Home | History | Annotate | Download | only in X86
      1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 /// This file implements a TargetTransformInfo analysis pass specific to the
     11 /// X86 target machine. It uses the target's detailed information to provide
     12 /// more precise answers to certain TTI queries, while letting the target
     13 /// independent and default TTI implementations handle the rest.
     14 ///
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "X86TargetTransformInfo.h"
     18 #include "llvm/Analysis/TargetTransformInfo.h"
     19 #include "llvm/CodeGen/BasicTTIImpl.h"
     20 #include "llvm/IR/IntrinsicInst.h"
     21 #include "llvm/Support/Debug.h"
     22 #include "llvm/Target/CostTable.h"
     23 #include "llvm/Target/TargetLowering.h"
     24 
     25 using namespace llvm;
     26 
     27 #define DEBUG_TYPE "x86tti"
     28 
     29 //===----------------------------------------------------------------------===//
     30 //
     31 // X86 cost model.
     32 //
     33 //===----------------------------------------------------------------------===//
     34 
     35 TargetTransformInfo::PopcntSupportKind
     36 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
     37   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
     38   // TODO: Currently the __builtin_popcount() implementation using SSE3
     39   //   instructions is inefficient. Once the problem is fixed, we should
     40   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
     41   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
     42 }
     43 
     44 unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
     45   if (Vector && !ST->hasSSE1())
     46     return 0;
     47 
     48   if (ST->is64Bit()) {
     49     if (Vector && ST->hasAVX512())
     50       return 32;
     51     return 16;
     52   }
     53   return 8;
     54 }
     55 
     56 unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) {
     57   if (Vector) {
     58     if (ST->hasAVX512()) return 512;
     59     if (ST->hasAVX()) return 256;
     60     if (ST->hasSSE1()) return 128;
     61     return 0;
     62   }
     63 
     64   if (ST->is64Bit())
     65     return 64;
     66 
     67   return 32;
     68 }
     69 
     70 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
     71   // If the loop will not be vectorized, don't interleave the loop.
     72   // Let regular unroll to unroll the loop, which saves the overflow
     73   // check and memory check cost.
     74   if (VF == 1)
     75     return 1;
     76 
     77   if (ST->isAtom())
     78     return 1;
     79 
     80   // Sandybridge and Haswell have multiple execution ports and pipelined
     81   // vector units.
     82   if (ST->hasAVX())
     83     return 4;
     84 
     85   return 2;
     86 }
     87 
     88 int X86TTIImpl::getArithmeticInstrCost(
     89     unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
     90     TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
     91     TTI::OperandValueProperties Opd2PropInfo) {
     92   // Legalize the type.
     93   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
     94 
     95   int ISD = TLI->InstructionOpcodeToISD(Opcode);
     96   assert(ISD && "Invalid opcode");
     97 
     98   if (ISD == ISD::SDIV &&
     99       Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
    100       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
    101     // On X86, vector signed division by constants power-of-two are
    102     // normally expanded to the sequence SRA + SRL + ADD + SRA.
    103     // The OperandValue properties many not be same as that of previous
    104     // operation;conservatively assume OP_None.
    105     int Cost = 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info,
    106                                           Op2Info, TargetTransformInfo::OP_None,
    107                                           TargetTransformInfo::OP_None);
    108     Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
    109                                    TargetTransformInfo::OP_None,
    110                                    TargetTransformInfo::OP_None);
    111     Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
    112                                    TargetTransformInfo::OP_None,
    113                                    TargetTransformInfo::OP_None);
    114 
    115     return Cost;
    116   }
    117 
    118   static const CostTblEntry AVX2UniformConstCostTable[] = {
    119     { ISD::SRA,  MVT::v4i64,   4 }, // 2 x psrad + shuffle.
    120 
    121     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
    122     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
    123     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
    124     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
    125   };
    126 
    127   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
    128       ST->hasAVX2()) {
    129     if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
    130                                             LT.second))
    131       return LT.first * Entry->Cost;
    132   }
    133 
    134   static const CostTblEntry AVX512CostTable[] = {
    135     { ISD::SHL,     MVT::v16i32,    1 },
    136     { ISD::SRL,     MVT::v16i32,    1 },
    137     { ISD::SRA,     MVT::v16i32,    1 },
    138     { ISD::SHL,     MVT::v8i64,    1 },
    139     { ISD::SRL,     MVT::v8i64,    1 },
    140     { ISD::SRA,     MVT::v8i64,    1 },
    141   };
    142 
    143   if (ST->hasAVX512()) {
    144     if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
    145       return LT.first * Entry->Cost;
    146   }
    147 
    148   static const CostTblEntry AVX2CostTable[] = {
    149     // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
    150     // customize them to detect the cases where shift amount is a scalar one.
    151     { ISD::SHL,     MVT::v4i32,    1 },
    152     { ISD::SRL,     MVT::v4i32,    1 },
    153     { ISD::SRA,     MVT::v4i32,    1 },
    154     { ISD::SHL,     MVT::v8i32,    1 },
    155     { ISD::SRL,     MVT::v8i32,    1 },
    156     { ISD::SRA,     MVT::v8i32,    1 },
    157     { ISD::SHL,     MVT::v2i64,    1 },
    158     { ISD::SRL,     MVT::v2i64,    1 },
    159     { ISD::SHL,     MVT::v4i64,    1 },
    160     { ISD::SRL,     MVT::v4i64,    1 },
    161   };
    162 
    163   // Look for AVX2 lowering tricks.
    164   if (ST->hasAVX2()) {
    165     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
    166         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
    167          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
    168       // On AVX2, a packed v16i16 shift left by a constant build_vector
    169       // is lowered into a vector multiply (vpmullw).
    170       return LT.first;
    171 
    172     if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
    173       return LT.first * Entry->Cost;
    174   }
    175 
    176   static const CostTblEntry XOPCostTable[] = {
    177     // 128bit shifts take 1cy, but right shifts require negation beforehand.
    178     { ISD::SHL,     MVT::v16i8,    1 },
    179     { ISD::SRL,     MVT::v16i8,    2 },
    180     { ISD::SRA,     MVT::v16i8,    2 },
    181     { ISD::SHL,     MVT::v8i16,    1 },
    182     { ISD::SRL,     MVT::v8i16,    2 },
    183     { ISD::SRA,     MVT::v8i16,    2 },
    184     { ISD::SHL,     MVT::v4i32,    1 },
    185     { ISD::SRL,     MVT::v4i32,    2 },
    186     { ISD::SRA,     MVT::v4i32,    2 },
    187     { ISD::SHL,     MVT::v2i64,    1 },
    188     { ISD::SRL,     MVT::v2i64,    2 },
    189     { ISD::SRA,     MVT::v2i64,    2 },
    190     // 256bit shifts require splitting if AVX2 didn't catch them above.
    191     { ISD::SHL,     MVT::v32i8,    2 },
    192     { ISD::SRL,     MVT::v32i8,    4 },
    193     { ISD::SRA,     MVT::v32i8,    4 },
    194     { ISD::SHL,     MVT::v16i16,   2 },
    195     { ISD::SRL,     MVT::v16i16,   4 },
    196     { ISD::SRA,     MVT::v16i16,   4 },
    197     { ISD::SHL,     MVT::v8i32,    2 },
    198     { ISD::SRL,     MVT::v8i32,    4 },
    199     { ISD::SRA,     MVT::v8i32,    4 },
    200     { ISD::SHL,     MVT::v4i64,    2 },
    201     { ISD::SRL,     MVT::v4i64,    4 },
    202     { ISD::SRA,     MVT::v4i64,    4 },
    203   };
    204 
    205   // Look for XOP lowering tricks.
    206   if (ST->hasXOP()) {
    207     if (const auto *Entry = CostTableLookup(XOPCostTable, ISD, LT.second))
    208       return LT.first * Entry->Cost;
    209   }
    210 
    211   static const CostTblEntry AVX2CustomCostTable[] = {
    212     { ISD::SHL,  MVT::v32i8,      11 }, // vpblendvb sequence.
    213     { ISD::SHL,  MVT::v16i16,     10 }, // extend/vpsrlvd/pack sequence.
    214 
    215     { ISD::SRL,  MVT::v32i8,      11 }, // vpblendvb sequence.
    216     { ISD::SRL,  MVT::v16i16,     10 }, // extend/vpsrlvd/pack sequence.
    217 
    218     { ISD::SRA,  MVT::v32i8,      24 }, // vpblendvb sequence.
    219     { ISD::SRA,  MVT::v16i16,     10 }, // extend/vpsravd/pack sequence.
    220     { ISD::SRA,  MVT::v2i64,       4 }, // srl/xor/sub sequence.
    221     { ISD::SRA,  MVT::v4i64,       4 }, // srl/xor/sub sequence.
    222 
    223     // Vectorizing division is a bad idea. See the SSE2 table for more comments.
    224     { ISD::SDIV,  MVT::v32i8,  32*20 },
    225     { ISD::SDIV,  MVT::v16i16, 16*20 },
    226     { ISD::SDIV,  MVT::v8i32,  8*20 },
    227     { ISD::SDIV,  MVT::v4i64,  4*20 },
    228     { ISD::UDIV,  MVT::v32i8,  32*20 },
    229     { ISD::UDIV,  MVT::v16i16, 16*20 },
    230     { ISD::UDIV,  MVT::v8i32,  8*20 },
    231     { ISD::UDIV,  MVT::v4i64,  4*20 },
    232   };
    233 
    234   // Look for AVX2 lowering tricks for custom cases.
    235   if (ST->hasAVX2()) {
    236     if (const auto *Entry = CostTableLookup(AVX2CustomCostTable, ISD,
    237                                             LT.second))
    238       return LT.first * Entry->Cost;
    239   }
    240 
    241   static const CostTblEntry
    242   SSE2UniformConstCostTable[] = {
    243     // We don't correctly identify costs of casts because they are marked as
    244     // custom.
    245     // Constant splats are cheaper for the following instructions.
    246     { ISD::SHL,  MVT::v16i8,  1 }, // psllw.
    247     { ISD::SHL,  MVT::v32i8,  2 }, // psllw.
    248     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
    249     { ISD::SHL,  MVT::v16i16, 2 }, // psllw.
    250     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
    251     { ISD::SHL,  MVT::v8i32,  2 }, // pslld
    252     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
    253     { ISD::SHL,  MVT::v4i64,  2 }, // psllq.
    254 
    255     { ISD::SRL,  MVT::v16i8,  1 }, // psrlw.
    256     { ISD::SRL,  MVT::v32i8,  2 }, // psrlw.
    257     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
    258     { ISD::SRL,  MVT::v16i16, 2 }, // psrlw.
    259     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
    260     { ISD::SRL,  MVT::v8i32,  2 }, // psrld.
    261     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
    262     { ISD::SRL,  MVT::v4i64,  2 }, // psrlq.
    263 
    264     { ISD::SRA,  MVT::v16i8,  4 }, // psrlw, pand, pxor, psubb.
    265     { ISD::SRA,  MVT::v32i8,  8 }, // psrlw, pand, pxor, psubb.
    266     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
    267     { ISD::SRA,  MVT::v16i16, 2 }, // psraw.
    268     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
    269     { ISD::SRA,  MVT::v8i32,  2 }, // psrad.
    270     { ISD::SRA,  MVT::v2i64,  4 }, // 2 x psrad + shuffle.
    271     { ISD::SRA,  MVT::v4i64,  8 }, // 2 x psrad + shuffle.
    272 
    273     { ISD::SDIV, MVT::v8i16,  6 }, // pmulhw sequence
    274     { ISD::UDIV, MVT::v8i16,  6 }, // pmulhuw sequence
    275     { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
    276     { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
    277   };
    278 
    279   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
    280       ST->hasSSE2()) {
    281     // pmuldq sequence.
    282     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
    283       return LT.first * 15;
    284 
    285     if (const auto *Entry = CostTableLookup(SSE2UniformConstCostTable, ISD,
    286                                             LT.second))
    287       return LT.first * Entry->Cost;
    288   }
    289 
    290   if (ISD == ISD::SHL &&
    291       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
    292     MVT VT = LT.second;
    293     // Vector shift left by non uniform constant can be lowered
    294     // into vector multiply (pmullw/pmulld).
    295     if ((VT == MVT::v8i16 && ST->hasSSE2()) ||
    296         (VT == MVT::v4i32 && ST->hasSSE41()))
    297       return LT.first;
    298 
    299     // v16i16 and v8i32 shifts by non-uniform constants are lowered into a
    300     // sequence of extract + two vector multiply + insert.
    301     if ((VT == MVT::v8i32 || VT == MVT::v16i16) &&
    302        (ST->hasAVX() && !ST->hasAVX2()))
    303       ISD = ISD::MUL;
    304 
    305     // A vector shift left by non uniform constant is converted
    306     // into a vector multiply; the new multiply is eventually
    307     // lowered into a sequence of shuffles and 2 x pmuludq.
    308     if (VT == MVT::v4i32 && ST->hasSSE2())
    309       ISD = ISD::MUL;
    310   }
    311 
    312   static const CostTblEntry SSE2CostTable[] = {
    313     // We don't correctly identify costs of casts because they are marked as
    314     // custom.
    315     // For some cases, where the shift amount is a scalar we would be able
    316     // to generate better code. Unfortunately, when this is the case the value
    317     // (the splat) will get hoisted out of the loop, thereby making it invisible
    318     // to ISel. The cost model must return worst case assumptions because it is
    319     // used for vectorization and we don't want to make vectorized code worse
    320     // than scalar code.
    321     { ISD::SHL,  MVT::v16i8,    26 }, // cmpgtb sequence.
    322     { ISD::SHL,  MVT::v32i8,  2*26 }, // cmpgtb sequence.
    323     { ISD::SHL,  MVT::v8i16,    32 }, // cmpgtb sequence.
    324     { ISD::SHL,  MVT::v16i16, 2*32 }, // cmpgtb sequence.
    325     { ISD::SHL,  MVT::v4i32,   2*5 }, // We optimized this using mul.
    326     { ISD::SHL,  MVT::v8i32, 2*2*5 }, // We optimized this using mul.
    327     { ISD::SHL,  MVT::v2i64,     4 }, // splat+shuffle sequence.
    328     { ISD::SHL,  MVT::v4i64,   2*4 }, // splat+shuffle sequence.
    329 
    330     { ISD::SRL,  MVT::v16i8,    26 }, // cmpgtb sequence.
    331     { ISD::SRL,  MVT::v32i8,  2*26 }, // cmpgtb sequence.
    332     { ISD::SRL,  MVT::v8i16,    32 }, // cmpgtb sequence.
    333     { ISD::SRL,  MVT::v16i16, 2*32 }, // cmpgtb sequence.
    334     { ISD::SRL,  MVT::v4i32,    16 }, // Shift each lane + blend.
    335     { ISD::SRL,  MVT::v8i32,  2*16 }, // Shift each lane + blend.
    336     { ISD::SRL,  MVT::v2i64,     4 }, // splat+shuffle sequence.
    337     { ISD::SRL,  MVT::v4i64,   2*4 }, // splat+shuffle sequence.
    338 
    339     { ISD::SRA,  MVT::v16i8,    54 }, // unpacked cmpgtb sequence.
    340     { ISD::SRA,  MVT::v32i8,  2*54 }, // unpacked cmpgtb sequence.
    341     { ISD::SRA,  MVT::v8i16,    32 }, // cmpgtb sequence.
    342     { ISD::SRA,  MVT::v16i16, 2*32 }, // cmpgtb sequence.
    343     { ISD::SRA,  MVT::v4i32,    16 }, // Shift each lane + blend.
    344     { ISD::SRA,  MVT::v8i32,  2*16 }, // Shift each lane + blend.
    345     { ISD::SRA,  MVT::v2i64,    12 }, // srl/xor/sub sequence.
    346     { ISD::SRA,  MVT::v4i64,  2*12 }, // srl/xor/sub sequence.
    347 
    348     // It is not a good idea to vectorize division. We have to scalarize it and
    349     // in the process we will often end up having to spilling regular
    350     // registers. The overhead of division is going to dominate most kernels
    351     // anyways so try hard to prevent vectorization of division - it is
    352     // generally a bad idea. Assume somewhat arbitrarily that we have to be able
    353     // to hide "20 cycles" for each lane.
    354     { ISD::SDIV,  MVT::v16i8,  16*20 },
    355     { ISD::SDIV,  MVT::v8i16,  8*20 },
    356     { ISD::SDIV,  MVT::v4i32,  4*20 },
    357     { ISD::SDIV,  MVT::v2i64,  2*20 },
    358     { ISD::UDIV,  MVT::v16i8,  16*20 },
    359     { ISD::UDIV,  MVT::v8i16,  8*20 },
    360     { ISD::UDIV,  MVT::v4i32,  4*20 },
    361     { ISD::UDIV,  MVT::v2i64,  2*20 },
    362   };
    363 
    364   if (ST->hasSSE2()) {
    365     if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
    366       return LT.first * Entry->Cost;
    367   }
    368 
    369   static const CostTblEntry AVX1CostTable[] = {
    370     // We don't have to scalarize unsupported ops. We can issue two half-sized
    371     // operations and we only need to extract the upper YMM half.
    372     // Two ops + 1 extract + 1 insert = 4.
    373     { ISD::MUL,     MVT::v16i16,   4 },
    374     { ISD::MUL,     MVT::v8i32,    4 },
    375     { ISD::SUB,     MVT::v8i32,    4 },
    376     { ISD::ADD,     MVT::v8i32,    4 },
    377     { ISD::SUB,     MVT::v4i64,    4 },
    378     { ISD::ADD,     MVT::v4i64,    4 },
    379     // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
    380     // are lowered as a series of long multiplies(3), shifts(4) and adds(2)
    381     // Because we believe v4i64 to be a legal type, we must also include the
    382     // split factor of two in the cost table. Therefore, the cost here is 18
    383     // instead of 9.
    384     { ISD::MUL,     MVT::v4i64,    18 },
    385   };
    386 
    387   // Look for AVX1 lowering tricks.
    388   if (ST->hasAVX() && !ST->hasAVX2()) {
    389     MVT VT = LT.second;
    390 
    391     if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, VT))
    392       return LT.first * Entry->Cost;
    393   }
    394 
    395   // Custom lowering of vectors.
    396   static const CostTblEntry CustomLowered[] = {
    397     // A v2i64/v4i64 and multiply is custom lowered as a series of long
    398     // multiplies(3), shifts(4) and adds(2).
    399     { ISD::MUL,     MVT::v2i64,    9 },
    400     { ISD::MUL,     MVT::v4i64,    9 },
    401   };
    402   if (const auto *Entry = CostTableLookup(CustomLowered, ISD, LT.second))
    403     return LT.first * Entry->Cost;
    404 
    405   // Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle,
    406   // 2x pmuludq, 2x shuffle.
    407   if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() &&
    408       !ST->hasSSE41())
    409     return LT.first * 6;
    410 
    411   // Fallback to the default implementation.
    412   return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
    413 }
    414 
    415 int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
    416                                Type *SubTp) {
    417   // We only estimate the cost of reverse and alternate shuffles.
    418   if (Kind != TTI::SK_Reverse && Kind != TTI::SK_Alternate)
    419     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
    420 
    421   if (Kind == TTI::SK_Reverse) {
    422     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
    423     int Cost = 1;
    424     if (LT.second.getSizeInBits() > 128)
    425       Cost = 3; // Extract + insert + copy.
    426 
    427     // Multiple by the number of parts.
    428     return Cost * LT.first;
    429   }
    430 
    431   if (Kind == TTI::SK_Alternate) {
    432     // 64-bit packed float vectors (v2f32) are widened to type v4f32.
    433     // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
    434     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
    435 
    436     // The backend knows how to generate a single VEX.256 version of
    437     // instruction VPBLENDW if the target supports AVX2.
    438     if (ST->hasAVX2() && LT.second == MVT::v16i16)
    439       return LT.first;
    440 
    441     static const CostTblEntry AVXAltShuffleTbl[] = {
    442       {ISD::VECTOR_SHUFFLE, MVT::v4i64, 1},  // vblendpd
    443       {ISD::VECTOR_SHUFFLE, MVT::v4f64, 1},  // vblendpd
    444 
    445       {ISD::VECTOR_SHUFFLE, MVT::v8i32, 1},  // vblendps
    446       {ISD::VECTOR_SHUFFLE, MVT::v8f32, 1},  // vblendps
    447 
    448       // This shuffle is custom lowered into a sequence of:
    449       //  2x  vextractf128 , 2x vpblendw , 1x vinsertf128
    450       {ISD::VECTOR_SHUFFLE, MVT::v16i16, 5},
    451 
    452       // This shuffle is custom lowered into a long sequence of:
    453       //  2x vextractf128 , 4x vpshufb , 2x vpor ,  1x vinsertf128
    454       {ISD::VECTOR_SHUFFLE, MVT::v32i8, 9}
    455     };
    456 
    457     if (ST->hasAVX())
    458       if (const auto *Entry = CostTableLookup(AVXAltShuffleTbl,
    459                                               ISD::VECTOR_SHUFFLE, LT.second))
    460         return LT.first * Entry->Cost;
    461 
    462     static const CostTblEntry SSE41AltShuffleTbl[] = {
    463       // These are lowered into movsd.
    464       {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
    465       {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
    466 
    467       // packed float vectors with four elements are lowered into BLENDI dag
    468       // nodes. A v4i32/v4f32 BLENDI generates a single 'blendps'/'blendpd'.
    469       {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
    470       {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
    471 
    472       // This shuffle generates a single pshufw.
    473       {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
    474 
    475       // There is no instruction that matches a v16i8 alternate shuffle.
    476       // The backend will expand it into the sequence 'pshufb + pshufb + or'.
    477       {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3}
    478     };
    479 
    480     if (ST->hasSSE41())
    481       if (const auto *Entry = CostTableLookup(SSE41AltShuffleTbl, ISD::VECTOR_SHUFFLE,
    482                                               LT.second))
    483         return LT.first * Entry->Cost;
    484 
    485     static const CostTblEntry SSSE3AltShuffleTbl[] = {
    486       {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},  // movsd
    487       {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},  // movsd
    488 
    489       // SSE3 doesn't have 'blendps'. The following shuffles are expanded into
    490       // the sequence 'shufps + pshufd'
    491       {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
    492       {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
    493 
    494       {ISD::VECTOR_SHUFFLE, MVT::v8i16, 3}, // pshufb + pshufb + or
    495       {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3}  // pshufb + pshufb + or
    496     };
    497 
    498     if (ST->hasSSSE3())
    499       if (const auto *Entry = CostTableLookup(SSSE3AltShuffleTbl,
    500                                               ISD::VECTOR_SHUFFLE, LT.second))
    501         return LT.first * Entry->Cost;
    502 
    503     static const CostTblEntry SSEAltShuffleTbl[] = {
    504       {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},  // movsd
    505       {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},  // movsd
    506 
    507       {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, // shufps + pshufd
    508       {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, // shufps + pshufd
    509 
    510       // This is expanded into a long sequence of four extract + four insert.
    511       {ISD::VECTOR_SHUFFLE, MVT::v8i16, 8}, // 4 x pextrw + 4 pinsrw.
    512 
    513       // 8 x (pinsrw + pextrw + and + movb + movzb + or)
    514       {ISD::VECTOR_SHUFFLE, MVT::v16i8, 48}
    515     };
    516 
    517     // Fall-back (SSE3 and SSE2).
    518     if (const auto *Entry = CostTableLookup(SSEAltShuffleTbl,
    519                                             ISD::VECTOR_SHUFFLE, LT.second))
    520       return LT.first * Entry->Cost;
    521     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
    522   }
    523 
    524   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
    525 }
    526 
    527 int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
    528   int ISD = TLI->InstructionOpcodeToISD(Opcode);
    529   assert(ISD && "Invalid opcode");
    530 
    531   // FIXME: Need a better design of the cost table to handle non-simple types of
    532   // potential massive combinations (elem_num x src_type x dst_type).
    533 
    534   static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
    535     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
    536     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
    537     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
    538     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
    539     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
    540     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
    541 
    542     { ISD::FP_TO_UINT,  MVT::v2i64, MVT::v2f64, 1 },
    543     { ISD::FP_TO_UINT,  MVT::v4i64, MVT::v4f64, 1 },
    544     { ISD::FP_TO_UINT,  MVT::v8i64, MVT::v8f64, 1 },
    545     { ISD::FP_TO_UINT,  MVT::v2i64, MVT::v2f32, 1 },
    546     { ISD::FP_TO_UINT,  MVT::v4i64, MVT::v4f32, 1 },
    547     { ISD::FP_TO_UINT,  MVT::v8i64, MVT::v8f32, 1 },
    548   };
    549 
    550   static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
    551     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
    552     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
    553     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
    554 
    555     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 1 },
    556     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 1 },
    557     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  1 },
    558     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 },
    559 
    560     // v16i1 -> v16i32 - load + broadcast
    561     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
    562     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
    563 
    564     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
    565     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
    566     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
    567     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
    568     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
    569     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
    570     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
    571     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
    572 
    573     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
    574     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
    575     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
    576     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
    577     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
    578     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
    579     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
    580     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
    581 
    582     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
    583     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
    584     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
    585     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
    586     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
    587     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
    588     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
    589     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
    590     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
    591     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
    592     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i8,   2 },
    593     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
    594     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i8,   2 },
    595     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i16,  2 },
    596     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
    597     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i8,   2 },
    598     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i16,  5 },
    599     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  2 },
    600     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
    601     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64, 12 },
    602     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64, 26 },
    603 
    604     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f32,  1 },
    605     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  1 },
    606     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  1 },
    607     { ISD::FP_TO_UINT,  MVT::v16i32, MVT::v16f32, 1 },
    608   };
    609 
    610   static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
    611     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
    612     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
    613     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
    614     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
    615     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   3 },
    616     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   3 },
    617     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
    618     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
    619     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
    620     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
    621     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   3 },
    622     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   3 },
    623     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
    624     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
    625     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
    626     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
    627 
    628     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i64,  2 },
    629     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i64,  2 },
    630     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
    631     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  2 },
    632     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
    633     { ISD::TRUNCATE,    MVT::v8i32,  MVT::v8i64,  4 },
    634 
    635     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
    636     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
    637 
    638     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
    639   };
    640 
    641   static const TypeConversionCostTblEntry AVXConversionTbl[] = {
    642     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
    643     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
    644     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,  7 },
    645     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,  4 },
    646     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  7 },
    647     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
    648     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
    649     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
    650     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,  6 },
    651     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,  4 },
    652     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,  6 },
    653     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
    654     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 6 },
    655     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
    656     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
    657     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
    658 
    659     { ISD::TRUNCATE,    MVT::v4i8,  MVT::v4i64,  4 },
    660     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i64,  4 },
    661     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64,  4 },
    662     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i32,  4 },
    663     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32,  5 },
    664     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 4 },
    665     { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64,  9 },
    666 
    667     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
    668     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
    669     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
    670     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
    671     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
    672     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
    673     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
    674     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
    675     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
    676     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
    677     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
    678     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
    679 
    680     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
    681     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
    682     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
    683     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
    684     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
    685     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
    686     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
    687     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
    688     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
    689     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
    690     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
    691     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
    692     // The generic code to compute the scalar overhead is currently broken.
    693     // Workaround this limitation by estimating the scalarization overhead
    694     // here. We have roughly 10 instructions per scalar element.
    695     // Multiply that by the vector width.
    696     // FIXME: remove that when PR19268 is fixed.
    697     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i64, 2*10 },
    698     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i64, 4*10 },
    699 
    700     { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 7 },
    701     { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f32, 1 },
    702     // This node is expanded into scalarized operations but BasicTTI is overly
    703     // optimistic estimating its cost.  It computes 3 per element (one
    704     // vector-extract, one scalar conversion and one vector-insert).  The
    705     // problem is that the inserts form a read-modify-write chain so latency
    706     // should be factored in too.  Inflating the cost per element by 1.
    707     { ISD::FP_TO_UINT,  MVT::v8i32, MVT::v8f32, 8*4 },
    708     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f64, 4*4 },
    709   };
    710 
    711   static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
    712     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
    713     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
    714     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
    715     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
    716     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
    717     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
    718     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
    719     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
    720     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
    721     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
    722     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
    723     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
    724     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
    725     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
    726     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
    727     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
    728     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
    729     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   2 },
    730 
    731     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 6 },
    732     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  3 },
    733     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  1 },
    734     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 30 },
    735     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  3 },
    736     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  1 },
    737     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 3 },
    738     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  1 },
    739     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  2 },
    740   };
    741 
    742   static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
    743     // These are somewhat magic numbers justified by looking at the output of
    744     // Intel's IACA, running some kernels and making sure when we take
    745     // legalization into account the throughput will be overestimated.
    746     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
    747     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
    748     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
    749     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
    750     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
    751     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
    752     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
    753     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
    754     // There are faster sequences for float conversions.
    755     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
    756     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
    757     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
    758     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
    759     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
    760     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
    761     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
    762     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
    763 
    764     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
    765     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
    766     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
    767     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  4 },
    768     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
    769     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  2 },
    770     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  9 },
    771     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  12 },
    772     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
    773     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
    774     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   2 },
    775     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   3 },
    776     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
    777     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  4 },
    778     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
    779     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   2 },
    780     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
    781     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   6 },
    782 
    783     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 10 },
    784     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
    785     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  3 },
    786     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 7 },
    787     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  4 },
    788     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  3 },
    789     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 3 },
    790     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  2 },
    791     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  4 },
    792   };
    793 
    794   std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
    795   std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
    796 
    797   if (ST->hasSSE2() && !ST->hasAVX()) {
    798     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
    799                                                    LTDest.second, LTSrc.second))
    800       return LTSrc.first * Entry->Cost;
    801   }
    802 
    803   EVT SrcTy = TLI->getValueType(DL, Src);
    804   EVT DstTy = TLI->getValueType(DL, Dst);
    805 
    806   // The function getSimpleVT only handles simple value types.
    807   if (!SrcTy.isSimple() || !DstTy.isSimple())
    808     return BaseT::getCastInstrCost(Opcode, Dst, Src);
    809 
    810   if (ST->hasDQI())
    811     if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
    812                                                    DstTy.getSimpleVT(),
    813                                                    SrcTy.getSimpleVT()))
    814       return Entry->Cost;
    815 
    816   if (ST->hasAVX512())
    817     if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
    818                                                    DstTy.getSimpleVT(),
    819                                                    SrcTy.getSimpleVT()))
    820       return Entry->Cost;
    821 
    822   if (ST->hasAVX2()) {
    823     if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
    824                                                    DstTy.getSimpleVT(),
    825                                                    SrcTy.getSimpleVT()))
    826       return Entry->Cost;
    827   }
    828 
    829   if (ST->hasAVX()) {
    830     if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
    831                                                    DstTy.getSimpleVT(),
    832                                                    SrcTy.getSimpleVT()))
    833       return Entry->Cost;
    834   }
    835 
    836   if (ST->hasSSE41()) {
    837     if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
    838                                                    DstTy.getSimpleVT(),
    839                                                    SrcTy.getSimpleVT()))
    840       return Entry->Cost;
    841   }
    842 
    843   if (ST->hasSSE2()) {
    844     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
    845                                                    DstTy.getSimpleVT(),
    846                                                    SrcTy.getSimpleVT()))
    847       return Entry->Cost;
    848   }
    849 
    850   return BaseT::getCastInstrCost(Opcode, Dst, Src);
    851 }
    852 
    853 int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
    854   // Legalize the type.
    855   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
    856 
    857   MVT MTy = LT.second;
    858 
    859   int ISD = TLI->InstructionOpcodeToISD(Opcode);
    860   assert(ISD && "Invalid opcode");
    861 
    862   static const CostTblEntry SSE42CostTbl[] = {
    863     { ISD::SETCC,   MVT::v2f64,   1 },
    864     { ISD::SETCC,   MVT::v4f32,   1 },
    865     { ISD::SETCC,   MVT::v2i64,   1 },
    866     { ISD::SETCC,   MVT::v4i32,   1 },
    867     { ISD::SETCC,   MVT::v8i16,   1 },
    868     { ISD::SETCC,   MVT::v16i8,   1 },
    869   };
    870 
    871   static const CostTblEntry AVX1CostTbl[] = {
    872     { ISD::SETCC,   MVT::v4f64,   1 },
    873     { ISD::SETCC,   MVT::v8f32,   1 },
    874     // AVX1 does not support 8-wide integer compare.
    875     { ISD::SETCC,   MVT::v4i64,   4 },
    876     { ISD::SETCC,   MVT::v8i32,   4 },
    877     { ISD::SETCC,   MVT::v16i16,  4 },
    878     { ISD::SETCC,   MVT::v32i8,   4 },
    879   };
    880 
    881   static const CostTblEntry AVX2CostTbl[] = {
    882     { ISD::SETCC,   MVT::v4i64,   1 },
    883     { ISD::SETCC,   MVT::v8i32,   1 },
    884     { ISD::SETCC,   MVT::v16i16,  1 },
    885     { ISD::SETCC,   MVT::v32i8,   1 },
    886   };
    887 
    888   static const CostTblEntry AVX512CostTbl[] = {
    889     { ISD::SETCC,   MVT::v8i64,   1 },
    890     { ISD::SETCC,   MVT::v16i32,  1 },
    891     { ISD::SETCC,   MVT::v8f64,   1 },
    892     { ISD::SETCC,   MVT::v16f32,  1 },
    893   };
    894 
    895   if (ST->hasAVX512())
    896     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
    897       return LT.first * Entry->Cost;
    898 
    899   if (ST->hasAVX2())
    900     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
    901       return LT.first * Entry->Cost;
    902 
    903   if (ST->hasAVX())
    904     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
    905       return LT.first * Entry->Cost;
    906 
    907   if (ST->hasSSE42())
    908     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
    909       return LT.first * Entry->Cost;
    910 
    911   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
    912 }
    913 
    914 int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
    915   assert(Val->isVectorTy() && "This must be a vector type");
    916 
    917   if (Index != -1U) {
    918     // Legalize the type.
    919     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
    920 
    921     // This type is legalized to a scalar type.
    922     if (!LT.second.isVector())
    923       return 0;
    924 
    925     // The type may be split. Normalize the index to the new type.
    926     unsigned Width = LT.second.getVectorNumElements();
    927     Index = Index % Width;
    928 
    929     // Floating point scalars are already located in index #0.
    930     if (Val->getScalarType()->isFloatingPointTy() && Index == 0)
    931       return 0;
    932   }
    933 
    934   return BaseT::getVectorInstrCost(Opcode, Val, Index);
    935 }
    936 
    937 int X86TTIImpl::getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
    938   assert (Ty->isVectorTy() && "Can only scalarize vectors");
    939   int Cost = 0;
    940 
    941   for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
    942     if (Insert)
    943       Cost += getVectorInstrCost(Instruction::InsertElement, Ty, i);
    944     if (Extract)
    945       Cost += getVectorInstrCost(Instruction::ExtractElement, Ty, i);
    946   }
    947 
    948   return Cost;
    949 }
    950 
    951 int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
    952                                 unsigned AddressSpace) {
    953   // Handle non-power-of-two vectors such as <3 x float>
    954   if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
    955     unsigned NumElem = VTy->getVectorNumElements();
    956 
    957     // Handle a few common cases:
    958     // <3 x float>
    959     if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
    960       // Cost = 64 bit store + extract + 32 bit store.
    961       return 3;
    962 
    963     // <3 x double>
    964     if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
    965       // Cost = 128 bit store + unpack + 64 bit store.
    966       return 3;
    967 
    968     // Assume that all other non-power-of-two numbers are scalarized.
    969     if (!isPowerOf2_32(NumElem)) {
    970       int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
    971                                         AddressSpace);
    972       int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
    973                                                Opcode == Instruction::Store);
    974       return NumElem * Cost + SplitCost;
    975     }
    976   }
    977 
    978   // Legalize the type.
    979   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
    980   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
    981          "Invalid Opcode");
    982 
    983   // Each load/store unit costs 1.
    984   int Cost = LT.first * 1;
    985 
    986   // On Sandybridge 256bit load/stores are double pumped
    987   // (but not on Haswell).
    988   if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2())
    989     Cost*=2;
    990 
    991   return Cost;
    992 }
    993 
    994 int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
    995                                       unsigned Alignment,
    996                                       unsigned AddressSpace) {
    997   VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
    998   if (!SrcVTy)
    999     // To calculate scalar take the regular cost, without mask
   1000     return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
   1001 
   1002   unsigned NumElem = SrcVTy->getVectorNumElements();
   1003   VectorType *MaskTy =
   1004     VectorType::get(Type::getInt8Ty(getGlobalContext()), NumElem);
   1005   if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy)) ||
   1006       (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy)) ||
   1007       !isPowerOf2_32(NumElem)) {
   1008     // Scalarization
   1009     int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
   1010     int ScalarCompareCost = getCmpSelInstrCost(
   1011         Instruction::ICmp, Type::getInt8Ty(getGlobalContext()), nullptr);
   1012     int BranchCost = getCFInstrCost(Instruction::Br);
   1013     int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
   1014 
   1015     int ValueSplitCost = getScalarizationOverhead(
   1016         SrcVTy, Opcode == Instruction::Load, Opcode == Instruction::Store);
   1017     int MemopCost =
   1018         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
   1019                                          Alignment, AddressSpace);
   1020     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
   1021   }
   1022 
   1023   // Legalize the type.
   1024   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
   1025   auto VT = TLI->getValueType(DL, SrcVTy);
   1026   int Cost = 0;
   1027   if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
   1028       LT.second.getVectorNumElements() == NumElem)
   1029     // Promotion requires expand/truncate for data and a shuffle for mask.
   1030     Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, nullptr) +
   1031             getShuffleCost(TTI::SK_Alternate, MaskTy, 0, nullptr);
   1032 
   1033   else if (LT.second.getVectorNumElements() > NumElem) {
   1034     VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
   1035                                             LT.second.getVectorNumElements());
   1036     // Expanding requires fill mask with zeroes
   1037     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
   1038   }
   1039   if (!ST->hasAVX512())
   1040     return Cost + LT.first*4; // Each maskmov costs 4
   1041 
   1042   // AVX-512 masked load/store is cheapper
   1043   return Cost+LT.first;
   1044 }
   1045 
   1046 int X86TTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) {
   1047   // Address computations in vectorized code with non-consecutive addresses will
   1048   // likely result in more instructions compared to scalar code where the
   1049   // computation can more often be merged into the index mode. The resulting
   1050   // extra micro-ops can significantly decrease throughput.
   1051   unsigned NumVectorInstToHideOverhead = 10;
   1052 
   1053   if (Ty->isVectorTy() && IsComplex)
   1054     return NumVectorInstToHideOverhead;
   1055 
   1056   return BaseT::getAddressComputationCost(Ty, IsComplex);
   1057 }
   1058 
   1059 int X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
   1060                                  bool IsPairwise) {
   1061 
   1062   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
   1063 
   1064   MVT MTy = LT.second;
   1065 
   1066   int ISD = TLI->InstructionOpcodeToISD(Opcode);
   1067   assert(ISD && "Invalid opcode");
   1068 
   1069   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
   1070   // and make it as the cost.
   1071 
   1072   static const CostTblEntry SSE42CostTblPairWise[] = {
   1073     { ISD::FADD,  MVT::v2f64,   2 },
   1074     { ISD::FADD,  MVT::v4f32,   4 },
   1075     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
   1076     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
   1077     { ISD::ADD,   MVT::v8i16,   5 },
   1078   };
   1079 
   1080   static const CostTblEntry AVX1CostTblPairWise[] = {
   1081     { ISD::FADD,  MVT::v4f32,   4 },
   1082     { ISD::FADD,  MVT::v4f64,   5 },
   1083     { ISD::FADD,  MVT::v8f32,   7 },
   1084     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
   1085     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
   1086     { ISD::ADD,   MVT::v4i64,   5 },      // The data reported by the IACA tool is "4.8".
   1087     { ISD::ADD,   MVT::v8i16,   5 },
   1088     { ISD::ADD,   MVT::v8i32,   5 },
   1089   };
   1090 
   1091   static const CostTblEntry SSE42CostTblNoPairWise[] = {
   1092     { ISD::FADD,  MVT::v2f64,   2 },
   1093     { ISD::FADD,  MVT::v4f32,   4 },
   1094     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
   1095     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
   1096     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
   1097   };
   1098 
   1099   static const CostTblEntry AVX1CostTblNoPairWise[] = {
   1100     { ISD::FADD,  MVT::v4f32,   3 },
   1101     { ISD::FADD,  MVT::v4f64,   3 },
   1102     { ISD::FADD,  MVT::v8f32,   4 },
   1103     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
   1104     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "2.8".
   1105     { ISD::ADD,   MVT::v4i64,   3 },
   1106     { ISD::ADD,   MVT::v8i16,   4 },
   1107     { ISD::ADD,   MVT::v8i32,   5 },
   1108   };
   1109 
   1110   if (IsPairwise) {
   1111     if (ST->hasAVX())
   1112       if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
   1113         return LT.first * Entry->Cost;
   1114 
   1115     if (ST->hasSSE42())
   1116       if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
   1117         return LT.first * Entry->Cost;
   1118   } else {
   1119     if (ST->hasAVX())
   1120       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
   1121         return LT.first * Entry->Cost;
   1122 
   1123     if (ST->hasSSE42())
   1124       if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
   1125         return LT.first * Entry->Cost;
   1126   }
   1127 
   1128   return BaseT::getReductionCost(Opcode, ValTy, IsPairwise);
   1129 }
   1130 
   1131 /// \brief Calculate the cost of materializing a 64-bit value. This helper
   1132 /// method might only calculate a fraction of a larger immediate. Therefore it
   1133 /// is valid to return a cost of ZERO.
   1134 int X86TTIImpl::getIntImmCost(int64_t Val) {
   1135   if (Val == 0)
   1136     return TTI::TCC_Free;
   1137 
   1138   if (isInt<32>(Val))
   1139     return TTI::TCC_Basic;
   1140 
   1141   return 2 * TTI::TCC_Basic;
   1142 }
   1143 
   1144 int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
   1145   assert(Ty->isIntegerTy());
   1146 
   1147   unsigned BitSize = Ty->getPrimitiveSizeInBits();
   1148   if (BitSize == 0)
   1149     return ~0U;
   1150 
   1151   // Never hoist constants larger than 128bit, because this might lead to
   1152   // incorrect code generation or assertions in codegen.
   1153   // Fixme: Create a cost model for types larger than i128 once the codegen
   1154   // issues have been fixed.
   1155   if (BitSize > 128)
   1156     return TTI::TCC_Free;
   1157 
   1158   if (Imm == 0)
   1159     return TTI::TCC_Free;
   1160 
   1161   // Sign-extend all constants to a multiple of 64-bit.
   1162   APInt ImmVal = Imm;
   1163   if (BitSize & 0x3f)
   1164     ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
   1165 
   1166   // Split the constant into 64-bit chunks and calculate the cost for each
   1167   // chunk.
   1168   int Cost = 0;
   1169   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
   1170     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
   1171     int64_t Val = Tmp.getSExtValue();
   1172     Cost += getIntImmCost(Val);
   1173   }
   1174   // We need at least one instruction to materialze the constant.
   1175   return std::max(1, Cost);
   1176 }
   1177 
   1178 int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
   1179                               Type *Ty) {
   1180   assert(Ty->isIntegerTy());
   1181 
   1182   unsigned BitSize = Ty->getPrimitiveSizeInBits();
   1183   // There is no cost model for constants with a bit size of 0. Return TCC_Free
   1184   // here, so that constant hoisting will ignore this constant.
   1185   if (BitSize == 0)
   1186     return TTI::TCC_Free;
   1187 
   1188   unsigned ImmIdx = ~0U;
   1189   switch (Opcode) {
   1190   default:
   1191     return TTI::TCC_Free;
   1192   case Instruction::GetElementPtr:
   1193     // Always hoist the base address of a GetElementPtr. This prevents the
   1194     // creation of new constants for every base constant that gets constant
   1195     // folded with the offset.
   1196     if (Idx == 0)
   1197       return 2 * TTI::TCC_Basic;
   1198     return TTI::TCC_Free;
   1199   case Instruction::Store:
   1200     ImmIdx = 0;
   1201     break;
   1202   case Instruction::ICmp:
   1203     // This is an imperfect hack to prevent constant hoisting of
   1204     // compares that might be trying to check if a 64-bit value fits in
   1205     // 32-bits. The backend can optimize these cases using a right shift by 32.
   1206     // Ideally we would check the compare predicate here. There also other
   1207     // similar immediates the backend can use shifts for.
   1208     if (Idx == 1 && Imm.getBitWidth() == 64) {
   1209       uint64_t ImmVal = Imm.getZExtValue();
   1210       if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
   1211         return TTI::TCC_Free;
   1212     }
   1213     ImmIdx = 1;
   1214     break;
   1215   case Instruction::And:
   1216     // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
   1217     // by using a 32-bit operation with implicit zero extension. Detect such
   1218     // immediates here as the normal path expects bit 31 to be sign extended.
   1219     if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
   1220       return TTI::TCC_Free;
   1221     // Fallthrough
   1222   case Instruction::Add:
   1223   case Instruction::Sub:
   1224   case Instruction::Mul:
   1225   case Instruction::UDiv:
   1226   case Instruction::SDiv:
   1227   case Instruction::URem:
   1228   case Instruction::SRem:
   1229   case Instruction::Or:
   1230   case Instruction::Xor:
   1231     ImmIdx = 1;
   1232     break;
   1233   // Always return TCC_Free for the shift value of a shift instruction.
   1234   case Instruction::Shl:
   1235   case Instruction::LShr:
   1236   case Instruction::AShr:
   1237     if (Idx == 1)
   1238       return TTI::TCC_Free;
   1239     break;
   1240   case Instruction::Trunc:
   1241   case Instruction::ZExt:
   1242   case Instruction::SExt:
   1243   case Instruction::IntToPtr:
   1244   case Instruction::PtrToInt:
   1245   case Instruction::BitCast:
   1246   case Instruction::PHI:
   1247   case Instruction::Call:
   1248   case Instruction::Select:
   1249   case Instruction::Ret:
   1250   case Instruction::Load:
   1251     break;
   1252   }
   1253 
   1254   if (Idx == ImmIdx) {
   1255     int NumConstants = (BitSize + 63) / 64;
   1256     int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
   1257     return (Cost <= NumConstants * TTI::TCC_Basic)
   1258                ? static_cast<int>(TTI::TCC_Free)
   1259                : Cost;
   1260   }
   1261 
   1262   return X86TTIImpl::getIntImmCost(Imm, Ty);
   1263 }
   1264 
   1265 int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
   1266                               Type *Ty) {
   1267   assert(Ty->isIntegerTy());
   1268 
   1269   unsigned BitSize = Ty->getPrimitiveSizeInBits();
   1270   // There is no cost model for constants with a bit size of 0. Return TCC_Free
   1271   // here, so that constant hoisting will ignore this constant.
   1272   if (BitSize == 0)
   1273     return TTI::TCC_Free;
   1274 
   1275   switch (IID) {
   1276   default:
   1277     return TTI::TCC_Free;
   1278   case Intrinsic::sadd_with_overflow:
   1279   case Intrinsic::uadd_with_overflow:
   1280   case Intrinsic::ssub_with_overflow:
   1281   case Intrinsic::usub_with_overflow:
   1282   case Intrinsic::smul_with_overflow:
   1283   case Intrinsic::umul_with_overflow:
   1284     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
   1285       return TTI::TCC_Free;
   1286     break;
   1287   case Intrinsic::experimental_stackmap:
   1288     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
   1289       return TTI::TCC_Free;
   1290     break;
   1291   case Intrinsic::experimental_patchpoint_void:
   1292   case Intrinsic::experimental_patchpoint_i64:
   1293     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
   1294       return TTI::TCC_Free;
   1295     break;
   1296   }
   1297   return X86TTIImpl::getIntImmCost(Imm, Ty);
   1298 }
   1299 
   1300 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy) {
   1301   Type *ScalarTy = DataTy->getScalarType();
   1302   int DataWidth = isa<PointerType>(ScalarTy) ?
   1303     DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
   1304 
   1305   return (DataWidth >= 32 && ST->hasAVX2());
   1306 }
   1307 
   1308 bool X86TTIImpl::isLegalMaskedStore(Type *DataType) {
   1309   return isLegalMaskedLoad(DataType);
   1310 }
   1311 
   1312 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy) {
   1313   // This function is called now in two cases: from the Loop Vectorizer
   1314   // and from the Scalarizer.
   1315   // When the Loop Vectorizer asks about legality of the feature,
   1316   // the vectorization factor is not calculated yet. The Loop Vectorizer
   1317   // sends a scalar type and the decision is based on the width of the
   1318   // scalar element.
   1319   // Later on, the cost model will estimate usage this intrinsic based on
   1320   // the vector type.
   1321   // The Scalarizer asks again about legality. It sends a vector type.
   1322   // In this case we can reject non-power-of-2 vectors.
   1323   if (isa<VectorType>(DataTy) && !isPowerOf2_32(DataTy->getVectorNumElements()))
   1324     return false;
   1325   Type *ScalarTy = DataTy->getScalarType();
   1326   int DataWidth = isa<PointerType>(ScalarTy) ?
   1327     DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
   1328 
   1329   // AVX-512 allows gather and scatter
   1330   return DataWidth >= 32 && ST->hasAVX512();
   1331 }
   1332 
   1333 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType) {
   1334   return isLegalMaskedGather(DataType);
   1335 }
   1336 
   1337 bool X86TTIImpl::areInlineCompatible(const Function *Caller,
   1338                                      const Function *Callee) const {
   1339   const TargetMachine &TM = getTLI()->getTargetMachine();
   1340 
   1341   // Work this as a subsetting of subtarget features.
   1342   const FeatureBitset &CallerBits =
   1343       TM.getSubtargetImpl(*Caller)->getFeatureBits();
   1344   const FeatureBitset &CalleeBits =
   1345       TM.getSubtargetImpl(*Callee)->getFeatureBits();
   1346 
   1347   // FIXME: This is likely too limiting as it will include subtarget features
   1348   // that we might not care about for inlining, but it is conservatively
   1349   // correct.
   1350   return (CallerBits & CalleeBits) == CalleeBits;
   1351 }
   1352