17318 
   17319 
   17320 template <typename Derived, typename Shape, typename Key>
   17321 void Dictionary<Derived, Shape, Key>::SetRequiresCopyOnCapacityChange() {
   17322   DCHECK_EQ(0, DerivedHashTable::NumberOfElements());
   17323   DCHECK_EQ(0, DerivedHashTable::NumberOfDeletedElements());
   17324   // Make sure that HashTable::EnsureCapacity will create a copy.
   17325   DerivedHashTable::SetNumberOfDeletedElements(DerivedHashTable::Capacity());
   17326   DCHECK(!DerivedHashTable::HasSufficientCapacityToAdd(1));
   17327 }
   17328 
   17329 
   17330 template <typename Derived, typename Shape, typename Key>
   17331 Handle<Derived> Dictionary<Derived, Shape, Key>::EnsureCapacity(
   17332     Handle<Derived> dictionary, int n, Key key) {
   17333   // Check whether there are enough enumeration indices to add n elements.
   17334   if (Shape::kIsEnumerable &&
   17335       !PropertyDetails::IsValidIndex(dictionary->NextEnumerationIndex() + n)) {
   17336     // If not, we generate new indices for the properties.
   17337     GenerateNewEnumerationIndices(dictionary);
   17338   }
   17339   return DerivedHashTable::EnsureCapacity(dictionary, n, key);
   17340 }
   17341 
   17342 
   17343 template <typename Derived, typename Shape, typename Key>
   17344 Handle<Object> Dictionary<Derived, Shape, Key>::DeleteProperty(
   17345     Handle<Derived> dictionary, int entry) {
   17346   Factory* factory = dictionary->GetIsolate()->factory();
   17347   PropertyDetails details = dictionary->DetailsAt(entry);
   17348   if (!details.IsConfigurable()) return factory->false_value();
   17349 
   17350   dictionary->SetEntry(
   17351       entry, factory->the_hole_value(), factory->the_hole_value());
   17352   dictionary->ElementRemoved();
   17353   return factory->true_value();
   17354 }
   17355 
   17356 
   17357 template<typename Derived, typename Shape, typename Key>
   17358 Handle<Derived> Dictionary<Derived, Shape, Key>::AtPut(
   17359     Handle<Derived> dictionary, Key key, Handle<Object> value) {
   17360   int entry = dictionary->FindEntry(key);
   17361 
   17362   // If the entry is present set the value;
   17363   if (entry != Dictionary::kNotFound) {
   17364     dictionary->ValueAtPut(entry, *value);
   17365     return dictionary;
   17366   }
   17367 
   17368   // Check whether the dictionary should be extended.
   17369   dictionary = EnsureCapacity(dictionary, 1, key);
   17370 #ifdef DEBUG
   17371   USE(Shape::AsHandle(dictionary->GetIsolate(), key));
   17372 #endif
   17373   PropertyDetails details = PropertyDetails::Empty();
   17374 
   17375   AddEntry(dictionary, key, value, details, dictionary->Hash(key));
   17376   return dictionary;
   17377 }
   17378 
   17379 
   17380 template<typename Derived, typename Shape, typename Key>
   17381 Handle<Derived> Dictionary<Derived, Shape, Key>::Add(
   17382     Handle<Derived> dictionary,
   17383     Key key,
   17384     Handle<Object> value,
   17385     PropertyDetails details) {
   17386   // Valdate key is absent.
   17387   SLOW_DCHECK((dictionary->FindEntry(key) == Dictionary::kNotFound));
   17388   // Check whether the dictionary should be extended.
   17389   dictionary = EnsureCapacity(dictionary, 1, key);
   17390 
   17391   AddEntry(dictionary, key, value, details, dictionary->Hash(key));
   17392   return dictionary;
   17393 }
   17394 
   17395 
   17396 // Add a key, value pair to the dictionary.
   17397 template<typename Derived, typename Shape, typename Key>
   17398 void Dictionary<Derived, Shape, Key>::AddEntry(
   17399     Handle<Derived> dictionary,
   17400     Key key,
   17401     Handle<Object> value,
   17402     PropertyDetails details,
   17403     uint32_t hash) {
   17404   // Compute the key object.
   17405   Handle<Object> k = Shape::AsHandle(dictionary->GetIsolate(), key);
   17406 
   17407   uint32_t entry = dictionary->FindInsertionEntry(hash);
   17408   // Insert element at empty or deleted entry
   17409   if (details.dictionary_index() == 0 && Shape::kIsEnumerable) {
   17410     // Assign an enumeration index to the property and update
   17411     // SetNextEnumerationIndex.
   17412     int index = dictionary->NextEnumerationIndex();
   17413     details = details.set_index(index);
   17414     dictionary->SetNextEnumerationIndex(index + 1);
   17415   }
   17416   dictionary->SetEntry(entry, k, value, details);
   17417   DCHECK((dictionary->KeyAt(entry)->IsNumber() ||
   17418           dictionary->KeyAt(entry)->IsName()));
   17419   dictionary->ElementAdded();
   17420 }
   17421 
   17422 bool SeededNumberDictionary::HasComplexElements() {
   17423   if (!requires_slow_elements()) return false;
   17424   Isolate* isolate = this->GetIsolate();
   17425   int capacity = this->Capacity();
   17426   for (int i = 0; i < capacity; i++) {
   17427     Object* k = this->KeyAt(i);
   17428     if (!this->IsKey(isolate, k)) continue;
   17429     DCHECK(!IsDeleted(i));
   17430     PropertyDetails details = this->DetailsAt(i);
   17431     if (details.type() == ACCESSOR_CONSTANT) return true;
   17432     PropertyAttributes attr = details.attributes();
   17433     if (attr & ALL_ATTRIBUTES_MASK) return true;
   17434   }
   17435   return false;
   17436 }
   17437 
   17438 void SeededNumberDictionary::UpdateMaxNumberKey(uint32_t key,
   17439                                                 bool used_as_prototype) {
   17440   DisallowHeapAllocation no_allocation;
   17441   // If the dictionary requires slow elements an element has already
   17442   // been added at a high index.
   17443   if (requires_slow_elements()) return;
   17444   // Check if this index is high enough that we should require slow
   17445   // elements.
   17446   if (key > kRequiresSlowElementsLimit) {
   17447     if (used_as_prototype) {
   17448       // TODO(verwaest): Remove this hack.
   17449       TypeFeedbackVector::ClearAllKeyedStoreICs(GetIsolate());
   17450     }
   17451     set_requires_slow_elements();
   17452     return;
   17453   }
   17454   // Update max key value.
   17455   Object* max_index_object = get(kMaxNumberKeyIndex);
   17456   if (!max_index_object->IsSmi() || max_number_key() < key) {
   17457     FixedArray::set(kMaxNumberKeyIndex,
   17458                     Smi::FromInt(key << kRequiresSlowElementsTagSize));
   17459   }
   17460 }
   17461 
   17462 
   17463 Handle<SeededNumberDictionary> SeededNumberDictionary::AddNumberEntry(
   17464     Handle<SeededNumberDictionary> dictionary, uint32_t key,
   17465     Handle<Object> value, PropertyDetails details, bool used_as_prototype) {
   17466   dictionary->UpdateMaxNumberKey(key, used_as_prototype);
   17467   SLOW_DCHECK(dictionary->FindEntry(key) == kNotFound);
   17468   return Add(dictionary, key, value, details);
   17469 }
   17470 
   17471 
   17472 Handle<UnseededNumberDictionary> UnseededNumberDictionary::AddNumberEntry(
   17473     Handle<UnseededNumberDictionary> dictionary,
   17474     uint32_t key,
   17475     Handle<Object> value) {
   17476   SLOW_DCHECK(dictionary->FindEntry(key) == kNotFound);
   17477   return Add(dictionary, key, value, PropertyDetails::Empty());
   17478 }
   17479 
   17480 
   17481 Handle<SeededNumberDictionary> SeededNumberDictionary::AtNumberPut(
   17482     Handle<SeededNumberDictionary> dictionary, uint32_t key,
   17483     Handle<Object> value, bool used_as_prototype) {
   17484   dictionary->UpdateMaxNumberKey(key, used_as_prototype);
   17485   return AtPut(dictionary, key, value);
   17486 }
   17487 
   17488 
   17489 Handle<UnseededNumberDictionary> UnseededNumberDictionary::AtNumberPut(
   17490     Handle<UnseededNumberDictionary> dictionary,
   17491     uint32_t key,
   17492     Handle<Object> value) {
   17493   return AtPut(dictionary, key, value);
   17494 }
   17495 
   17496 
   17497 Handle<SeededNumberDictionary> SeededNumberDictionary::Set(
   17498     Handle<SeededNumberDictionary> dictionary, uint32_t key,
   17499     Handle<Object> value, PropertyDetails details, bool used_as_prototype) {
   17500   int entry = dictionary->FindEntry(key);
   17501   if (entry == kNotFound) {
   17502     return AddNumberEntry(dictionary, key, value, details, used_as_prototype);
   17503   }
   17504   // Preserve enumeration index.
   17505   details = details.set_index(dictionary->DetailsAt(entry).dictionary_index());
   17506   Handle<Object> object_key =
   17507       SeededNumberDictionaryShape::AsHandle(dictionary->GetIsolate(), key);
   17508   dictionary->SetEntry(entry, object_key, value, details);
   17509   return dictionary;
   17510 }
   17511 
   17512 
   17513 Handle<UnseededNumberDictionary> UnseededNumberDictionary::Set(
   17514     Handle<UnseededNumberDictionary> dictionary,
   17515     uint32_t key,
   17516     Handle<Object> value) {
   17517   int entry = dictionary->FindEntry(key);
   17518   if (entry == kNotFound) return AddNumberEntry(dictionary, key, value);
   17519   Handle<Object> object_key =
   17520       UnseededNumberDictionaryShape::AsHandle(dictionary->GetIsolate(), key);
   17521   dictionary->SetEntry(entry, object_key, value);
   17522   return dictionary;
   17523 }
   17524 
   17525 
   17526 template <typename Derived, typename Shape, typename Key>
   17527 int Dictionary<Derived, Shape, Key>::NumberOfElementsFilterAttributes(
   17528     PropertyFilter filter) {
   17529   Isolate* isolate = this->GetIsolate();
   17530   int capacity = this->Capacity();
   17531   int result = 0;
   17532   for (int i = 0; i < capacity; i++) {
   17533     Object* k = this->KeyAt(i);
   17534     if (this->IsKey(isolate, k) && !k->FilterKey(filter)) {
   17535       if (this->IsDeleted(i)) continue;
   17536       PropertyDetails details = this->DetailsAt(i);
   17537       PropertyAttributes attr = details.attributes();
   17538       if ((attr & filter) == 0) result++;
   17539     }
   17540   }
   17541   return result;
   17542 }
   17543 
   17544 
   17545 template <typename Dictionary>
   17546 struct EnumIndexComparator {
   17547   explicit EnumIndexComparator(Dictionary* dict) : dict(dict) {}
   17548   bool operator() (Smi* a, Smi* b) {
   17549     PropertyDetails da(dict->DetailsAt(a->value()));
   17550     PropertyDetails db(dict->DetailsAt(b->value()));
   17551     return da.dictionary_index() < db.dictionary_index();
   17552   }
   17553   Dictionary* dict;
   17554 };
   17555 
   17556 
   17557 template <typename Derived, typename Shape, typename Key>
   17558 void Dictionary<Derived, Shape, Key>::CopyEnumKeysTo(FixedArray* storage) {
   17559   Isolate* isolate = this->GetIsolate();
   17560   int length = storage->length();
   17561   int capacity = this->Capacity();
   17562   int properties = 0;
   17563   for (int i = 0; i < capacity; i++) {
   17564     Object* k = this->KeyAt(i);
   17565     if (this->IsKey(isolate, k) && !k->IsSymbol()) {
   17566       PropertyDetails details = this->DetailsAt(i);
   17567       if (details.IsDontEnum() || this->IsDeleted(i)) continue;
   17568       storage->set(properties, Smi::FromInt(i));
   17569       properties++;
   17570       if (properties == length) break;
   17571     }
   17572   }
   17573   CHECK_EQ(length, properties);
   17574   EnumIndexComparator<Derived> cmp(static_cast<Derived*>(this));
   17575   Smi** start = reinterpret_cast<Smi**>(storage->GetFirstElementAddress());
   17576   std::sort(start, start + length, cmp);
   17577   for (int i = 0; i < length; i++) {
   17578     int index = Smi::cast(storage->get(i))->value();
   17579     storage->set(i, this->KeyAt(index));
   17580   }
   17581 }
   17582 
   17583 template <typename Derived, typename Shape, typename Key>
   17584 void Dictionary<Derived, Shape, Key>::CollectKeysTo(
   17585     Handle<Dictionary<Derived, Shape, Key> > dictionary, KeyAccumulator* keys,
   17586     PropertyFilter filter) {
   17587   Isolate* isolate = keys->isolate();
   17588   int capacity = dictionary->Capacity();
   17589   Handle<FixedArray> array =
   17590       isolate->factory()->NewFixedArray(dictionary->NumberOfElements());
   17591   int array_size = 0;
   17592 
   17593   {
   17594     DisallowHeapAllocation no_gc;
   17595     Dictionary<Derived, Shape, Key>* raw_dict = *dictionary;
   17596     for (int i = 0; i < capacity; i++) {
   17597       Object* k = raw_dict->KeyAt(i);
   17598       if (!raw_dict->IsKey(isolate, k) || k->FilterKey(filter)) continue;
   17599       if (raw_dict->IsDeleted(i)) continue;
   17600       PropertyDetails details = raw_dict->DetailsAt(i);
   17601       if ((details.attributes() & filter) != 0) continue;
   17602       if (filter & ONLY_ALL_CAN_READ) {
   17603         if (details.kind() != kAccessor) continue;
   17604         Object* accessors = raw_dict->ValueAt(i);
   17605         if (accessors->IsPropertyCell()) {
   17606           accessors = PropertyCell::cast(accessors)->value();
   17607         }
   17608         if (!accessors->IsAccessorInfo()) continue;
   17609         if (!AccessorInfo::cast(accessors)->all_can_read()) continue;
   17610       }
   17611       array->set(array_size++, Smi::FromInt(i));
   17612     }
   17613 
   17614     EnumIndexComparator<Derived> cmp(static_cast<Derived*>(raw_dict));
   17615     Smi** start = reinterpret_cast<Smi**>(array->GetFirstElementAddress());
   17616     std::sort(start, start + array_size, cmp);
   17617   }
   17618 
   17619   bool has_seen_symbol = false;
   17620   for (int i = 0; i < array_size; i++) {
   17621     int index = Smi::cast(array->get(i))->value();
   17622     Object* key = dictionary->KeyAt(index);
   17623     if (key->IsSymbol()) {
   17624       has_seen_symbol = true;
   17625       continue;
   17626     }
   17627     keys->AddKey(key, DO_NOT_CONVERT);
   17628   }
   17629   if (has_seen_symbol) {
   17630     for (int i = 0; i < array_size; i++) {
   17631       int index = Smi::cast(array->get(i))->value();
   17632       Object* key = dictionary->KeyAt(index);
   17633       if (!key->IsSymbol()) continue;
   17634       keys->AddKey(key, DO_NOT_CONVERT);
   17635     }
   17636   }
   17637 }
   17638 
   17639 
   17640 // Backwards lookup (slow).
   17641 template<typename Derived, typename Shape, typename Key>
   17642 Object* Dictionary<Derived, Shape, Key>::SlowReverseLookup(Object* value) {
   17643   Isolate* isolate = this->GetIsolate();
   17644   int capacity = this->Capacity();
   17645   for (int i = 0; i < capacity; i++) {
   17646     Object* k = this->KeyAt(i);
   17647     if (!this->IsKey(isolate, k)) continue;
   17648     Object* e = this->ValueAt(i);
   17649     // TODO(dcarney): this should be templatized.
   17650     if (e->IsPropertyCell()) {
   17651       e = PropertyCell::cast(e)->value();
   17652     }
   17653     if (e == value) return k;
   17654   }
   17655   return isolate->heap()->undefined_value();
   17656 }
   17657 
   17658 
   17659 Object* ObjectHashTable::Lookup(Isolate* isolate, Handle<Object> key,
   17660                                 int32_t hash) {
   17661   DisallowHeapAllocation no_gc;
   17662   DCHECK(IsKey(isolate, *key));
   17663 
   17664   int entry = FindEntry(isolate, key, hash);
   17665   if (entry == kNotFound) return isolate->heap()->the_hole_value();
   17666   return get(EntryToIndex(entry) + 1);
   17667 }
   17668 
   17669 
   17670 Object* ObjectHashTable::Lookup(Handle<Object> key) {
   17671   DisallowHeapAllocation no_gc;
   17672 
   17673   Isolate* isolate = GetIsolate();
   17674   DCHECK(IsKey(isolate, *key));
   17675 
   17676   // If the object does not have an identity hash, it was never used as a key.
   17677   Object* hash = key->GetHash();
   17678   if (hash->IsUndefined(isolate)) {
   17679     return isolate->heap()->the_hole_value();
   17680   }
   17681   return Lookup(isolate, key, Smi::cast(hash)->value());
   17682 }
   17683 
   17684 
   17685 Object* ObjectHashTable::Lookup(Handle<Object> key, int32_t hash) {
   17686   return Lookup(GetIsolate(), key, hash);
   17687 }
   17688 
   17689 
   17690 Handle<ObjectHashTable> ObjectHashTable::Put(Handle<ObjectHashTable> table,
   17691                                              Handle<Object> key,
   17692                                              Handle<Object> value) {
   17693   Isolate* isolate = table->GetIsolate();
   17694   DCHECK(table->IsKey(isolate, *key));
   17695   DCHECK(!value->IsTheHole(isolate));
   17696 
   17697   // Make sure the key object has an identity hash code.
   17698   int32_t hash = Object::GetOrCreateHash(isolate, key)->value();
   17699 
   17700   return Put(table, key, value, hash);
   17701 }
   17702 
   17703 
   17704 Handle<ObjectHashTable> ObjectHashTable::Put(Handle<ObjectHashTable> table,
   17705                                              Handle<Object> key,
   17706                                              Handle<Object> value,
   17707                                              int32_t hash) {
   17708   Isolate* isolate = table->GetIsolate();
   17709   DCHECK(table->IsKey(isolate, *key));
   17710   DCHECK(!value->IsTheHole(isolate));
   17711 
   17712   int entry = table->FindEntry(isolate, key, hash);
   17713 
   17714   // Key is already in table, just overwrite value.
   17715   if (entry != kNotFound) {
   17716     table->set(EntryToIndex(entry) + 1, *value);
   17717     return table;
   17718   }
   17719 
   17720   // Rehash if more than 25% of the entries are deleted entries.
   17721   // TODO(jochen): Consider to shrink the fixed array in place.
   17722   if ((table->NumberOfDeletedElements() << 1) > table->NumberOfElements()) {
   17723     table->Rehash(isolate->factory()->undefined_value());
   17724   }
   17725   // If we're out of luck, we didn't get a GC recently, and so rehashing
   17726   // isn't enough to avoid a crash.
   17727   if (!table->HasSufficientCapacityToAdd(1)) {
   17728     int nof = table->NumberOfElements() + 1;
   17729     int capacity = ObjectHashTable::ComputeCapacity(nof * 2);
   17730     if (capacity > ObjectHashTable::kMaxCapacity) {
   17731       for (size_t i = 0; i < 2; ++i) {
   17732         isolate->heap()->CollectAllGarbage(
   17733             Heap::kFinalizeIncrementalMarkingMask, "full object hash table");
   17734       }
   17735       table->Rehash(isolate->factory()->undefined_value());
   17736     }
   17737   }
   17738 
   17739   // Check whether the hash table should be extended.
   17740   table = EnsureCapacity(table, 1, key);
   17741   table->AddEntry(table->FindInsertionEntry(hash), *key, *value);
   17742   return table;
   17743 }
   17744 
   17745 
   17746 Handle<ObjectHashTable> ObjectHashTable::Remove(Handle<ObjectHashTable> table,
   17747                                                 Handle<Object> key,
   17748                                                 bool* was_present) {
   17749   DCHECK(table->IsKey(table->GetIsolate(), *key));
   17750 
   17751   Object* hash = key->GetHash();
   17752   if (hash->IsUndefined(table->GetIsolate())) {
   17753     *was_present = false;
   17754     return table;
   17755   }
   17756 
   17757   return Remove(table, key, was_present, Smi::cast(hash)->value());
   17758 }
   17759 
   17760 
   17761 Handle<ObjectHashTable> ObjectHashTable::Remove(Handle<ObjectHashTable> table,
   17762                                                 Handle<Object> key,
   17763                                                 bool* was_present,
   17764                                                 int32_t hash) {
   17765   Isolate* isolate = table->GetIsolate();
   17766   DCHECK(table->IsKey(isolate, *key));
   17767 
   17768   int entry = table->FindEntry(isolate, key, hash);
   17769   if (entry == kNotFound) {
   17770     *was_present = false;
   17771     return table;
   17772   }
   17773 
   17774   *was_present = true;
   17775   table->RemoveEntry(entry);
   17776   return Shrink(table, key);
   17777 }
   17778 
   17779 
   17780 void ObjectHashTable::AddEntry(int entry, Object* key, Object* value) {
   17781   set(EntryToIndex(entry), key);
   17782   set(EntryToIndex(entry) + 1, value);
   17783   ElementAdded();
   17784 }
   17785 
   17786 
   17787 void ObjectHashTable::RemoveEntry(int entry) {
   17788   set_the_hole(EntryToIndex(entry));
   17789   set_the_hole(EntryToIndex(entry) + 1);
   17790   ElementRemoved();
   17791 }
   17792 
   17793 
   17794 Object* WeakHashTable::Lookup(Handle<HeapObject> key) {
   17795   DisallowHeapAllocation no_gc;
   17796   Isolate* isolate = GetIsolate();
   17797   DCHECK(IsKey(isolate, *key));
   17798   int entry = FindEntry(key);
   17799   if (entry == kNotFound) return isolate->heap()->the_hole_value();
   17800   return get(EntryToValueIndex(entry));
   17801 }
   17802 
   17803 
   17804 Handle<WeakHashTable> WeakHashTable::Put(Handle<WeakHashTable> table,
   17805                                          Handle<HeapObject> key,
   17806                                          Handle<HeapObject> value) {
   17807   Isolate* isolate = key->GetIsolate();
   17808   DCHECK(table->IsKey(isolate, *key));
   17809   int entry = table->FindEntry(key);
   17810   // Key is already in table, just overwrite value.
   17811   if (entry != kNotFound) {
   17812     table->set(EntryToValueIndex(entry), *value);
   17813     return table;
   17814   }
   17815 
   17816   Handle<WeakCell> key_cell = isolate->factory()->NewWeakCell(key);
   17817 
   17818   // Check whether the hash table should be extended.
   17819   table = EnsureCapacity(table, 1, key, TENURED);
   17820 
   17821   table->AddEntry(table->FindInsertionEntry(table->Hash(key)), key_cell, value);
   17822   return table;
   17823 }
   17824 
   17825 
   17826 void WeakHashTable::AddEntry(int entry, Handle<WeakCell> key_cell,
   17827                              Handle<HeapObject> value) {
   17828   DisallowHeapAllocation no_allocation;
   17829   set(EntryToIndex(entry), *key_cell);
   17830   set(EntryToValueIndex(entry), *value);
   17831   ElementAdded();
   17832 }
   17833 
   17834 
   17835 template<class Derived, class Iterator, int entrysize>
   17836 Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::Allocate(
   17837     Isolate* isolate, int capacity, PretenureFlag pretenure) {
   17838   // Capacity must be a power of two, since we depend on being able
   17839   // to divide and multiple by 2 (kLoadFactor) to derive capacity
   17840   // from number of buckets. If we decide to change kLoadFactor
   17841   // to something other than 2, capacity should be stored as another
   17842   // field of this object.
   17843   capacity = base::bits::RoundUpToPowerOfTwo32(Max(kMinCapacity, capacity));
   17844   if (capacity > kMaxCapacity) {
   17845     v8::internal::Heap::FatalProcessOutOfMemory("invalid table size", true);
   17846   }
   17847   int num_buckets = capacity / kLoadFactor;
   17848   Handle<FixedArray> backing_store = isolate->factory()->NewFixedArray(
   17849       kHashTableStartIndex + num_buckets + (capacity * kEntrySize), pretenure);
   17850   backing_store->set_map_no_write_barrier(
   17851       isolate->heap()->ordered_hash_table_map());
   17852   Handle<Derived> table = Handle<Derived>::cast(backing_store);
   17853   for (int i = 0; i < num_buckets; ++i) {
   17854     table->set(kHashTableStartIndex + i, Smi::FromInt(kNotFound));
   17855   }
   17856   table->SetNumberOfBuckets(num_buckets);
   17857   table->SetNumberOfElements(0);
   17858   table->SetNumberOfDeletedElements(0);
   17859   return table;
   17860 }
   17861 
   17862 
   17863 template<class Derived, class Iterator, int entrysize>
   17864 Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::EnsureGrowable(
   17865     Handle<Derived> table) {
   17866   DCHECK(!table->IsObsolete());
   17867 
   17868   int nof = table->NumberOfElements();
   17869   int nod = table->NumberOfDeletedElements();
   17870   int capacity = table->Capacity();
   17871   if ((nof + nod) < capacity) return table;
   17872   // Don't need to grow if we can simply clear out deleted entries instead.
   17873   // Note that we can't compact in place, though, so we always allocate
   17874   // a new table.
   17875   return Rehash(table, (nod < (capacity >> 1)) ? capacity << 1 : capacity);
   17876 }
   17877 
   17878 
   17879 template<class Derived, class Iterator, int entrysize>
   17880 Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::Shrink(
   17881     Handle<Derived> table) {
   17882   DCHECK(!table->IsObsolete());
   17883 
   17884   int nof = table->NumberOfElements();
   17885   int capacity = table->Capacity();
   17886   if (nof >= (capacity >> 2)) return table;
   17887   return Rehash(table, capacity / 2);
   17888 }
   17889 
   17890 
   17891 template<class Derived, class Iterator, int entrysize>
   17892 Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::Clear(
   17893     Handle<Derived> table) {
   17894   DCHECK(!table->IsObsolete());
   17895 
   17896   Handle<Derived> new_table =
   17897       Allocate(table->GetIsolate(),
   17898                kMinCapacity,
   17899                table->GetHeap()->InNewSpace(*table) ? NOT_TENURED : TENURED);
   17900 
   17901   table->SetNextTable(*new_table);
   17902   table->SetNumberOfDeletedElements(kClearedTableSentinel);
   17903 
   17904   return new_table;
   17905 }
   17906 
   17907 template <class Derived, class Iterator, int entrysize>
   17908 bool OrderedHashTable<Derived, Iterator, entrysize>::HasKey(
   17909     Handle<Derived> table, Handle<Object> key) {
   17910   DisallowHeapAllocation no_gc;
   17911   Isolate* isolate = table->GetIsolate();
   17912   Object* raw_key = *key;
   17913   int entry = table->KeyToFirstEntry(isolate, raw_key);
   17914   // Walk the chain in the bucket to find the key.
   17915   while (entry != kNotFound) {
   17916     Object* candidate_key = table->KeyAt(entry);
   17917     if (candidate_key->SameValueZero(raw_key)) return true;
   17918     entry = table->NextChainEntry(entry);
   17919   }
   17920   return false;
   17921 }
   17922 
   17923 
   17924 Handle<OrderedHashSet> OrderedHashSet::Add(Handle<OrderedHashSet> table,
   17925                                            Handle<Object> key) {
   17926   int hash = Object::GetOrCreateHash(table->GetIsolate(), key)->value();
   17927   int entry = table->HashToEntry(hash);
   17928   // Walk the chain of the bucket and try finding the key.
   17929   while (entry != kNotFound) {
   17930     Object* candidate_key = table->KeyAt(entry);
   17931     // Do not add if we have the key already
   17932     if (candidate_key->SameValueZero(*key)) return table;
   17933     entry = table->NextChainEntry(entry);
   17934   }
   17935 
   17936   table = OrderedHashSet::EnsureGrowable(table);
   17937   // Read the existing bucket values.
   17938   int bucket = table->HashToBucket(hash);
   17939   int previous_entry = table->HashToEntry(hash);
   17940   int nof = table->NumberOfElements();
   17941   // Insert a new entry at the end,
   17942   int new_entry = nof + table->NumberOfDeletedElements();
   17943   int new_index = table->EntryToIndex(new_entry);
   17944   table->set(new_index, *key);
   17945   table->set(new_index + kChainOffset, Smi::FromInt(previous_entry));
   17946   // and point the bucket to the new entry.
   17947   table->set(kHashTableStartIndex + bucket, Smi::FromInt(new_entry));
   17948   table->SetNumberOfElements(nof + 1);
   17949   return table;
   17950 }
   17951 
   17952 Handle<FixedArray> OrderedHashSet::ConvertToKeysArray(
   17953     Handle<OrderedHashSet> table, GetKeysConversion convert) {
   17954   Isolate* isolate = table->GetIsolate();
   17955   int length = table->NumberOfElements();
   17956   int nof_buckets = table->NumberOfBuckets();
   17957   // Convert the dictionary to a linear list.
   17958   Handle<FixedArray> result = Handle<FixedArray>::cast(table);
   17959   // From this point on table is no longer a valid OrderedHashSet.
   17960   result->set_map(isolate->heap()->fixed_array_map());
   17961   for (int i = 0; i < length; i++) {
   17962     int index = kHashTableStartIndex + nof_buckets + (i * kEntrySize);
   17963     Object* key = table->get(index);
   17964     if (convert == GetKeysConversion::kConvertToString && key->IsNumber()) {
   17965       key = *isolate->factory()->NumberToString(handle(key, isolate));
   17966     }
   17967     result->set(i, key);
   17968   }
   17969   result->Shrink(length);
   17970   return result;
   17971 }
   17972 
   17973 template<class Derived, class Iterator, int entrysize>
   17974 Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::Rehash(
   17975     Handle<Derived> table, int new_capacity) {
   17976   Isolate* isolate = table->GetIsolate();
   17977   DCHECK(!table->IsObsolete());
   17978 
   17979   Handle<Derived> new_table =
   17980       Allocate(isolate, new_capacity,
   17981                isolate->heap()->InNewSpace(*table) ? NOT_TENURED : TENURED);
   17982   int nof = table->NumberOfElements();
   17983   int nod = table->NumberOfDeletedElements();
   17984   int new_buckets = new_table->NumberOfBuckets();
   17985   int new_entry = 0;
   17986   int removed_holes_index = 0;
   17987 
   17988   DisallowHeapAllocation no_gc;
   17989   for (int old_entry = 0; old_entry < (nof + nod); ++old_entry) {
   17990     Object* key = table->KeyAt(old_entry);
   17991     if (key->IsTheHole(isolate)) {
   17992       table->SetRemovedIndexAt(removed_holes_index++, old_entry);
   17993       continue;
   17994     }
   17995 
   17996     Object* hash = key->GetHash();
   17997     int bucket = Smi::cast(hash)->value() & (new_buckets - 1);
   17998     Object* chain_entry = new_table->get(kHashTableStartIndex + bucket);
   17999     new_table->set(kHashTableStartIndex + bucket, Smi::FromInt(new_entry));
   18000     int new_index = new_table->EntryToIndex(new_entry);
   18001     int old_index = table->EntryToIndex(old_entry);
   18002     for (int i = 0; i < entrysize; ++i) {
   18003       Object* value = table->get(old_index + i);
   18004       new_table->set(new_index + i, value);
   18005     }
   18006     new_table->set(new_index + kChainOffset, chain_entry);
   18007     ++new_entry;
   18008   }
   18009 
   18010   DCHECK_EQ(nod, removed_holes_index);
   18011 
   18012   new_table->SetNumberOfElements(nof);
   18013   table->SetNextTable(*new_table);
   18014 
   18015   return new_table;
   18016 }
   18017 
   18018 
   18019 template Handle<OrderedHashSet>
   18020 OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::Allocate(
   18021     Isolate* isolate, int capacity, PretenureFlag pretenure);
   18022 
   18023 template Handle<OrderedHashSet>
   18024 OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::EnsureGrowable(
   18025     Handle<OrderedHashSet> table);
   18026 
   18027 template Handle<OrderedHashSet>
   18028 OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::Shrink(
   18029     Handle<OrderedHashSet> table);
   18030 
   18031 template Handle<OrderedHashSet>
   18032 OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::Clear(
   18033     Handle<OrderedHashSet> table);
   18034 
   18035 template bool OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::HasKey(
   18036     Handle<OrderedHashSet> table, Handle<Object> key);
   18037 
   18038 
   18039 template Handle<OrderedHashMap>
   18040 OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::Allocate(
   18041     Isolate* isolate, int capacity, PretenureFlag pretenure);
   18042 
   18043 template Handle<OrderedHashMap>
   18044 OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::EnsureGrowable(
   18045     Handle<OrderedHashMap> table);
   18046 
   18047 template Handle<OrderedHashMap>
   18048 OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::Shrink(
   18049     Handle<OrderedHashMap> table);
   18050 
   18051 template Handle<OrderedHashMap>
   18052 OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::Clear(
   18053     Handle<OrderedHashMap> table);
   18054 
   18055 template bool OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::HasKey(
   18056     Handle<OrderedHashMap> table, Handle<Object> key);
   18057 
   18058 
   18059 template<class Derived, class TableType>
   18060 void OrderedHashTableIterator<Derived, TableType>::Transition() {
   18061   DisallowHeapAllocation no_allocation;
   18062   TableType* table = TableType::cast(this->table());
   18063   if (!table->IsObsolete()) return;
   18064 
   18065   int index = Smi::cast(this->index())->value();
   18066   while (table->IsObsolete()) {
   18067     TableType* next_table = table->NextTable();
   18068 
   18069     if (index > 0) {
   18070       int nod = table->NumberOfDeletedElements();
   18071 
   18072       if (nod == TableType::kClearedTableSentinel) {
   18073         index = 0;
   18074       } else {
   18075         int old_index = index;
   18076         for (int i = 0; i < nod; ++i) {
   18077           int removed_index = table->RemovedIndexAt(i);
   18078           if (removed_index >= old_index) break;
   18079           --index;
   18080         }
   18081       }
   18082     }
   18083 
   18084     table = next_table;
   18085   }
   18086 
   18087   set_table(table);
   18088   set_index(Smi::FromInt(index));
   18089 }
   18090 
   18091 
   18092 template<class Derived, class TableType>
   18093 bool OrderedHashTableIterator<Derived, TableType>::HasMore() {
   18094   DisallowHeapAllocation no_allocation;
   18095   Isolate* isolate = this->GetIsolate();
   18096   if (this->table()->IsUndefined(isolate)) return false;
   18097 
   18098   Transition();
   18099 
   18100   TableType* table = TableType::cast(this->table());
   18101   int index = Smi::cast(this->index())->value();
   18102   int used_capacity = table->UsedCapacity();
   18103 
   18104   while (index < used_capacity && table->KeyAt(index)->IsTheHole(isolate)) {
   18105     index++;
   18106   }
   18107 
   18108   set_index(Smi::FromInt(index));
   18109 
   18110   if (index < used_capacity) return true;
   18111 
   18112   set_table(isolate->heap()->undefined_value());
   18113   return false;
   18114 }
   18115 
   18116 
   18117 template<class Derived, class TableType>
   18118 Smi* OrderedHashTableIterator<Derived, TableType>::Next(JSArray* value_array) {
   18119   DisallowHeapAllocation no_allocation;
   18120   if (HasMore()) {
   18121     FixedArray* array = FixedArray::cast(value_array->elements());
   18122     static_cast<Derived*>(this)->PopulateValueArray(array);
   18123     MoveNext();
   18124     return Smi::cast(kind());
   18125   }
   18126   return Smi::FromInt(0);
   18127 }
   18128 
   18129 
   18130 template Smi*
   18131 OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::Next(
   18132     JSArray* value_array);
   18133 
   18134 template bool
   18135 OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::HasMore();
   18136 
   18137 template void
   18138 OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::MoveNext();
   18139 
   18140 template Object*
   18141 OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::CurrentKey();
   18142 
   18143 template void
   18144 OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::Transition();
   18145 
   18146 
   18147 template Smi*
   18148 OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::Next(
   18149     JSArray* value_array);
   18150 
   18151 template bool
   18152 OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::HasMore();
   18153 
   18154 template void
   18155 OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::MoveNext();
   18156 
   18157 template Object*
   18158 OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::CurrentKey();
   18159 
   18160 template void
   18161 OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::Transition();
   18162 
   18163 
   18164 void JSSet::Initialize(Handle<JSSet> set, Isolate* isolate) {
   18165   Handle<OrderedHashSet> table = isolate->factory()->NewOrderedHashSet();
   18166   set->set_table(*table);
   18167 }
   18168 
   18169 
   18170 void JSSet::Clear(Handle<JSSet> set) {
   18171   Handle<OrderedHashSet> table(OrderedHashSet::cast(set->table()));
   18172   table = OrderedHashSet::Clear(table);
   18173   set->set_table(*table);
   18174 }
   18175 
   18176 
   18177 void JSMap::Initialize(Handle<JSMap> map, Isolate* isolate) {
   18178   Handle<OrderedHashMap> table = isolate->factory()->NewOrderedHashMap();
   18179   map->set_table(*table);
   18180 }
   18181 
   18182 
   18183 void JSMap::Clear(Handle<JSMap> map) {
   18184   Handle<OrderedHashMap> table(OrderedHashMap::cast(map->table()));
   18185   table = OrderedHashMap::Clear(table);
   18186   map->set_table(*table);
   18187 }
   18188 
   18189 
   18190 void JSWeakCollection::Initialize(Handle<JSWeakCollection> weak_collection,
   18191                                   Isolate* isolate) {
   18192   Handle<ObjectHashTable> table = ObjectHashTable::New(isolate, 0);
   18193   weak_collection->set_table(*table);
   18194 }
   18195 
   18196 
   18197 void JSWeakCollection::Set(Handle<JSWeakCollection> weak_collection,
   18198                            Handle<Object> key, Handle<Object> value,
   18199                            int32_t hash) {
   18200   DCHECK(key->IsJSReceiver() || key->IsSymbol());
   18201   Handle<ObjectHashTable> table(
   18202       ObjectHashTable::cast(weak_collection->table()));
   18203   DCHECK(table->IsKey(*key));
   18204   Handle<ObjectHashTable> new_table =
   18205       ObjectHashTable::Put(table, key, value, hash);
   18206   weak_collection->set_table(*new_table);
   18207   if (*table != *new_table) {
   18208     // Zap the old table since we didn't record slots for its elements.
   18209     table->FillWithHoles(0, table->length());
   18210   }
   18211 }
   18212 
   18213 
   18214 bool JSWeakCollection::Delete(Handle<JSWeakCollection> weak_collection,
   18215                               Handle<Object> key, int32_t hash) {
   18216   DCHECK(key->IsJSReceiver() || key->IsSymbol());
   18217   Handle<ObjectHashTable> table(
   18218       ObjectHashTable::cast(weak_collection->table()));
   18219   DCHECK(table->IsKey(*key));
   18220   bool was_present = false;
   18221   Handle<ObjectHashTable> new_table =
   18222       ObjectHashTable::Remove(table, key, &was_present, hash);
   18223   weak_collection->set_table(*new_table);
   18224   if (*table != *new_table) {
   18225     // Zap the old table since we didn't record slots for its elements.
   18226     table->FillWithHoles(0, table->length());
   18227   }
   18228   return was_present;
   18229 }
   18230 
   18231 // Check if there is a break point at this code offset.
   18232 bool DebugInfo::HasBreakPoint(int code_offset) {
   18233   // Get the break point info object for this code offset.
   18234   Object* break_point_info = GetBreakPointInfo(code_offset);
   18235 
   18236   // If there is no break point info object or no break points in the break
   18237   // point info object there is no break point at this code offset.
   18238   if (break_point_info->IsUndefined(GetIsolate())) return false;
   18239   return BreakPointInfo::cast(break_point_info)->GetBreakPointCount() > 0;
   18240 }
   18241 
   18242 // Get the break point info object for this code offset.
   18243 Object* DebugInfo::GetBreakPointInfo(int code_offset) {
   18244   // Find the index of the break point info object for this code offset.
   18245   int index = GetBreakPointInfoIndex(code_offset);
   18246 
   18247   // Return the break point info object if any.
   18248   if (index == kNoBreakPointInfo) return GetHeap()->undefined_value();
   18249   return BreakPointInfo::cast(break_points()->get(index));
   18250 }
   18251 
   18252 // Clear a break point at the specified code offset.
   18253 void DebugInfo::ClearBreakPoint(Handle<DebugInfo> debug_info, int code_offset,
   18254                                 Handle<Object> break_point_object) {
   18255   Isolate* isolate = debug_info->GetIsolate();
   18256   Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_offset),
   18257                                   isolate);
   18258   if (break_point_info->IsUndefined(isolate)) return;
   18259   BreakPointInfo::ClearBreakPoint(
   18260       Handle<BreakPointInfo>::cast(break_point_info),
   18261       break_point_object);
   18262 }
   18263 
   18264 void DebugInfo::SetBreakPoint(Handle<DebugInfo> debug_info, int code_offset,
   18265                               int source_position, int statement_position,
   18266                               Handle<Object> break_point_object) {
   18267   Isolate* isolate = debug_info->GetIsolate();
   18268   Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_offset),
   18269                                   isolate);
   18270   if (!break_point_info->IsUndefined(isolate)) {
   18271     BreakPointInfo::SetBreakPoint(
   18272         Handle<BreakPointInfo>::cast(break_point_info),
   18273         break_point_object);
   18274     return;
   18275   }
   18276 
   18277   // Adding a new break point for a code offset which did not have any
   18278   // break points before. Try to find a free slot.
   18279   int index = kNoBreakPointInfo;
   18280   for (int i = 0; i < debug_info->break_points()->length(); i++) {
   18281     if (debug_info->break_points()->get(i)->IsUndefined(isolate)) {
   18282       index = i;
   18283       break;
   18284     }
   18285   }
   18286   if (index == kNoBreakPointInfo) {
   18287     // No free slot - extend break point info array.
   18288     Handle<FixedArray> old_break_points = Handle<FixedArray>(
   18289         FixedArray::cast(debug_info->break_points()), isolate);
   18290     Handle<FixedArray> new_break_points =
   18291         isolate->factory()->NewFixedArray(
   18292             old_break_points->length() +
   18293             DebugInfo::kEstimatedNofBreakPointsInFunction);
   18294 
   18295     debug_info->set_break_points(*new_break_points);
   18296     for (int i = 0; i < old_break_points->length(); i++) {
   18297       new_break_points->set(i, old_break_points->get(i));
   18298     }
   18299     index = old_break_points->length();
   18300   }
   18301   DCHECK(index != kNoBreakPointInfo);
   18302 
   18303   // Allocate new BreakPointInfo object and set the break point.
   18304   Handle<BreakPointInfo> new_break_point_info = Handle<BreakPointInfo>::cast(
   18305       isolate->factory()->NewStruct(BREAK_POINT_INFO_TYPE));
   18306   new_break_point_info->set_code_offset(code_offset);
   18307   new_break_point_info->set_source_position(source_position);
   18308   new_break_point_info->set_statement_position(statement_position);
   18309   new_break_point_info->set_break_point_objects(
   18310       isolate->heap()->undefined_value());
   18311   BreakPointInfo::SetBreakPoint(new_break_point_info, break_point_object);
   18312   debug_info->break_points()->set(index, *new_break_point_info);
   18313 }
   18314 
   18315 // Get the break point objects for a code offset.
   18316 Handle<Object> DebugInfo::GetBreakPointObjects(int code_offset) {
   18317   Object* break_point_info = GetBreakPointInfo(code_offset);
   18318   Isolate* isolate = GetIsolate();
   18319   if (break_point_info->IsUndefined(isolate)) {
   18320     return isolate->factory()->undefined_value();
   18321   }
   18322   return Handle<Object>(
   18323       BreakPointInfo::cast(break_point_info)->break_point_objects(), isolate);
   18324 }
   18325 
   18326 
   18327 // Get the total number of break points.
   18328 int DebugInfo::GetBreakPointCount() {
   18329   Isolate* isolate = GetIsolate();
   18330   if (break_points()->IsUndefined(isolate)) return 0;
   18331   int count = 0;
   18332   for (int i = 0; i < break_points()->length(); i++) {
   18333     if (!break_points()->get(i)->IsUndefined(isolate)) {
   18334       BreakPointInfo* break_point_info =
   18335           BreakPointInfo::cast(break_points()->get(i));
   18336       count += break_point_info->GetBreakPointCount();
   18337     }
   18338   }
   18339   return count;
   18340 }
   18341 
   18342 
   18343 Handle<Object> DebugInfo::FindBreakPointInfo(
   18344     Handle<DebugInfo> debug_info, Handle<Object> break_point_object) {
   18345   Isolate* isolate = debug_info->GetIsolate();
   18346   if (!debug_info->break_points()->IsUndefined(isolate)) {
   18347     for (int i = 0; i < debug_info->break_points()->length(); i++) {
   18348       if (!debug_info->break_points()->get(i)->IsUndefined(isolate)) {
   18349         Handle<BreakPointInfo> break_point_info = Handle<BreakPointInfo>(
   18350             BreakPointInfo::cast(debug_info->break_points()->get(i)), isolate);
   18351         if (BreakPointInfo::HasBreakPointObject(break_point_info,
   18352                                                 break_point_object)) {
   18353           return break_point_info;
   18354         }
   18355       }
   18356     }
   18357   }
   18358   return isolate->factory()->undefined_value();
   18359 }
   18360 
   18361 
   18362 // Find the index of the break point info object for the specified code
   18363 // position.
   18364 int DebugInfo::GetBreakPointInfoIndex(int code_offset) {
   18365   Isolate* isolate = GetIsolate();
   18366   if (break_points()->IsUndefined(isolate)) return kNoBreakPointInfo;
   18367   for (int i = 0; i < break_points()->length(); i++) {
   18368     if (!break_points()->get(i)->IsUndefined(isolate)) {
   18369       BreakPointInfo* break_point_info =
   18370           BreakPointInfo::cast(break_points()->get(i));
   18371       if (break_point_info->code_offset() == code_offset) {
   18372         return i;
   18373       }
   18374     }
   18375   }
   18376   return kNoBreakPointInfo;
   18377 }
   18378 
   18379 
   18380 // Remove the specified break point object.
   18381 void BreakPointInfo::ClearBreakPoint(Handle<BreakPointInfo> break_point_info,
   18382                                      Handle<Object> break_point_object) {
   18383   Isolate* isolate = break_point_info->GetIsolate();
   18384   // If there are no break points just ignore.
   18385   if (break_point_info->break_point_objects()->IsUndefined(isolate)) return;
   18386   // If there is a single break point clear it if it is the same.
   18387   if (!break_point_info->break_point_objects()->IsFixedArray()) {
   18388     if (break_point_info->break_point_objects() == *break_point_object) {
   18389       break_point_info->set_break_point_objects(
   18390           isolate->heap()->undefined_value());
   18391     }
   18392     return;
   18393   }
   18394   // If there are multiple break points shrink the array
   18395   DCHECK(break_point_info->break_point_objects()->IsFixedArray());
   18396   Handle<FixedArray> old_array =
   18397       Handle<FixedArray>(
   18398           FixedArray::cast(break_point_info->break_point_objects()));
   18399   Handle<FixedArray> new_array =
   18400       isolate->factory()->NewFixedArray(old_array->length() - 1);
   18401   int found_count = 0;
   18402   for (int i = 0; i < old_array->length(); i++) {
   18403     if (old_array->get(i) == *break_point_object) {
   18404       DCHECK(found_count == 0);
   18405       found_count++;
   18406     } else {
   18407       new_array->set(i - found_count, old_array->get(i));
   18408     }
   18409   }
   18410   // If the break point was found in the list change it.
   18411   if (found_count > 0) break_point_info->set_break_point_objects(*new_array);
   18412 }
   18413 
   18414 
   18415 // Add the specified break point object.
   18416 void BreakPointInfo::SetBreakPoint(Handle<BreakPointInfo> break_point_info,
   18417                                    Handle<Object> break_point_object) {
   18418   Isolate* isolate = break_point_info->GetIsolate();
   18419 
   18420   // If there was no break point objects before just set it.
   18421   if (break_point_info->break_point_objects()->IsUndefined(isolate)) {
   18422     break_point_info->set_break_point_objects(*break_point_object);
   18423     return;
   18424   }
   18425   // If the break point object is the same as before just ignore.
   18426   if (break_point_info->break_point_objects() == *break_point_object) return;
   18427   // If there was one break point object before replace with array.
   18428   if (!break_point_info->break_point_objects()->IsFixedArray()) {
   18429     Handle<FixedArray> array = isolate->factory()->NewFixedArray(2);
   18430     array->set(0, break_point_info->break_point_objects());
   18431     array->set(1, *break_point_object);
   18432     break_point_info->set_break_point_objects(*array);
   18433     return;
   18434   }
   18435   // If there was more than one break point before extend array.
   18436   Handle<FixedArray> old_array =
   18437       Handle<FixedArray>(
   18438           FixedArray::cast(break_point_info->break_point_objects()));
   18439   Handle<FixedArray> new_array =
   18440       isolate->factory()->NewFixedArray(old_array->length() + 1);
   18441   for (int i = 0; i < old_array->length(); i++) {
   18442     // If the break point was there before just ignore.
   18443     if (old_array->get(i) == *break_point_object) return;
   18444     new_array->set(i, old_array->get(i));
   18445   }
   18446   // Add the new break point.
   18447   new_array->set(old_array->length(), *break_point_object);
   18448   break_point_info->set_break_point_objects(*new_array);
   18449 }
   18450 
   18451 
   18452 bool BreakPointInfo::HasBreakPointObject(
   18453     Handle<BreakPointInfo> break_point_info,
   18454     Handle<Object> break_point_object) {
   18455   // No break point.
   18456   Isolate* isolate = break_point_info->GetIsolate();
   18457   if (break_point_info->break_point_objects()->IsUndefined(isolate)) {
   18458     return false;
   18459   }
   18460   // Single break point.
   18461   if (!break_point_info->break_point_objects()->IsFixedArray()) {
   18462     return break_point_info->break_point_objects() == *break_point_object;
   18463   }
   18464   // Multiple break points.
   18465   FixedArray* array = FixedArray::cast(break_point_info->break_point_objects());
   18466   for (int i = 0; i < array->length(); i++) {
   18467     if (array->get(i) == *break_point_object) {
   18468       return true;
   18469     }
   18470   }
   18471   return false;
   18472 }
   18473 
   18474 
   18475 // Get the number of break points.
   18476 int BreakPointInfo::GetBreakPointCount() {
   18477   // No break point.
   18478   if (break_point_objects()->IsUndefined(GetIsolate())) return 0;
   18479   // Single break point.
   18480   if (!break_point_objects()->IsFixedArray()) return 1;
   18481   // Multiple break points.
   18482   return FixedArray::cast(break_point_objects())->length();
   18483 }
   18484 
   18485 
   18486 // static
   18487 MaybeHandle<JSDate> JSDate::New(Handle<JSFunction> constructor,
   18488                                 Handle<JSReceiver> new_target, double tv) {
   18489   Isolate* const isolate = constructor->GetIsolate();
   18490   Handle<JSObject> result;
   18491   ASSIGN_RETURN_ON_EXCEPTION(isolate, result,
   18492                              JSObject::New(constructor, new_target), JSDate);
   18493   if (-DateCache::kMaxTimeInMs <= tv && tv <= DateCache::kMaxTimeInMs) {
   18494     tv = DoubleToInteger(tv) + 0.0;
   18495   } else {
   18496     tv = std::numeric_limits<double>::quiet_NaN();
   18497   }
   18498   Handle<Object> value = isolate->factory()->NewNumber(tv);
   18499   Handle<JSDate>::cast(result)->SetValue(*value, std::isnan(tv));
   18500   return Handle<JSDate>::cast(result);
   18501 }
   18502 
   18503 
   18504 // static
   18505 double JSDate::CurrentTimeValue(Isolate* isolate) {
   18506   if (FLAG_log_timer_events || FLAG_prof_cpp) LOG(isolate, CurrentTimeEvent());
   18507 
   18508   // According to ECMA-262, section 15.9.1, page 117, the precision of
   18509   // the number in a Date object representing a particular instant in
   18510   // time is milliseconds. Therefore, we floor the result of getting
   18511   // the OS time.
   18512   return Floor(FLAG_verify_predictable
   18513                    ? isolate->heap()->MonotonicallyIncreasingTimeInMs()
   18514                    : base::OS::TimeCurrentMillis());
   18515 }
   18516 
   18517 
   18518 // static
   18519 Object* JSDate::GetField(Object* object, Smi* index) {
   18520   return JSDate::cast(object)->DoGetField(
   18521       static_cast<FieldIndex>(index->value()));
   18522 }
   18523 
   18524 
   18525 Object* JSDate::DoGetField(FieldIndex index) {
   18526   DCHECK(index != kDateValue);
   18527 
   18528   DateCache* date_cache = GetIsolate()->date_cache();
   18529 
   18530   if (index < kFirstUncachedField) {
   18531     Object* stamp = cache_stamp();
   18532     if (stamp != date_cache->stamp() && stamp->IsSmi()) {
   18533       // Since the stamp is not NaN, the value is also not NaN.
   18534       int64_t local_time_ms =
   18535           date_cache->ToLocal(static_cast<int64_t>(value()->Number()));
   18536       SetCachedFields(local_time_ms, date_cache);
   18537     }
   18538     switch (index) {
   18539       case kYear: return year();
   18540       case kMonth: return month();
   18541       case kDay: return day();
   18542       case kWeekday: return weekday();
   18543       case kHour: return hour();
   18544       case kMinute: return min();
   18545       case kSecond: return sec();
   18546       default: UNREACHABLE();
   18547     }
   18548   }
   18549 
   18550   if (index >= kFirstUTCField) {
   18551     return GetUTCField(index, value()->Number(), date_cache);
   18552   }
   18553 
   18554   double time = value()->Number();
   18555   if (std::isnan(time)) return GetIsolate()->heap()->nan_value();
   18556 
   18557   int64_t local_time_ms = date_cache->ToLocal(static_cast<int64_t>(time));
   18558   int days = DateCache::DaysFromTime(local_time_ms);
   18559 
   18560   if (index == kDays) return Smi::FromInt(days);
   18561 
   18562   int time_in_day_ms = DateCache::TimeInDay(local_time_ms, days);
   18563   if (index == kMillisecond) return Smi::FromInt(time_in_day_ms % 1000);
   18564   DCHECK(index == kTimeInDay);
   18565   return Smi::FromInt(time_in_day_ms);
   18566 }
   18567 
   18568 
   18569 Object* JSDate::GetUTCField(FieldIndex index,
   18570                             double value,
   18571                             DateCache* date_cache) {
   18572   DCHECK(index >= kFirstUTCField);
   18573 
   18574   if (std::isnan(value)) return GetIsolate()->heap()->nan_value();
   18575 
   18576   int64_t time_ms = static_cast<int64_t>(value);
   18577 
   18578   if (index == kTimezoneOffset) {
   18579     return Smi::FromInt(date_cache->TimezoneOffset(time_ms));
   18580   }
   18581 
   18582   int days = DateCache::DaysFromTime(time_ms);
   18583 
   18584   if (index == kWeekdayUTC) return Smi::FromInt(date_cache->Weekday(days));
   18585 
   18586   if (index <= kDayUTC) {
   18587     int year, month, day;
   18588     date_cache->YearMonthDayFromDays(days, &year, &month, &day);
   18589     if (index == kYearUTC) return Smi::FromInt(year);
   18590     if (index == kMonthUTC) return Smi::FromInt(month);
   18591     DCHECK(index == kDayUTC);
   18592     return Smi::FromInt(day);
   18593   }
   18594 
   18595   int time_in_day_ms = DateCache::TimeInDay(time_ms, days);
   18596   switch (index) {
   18597     case kHourUTC: return Smi::FromInt(time_in_day_ms / (60 * 60 * 1000));
   18598     case kMinuteUTC: return Smi::FromInt((time_in_day_ms / (60 * 1000)) % 60);
   18599     case kSecondUTC: return Smi::FromInt((time_in_day_ms / 1000) % 60);
   18600     case kMillisecondUTC: return Smi::FromInt(time_in_day_ms % 1000);
   18601     case kDaysUTC: return Smi::FromInt(days);
   18602     case kTimeInDayUTC: return Smi::FromInt(time_in_day_ms);
   18603     default: UNREACHABLE();
   18604   }
   18605 
   18606   UNREACHABLE();
   18607   return NULL;
   18608 }
   18609 
   18610 
   18611 // static
   18612 Handle<Object> JSDate::SetValue(Handle<JSDate> date, double v) {
   18613   Isolate* const isolate = date->GetIsolate();
   18614   Handle<Object> value = isolate->factory()->NewNumber(v);
   18615   bool value_is_nan = std::isnan(v);
   18616   date->SetValue(*value, value_is_nan);
   18617   return value;
   18618 }
   18619 
   18620 
   18621 void JSDate::SetValue(Object* value, bool is_value_nan) {
   18622   set_value(value);
   18623   if (is_value_nan) {
   18624     HeapNumber* nan = GetIsolate()->heap()->nan_value();
   18625     set_cache_stamp(nan, SKIP_WRITE_BARRIER);
   18626     set_year(nan, SKIP_WRITE_BARRIER);
   18627     set_month(nan, SKIP_WRITE_BARRIER);
   18628     set_day(nan, SKIP_WRITE_BARRIER);
   18629     set_hour(nan, SKIP_WRITE_BARRIER);
   18630     set_min(nan, SKIP_WRITE_BARRIER);
   18631     set_sec(nan, SKIP_WRITE_BARRIER);
   18632     set_weekday(nan, SKIP_WRITE_BARRIER);
   18633   } else {
   18634     set_cache_stamp(Smi::FromInt(DateCache::kInvalidStamp), SKIP_WRITE_BARRIER);
   18635   }
   18636 }
   18637 
   18638 
   18639 // static
   18640 MaybeHandle<Object> JSDate::ToPrimitive(Handle<JSReceiver> receiver,
   18641                                         Handle<Object> hint) {
   18642   Isolate* const isolate = receiver->GetIsolate();
   18643   if (hint->IsString()) {
   18644     Handle<String> hint_string = Handle<String>::cast(hint);
   18645     if (hint_string->Equals(isolate->heap()->number_string())) {
   18646       return JSReceiver::OrdinaryToPrimitive(receiver,
   18647                                              OrdinaryToPrimitiveHint::kNumber);
   18648     }
   18649     if (hint_string->Equals(isolate->heap()->default_string()) ||
   18650         hint_string->Equals(isolate->heap()->string_string())) {
   18651       return JSReceiver::OrdinaryToPrimitive(receiver,
   18652                                              OrdinaryToPrimitiveHint::kString);
   18653     }
   18654   }
   18655   THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kInvalidHint, hint),
   18656                   Object);
   18657 }
   18658 
   18659 
   18660 void JSDate::SetCachedFields(int64_t local_time_ms, DateCache* date_cache) {
   18661   int days = DateCache::DaysFromTime(local_time_ms);
   18662   int time_in_day_ms = DateCache::TimeInDay(local_time_ms, days);
   18663   int year, month, day;
   18664   date_cache->YearMonthDayFromDays(days, &year, &month, &day);
   18665   int weekday = date_cache->Weekday(days);
   18666   int hour = time_in_day_ms / (60 * 60 * 1000);
   18667   int min = (time_in_day_ms / (60 * 1000)) % 60;
   18668   int sec = (time_in_day_ms / 1000) % 60;
   18669   set_cache_stamp(date_cache->stamp());
   18670   set_year(Smi::FromInt(year), SKIP_WRITE_BARRIER);
   18671   set_month(Smi::FromInt(month), SKIP_WRITE_BARRIER);
   18672   set_day(Smi::FromInt(day), SKIP_WRITE_BARRIER);
   18673   set_weekday(Smi::FromInt(weekday), SKIP_WRITE_BARRIER);
   18674   set_hour(Smi::FromInt(hour), SKIP_WRITE_BARRIER);
   18675   set_min(Smi::FromInt(min), SKIP_WRITE_BARRIER);
   18676   set_sec(Smi::FromInt(sec), SKIP_WRITE_BARRIER);
   18677 }
   18678 
   18679 
   18680 void JSArrayBuffer::Neuter() {
   18681   CHECK(is_neuterable());
   18682   CHECK(is_external());
   18683   set_backing_store(NULL);
   18684   set_byte_length(Smi::FromInt(0));
   18685   set_was_neutered(true);
   18686 }
   18687 
   18688 
   18689 void JSArrayBuffer::Setup(Handle<JSArrayBuffer> array_buffer, Isolate* isolate,
   18690                           bool is_external, void* data, size_t allocated_length,
   18691                           SharedFlag shared) {
   18692   DCHECK(array_buffer->GetInternalFieldCount() ==
   18693          v8::ArrayBuffer::kInternalFieldCount);
   18694   for (int i = 0; i < v8::ArrayBuffer::kInternalFieldCount; i++) {
   18695     array_buffer->SetInternalField(i, Smi::FromInt(0));
   18696   }
   18697   array_buffer->set_bit_field(0);
   18698   array_buffer->set_is_external(is_external);
   18699   array_buffer->set_is_neuterable(shared == SharedFlag::kNotShared);
   18700   array_buffer->set_is_shared(shared == SharedFlag::kShared);
   18701 
   18702   Handle<Object> byte_length =
   18703       isolate->factory()->NewNumberFromSize(allocated_length);
   18704   CHECK(byte_length->IsSmi() || byte_length->IsHeapNumber());
   18705   array_buffer->set_byte_length(*byte_length);
   18706   // Initialize backing store at last to avoid handling of |JSArrayBuffers| that
   18707   // are currently being constructed in the |ArrayBufferTracker|. The
   18708   // registration method below handles the case of registering a buffer that has
   18709   // already been promoted.
   18710   array_buffer->set_backing_store(data);
   18711 
   18712   if (data && !is_external) {
   18713     isolate->heap()->RegisterNewArrayBuffer(*array_buffer);
   18714   }
   18715 }
   18716 
   18717 
   18718 bool JSArrayBuffer::SetupAllocatingData(Handle<JSArrayBuffer> array_buffer,
   18719                                         Isolate* isolate,
   18720                                         size_t allocated_length,
   18721                                         bool initialize, SharedFlag shared) {
   18722   void* data;
   18723   CHECK(isolate->array_buffer_allocator() != NULL);
   18724   // Prevent creating array buffers when serializing.
   18725   DCHECK(!isolate->serializer_enabled());
   18726   if (allocated_length != 0) {
   18727     if (initialize) {
   18728       data = isolate->array_buffer_allocator()->Allocate(allocated_length);
   18729     } else {
   18730       data = isolate->array_buffer_allocator()->AllocateUninitialized(
   18731           allocated_length);
   18732     }
   18733     if (data == NULL) return false;
   18734   } else {
   18735     data = NULL;
   18736   }
   18737 
   18738   JSArrayBuffer::Setup(array_buffer, isolate, false, data, allocated_length,
   18739                        shared);
   18740   return true;
   18741 }
   18742 
   18743 
   18744 Handle<JSArrayBuffer> JSTypedArray::MaterializeArrayBuffer(
   18745     Handle<JSTypedArray> typed_array) {
   18746 
   18747   Handle<Map> map(typed_array->map());
   18748   Isolate* isolate = typed_array->GetIsolate();
   18749 
   18750   DCHECK(IsFixedTypedArrayElementsKind(map->elements_kind()));
   18751 
   18752   Handle<FixedTypedArrayBase> fixed_typed_array(
   18753       FixedTypedArrayBase::cast(typed_array->elements()));
   18754 
   18755   Handle<JSArrayBuffer> buffer(JSArrayBuffer::cast(typed_array->buffer()),
   18756                                isolate);
   18757   void* backing_store =
   18758       isolate->array_buffer_allocator()->AllocateUninitialized(
   18759           fixed_typed_array->DataSize());
   18760   buffer->set_is_external(false);
   18761   DCHECK(buffer->byte_length()->IsSmi() ||
   18762          buffer->byte_length()->IsHeapNumber());
   18763   DCHECK(NumberToInt32(buffer->byte_length()) == fixed_typed_array->DataSize());
   18764   // Initialize backing store at last to avoid handling of |JSArrayBuffers| that
   18765   // are currently being constructed in the |ArrayBufferTracker|. The
   18766   // registration method below handles the case of registering a buffer that has
   18767   // already been promoted.
   18768   buffer->set_backing_store(backing_store);
   18769   isolate->heap()->RegisterNewArrayBuffer(*buffer);
   18770   memcpy(buffer->backing_store(),
   18771          fixed_typed_array->DataPtr(),
   18772          fixed_typed_array->DataSize());
   18773   Handle<FixedTypedArrayBase> new_elements =
   18774       isolate->factory()->NewFixedTypedArrayWithExternalPointer(
   18775           fixed_typed_array->length(), typed_array->type(),
   18776           static_cast<uint8_t*>(buffer->backing_store()));
   18777 
   18778   typed_array->set_elements(*new_elements);
   18779 
   18780   return buffer;
   18781 }
   18782 
   18783 
   18784 Handle<JSArrayBuffer> JSTypedArray::GetBuffer() {
   18785   Handle<JSArrayBuffer> array_buffer(JSArrayBuffer::cast(buffer()),
   18786                                      GetIsolate());
   18787   if (array_buffer->was_neutered() ||
   18788       array_buffer->backing_store() != nullptr) {
   18789     return array_buffer;
   18790   }
   18791   Handle<JSTypedArray> self(this);
   18792   return MaterializeArrayBuffer(self);
   18793 }
   18794 
   18795 
   18796 Handle<PropertyCell> PropertyCell::InvalidateEntry(
   18797     Handle<GlobalDictionary> dictionary, int entry) {
   18798   Isolate* isolate = dictionary->GetIsolate();
   18799   // Swap with a copy.
   18800   DCHECK(dictionary->ValueAt(entry)->IsPropertyCell());
   18801   Handle<PropertyCell> cell(PropertyCell::cast(dictionary->ValueAt(entry)));
   18802   auto new_cell = isolate->factory()->NewPropertyCell();
   18803   new_cell->set_value(cell->value());
   18804   dictionary->ValueAtPut(entry, *new_cell);
   18805   bool is_the_hole = cell->value()->IsTheHole(isolate);
   18806   // Cell is officially mutable henceforth.
   18807   PropertyDetails details = cell->property_details();
   18808   details = details.set_cell_type(is_the_hole ? PropertyCellType::kInvalidated
   18809                                               : PropertyCellType::kMutable);
   18810   new_cell->set_property_details(details);
   18811   // Old cell is ready for invalidation.
   18812   if (is_the_hole) {
   18813     cell->set_value(isolate->heap()->undefined_value());
   18814   } else {
   18815     cell->set_value(isolate->heap()->the_hole_value());
   18816   }
   18817   details = details.set_cell_type(PropertyCellType::kInvalidated);
   18818   cell->set_property_details(details);
   18819   cell->dependent_code()->DeoptimizeDependentCodeGroup(
   18820       isolate, DependentCode::kPropertyCellChangedGroup);
   18821   return new_cell;
   18822 }
   18823 
   18824 
   18825 PropertyCellConstantType PropertyCell::GetConstantType() {
   18826   if (value()->IsSmi()) return PropertyCellConstantType::kSmi;
   18827   return PropertyCellConstantType::kStableMap;
   18828 }
   18829 
   18830 
   18831 static bool RemainsConstantType(Handle<PropertyCell> cell,
   18832                                 Handle<Object> value) {
   18833   // TODO(dcarney): double->smi and smi->double transition from kConstant
   18834   if (cell->value()->IsSmi() && value->IsSmi()) {
   18835     return true;
   18836   } else if (cell->value()->IsHeapObject() && value->IsHeapObject()) {
   18837     return HeapObject::cast(cell->value())->map() ==
   18838                HeapObject::cast(*value)->map() &&
   18839            HeapObject::cast(*value)->map()->is_stable();
   18840   }
   18841   return false;
   18842 }
   18843 
   18844 
   18845 PropertyCellType PropertyCell::UpdatedType(Handle<PropertyCell> cell,
   18846                                            Handle<Object> value,
   18847                                            PropertyDetails details) {
   18848   PropertyCellType type = details.cell_type();
   18849   Isolate* isolate = cell->GetIsolate();
   18850   DCHECK(!value->IsTheHole(isolate));
   18851   if (cell->value()->IsTheHole(isolate)) {
   18852     switch (type) {
   18853       // Only allow a cell to transition once into constant state.
   18854       case PropertyCellType::kUninitialized:
   18855         if (value->IsUndefined(isolate)) return PropertyCellType::kUndefined;
   18856         return PropertyCellType::kConstant;
   18857       case PropertyCellType::kInvalidated:
   18858         return PropertyCellType::kMutable;
   18859       default:
   18860         UNREACHABLE();
   18861         return PropertyCellType::kMutable;
   18862     }
   18863   }
   18864   switch (type) {
   18865     case PropertyCellType::kUndefined:
   18866       return PropertyCellType::kConstant;
   18867     case PropertyCellType::kConstant:
   18868       if (*value == cell->value()) return PropertyCellType::kConstant;
   18869     // Fall through.
   18870     case PropertyCellType::kConstantType:
   18871       if (RemainsConstantType(cell, value)) {
   18872         return PropertyCellType::kConstantType;
   18873       }
   18874     // Fall through.
   18875     case PropertyCellType::kMutable:
   18876       return PropertyCellType::kMutable;
   18877   }
   18878   UNREACHABLE();
   18879   return PropertyCellType::kMutable;
   18880 }
   18881 
   18882 
   18883 void PropertyCell::UpdateCell(Handle<GlobalDictionary> dictionary, int entry,
   18884                               Handle<Object> value, PropertyDetails details) {
   18885   Isolate* isolate = dictionary->GetIsolate();
   18886   DCHECK(!value->IsTheHole(isolate));
   18887   DCHECK(dictionary->ValueAt(entry)->IsPropertyCell());
   18888   Handle<PropertyCell> cell(PropertyCell::cast(dictionary->ValueAt(entry)));
   18889   const PropertyDetails original_details = cell->property_details();
   18890   // Data accesses could be cached in ics or optimized code.
   18891   bool invalidate =
   18892       original_details.kind() == kData && details.kind() == kAccessor;
   18893   int index = original_details.dictionary_index();
   18894   PropertyCellType old_type = original_details.cell_type();
   18895   // Preserve the enumeration index unless the property was deleted or never
   18896   // initialized.
   18897   if (cell->value()->IsTheHole(isolate)) {
   18898     index = dictionary->NextEnumerationIndex();
   18899     dictionary->SetNextEnumerationIndex(index + 1);
   18900     // Negative lookup cells must be invalidated.
   18901     invalidate = true;
   18902   }
   18903   DCHECK(index > 0);
   18904   details = details.set_index(index);
   18905 
   18906   PropertyCellType new_type = UpdatedType(cell, value, original_details);
   18907   if (invalidate) cell = PropertyCell::InvalidateEntry(dictionary, entry);
   18908 
   18909   // Install new property details and cell value.
   18910   details = details.set_cell_type(new_type);
   18911   cell->set_property_details(details);
   18912   cell->set_value(*value);
   18913 
   18914   // Deopt when transitioning from a constant type.
   18915   if (!invalidate && (old_type != new_type ||
   18916                       original_details.IsReadOnly() != details.IsReadOnly())) {
   18917     cell->dependent_code()->DeoptimizeDependentCodeGroup(
   18918         isolate, DependentCode::kPropertyCellChangedGroup);
   18919   }
   18920 }
   18921 
   18922 
   18923 // static
   18924 void PropertyCell::SetValueWithInvalidation(Handle<PropertyCell> cell,
   18925                                             Handle<Object> new_value) {
   18926   if (cell->value() != *new_value) {
   18927     cell->set_value(*new_value);
   18928     Isolate* isolate = cell->GetIsolate();
   18929     cell->dependent_code()->DeoptimizeDependentCodeGroup(
   18930         isolate, DependentCode::kPropertyCellChangedGroup);
   18931   }
   18932 }
   18933 
   18934 int JSGeneratorObject::source_position() const {
   18935   CHECK(is_suspended());
   18936   if (function()->shared()->HasBytecodeArray()) {
   18937     // New-style generators.
   18938     int offset = Smi::cast(input_or_debug_pos())->value();
   18939     // The stored bytecode offset is relative to a different base than what
   18940     // is used in the source position table, hence the subtraction.
   18941     offset -= BytecodeArray::kHeaderSize - kHeapObjectTag;
   18942     return function()->shared()->bytecode_array()->SourcePosition(offset);
   18943   } else {
   18944     // Old-style generators.
   18945     int offset = continuation();
   18946     CHECK(0 <= offset && offset < function()->code()->instruction_size());
   18947     return function()->code()->SourcePosition(offset);
   18948   }
   18949 }
   18950 
   18951 // static
   18952 AccessCheckInfo* AccessCheckInfo::Get(Isolate* isolate,
   18953                                       Handle<JSObject> receiver) {
   18954   DisallowHeapAllocation no_gc;
   18955   DCHECK(receiver->map()->is_access_check_needed());
   18956   Object* maybe_constructor = receiver->map()->GetConstructor();
   18957   // Might happen for a detached context.
   18958   if (!maybe_constructor->IsJSFunction()) return nullptr;
   18959   JSFunction* constructor = JSFunction::cast(maybe_constructor);
   18960   // Might happen for the debug context.
   18961   if (!constructor->shared()->IsApiFunction()) return nullptr;
   18962 
   18963   Object* data_obj =
   18964       constructor->shared()->get_api_func_data()->access_check_info();
   18965   if (data_obj->IsUndefined(isolate)) return nullptr;
   18966 
   18967   return AccessCheckInfo::cast(data_obj);
   18968 }
   18969 
   18970 }  // namespace internal
   18971 }  // namespace v8
   18972