Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
     11 // srem, urem, frem.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "InstCombineInternal.h"
     16 #include "llvm/Analysis/InstructionSimplify.h"
     17 #include "llvm/IR/IntrinsicInst.h"
     18 #include "llvm/IR/PatternMatch.h"
     19 using namespace llvm;
     20 using namespace PatternMatch;
     21 
     22 #define DEBUG_TYPE "instcombine"
     23 
     24 
     25 /// The specific integer value is used in a context where it is known to be
     26 /// non-zero.  If this allows us to simplify the computation, do so and return
     27 /// the new operand, otherwise return null.
     28 static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC,
     29                                         Instruction &CxtI) {
     30   // If V has multiple uses, then we would have to do more analysis to determine
     31   // if this is safe.  For example, the use could be in dynamically unreached
     32   // code.
     33   if (!V->hasOneUse()) return nullptr;
     34 
     35   bool MadeChange = false;
     36 
     37   // ((1 << A) >>u B) --> (1 << (A-B))
     38   // Because V cannot be zero, we know that B is less than A.
     39   Value *A = nullptr, *B = nullptr, *One = nullptr;
     40   if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
     41       match(One, m_One())) {
     42     A = IC.Builder->CreateSub(A, B);
     43     return IC.Builder->CreateShl(One, A);
     44   }
     45 
     46   // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
     47   // inexact.  Similarly for <<.
     48   if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
     49     if (I->isLogicalShift() &&
     50         isKnownToBeAPowerOfTwo(I->getOperand(0), IC.getDataLayout(), false, 0,
     51                                IC.getAssumptionCache(), &CxtI,
     52                                IC.getDominatorTree())) {
     53       // We know that this is an exact/nuw shift and that the input is a
     54       // non-zero context as well.
     55       if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
     56         I->setOperand(0, V2);
     57         MadeChange = true;
     58       }
     59 
     60       if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
     61         I->setIsExact();
     62         MadeChange = true;
     63       }
     64 
     65       if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
     66         I->setHasNoUnsignedWrap();
     67         MadeChange = true;
     68       }
     69     }
     70 
     71   // TODO: Lots more we could do here:
     72   //    If V is a phi node, we can call this on each of its operands.
     73   //    "select cond, X, 0" can simplify to "X".
     74 
     75   return MadeChange ? V : nullptr;
     76 }
     77 
     78 
     79 /// True if the multiply can not be expressed in an int this size.
     80 static bool MultiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
     81                               bool IsSigned) {
     82   bool Overflow;
     83   if (IsSigned)
     84     Product = C1.smul_ov(C2, Overflow);
     85   else
     86     Product = C1.umul_ov(C2, Overflow);
     87 
     88   return Overflow;
     89 }
     90 
     91 /// \brief True if C2 is a multiple of C1. Quotient contains C2/C1.
     92 static bool IsMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
     93                        bool IsSigned) {
     94   assert(C1.getBitWidth() == C2.getBitWidth() &&
     95          "Inconsistent width of constants!");
     96 
     97   // Bail if we will divide by zero.
     98   if (C2.isMinValue())
     99     return false;
    100 
    101   // Bail if we would divide INT_MIN by -1.
    102   if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue())
    103     return false;
    104 
    105   APInt Remainder(C1.getBitWidth(), /*Val=*/0ULL, IsSigned);
    106   if (IsSigned)
    107     APInt::sdivrem(C1, C2, Quotient, Remainder);
    108   else
    109     APInt::udivrem(C1, C2, Quotient, Remainder);
    110 
    111   return Remainder.isMinValue();
    112 }
    113 
    114 /// \brief A helper routine of InstCombiner::visitMul().
    115 ///
    116 /// If C is a vector of known powers of 2, then this function returns
    117 /// a new vector obtained from C replacing each element with its logBase2.
    118 /// Return a null pointer otherwise.
    119 static Constant *getLogBase2Vector(ConstantDataVector *CV) {
    120   const APInt *IVal;
    121   SmallVector<Constant *, 4> Elts;
    122 
    123   for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) {
    124     Constant *Elt = CV->getElementAsConstant(I);
    125     if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
    126       return nullptr;
    127     Elts.push_back(ConstantInt::get(Elt->getType(), IVal->logBase2()));
    128   }
    129 
    130   return ConstantVector::get(Elts);
    131 }
    132 
    133 /// \brief Return true if we can prove that:
    134 ///    (mul LHS, RHS)  === (mul nsw LHS, RHS)
    135 bool InstCombiner::WillNotOverflowSignedMul(Value *LHS, Value *RHS,
    136                                             Instruction &CxtI) {
    137   // Multiplying n * m significant bits yields a result of n + m significant
    138   // bits. If the total number of significant bits does not exceed the
    139   // result bit width (minus 1), there is no overflow.
    140   // This means if we have enough leading sign bits in the operands
    141   // we can guarantee that the result does not overflow.
    142   // Ref: "Hacker's Delight" by Henry Warren
    143   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
    144 
    145   // Note that underestimating the number of sign bits gives a more
    146   // conservative answer.
    147   unsigned SignBits =
    148       ComputeNumSignBits(LHS, 0, &CxtI) + ComputeNumSignBits(RHS, 0, &CxtI);
    149 
    150   // First handle the easy case: if we have enough sign bits there's
    151   // definitely no overflow.
    152   if (SignBits > BitWidth + 1)
    153     return true;
    154 
    155   // There are two ambiguous cases where there can be no overflow:
    156   //   SignBits == BitWidth + 1    and
    157   //   SignBits == BitWidth
    158   // The second case is difficult to check, therefore we only handle the
    159   // first case.
    160   if (SignBits == BitWidth + 1) {
    161     // It overflows only when both arguments are negative and the true
    162     // product is exactly the minimum negative number.
    163     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
    164     // For simplicity we just check if at least one side is not negative.
    165     bool LHSNonNegative, LHSNegative;
    166     bool RHSNonNegative, RHSNegative;
    167     ComputeSignBit(LHS, LHSNonNegative, LHSNegative, /*Depth=*/0, &CxtI);
    168     ComputeSignBit(RHS, RHSNonNegative, RHSNegative, /*Depth=*/0, &CxtI);
    169     if (LHSNonNegative || RHSNonNegative)
    170       return true;
    171   }
    172   return false;
    173 }
    174 
    175 Instruction *InstCombiner::visitMul(BinaryOperator &I) {
    176   bool Changed = SimplifyAssociativeOrCommutative(I);
    177   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    178 
    179   if (Value *V = SimplifyVectorOp(I))
    180     return ReplaceInstUsesWith(I, V);
    181 
    182   if (Value *V = SimplifyMulInst(Op0, Op1, DL, TLI, DT, AC))
    183     return ReplaceInstUsesWith(I, V);
    184 
    185   if (Value *V = SimplifyUsingDistributiveLaws(I))
    186     return ReplaceInstUsesWith(I, V);
    187 
    188   // X * -1 == 0 - X
    189   if (match(Op1, m_AllOnes())) {
    190     BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
    191     if (I.hasNoSignedWrap())
    192       BO->setHasNoSignedWrap();
    193     return BO;
    194   }
    195 
    196   // Also allow combining multiply instructions on vectors.
    197   {
    198     Value *NewOp;
    199     Constant *C1, *C2;
    200     const APInt *IVal;
    201     if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
    202                         m_Constant(C1))) &&
    203         match(C1, m_APInt(IVal))) {
    204       // ((X << C2)*C1) == (X * (C1 << C2))
    205       Constant *Shl = ConstantExpr::getShl(C1, C2);
    206       BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
    207       BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
    208       if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
    209         BO->setHasNoUnsignedWrap();
    210       if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
    211           Shl->isNotMinSignedValue())
    212         BO->setHasNoSignedWrap();
    213       return BO;
    214     }
    215 
    216     if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
    217       Constant *NewCst = nullptr;
    218       if (match(C1, m_APInt(IVal)) && IVal->isPowerOf2())
    219         // Replace X*(2^C) with X << C, where C is either a scalar or a splat.
    220         NewCst = ConstantInt::get(NewOp->getType(), IVal->logBase2());
    221       else if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(C1))
    222         // Replace X*(2^C) with X << C, where C is a vector of known
    223         // constant powers of 2.
    224         NewCst = getLogBase2Vector(CV);
    225 
    226       if (NewCst) {
    227         unsigned Width = NewCst->getType()->getPrimitiveSizeInBits();
    228         BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
    229 
    230         if (I.hasNoUnsignedWrap())
    231           Shl->setHasNoUnsignedWrap();
    232         if (I.hasNoSignedWrap()) {
    233           uint64_t V;
    234           if (match(NewCst, m_ConstantInt(V)) && V != Width - 1)
    235             Shl->setHasNoSignedWrap();
    236         }
    237 
    238         return Shl;
    239       }
    240     }
    241   }
    242 
    243   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
    244     // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
    245     // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
    246     // The "* (2**n)" thus becomes a potential shifting opportunity.
    247     {
    248       const APInt &   Val = CI->getValue();
    249       const APInt &PosVal = Val.abs();
    250       if (Val.isNegative() && PosVal.isPowerOf2()) {
    251         Value *X = nullptr, *Y = nullptr;
    252         if (Op0->hasOneUse()) {
    253           ConstantInt *C1;
    254           Value *Sub = nullptr;
    255           if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
    256             Sub = Builder->CreateSub(X, Y, "suba");
    257           else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
    258             Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc");
    259           if (Sub)
    260             return
    261               BinaryOperator::CreateMul(Sub,
    262                                         ConstantInt::get(Y->getType(), PosVal));
    263         }
    264       }
    265     }
    266   }
    267 
    268   // Simplify mul instructions with a constant RHS.
    269   if (isa<Constant>(Op1)) {
    270     // Try to fold constant mul into select arguments.
    271     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
    272       if (Instruction *R = FoldOpIntoSelect(I, SI))
    273         return R;
    274 
    275     if (isa<PHINode>(Op0))
    276       if (Instruction *NV = FoldOpIntoPhi(I))
    277         return NV;
    278 
    279     // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
    280     {
    281       Value *X;
    282       Constant *C1;
    283       if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
    284         Value *Mul = Builder->CreateMul(C1, Op1);
    285         // Only go forward with the transform if C1*CI simplifies to a tidier
    286         // constant.
    287         if (!match(Mul, m_Mul(m_Value(), m_Value())))
    288           return BinaryOperator::CreateAdd(Builder->CreateMul(X, Op1), Mul);
    289       }
    290     }
    291   }
    292 
    293   if (Value *Op0v = dyn_castNegVal(Op0)) {   // -X * -Y = X*Y
    294     if (Value *Op1v = dyn_castNegVal(Op1)) {
    295       BinaryOperator *BO = BinaryOperator::CreateMul(Op0v, Op1v);
    296       if (I.hasNoSignedWrap() &&
    297           match(Op0, m_NSWSub(m_Value(), m_Value())) &&
    298           match(Op1, m_NSWSub(m_Value(), m_Value())))
    299         BO->setHasNoSignedWrap();
    300       return BO;
    301     }
    302   }
    303 
    304   // (X / Y) *  Y = X - (X % Y)
    305   // (X / Y) * -Y = (X % Y) - X
    306   {
    307     Value *Op1C = Op1;
    308     BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
    309     if (!BO ||
    310         (BO->getOpcode() != Instruction::UDiv &&
    311          BO->getOpcode() != Instruction::SDiv)) {
    312       Op1C = Op0;
    313       BO = dyn_cast<BinaryOperator>(Op1);
    314     }
    315     Value *Neg = dyn_castNegVal(Op1C);
    316     if (BO && BO->hasOneUse() &&
    317         (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
    318         (BO->getOpcode() == Instruction::UDiv ||
    319          BO->getOpcode() == Instruction::SDiv)) {
    320       Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
    321 
    322       // If the division is exact, X % Y is zero, so we end up with X or -X.
    323       if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
    324         if (SDiv->isExact()) {
    325           if (Op1BO == Op1C)
    326             return ReplaceInstUsesWith(I, Op0BO);
    327           return BinaryOperator::CreateNeg(Op0BO);
    328         }
    329 
    330       Value *Rem;
    331       if (BO->getOpcode() == Instruction::UDiv)
    332         Rem = Builder->CreateURem(Op0BO, Op1BO);
    333       else
    334         Rem = Builder->CreateSRem(Op0BO, Op1BO);
    335       Rem->takeName(BO);
    336 
    337       if (Op1BO == Op1C)
    338         return BinaryOperator::CreateSub(Op0BO, Rem);
    339       return BinaryOperator::CreateSub(Rem, Op0BO);
    340     }
    341   }
    342 
    343   /// i1 mul -> i1 and.
    344   if (I.getType()->getScalarType()->isIntegerTy(1))
    345     return BinaryOperator::CreateAnd(Op0, Op1);
    346 
    347   // X*(1 << Y) --> X << Y
    348   // (1 << Y)*X --> X << Y
    349   {
    350     Value *Y;
    351     BinaryOperator *BO = nullptr;
    352     bool ShlNSW = false;
    353     if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
    354       BO = BinaryOperator::CreateShl(Op1, Y);
    355       ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
    356     } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
    357       BO = BinaryOperator::CreateShl(Op0, Y);
    358       ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
    359     }
    360     if (BO) {
    361       if (I.hasNoUnsignedWrap())
    362         BO->setHasNoUnsignedWrap();
    363       if (I.hasNoSignedWrap() && ShlNSW)
    364         BO->setHasNoSignedWrap();
    365       return BO;
    366     }
    367   }
    368 
    369   // If one of the operands of the multiply is a cast from a boolean value, then
    370   // we know the bool is either zero or one, so this is a 'masking' multiply.
    371   //   X * Y (where Y is 0 or 1) -> X & (0-Y)
    372   if (!I.getType()->isVectorTy()) {
    373     // -2 is "-1 << 1" so it is all bits set except the low one.
    374     APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
    375 
    376     Value *BoolCast = nullptr, *OtherOp = nullptr;
    377     if (MaskedValueIsZero(Op0, Negative2, 0, &I))
    378       BoolCast = Op0, OtherOp = Op1;
    379     else if (MaskedValueIsZero(Op1, Negative2, 0, &I))
    380       BoolCast = Op1, OtherOp = Op0;
    381 
    382     if (BoolCast) {
    383       Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
    384                                     BoolCast);
    385       return BinaryOperator::CreateAnd(V, OtherOp);
    386     }
    387   }
    388 
    389   if (!I.hasNoSignedWrap() && WillNotOverflowSignedMul(Op0, Op1, I)) {
    390     Changed = true;
    391     I.setHasNoSignedWrap(true);
    392   }
    393 
    394   if (!I.hasNoUnsignedWrap() &&
    395       computeOverflowForUnsignedMul(Op0, Op1, &I) ==
    396           OverflowResult::NeverOverflows) {
    397     Changed = true;
    398     I.setHasNoUnsignedWrap(true);
    399   }
    400 
    401   return Changed ? &I : nullptr;
    402 }
    403 
    404 /// Detect pattern log2(Y * 0.5) with corresponding fast math flags.
    405 static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) {
    406   if (!Op->hasOneUse())
    407     return;
    408 
    409   IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op);
    410   if (!II)
    411     return;
    412   if (II->getIntrinsicID() != Intrinsic::log2 || !II->hasUnsafeAlgebra())
    413     return;
    414   Log2 = II;
    415 
    416   Value *OpLog2Of = II->getArgOperand(0);
    417   if (!OpLog2Of->hasOneUse())
    418     return;
    419 
    420   Instruction *I = dyn_cast<Instruction>(OpLog2Of);
    421   if (!I)
    422     return;
    423   if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
    424     return;
    425 
    426   if (match(I->getOperand(0), m_SpecificFP(0.5)))
    427     Y = I->getOperand(1);
    428   else if (match(I->getOperand(1), m_SpecificFP(0.5)))
    429     Y = I->getOperand(0);
    430 }
    431 
    432 static bool isFiniteNonZeroFp(Constant *C) {
    433   if (C->getType()->isVectorTy()) {
    434     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E;
    435          ++I) {
    436       ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(C->getAggregateElement(I));
    437       if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
    438         return false;
    439     }
    440     return true;
    441   }
    442 
    443   return isa<ConstantFP>(C) &&
    444          cast<ConstantFP>(C)->getValueAPF().isFiniteNonZero();
    445 }
    446 
    447 static bool isNormalFp(Constant *C) {
    448   if (C->getType()->isVectorTy()) {
    449     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E;
    450          ++I) {
    451       ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(C->getAggregateElement(I));
    452       if (!CFP || !CFP->getValueAPF().isNormal())
    453         return false;
    454     }
    455     return true;
    456   }
    457 
    458   return isa<ConstantFP>(C) && cast<ConstantFP>(C)->getValueAPF().isNormal();
    459 }
    460 
    461 /// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns
    462 /// true iff the given value is FMul or FDiv with one and only one operand
    463 /// being a normal constant (i.e. not Zero/NaN/Infinity).
    464 static bool isFMulOrFDivWithConstant(Value *V) {
    465   Instruction *I = dyn_cast<Instruction>(V);
    466   if (!I || (I->getOpcode() != Instruction::FMul &&
    467              I->getOpcode() != Instruction::FDiv))
    468     return false;
    469 
    470   Constant *C0 = dyn_cast<Constant>(I->getOperand(0));
    471   Constant *C1 = dyn_cast<Constant>(I->getOperand(1));
    472 
    473   if (C0 && C1)
    474     return false;
    475 
    476   return (C0 && isFiniteNonZeroFp(C0)) || (C1 && isFiniteNonZeroFp(C1));
    477 }
    478 
    479 /// foldFMulConst() is a helper routine of InstCombiner::visitFMul().
    480 /// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand
    481 /// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true).
    482 /// This function is to simplify "FMulOrDiv * C" and returns the
    483 /// resulting expression. Note that this function could return NULL in
    484 /// case the constants cannot be folded into a normal floating-point.
    485 ///
    486 Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, Constant *C,
    487                                    Instruction *InsertBefore) {
    488   assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid");
    489 
    490   Value *Opnd0 = FMulOrDiv->getOperand(0);
    491   Value *Opnd1 = FMulOrDiv->getOperand(1);
    492 
    493   Constant *C0 = dyn_cast<Constant>(Opnd0);
    494   Constant *C1 = dyn_cast<Constant>(Opnd1);
    495 
    496   BinaryOperator *R = nullptr;
    497 
    498   // (X * C0) * C => X * (C0*C)
    499   if (FMulOrDiv->getOpcode() == Instruction::FMul) {
    500     Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C);
    501     if (isNormalFp(F))
    502       R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F);
    503   } else {
    504     if (C0) {
    505       // (C0 / X) * C => (C0 * C) / X
    506       if (FMulOrDiv->hasOneUse()) {
    507         // It would otherwise introduce another div.
    508         Constant *F = ConstantExpr::getFMul(C0, C);
    509         if (isNormalFp(F))
    510           R = BinaryOperator::CreateFDiv(F, Opnd1);
    511       }
    512     } else {
    513       // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal
    514       Constant *F = ConstantExpr::getFDiv(C, C1);
    515       if (isNormalFp(F)) {
    516         R = BinaryOperator::CreateFMul(Opnd0, F);
    517       } else {
    518         // (X / C1) * C => X / (C1/C)
    519         Constant *F = ConstantExpr::getFDiv(C1, C);
    520         if (isNormalFp(F))
    521           R = BinaryOperator::CreateFDiv(Opnd0, F);
    522       }
    523     }
    524   }
    525 
    526   if (R) {
    527     R->setHasUnsafeAlgebra(true);
    528     InsertNewInstWith(R, *InsertBefore);
    529   }
    530 
    531   return R;
    532 }
    533 
    534 Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
    535   bool Changed = SimplifyAssociativeOrCommutative(I);
    536   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    537 
    538   if (Value *V = SimplifyVectorOp(I))
    539     return ReplaceInstUsesWith(I, V);
    540 
    541   if (isa<Constant>(Op0))
    542     std::swap(Op0, Op1);
    543 
    544   if (Value *V =
    545           SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), DL, TLI, DT, AC))
    546     return ReplaceInstUsesWith(I, V);
    547 
    548   bool AllowReassociate = I.hasUnsafeAlgebra();
    549 
    550   // Simplify mul instructions with a constant RHS.
    551   if (isa<Constant>(Op1)) {
    552     // Try to fold constant mul into select arguments.
    553     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
    554       if (Instruction *R = FoldOpIntoSelect(I, SI))
    555         return R;
    556 
    557     if (isa<PHINode>(Op0))
    558       if (Instruction *NV = FoldOpIntoPhi(I))
    559         return NV;
    560 
    561     // (fmul X, -1.0) --> (fsub -0.0, X)
    562     if (match(Op1, m_SpecificFP(-1.0))) {
    563       Constant *NegZero = ConstantFP::getNegativeZero(Op1->getType());
    564       Instruction *RI = BinaryOperator::CreateFSub(NegZero, Op0);
    565       RI->copyFastMathFlags(&I);
    566       return RI;
    567     }
    568 
    569     Constant *C = cast<Constant>(Op1);
    570     if (AllowReassociate && isFiniteNonZeroFp(C)) {
    571       // Let MDC denote an expression in one of these forms:
    572       // X * C, C/X, X/C, where C is a constant.
    573       //
    574       // Try to simplify "MDC * Constant"
    575       if (isFMulOrFDivWithConstant(Op0))
    576         if (Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I))
    577           return ReplaceInstUsesWith(I, V);
    578 
    579       // (MDC +/- C1) * C => (MDC * C) +/- (C1 * C)
    580       Instruction *FAddSub = dyn_cast<Instruction>(Op0);
    581       if (FAddSub &&
    582           (FAddSub->getOpcode() == Instruction::FAdd ||
    583            FAddSub->getOpcode() == Instruction::FSub)) {
    584         Value *Opnd0 = FAddSub->getOperand(0);
    585         Value *Opnd1 = FAddSub->getOperand(1);
    586         Constant *C0 = dyn_cast<Constant>(Opnd0);
    587         Constant *C1 = dyn_cast<Constant>(Opnd1);
    588         bool Swap = false;
    589         if (C0) {
    590           std::swap(C0, C1);
    591           std::swap(Opnd0, Opnd1);
    592           Swap = true;
    593         }
    594 
    595         if (C1 && isFiniteNonZeroFp(C1) && isFMulOrFDivWithConstant(Opnd0)) {
    596           Value *M1 = ConstantExpr::getFMul(C1, C);
    597           Value *M0 = isNormalFp(cast<Constant>(M1)) ?
    598                       foldFMulConst(cast<Instruction>(Opnd0), C, &I) :
    599                       nullptr;
    600           if (M0 && M1) {
    601             if (Swap && FAddSub->getOpcode() == Instruction::FSub)
    602               std::swap(M0, M1);
    603 
    604             Instruction *RI = (FAddSub->getOpcode() == Instruction::FAdd)
    605                                   ? BinaryOperator::CreateFAdd(M0, M1)
    606                                   : BinaryOperator::CreateFSub(M0, M1);
    607             RI->copyFastMathFlags(&I);
    608             return RI;
    609           }
    610         }
    611       }
    612     }
    613   }
    614 
    615   // sqrt(X) * sqrt(X) -> X
    616   if (AllowReassociate && (Op0 == Op1))
    617     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0))
    618       if (II->getIntrinsicID() == Intrinsic::sqrt)
    619         return ReplaceInstUsesWith(I, II->getOperand(0));
    620 
    621   // Under unsafe algebra do:
    622   // X * log2(0.5*Y) = X*log2(Y) - X
    623   if (AllowReassociate) {
    624     Value *OpX = nullptr;
    625     Value *OpY = nullptr;
    626     IntrinsicInst *Log2;
    627     detectLog2OfHalf(Op0, OpY, Log2);
    628     if (OpY) {
    629       OpX = Op1;
    630     } else {
    631       detectLog2OfHalf(Op1, OpY, Log2);
    632       if (OpY) {
    633         OpX = Op0;
    634       }
    635     }
    636     // if pattern detected emit alternate sequence
    637     if (OpX && OpY) {
    638       BuilderTy::FastMathFlagGuard Guard(*Builder);
    639       Builder->SetFastMathFlags(Log2->getFastMathFlags());
    640       Log2->setArgOperand(0, OpY);
    641       Value *FMulVal = Builder->CreateFMul(OpX, Log2);
    642       Value *FSub = Builder->CreateFSub(FMulVal, OpX);
    643       FSub->takeName(&I);
    644       return ReplaceInstUsesWith(I, FSub);
    645     }
    646   }
    647 
    648   // Handle symmetric situation in a 2-iteration loop
    649   Value *Opnd0 = Op0;
    650   Value *Opnd1 = Op1;
    651   for (int i = 0; i < 2; i++) {
    652     bool IgnoreZeroSign = I.hasNoSignedZeros();
    653     if (BinaryOperator::isFNeg(Opnd0, IgnoreZeroSign)) {
    654       BuilderTy::FastMathFlagGuard Guard(*Builder);
    655       Builder->SetFastMathFlags(I.getFastMathFlags());
    656 
    657       Value *N0 = dyn_castFNegVal(Opnd0, IgnoreZeroSign);
    658       Value *N1 = dyn_castFNegVal(Opnd1, IgnoreZeroSign);
    659 
    660       // -X * -Y => X*Y
    661       if (N1) {
    662         Value *FMul = Builder->CreateFMul(N0, N1);
    663         FMul->takeName(&I);
    664         return ReplaceInstUsesWith(I, FMul);
    665       }
    666 
    667       if (Opnd0->hasOneUse()) {
    668         // -X * Y => -(X*Y) (Promote negation as high as possible)
    669         Value *T = Builder->CreateFMul(N0, Opnd1);
    670         Value *Neg = Builder->CreateFNeg(T);
    671         Neg->takeName(&I);
    672         return ReplaceInstUsesWith(I, Neg);
    673       }
    674     }
    675 
    676     // (X*Y) * X => (X*X) * Y where Y != X
    677     //  The purpose is two-fold:
    678     //   1) to form a power expression (of X).
    679     //   2) potentially shorten the critical path: After transformation, the
    680     //  latency of the instruction Y is amortized by the expression of X*X,
    681     //  and therefore Y is in a "less critical" position compared to what it
    682     //  was before the transformation.
    683     //
    684     if (AllowReassociate) {
    685       Value *Opnd0_0, *Opnd0_1;
    686       if (Opnd0->hasOneUse() &&
    687           match(Opnd0, m_FMul(m_Value(Opnd0_0), m_Value(Opnd0_1)))) {
    688         Value *Y = nullptr;
    689         if (Opnd0_0 == Opnd1 && Opnd0_1 != Opnd1)
    690           Y = Opnd0_1;
    691         else if (Opnd0_1 == Opnd1 && Opnd0_0 != Opnd1)
    692           Y = Opnd0_0;
    693 
    694         if (Y) {
    695           BuilderTy::FastMathFlagGuard Guard(*Builder);
    696           Builder->SetFastMathFlags(I.getFastMathFlags());
    697           Value *T = Builder->CreateFMul(Opnd1, Opnd1);
    698 
    699           Value *R = Builder->CreateFMul(T, Y);
    700           R->takeName(&I);
    701           return ReplaceInstUsesWith(I, R);
    702         }
    703       }
    704     }
    705 
    706     if (!isa<Constant>(Op1))
    707       std::swap(Opnd0, Opnd1);
    708     else
    709       break;
    710   }
    711 
    712   return Changed ? &I : nullptr;
    713 }
    714 
    715 /// Try to fold a divide or remainder of a select instruction.
    716 bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
    717   SelectInst *SI = cast<SelectInst>(I.getOperand(1));
    718 
    719   // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
    720   int NonNullOperand = -1;
    721   if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
    722     if (ST->isNullValue())
    723       NonNullOperand = 2;
    724   // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
    725   if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
    726     if (ST->isNullValue())
    727       NonNullOperand = 1;
    728 
    729   if (NonNullOperand == -1)
    730     return false;
    731 
    732   Value *SelectCond = SI->getOperand(0);
    733 
    734   // Change the div/rem to use 'Y' instead of the select.
    735   I.setOperand(1, SI->getOperand(NonNullOperand));
    736 
    737   // Okay, we know we replace the operand of the div/rem with 'Y' with no
    738   // problem.  However, the select, or the condition of the select may have
    739   // multiple uses.  Based on our knowledge that the operand must be non-zero,
    740   // propagate the known value for the select into other uses of it, and
    741   // propagate a known value of the condition into its other users.
    742 
    743   // If the select and condition only have a single use, don't bother with this,
    744   // early exit.
    745   if (SI->use_empty() && SelectCond->hasOneUse())
    746     return true;
    747 
    748   // Scan the current block backward, looking for other uses of SI.
    749   BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
    750 
    751   while (BBI != BBFront) {
    752     --BBI;
    753     // If we found a call to a function, we can't assume it will return, so
    754     // information from below it cannot be propagated above it.
    755     if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
    756       break;
    757 
    758     // Replace uses of the select or its condition with the known values.
    759     for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
    760          I != E; ++I) {
    761       if (*I == SI) {
    762         *I = SI->getOperand(NonNullOperand);
    763         Worklist.Add(&*BBI);
    764       } else if (*I == SelectCond) {
    765         *I = Builder->getInt1(NonNullOperand == 1);
    766         Worklist.Add(&*BBI);
    767       }
    768     }
    769 
    770     // If we past the instruction, quit looking for it.
    771     if (&*BBI == SI)
    772       SI = nullptr;
    773     if (&*BBI == SelectCond)
    774       SelectCond = nullptr;
    775 
    776     // If we ran out of things to eliminate, break out of the loop.
    777     if (!SelectCond && !SI)
    778       break;
    779 
    780   }
    781   return true;
    782 }
    783 
    784 
    785 /// This function implements the transforms common to both integer division
    786 /// instructions (udiv and sdiv). It is called by the visitors to those integer
    787 /// division instructions.
    788 /// @brief Common integer divide transforms
    789 Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
    790   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    791 
    792   // The RHS is known non-zero.
    793   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
    794     I.setOperand(1, V);
    795     return &I;
    796   }
    797 
    798   // Handle cases involving: [su]div X, (select Cond, Y, Z)
    799   // This does not apply for fdiv.
    800   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
    801     return &I;
    802 
    803   if (Instruction *LHS = dyn_cast<Instruction>(Op0)) {
    804     const APInt *C2;
    805     if (match(Op1, m_APInt(C2))) {
    806       Value *X;
    807       const APInt *C1;
    808       bool IsSigned = I.getOpcode() == Instruction::SDiv;
    809 
    810       // (X / C1) / C2  -> X / (C1*C2)
    811       if ((IsSigned && match(LHS, m_SDiv(m_Value(X), m_APInt(C1)))) ||
    812           (!IsSigned && match(LHS, m_UDiv(m_Value(X), m_APInt(C1))))) {
    813         APInt Product(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
    814         if (!MultiplyOverflows(*C1, *C2, Product, IsSigned))
    815           return BinaryOperator::Create(I.getOpcode(), X,
    816                                         ConstantInt::get(I.getType(), Product));
    817       }
    818 
    819       if ((IsSigned && match(LHS, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
    820           (!IsSigned && match(LHS, m_NUWMul(m_Value(X), m_APInt(C1))))) {
    821         APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
    822 
    823         // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
    824         if (IsMultiple(*C2, *C1, Quotient, IsSigned)) {
    825           BinaryOperator *BO = BinaryOperator::Create(
    826               I.getOpcode(), X, ConstantInt::get(X->getType(), Quotient));
    827           BO->setIsExact(I.isExact());
    828           return BO;
    829         }
    830 
    831         // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
    832         if (IsMultiple(*C1, *C2, Quotient, IsSigned)) {
    833           BinaryOperator *BO = BinaryOperator::Create(
    834               Instruction::Mul, X, ConstantInt::get(X->getType(), Quotient));
    835           BO->setHasNoUnsignedWrap(
    836               !IsSigned &&
    837               cast<OverflowingBinaryOperator>(LHS)->hasNoUnsignedWrap());
    838           BO->setHasNoSignedWrap(
    839               cast<OverflowingBinaryOperator>(LHS)->hasNoSignedWrap());
    840           return BO;
    841         }
    842       }
    843 
    844       if ((IsSigned && match(LHS, m_NSWShl(m_Value(X), m_APInt(C1))) &&
    845            *C1 != C1->getBitWidth() - 1) ||
    846           (!IsSigned && match(LHS, m_NUWShl(m_Value(X), m_APInt(C1))))) {
    847         APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
    848         APInt C1Shifted = APInt::getOneBitSet(
    849             C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue()));
    850 
    851         // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of C1.
    852         if (IsMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
    853           BinaryOperator *BO = BinaryOperator::Create(
    854               I.getOpcode(), X, ConstantInt::get(X->getType(), Quotient));
    855           BO->setIsExact(I.isExact());
    856           return BO;
    857         }
    858 
    859         // (X << C1) / C2 -> X * (C2 >> C1) if C1 is a multiple of C2.
    860         if (IsMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
    861           BinaryOperator *BO = BinaryOperator::Create(
    862               Instruction::Mul, X, ConstantInt::get(X->getType(), Quotient));
    863           BO->setHasNoUnsignedWrap(
    864               !IsSigned &&
    865               cast<OverflowingBinaryOperator>(LHS)->hasNoUnsignedWrap());
    866           BO->setHasNoSignedWrap(
    867               cast<OverflowingBinaryOperator>(LHS)->hasNoSignedWrap());
    868           return BO;
    869         }
    870       }
    871 
    872       if (*C2 != 0) { // avoid X udiv 0
    873         if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
    874           if (Instruction *R = FoldOpIntoSelect(I, SI))
    875             return R;
    876         if (isa<PHINode>(Op0))
    877           if (Instruction *NV = FoldOpIntoPhi(I))
    878             return NV;
    879       }
    880     }
    881   }
    882 
    883   if (ConstantInt *One = dyn_cast<ConstantInt>(Op0)) {
    884     if (One->isOne() && !I.getType()->isIntegerTy(1)) {
    885       bool isSigned = I.getOpcode() == Instruction::SDiv;
    886       if (isSigned) {
    887         // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
    888         // result is one, if Op1 is -1 then the result is minus one, otherwise
    889         // it's zero.
    890         Value *Inc = Builder->CreateAdd(Op1, One);
    891         Value *Cmp = Builder->CreateICmpULT(
    892                          Inc, ConstantInt::get(I.getType(), 3));
    893         return SelectInst::Create(Cmp, Op1, ConstantInt::get(I.getType(), 0));
    894       } else {
    895         // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
    896         // result is one, otherwise it's zero.
    897         return new ZExtInst(Builder->CreateICmpEQ(Op1, One), I.getType());
    898       }
    899     }
    900   }
    901 
    902   // See if we can fold away this div instruction.
    903   if (SimplifyDemandedInstructionBits(I))
    904     return &I;
    905 
    906   // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
    907   Value *X = nullptr, *Z = nullptr;
    908   if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
    909     bool isSigned = I.getOpcode() == Instruction::SDiv;
    910     if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
    911         (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
    912       return BinaryOperator::Create(I.getOpcode(), X, Op1);
    913   }
    914 
    915   return nullptr;
    916 }
    917 
    918 /// dyn_castZExtVal - Checks if V is a zext or constant that can
    919 /// be truncated to Ty without losing bits.
    920 static Value *dyn_castZExtVal(Value *V, Type *Ty) {
    921   if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
    922     if (Z->getSrcTy() == Ty)
    923       return Z->getOperand(0);
    924   } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
    925     if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
    926       return ConstantExpr::getTrunc(C, Ty);
    927   }
    928   return nullptr;
    929 }
    930 
    931 namespace {
    932 const unsigned MaxDepth = 6;
    933 typedef Instruction *(*FoldUDivOperandCb)(Value *Op0, Value *Op1,
    934                                           const BinaryOperator &I,
    935                                           InstCombiner &IC);
    936 
    937 /// \brief Used to maintain state for visitUDivOperand().
    938 struct UDivFoldAction {
    939   FoldUDivOperandCb FoldAction; ///< Informs visitUDiv() how to fold this
    940                                 ///< operand.  This can be zero if this action
    941                                 ///< joins two actions together.
    942 
    943   Value *OperandToFold;         ///< Which operand to fold.
    944   union {
    945     Instruction *FoldResult;    ///< The instruction returned when FoldAction is
    946                                 ///< invoked.
    947 
    948     size_t SelectLHSIdx;        ///< Stores the LHS action index if this action
    949                                 ///< joins two actions together.
    950   };
    951 
    952   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
    953       : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
    954   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
    955       : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
    956 };
    957 }
    958 
    959 // X udiv 2^C -> X >> C
    960 static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
    961                                     const BinaryOperator &I, InstCombiner &IC) {
    962   const APInt &C = cast<Constant>(Op1)->getUniqueInteger();
    963   BinaryOperator *LShr = BinaryOperator::CreateLShr(
    964       Op0, ConstantInt::get(Op0->getType(), C.logBase2()));
    965   if (I.isExact())
    966     LShr->setIsExact();
    967   return LShr;
    968 }
    969 
    970 // X udiv C, where C >= signbit
    971 static Instruction *foldUDivNegCst(Value *Op0, Value *Op1,
    972                                    const BinaryOperator &I, InstCombiner &IC) {
    973   Value *ICI = IC.Builder->CreateICmpULT(Op0, cast<ConstantInt>(Op1));
    974 
    975   return SelectInst::Create(ICI, Constant::getNullValue(I.getType()),
    976                             ConstantInt::get(I.getType(), 1));
    977 }
    978 
    979 // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
    980 static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
    981                                 InstCombiner &IC) {
    982   Instruction *ShiftLeft = cast<Instruction>(Op1);
    983   if (isa<ZExtInst>(ShiftLeft))
    984     ShiftLeft = cast<Instruction>(ShiftLeft->getOperand(0));
    985 
    986   const APInt &CI =
    987       cast<Constant>(ShiftLeft->getOperand(0))->getUniqueInteger();
    988   Value *N = ShiftLeft->getOperand(1);
    989   if (CI != 1)
    990     N = IC.Builder->CreateAdd(N, ConstantInt::get(N->getType(), CI.logBase2()));
    991   if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1))
    992     N = IC.Builder->CreateZExt(N, Z->getDestTy());
    993   BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
    994   if (I.isExact())
    995     LShr->setIsExact();
    996   return LShr;
    997 }
    998 
    999 // \brief Recursively visits the possible right hand operands of a udiv
   1000 // instruction, seeing through select instructions, to determine if we can
   1001 // replace the udiv with something simpler.  If we find that an operand is not
   1002 // able to simplify the udiv, we abort the entire transformation.
   1003 static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
   1004                                SmallVectorImpl<UDivFoldAction> &Actions,
   1005                                unsigned Depth = 0) {
   1006   // Check to see if this is an unsigned division with an exact power of 2,
   1007   // if so, convert to a right shift.
   1008   if (match(Op1, m_Power2())) {
   1009     Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
   1010     return Actions.size();
   1011   }
   1012 
   1013   if (ConstantInt *C = dyn_cast<ConstantInt>(Op1))
   1014     // X udiv C, where C >= signbit
   1015     if (C->getValue().isNegative()) {
   1016       Actions.push_back(UDivFoldAction(foldUDivNegCst, C));
   1017       return Actions.size();
   1018     }
   1019 
   1020   // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
   1021   if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
   1022       match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
   1023     Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
   1024     return Actions.size();
   1025   }
   1026 
   1027   // The remaining tests are all recursive, so bail out if we hit the limit.
   1028   if (Depth++ == MaxDepth)
   1029     return 0;
   1030 
   1031   if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
   1032     if (size_t LHSIdx =
   1033             visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
   1034       if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
   1035         Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
   1036         return Actions.size();
   1037       }
   1038 
   1039   return 0;
   1040 }
   1041 
   1042 Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
   1043   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1044 
   1045   if (Value *V = SimplifyVectorOp(I))
   1046     return ReplaceInstUsesWith(I, V);
   1047 
   1048   if (Value *V = SimplifyUDivInst(Op0, Op1, DL, TLI, DT, AC))
   1049     return ReplaceInstUsesWith(I, V);
   1050 
   1051   // Handle the integer div common cases
   1052   if (Instruction *Common = commonIDivTransforms(I))
   1053     return Common;
   1054 
   1055   // (x lshr C1) udiv C2 --> x udiv (C2 << C1)
   1056   {
   1057     Value *X;
   1058     const APInt *C1, *C2;
   1059     if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) &&
   1060         match(Op1, m_APInt(C2))) {
   1061       bool Overflow;
   1062       APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
   1063       if (!Overflow) {
   1064         bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
   1065         BinaryOperator *BO = BinaryOperator::CreateUDiv(
   1066             X, ConstantInt::get(X->getType(), C2ShlC1));
   1067         if (IsExact)
   1068           BO->setIsExact();
   1069         return BO;
   1070       }
   1071     }
   1072   }
   1073 
   1074   // (zext A) udiv (zext B) --> zext (A udiv B)
   1075   if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
   1076     if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
   1077       return new ZExtInst(
   1078           Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div", I.isExact()),
   1079           I.getType());
   1080 
   1081   // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
   1082   SmallVector<UDivFoldAction, 6> UDivActions;
   1083   if (visitUDivOperand(Op0, Op1, I, UDivActions))
   1084     for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
   1085       FoldUDivOperandCb Action = UDivActions[i].FoldAction;
   1086       Value *ActionOp1 = UDivActions[i].OperandToFold;
   1087       Instruction *Inst;
   1088       if (Action)
   1089         Inst = Action(Op0, ActionOp1, I, *this);
   1090       else {
   1091         // This action joins two actions together.  The RHS of this action is
   1092         // simply the last action we processed, we saved the LHS action index in
   1093         // the joining action.
   1094         size_t SelectRHSIdx = i - 1;
   1095         Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
   1096         size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
   1097         Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
   1098         Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
   1099                                   SelectLHS, SelectRHS);
   1100       }
   1101 
   1102       // If this is the last action to process, return it to the InstCombiner.
   1103       // Otherwise, we insert it before the UDiv and record it so that we may
   1104       // use it as part of a joining action (i.e., a SelectInst).
   1105       if (e - i != 1) {
   1106         Inst->insertBefore(&I);
   1107         UDivActions[i].FoldResult = Inst;
   1108       } else
   1109         return Inst;
   1110     }
   1111 
   1112   return nullptr;
   1113 }
   1114 
   1115 Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
   1116   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1117 
   1118   if (Value *V = SimplifyVectorOp(I))
   1119     return ReplaceInstUsesWith(I, V);
   1120 
   1121   if (Value *V = SimplifySDivInst(Op0, Op1, DL, TLI, DT, AC))
   1122     return ReplaceInstUsesWith(I, V);
   1123 
   1124   // Handle the integer div common cases
   1125   if (Instruction *Common = commonIDivTransforms(I))
   1126     return Common;
   1127 
   1128   // sdiv X, -1 == -X
   1129   if (match(Op1, m_AllOnes()))
   1130     return BinaryOperator::CreateNeg(Op0);
   1131 
   1132   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
   1133     // sdiv X, C  -->  ashr exact X, log2(C)
   1134     if (I.isExact() && RHS->getValue().isNonNegative() &&
   1135         RHS->getValue().isPowerOf2()) {
   1136       Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
   1137                                             RHS->getValue().exactLogBase2());
   1138       return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
   1139     }
   1140   }
   1141 
   1142   if (Constant *RHS = dyn_cast<Constant>(Op1)) {
   1143     // X/INT_MIN -> X == INT_MIN
   1144     if (RHS->isMinSignedValue())
   1145       return new ZExtInst(Builder->CreateICmpEQ(Op0, Op1), I.getType());
   1146 
   1147     // -X/C  -->  X/-C  provided the negation doesn't overflow.
   1148     Value *X;
   1149     if (match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
   1150       auto *BO = BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(RHS));
   1151       BO->setIsExact(I.isExact());
   1152       return BO;
   1153     }
   1154   }
   1155 
   1156   // If the sign bits of both operands are zero (i.e. we can prove they are
   1157   // unsigned inputs), turn this into a udiv.
   1158   if (I.getType()->isIntegerTy()) {
   1159     APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
   1160     if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
   1161       if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
   1162         // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
   1163         auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
   1164         BO->setIsExact(I.isExact());
   1165         return BO;
   1166       }
   1167 
   1168       if (isKnownToBeAPowerOfTwo(Op1, DL, /*OrZero*/ true, 0, AC, &I, DT)) {
   1169         // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
   1170         // Safe because the only negative value (1 << Y) can take on is
   1171         // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
   1172         // the sign bit set.
   1173         auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
   1174         BO->setIsExact(I.isExact());
   1175         return BO;
   1176       }
   1177     }
   1178   }
   1179 
   1180   return nullptr;
   1181 }
   1182 
   1183 /// CvtFDivConstToReciprocal tries to convert X/C into X*1/C if C not a special
   1184 /// FP value and:
   1185 ///    1) 1/C is exact, or
   1186 ///    2) reciprocal is allowed.
   1187 /// If the conversion was successful, the simplified expression "X * 1/C" is
   1188 /// returned; otherwise, NULL is returned.
   1189 ///
   1190 static Instruction *CvtFDivConstToReciprocal(Value *Dividend, Constant *Divisor,
   1191                                              bool AllowReciprocal) {
   1192   if (!isa<ConstantFP>(Divisor)) // TODO: handle vectors.
   1193     return nullptr;
   1194 
   1195   const APFloat &FpVal = cast<ConstantFP>(Divisor)->getValueAPF();
   1196   APFloat Reciprocal(FpVal.getSemantics());
   1197   bool Cvt = FpVal.getExactInverse(&Reciprocal);
   1198 
   1199   if (!Cvt && AllowReciprocal && FpVal.isFiniteNonZero()) {
   1200     Reciprocal = APFloat(FpVal.getSemantics(), 1.0f);
   1201     (void)Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven);
   1202     Cvt = !Reciprocal.isDenormal();
   1203   }
   1204 
   1205   if (!Cvt)
   1206     return nullptr;
   1207 
   1208   ConstantFP *R;
   1209   R = ConstantFP::get(Dividend->getType()->getContext(), Reciprocal);
   1210   return BinaryOperator::CreateFMul(Dividend, R);
   1211 }
   1212 
   1213 Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
   1214   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1215 
   1216   if (Value *V = SimplifyVectorOp(I))
   1217     return ReplaceInstUsesWith(I, V);
   1218 
   1219   if (Value *V = SimplifyFDivInst(Op0, Op1, I.getFastMathFlags(),
   1220                                   DL, TLI, DT, AC))
   1221     return ReplaceInstUsesWith(I, V);
   1222 
   1223   if (isa<Constant>(Op0))
   1224     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
   1225       if (Instruction *R = FoldOpIntoSelect(I, SI))
   1226         return R;
   1227 
   1228   bool AllowReassociate = I.hasUnsafeAlgebra();
   1229   bool AllowReciprocal = I.hasAllowReciprocal();
   1230 
   1231   if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
   1232     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
   1233       if (Instruction *R = FoldOpIntoSelect(I, SI))
   1234         return R;
   1235 
   1236     if (AllowReassociate) {
   1237       Constant *C1 = nullptr;
   1238       Constant *C2 = Op1C;
   1239       Value *X;
   1240       Instruction *Res = nullptr;
   1241 
   1242       if (match(Op0, m_FMul(m_Value(X), m_Constant(C1)))) {
   1243         // (X*C1)/C2 => X * (C1/C2)
   1244         //
   1245         Constant *C = ConstantExpr::getFDiv(C1, C2);
   1246         if (isNormalFp(C))
   1247           Res = BinaryOperator::CreateFMul(X, C);
   1248       } else if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
   1249         // (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed]
   1250         //
   1251         Constant *C = ConstantExpr::getFMul(C1, C2);
   1252         if (isNormalFp(C)) {
   1253           Res = CvtFDivConstToReciprocal(X, C, AllowReciprocal);
   1254           if (!Res)
   1255             Res = BinaryOperator::CreateFDiv(X, C);
   1256         }
   1257       }
   1258 
   1259       if (Res) {
   1260         Res->setFastMathFlags(I.getFastMathFlags());
   1261         return Res;
   1262       }
   1263     }
   1264 
   1265     // X / C => X * 1/C
   1266     if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal)) {
   1267       T->copyFastMathFlags(&I);
   1268       return T;
   1269     }
   1270 
   1271     return nullptr;
   1272   }
   1273 
   1274   if (AllowReassociate && isa<Constant>(Op0)) {
   1275     Constant *C1 = cast<Constant>(Op0), *C2;
   1276     Constant *Fold = nullptr;
   1277     Value *X;
   1278     bool CreateDiv = true;
   1279 
   1280     // C1 / (X*C2) => (C1/C2) / X
   1281     if (match(Op1, m_FMul(m_Value(X), m_Constant(C2))))
   1282       Fold = ConstantExpr::getFDiv(C1, C2);
   1283     else if (match(Op1, m_FDiv(m_Value(X), m_Constant(C2)))) {
   1284       // C1 / (X/C2) => (C1*C2) / X
   1285       Fold = ConstantExpr::getFMul(C1, C2);
   1286     } else if (match(Op1, m_FDiv(m_Constant(C2), m_Value(X)))) {
   1287       // C1 / (C2/X) => (C1/C2) * X
   1288       Fold = ConstantExpr::getFDiv(C1, C2);
   1289       CreateDiv = false;
   1290     }
   1291 
   1292     if (Fold && isNormalFp(Fold)) {
   1293       Instruction *R = CreateDiv ? BinaryOperator::CreateFDiv(Fold, X)
   1294                                  : BinaryOperator::CreateFMul(X, Fold);
   1295       R->setFastMathFlags(I.getFastMathFlags());
   1296       return R;
   1297     }
   1298     return nullptr;
   1299   }
   1300 
   1301   if (AllowReassociate) {
   1302     Value *X, *Y;
   1303     Value *NewInst = nullptr;
   1304     Instruction *SimpR = nullptr;
   1305 
   1306     if (Op0->hasOneUse() && match(Op0, m_FDiv(m_Value(X), m_Value(Y)))) {
   1307       // (X/Y) / Z => X / (Y*Z)
   1308       //
   1309       if (!isa<Constant>(Y) || !isa<Constant>(Op1)) {
   1310         NewInst = Builder->CreateFMul(Y, Op1);
   1311         if (Instruction *RI = dyn_cast<Instruction>(NewInst)) {
   1312           FastMathFlags Flags = I.getFastMathFlags();
   1313           Flags &= cast<Instruction>(Op0)->getFastMathFlags();
   1314           RI->setFastMathFlags(Flags);
   1315         }
   1316         SimpR = BinaryOperator::CreateFDiv(X, NewInst);
   1317       }
   1318     } else if (Op1->hasOneUse() && match(Op1, m_FDiv(m_Value(X), m_Value(Y)))) {
   1319       // Z / (X/Y) => Z*Y / X
   1320       //
   1321       if (!isa<Constant>(Y) || !isa<Constant>(Op0)) {
   1322         NewInst = Builder->CreateFMul(Op0, Y);
   1323         if (Instruction *RI = dyn_cast<Instruction>(NewInst)) {
   1324           FastMathFlags Flags = I.getFastMathFlags();
   1325           Flags &= cast<Instruction>(Op1)->getFastMathFlags();
   1326           RI->setFastMathFlags(Flags);
   1327         }
   1328         SimpR = BinaryOperator::CreateFDiv(NewInst, X);
   1329       }
   1330     }
   1331 
   1332     if (NewInst) {
   1333       if (Instruction *T = dyn_cast<Instruction>(NewInst))
   1334         T->setDebugLoc(I.getDebugLoc());
   1335       SimpR->setFastMathFlags(I.getFastMathFlags());
   1336       return SimpR;
   1337     }
   1338   }
   1339 
   1340   return nullptr;
   1341 }
   1342 
   1343 /// This function implements the transforms common to both integer remainder
   1344 /// instructions (urem and srem). It is called by the visitors to those integer
   1345 /// remainder instructions.
   1346 /// @brief Common integer remainder transforms
   1347 Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
   1348   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1349 
   1350   // The RHS is known non-zero.
   1351   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
   1352     I.setOperand(1, V);
   1353     return &I;
   1354   }
   1355 
   1356   // Handle cases involving: rem X, (select Cond, Y, Z)
   1357   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
   1358     return &I;
   1359 
   1360   if (isa<Constant>(Op1)) {
   1361     if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
   1362       if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
   1363         if (Instruction *R = FoldOpIntoSelect(I, SI))
   1364           return R;
   1365       } else if (isa<PHINode>(Op0I)) {
   1366         if (Instruction *NV = FoldOpIntoPhi(I))
   1367           return NV;
   1368       }
   1369 
   1370       // See if we can fold away this rem instruction.
   1371       if (SimplifyDemandedInstructionBits(I))
   1372         return &I;
   1373     }
   1374   }
   1375 
   1376   return nullptr;
   1377 }
   1378 
   1379 Instruction *InstCombiner::visitURem(BinaryOperator &I) {
   1380   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1381 
   1382   if (Value *V = SimplifyVectorOp(I))
   1383     return ReplaceInstUsesWith(I, V);
   1384 
   1385   if (Value *V = SimplifyURemInst(Op0, Op1, DL, TLI, DT, AC))
   1386     return ReplaceInstUsesWith(I, V);
   1387 
   1388   if (Instruction *common = commonIRemTransforms(I))
   1389     return common;
   1390 
   1391   // (zext A) urem (zext B) --> zext (A urem B)
   1392   if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
   1393     if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
   1394       return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1),
   1395                           I.getType());
   1396 
   1397   // X urem Y -> X and Y-1, where Y is a power of 2,
   1398   if (isKnownToBeAPowerOfTwo(Op1, DL, /*OrZero*/ true, 0, AC, &I, DT)) {
   1399     Constant *N1 = Constant::getAllOnesValue(I.getType());
   1400     Value *Add = Builder->CreateAdd(Op1, N1);
   1401     return BinaryOperator::CreateAnd(Op0, Add);
   1402   }
   1403 
   1404   // 1 urem X -> zext(X != 1)
   1405   if (match(Op0, m_One())) {
   1406     Value *Cmp = Builder->CreateICmpNE(Op1, Op0);
   1407     Value *Ext = Builder->CreateZExt(Cmp, I.getType());
   1408     return ReplaceInstUsesWith(I, Ext);
   1409   }
   1410 
   1411   return nullptr;
   1412 }
   1413 
   1414 Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
   1415   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1416 
   1417   if (Value *V = SimplifyVectorOp(I))
   1418     return ReplaceInstUsesWith(I, V);
   1419 
   1420   if (Value *V = SimplifySRemInst(Op0, Op1, DL, TLI, DT, AC))
   1421     return ReplaceInstUsesWith(I, V);
   1422 
   1423   // Handle the integer rem common cases
   1424   if (Instruction *Common = commonIRemTransforms(I))
   1425     return Common;
   1426 
   1427   {
   1428     const APInt *Y;
   1429     // X % -Y -> X % Y
   1430     if (match(Op1, m_APInt(Y)) && Y->isNegative() && !Y->isMinSignedValue()) {
   1431       Worklist.AddValue(I.getOperand(1));
   1432       I.setOperand(1, ConstantInt::get(I.getType(), -*Y));
   1433       return &I;
   1434     }
   1435   }
   1436 
   1437   // If the sign bits of both operands are zero (i.e. we can prove they are
   1438   // unsigned inputs), turn this into a urem.
   1439   if (I.getType()->isIntegerTy()) {
   1440     APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
   1441     if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
   1442         MaskedValueIsZero(Op0, Mask, 0, &I)) {
   1443       // X srem Y -> X urem Y, iff X and Y don't have sign bit set
   1444       return BinaryOperator::CreateURem(Op0, Op1, I.getName());
   1445     }
   1446   }
   1447 
   1448   // If it's a constant vector, flip any negative values positive.
   1449   if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
   1450     Constant *C = cast<Constant>(Op1);
   1451     unsigned VWidth = C->getType()->getVectorNumElements();
   1452 
   1453     bool hasNegative = false;
   1454     bool hasMissing = false;
   1455     for (unsigned i = 0; i != VWidth; ++i) {
   1456       Constant *Elt = C->getAggregateElement(i);
   1457       if (!Elt) {
   1458         hasMissing = true;
   1459         break;
   1460       }
   1461 
   1462       if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
   1463         if (RHS->isNegative())
   1464           hasNegative = true;
   1465     }
   1466 
   1467     if (hasNegative && !hasMissing) {
   1468       SmallVector<Constant *, 16> Elts(VWidth);
   1469       for (unsigned i = 0; i != VWidth; ++i) {
   1470         Elts[i] = C->getAggregateElement(i);  // Handle undef, etc.
   1471         if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
   1472           if (RHS->isNegative())
   1473             Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
   1474         }
   1475       }
   1476 
   1477       Constant *NewRHSV = ConstantVector::get(Elts);
   1478       if (NewRHSV != C) {  // Don't loop on -MININT
   1479         Worklist.AddValue(I.getOperand(1));
   1480         I.setOperand(1, NewRHSV);
   1481         return &I;
   1482       }
   1483     }
   1484   }
   1485 
   1486   return nullptr;
   1487 }
   1488 
   1489 Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
   1490   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1491 
   1492   if (Value *V = SimplifyVectorOp(I))
   1493     return ReplaceInstUsesWith(I, V);
   1494 
   1495   if (Value *V = SimplifyFRemInst(Op0, Op1, I.getFastMathFlags(),
   1496                                   DL, TLI, DT, AC))
   1497     return ReplaceInstUsesWith(I, V);
   1498 
   1499   // Handle cases involving: rem X, (select Cond, Y, Z)
   1500   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
   1501     return &I;
   1502 
   1503   return nullptr;
   1504 }
   1505