Home | History | Annotate | Download | only in Analysis
      1 //===- CFLAliasAnalysis.cpp - CFL-Based Alias Analysis Implementation ------==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements a CFL-based context-insensitive alias analysis
     11 // algorithm. It does not depend on types. The algorithm is a mixture of the one
     12 // described in "Demand-driven alias analysis for C" by Xin Zheng and Radu
     13 // Rugina, and "Fast algorithms for Dyck-CFL-reachability with applications to
     14 // Alias Analysis" by Zhang Q, Lyu M R, Yuan H, and Su Z. -- to summarize the
     15 // papers, we build a graph of the uses of a variable, where each node is a
     16 // memory location, and each edge is an action that happened on that memory
     17 // location.  The "actions" can be one of Dereference, Reference, or Assign.
     18 //
     19 // Two variables are considered as aliasing iff you can reach one value's node
     20 // from the other value's node and the language formed by concatenating all of
     21 // the edge labels (actions) conforms to a context-free grammar.
     22 //
     23 // Because this algorithm requires a graph search on each query, we execute the
     24 // algorithm outlined in "Fast algorithms..." (mentioned above)
     25 // in order to transform the graph into sets of variables that may alias in
     26 // ~nlogn time (n = number of variables.), which makes queries take constant
     27 // time.
     28 //===----------------------------------------------------------------------===//
     29 
     30 #include "llvm/Analysis/CFLAliasAnalysis.h"
     31 #include "StratifiedSets.h"
     32 #include "llvm/ADT/BitVector.h"
     33 #include "llvm/ADT/DenseMap.h"
     34 #include "llvm/ADT/None.h"
     35 #include "llvm/ADT/Optional.h"
     36 #include "llvm/Analysis/TargetLibraryInfo.h"
     37 #include "llvm/IR/Constants.h"
     38 #include "llvm/IR/Function.h"
     39 #include "llvm/IR/InstVisitor.h"
     40 #include "llvm/IR/Instructions.h"
     41 #include "llvm/Pass.h"
     42 #include "llvm/Support/Allocator.h"
     43 #include "llvm/Support/Compiler.h"
     44 #include "llvm/Support/Debug.h"
     45 #include "llvm/Support/ErrorHandling.h"
     46 #include "llvm/Support/raw_ostream.h"
     47 #include <algorithm>
     48 #include <cassert>
     49 #include <memory>
     50 #include <tuple>
     51 
     52 using namespace llvm;
     53 
     54 #define DEBUG_TYPE "cfl-aa"
     55 
     56 CFLAAResult::CFLAAResult(const TargetLibraryInfo &TLI) : AAResultBase(TLI) {}
     57 CFLAAResult::CFLAAResult(CFLAAResult &&Arg) : AAResultBase(std::move(Arg)) {}
     58 
     59 // \brief Information we have about a function and would like to keep around
     60 struct CFLAAResult::FunctionInfo {
     61   StratifiedSets<Value *> Sets;
     62   // Lots of functions have < 4 returns. Adjust as necessary.
     63   SmallVector<Value *, 4> ReturnedValues;
     64 
     65   FunctionInfo(StratifiedSets<Value *> &&S, SmallVector<Value *, 4> &&RV)
     66       : Sets(std::move(S)), ReturnedValues(std::move(RV)) {}
     67 };
     68 
     69 // Try to go from a Value* to a Function*. Never returns nullptr.
     70 static Optional<Function *> parentFunctionOfValue(Value *);
     71 
     72 // Returns possible functions called by the Inst* into the given
     73 // SmallVectorImpl. Returns true if targets found, false otherwise.
     74 // This is templated because InvokeInst/CallInst give us the same
     75 // set of functions that we care about, and I don't like repeating
     76 // myself.
     77 template <typename Inst>
     78 static bool getPossibleTargets(Inst *, SmallVectorImpl<Function *> &);
     79 
     80 // Some instructions need to have their users tracked. Instructions like
     81 // `add` require you to get the users of the Instruction* itself, other
     82 // instructions like `store` require you to get the users of the first
     83 // operand. This function gets the "proper" value to track for each
     84 // type of instruction we support.
     85 static Optional<Value *> getTargetValue(Instruction *);
     86 
     87 // There are certain instructions (i.e. FenceInst, etc.) that we ignore.
     88 // This notes that we should ignore those.
     89 static bool hasUsefulEdges(Instruction *);
     90 
     91 const StratifiedIndex StratifiedLink::SetSentinel =
     92     std::numeric_limits<StratifiedIndex>::max();
     93 
     94 namespace {
     95 // StratifiedInfo Attribute things.
     96 typedef unsigned StratifiedAttr;
     97 LLVM_CONSTEXPR unsigned MaxStratifiedAttrIndex = NumStratifiedAttrs;
     98 LLVM_CONSTEXPR unsigned AttrAllIndex = 0;
     99 LLVM_CONSTEXPR unsigned AttrGlobalIndex = 1;
    100 LLVM_CONSTEXPR unsigned AttrUnknownIndex = 2;
    101 LLVM_CONSTEXPR unsigned AttrFirstArgIndex = 3;
    102 LLVM_CONSTEXPR unsigned AttrLastArgIndex = MaxStratifiedAttrIndex;
    103 LLVM_CONSTEXPR unsigned AttrMaxNumArgs = AttrLastArgIndex - AttrFirstArgIndex;
    104 
    105 LLVM_CONSTEXPR StratifiedAttr AttrNone = 0;
    106 LLVM_CONSTEXPR StratifiedAttr AttrUnknown = 1 << AttrUnknownIndex;
    107 LLVM_CONSTEXPR StratifiedAttr AttrAll = ~AttrNone;
    108 
    109 // \brief StratifiedSets call for knowledge of "direction", so this is how we
    110 // represent that locally.
    111 enum class Level { Same, Above, Below };
    112 
    113 // \brief Edges can be one of four "weights" -- each weight must have an inverse
    114 // weight (Assign has Assign; Reference has Dereference).
    115 enum class EdgeType {
    116   // The weight assigned when assigning from or to a value. For example, in:
    117   // %b = getelementptr %a, 0
    118   // ...The relationships are %b assign %a, and %a assign %b. This used to be
    119   // two edges, but having a distinction bought us nothing.
    120   Assign,
    121 
    122   // The edge used when we have an edge going from some handle to a Value.
    123   // Examples of this include:
    124   // %b = load %a              (%b Dereference %a)
    125   // %b = extractelement %a, 0 (%a Dereference %b)
    126   Dereference,
    127 
    128   // The edge used when our edge goes from a value to a handle that may have
    129   // contained it at some point. Examples:
    130   // %b = load %a              (%a Reference %b)
    131   // %b = extractelement %a, 0 (%b Reference %a)
    132   Reference
    133 };
    134 
    135 // \brief Encodes the notion of a "use"
    136 struct Edge {
    137   // \brief Which value the edge is coming from
    138   Value *From;
    139 
    140   // \brief Which value the edge is pointing to
    141   Value *To;
    142 
    143   // \brief Edge weight
    144   EdgeType Weight;
    145 
    146   // \brief Whether we aliased any external values along the way that may be
    147   // invisible to the analysis (i.e. landingpad for exceptions, calls for
    148   // interprocedural analysis, etc.)
    149   StratifiedAttrs AdditionalAttrs;
    150 
    151   Edge(Value *From, Value *To, EdgeType W, StratifiedAttrs A)
    152       : From(From), To(To), Weight(W), AdditionalAttrs(A) {}
    153 };
    154 
    155 // \brief Gets the edges our graph should have, based on an Instruction*
    156 class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> {
    157   CFLAAResult &AA;
    158   SmallVectorImpl<Edge> &Output;
    159 
    160 public:
    161   GetEdgesVisitor(CFLAAResult &AA, SmallVectorImpl<Edge> &Output)
    162       : AA(AA), Output(Output) {}
    163 
    164   void visitInstruction(Instruction &) {
    165     llvm_unreachable("Unsupported instruction encountered");
    166   }
    167 
    168   void visitPtrToIntInst(PtrToIntInst &Inst) {
    169     auto *Ptr = Inst.getOperand(0);
    170     Output.push_back(Edge(Ptr, Ptr, EdgeType::Assign, AttrUnknown));
    171   }
    172 
    173   void visitIntToPtrInst(IntToPtrInst &Inst) {
    174     auto *Ptr = &Inst;
    175     Output.push_back(Edge(Ptr, Ptr, EdgeType::Assign, AttrUnknown));
    176   }
    177 
    178   void visitCastInst(CastInst &Inst) {
    179     Output.push_back(
    180         Edge(&Inst, Inst.getOperand(0), EdgeType::Assign, AttrNone));
    181   }
    182 
    183   void visitBinaryOperator(BinaryOperator &Inst) {
    184     auto *Op1 = Inst.getOperand(0);
    185     auto *Op2 = Inst.getOperand(1);
    186     Output.push_back(Edge(&Inst, Op1, EdgeType::Assign, AttrNone));
    187     Output.push_back(Edge(&Inst, Op2, EdgeType::Assign, AttrNone));
    188   }
    189 
    190   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
    191     auto *Ptr = Inst.getPointerOperand();
    192     auto *Val = Inst.getNewValOperand();
    193     Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
    194   }
    195 
    196   void visitAtomicRMWInst(AtomicRMWInst &Inst) {
    197     auto *Ptr = Inst.getPointerOperand();
    198     auto *Val = Inst.getValOperand();
    199     Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
    200   }
    201 
    202   void visitPHINode(PHINode &Inst) {
    203     for (Value *Val : Inst.incoming_values()) {
    204       Output.push_back(Edge(&Inst, Val, EdgeType::Assign, AttrNone));
    205     }
    206   }
    207 
    208   void visitGetElementPtrInst(GetElementPtrInst &Inst) {
    209     auto *Op = Inst.getPointerOperand();
    210     Output.push_back(Edge(&Inst, Op, EdgeType::Assign, AttrNone));
    211     for (auto I = Inst.idx_begin(), E = Inst.idx_end(); I != E; ++I)
    212       Output.push_back(Edge(&Inst, *I, EdgeType::Assign, AttrNone));
    213   }
    214 
    215   void visitSelectInst(SelectInst &Inst) {
    216     // Condition is not processed here (The actual statement producing
    217     // the condition result is processed elsewhere). For select, the
    218     // condition is evaluated, but not loaded, stored, or assigned
    219     // simply as a result of being the condition of a select.
    220 
    221     auto *TrueVal = Inst.getTrueValue();
    222     Output.push_back(Edge(&Inst, TrueVal, EdgeType::Assign, AttrNone));
    223     auto *FalseVal = Inst.getFalseValue();
    224     Output.push_back(Edge(&Inst, FalseVal, EdgeType::Assign, AttrNone));
    225   }
    226 
    227   void visitAllocaInst(AllocaInst &) {}
    228 
    229   void visitLoadInst(LoadInst &Inst) {
    230     auto *Ptr = Inst.getPointerOperand();
    231     auto *Val = &Inst;
    232     Output.push_back(Edge(Val, Ptr, EdgeType::Reference, AttrNone));
    233   }
    234 
    235   void visitStoreInst(StoreInst &Inst) {
    236     auto *Ptr = Inst.getPointerOperand();
    237     auto *Val = Inst.getValueOperand();
    238     Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
    239   }
    240 
    241   void visitVAArgInst(VAArgInst &Inst) {
    242     // We can't fully model va_arg here. For *Ptr = Inst.getOperand(0), it does
    243     // two things:
    244     //  1. Loads a value from *((T*)*Ptr).
    245     //  2. Increments (stores to) *Ptr by some target-specific amount.
    246     // For now, we'll handle this like a landingpad instruction (by placing the
    247     // result in its own group, and having that group alias externals).
    248     auto *Val = &Inst;
    249     Output.push_back(Edge(Val, Val, EdgeType::Assign, AttrAll));
    250   }
    251 
    252   static bool isFunctionExternal(Function *Fn) {
    253     return Fn->isDeclaration() || !Fn->hasLocalLinkage();
    254   }
    255 
    256   // Gets whether the sets at Index1 above, below, or equal to the sets at
    257   // Index2. Returns None if they are not in the same set chain.
    258   static Optional<Level> getIndexRelation(const StratifiedSets<Value *> &Sets,
    259                                           StratifiedIndex Index1,
    260                                           StratifiedIndex Index2) {
    261     if (Index1 == Index2)
    262       return Level::Same;
    263 
    264     const auto *Current = &Sets.getLink(Index1);
    265     while (Current->hasBelow()) {
    266       if (Current->Below == Index2)
    267         return Level::Below;
    268       Current = &Sets.getLink(Current->Below);
    269     }
    270 
    271     Current = &Sets.getLink(Index1);
    272     while (Current->hasAbove()) {
    273       if (Current->Above == Index2)
    274         return Level::Above;
    275       Current = &Sets.getLink(Current->Above);
    276     }
    277 
    278     return NoneType();
    279   }
    280 
    281   bool
    282   tryInterproceduralAnalysis(const SmallVectorImpl<Function *> &Fns,
    283                              Value *FuncValue,
    284                              const iterator_range<User::op_iterator> &Args) {
    285     const unsigned ExpectedMaxArgs = 8;
    286     const unsigned MaxSupportedArgs = 50;
    287     assert(Fns.size() > 0);
    288 
    289     // I put this here to give us an upper bound on time taken by IPA. Is it
    290     // really (realistically) needed? Keep in mind that we do have an n^2 algo.
    291     if (std::distance(Args.begin(), Args.end()) > (int)MaxSupportedArgs)
    292       return false;
    293 
    294     // Exit early if we'll fail anyway
    295     for (auto *Fn : Fns) {
    296       if (isFunctionExternal(Fn) || Fn->isVarArg())
    297         return false;
    298       auto &MaybeInfo = AA.ensureCached(Fn);
    299       if (!MaybeInfo.hasValue())
    300         return false;
    301     }
    302 
    303     SmallVector<Value *, ExpectedMaxArgs> Arguments(Args.begin(), Args.end());
    304     SmallVector<StratifiedInfo, ExpectedMaxArgs> Parameters;
    305     for (auto *Fn : Fns) {
    306       auto &Info = *AA.ensureCached(Fn);
    307       auto &Sets = Info.Sets;
    308       auto &RetVals = Info.ReturnedValues;
    309 
    310       Parameters.clear();
    311       for (auto &Param : Fn->args()) {
    312         auto MaybeInfo = Sets.find(&Param);
    313         // Did a new parameter somehow get added to the function/slip by?
    314         if (!MaybeInfo.hasValue())
    315           return false;
    316         Parameters.push_back(*MaybeInfo);
    317       }
    318 
    319       // Adding an edge from argument -> return value for each parameter that
    320       // may alias the return value
    321       for (unsigned I = 0, E = Parameters.size(); I != E; ++I) {
    322         auto &ParamInfo = Parameters[I];
    323         auto &ArgVal = Arguments[I];
    324         bool AddEdge = false;
    325         StratifiedAttrs Externals;
    326         for (unsigned X = 0, XE = RetVals.size(); X != XE; ++X) {
    327           auto MaybeInfo = Sets.find(RetVals[X]);
    328           if (!MaybeInfo.hasValue())
    329             return false;
    330 
    331           auto &RetInfo = *MaybeInfo;
    332           auto RetAttrs = Sets.getLink(RetInfo.Index).Attrs;
    333           auto ParamAttrs = Sets.getLink(ParamInfo.Index).Attrs;
    334           auto MaybeRelation =
    335               getIndexRelation(Sets, ParamInfo.Index, RetInfo.Index);
    336           if (MaybeRelation.hasValue()) {
    337             AddEdge = true;
    338             Externals |= RetAttrs | ParamAttrs;
    339           }
    340         }
    341         if (AddEdge)
    342           Output.push_back(Edge(FuncValue, ArgVal, EdgeType::Assign,
    343                                 StratifiedAttrs().flip()));
    344       }
    345 
    346       if (Parameters.size() != Arguments.size())
    347         return false;
    348 
    349       // Adding edges between arguments for arguments that may end up aliasing
    350       // each other. This is necessary for functions such as
    351       // void foo(int** a, int** b) { *a = *b; }
    352       // (Technically, the proper sets for this would be those below
    353       // Arguments[I] and Arguments[X], but our algorithm will produce
    354       // extremely similar, and equally correct, results either way)
    355       for (unsigned I = 0, E = Arguments.size(); I != E; ++I) {
    356         auto &MainVal = Arguments[I];
    357         auto &MainInfo = Parameters[I];
    358         auto &MainAttrs = Sets.getLink(MainInfo.Index).Attrs;
    359         for (unsigned X = I + 1; X != E; ++X) {
    360           auto &SubInfo = Parameters[X];
    361           auto &SubVal = Arguments[X];
    362           auto &SubAttrs = Sets.getLink(SubInfo.Index).Attrs;
    363           auto MaybeRelation =
    364               getIndexRelation(Sets, MainInfo.Index, SubInfo.Index);
    365 
    366           if (!MaybeRelation.hasValue())
    367             continue;
    368 
    369           auto NewAttrs = SubAttrs | MainAttrs;
    370           Output.push_back(Edge(MainVal, SubVal, EdgeType::Assign, NewAttrs));
    371         }
    372       }
    373     }
    374     return true;
    375   }
    376 
    377   template <typename InstT> void visitCallLikeInst(InstT &Inst) {
    378     // TODO: Add support for noalias args/all the other fun function attributes
    379     // that we can tack on.
    380     SmallVector<Function *, 4> Targets;
    381     if (getPossibleTargets(&Inst, Targets)) {
    382       if (tryInterproceduralAnalysis(Targets, &Inst, Inst.arg_operands()))
    383         return;
    384       // Cleanup from interprocedural analysis
    385       Output.clear();
    386     }
    387 
    388     // Because the function is opaque, we need to note that anything
    389     // could have happened to the arguments, and that the result could alias
    390     // just about anything, too.
    391     // The goal of the loop is in part to unify many Values into one set, so we
    392     // don't care if the function is void there.
    393     for (Value *V : Inst.arg_operands())
    394       Output.push_back(Edge(&Inst, V, EdgeType::Assign, AttrAll));
    395     if (Inst.getNumArgOperands() == 0 &&
    396         Inst.getType() != Type::getVoidTy(Inst.getContext()))
    397       Output.push_back(Edge(&Inst, &Inst, EdgeType::Assign, AttrAll));
    398   }
    399 
    400   void visitCallInst(CallInst &Inst) { visitCallLikeInst(Inst); }
    401 
    402   void visitInvokeInst(InvokeInst &Inst) { visitCallLikeInst(Inst); }
    403 
    404   // Because vectors/aggregates are immutable and unaddressable,
    405   // there's nothing we can do to coax a value out of them, other
    406   // than calling Extract{Element,Value}. We can effectively treat
    407   // them as pointers to arbitrary memory locations we can store in
    408   // and load from.
    409   void visitExtractElementInst(ExtractElementInst &Inst) {
    410     auto *Ptr = Inst.getVectorOperand();
    411     auto *Val = &Inst;
    412     Output.push_back(Edge(Val, Ptr, EdgeType::Reference, AttrNone));
    413   }
    414 
    415   void visitInsertElementInst(InsertElementInst &Inst) {
    416     auto *Vec = Inst.getOperand(0);
    417     auto *Val = Inst.getOperand(1);
    418     Output.push_back(Edge(&Inst, Vec, EdgeType::Assign, AttrNone));
    419     Output.push_back(Edge(&Inst, Val, EdgeType::Dereference, AttrNone));
    420   }
    421 
    422   void visitLandingPadInst(LandingPadInst &Inst) {
    423     // Exceptions come from "nowhere", from our analysis' perspective.
    424     // So we place the instruction its own group, noting that said group may
    425     // alias externals
    426     Output.push_back(Edge(&Inst, &Inst, EdgeType::Assign, AttrAll));
    427   }
    428 
    429   void visitInsertValueInst(InsertValueInst &Inst) {
    430     auto *Agg = Inst.getOperand(0);
    431     auto *Val = Inst.getOperand(1);
    432     Output.push_back(Edge(&Inst, Agg, EdgeType::Assign, AttrNone));
    433     Output.push_back(Edge(&Inst, Val, EdgeType::Dereference, AttrNone));
    434   }
    435 
    436   void visitExtractValueInst(ExtractValueInst &Inst) {
    437     auto *Ptr = Inst.getAggregateOperand();
    438     Output.push_back(Edge(&Inst, Ptr, EdgeType::Reference, AttrNone));
    439   }
    440 
    441   void visitShuffleVectorInst(ShuffleVectorInst &Inst) {
    442     auto *From1 = Inst.getOperand(0);
    443     auto *From2 = Inst.getOperand(1);
    444     Output.push_back(Edge(&Inst, From1, EdgeType::Assign, AttrNone));
    445     Output.push_back(Edge(&Inst, From2, EdgeType::Assign, AttrNone));
    446   }
    447 
    448   void visitConstantExpr(ConstantExpr *CE) {
    449     switch (CE->getOpcode()) {
    450     default:
    451       llvm_unreachable("Unknown instruction type encountered!");
    452 // Build the switch statement using the Instruction.def file.
    453 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
    454   case Instruction::OPCODE:                                                    \
    455     visit##OPCODE(*(CLASS *)CE);                                               \
    456     break;
    457 #include "llvm/IR/Instruction.def"
    458     }
    459   }
    460 };
    461 
    462 // For a given instruction, we need to know which Value* to get the
    463 // users of in order to build our graph. In some cases (i.e. add),
    464 // we simply need the Instruction*. In other cases (i.e. store),
    465 // finding the users of the Instruction* is useless; we need to find
    466 // the users of the first operand. This handles determining which
    467 // value to follow for us.
    468 //
    469 // Note: we *need* to keep this in sync with GetEdgesVisitor. Add
    470 // something to GetEdgesVisitor, add it here -- remove something from
    471 // GetEdgesVisitor, remove it here.
    472 class GetTargetValueVisitor
    473     : public InstVisitor<GetTargetValueVisitor, Value *> {
    474 public:
    475   Value *visitInstruction(Instruction &Inst) { return &Inst; }
    476 
    477   Value *visitStoreInst(StoreInst &Inst) { return Inst.getPointerOperand(); }
    478 
    479   Value *visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
    480     return Inst.getPointerOperand();
    481   }
    482 
    483   Value *visitAtomicRMWInst(AtomicRMWInst &Inst) {
    484     return Inst.getPointerOperand();
    485   }
    486 
    487   Value *visitInsertElementInst(InsertElementInst &Inst) {
    488     return Inst.getOperand(0);
    489   }
    490 
    491   Value *visitInsertValueInst(InsertValueInst &Inst) {
    492     return Inst.getAggregateOperand();
    493   }
    494 };
    495 
    496 // Set building requires a weighted bidirectional graph.
    497 template <typename EdgeTypeT> class WeightedBidirectionalGraph {
    498 public:
    499   typedef std::size_t Node;
    500 
    501 private:
    502   const static Node StartNode = Node(0);
    503 
    504   struct Edge {
    505     EdgeTypeT Weight;
    506     Node Other;
    507 
    508     Edge(const EdgeTypeT &W, const Node &N) : Weight(W), Other(N) {}
    509 
    510     bool operator==(const Edge &E) const {
    511       return Weight == E.Weight && Other == E.Other;
    512     }
    513 
    514     bool operator!=(const Edge &E) const { return !operator==(E); }
    515   };
    516 
    517   struct NodeImpl {
    518     std::vector<Edge> Edges;
    519   };
    520 
    521   std::vector<NodeImpl> NodeImpls;
    522 
    523   bool inbounds(Node NodeIndex) const { return NodeIndex < NodeImpls.size(); }
    524 
    525   const NodeImpl &getNode(Node N) const { return NodeImpls[N]; }
    526   NodeImpl &getNode(Node N) { return NodeImpls[N]; }
    527 
    528 public:
    529   // ----- Various Edge iterators for the graph ----- //
    530 
    531   // \brief Iterator for edges. Because this graph is bidirected, we don't
    532   // allow modification of the edges using this iterator. Additionally, the
    533   // iterator becomes invalid if you add edges to or from the node you're
    534   // getting the edges of.
    535   struct EdgeIterator : public std::iterator<std::forward_iterator_tag,
    536                                              std::tuple<EdgeTypeT, Node *>> {
    537     EdgeIterator(const typename std::vector<Edge>::const_iterator &Iter)
    538         : Current(Iter) {}
    539 
    540     EdgeIterator(NodeImpl &Impl) : Current(Impl.begin()) {}
    541 
    542     EdgeIterator &operator++() {
    543       ++Current;
    544       return *this;
    545     }
    546 
    547     EdgeIterator operator++(int) {
    548       EdgeIterator Copy(Current);
    549       operator++();
    550       return Copy;
    551     }
    552 
    553     std::tuple<EdgeTypeT, Node> &operator*() {
    554       Store = std::make_tuple(Current->Weight, Current->Other);
    555       return Store;
    556     }
    557 
    558     bool operator==(const EdgeIterator &Other) const {
    559       return Current == Other.Current;
    560     }
    561 
    562     bool operator!=(const EdgeIterator &Other) const {
    563       return !operator==(Other);
    564     }
    565 
    566   private:
    567     typename std::vector<Edge>::const_iterator Current;
    568     std::tuple<EdgeTypeT, Node> Store;
    569   };
    570 
    571   // Wrapper for EdgeIterator with begin()/end() calls.
    572   struct EdgeIterable {
    573     EdgeIterable(const std::vector<Edge> &Edges)
    574         : BeginIter(Edges.begin()), EndIter(Edges.end()) {}
    575 
    576     EdgeIterator begin() { return EdgeIterator(BeginIter); }
    577 
    578     EdgeIterator end() { return EdgeIterator(EndIter); }
    579 
    580   private:
    581     typename std::vector<Edge>::const_iterator BeginIter;
    582     typename std::vector<Edge>::const_iterator EndIter;
    583   };
    584 
    585   // ----- Actual graph-related things ----- //
    586 
    587   WeightedBidirectionalGraph() {}
    588 
    589   WeightedBidirectionalGraph(WeightedBidirectionalGraph<EdgeTypeT> &&Other)
    590       : NodeImpls(std::move(Other.NodeImpls)) {}
    591 
    592   WeightedBidirectionalGraph<EdgeTypeT> &
    593   operator=(WeightedBidirectionalGraph<EdgeTypeT> &&Other) {
    594     NodeImpls = std::move(Other.NodeImpls);
    595     return *this;
    596   }
    597 
    598   Node addNode() {
    599     auto Index = NodeImpls.size();
    600     auto NewNode = Node(Index);
    601     NodeImpls.push_back(NodeImpl());
    602     return NewNode;
    603   }
    604 
    605   void addEdge(Node From, Node To, const EdgeTypeT &Weight,
    606                const EdgeTypeT &ReverseWeight) {
    607     assert(inbounds(From));
    608     assert(inbounds(To));
    609     auto &FromNode = getNode(From);
    610     auto &ToNode = getNode(To);
    611     FromNode.Edges.push_back(Edge(Weight, To));
    612     ToNode.Edges.push_back(Edge(ReverseWeight, From));
    613   }
    614 
    615   EdgeIterable edgesFor(const Node &N) const {
    616     const auto &Node = getNode(N);
    617     return EdgeIterable(Node.Edges);
    618   }
    619 
    620   bool empty() const { return NodeImpls.empty(); }
    621   std::size_t size() const { return NodeImpls.size(); }
    622 
    623   // \brief Gets an arbitrary node in the graph as a starting point for
    624   // traversal.
    625   Node getEntryNode() {
    626     assert(inbounds(StartNode));
    627     return StartNode;
    628   }
    629 };
    630 
    631 typedef WeightedBidirectionalGraph<std::pair<EdgeType, StratifiedAttrs>> GraphT;
    632 typedef DenseMap<Value *, GraphT::Node> NodeMapT;
    633 }
    634 
    635 //===----------------------------------------------------------------------===//
    636 // Function declarations that require types defined in the namespace above
    637 //===----------------------------------------------------------------------===//
    638 
    639 // Given an argument number, returns the appropriate Attr index to set.
    640 static StratifiedAttr argNumberToAttrIndex(StratifiedAttr);
    641 
    642 // Given a Value, potentially return which AttrIndex it maps to.
    643 static Optional<StratifiedAttr> valueToAttrIndex(Value *Val);
    644 
    645 // Gets the inverse of a given EdgeType.
    646 static EdgeType flipWeight(EdgeType);
    647 
    648 // Gets edges of the given Instruction*, writing them to the SmallVector*.
    649 static void argsToEdges(CFLAAResult &, Instruction *, SmallVectorImpl<Edge> &);
    650 
    651 // Gets edges of the given ConstantExpr*, writing them to the SmallVector*.
    652 static void argsToEdges(CFLAAResult &, ConstantExpr *, SmallVectorImpl<Edge> &);
    653 
    654 // Gets the "Level" that one should travel in StratifiedSets
    655 // given an EdgeType.
    656 static Level directionOfEdgeType(EdgeType);
    657 
    658 // Builds the graph needed for constructing the StratifiedSets for the
    659 // given function
    660 static void buildGraphFrom(CFLAAResult &, Function *,
    661                            SmallVectorImpl<Value *> &, NodeMapT &, GraphT &);
    662 
    663 // Gets the edges of a ConstantExpr as if it was an Instruction. This
    664 // function also acts on any nested ConstantExprs, adding the edges
    665 // of those to the given SmallVector as well.
    666 static void constexprToEdges(CFLAAResult &, ConstantExpr &,
    667                              SmallVectorImpl<Edge> &);
    668 
    669 // Given an Instruction, this will add it to the graph, along with any
    670 // Instructions that are potentially only available from said Instruction
    671 // For example, given the following line:
    672 //   %0 = load i16* getelementptr ([1 x i16]* @a, 0, 0), align 2
    673 // addInstructionToGraph would add both the `load` and `getelementptr`
    674 // instructions to the graph appropriately.
    675 static void addInstructionToGraph(CFLAAResult &, Instruction &,
    676                                   SmallVectorImpl<Value *> &, NodeMapT &,
    677                                   GraphT &);
    678 
    679 // Notes whether it would be pointless to add the given Value to our sets.
    680 static bool canSkipAddingToSets(Value *Val);
    681 
    682 static Optional<Function *> parentFunctionOfValue(Value *Val) {
    683   if (auto *Inst = dyn_cast<Instruction>(Val)) {
    684     auto *Bb = Inst->getParent();
    685     return Bb->getParent();
    686   }
    687 
    688   if (auto *Arg = dyn_cast<Argument>(Val))
    689     return Arg->getParent();
    690   return NoneType();
    691 }
    692 
    693 template <typename Inst>
    694 static bool getPossibleTargets(Inst *Call,
    695                                SmallVectorImpl<Function *> &Output) {
    696   if (auto *Fn = Call->getCalledFunction()) {
    697     Output.push_back(Fn);
    698     return true;
    699   }
    700 
    701   // TODO: If the call is indirect, we might be able to enumerate all potential
    702   // targets of the call and return them, rather than just failing.
    703   return false;
    704 }
    705 
    706 static Optional<Value *> getTargetValue(Instruction *Inst) {
    707   GetTargetValueVisitor V;
    708   return V.visit(Inst);
    709 }
    710 
    711 static bool hasUsefulEdges(Instruction *Inst) {
    712   bool IsNonInvokeTerminator =
    713       isa<TerminatorInst>(Inst) && !isa<InvokeInst>(Inst);
    714   return !isa<CmpInst>(Inst) && !isa<FenceInst>(Inst) && !IsNonInvokeTerminator;
    715 }
    716 
    717 static bool hasUsefulEdges(ConstantExpr *CE) {
    718   // ConstantExpr doesn't have terminators, invokes, or fences, so only needs
    719   // to check for compares.
    720   return CE->getOpcode() != Instruction::ICmp &&
    721          CE->getOpcode() != Instruction::FCmp;
    722 }
    723 
    724 static Optional<StratifiedAttr> valueToAttrIndex(Value *Val) {
    725   if (isa<GlobalValue>(Val))
    726     return AttrGlobalIndex;
    727 
    728   if (auto *Arg = dyn_cast<Argument>(Val))
    729     // Only pointer arguments should have the argument attribute,
    730     // because things can't escape through scalars without us seeing a
    731     // cast, and thus, interaction with them doesn't matter.
    732     if (!Arg->hasNoAliasAttr() && Arg->getType()->isPointerTy())
    733       return argNumberToAttrIndex(Arg->getArgNo());
    734   return NoneType();
    735 }
    736 
    737 static StratifiedAttr argNumberToAttrIndex(unsigned ArgNum) {
    738   if (ArgNum >= AttrMaxNumArgs)
    739     return AttrAllIndex;
    740   return ArgNum + AttrFirstArgIndex;
    741 }
    742 
    743 static EdgeType flipWeight(EdgeType Initial) {
    744   switch (Initial) {
    745   case EdgeType::Assign:
    746     return EdgeType::Assign;
    747   case EdgeType::Dereference:
    748     return EdgeType::Reference;
    749   case EdgeType::Reference:
    750     return EdgeType::Dereference;
    751   }
    752   llvm_unreachable("Incomplete coverage of EdgeType enum");
    753 }
    754 
    755 static void argsToEdges(CFLAAResult &Analysis, Instruction *Inst,
    756                         SmallVectorImpl<Edge> &Output) {
    757   assert(hasUsefulEdges(Inst) &&
    758          "Expected instructions to have 'useful' edges");
    759   GetEdgesVisitor v(Analysis, Output);
    760   v.visit(Inst);
    761 }
    762 
    763 static void argsToEdges(CFLAAResult &Analysis, ConstantExpr *CE,
    764                         SmallVectorImpl<Edge> &Output) {
    765   assert(hasUsefulEdges(CE) && "Expected constant expr to have 'useful' edges");
    766   GetEdgesVisitor v(Analysis, Output);
    767   v.visitConstantExpr(CE);
    768 }
    769 
    770 static Level directionOfEdgeType(EdgeType Weight) {
    771   switch (Weight) {
    772   case EdgeType::Reference:
    773     return Level::Above;
    774   case EdgeType::Dereference:
    775     return Level::Below;
    776   case EdgeType::Assign:
    777     return Level::Same;
    778   }
    779   llvm_unreachable("Incomplete switch coverage");
    780 }
    781 
    782 static void constexprToEdges(CFLAAResult &Analysis,
    783                              ConstantExpr &CExprToCollapse,
    784                              SmallVectorImpl<Edge> &Results) {
    785   SmallVector<ConstantExpr *, 4> Worklist;
    786   Worklist.push_back(&CExprToCollapse);
    787 
    788   SmallVector<Edge, 8> ConstexprEdges;
    789   SmallPtrSet<ConstantExpr *, 4> Visited;
    790   while (!Worklist.empty()) {
    791     auto *CExpr = Worklist.pop_back_val();
    792 
    793     if (!hasUsefulEdges(CExpr))
    794       continue;
    795 
    796     ConstexprEdges.clear();
    797     argsToEdges(Analysis, CExpr, ConstexprEdges);
    798     for (auto &Edge : ConstexprEdges) {
    799       if (auto *Nested = dyn_cast<ConstantExpr>(Edge.From))
    800         if (Visited.insert(Nested).second)
    801           Worklist.push_back(Nested);
    802 
    803       if (auto *Nested = dyn_cast<ConstantExpr>(Edge.To))
    804         if (Visited.insert(Nested).second)
    805           Worklist.push_back(Nested);
    806     }
    807 
    808     Results.append(ConstexprEdges.begin(), ConstexprEdges.end());
    809   }
    810 }
    811 
    812 static void addInstructionToGraph(CFLAAResult &Analysis, Instruction &Inst,
    813                                   SmallVectorImpl<Value *> &ReturnedValues,
    814                                   NodeMapT &Map, GraphT &Graph) {
    815   const auto findOrInsertNode = [&Map, &Graph](Value *Val) {
    816     auto Pair = Map.insert(std::make_pair(Val, GraphT::Node()));
    817     auto &Iter = Pair.first;
    818     if (Pair.second) {
    819       auto NewNode = Graph.addNode();
    820       Iter->second = NewNode;
    821     }
    822     return Iter->second;
    823   };
    824 
    825   // We don't want the edges of most "return" instructions, but we *do* want
    826   // to know what can be returned.
    827   if (isa<ReturnInst>(&Inst))
    828     ReturnedValues.push_back(&Inst);
    829 
    830   if (!hasUsefulEdges(&Inst))
    831     return;
    832 
    833   SmallVector<Edge, 8> Edges;
    834   argsToEdges(Analysis, &Inst, Edges);
    835 
    836   // In the case of an unused alloca (or similar), edges may be empty. Note
    837   // that it exists so we can potentially answer NoAlias.
    838   if (Edges.empty()) {
    839     auto MaybeVal = getTargetValue(&Inst);
    840     assert(MaybeVal.hasValue());
    841     auto *Target = *MaybeVal;
    842     findOrInsertNode(Target);
    843     return;
    844   }
    845 
    846   const auto addEdgeToGraph = [&Graph, &findOrInsertNode](const Edge &E) {
    847     auto To = findOrInsertNode(E.To);
    848     auto From = findOrInsertNode(E.From);
    849     auto FlippedWeight = flipWeight(E.Weight);
    850     auto Attrs = E.AdditionalAttrs;
    851     Graph.addEdge(From, To, std::make_pair(E.Weight, Attrs),
    852                   std::make_pair(FlippedWeight, Attrs));
    853   };
    854 
    855   SmallVector<ConstantExpr *, 4> ConstantExprs;
    856   for (const Edge &E : Edges) {
    857     addEdgeToGraph(E);
    858     if (auto *Constexpr = dyn_cast<ConstantExpr>(E.To))
    859       ConstantExprs.push_back(Constexpr);
    860     if (auto *Constexpr = dyn_cast<ConstantExpr>(E.From))
    861       ConstantExprs.push_back(Constexpr);
    862   }
    863 
    864   for (ConstantExpr *CE : ConstantExprs) {
    865     Edges.clear();
    866     constexprToEdges(Analysis, *CE, Edges);
    867     std::for_each(Edges.begin(), Edges.end(), addEdgeToGraph);
    868   }
    869 }
    870 
    871 // Aside: We may remove graph construction entirely, because it doesn't really
    872 // buy us much that we don't already have. I'd like to add interprocedural
    873 // analysis prior to this however, in case that somehow requires the graph
    874 // produced by this for efficient execution
    875 static void buildGraphFrom(CFLAAResult &Analysis, Function *Fn,
    876                            SmallVectorImpl<Value *> &ReturnedValues,
    877                            NodeMapT &Map, GraphT &Graph) {
    878   for (auto &Bb : Fn->getBasicBlockList())
    879     for (auto &Inst : Bb.getInstList())
    880       addInstructionToGraph(Analysis, Inst, ReturnedValues, Map, Graph);
    881 }
    882 
    883 static bool canSkipAddingToSets(Value *Val) {
    884   // Constants can share instances, which may falsely unify multiple
    885   // sets, e.g. in
    886   // store i32* null, i32** %ptr1
    887   // store i32* null, i32** %ptr2
    888   // clearly ptr1 and ptr2 should not be unified into the same set, so
    889   // we should filter out the (potentially shared) instance to
    890   // i32* null.
    891   if (isa<Constant>(Val)) {
    892     bool Container = isa<ConstantVector>(Val) || isa<ConstantArray>(Val) ||
    893                      isa<ConstantStruct>(Val);
    894     // TODO: Because all of these things are constant, we can determine whether
    895     // the data is *actually* mutable at graph building time. This will probably
    896     // come for free/cheap with offset awareness.
    897     bool CanStoreMutableData =
    898         isa<GlobalValue>(Val) || isa<ConstantExpr>(Val) || Container;
    899     return !CanStoreMutableData;
    900   }
    901 
    902   return false;
    903 }
    904 
    905 // Builds the graph + StratifiedSets for a function.
    906 CFLAAResult::FunctionInfo CFLAAResult::buildSetsFrom(Function *Fn) {
    907   NodeMapT Map;
    908   GraphT Graph;
    909   SmallVector<Value *, 4> ReturnedValues;
    910 
    911   buildGraphFrom(*this, Fn, ReturnedValues, Map, Graph);
    912 
    913   DenseMap<GraphT::Node, Value *> NodeValueMap;
    914   NodeValueMap.resize(Map.size());
    915   for (const auto &Pair : Map)
    916     NodeValueMap.insert(std::make_pair(Pair.second, Pair.first));
    917 
    918   const auto findValueOrDie = [&NodeValueMap](GraphT::Node Node) {
    919     auto ValIter = NodeValueMap.find(Node);
    920     assert(ValIter != NodeValueMap.end());
    921     return ValIter->second;
    922   };
    923 
    924   StratifiedSetsBuilder<Value *> Builder;
    925 
    926   SmallVector<GraphT::Node, 16> Worklist;
    927   for (auto &Pair : Map) {
    928     Worklist.clear();
    929 
    930     auto *Value = Pair.first;
    931     Builder.add(Value);
    932     auto InitialNode = Pair.second;
    933     Worklist.push_back(InitialNode);
    934     while (!Worklist.empty()) {
    935       auto Node = Worklist.pop_back_val();
    936       auto *CurValue = findValueOrDie(Node);
    937       if (canSkipAddingToSets(CurValue))
    938         continue;
    939 
    940       for (const auto &EdgeTuple : Graph.edgesFor(Node)) {
    941         auto Weight = std::get<0>(EdgeTuple);
    942         auto Label = Weight.first;
    943         auto &OtherNode = std::get<1>(EdgeTuple);
    944         auto *OtherValue = findValueOrDie(OtherNode);
    945 
    946         if (canSkipAddingToSets(OtherValue))
    947           continue;
    948 
    949         bool Added;
    950         switch (directionOfEdgeType(Label)) {
    951         case Level::Above:
    952           Added = Builder.addAbove(CurValue, OtherValue);
    953           break;
    954         case Level::Below:
    955           Added = Builder.addBelow(CurValue, OtherValue);
    956           break;
    957         case Level::Same:
    958           Added = Builder.addWith(CurValue, OtherValue);
    959           break;
    960         }
    961 
    962         auto Aliasing = Weight.second;
    963         if (auto MaybeCurIndex = valueToAttrIndex(CurValue))
    964           Aliasing.set(*MaybeCurIndex);
    965         if (auto MaybeOtherIndex = valueToAttrIndex(OtherValue))
    966           Aliasing.set(*MaybeOtherIndex);
    967         Builder.noteAttributes(CurValue, Aliasing);
    968         Builder.noteAttributes(OtherValue, Aliasing);
    969 
    970         if (Added)
    971           Worklist.push_back(OtherNode);
    972       }
    973     }
    974   }
    975 
    976   // There are times when we end up with parameters not in our graph (i.e. if
    977   // it's only used as the condition of a branch). Other bits of code depend on
    978   // things that were present during construction being present in the graph.
    979   // So, we add all present arguments here.
    980   for (auto &Arg : Fn->args()) {
    981     if (!Builder.add(&Arg))
    982       continue;
    983 
    984     auto Attrs = valueToAttrIndex(&Arg);
    985     if (Attrs.hasValue())
    986       Builder.noteAttributes(&Arg, *Attrs);
    987   }
    988 
    989   return FunctionInfo(Builder.build(), std::move(ReturnedValues));
    990 }
    991 
    992 void CFLAAResult::scan(Function *Fn) {
    993   auto InsertPair = Cache.insert(std::make_pair(Fn, Optional<FunctionInfo>()));
    994   (void)InsertPair;
    995   assert(InsertPair.second &&
    996          "Trying to scan a function that has already been cached");
    997 
    998   FunctionInfo Info(buildSetsFrom(Fn));
    999   Cache[Fn] = std::move(Info);
   1000   Handles.push_front(FunctionHandle(Fn, this));
   1001 }
   1002 
   1003 void CFLAAResult::evict(Function *Fn) { Cache.erase(Fn); }
   1004 
   1005 /// \brief Ensures that the given function is available in the cache.
   1006 /// Returns the appropriate entry from the cache.
   1007 const Optional<CFLAAResult::FunctionInfo> &
   1008 CFLAAResult::ensureCached(Function *Fn) {
   1009   auto Iter = Cache.find(Fn);
   1010   if (Iter == Cache.end()) {
   1011     scan(Fn);
   1012     Iter = Cache.find(Fn);
   1013     assert(Iter != Cache.end());
   1014     assert(Iter->second.hasValue());
   1015   }
   1016   return Iter->second;
   1017 }
   1018 
   1019 AliasResult CFLAAResult::query(const MemoryLocation &LocA,
   1020                                const MemoryLocation &LocB) {
   1021   auto *ValA = const_cast<Value *>(LocA.Ptr);
   1022   auto *ValB = const_cast<Value *>(LocB.Ptr);
   1023 
   1024   Function *Fn = nullptr;
   1025   auto MaybeFnA = parentFunctionOfValue(ValA);
   1026   auto MaybeFnB = parentFunctionOfValue(ValB);
   1027   if (!MaybeFnA.hasValue() && !MaybeFnB.hasValue()) {
   1028     // The only times this is known to happen are when globals + InlineAsm
   1029     // are involved
   1030     DEBUG(dbgs() << "CFLAA: could not extract parent function information.\n");
   1031     return MayAlias;
   1032   }
   1033 
   1034   if (MaybeFnA.hasValue()) {
   1035     Fn = *MaybeFnA;
   1036     assert((!MaybeFnB.hasValue() || *MaybeFnB == *MaybeFnA) &&
   1037            "Interprocedural queries not supported");
   1038   } else {
   1039     Fn = *MaybeFnB;
   1040   }
   1041 
   1042   assert(Fn != nullptr);
   1043   auto &MaybeInfo = ensureCached(Fn);
   1044   assert(MaybeInfo.hasValue());
   1045 
   1046   auto &Sets = MaybeInfo->Sets;
   1047   auto MaybeA = Sets.find(ValA);
   1048   if (!MaybeA.hasValue())
   1049     return MayAlias;
   1050 
   1051   auto MaybeB = Sets.find(ValB);
   1052   if (!MaybeB.hasValue())
   1053     return MayAlias;
   1054 
   1055   auto SetA = *MaybeA;
   1056   auto SetB = *MaybeB;
   1057   auto AttrsA = Sets.getLink(SetA.Index).Attrs;
   1058   auto AttrsB = Sets.getLink(SetB.Index).Attrs;
   1059 
   1060   // Stratified set attributes are used as markets to signify whether a member
   1061   // of a StratifiedSet (or a member of a set above the current set) has
   1062   // interacted with either arguments or globals. "Interacted with" meaning
   1063   // its value may be different depending on the value of an argument or
   1064   // global. The thought behind this is that, because arguments and globals
   1065   // may alias each other, if AttrsA and AttrsB have touched args/globals,
   1066   // we must conservatively say that they alias. However, if at least one of
   1067   // the sets has no values that could legally be altered by changing the value
   1068   // of an argument or global, then we don't have to be as conservative.
   1069   if (AttrsA.any() && AttrsB.any())
   1070     return MayAlias;
   1071 
   1072   // We currently unify things even if the accesses to them may not be in
   1073   // bounds, so we can't return partial alias here because we don't
   1074   // know whether the pointer is really within the object or not.
   1075   // IE Given an out of bounds GEP and an alloca'd pointer, we may
   1076   // unify the two. We can't return partial alias for this case.
   1077   // Since we do not currently track enough information to
   1078   // differentiate
   1079 
   1080   if (SetA.Index == SetB.Index)
   1081     return MayAlias;
   1082 
   1083   return NoAlias;
   1084 }
   1085 
   1086 CFLAAResult CFLAA::run(Function &F, AnalysisManager<Function> *AM) {
   1087   return CFLAAResult(AM->getResult<TargetLibraryAnalysis>(F));
   1088 }
   1089 
   1090 char CFLAA::PassID;
   1091 
   1092 char CFLAAWrapperPass::ID = 0;
   1093 INITIALIZE_PASS_BEGIN(CFLAAWrapperPass, "cfl-aa", "CFL-Based Alias Analysis",
   1094                       false, true)
   1095 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
   1096 INITIALIZE_PASS_END(CFLAAWrapperPass, "cfl-aa", "CFL-Based Alias Analysis",
   1097                     false, true)
   1098 
   1099 ImmutablePass *llvm::createCFLAAWrapperPass() { return new CFLAAWrapperPass(); }
   1100 
   1101 CFLAAWrapperPass::CFLAAWrapperPass() : ImmutablePass(ID) {
   1102   initializeCFLAAWrapperPassPass(*PassRegistry::getPassRegistry());
   1103 }
   1104 
   1105 bool CFLAAWrapperPass::doInitialization(Module &M) {
   1106   Result.reset(
   1107       new CFLAAResult(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()));
   1108   return false;
   1109 }
   1110 
   1111 bool CFLAAWrapperPass::doFinalization(Module &M) {
   1112   Result.reset();
   1113   return false;
   1114 }
   1115 
   1116 void CFLAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
   1117   AU.setPreservesAll();
   1118   AU.addRequired<TargetLibraryInfoWrapperPass>();
   1119 }
   1120