Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains logic for simplifying instructions based on information
     11 // about how they are used.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "InstCombineInternal.h"
     16 #include "llvm/Analysis/ValueTracking.h"
     17 #include "llvm/IR/IntrinsicInst.h"
     18 #include "llvm/IR/PatternMatch.h"
     19 
     20 using namespace llvm;
     21 using namespace llvm::PatternMatch;
     22 
     23 #define DEBUG_TYPE "instcombine"
     24 
     25 /// ShrinkDemandedConstant - Check to see if the specified operand of the
     26 /// specified instruction is a constant integer.  If so, check to see if there
     27 /// are any bits set in the constant that are not demanded.  If so, shrink the
     28 /// constant and return true.
     29 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
     30                                    APInt Demanded) {
     31   assert(I && "No instruction?");
     32   assert(OpNo < I->getNumOperands() && "Operand index too large");
     33 
     34   // If the operand is not a constant integer, nothing to do.
     35   ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
     36   if (!OpC) return false;
     37 
     38   // If there are no bits set that aren't demanded, nothing to do.
     39   Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
     40   if ((~Demanded & OpC->getValue()) == 0)
     41     return false;
     42 
     43   // This instruction is producing bits that are not demanded. Shrink the RHS.
     44   Demanded &= OpC->getValue();
     45   I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
     46 
     47   return true;
     48 }
     49 
     50 
     51 
     52 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
     53 /// SimplifyDemandedBits knows about.  See if the instruction has any
     54 /// properties that allow us to simplify its operands.
     55 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
     56   unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
     57   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
     58   APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
     59 
     60   Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, KnownZero, KnownOne,
     61                                      0, &Inst);
     62   if (!V) return false;
     63   if (V == &Inst) return true;
     64   ReplaceInstUsesWith(Inst, V);
     65   return true;
     66 }
     67 
     68 /// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
     69 /// specified instruction operand if possible, updating it in place.  It returns
     70 /// true if it made any change and false otherwise.
     71 bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
     72                                         APInt &KnownZero, APInt &KnownOne,
     73                                         unsigned Depth) {
     74   auto *UserI = dyn_cast<Instruction>(U.getUser());
     75   Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, KnownZero,
     76                                           KnownOne, Depth, UserI);
     77   if (!NewVal) return false;
     78   U = NewVal;
     79   return true;
     80 }
     81 
     82 
     83 /// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
     84 /// value based on the demanded bits.  When this function is called, it is known
     85 /// that only the bits set in DemandedMask of the result of V are ever used
     86 /// downstream. Consequently, depending on the mask and V, it may be possible
     87 /// to replace V with a constant or one of its operands. In such cases, this
     88 /// function does the replacement and returns true. In all other cases, it
     89 /// returns false after analyzing the expression and setting KnownOne and known
     90 /// to be one in the expression.  KnownZero contains all the bits that are known
     91 /// to be zero in the expression. These are provided to potentially allow the
     92 /// caller (which might recursively be SimplifyDemandedBits itself) to simplify
     93 /// the expression. KnownOne and KnownZero always follow the invariant that
     94 /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
     95 /// the bits in KnownOne and KnownZero may only be accurate for those bits set
     96 /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
     97 /// and KnownOne must all be the same.
     98 ///
     99 /// This returns null if it did not change anything and it permits no
    100 /// simplification.  This returns V itself if it did some simplification of V's
    101 /// operands based on the information about what bits are demanded. This returns
    102 /// some other non-null value if it found out that V is equal to another value
    103 /// in the context where the specified bits are demanded, but not for all users.
    104 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
    105                                              APInt &KnownZero, APInt &KnownOne,
    106                                              unsigned Depth,
    107                                              Instruction *CxtI) {
    108   assert(V != nullptr && "Null pointer of Value???");
    109   assert(Depth <= 6 && "Limit Search Depth");
    110   uint32_t BitWidth = DemandedMask.getBitWidth();
    111   Type *VTy = V->getType();
    112   assert(
    113       (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
    114       KnownZero.getBitWidth() == BitWidth &&
    115       KnownOne.getBitWidth() == BitWidth &&
    116       "Value *V, DemandedMask, KnownZero and KnownOne "
    117       "must have same BitWidth");
    118   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    119     // We know all of the bits for a constant!
    120     KnownOne = CI->getValue() & DemandedMask;
    121     KnownZero = ~KnownOne & DemandedMask;
    122     return nullptr;
    123   }
    124   if (isa<ConstantPointerNull>(V)) {
    125     // We know all of the bits for a constant!
    126     KnownOne.clearAllBits();
    127     KnownZero = DemandedMask;
    128     return nullptr;
    129   }
    130 
    131   KnownZero.clearAllBits();
    132   KnownOne.clearAllBits();
    133   if (DemandedMask == 0) {   // Not demanding any bits from V.
    134     if (isa<UndefValue>(V))
    135       return nullptr;
    136     return UndefValue::get(VTy);
    137   }
    138 
    139   if (Depth == 6)        // Limit search depth.
    140     return nullptr;
    141 
    142   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
    143   APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
    144 
    145   Instruction *I = dyn_cast<Instruction>(V);
    146   if (!I) {
    147     computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
    148     return nullptr;        // Only analyze instructions.
    149   }
    150 
    151   // If there are multiple uses of this value and we aren't at the root, then
    152   // we can't do any simplifications of the operands, because DemandedMask
    153   // only reflects the bits demanded by *one* of the users.
    154   if (Depth != 0 && !I->hasOneUse()) {
    155     // Despite the fact that we can't simplify this instruction in all User's
    156     // context, we can at least compute the knownzero/knownone bits, and we can
    157     // do simplifications that apply to *just* the one user if we know that
    158     // this instruction has a simpler value in that context.
    159     if (I->getOpcode() == Instruction::And) {
    160       // If either the LHS or the RHS are Zero, the result is zero.
    161       computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
    162                        CxtI);
    163       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
    164                        CxtI);
    165 
    166       // If all of the demanded bits are known 1 on one side, return the other.
    167       // These bits cannot contribute to the result of the 'and' in this
    168       // context.
    169       if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
    170           (DemandedMask & ~LHSKnownZero))
    171         return I->getOperand(0);
    172       if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
    173           (DemandedMask & ~RHSKnownZero))
    174         return I->getOperand(1);
    175 
    176       // If all of the demanded bits in the inputs are known zeros, return zero.
    177       if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
    178         return Constant::getNullValue(VTy);
    179 
    180     } else if (I->getOpcode() == Instruction::Or) {
    181       // We can simplify (X|Y) -> X or Y in the user's context if we know that
    182       // only bits from X or Y are demanded.
    183 
    184       // If either the LHS or the RHS are One, the result is One.
    185       computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
    186                        CxtI);
    187       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
    188                        CxtI);
    189 
    190       // If all of the demanded bits are known zero on one side, return the
    191       // other.  These bits cannot contribute to the result of the 'or' in this
    192       // context.
    193       if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
    194           (DemandedMask & ~LHSKnownOne))
    195         return I->getOperand(0);
    196       if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
    197           (DemandedMask & ~RHSKnownOne))
    198         return I->getOperand(1);
    199 
    200       // If all of the potentially set bits on one side are known to be set on
    201       // the other side, just use the 'other' side.
    202       if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
    203           (DemandedMask & (~RHSKnownZero)))
    204         return I->getOperand(0);
    205       if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
    206           (DemandedMask & (~LHSKnownZero)))
    207         return I->getOperand(1);
    208     } else if (I->getOpcode() == Instruction::Xor) {
    209       // We can simplify (X^Y) -> X or Y in the user's context if we know that
    210       // only bits from X or Y are demanded.
    211 
    212       computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
    213                        CxtI);
    214       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
    215                        CxtI);
    216 
    217       // If all of the demanded bits are known zero on one side, return the
    218       // other.
    219       if ((DemandedMask & RHSKnownZero) == DemandedMask)
    220         return I->getOperand(0);
    221       if ((DemandedMask & LHSKnownZero) == DemandedMask)
    222         return I->getOperand(1);
    223     }
    224 
    225     // Compute the KnownZero/KnownOne bits to simplify things downstream.
    226     computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI);
    227     return nullptr;
    228   }
    229 
    230   // If this is the root being simplified, allow it to have multiple uses,
    231   // just set the DemandedMask to all bits so that we can try to simplify the
    232   // operands.  This allows visitTruncInst (for example) to simplify the
    233   // operand of a trunc without duplicating all the logic below.
    234   if (Depth == 0 && !V->hasOneUse())
    235     DemandedMask = APInt::getAllOnesValue(BitWidth);
    236 
    237   switch (I->getOpcode()) {
    238   default:
    239     computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI);
    240     break;
    241   case Instruction::And:
    242     // If either the LHS or the RHS are Zero, the result is zero.
    243     if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
    244                              RHSKnownOne, Depth + 1) ||
    245         SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
    246                              LHSKnownZero, LHSKnownOne, Depth + 1))
    247       return I;
    248     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
    249     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
    250 
    251     // If the client is only demanding bits that we know, return the known
    252     // constant.
    253     if ((DemandedMask & ((RHSKnownZero | LHSKnownZero)|
    254                          (RHSKnownOne & LHSKnownOne))) == DemandedMask)
    255       return Constant::getIntegerValue(VTy, RHSKnownOne & LHSKnownOne);
    256 
    257     // If all of the demanded bits are known 1 on one side, return the other.
    258     // These bits cannot contribute to the result of the 'and'.
    259     if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
    260         (DemandedMask & ~LHSKnownZero))
    261       return I->getOperand(0);
    262     if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
    263         (DemandedMask & ~RHSKnownZero))
    264       return I->getOperand(1);
    265 
    266     // If all of the demanded bits in the inputs are known zeros, return zero.
    267     if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
    268       return Constant::getNullValue(VTy);
    269 
    270     // If the RHS is a constant, see if we can simplify it.
    271     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
    272       return I;
    273 
    274     // Output known-1 bits are only known if set in both the LHS & RHS.
    275     KnownOne = RHSKnownOne & LHSKnownOne;
    276     // Output known-0 are known to be clear if zero in either the LHS | RHS.
    277     KnownZero = RHSKnownZero | LHSKnownZero;
    278     break;
    279   case Instruction::Or:
    280     // If either the LHS or the RHS are One, the result is One.
    281     if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
    282                              RHSKnownOne, Depth + 1) ||
    283         SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
    284                              LHSKnownZero, LHSKnownOne, Depth + 1))
    285       return I;
    286     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
    287     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
    288 
    289     // If the client is only demanding bits that we know, return the known
    290     // constant.
    291     if ((DemandedMask & ((RHSKnownZero & LHSKnownZero)|
    292                          (RHSKnownOne | LHSKnownOne))) == DemandedMask)
    293       return Constant::getIntegerValue(VTy, RHSKnownOne | LHSKnownOne);
    294 
    295     // If all of the demanded bits are known zero on one side, return the other.
    296     // These bits cannot contribute to the result of the 'or'.
    297     if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
    298         (DemandedMask & ~LHSKnownOne))
    299       return I->getOperand(0);
    300     if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
    301         (DemandedMask & ~RHSKnownOne))
    302       return I->getOperand(1);
    303 
    304     // If all of the potentially set bits on one side are known to be set on
    305     // the other side, just use the 'other' side.
    306     if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
    307         (DemandedMask & (~RHSKnownZero)))
    308       return I->getOperand(0);
    309     if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
    310         (DemandedMask & (~LHSKnownZero)))
    311       return I->getOperand(1);
    312 
    313     // If the RHS is a constant, see if we can simplify it.
    314     if (ShrinkDemandedConstant(I, 1, DemandedMask))
    315       return I;
    316 
    317     // Output known-0 bits are only known if clear in both the LHS & RHS.
    318     KnownZero = RHSKnownZero & LHSKnownZero;
    319     // Output known-1 are known to be set if set in either the LHS | RHS.
    320     KnownOne = RHSKnownOne | LHSKnownOne;
    321     break;
    322   case Instruction::Xor: {
    323     if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
    324                              RHSKnownOne, Depth + 1) ||
    325         SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, LHSKnownZero,
    326                              LHSKnownOne, Depth + 1))
    327       return I;
    328     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
    329     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
    330 
    331     // Output known-0 bits are known if clear or set in both the LHS & RHS.
    332     APInt IKnownZero = (RHSKnownZero & LHSKnownZero) |
    333                        (RHSKnownOne & LHSKnownOne);
    334     // Output known-1 are known to be set if set in only one of the LHS, RHS.
    335     APInt IKnownOne =  (RHSKnownZero & LHSKnownOne) |
    336                        (RHSKnownOne & LHSKnownZero);
    337 
    338     // If the client is only demanding bits that we know, return the known
    339     // constant.
    340     if ((DemandedMask & (IKnownZero|IKnownOne)) == DemandedMask)
    341       return Constant::getIntegerValue(VTy, IKnownOne);
    342 
    343     // If all of the demanded bits are known zero on one side, return the other.
    344     // These bits cannot contribute to the result of the 'xor'.
    345     if ((DemandedMask & RHSKnownZero) == DemandedMask)
    346       return I->getOperand(0);
    347     if ((DemandedMask & LHSKnownZero) == DemandedMask)
    348       return I->getOperand(1);
    349 
    350     // If all of the demanded bits are known to be zero on one side or the
    351     // other, turn this into an *inclusive* or.
    352     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
    353     if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
    354       Instruction *Or =
    355         BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
    356                                  I->getName());
    357       return InsertNewInstWith(Or, *I);
    358     }
    359 
    360     // If all of the demanded bits on one side are known, and all of the set
    361     // bits on that side are also known to be set on the other side, turn this
    362     // into an AND, as we know the bits will be cleared.
    363     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
    364     if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
    365       // all known
    366       if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
    367         Constant *AndC = Constant::getIntegerValue(VTy,
    368                                                    ~RHSKnownOne & DemandedMask);
    369         Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
    370         return InsertNewInstWith(And, *I);
    371       }
    372     }
    373 
    374     // If the RHS is a constant, see if we can simplify it.
    375     // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
    376     if (ShrinkDemandedConstant(I, 1, DemandedMask))
    377       return I;
    378 
    379     // If our LHS is an 'and' and if it has one use, and if any of the bits we
    380     // are flipping are known to be set, then the xor is just resetting those
    381     // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
    382     // simplifying both of them.
    383     if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
    384       if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
    385           isa<ConstantInt>(I->getOperand(1)) &&
    386           isa<ConstantInt>(LHSInst->getOperand(1)) &&
    387           (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
    388         ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
    389         ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
    390         APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
    391 
    392         Constant *AndC =
    393           ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
    394         Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
    395         InsertNewInstWith(NewAnd, *I);
    396 
    397         Constant *XorC =
    398           ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
    399         Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
    400         return InsertNewInstWith(NewXor, *I);
    401       }
    402 
    403     // Output known-0 bits are known if clear or set in both the LHS & RHS.
    404     KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne);
    405     // Output known-1 are known to be set if set in only one of the LHS, RHS.
    406     KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero);
    407     break;
    408   }
    409   case Instruction::Select:
    410     // If this is a select as part of a min/max pattern, don't simplify any
    411     // further in case we break the structure.
    412     Value *LHS, *RHS;
    413     if (matchSelectPattern(I, LHS, RHS).Flavor != SPF_UNKNOWN)
    414       return nullptr;
    415 
    416     if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask, RHSKnownZero,
    417                              RHSKnownOne, Depth + 1) ||
    418         SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, LHSKnownZero,
    419                              LHSKnownOne, Depth + 1))
    420       return I;
    421     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
    422     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
    423 
    424     // If the operands are constants, see if we can simplify them.
    425     if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
    426         ShrinkDemandedConstant(I, 2, DemandedMask))
    427       return I;
    428 
    429     // Only known if known in both the LHS and RHS.
    430     KnownOne = RHSKnownOne & LHSKnownOne;
    431     KnownZero = RHSKnownZero & LHSKnownZero;
    432     break;
    433   case Instruction::Trunc: {
    434     unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
    435     DemandedMask = DemandedMask.zext(truncBf);
    436     KnownZero = KnownZero.zext(truncBf);
    437     KnownOne = KnownOne.zext(truncBf);
    438     if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
    439                              KnownOne, Depth + 1))
    440       return I;
    441     DemandedMask = DemandedMask.trunc(BitWidth);
    442     KnownZero = KnownZero.trunc(BitWidth);
    443     KnownOne = KnownOne.trunc(BitWidth);
    444     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
    445     break;
    446   }
    447   case Instruction::BitCast:
    448     if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
    449       return nullptr;  // vector->int or fp->int?
    450 
    451     if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
    452       if (VectorType *SrcVTy =
    453             dyn_cast<VectorType>(I->getOperand(0)->getType())) {
    454         if (DstVTy->getNumElements() != SrcVTy->getNumElements())
    455           // Don't touch a bitcast between vectors of different element counts.
    456           return nullptr;
    457       } else
    458         // Don't touch a scalar-to-vector bitcast.
    459         return nullptr;
    460     } else if (I->getOperand(0)->getType()->isVectorTy())
    461       // Don't touch a vector-to-scalar bitcast.
    462       return nullptr;
    463 
    464     if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
    465                              KnownOne, Depth + 1))
    466       return I;
    467     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
    468     break;
    469   case Instruction::ZExt: {
    470     // Compute the bits in the result that are not present in the input.
    471     unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
    472 
    473     DemandedMask = DemandedMask.trunc(SrcBitWidth);
    474     KnownZero = KnownZero.trunc(SrcBitWidth);
    475     KnownOne = KnownOne.trunc(SrcBitWidth);
    476     if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
    477                              KnownOne, Depth + 1))
    478       return I;
    479     DemandedMask = DemandedMask.zext(BitWidth);
    480     KnownZero = KnownZero.zext(BitWidth);
    481     KnownOne = KnownOne.zext(BitWidth);
    482     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
    483     // The top bits are known to be zero.
    484     KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
    485     break;
    486   }
    487   case Instruction::SExt: {
    488     // Compute the bits in the result that are not present in the input.
    489     unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
    490 
    491     APInt InputDemandedBits = DemandedMask &
    492                               APInt::getLowBitsSet(BitWidth, SrcBitWidth);
    493 
    494     APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
    495     // If any of the sign extended bits are demanded, we know that the sign
    496     // bit is demanded.
    497     if ((NewBits & DemandedMask) != 0)
    498       InputDemandedBits.setBit(SrcBitWidth-1);
    499 
    500     InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
    501     KnownZero = KnownZero.trunc(SrcBitWidth);
    502     KnownOne = KnownOne.trunc(SrcBitWidth);
    503     if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits, KnownZero,
    504                              KnownOne, Depth + 1))
    505       return I;
    506     InputDemandedBits = InputDemandedBits.zext(BitWidth);
    507     KnownZero = KnownZero.zext(BitWidth);
    508     KnownOne = KnownOne.zext(BitWidth);
    509     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
    510 
    511     // If the sign bit of the input is known set or clear, then we know the
    512     // top bits of the result.
    513 
    514     // If the input sign bit is known zero, or if the NewBits are not demanded
    515     // convert this into a zero extension.
    516     if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
    517       // Convert to ZExt cast
    518       CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
    519       return InsertNewInstWith(NewCast, *I);
    520     } else if (KnownOne[SrcBitWidth-1]) {    // Input sign bit known set
    521       KnownOne |= NewBits;
    522     }
    523     break;
    524   }
    525   case Instruction::Add:
    526   case Instruction::Sub: {
    527     /// If the high-bits of an ADD/SUB are not demanded, then we do not care
    528     /// about the high bits of the operands.
    529     unsigned NLZ = DemandedMask.countLeadingZeros();
    530     if (NLZ > 0) {
    531       // Right fill the mask of bits for this ADD/SUB to demand the most
    532       // significant bit and all those below it.
    533       APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
    534       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
    535                                LHSKnownZero, LHSKnownOne, Depth + 1) ||
    536           ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
    537           SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
    538                                LHSKnownZero, LHSKnownOne, Depth + 1)) {
    539         // Disable the nsw and nuw flags here: We can no longer guarantee that
    540         // we won't wrap after simplification. Removing the nsw/nuw flags is
    541         // legal here because the top bit is not demanded.
    542         BinaryOperator &BinOP = *cast<BinaryOperator>(I);
    543         BinOP.setHasNoSignedWrap(false);
    544         BinOP.setHasNoUnsignedWrap(false);
    545         return I;
    546       }
    547     }
    548 
    549     // Otherwise just hand the add/sub off to computeKnownBits to fill in
    550     // the known zeros and ones.
    551     computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
    552     break;
    553   }
    554   case Instruction::Shl:
    555     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
    556       {
    557         Value *VarX; ConstantInt *C1;
    558         if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) {
    559           Instruction *Shr = cast<Instruction>(I->getOperand(0));
    560           Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask,
    561                                                 KnownZero, KnownOne);
    562           if (R)
    563             return R;
    564         }
    565       }
    566 
    567       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
    568       APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
    569 
    570       // If the shift is NUW/NSW, then it does demand the high bits.
    571       ShlOperator *IOp = cast<ShlOperator>(I);
    572       if (IOp->hasNoSignedWrap())
    573         DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
    574       else if (IOp->hasNoUnsignedWrap())
    575         DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
    576 
    577       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
    578                                KnownOne, Depth + 1))
    579         return I;
    580       assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
    581       KnownZero <<= ShiftAmt;
    582       KnownOne  <<= ShiftAmt;
    583       // low bits known zero.
    584       if (ShiftAmt)
    585         KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
    586     }
    587     break;
    588   case Instruction::LShr:
    589     // For a logical shift right
    590     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
    591       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
    592 
    593       // Unsigned shift right.
    594       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
    595 
    596       // If the shift is exact, then it does demand the low bits (and knows that
    597       // they are zero).
    598       if (cast<LShrOperator>(I)->isExact())
    599         DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
    600 
    601       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
    602                                KnownOne, Depth + 1))
    603         return I;
    604       assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
    605       KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
    606       KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
    607       if (ShiftAmt) {
    608         // Compute the new bits that are at the top now.
    609         APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
    610         KnownZero |= HighBits;  // high bits known zero.
    611       }
    612     }
    613     break;
    614   case Instruction::AShr:
    615     // If this is an arithmetic shift right and only the low-bit is set, we can
    616     // always convert this into a logical shr, even if the shift amount is
    617     // variable.  The low bit of the shift cannot be an input sign bit unless
    618     // the shift amount is >= the size of the datatype, which is undefined.
    619     if (DemandedMask == 1) {
    620       // Perform the logical shift right.
    621       Instruction *NewVal = BinaryOperator::CreateLShr(
    622                         I->getOperand(0), I->getOperand(1), I->getName());
    623       return InsertNewInstWith(NewVal, *I);
    624     }
    625 
    626     // If the sign bit is the only bit demanded by this ashr, then there is no
    627     // need to do it, the shift doesn't change the high bit.
    628     if (DemandedMask.isSignBit())
    629       return I->getOperand(0);
    630 
    631     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
    632       uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
    633 
    634       // Signed shift right.
    635       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
    636       // If any of the "high bits" are demanded, we should set the sign bit as
    637       // demanded.
    638       if (DemandedMask.countLeadingZeros() <= ShiftAmt)
    639         DemandedMaskIn.setBit(BitWidth-1);
    640 
    641       // If the shift is exact, then it does demand the low bits (and knows that
    642       // they are zero).
    643       if (cast<AShrOperator>(I)->isExact())
    644         DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
    645 
    646       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
    647                                KnownOne, Depth + 1))
    648         return I;
    649       assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
    650       // Compute the new bits that are at the top now.
    651       APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
    652       KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
    653       KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
    654 
    655       // Handle the sign bits.
    656       APInt SignBit(APInt::getSignBit(BitWidth));
    657       // Adjust to where it is now in the mask.
    658       SignBit = APIntOps::lshr(SignBit, ShiftAmt);
    659 
    660       // If the input sign bit is known to be zero, or if none of the top bits
    661       // are demanded, turn this into an unsigned shift right.
    662       if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
    663           (HighBits & ~DemandedMask) == HighBits) {
    664         // Perform the logical shift right.
    665         BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0),
    666                                                             SA, I->getName());
    667         NewVal->setIsExact(cast<BinaryOperator>(I)->isExact());
    668         return InsertNewInstWith(NewVal, *I);
    669       } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
    670         KnownOne |= HighBits;
    671       }
    672     }
    673     break;
    674   case Instruction::SRem:
    675     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
    676       // X % -1 demands all the bits because we don't want to introduce
    677       // INT_MIN % -1 (== undef) by accident.
    678       if (Rem->isAllOnesValue())
    679         break;
    680       APInt RA = Rem->getValue().abs();
    681       if (RA.isPowerOf2()) {
    682         if (DemandedMask.ult(RA))    // srem won't affect demanded bits
    683           return I->getOperand(0);
    684 
    685         APInt LowBits = RA - 1;
    686         APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
    687         if (SimplifyDemandedBits(I->getOperandUse(0), Mask2, LHSKnownZero,
    688                                  LHSKnownOne, Depth + 1))
    689           return I;
    690 
    691         // The low bits of LHS are unchanged by the srem.
    692         KnownZero = LHSKnownZero & LowBits;
    693         KnownOne = LHSKnownOne & LowBits;
    694 
    695         // If LHS is non-negative or has all low bits zero, then the upper bits
    696         // are all zero.
    697         if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
    698           KnownZero |= ~LowBits;
    699 
    700         // If LHS is negative and not all low bits are zero, then the upper bits
    701         // are all one.
    702         if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
    703           KnownOne |= ~LowBits;
    704 
    705         assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
    706       }
    707     }
    708 
    709     // The sign bit is the LHS's sign bit, except when the result of the
    710     // remainder is zero.
    711     if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
    712       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
    713       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
    714                        CxtI);
    715       // If it's known zero, our sign bit is also zero.
    716       if (LHSKnownZero.isNegative())
    717         KnownZero.setBit(KnownZero.getBitWidth() - 1);
    718     }
    719     break;
    720   case Instruction::URem: {
    721     APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
    722     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
    723     if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes, KnownZero2,
    724                              KnownOne2, Depth + 1) ||
    725         SimplifyDemandedBits(I->getOperandUse(1), AllOnes, KnownZero2,
    726                              KnownOne2, Depth + 1))
    727       return I;
    728 
    729     unsigned Leaders = KnownZero2.countLeadingOnes();
    730     Leaders = std::max(Leaders,
    731                        KnownZero2.countLeadingOnes());
    732     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
    733     break;
    734   }
    735   case Instruction::Call:
    736     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    737       switch (II->getIntrinsicID()) {
    738       default: break;
    739       case Intrinsic::bswap: {
    740         // If the only bits demanded come from one byte of the bswap result,
    741         // just shift the input byte into position to eliminate the bswap.
    742         unsigned NLZ = DemandedMask.countLeadingZeros();
    743         unsigned NTZ = DemandedMask.countTrailingZeros();
    744 
    745         // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
    746         // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
    747         // have 14 leading zeros, round to 8.
    748         NLZ &= ~7;
    749         NTZ &= ~7;
    750         // If we need exactly one byte, we can do this transformation.
    751         if (BitWidth-NLZ-NTZ == 8) {
    752           unsigned ResultBit = NTZ;
    753           unsigned InputBit = BitWidth-NTZ-8;
    754 
    755           // Replace this with either a left or right shift to get the byte into
    756           // the right place.
    757           Instruction *NewVal;
    758           if (InputBit > ResultBit)
    759             NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
    760                     ConstantInt::get(I->getType(), InputBit-ResultBit));
    761           else
    762             NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
    763                     ConstantInt::get(I->getType(), ResultBit-InputBit));
    764           NewVal->takeName(I);
    765           return InsertNewInstWith(NewVal, *I);
    766         }
    767 
    768         // TODO: Could compute known zero/one bits based on the input.
    769         break;
    770       }
    771       case Intrinsic::x86_sse42_crc32_64_64:
    772         KnownZero = APInt::getHighBitsSet(64, 32);
    773         return nullptr;
    774       }
    775     }
    776     computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
    777     break;
    778   }
    779 
    780   // If the client is only demanding bits that we know, return the known
    781   // constant.
    782   if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
    783     return Constant::getIntegerValue(VTy, KnownOne);
    784   return nullptr;
    785 }
    786 
    787 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
    788 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
    789 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
    790 /// of "C2-C1".
    791 ///
    792 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
    793 /// ..., bn}, without considering the specific value X is holding.
    794 /// This transformation is legal iff one of following conditions is hold:
    795 ///  1) All the bit in S are 0, in this case E1 == E2.
    796 ///  2) We don't care those bits in S, per the input DemandedMask.
    797 ///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
    798 ///     rest bits.
    799 ///
    800 /// Currently we only test condition 2).
    801 ///
    802 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
    803 /// not successful.
    804 Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr,
    805   Instruction *Shl, APInt DemandedMask, APInt &KnownZero, APInt &KnownOne) {
    806 
    807   const APInt &ShlOp1 = cast<ConstantInt>(Shl->getOperand(1))->getValue();
    808   const APInt &ShrOp1 = cast<ConstantInt>(Shr->getOperand(1))->getValue();
    809   if (!ShlOp1 || !ShrOp1)
    810       return nullptr; // Noop.
    811 
    812   Value *VarX = Shr->getOperand(0);
    813   Type *Ty = VarX->getType();
    814   unsigned BitWidth = Ty->getIntegerBitWidth();
    815   if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
    816     return nullptr; // Undef.
    817 
    818   unsigned ShlAmt = ShlOp1.getZExtValue();
    819   unsigned ShrAmt = ShrOp1.getZExtValue();
    820 
    821   KnownOne.clearAllBits();
    822   KnownZero = APInt::getBitsSet(KnownZero.getBitWidth(), 0, ShlAmt-1);
    823   KnownZero &= DemandedMask;
    824 
    825   APInt BitMask1(APInt::getAllOnesValue(BitWidth));
    826   APInt BitMask2(APInt::getAllOnesValue(BitWidth));
    827 
    828   bool isLshr = (Shr->getOpcode() == Instruction::LShr);
    829   BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
    830                       (BitMask1.ashr(ShrAmt) << ShlAmt);
    831 
    832   if (ShrAmt <= ShlAmt) {
    833     BitMask2 <<= (ShlAmt - ShrAmt);
    834   } else {
    835     BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
    836                         BitMask2.ashr(ShrAmt - ShlAmt);
    837   }
    838 
    839   // Check if condition-2 (see the comment to this function) is satified.
    840   if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
    841     if (ShrAmt == ShlAmt)
    842       return VarX;
    843 
    844     if (!Shr->hasOneUse())
    845       return nullptr;
    846 
    847     BinaryOperator *New;
    848     if (ShrAmt < ShlAmt) {
    849       Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
    850       New = BinaryOperator::CreateShl(VarX, Amt);
    851       BinaryOperator *Orig = cast<BinaryOperator>(Shl);
    852       New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
    853       New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
    854     } else {
    855       Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
    856       New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
    857                      BinaryOperator::CreateAShr(VarX, Amt);
    858       if (cast<BinaryOperator>(Shr)->isExact())
    859         New->setIsExact(true);
    860     }
    861 
    862     return InsertNewInstWith(New, *Shl);
    863   }
    864 
    865   return nullptr;
    866 }
    867 
    868 /// SimplifyDemandedVectorElts - The specified value produces a vector with
    869 /// any number of elements. DemandedElts contains the set of elements that are
    870 /// actually used by the caller.  This method analyzes which elements of the
    871 /// operand are undef and returns that information in UndefElts.
    872 ///
    873 /// If the information about demanded elements can be used to simplify the
    874 /// operation, the operation is simplified, then the resultant value is
    875 /// returned.  This returns null if no change was made.
    876 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
    877                                                 APInt &UndefElts,
    878                                                 unsigned Depth) {
    879   unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
    880   APInt EltMask(APInt::getAllOnesValue(VWidth));
    881   assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
    882 
    883   if (isa<UndefValue>(V)) {
    884     // If the entire vector is undefined, just return this info.
    885     UndefElts = EltMask;
    886     return nullptr;
    887   }
    888 
    889   if (DemandedElts == 0) { // If nothing is demanded, provide undef.
    890     UndefElts = EltMask;
    891     return UndefValue::get(V->getType());
    892   }
    893 
    894   UndefElts = 0;
    895 
    896   // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
    897   if (Constant *C = dyn_cast<Constant>(V)) {
    898     // Check if this is identity. If so, return 0 since we are not simplifying
    899     // anything.
    900     if (DemandedElts.isAllOnesValue())
    901       return nullptr;
    902 
    903     Type *EltTy = cast<VectorType>(V->getType())->getElementType();
    904     Constant *Undef = UndefValue::get(EltTy);
    905 
    906     SmallVector<Constant*, 16> Elts;
    907     for (unsigned i = 0; i != VWidth; ++i) {
    908       if (!DemandedElts[i]) {   // If not demanded, set to undef.
    909         Elts.push_back(Undef);
    910         UndefElts.setBit(i);
    911         continue;
    912       }
    913 
    914       Constant *Elt = C->getAggregateElement(i);
    915       if (!Elt) return nullptr;
    916 
    917       if (isa<UndefValue>(Elt)) {   // Already undef.
    918         Elts.push_back(Undef);
    919         UndefElts.setBit(i);
    920       } else {                               // Otherwise, defined.
    921         Elts.push_back(Elt);
    922       }
    923     }
    924 
    925     // If we changed the constant, return it.
    926     Constant *NewCV = ConstantVector::get(Elts);
    927     return NewCV != C ? NewCV : nullptr;
    928   }
    929 
    930   // Limit search depth.
    931   if (Depth == 10)
    932     return nullptr;
    933 
    934   // If multiple users are using the root value, proceed with
    935   // simplification conservatively assuming that all elements
    936   // are needed.
    937   if (!V->hasOneUse()) {
    938     // Quit if we find multiple users of a non-root value though.
    939     // They'll be handled when it's their turn to be visited by
    940     // the main instcombine process.
    941     if (Depth != 0)
    942       // TODO: Just compute the UndefElts information recursively.
    943       return nullptr;
    944 
    945     // Conservatively assume that all elements are needed.
    946     DemandedElts = EltMask;
    947   }
    948 
    949   Instruction *I = dyn_cast<Instruction>(V);
    950   if (!I) return nullptr;        // Only analyze instructions.
    951 
    952   bool MadeChange = false;
    953   APInt UndefElts2(VWidth, 0);
    954   Value *TmpV;
    955   switch (I->getOpcode()) {
    956   default: break;
    957 
    958   case Instruction::InsertElement: {
    959     // If this is a variable index, we don't know which element it overwrites.
    960     // demand exactly the same input as we produce.
    961     ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
    962     if (!Idx) {
    963       // Note that we can't propagate undef elt info, because we don't know
    964       // which elt is getting updated.
    965       TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
    966                                         UndefElts2, Depth + 1);
    967       if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
    968       break;
    969     }
    970 
    971     // If this is inserting an element that isn't demanded, remove this
    972     // insertelement.
    973     unsigned IdxNo = Idx->getZExtValue();
    974     if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
    975       Worklist.Add(I);
    976       return I->getOperand(0);
    977     }
    978 
    979     // Otherwise, the element inserted overwrites whatever was there, so the
    980     // input demanded set is simpler than the output set.
    981     APInt DemandedElts2 = DemandedElts;
    982     DemandedElts2.clearBit(IdxNo);
    983     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
    984                                       UndefElts, Depth + 1);
    985     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
    986 
    987     // The inserted element is defined.
    988     UndefElts.clearBit(IdxNo);
    989     break;
    990   }
    991   case Instruction::ShuffleVector: {
    992     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
    993     uint64_t LHSVWidth =
    994       cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
    995     APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
    996     for (unsigned i = 0; i < VWidth; i++) {
    997       if (DemandedElts[i]) {
    998         unsigned MaskVal = Shuffle->getMaskValue(i);
    999         if (MaskVal != -1u) {
   1000           assert(MaskVal < LHSVWidth * 2 &&
   1001                  "shufflevector mask index out of range!");
   1002           if (MaskVal < LHSVWidth)
   1003             LeftDemanded.setBit(MaskVal);
   1004           else
   1005             RightDemanded.setBit(MaskVal - LHSVWidth);
   1006         }
   1007       }
   1008     }
   1009 
   1010     APInt UndefElts4(LHSVWidth, 0);
   1011     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
   1012                                       UndefElts4, Depth + 1);
   1013     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
   1014 
   1015     APInt UndefElts3(LHSVWidth, 0);
   1016     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
   1017                                       UndefElts3, Depth + 1);
   1018     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
   1019 
   1020     bool NewUndefElts = false;
   1021     for (unsigned i = 0; i < VWidth; i++) {
   1022       unsigned MaskVal = Shuffle->getMaskValue(i);
   1023       if (MaskVal == -1u) {
   1024         UndefElts.setBit(i);
   1025       } else if (!DemandedElts[i]) {
   1026         NewUndefElts = true;
   1027         UndefElts.setBit(i);
   1028       } else if (MaskVal < LHSVWidth) {
   1029         if (UndefElts4[MaskVal]) {
   1030           NewUndefElts = true;
   1031           UndefElts.setBit(i);
   1032         }
   1033       } else {
   1034         if (UndefElts3[MaskVal - LHSVWidth]) {
   1035           NewUndefElts = true;
   1036           UndefElts.setBit(i);
   1037         }
   1038       }
   1039     }
   1040 
   1041     if (NewUndefElts) {
   1042       // Add additional discovered undefs.
   1043       SmallVector<Constant*, 16> Elts;
   1044       for (unsigned i = 0; i < VWidth; ++i) {
   1045         if (UndefElts[i])
   1046           Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
   1047         else
   1048           Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
   1049                                           Shuffle->getMaskValue(i)));
   1050       }
   1051       I->setOperand(2, ConstantVector::get(Elts));
   1052       MadeChange = true;
   1053     }
   1054     break;
   1055   }
   1056   case Instruction::Select: {
   1057     APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
   1058     if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
   1059       for (unsigned i = 0; i < VWidth; i++) {
   1060         Constant *CElt = CV->getAggregateElement(i);
   1061         // Method isNullValue always returns false when called on a
   1062         // ConstantExpr. If CElt is a ConstantExpr then skip it in order to
   1063         // to avoid propagating incorrect information.
   1064         if (isa<ConstantExpr>(CElt))
   1065           continue;
   1066         if (CElt->isNullValue())
   1067           LeftDemanded.clearBit(i);
   1068         else
   1069           RightDemanded.clearBit(i);
   1070       }
   1071     }
   1072 
   1073     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts,
   1074                                       Depth + 1);
   1075     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
   1076 
   1077     TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
   1078                                       UndefElts2, Depth + 1);
   1079     if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
   1080 
   1081     // Output elements are undefined if both are undefined.
   1082     UndefElts &= UndefElts2;
   1083     break;
   1084   }
   1085   case Instruction::BitCast: {
   1086     // Vector->vector casts only.
   1087     VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
   1088     if (!VTy) break;
   1089     unsigned InVWidth = VTy->getNumElements();
   1090     APInt InputDemandedElts(InVWidth, 0);
   1091     UndefElts2 = APInt(InVWidth, 0);
   1092     unsigned Ratio;
   1093 
   1094     if (VWidth == InVWidth) {
   1095       // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
   1096       // elements as are demanded of us.
   1097       Ratio = 1;
   1098       InputDemandedElts = DemandedElts;
   1099     } else if ((VWidth % InVWidth) == 0) {
   1100       // If the number of elements in the output is a multiple of the number of
   1101       // elements in the input then an input element is live if any of the
   1102       // corresponding output elements are live.
   1103       Ratio = VWidth / InVWidth;
   1104       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
   1105         if (DemandedElts[OutIdx])
   1106           InputDemandedElts.setBit(OutIdx / Ratio);
   1107     } else if ((InVWidth % VWidth) == 0) {
   1108       // If the number of elements in the input is a multiple of the number of
   1109       // elements in the output then an input element is live if the
   1110       // corresponding output element is live.
   1111       Ratio = InVWidth / VWidth;
   1112       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
   1113         if (DemandedElts[InIdx / Ratio])
   1114           InputDemandedElts.setBit(InIdx);
   1115     } else {
   1116       // Unsupported so far.
   1117       break;
   1118     }
   1119 
   1120     // div/rem demand all inputs, because they don't want divide by zero.
   1121     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
   1122                                       UndefElts2, Depth + 1);
   1123     if (TmpV) {
   1124       I->setOperand(0, TmpV);
   1125       MadeChange = true;
   1126     }
   1127 
   1128     if (VWidth == InVWidth) {
   1129       UndefElts = UndefElts2;
   1130     } else if ((VWidth % InVWidth) == 0) {
   1131       // If the number of elements in the output is a multiple of the number of
   1132       // elements in the input then an output element is undef if the
   1133       // corresponding input element is undef.
   1134       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
   1135         if (UndefElts2[OutIdx / Ratio])
   1136           UndefElts.setBit(OutIdx);
   1137     } else if ((InVWidth % VWidth) == 0) {
   1138       // If the number of elements in the input is a multiple of the number of
   1139       // elements in the output then an output element is undef if all of the
   1140       // corresponding input elements are undef.
   1141       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
   1142         APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
   1143         if (SubUndef.countPopulation() == Ratio)
   1144           UndefElts.setBit(OutIdx);
   1145       }
   1146     } else {
   1147       llvm_unreachable("Unimp");
   1148     }
   1149     break;
   1150   }
   1151   case Instruction::And:
   1152   case Instruction::Or:
   1153   case Instruction::Xor:
   1154   case Instruction::Add:
   1155   case Instruction::Sub:
   1156   case Instruction::Mul:
   1157     // div/rem demand all inputs, because they don't want divide by zero.
   1158     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
   1159                                       Depth + 1);
   1160     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
   1161     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
   1162                                       UndefElts2, Depth + 1);
   1163     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
   1164 
   1165     // Output elements are undefined if both are undefined.  Consider things
   1166     // like undef&0.  The result is known zero, not undef.
   1167     UndefElts &= UndefElts2;
   1168     break;
   1169   case Instruction::FPTrunc:
   1170   case Instruction::FPExt:
   1171     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
   1172                                       Depth + 1);
   1173     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
   1174     break;
   1175 
   1176   case Instruction::Call: {
   1177     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
   1178     if (!II) break;
   1179     switch (II->getIntrinsicID()) {
   1180     default: break;
   1181 
   1182     // Binary vector operations that work column-wise.  A dest element is a
   1183     // function of the corresponding input elements from the two inputs.
   1184     case Intrinsic::x86_sse_sub_ss:
   1185     case Intrinsic::x86_sse_mul_ss:
   1186     case Intrinsic::x86_sse_min_ss:
   1187     case Intrinsic::x86_sse_max_ss:
   1188     case Intrinsic::x86_sse2_sub_sd:
   1189     case Intrinsic::x86_sse2_mul_sd:
   1190     case Intrinsic::x86_sse2_min_sd:
   1191     case Intrinsic::x86_sse2_max_sd:
   1192       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
   1193                                         UndefElts, Depth + 1);
   1194       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
   1195       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
   1196                                         UndefElts2, Depth + 1);
   1197       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
   1198 
   1199       // If only the low elt is demanded and this is a scalarizable intrinsic,
   1200       // scalarize it now.
   1201       if (DemandedElts == 1) {
   1202         switch (II->getIntrinsicID()) {
   1203         default: break;
   1204         case Intrinsic::x86_sse_sub_ss:
   1205         case Intrinsic::x86_sse_mul_ss:
   1206         case Intrinsic::x86_sse2_sub_sd:
   1207         case Intrinsic::x86_sse2_mul_sd:
   1208           // TODO: Lower MIN/MAX/ABS/etc
   1209           Value *LHS = II->getArgOperand(0);
   1210           Value *RHS = II->getArgOperand(1);
   1211           // Extract the element as scalars.
   1212           LHS = InsertNewInstWith(ExtractElementInst::Create(LHS,
   1213             ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
   1214           RHS = InsertNewInstWith(ExtractElementInst::Create(RHS,
   1215             ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
   1216 
   1217           switch (II->getIntrinsicID()) {
   1218           default: llvm_unreachable("Case stmts out of sync!");
   1219           case Intrinsic::x86_sse_sub_ss:
   1220           case Intrinsic::x86_sse2_sub_sd:
   1221             TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS,
   1222                                                         II->getName()), *II);
   1223             break;
   1224           case Intrinsic::x86_sse_mul_ss:
   1225           case Intrinsic::x86_sse2_mul_sd:
   1226             TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS,
   1227                                                          II->getName()), *II);
   1228             break;
   1229           }
   1230 
   1231           Instruction *New =
   1232             InsertElementInst::Create(
   1233               UndefValue::get(II->getType()), TmpV,
   1234               ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false),
   1235                                       II->getName());
   1236           InsertNewInstWith(New, *II);
   1237           return New;
   1238         }
   1239       }
   1240 
   1241       // Output elements are undefined if both are undefined.  Consider things
   1242       // like undef&0.  The result is known zero, not undef.
   1243       UndefElts &= UndefElts2;
   1244       break;
   1245 
   1246     // SSE4A instructions leave the upper 64-bits of the 128-bit result
   1247     // in an undefined state.
   1248     case Intrinsic::x86_sse4a_extrq:
   1249     case Intrinsic::x86_sse4a_extrqi:
   1250     case Intrinsic::x86_sse4a_insertq:
   1251     case Intrinsic::x86_sse4a_insertqi:
   1252       UndefElts |= APInt::getHighBitsSet(VWidth, VWidth / 2);
   1253       break;
   1254     }
   1255     break;
   1256   }
   1257   }
   1258   return MadeChange ? I : nullptr;
   1259 }
   1260