Home | History | Annotate | Download | only in IR
      1 //===-- llvm/InstrTypes.h - Important Instruction subclasses ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines various meta classes of instructions that exist in the VM
     11 // representation.  Specific concrete subclasses of these may be found in the
     12 // i*.h files...
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_IR_INSTRTYPES_H
     17 #define LLVM_IR_INSTRTYPES_H
     18 
     19 #include "llvm/ADT/Optional.h"
     20 #include "llvm/ADT/Twine.h"
     21 #include "llvm/IR/Attributes.h"
     22 #include "llvm/IR/DerivedTypes.h"
     23 #include "llvm/IR/Instruction.h"
     24 #include "llvm/IR/LLVMContext.h"
     25 #include "llvm/IR/OperandTraits.h"
     26 
     27 namespace llvm {
     28 
     29 class LLVMContext;
     30 
     31 //===----------------------------------------------------------------------===//
     32 //                            TerminatorInst Class
     33 //===----------------------------------------------------------------------===//
     34 
     35 /// Subclasses of this class are all able to terminate a basic
     36 /// block. Thus, these are all the flow control type of operations.
     37 ///
     38 class TerminatorInst : public Instruction {
     39 protected:
     40   TerminatorInst(Type *Ty, Instruction::TermOps iType,
     41                  Use *Ops, unsigned NumOps,
     42                  Instruction *InsertBefore = nullptr)
     43     : Instruction(Ty, iType, Ops, NumOps, InsertBefore) {}
     44 
     45   TerminatorInst(Type *Ty, Instruction::TermOps iType,
     46                  Use *Ops, unsigned NumOps, BasicBlock *InsertAtEnd)
     47     : Instruction(Ty, iType, Ops, NumOps, InsertAtEnd) {}
     48 
     49   // Out of line virtual method, so the vtable, etc has a home.
     50   ~TerminatorInst() override;
     51 
     52   /// Virtual methods - Terminators should overload these and provide inline
     53   /// overrides of non-V methods.
     54   virtual BasicBlock *getSuccessorV(unsigned idx) const = 0;
     55   virtual unsigned getNumSuccessorsV() const = 0;
     56   virtual void setSuccessorV(unsigned idx, BasicBlock *B) = 0;
     57 
     58 public:
     59   /// Return the number of successors that this terminator has.
     60   unsigned getNumSuccessors() const {
     61     return getNumSuccessorsV();
     62   }
     63 
     64   /// Return the specified successor.
     65   BasicBlock *getSuccessor(unsigned idx) const {
     66     return getSuccessorV(idx);
     67   }
     68 
     69   /// Update the specified successor to point at the provided block.
     70   void setSuccessor(unsigned idx, BasicBlock *B) {
     71     setSuccessorV(idx, B);
     72   }
     73 
     74   // Methods for support type inquiry through isa, cast, and dyn_cast:
     75   static inline bool classof(const Instruction *I) {
     76     return I->isTerminator();
     77   }
     78   static inline bool classof(const Value *V) {
     79     return isa<Instruction>(V) && classof(cast<Instruction>(V));
     80   }
     81 
     82   // \brief Returns true if this terminator relates to exception handling.
     83   bool isExceptional() const {
     84     switch (getOpcode()) {
     85     case Instruction::CatchSwitch:
     86     case Instruction::CatchRet:
     87     case Instruction::CleanupRet:
     88     case Instruction::Invoke:
     89     case Instruction::Resume:
     90       return true;
     91     default:
     92       return false;
     93     }
     94   }
     95 
     96   //===--------------------------------------------------------------------===//
     97   // succ_iterator definition
     98   //===--------------------------------------------------------------------===//
     99 
    100   template <class Term, class BB> // Successor Iterator
    101   class SuccIterator : public std::iterator<std::random_access_iterator_tag, BB,
    102                                             int, BB *, BB *> {
    103     typedef std::iterator<std::random_access_iterator_tag, BB, int, BB *, BB *>
    104         super;
    105 
    106   public:
    107     typedef typename super::pointer pointer;
    108     typedef typename super::reference reference;
    109 
    110   private:
    111     Term TermInst;
    112     unsigned idx;
    113     typedef SuccIterator<Term, BB> Self;
    114 
    115     inline bool index_is_valid(unsigned idx) {
    116       return idx < TermInst->getNumSuccessors();
    117     }
    118 
    119     /// \brief Proxy object to allow write access in operator[]
    120     class SuccessorProxy {
    121       Self it;
    122 
    123     public:
    124       explicit SuccessorProxy(const Self &it) : it(it) {}
    125 
    126       SuccessorProxy(const SuccessorProxy &) = default;
    127 
    128       SuccessorProxy &operator=(SuccessorProxy r) {
    129         *this = reference(r);
    130         return *this;
    131       }
    132 
    133       SuccessorProxy &operator=(reference r) {
    134         it.TermInst->setSuccessor(it.idx, r);
    135         return *this;
    136       }
    137 
    138       operator reference() const { return *it; }
    139     };
    140 
    141   public:
    142     // begin iterator
    143     explicit inline SuccIterator(Term T) : TermInst(T), idx(0) {}
    144     // end iterator
    145     inline SuccIterator(Term T, bool) : TermInst(T) {
    146       if (TermInst)
    147         idx = TermInst->getNumSuccessors();
    148       else
    149         // Term == NULL happens, if a basic block is not fully constructed and
    150         // consequently getTerminator() returns NULL. In this case we construct
    151         // a SuccIterator which describes a basic block that has zero
    152         // successors.
    153         // Defining SuccIterator for incomplete and malformed CFGs is especially
    154         // useful for debugging.
    155         idx = 0;
    156     }
    157 
    158     /// This is used to interface between code that wants to
    159     /// operate on terminator instructions directly.
    160     unsigned getSuccessorIndex() const { return idx; }
    161 
    162     inline bool operator==(const Self &x) const { return idx == x.idx; }
    163     inline bool operator!=(const Self &x) const { return !operator==(x); }
    164 
    165     inline reference operator*() const { return TermInst->getSuccessor(idx); }
    166     inline pointer operator->() const { return operator*(); }
    167 
    168     inline Self &operator++() {
    169       ++idx;
    170       return *this;
    171     } // Preincrement
    172 
    173     inline Self operator++(int) { // Postincrement
    174       Self tmp = *this;
    175       ++*this;
    176       return tmp;
    177     }
    178 
    179     inline Self &operator--() {
    180       --idx;
    181       return *this;
    182     }                             // Predecrement
    183     inline Self operator--(int) { // Postdecrement
    184       Self tmp = *this;
    185       --*this;
    186       return tmp;
    187     }
    188 
    189     inline bool operator<(const Self &x) const {
    190       assert(TermInst == x.TermInst &&
    191              "Cannot compare iterators of different blocks!");
    192       return idx < x.idx;
    193     }
    194 
    195     inline bool operator<=(const Self &x) const {
    196       assert(TermInst == x.TermInst &&
    197              "Cannot compare iterators of different blocks!");
    198       return idx <= x.idx;
    199     }
    200     inline bool operator>=(const Self &x) const {
    201       assert(TermInst == x.TermInst &&
    202              "Cannot compare iterators of different blocks!");
    203       return idx >= x.idx;
    204     }
    205 
    206     inline bool operator>(const Self &x) const {
    207       assert(TermInst == x.TermInst &&
    208              "Cannot compare iterators of different blocks!");
    209       return idx > x.idx;
    210     }
    211 
    212     inline Self &operator+=(int Right) {
    213       unsigned new_idx = idx + Right;
    214       assert(index_is_valid(new_idx) && "Iterator index out of bound");
    215       idx = new_idx;
    216       return *this;
    217     }
    218 
    219     inline Self operator+(int Right) const {
    220       Self tmp = *this;
    221       tmp += Right;
    222       return tmp;
    223     }
    224 
    225     inline Self &operator-=(int Right) { return operator+=(-Right); }
    226 
    227     inline Self operator-(int Right) const { return operator+(-Right); }
    228 
    229     inline int operator-(const Self &x) const {
    230       assert(TermInst == x.TermInst &&
    231              "Cannot work on iterators of different blocks!");
    232       int distance = idx - x.idx;
    233       return distance;
    234     }
    235 
    236     inline SuccessorProxy operator[](int offset) {
    237       Self tmp = *this;
    238       tmp += offset;
    239       return SuccessorProxy(tmp);
    240     }
    241 
    242     /// Get the source BB of this iterator.
    243     inline BB *getSource() {
    244       assert(TermInst && "Source not available, if basic block was malformed");
    245       return TermInst->getParent();
    246     }
    247   };
    248 
    249   typedef SuccIterator<TerminatorInst *, BasicBlock> succ_iterator;
    250   typedef SuccIterator<const TerminatorInst *, const BasicBlock>
    251       succ_const_iterator;
    252   typedef llvm::iterator_range<succ_iterator> succ_range;
    253   typedef llvm::iterator_range<succ_const_iterator> succ_const_range;
    254 
    255 private:
    256   inline succ_iterator succ_begin() { return succ_iterator(this); }
    257   inline succ_const_iterator succ_begin() const {
    258     return succ_const_iterator(this);
    259   }
    260   inline succ_iterator succ_end() { return succ_iterator(this, true); }
    261   inline succ_const_iterator succ_end() const {
    262     return succ_const_iterator(this, true);
    263   }
    264 
    265 public:
    266   inline succ_range successors() {
    267     return succ_range(succ_begin(), succ_end());
    268   }
    269   inline succ_const_range successors() const {
    270     return succ_const_range(succ_begin(), succ_end());
    271   }
    272 };
    273 
    274 //===----------------------------------------------------------------------===//
    275 //                          UnaryInstruction Class
    276 //===----------------------------------------------------------------------===//
    277 
    278 class UnaryInstruction : public Instruction {
    279   void *operator new(size_t, unsigned) = delete;
    280 
    281 protected:
    282   UnaryInstruction(Type *Ty, unsigned iType, Value *V,
    283                    Instruction *IB = nullptr)
    284     : Instruction(Ty, iType, &Op<0>(), 1, IB) {
    285     Op<0>() = V;
    286   }
    287   UnaryInstruction(Type *Ty, unsigned iType, Value *V, BasicBlock *IAE)
    288     : Instruction(Ty, iType, &Op<0>(), 1, IAE) {
    289     Op<0>() = V;
    290   }
    291 
    292 public:
    293   // allocate space for exactly one operand
    294   void *operator new(size_t s) {
    295     return User::operator new(s, 1);
    296   }
    297 
    298   // Out of line virtual method, so the vtable, etc has a home.
    299   ~UnaryInstruction() override;
    300 
    301   /// Transparently provide more efficient getOperand methods.
    302   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
    303 
    304   // Methods for support type inquiry through isa, cast, and dyn_cast:
    305   static inline bool classof(const Instruction *I) {
    306     return I->getOpcode() == Instruction::Alloca ||
    307            I->getOpcode() == Instruction::Load ||
    308            I->getOpcode() == Instruction::VAArg ||
    309            I->getOpcode() == Instruction::ExtractValue ||
    310            (I->getOpcode() >= CastOpsBegin && I->getOpcode() < CastOpsEnd);
    311   }
    312   static inline bool classof(const Value *V) {
    313     return isa<Instruction>(V) && classof(cast<Instruction>(V));
    314   }
    315 };
    316 
    317 template <>
    318 struct OperandTraits<UnaryInstruction> :
    319   public FixedNumOperandTraits<UnaryInstruction, 1> {
    320 };
    321 
    322 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryInstruction, Value)
    323 
    324 //===----------------------------------------------------------------------===//
    325 //                           BinaryOperator Class
    326 //===----------------------------------------------------------------------===//
    327 
    328 class BinaryOperator : public Instruction {
    329   void *operator new(size_t, unsigned) = delete;
    330 
    331 protected:
    332   void init(BinaryOps iType);
    333   BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
    334                  const Twine &Name, Instruction *InsertBefore);
    335   BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
    336                  const Twine &Name, BasicBlock *InsertAtEnd);
    337 
    338   // Note: Instruction needs to be a friend here to call cloneImpl.
    339   friend class Instruction;
    340   BinaryOperator *cloneImpl() const;
    341 
    342 public:
    343   // allocate space for exactly two operands
    344   void *operator new(size_t s) {
    345     return User::operator new(s, 2);
    346   }
    347 
    348   /// Transparently provide more efficient getOperand methods.
    349   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
    350 
    351   /// Construct a binary instruction, given the opcode and the two
    352   /// operands.  Optionally (if InstBefore is specified) insert the instruction
    353   /// into a BasicBlock right before the specified instruction.  The specified
    354   /// Instruction is allowed to be a dereferenced end iterator.
    355   ///
    356   static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
    357                                 const Twine &Name = Twine(),
    358                                 Instruction *InsertBefore = nullptr);
    359 
    360   /// Construct a binary instruction, given the opcode and the two
    361   /// operands.  Also automatically insert this instruction to the end of the
    362   /// BasicBlock specified.
    363   ///
    364   static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
    365                                 const Twine &Name, BasicBlock *InsertAtEnd);
    366 
    367   /// These methods just forward to Create, and are useful when you
    368   /// statically know what type of instruction you're going to create.  These
    369   /// helpers just save some typing.
    370 #define HANDLE_BINARY_INST(N, OPC, CLASS) \
    371   static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
    372                                      const Twine &Name = "") {\
    373     return Create(Instruction::OPC, V1, V2, Name);\
    374   }
    375 #include "llvm/IR/Instruction.def"
    376 #define HANDLE_BINARY_INST(N, OPC, CLASS) \
    377   static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
    378                                      const Twine &Name, BasicBlock *BB) {\
    379     return Create(Instruction::OPC, V1, V2, Name, BB);\
    380   }
    381 #include "llvm/IR/Instruction.def"
    382 #define HANDLE_BINARY_INST(N, OPC, CLASS) \
    383   static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
    384                                      const Twine &Name, Instruction *I) {\
    385     return Create(Instruction::OPC, V1, V2, Name, I);\
    386   }
    387 #include "llvm/IR/Instruction.def"
    388 
    389   static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
    390                                    const Twine &Name = "") {
    391     BinaryOperator *BO = Create(Opc, V1, V2, Name);
    392     BO->setHasNoSignedWrap(true);
    393     return BO;
    394   }
    395   static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
    396                                    const Twine &Name, BasicBlock *BB) {
    397     BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
    398     BO->setHasNoSignedWrap(true);
    399     return BO;
    400   }
    401   static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
    402                                    const Twine &Name, Instruction *I) {
    403     BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
    404     BO->setHasNoSignedWrap(true);
    405     return BO;
    406   }
    407 
    408   static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
    409                                    const Twine &Name = "") {
    410     BinaryOperator *BO = Create(Opc, V1, V2, Name);
    411     BO->setHasNoUnsignedWrap(true);
    412     return BO;
    413   }
    414   static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
    415                                    const Twine &Name, BasicBlock *BB) {
    416     BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
    417     BO->setHasNoUnsignedWrap(true);
    418     return BO;
    419   }
    420   static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
    421                                    const Twine &Name, Instruction *I) {
    422     BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
    423     BO->setHasNoUnsignedWrap(true);
    424     return BO;
    425   }
    426 
    427   static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
    428                                      const Twine &Name = "") {
    429     BinaryOperator *BO = Create(Opc, V1, V2, Name);
    430     BO->setIsExact(true);
    431     return BO;
    432   }
    433   static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
    434                                      const Twine &Name, BasicBlock *BB) {
    435     BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
    436     BO->setIsExact(true);
    437     return BO;
    438   }
    439   static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
    440                                      const Twine &Name, Instruction *I) {
    441     BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
    442     BO->setIsExact(true);
    443     return BO;
    444   }
    445 
    446 #define DEFINE_HELPERS(OPC, NUWNSWEXACT)                                       \
    447   static BinaryOperator *Create##NUWNSWEXACT##OPC(Value *V1, Value *V2,        \
    448                                                   const Twine &Name = "") {    \
    449     return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name);                \
    450   }                                                                            \
    451   static BinaryOperator *Create##NUWNSWEXACT##OPC(                             \
    452       Value *V1, Value *V2, const Twine &Name, BasicBlock *BB) {               \
    453     return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name, BB);            \
    454   }                                                                            \
    455   static BinaryOperator *Create##NUWNSWEXACT##OPC(                             \
    456       Value *V1, Value *V2, const Twine &Name, Instruction *I) {               \
    457     return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name, I);             \
    458   }
    459 
    460   DEFINE_HELPERS(Add, NSW) // CreateNSWAdd
    461   DEFINE_HELPERS(Add, NUW) // CreateNUWAdd
    462   DEFINE_HELPERS(Sub, NSW) // CreateNSWSub
    463   DEFINE_HELPERS(Sub, NUW) // CreateNUWSub
    464   DEFINE_HELPERS(Mul, NSW) // CreateNSWMul
    465   DEFINE_HELPERS(Mul, NUW) // CreateNUWMul
    466   DEFINE_HELPERS(Shl, NSW) // CreateNSWShl
    467   DEFINE_HELPERS(Shl, NUW) // CreateNUWShl
    468 
    469   DEFINE_HELPERS(SDiv, Exact)  // CreateExactSDiv
    470   DEFINE_HELPERS(UDiv, Exact)  // CreateExactUDiv
    471   DEFINE_HELPERS(AShr, Exact)  // CreateExactAShr
    472   DEFINE_HELPERS(LShr, Exact)  // CreateExactLShr
    473 
    474 #undef DEFINE_HELPERS
    475 
    476   /// Helper functions to construct and inspect unary operations (NEG and NOT)
    477   /// via binary operators SUB and XOR:
    478   ///
    479   /// Create the NEG and NOT instructions out of SUB and XOR instructions.
    480   ///
    481   static BinaryOperator *CreateNeg(Value *Op, const Twine &Name = "",
    482                                    Instruction *InsertBefore = nullptr);
    483   static BinaryOperator *CreateNeg(Value *Op, const Twine &Name,
    484                                    BasicBlock *InsertAtEnd);
    485   static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name = "",
    486                                       Instruction *InsertBefore = nullptr);
    487   static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name,
    488                                       BasicBlock *InsertAtEnd);
    489   static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name = "",
    490                                       Instruction *InsertBefore = nullptr);
    491   static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name,
    492                                       BasicBlock *InsertAtEnd);
    493   static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name = "",
    494                                     Instruction *InsertBefore = nullptr);
    495   static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name,
    496                                     BasicBlock *InsertAtEnd);
    497   static BinaryOperator *CreateNot(Value *Op, const Twine &Name = "",
    498                                    Instruction *InsertBefore = nullptr);
    499   static BinaryOperator *CreateNot(Value *Op, const Twine &Name,
    500                                    BasicBlock *InsertAtEnd);
    501 
    502   /// Check if the given Value is a NEG, FNeg, or NOT instruction.
    503   ///
    504   static bool isNeg(const Value *V);
    505   static bool isFNeg(const Value *V, bool IgnoreZeroSign=false);
    506   static bool isNot(const Value *V);
    507 
    508   /// Helper functions to extract the unary argument of a NEG, FNEG or NOT
    509   /// operation implemented via Sub, FSub, or Xor.
    510   ///
    511   static const Value *getNegArgument(const Value *BinOp);
    512   static       Value *getNegArgument(      Value *BinOp);
    513   static const Value *getFNegArgument(const Value *BinOp);
    514   static       Value *getFNegArgument(      Value *BinOp);
    515   static const Value *getNotArgument(const Value *BinOp);
    516   static       Value *getNotArgument(      Value *BinOp);
    517 
    518   BinaryOps getOpcode() const {
    519     return static_cast<BinaryOps>(Instruction::getOpcode());
    520   }
    521 
    522   /// Exchange the two operands to this instruction.
    523   /// This instruction is safe to use on any binary instruction and
    524   /// does not modify the semantics of the instruction.  If the instruction
    525   /// cannot be reversed (ie, it's a Div), then return true.
    526   ///
    527   bool swapOperands();
    528 
    529   /// Set or clear the nsw flag on this instruction, which must be an operator
    530   /// which supports this flag. See LangRef.html for the meaning of this flag.
    531   void setHasNoUnsignedWrap(bool b = true);
    532 
    533   /// Set or clear the nsw flag on this instruction, which must be an operator
    534   /// which supports this flag. See LangRef.html for the meaning of this flag.
    535   void setHasNoSignedWrap(bool b = true);
    536 
    537   /// Set or clear the exact flag on this instruction, which must be an operator
    538   /// which supports this flag. See LangRef.html for the meaning of this flag.
    539   void setIsExact(bool b = true);
    540 
    541   /// Determine whether the no unsigned wrap flag is set.
    542   bool hasNoUnsignedWrap() const;
    543 
    544   /// Determine whether the no signed wrap flag is set.
    545   bool hasNoSignedWrap() const;
    546 
    547   /// Determine whether the exact flag is set.
    548   bool isExact() const;
    549 
    550   /// Convenience method to copy supported wrapping, exact, and fast-math flags
    551   /// from V to this instruction.
    552   void copyIRFlags(const Value *V);
    553 
    554   /// Logical 'and' of any supported wrapping, exact, and fast-math flags of
    555   /// V and this instruction.
    556   void andIRFlags(const Value *V);
    557 
    558   // Methods for support type inquiry through isa, cast, and dyn_cast:
    559   static inline bool classof(const Instruction *I) {
    560     return I->isBinaryOp();
    561   }
    562   static inline bool classof(const Value *V) {
    563     return isa<Instruction>(V) && classof(cast<Instruction>(V));
    564   }
    565 };
    566 
    567 template <>
    568 struct OperandTraits<BinaryOperator> :
    569   public FixedNumOperandTraits<BinaryOperator, 2> {
    570 };
    571 
    572 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryOperator, Value)
    573 
    574 //===----------------------------------------------------------------------===//
    575 //                               CastInst Class
    576 //===----------------------------------------------------------------------===//
    577 
    578 /// This is the base class for all instructions that perform data
    579 /// casts. It is simply provided so that instruction category testing
    580 /// can be performed with code like:
    581 ///
    582 /// if (isa<CastInst>(Instr)) { ... }
    583 /// @brief Base class of casting instructions.
    584 class CastInst : public UnaryInstruction {
    585   void anchor() override;
    586 
    587 protected:
    588   /// @brief Constructor with insert-before-instruction semantics for subclasses
    589   CastInst(Type *Ty, unsigned iType, Value *S,
    590            const Twine &NameStr = "", Instruction *InsertBefore = nullptr)
    591     : UnaryInstruction(Ty, iType, S, InsertBefore) {
    592     setName(NameStr);
    593   }
    594   /// @brief Constructor with insert-at-end-of-block semantics for subclasses
    595   CastInst(Type *Ty, unsigned iType, Value *S,
    596            const Twine &NameStr, BasicBlock *InsertAtEnd)
    597     : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
    598     setName(NameStr);
    599   }
    600 
    601 public:
    602   /// Provides a way to construct any of the CastInst subclasses using an
    603   /// opcode instead of the subclass's constructor. The opcode must be in the
    604   /// CastOps category (Instruction::isCast(opcode) returns true). This
    605   /// constructor has insert-before-instruction semantics to automatically
    606   /// insert the new CastInst before InsertBefore (if it is non-null).
    607   /// @brief Construct any of the CastInst subclasses
    608   static CastInst *Create(
    609     Instruction::CastOps,    ///< The opcode of the cast instruction
    610     Value *S,                ///< The value to be casted (operand 0)
    611     Type *Ty,          ///< The type to which cast should be made
    612     const Twine &Name = "", ///< Name for the instruction
    613     Instruction *InsertBefore = nullptr ///< Place to insert the instruction
    614   );
    615   /// Provides a way to construct any of the CastInst subclasses using an
    616   /// opcode instead of the subclass's constructor. The opcode must be in the
    617   /// CastOps category. This constructor has insert-at-end-of-block semantics
    618   /// to automatically insert the new CastInst at the end of InsertAtEnd (if
    619   /// its non-null).
    620   /// @brief Construct any of the CastInst subclasses
    621   static CastInst *Create(
    622     Instruction::CastOps,    ///< The opcode for the cast instruction
    623     Value *S,                ///< The value to be casted (operand 0)
    624     Type *Ty,          ///< The type to which operand is casted
    625     const Twine &Name, ///< The name for the instruction
    626     BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
    627   );
    628 
    629   /// @brief Create a ZExt or BitCast cast instruction
    630   static CastInst *CreateZExtOrBitCast(
    631     Value *S,                ///< The value to be casted (operand 0)
    632     Type *Ty,          ///< The type to which cast should be made
    633     const Twine &Name = "", ///< Name for the instruction
    634     Instruction *InsertBefore = nullptr ///< Place to insert the instruction
    635   );
    636 
    637   /// @brief Create a ZExt or BitCast cast instruction
    638   static CastInst *CreateZExtOrBitCast(
    639     Value *S,                ///< The value to be casted (operand 0)
    640     Type *Ty,          ///< The type to which operand is casted
    641     const Twine &Name, ///< The name for the instruction
    642     BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
    643   );
    644 
    645   /// @brief Create a SExt or BitCast cast instruction
    646   static CastInst *CreateSExtOrBitCast(
    647     Value *S,                ///< The value to be casted (operand 0)
    648     Type *Ty,          ///< The type to which cast should be made
    649     const Twine &Name = "", ///< Name for the instruction
    650     Instruction *InsertBefore = nullptr ///< Place to insert the instruction
    651   );
    652 
    653   /// @brief Create a SExt or BitCast cast instruction
    654   static CastInst *CreateSExtOrBitCast(
    655     Value *S,                ///< The value to be casted (operand 0)
    656     Type *Ty,          ///< The type to which operand is casted
    657     const Twine &Name, ///< The name for the instruction
    658     BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
    659   );
    660 
    661   /// @brief Create a BitCast AddrSpaceCast, or a PtrToInt cast instruction.
    662   static CastInst *CreatePointerCast(
    663     Value *S,                ///< The pointer value to be casted (operand 0)
    664     Type *Ty,          ///< The type to which operand is casted
    665     const Twine &Name, ///< The name for the instruction
    666     BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
    667   );
    668 
    669   /// @brief Create a BitCast, AddrSpaceCast or a PtrToInt cast instruction.
    670   static CastInst *CreatePointerCast(
    671     Value *S,                ///< The pointer value to be casted (operand 0)
    672     Type *Ty,          ///< The type to which cast should be made
    673     const Twine &Name = "", ///< Name for the instruction
    674     Instruction *InsertBefore = nullptr ///< Place to insert the instruction
    675   );
    676 
    677   /// @brief Create a BitCast or an AddrSpaceCast cast instruction.
    678   static CastInst *CreatePointerBitCastOrAddrSpaceCast(
    679     Value *S,                ///< The pointer value to be casted (operand 0)
    680     Type *Ty,          ///< The type to which operand is casted
    681     const Twine &Name, ///< The name for the instruction
    682     BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
    683   );
    684 
    685   /// @brief Create a BitCast or an AddrSpaceCast cast instruction.
    686   static CastInst *CreatePointerBitCastOrAddrSpaceCast(
    687     Value *S,                ///< The pointer value to be casted (operand 0)
    688     Type *Ty,          ///< The type to which cast should be made
    689     const Twine &Name = "", ///< Name for the instruction
    690     Instruction *InsertBefore = nullptr ///< Place to insert the instruction
    691   );
    692 
    693   /// @brief Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
    694   ///
    695   /// If the value is a pointer type and the destination an integer type,
    696   /// creates a PtrToInt cast. If the value is an integer type and the
    697   /// destination a pointer type, creates an IntToPtr cast. Otherwise, creates
    698   /// a bitcast.
    699   static CastInst *CreateBitOrPointerCast(
    700     Value *S,                ///< The pointer value to be casted (operand 0)
    701     Type *Ty,          ///< The type to which cast should be made
    702     const Twine &Name = "", ///< Name for the instruction
    703     Instruction *InsertBefore = nullptr ///< Place to insert the instruction
    704   );
    705 
    706   /// @brief Create a ZExt, BitCast, or Trunc for int -> int casts.
    707   static CastInst *CreateIntegerCast(
    708     Value *S,                ///< The pointer value to be casted (operand 0)
    709     Type *Ty,          ///< The type to which cast should be made
    710     bool isSigned,           ///< Whether to regard S as signed or not
    711     const Twine &Name = "", ///< Name for the instruction
    712     Instruction *InsertBefore = nullptr ///< Place to insert the instruction
    713   );
    714 
    715   /// @brief Create a ZExt, BitCast, or Trunc for int -> int casts.
    716   static CastInst *CreateIntegerCast(
    717     Value *S,                ///< The integer value to be casted (operand 0)
    718     Type *Ty,          ///< The integer type to which operand is casted
    719     bool isSigned,           ///< Whether to regard S as signed or not
    720     const Twine &Name, ///< The name for the instruction
    721     BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
    722   );
    723 
    724   /// @brief Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
    725   static CastInst *CreateFPCast(
    726     Value *S,                ///< The floating point value to be casted
    727     Type *Ty,          ///< The floating point type to cast to
    728     const Twine &Name = "", ///< Name for the instruction
    729     Instruction *InsertBefore = nullptr ///< Place to insert the instruction
    730   );
    731 
    732   /// @brief Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
    733   static CastInst *CreateFPCast(
    734     Value *S,                ///< The floating point value to be casted
    735     Type *Ty,          ///< The floating point type to cast to
    736     const Twine &Name, ///< The name for the instruction
    737     BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
    738   );
    739 
    740   /// @brief Create a Trunc or BitCast cast instruction
    741   static CastInst *CreateTruncOrBitCast(
    742     Value *S,                ///< The value to be casted (operand 0)
    743     Type *Ty,          ///< The type to which cast should be made
    744     const Twine &Name = "", ///< Name for the instruction
    745     Instruction *InsertBefore = nullptr ///< Place to insert the instruction
    746   );
    747 
    748   /// @brief Create a Trunc or BitCast cast instruction
    749   static CastInst *CreateTruncOrBitCast(
    750     Value *S,                ///< The value to be casted (operand 0)
    751     Type *Ty,          ///< The type to which operand is casted
    752     const Twine &Name, ///< The name for the instruction
    753     BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
    754   );
    755 
    756   /// @brief Check whether it is valid to call getCastOpcode for these types.
    757   static bool isCastable(
    758     Type *SrcTy, ///< The Type from which the value should be cast.
    759     Type *DestTy ///< The Type to which the value should be cast.
    760   );
    761 
    762   /// @brief Check whether a bitcast between these types is valid
    763   static bool isBitCastable(
    764     Type *SrcTy, ///< The Type from which the value should be cast.
    765     Type *DestTy ///< The Type to which the value should be cast.
    766   );
    767 
    768   /// @brief Check whether a bitcast, inttoptr, or ptrtoint cast between these
    769   /// types is valid and a no-op.
    770   ///
    771   /// This ensures that any pointer<->integer cast has enough bits in the
    772   /// integer and any other cast is a bitcast.
    773   static bool isBitOrNoopPointerCastable(
    774       Type *SrcTy,  ///< The Type from which the value should be cast.
    775       Type *DestTy, ///< The Type to which the value should be cast.
    776       const DataLayout &DL);
    777 
    778   /// Returns the opcode necessary to cast Val into Ty using usual casting
    779   /// rules.
    780   /// @brief Infer the opcode for cast operand and type
    781   static Instruction::CastOps getCastOpcode(
    782     const Value *Val, ///< The value to cast
    783     bool SrcIsSigned, ///< Whether to treat the source as signed
    784     Type *Ty,   ///< The Type to which the value should be casted
    785     bool DstIsSigned  ///< Whether to treate the dest. as signed
    786   );
    787 
    788   /// There are several places where we need to know if a cast instruction
    789   /// only deals with integer source and destination types. To simplify that
    790   /// logic, this method is provided.
    791   /// @returns true iff the cast has only integral typed operand and dest type.
    792   /// @brief Determine if this is an integer-only cast.
    793   bool isIntegerCast() const;
    794 
    795   /// A lossless cast is one that does not alter the basic value. It implies
    796   /// a no-op cast but is more stringent, preventing things like int->float,
    797   /// long->double, or int->ptr.
    798   /// @returns true iff the cast is lossless.
    799   /// @brief Determine if this is a lossless cast.
    800   bool isLosslessCast() const;
    801 
    802   /// A no-op cast is one that can be effected without changing any bits.
    803   /// It implies that the source and destination types are the same size. The
    804   /// IntPtrTy argument is used to make accurate determinations for casts
    805   /// involving Integer and Pointer types. They are no-op casts if the integer
    806   /// is the same size as the pointer. However, pointer size varies with
    807   /// platform. Generally, the result of DataLayout::getIntPtrType() should be
    808   /// passed in. If that's not available, use Type::Int64Ty, which will make
    809   /// the isNoopCast call conservative.
    810   /// @brief Determine if the described cast is a no-op cast.
    811   static bool isNoopCast(
    812     Instruction::CastOps Opcode,  ///< Opcode of cast
    813     Type *SrcTy,   ///< SrcTy of cast
    814     Type *DstTy,   ///< DstTy of cast
    815     Type *IntPtrTy ///< Integer type corresponding to Ptr types
    816   );
    817 
    818   /// @brief Determine if this cast is a no-op cast.
    819   bool isNoopCast(
    820     Type *IntPtrTy ///< Integer type corresponding to pointer
    821   ) const;
    822 
    823   /// @brief Determine if this cast is a no-op cast.
    824   ///
    825   /// \param DL is the DataLayout to get the Int Ptr type from.
    826   bool isNoopCast(const DataLayout &DL) const;
    827 
    828   /// Determine how a pair of casts can be eliminated, if they can be at all.
    829   /// This is a helper function for both CastInst and ConstantExpr.
    830   /// @returns 0 if the CastInst pair can't be eliminated, otherwise
    831   /// returns Instruction::CastOps value for a cast that can replace
    832   /// the pair, casting SrcTy to DstTy.
    833   /// @brief Determine if a cast pair is eliminable
    834   static unsigned isEliminableCastPair(
    835     Instruction::CastOps firstOpcode,  ///< Opcode of first cast
    836     Instruction::CastOps secondOpcode, ///< Opcode of second cast
    837     Type *SrcTy, ///< SrcTy of 1st cast
    838     Type *MidTy, ///< DstTy of 1st cast & SrcTy of 2nd cast
    839     Type *DstTy, ///< DstTy of 2nd cast
    840     Type *SrcIntPtrTy, ///< Integer type corresponding to Ptr SrcTy, or null
    841     Type *MidIntPtrTy, ///< Integer type corresponding to Ptr MidTy, or null
    842     Type *DstIntPtrTy  ///< Integer type corresponding to Ptr DstTy, or null
    843   );
    844 
    845   /// @brief Return the opcode of this CastInst
    846   Instruction::CastOps getOpcode() const {
    847     return Instruction::CastOps(Instruction::getOpcode());
    848   }
    849 
    850   /// @brief Return the source type, as a convenience
    851   Type* getSrcTy() const { return getOperand(0)->getType(); }
    852   /// @brief Return the destination type, as a convenience
    853   Type* getDestTy() const { return getType(); }
    854 
    855   /// This method can be used to determine if a cast from S to DstTy using
    856   /// Opcode op is valid or not.
    857   /// @returns true iff the proposed cast is valid.
    858   /// @brief Determine if a cast is valid without creating one.
    859   static bool castIsValid(Instruction::CastOps op, Value *S, Type *DstTy);
    860 
    861   /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
    862   static inline bool classof(const Instruction *I) {
    863     return I->isCast();
    864   }
    865   static inline bool classof(const Value *V) {
    866     return isa<Instruction>(V) && classof(cast<Instruction>(V));
    867   }
    868 };
    869 
    870 //===----------------------------------------------------------------------===//
    871 //                               CmpInst Class
    872 //===----------------------------------------------------------------------===//
    873 
    874 /// This class is the base class for the comparison instructions.
    875 /// @brief Abstract base class of comparison instructions.
    876 class CmpInst : public Instruction {
    877 public:
    878   /// This enumeration lists the possible predicates for CmpInst subclasses.
    879   /// Values in the range 0-31 are reserved for FCmpInst, while values in the
    880   /// range 32-64 are reserved for ICmpInst. This is necessary to ensure the
    881   /// predicate values are not overlapping between the classes.
    882   enum Predicate {
    883     // Opcode              U L G E    Intuitive operation
    884     FCMP_FALSE =  0,  ///< 0 0 0 0    Always false (always folded)
    885     FCMP_OEQ   =  1,  ///< 0 0 0 1    True if ordered and equal
    886     FCMP_OGT   =  2,  ///< 0 0 1 0    True if ordered and greater than
    887     FCMP_OGE   =  3,  ///< 0 0 1 1    True if ordered and greater than or equal
    888     FCMP_OLT   =  4,  ///< 0 1 0 0    True if ordered and less than
    889     FCMP_OLE   =  5,  ///< 0 1 0 1    True if ordered and less than or equal
    890     FCMP_ONE   =  6,  ///< 0 1 1 0    True if ordered and operands are unequal
    891     FCMP_ORD   =  7,  ///< 0 1 1 1    True if ordered (no nans)
    892     FCMP_UNO   =  8,  ///< 1 0 0 0    True if unordered: isnan(X) | isnan(Y)
    893     FCMP_UEQ   =  9,  ///< 1 0 0 1    True if unordered or equal
    894     FCMP_UGT   = 10,  ///< 1 0 1 0    True if unordered or greater than
    895     FCMP_UGE   = 11,  ///< 1 0 1 1    True if unordered, greater than, or equal
    896     FCMP_ULT   = 12,  ///< 1 1 0 0    True if unordered or less than
    897     FCMP_ULE   = 13,  ///< 1 1 0 1    True if unordered, less than, or equal
    898     FCMP_UNE   = 14,  ///< 1 1 1 0    True if unordered or not equal
    899     FCMP_TRUE  = 15,  ///< 1 1 1 1    Always true (always folded)
    900     FIRST_FCMP_PREDICATE = FCMP_FALSE,
    901     LAST_FCMP_PREDICATE = FCMP_TRUE,
    902     BAD_FCMP_PREDICATE = FCMP_TRUE + 1,
    903     ICMP_EQ    = 32,  ///< equal
    904     ICMP_NE    = 33,  ///< not equal
    905     ICMP_UGT   = 34,  ///< unsigned greater than
    906     ICMP_UGE   = 35,  ///< unsigned greater or equal
    907     ICMP_ULT   = 36,  ///< unsigned less than
    908     ICMP_ULE   = 37,  ///< unsigned less or equal
    909     ICMP_SGT   = 38,  ///< signed greater than
    910     ICMP_SGE   = 39,  ///< signed greater or equal
    911     ICMP_SLT   = 40,  ///< signed less than
    912     ICMP_SLE   = 41,  ///< signed less or equal
    913     FIRST_ICMP_PREDICATE = ICMP_EQ,
    914     LAST_ICMP_PREDICATE = ICMP_SLE,
    915     BAD_ICMP_PREDICATE = ICMP_SLE + 1
    916   };
    917 
    918 private:
    919   void *operator new(size_t, unsigned) = delete;
    920   CmpInst() = delete;
    921 
    922 protected:
    923   CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred,
    924           Value *LHS, Value *RHS, const Twine &Name = "",
    925           Instruction *InsertBefore = nullptr);
    926 
    927   CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred,
    928           Value *LHS, Value *RHS, const Twine &Name,
    929           BasicBlock *InsertAtEnd);
    930 
    931   void anchor() override; // Out of line virtual method.
    932 
    933 public:
    934   // allocate space for exactly two operands
    935   void *operator new(size_t s) {
    936     return User::operator new(s, 2);
    937   }
    938   /// Construct a compare instruction, given the opcode, the predicate and
    939   /// the two operands.  Optionally (if InstBefore is specified) insert the
    940   /// instruction into a BasicBlock right before the specified instruction.
    941   /// The specified Instruction is allowed to be a dereferenced end iterator.
    942   /// @brief Create a CmpInst
    943   static CmpInst *Create(OtherOps Op,
    944                          Predicate predicate, Value *S1,
    945                          Value *S2, const Twine &Name = "",
    946                          Instruction *InsertBefore = nullptr);
    947 
    948   /// Construct a compare instruction, given the opcode, the predicate and the
    949   /// two operands.  Also automatically insert this instruction to the end of
    950   /// the BasicBlock specified.
    951   /// @brief Create a CmpInst
    952   static CmpInst *Create(OtherOps Op, Predicate predicate, Value *S1,
    953                          Value *S2, const Twine &Name, BasicBlock *InsertAtEnd);
    954 
    955   /// @brief Get the opcode casted to the right type
    956   OtherOps getOpcode() const {
    957     return static_cast<OtherOps>(Instruction::getOpcode());
    958   }
    959 
    960   /// @brief Return the predicate for this instruction.
    961   Predicate getPredicate() const {
    962     return Predicate(getSubclassDataFromInstruction());
    963   }
    964 
    965   /// @brief Set the predicate for this instruction to the specified value.
    966   void setPredicate(Predicate P) { setInstructionSubclassData(P); }
    967 
    968   static bool isFPPredicate(Predicate P) {
    969     return P >= FIRST_FCMP_PREDICATE && P <= LAST_FCMP_PREDICATE;
    970   }
    971 
    972   static bool isIntPredicate(Predicate P) {
    973     return P >= FIRST_ICMP_PREDICATE && P <= LAST_ICMP_PREDICATE;
    974   }
    975 
    976   bool isFPPredicate() const { return isFPPredicate(getPredicate()); }
    977   bool isIntPredicate() const { return isIntPredicate(getPredicate()); }
    978 
    979   /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
    980   ///              OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
    981   /// @returns the inverse predicate for the instruction's current predicate.
    982   /// @brief Return the inverse of the instruction's predicate.
    983   Predicate getInversePredicate() const {
    984     return getInversePredicate(getPredicate());
    985   }
    986 
    987   /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
    988   ///              OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
    989   /// @returns the inverse predicate for predicate provided in \p pred.
    990   /// @brief Return the inverse of a given predicate
    991   static Predicate getInversePredicate(Predicate pred);
    992 
    993   /// For example, EQ->EQ, SLE->SGE, ULT->UGT,
    994   ///              OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
    995   /// @returns the predicate that would be the result of exchanging the two
    996   /// operands of the CmpInst instruction without changing the result
    997   /// produced.
    998   /// @brief Return the predicate as if the operands were swapped
    999   Predicate getSwappedPredicate() const {
   1000     return getSwappedPredicate(getPredicate());
   1001   }
   1002 
   1003   /// This is a static version that you can use without an instruction
   1004   /// available.
   1005   /// @brief Return the predicate as if the operands were swapped.
   1006   static Predicate getSwappedPredicate(Predicate pred);
   1007 
   1008   /// @brief Provide more efficient getOperand methods.
   1009   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
   1010 
   1011   /// This is just a convenience that dispatches to the subclasses.
   1012   /// @brief Swap the operands and adjust predicate accordingly to retain
   1013   /// the same comparison.
   1014   void swapOperands();
   1015 
   1016   /// This is just a convenience that dispatches to the subclasses.
   1017   /// @brief Determine if this CmpInst is commutative.
   1018   bool isCommutative() const;
   1019 
   1020   /// This is just a convenience that dispatches to the subclasses.
   1021   /// @brief Determine if this is an equals/not equals predicate.
   1022   bool isEquality() const;
   1023 
   1024   /// @returns true if the comparison is signed, false otherwise.
   1025   /// @brief Determine if this instruction is using a signed comparison.
   1026   bool isSigned() const {
   1027     return isSigned(getPredicate());
   1028   }
   1029 
   1030   /// @returns true if the comparison is unsigned, false otherwise.
   1031   /// @brief Determine if this instruction is using an unsigned comparison.
   1032   bool isUnsigned() const {
   1033     return isUnsigned(getPredicate());
   1034   }
   1035 
   1036   /// For example, ULT->SLT, ULE->SLE, UGT->SGT, UGE->SGE, SLT->Failed assert
   1037   /// @returns the signed version of the unsigned predicate pred.
   1038   /// @brief return the signed version of a predicate
   1039   static Predicate getSignedPredicate(Predicate pred);
   1040 
   1041   /// For example, ULT->SLT, ULE->SLE, UGT->SGT, UGE->SGE, SLT->Failed assert
   1042   /// @returns the signed version of the predicate for this instruction (which
   1043   /// has to be an unsigned predicate).
   1044   /// @brief return the signed version of a predicate
   1045   Predicate getSignedPredicate() {
   1046     return getSignedPredicate(getPredicate());
   1047   }
   1048 
   1049   /// This is just a convenience.
   1050   /// @brief Determine if this is true when both operands are the same.
   1051   bool isTrueWhenEqual() const {
   1052     return isTrueWhenEqual(getPredicate());
   1053   }
   1054 
   1055   /// This is just a convenience.
   1056   /// @brief Determine if this is false when both operands are the same.
   1057   bool isFalseWhenEqual() const {
   1058     return isFalseWhenEqual(getPredicate());
   1059   }
   1060 
   1061   /// @returns true if the predicate is unsigned, false otherwise.
   1062   /// @brief Determine if the predicate is an unsigned operation.
   1063   static bool isUnsigned(Predicate predicate);
   1064 
   1065   /// @returns true if the predicate is signed, false otherwise.
   1066   /// @brief Determine if the predicate is an signed operation.
   1067   static bool isSigned(Predicate predicate);
   1068 
   1069   /// @brief Determine if the predicate is an ordered operation.
   1070   static bool isOrdered(Predicate predicate);
   1071 
   1072   /// @brief Determine if the predicate is an unordered operation.
   1073   static bool isUnordered(Predicate predicate);
   1074 
   1075   /// Determine if the predicate is true when comparing a value with itself.
   1076   static bool isTrueWhenEqual(Predicate predicate);
   1077 
   1078   /// Determine if the predicate is false when comparing a value with itself.
   1079   static bool isFalseWhenEqual(Predicate predicate);
   1080 
   1081   /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
   1082   static inline bool classof(const Instruction *I) {
   1083     return I->getOpcode() == Instruction::ICmp ||
   1084            I->getOpcode() == Instruction::FCmp;
   1085   }
   1086   static inline bool classof(const Value *V) {
   1087     return isa<Instruction>(V) && classof(cast<Instruction>(V));
   1088   }
   1089 
   1090   /// @brief Create a result type for fcmp/icmp
   1091   static Type* makeCmpResultType(Type* opnd_type) {
   1092     if (VectorType* vt = dyn_cast<VectorType>(opnd_type)) {
   1093       return VectorType::get(Type::getInt1Ty(opnd_type->getContext()),
   1094                              vt->getNumElements());
   1095     }
   1096     return Type::getInt1Ty(opnd_type->getContext());
   1097   }
   1098 
   1099 private:
   1100   // Shadow Value::setValueSubclassData with a private forwarding method so that
   1101   // subclasses cannot accidentally use it.
   1102   void setValueSubclassData(unsigned short D) {
   1103     Value::setValueSubclassData(D);
   1104   }
   1105 };
   1106 
   1107 // FIXME: these are redundant if CmpInst < BinaryOperator
   1108 template <>
   1109 struct OperandTraits<CmpInst> : public FixedNumOperandTraits<CmpInst, 2> {
   1110 };
   1111 
   1112 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CmpInst, Value)
   1113 
   1114 //===----------------------------------------------------------------------===//
   1115 //                           FuncletPadInst Class
   1116 //===----------------------------------------------------------------------===//
   1117 class FuncletPadInst : public Instruction {
   1118 private:
   1119   void init(Value *ParentPad, ArrayRef<Value *> Args, const Twine &NameStr);
   1120 
   1121   FuncletPadInst(const FuncletPadInst &CPI);
   1122 
   1123   explicit FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
   1124                           ArrayRef<Value *> Args, unsigned Values,
   1125                           const Twine &NameStr, Instruction *InsertBefore);
   1126   explicit FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
   1127                           ArrayRef<Value *> Args, unsigned Values,
   1128                           const Twine &NameStr, BasicBlock *InsertAtEnd);
   1129 
   1130 protected:
   1131   // Note: Instruction needs to be a friend here to call cloneImpl.
   1132   friend class Instruction;
   1133   friend class CatchPadInst;
   1134   friend class CleanupPadInst;
   1135   FuncletPadInst *cloneImpl() const;
   1136 
   1137 public:
   1138   /// Provide fast operand accessors
   1139   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
   1140 
   1141   /// getNumArgOperands - Return the number of funcletpad arguments.
   1142   ///
   1143   unsigned getNumArgOperands() const { return getNumOperands() - 1; }
   1144 
   1145   /// Convenience accessors
   1146 
   1147   /// \brief Return the outer EH-pad this funclet is nested within.
   1148   ///
   1149   /// Note: This returns the associated CatchSwitchInst if this FuncletPadInst
   1150   /// is a CatchPadInst.
   1151   Value *getParentPad() const { return Op<-1>(); }
   1152   void setParentPad(Value *ParentPad) {
   1153     assert(ParentPad);
   1154     Op<-1>() = ParentPad;
   1155   }
   1156 
   1157   /// getArgOperand/setArgOperand - Return/set the i-th funcletpad argument.
   1158   ///
   1159   Value *getArgOperand(unsigned i) const { return getOperand(i); }
   1160   void setArgOperand(unsigned i, Value *v) { setOperand(i, v); }
   1161 
   1162   /// arg_operands - iteration adapter for range-for loops.
   1163   op_range arg_operands() { return op_range(op_begin(), op_end() - 1); }
   1164 
   1165   /// arg_operands - iteration adapter for range-for loops.
   1166   const_op_range arg_operands() const {
   1167     return const_op_range(op_begin(), op_end() - 1);
   1168   }
   1169 
   1170   // Methods for support type inquiry through isa, cast, and dyn_cast:
   1171   static inline bool classof(const Instruction *I) { return I->isFuncletPad(); }
   1172   static inline bool classof(const Value *V) {
   1173     return isa<Instruction>(V) && classof(cast<Instruction>(V));
   1174   }
   1175 };
   1176 
   1177 template <>
   1178 struct OperandTraits<FuncletPadInst>
   1179     : public VariadicOperandTraits<FuncletPadInst, /*MINARITY=*/1> {};
   1180 
   1181 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(FuncletPadInst, Value)
   1182 
   1183 /// \brief A lightweight accessor for an operand bundle meant to be passed
   1184 /// around by value.
   1185 struct OperandBundleUse {
   1186   ArrayRef<Use> Inputs;
   1187 
   1188   OperandBundleUse() {}
   1189   explicit OperandBundleUse(StringMapEntry<uint32_t> *Tag, ArrayRef<Use> Inputs)
   1190       : Inputs(Inputs), Tag(Tag) {}
   1191 
   1192   /// \brief Return true if the operand at index \p Idx in this operand bundle
   1193   /// has the attribute A.
   1194   bool operandHasAttr(unsigned Idx, Attribute::AttrKind A) const {
   1195     if (isDeoptOperandBundle())
   1196       if (A == Attribute::ReadOnly || A == Attribute::NoCapture)
   1197         return Inputs[Idx]->getType()->isPointerTy();
   1198 
   1199     // Conservative answer:  no operands have any attributes.
   1200     return false;
   1201   };
   1202 
   1203   /// \brief Return the tag of this operand bundle as a string.
   1204   StringRef getTagName() const {
   1205     return Tag->getKey();
   1206   }
   1207 
   1208   /// \brief Return the tag of this operand bundle as an integer.
   1209   ///
   1210   /// Operand bundle tags are interned by LLVMContextImpl::getOrInsertBundleTag,
   1211   /// and this function returns the unique integer getOrInsertBundleTag
   1212   /// associated the tag of this operand bundle to.
   1213   uint32_t getTagID() const {
   1214     return Tag->getValue();
   1215   }
   1216 
   1217   /// \brief Return true if this is a "deopt" operand bundle.
   1218   bool isDeoptOperandBundle() const {
   1219     return getTagID() == LLVMContext::OB_deopt;
   1220   }
   1221 
   1222   /// \brief Return true if this is a "funclet" operand bundle.
   1223   bool isFuncletOperandBundle() const {
   1224     return getTagID() == LLVMContext::OB_funclet;
   1225   }
   1226 
   1227 private:
   1228   /// \brief Pointer to an entry in LLVMContextImpl::getOrInsertBundleTag.
   1229   StringMapEntry<uint32_t> *Tag;
   1230 };
   1231 
   1232 /// \brief A container for an operand bundle being viewed as a set of values
   1233 /// rather than a set of uses.
   1234 ///
   1235 /// Unlike OperandBundleUse, OperandBundleDefT owns the memory it carries, and
   1236 /// so it is possible to create and pass around "self-contained" instances of
   1237 /// OperandBundleDef and ConstOperandBundleDef.
   1238 template <typename InputTy> class OperandBundleDefT {
   1239   std::string Tag;
   1240   std::vector<InputTy> Inputs;
   1241 
   1242 public:
   1243   explicit OperandBundleDefT(std::string Tag, std::vector<InputTy> Inputs)
   1244       : Tag(std::move(Tag)), Inputs(std::move(Inputs)) {}
   1245   explicit OperandBundleDefT(std::string Tag, ArrayRef<InputTy> Inputs)
   1246       : Tag(std::move(Tag)), Inputs(Inputs) {}
   1247 
   1248   explicit OperandBundleDefT(const OperandBundleUse &OBU) {
   1249     Tag = OBU.getTagName();
   1250     Inputs.insert(Inputs.end(), OBU.Inputs.begin(), OBU.Inputs.end());
   1251   }
   1252 
   1253   ArrayRef<InputTy> inputs() const { return Inputs; }
   1254 
   1255   typedef typename std::vector<InputTy>::const_iterator input_iterator;
   1256   size_t input_size() const { return Inputs.size(); }
   1257   input_iterator input_begin() const { return Inputs.begin(); }
   1258   input_iterator input_end() const { return Inputs.end(); }
   1259 
   1260   StringRef getTag() const { return Tag; }
   1261 };
   1262 
   1263 typedef OperandBundleDefT<Value *> OperandBundleDef;
   1264 typedef OperandBundleDefT<const Value *> ConstOperandBundleDef;
   1265 
   1266 /// \brief A mixin to add operand bundle functionality to llvm instruction
   1267 /// classes.
   1268 ///
   1269 /// OperandBundleUser uses the descriptor area co-allocated with the host User
   1270 /// to store some meta information about which operands are "normal" operands,
   1271 /// and which ones belong to some operand bundle.
   1272 ///
   1273 /// The layout of an operand bundle user is
   1274 ///
   1275 ///          +-----------uint32_t End-------------------------------------+
   1276 ///          |                                                            |
   1277 ///          |  +--------uint32_t Begin--------------------+              |
   1278 ///          |  |                                          |              |
   1279 ///          ^  ^                                          v              v
   1280 ///  |------|------|----|----|----|----|----|---------|----|---------|----|-----
   1281 ///  | BOI0 | BOI1 | .. | DU | U0 | U1 | .. | BOI0_U0 | .. | BOI1_U0 | .. | Un
   1282 ///  |------|------|----|----|----|----|----|---------|----|---------|----|-----
   1283 ///   v  v                                  ^              ^
   1284 ///   |  |                                  |              |
   1285 ///   |  +--------uint32_t Begin------------+              |
   1286 ///   |                                                    |
   1287 ///   +-----------uint32_t End-----------------------------+
   1288 ///
   1289 ///
   1290 /// BOI0, BOI1 ... are descriptions of operand bundles in this User's use list.
   1291 /// These descriptions are installed and managed by this class, and they're all
   1292 /// instances of OperandBundleUser<T>::BundleOpInfo.
   1293 ///
   1294 /// DU is an additional descriptor installed by User's 'operator new' to keep
   1295 /// track of the 'BOI0 ... BOIN' co-allocation.  OperandBundleUser does not
   1296 /// access or modify DU in any way, it's an implementation detail private to
   1297 /// User.
   1298 ///
   1299 /// The regular Use& vector for the User starts at U0.  The operand bundle uses
   1300 /// are part of the Use& vector, just like normal uses.  In the diagram above,
   1301 /// the operand bundle uses start at BOI0_U0.  Each instance of BundleOpInfo has
   1302 /// information about a contiguous set of uses constituting an operand bundle,
   1303 /// and the total set of operand bundle uses themselves form a contiguous set of
   1304 /// uses (i.e. there are no gaps between uses corresponding to individual
   1305 /// operand bundles).
   1306 ///
   1307 /// This class does not know the location of the set of operand bundle uses
   1308 /// within the use list -- that is decided by the User using this class via the
   1309 /// BeginIdx argument in populateBundleOperandInfos.
   1310 ///
   1311 /// Currently operand bundle users with hung-off operands are not supported.
   1312 template <typename InstrTy, typename OpIteratorTy> class OperandBundleUser {
   1313 public:
   1314   /// \brief Return the number of operand bundles associated with this User.
   1315   unsigned getNumOperandBundles() const {
   1316     return std::distance(bundle_op_info_begin(), bundle_op_info_end());
   1317   }
   1318 
   1319   /// \brief Return true if this User has any operand bundles.
   1320   bool hasOperandBundles() const { return getNumOperandBundles() != 0; }
   1321 
   1322   /// \brief Return the index of the first bundle operand in the Use array.
   1323   unsigned getBundleOperandsStartIndex() const {
   1324     assert(hasOperandBundles() && "Don't call otherwise!");
   1325     return bundle_op_info_begin()->Begin;
   1326   }
   1327 
   1328   /// \brief Return the index of the last bundle operand in the Use array.
   1329   unsigned getBundleOperandsEndIndex() const {
   1330     assert(hasOperandBundles() && "Don't call otherwise!");
   1331     return bundle_op_info_end()[-1].End;
   1332   }
   1333 
   1334   /// \brief Return the total number operands (not operand bundles) used by
   1335   /// every operand bundle in this OperandBundleUser.
   1336   unsigned getNumTotalBundleOperands() const {
   1337     if (!hasOperandBundles())
   1338       return 0;
   1339 
   1340     unsigned Begin = getBundleOperandsStartIndex();
   1341     unsigned End = getBundleOperandsEndIndex();
   1342 
   1343     assert(Begin <= End && "Should be!");
   1344     return End - Begin;
   1345   }
   1346 
   1347   /// \brief Return the operand bundle at a specific index.
   1348   OperandBundleUse getOperandBundleAt(unsigned Index) const {
   1349     assert(Index < getNumOperandBundles() && "Index out of bounds!");
   1350     return operandBundleFromBundleOpInfo(*(bundle_op_info_begin() + Index));
   1351   }
   1352 
   1353   /// \brief Return the number of operand bundles with the tag Name attached to
   1354   /// this instruction.
   1355   unsigned countOperandBundlesOfType(StringRef Name) const {
   1356     unsigned Count = 0;
   1357     for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
   1358       if (getOperandBundleAt(i).getTagName() == Name)
   1359         Count++;
   1360 
   1361     return Count;
   1362   }
   1363 
   1364   /// \brief Return the number of operand bundles with the tag ID attached to
   1365   /// this instruction.
   1366   unsigned countOperandBundlesOfType(uint32_t ID) const {
   1367     unsigned Count = 0;
   1368     for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
   1369       if (getOperandBundleAt(i).getTagID() == ID)
   1370         Count++;
   1371 
   1372     return Count;
   1373   }
   1374 
   1375   /// \brief Return an operand bundle by name, if present.
   1376   ///
   1377   /// It is an error to call this for operand bundle types that may have
   1378   /// multiple instances of them on the same instruction.
   1379   Optional<OperandBundleUse> getOperandBundle(StringRef Name) const {
   1380     assert(countOperandBundlesOfType(Name) < 2 && "Precondition violated!");
   1381 
   1382     for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) {
   1383       OperandBundleUse U = getOperandBundleAt(i);
   1384       if (U.getTagName() == Name)
   1385         return U;
   1386     }
   1387 
   1388     return None;
   1389   }
   1390 
   1391   /// \brief Return an operand bundle by tag ID, if present.
   1392   ///
   1393   /// It is an error to call this for operand bundle types that may have
   1394   /// multiple instances of them on the same instruction.
   1395   Optional<OperandBundleUse> getOperandBundle(uint32_t ID) const {
   1396     assert(countOperandBundlesOfType(ID) < 2 && "Precondition violated!");
   1397 
   1398     for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) {
   1399       OperandBundleUse U = getOperandBundleAt(i);
   1400       if (U.getTagID() == ID)
   1401         return U;
   1402     }
   1403 
   1404     return None;
   1405   }
   1406 
   1407   /// \brief Return the list of operand bundles attached to this instruction as
   1408   /// a vector of OperandBundleDefs.
   1409   ///
   1410   /// This function copies the OperandBundeUse instances associated with this
   1411   /// OperandBundleUser to a vector of OperandBundleDefs.  Note:
   1412   /// OperandBundeUses and OperandBundleDefs are non-trivially *different*
   1413   /// representations of operand bundles (see documentation above).
   1414   void getOperandBundlesAsDefs(SmallVectorImpl<OperandBundleDef> &Defs) const {
   1415     for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
   1416       Defs.emplace_back(getOperandBundleAt(i));
   1417   }
   1418 
   1419   /// \brief Return the operand bundle for the operand at index OpIdx.
   1420   ///
   1421   /// It is an error to call this with an OpIdx that does not correspond to an
   1422   /// bundle operand.
   1423   OperandBundleUse getOperandBundleForOperand(unsigned OpIdx) const {
   1424     return operandBundleFromBundleOpInfo(getBundleOpInfoForOperand(OpIdx));
   1425   }
   1426 
   1427   /// \brief Return true if this operand bundle user has operand bundles that
   1428   /// may read from the heap.
   1429   bool hasReadingOperandBundles() const {
   1430     // Implementation note: this is a conservative implementation of operand
   1431     // bundle semantics, where *any* operand bundle forces a callsite to be at
   1432     // least readonly.
   1433     return hasOperandBundles();
   1434   }
   1435 
   1436   /// \brief Return true if this operand bundle user has operand bundles that
   1437   /// may write to the heap.
   1438   bool hasClobberingOperandBundles() const {
   1439     for (auto &BOI : bundle_op_infos()) {
   1440       if (BOI.Tag->second == LLVMContext::OB_deopt ||
   1441           BOI.Tag->second == LLVMContext::OB_funclet)
   1442         continue;
   1443 
   1444       // This instruction has an operand bundle that is not known to us.
   1445       // Assume the worst.
   1446       return true;
   1447     }
   1448 
   1449     return false;
   1450   }
   1451 
   1452   /// \brief Return true if the bundle operand at index \p OpIdx has the
   1453   /// attribute \p A.
   1454   bool bundleOperandHasAttr(unsigned OpIdx,  Attribute::AttrKind A) const {
   1455     auto &BOI = getBundleOpInfoForOperand(OpIdx);
   1456     auto OBU = operandBundleFromBundleOpInfo(BOI);
   1457     return OBU.operandHasAttr(OpIdx - BOI.Begin, A);
   1458   }
   1459 
   1460   /// \brief Return true if \p Other has the same sequence of operand bundle
   1461   /// tags with the same number of operands on each one of them as this
   1462   /// OperandBundleUser.
   1463   bool hasIdenticalOperandBundleSchema(
   1464       const OperandBundleUser<InstrTy, OpIteratorTy> &Other) const {
   1465     if (getNumOperandBundles() != Other.getNumOperandBundles())
   1466       return false;
   1467 
   1468     return std::equal(bundle_op_info_begin(), bundle_op_info_end(),
   1469                       Other.bundle_op_info_begin());
   1470   };
   1471 
   1472 protected:
   1473   /// \brief Is the function attribute S disallowed by some operand bundle on
   1474   /// this operand bundle user?
   1475   bool isFnAttrDisallowedByOpBundle(StringRef S) const {
   1476     // Operand bundles only possibly disallow readnone, readonly and argmenonly
   1477     // attributes.  All String attributes are fine.
   1478     return false;
   1479   }
   1480 
   1481   /// \brief Is the function attribute A disallowed by some operand bundle on
   1482   /// this operand bundle user?
   1483   bool isFnAttrDisallowedByOpBundle(Attribute::AttrKind A) const {
   1484     switch (A) {
   1485     default:
   1486       return false;
   1487 
   1488     case Attribute::ArgMemOnly:
   1489       return hasReadingOperandBundles();
   1490 
   1491     case Attribute::ReadNone:
   1492       return hasReadingOperandBundles();
   1493 
   1494     case Attribute::ReadOnly:
   1495       return hasClobberingOperandBundles();
   1496     }
   1497 
   1498     llvm_unreachable("switch has a default case!");
   1499   }
   1500 
   1501   /// \brief Used to keep track of an operand bundle.  See the main comment on
   1502   /// OperandBundleUser above.
   1503   struct BundleOpInfo {
   1504     /// \brief The operand bundle tag, interned by
   1505     /// LLVMContextImpl::getOrInsertBundleTag.
   1506     StringMapEntry<uint32_t> *Tag;
   1507 
   1508     /// \brief The index in the Use& vector where operands for this operand
   1509     /// bundle starts.
   1510     uint32_t Begin;
   1511 
   1512     /// \brief The index in the Use& vector where operands for this operand
   1513     /// bundle ends.
   1514     uint32_t End;
   1515 
   1516     bool operator==(const BundleOpInfo &Other) const {
   1517       return Tag == Other.Tag && Begin == Other.Begin && End == Other.End;
   1518     }
   1519   };
   1520 
   1521   /// \brief Simple helper function to map a BundleOpInfo to an
   1522   /// OperandBundleUse.
   1523   OperandBundleUse
   1524   operandBundleFromBundleOpInfo(const BundleOpInfo &BOI) const {
   1525     auto op_begin = static_cast<const InstrTy *>(this)->op_begin();
   1526     ArrayRef<Use> Inputs(op_begin + BOI.Begin, op_begin + BOI.End);
   1527     return OperandBundleUse(BOI.Tag, Inputs);
   1528   }
   1529 
   1530   typedef BundleOpInfo *bundle_op_iterator;
   1531   typedef const BundleOpInfo *const_bundle_op_iterator;
   1532 
   1533   /// \brief Return the start of the list of BundleOpInfo instances associated
   1534   /// with this OperandBundleUser.
   1535   bundle_op_iterator bundle_op_info_begin() {
   1536     if (!static_cast<InstrTy *>(this)->hasDescriptor())
   1537       return nullptr;
   1538 
   1539     uint8_t *BytesBegin = static_cast<InstrTy *>(this)->getDescriptor().begin();
   1540     return reinterpret_cast<bundle_op_iterator>(BytesBegin);
   1541   }
   1542 
   1543   /// \brief Return the start of the list of BundleOpInfo instances associated
   1544   /// with this OperandBundleUser.
   1545   const_bundle_op_iterator bundle_op_info_begin() const {
   1546     auto *NonConstThis =
   1547         const_cast<OperandBundleUser<InstrTy, OpIteratorTy> *>(this);
   1548     return NonConstThis->bundle_op_info_begin();
   1549   }
   1550 
   1551   /// \brief Return the end of the list of BundleOpInfo instances associated
   1552   /// with this OperandBundleUser.
   1553   bundle_op_iterator bundle_op_info_end() {
   1554     if (!static_cast<InstrTy *>(this)->hasDescriptor())
   1555       return nullptr;
   1556 
   1557     uint8_t *BytesEnd = static_cast<InstrTy *>(this)->getDescriptor().end();
   1558     return reinterpret_cast<bundle_op_iterator>(BytesEnd);
   1559   }
   1560 
   1561   /// \brief Return the end of the list of BundleOpInfo instances associated
   1562   /// with this OperandBundleUser.
   1563   const_bundle_op_iterator bundle_op_info_end() const {
   1564     auto *NonConstThis =
   1565         const_cast<OperandBundleUser<InstrTy, OpIteratorTy> *>(this);
   1566     return NonConstThis->bundle_op_info_end();
   1567   }
   1568 
   1569   /// \brief Return the range [\p bundle_op_info_begin, \p bundle_op_info_end).
   1570   iterator_range<bundle_op_iterator> bundle_op_infos() {
   1571     return make_range(bundle_op_info_begin(), bundle_op_info_end());
   1572   }
   1573 
   1574   /// \brief Return the range [\p bundle_op_info_begin, \p bundle_op_info_end).
   1575   iterator_range<const_bundle_op_iterator> bundle_op_infos() const {
   1576     return make_range(bundle_op_info_begin(), bundle_op_info_end());
   1577   }
   1578 
   1579   /// \brief Populate the BundleOpInfo instances and the Use& vector from \p
   1580   /// Bundles.  Return the op_iterator pointing to the Use& one past the last
   1581   /// last bundle operand use.
   1582   ///
   1583   /// Each \p OperandBundleDef instance is tracked by a OperandBundleInfo
   1584   /// instance allocated in this User's descriptor.
   1585   OpIteratorTy populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
   1586                                           const unsigned BeginIndex) {
   1587     auto It = static_cast<InstrTy *>(this)->op_begin() + BeginIndex;
   1588     for (auto &B : Bundles)
   1589       It = std::copy(B.input_begin(), B.input_end(), It);
   1590 
   1591     auto *ContextImpl = static_cast<InstrTy *>(this)->getContext().pImpl;
   1592     auto BI = Bundles.begin();
   1593     unsigned CurrentIndex = BeginIndex;
   1594 
   1595     for (auto &BOI : bundle_op_infos()) {
   1596       assert(BI != Bundles.end() && "Incorrect allocation?");
   1597 
   1598       BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
   1599       BOI.Begin = CurrentIndex;
   1600       BOI.End = CurrentIndex + BI->input_size();
   1601       CurrentIndex = BOI.End;
   1602       BI++;
   1603     }
   1604 
   1605     assert(BI == Bundles.end() && "Incorrect allocation?");
   1606 
   1607     return It;
   1608   }
   1609 
   1610   /// \brief Return the BundleOpInfo for the operand at index OpIdx.
   1611   ///
   1612   /// It is an error to call this with an OpIdx that does not correspond to an
   1613   /// bundle operand.
   1614   const BundleOpInfo &getBundleOpInfoForOperand(unsigned OpIdx) const {
   1615     for (auto &BOI : bundle_op_infos())
   1616       if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
   1617         return BOI;
   1618 
   1619     llvm_unreachable("Did not find operand bundle for operand!");
   1620   }
   1621 
   1622   /// \brief Return the total number of values used in \p Bundles.
   1623   static unsigned CountBundleInputs(ArrayRef<OperandBundleDef> Bundles) {
   1624     unsigned Total = 0;
   1625     for (auto &B : Bundles)
   1626       Total += B.input_size();
   1627     return Total;
   1628   }
   1629 };
   1630 
   1631 } // end llvm namespace
   1632 
   1633 #endif // LLVM_IR_INSTRTYPES_H
   1634