Home | History | Annotate | Download | only in IR
      1 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This library implements the functionality defined in llvm/IR/Writer.h
     11 //
     12 // Note that these routines must be extremely tolerant of various errors in the
     13 // LLVM code, because it can be used for debugging transformations.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "llvm/ADT/DenseMap.h"
     18 #include "llvm/ADT/STLExtras.h"
     19 #include "llvm/ADT/SetVector.h"
     20 #include "llvm/ADT/SmallString.h"
     21 #include "llvm/ADT/StringExtras.h"
     22 #include "llvm/IR/AssemblyAnnotationWriter.h"
     23 #include "llvm/IR/CFG.h"
     24 #include "llvm/IR/CallingConv.h"
     25 #include "llvm/IR/Constants.h"
     26 #include "llvm/IR/DebugInfo.h"
     27 #include "llvm/IR/DerivedTypes.h"
     28 #include "llvm/IR/IRPrintingPasses.h"
     29 #include "llvm/IR/InlineAsm.h"
     30 #include "llvm/IR/IntrinsicInst.h"
     31 #include "llvm/IR/LLVMContext.h"
     32 #include "llvm/IR/Module.h"
     33 #include "llvm/IR/ModuleSlotTracker.h"
     34 #include "llvm/IR/Operator.h"
     35 #include "llvm/IR/Statepoint.h"
     36 #include "llvm/IR/TypeFinder.h"
     37 #include "llvm/IR/UseListOrder.h"
     38 #include "llvm/IR/ValueSymbolTable.h"
     39 #include "llvm/Support/Debug.h"
     40 #include "llvm/Support/Dwarf.h"
     41 #include "llvm/Support/ErrorHandling.h"
     42 #include "llvm/Support/Format.h"
     43 #include "llvm/Support/FormattedStream.h"
     44 #include "llvm/Support/MathExtras.h"
     45 #include "llvm/Support/raw_ostream.h"
     46 #include <algorithm>
     47 #include <cctype>
     48 using namespace llvm;
     49 
     50 // Make virtual table appear in this compilation unit.
     51 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
     52 
     53 //===----------------------------------------------------------------------===//
     54 // Helper Functions
     55 //===----------------------------------------------------------------------===//
     56 
     57 namespace {
     58 struct OrderMap {
     59   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
     60 
     61   unsigned size() const { return IDs.size(); }
     62   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
     63   std::pair<unsigned, bool> lookup(const Value *V) const {
     64     return IDs.lookup(V);
     65   }
     66   void index(const Value *V) {
     67     // Explicitly sequence get-size and insert-value operations to avoid UB.
     68     unsigned ID = IDs.size() + 1;
     69     IDs[V].first = ID;
     70   }
     71 };
     72 }
     73 
     74 static void orderValue(const Value *V, OrderMap &OM) {
     75   if (OM.lookup(V).first)
     76     return;
     77 
     78   if (const Constant *C = dyn_cast<Constant>(V))
     79     if (C->getNumOperands() && !isa<GlobalValue>(C))
     80       for (const Value *Op : C->operands())
     81         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
     82           orderValue(Op, OM);
     83 
     84   // Note: we cannot cache this lookup above, since inserting into the map
     85   // changes the map's size, and thus affects the other IDs.
     86   OM.index(V);
     87 }
     88 
     89 static OrderMap orderModule(const Module *M) {
     90   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
     91   // and ValueEnumerator::incorporateFunction().
     92   OrderMap OM;
     93 
     94   for (const GlobalVariable &G : M->globals()) {
     95     if (G.hasInitializer())
     96       if (!isa<GlobalValue>(G.getInitializer()))
     97         orderValue(G.getInitializer(), OM);
     98     orderValue(&G, OM);
     99   }
    100   for (const GlobalAlias &A : M->aliases()) {
    101     if (!isa<GlobalValue>(A.getAliasee()))
    102       orderValue(A.getAliasee(), OM);
    103     orderValue(&A, OM);
    104   }
    105   for (const Function &F : *M) {
    106     for (const Use &U : F.operands())
    107       if (!isa<GlobalValue>(U.get()))
    108         orderValue(U.get(), OM);
    109 
    110     orderValue(&F, OM);
    111 
    112     if (F.isDeclaration())
    113       continue;
    114 
    115     for (const Argument &A : F.args())
    116       orderValue(&A, OM);
    117     for (const BasicBlock &BB : F) {
    118       orderValue(&BB, OM);
    119       for (const Instruction &I : BB) {
    120         for (const Value *Op : I.operands())
    121           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
    122               isa<InlineAsm>(*Op))
    123             orderValue(Op, OM);
    124         orderValue(&I, OM);
    125       }
    126     }
    127   }
    128   return OM;
    129 }
    130 
    131 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
    132                                          unsigned ID, const OrderMap &OM,
    133                                          UseListOrderStack &Stack) {
    134   // Predict use-list order for this one.
    135   typedef std::pair<const Use *, unsigned> Entry;
    136   SmallVector<Entry, 64> List;
    137   for (const Use &U : V->uses())
    138     // Check if this user will be serialized.
    139     if (OM.lookup(U.getUser()).first)
    140       List.push_back(std::make_pair(&U, List.size()));
    141 
    142   if (List.size() < 2)
    143     // We may have lost some users.
    144     return;
    145 
    146   bool GetsReversed =
    147       !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
    148   if (auto *BA = dyn_cast<BlockAddress>(V))
    149     ID = OM.lookup(BA->getBasicBlock()).first;
    150   std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
    151     const Use *LU = L.first;
    152     const Use *RU = R.first;
    153     if (LU == RU)
    154       return false;
    155 
    156     auto LID = OM.lookup(LU->getUser()).first;
    157     auto RID = OM.lookup(RU->getUser()).first;
    158 
    159     // If ID is 4, then expect: 7 6 5 1 2 3.
    160     if (LID < RID) {
    161       if (GetsReversed)
    162         if (RID <= ID)
    163           return true;
    164       return false;
    165     }
    166     if (RID < LID) {
    167       if (GetsReversed)
    168         if (LID <= ID)
    169           return false;
    170       return true;
    171     }
    172 
    173     // LID and RID are equal, so we have different operands of the same user.
    174     // Assume operands are added in order for all instructions.
    175     if (GetsReversed)
    176       if (LID <= ID)
    177         return LU->getOperandNo() < RU->getOperandNo();
    178     return LU->getOperandNo() > RU->getOperandNo();
    179   });
    180 
    181   if (std::is_sorted(
    182           List.begin(), List.end(),
    183           [](const Entry &L, const Entry &R) { return L.second < R.second; }))
    184     // Order is already correct.
    185     return;
    186 
    187   // Store the shuffle.
    188   Stack.emplace_back(V, F, List.size());
    189   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
    190   for (size_t I = 0, E = List.size(); I != E; ++I)
    191     Stack.back().Shuffle[I] = List[I].second;
    192 }
    193 
    194 static void predictValueUseListOrder(const Value *V, const Function *F,
    195                                      OrderMap &OM, UseListOrderStack &Stack) {
    196   auto &IDPair = OM[V];
    197   assert(IDPair.first && "Unmapped value");
    198   if (IDPair.second)
    199     // Already predicted.
    200     return;
    201 
    202   // Do the actual prediction.
    203   IDPair.second = true;
    204   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
    205     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
    206 
    207   // Recursive descent into constants.
    208   if (const Constant *C = dyn_cast<Constant>(V))
    209     if (C->getNumOperands()) // Visit GlobalValues.
    210       for (const Value *Op : C->operands())
    211         if (isa<Constant>(Op)) // Visit GlobalValues.
    212           predictValueUseListOrder(Op, F, OM, Stack);
    213 }
    214 
    215 static UseListOrderStack predictUseListOrder(const Module *M) {
    216   OrderMap OM = orderModule(M);
    217 
    218   // Use-list orders need to be serialized after all the users have been added
    219   // to a value, or else the shuffles will be incomplete.  Store them per
    220   // function in a stack.
    221   //
    222   // Aside from function order, the order of values doesn't matter much here.
    223   UseListOrderStack Stack;
    224 
    225   // We want to visit the functions backward now so we can list function-local
    226   // constants in the last Function they're used in.  Module-level constants
    227   // have already been visited above.
    228   for (const Function &F : make_range(M->rbegin(), M->rend())) {
    229     if (F.isDeclaration())
    230       continue;
    231     for (const BasicBlock &BB : F)
    232       predictValueUseListOrder(&BB, &F, OM, Stack);
    233     for (const Argument &A : F.args())
    234       predictValueUseListOrder(&A, &F, OM, Stack);
    235     for (const BasicBlock &BB : F)
    236       for (const Instruction &I : BB)
    237         for (const Value *Op : I.operands())
    238           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
    239             predictValueUseListOrder(Op, &F, OM, Stack);
    240     for (const BasicBlock &BB : F)
    241       for (const Instruction &I : BB)
    242         predictValueUseListOrder(&I, &F, OM, Stack);
    243   }
    244 
    245   // Visit globals last.
    246   for (const GlobalVariable &G : M->globals())
    247     predictValueUseListOrder(&G, nullptr, OM, Stack);
    248   for (const Function &F : *M)
    249     predictValueUseListOrder(&F, nullptr, OM, Stack);
    250   for (const GlobalAlias &A : M->aliases())
    251     predictValueUseListOrder(&A, nullptr, OM, Stack);
    252   for (const GlobalVariable &G : M->globals())
    253     if (G.hasInitializer())
    254       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
    255   for (const GlobalAlias &A : M->aliases())
    256     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
    257   for (const Function &F : *M)
    258     for (const Use &U : F.operands())
    259       predictValueUseListOrder(U.get(), nullptr, OM, Stack);
    260 
    261   return Stack;
    262 }
    263 
    264 static const Module *getModuleFromVal(const Value *V) {
    265   if (const Argument *MA = dyn_cast<Argument>(V))
    266     return MA->getParent() ? MA->getParent()->getParent() : nullptr;
    267 
    268   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
    269     return BB->getParent() ? BB->getParent()->getParent() : nullptr;
    270 
    271   if (const Instruction *I = dyn_cast<Instruction>(V)) {
    272     const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
    273     return M ? M->getParent() : nullptr;
    274   }
    275 
    276   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
    277     return GV->getParent();
    278 
    279   if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
    280     for (const User *U : MAV->users())
    281       if (isa<Instruction>(U))
    282         if (const Module *M = getModuleFromVal(U))
    283           return M;
    284     return nullptr;
    285   }
    286 
    287   return nullptr;
    288 }
    289 
    290 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
    291   switch (cc) {
    292   default:                         Out << "cc" << cc; break;
    293   case CallingConv::Fast:          Out << "fastcc"; break;
    294   case CallingConv::Cold:          Out << "coldcc"; break;
    295   case CallingConv::WebKit_JS:     Out << "webkit_jscc"; break;
    296   case CallingConv::AnyReg:        Out << "anyregcc"; break;
    297   case CallingConv::PreserveMost:  Out << "preserve_mostcc"; break;
    298   case CallingConv::PreserveAll:   Out << "preserve_allcc"; break;
    299   case CallingConv::CXX_FAST_TLS:  Out << "cxx_fast_tlscc"; break;
    300   case CallingConv::GHC:           Out << "ghccc"; break;
    301   case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
    302   case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
    303   case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
    304   case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
    305   case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
    306   case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
    307   case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
    308   case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
    309   case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
    310   case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
    311   case CallingConv::PTX_Device:    Out << "ptx_device"; break;
    312   case CallingConv::X86_64_SysV:   Out << "x86_64_sysvcc"; break;
    313   case CallingConv::X86_64_Win64:  Out << "x86_64_win64cc"; break;
    314   case CallingConv::SPIR_FUNC:     Out << "spir_func"; break;
    315   case CallingConv::SPIR_KERNEL:   Out << "spir_kernel"; break;
    316   case CallingConv::X86_INTR:      Out << "x86_intrcc"; break;
    317   case CallingConv::HHVM:          Out << "hhvmcc"; break;
    318   case CallingConv::HHVM_C:        Out << "hhvm_ccc"; break;
    319   }
    320 }
    321 
    322 // PrintEscapedString - Print each character of the specified string, escaping
    323 // it if it is not printable or if it is an escape char.
    324 static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
    325   for (unsigned i = 0, e = Name.size(); i != e; ++i) {
    326     unsigned char C = Name[i];
    327     if (isprint(C) && C != '\\' && C != '"')
    328       Out << C;
    329     else
    330       Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
    331   }
    332 }
    333 
    334 enum PrefixType {
    335   GlobalPrefix,
    336   ComdatPrefix,
    337   LabelPrefix,
    338   LocalPrefix,
    339   NoPrefix
    340 };
    341 
    342 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
    343   assert(!Name.empty() && "Cannot get empty name!");
    344 
    345   // Scan the name to see if it needs quotes first.
    346   bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
    347   if (!NeedsQuotes) {
    348     for (unsigned i = 0, e = Name.size(); i != e; ++i) {
    349       // By making this unsigned, the value passed in to isalnum will always be
    350       // in the range 0-255.  This is important when building with MSVC because
    351       // its implementation will assert.  This situation can arise when dealing
    352       // with UTF-8 multibyte characters.
    353       unsigned char C = Name[i];
    354       if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
    355           C != '_') {
    356         NeedsQuotes = true;
    357         break;
    358       }
    359     }
    360   }
    361 
    362   // If we didn't need any quotes, just write out the name in one blast.
    363   if (!NeedsQuotes) {
    364     OS << Name;
    365     return;
    366   }
    367 
    368   // Okay, we need quotes.  Output the quotes and escape any scary characters as
    369   // needed.
    370   OS << '"';
    371   PrintEscapedString(Name, OS);
    372   OS << '"';
    373 }
    374 
    375 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
    376 /// (if the string only contains simple characters) or is surrounded with ""'s
    377 /// (if it has special chars in it). Print it out.
    378 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
    379   switch (Prefix) {
    380   case NoPrefix:
    381     break;
    382   case GlobalPrefix:
    383     OS << '@';
    384     break;
    385   case ComdatPrefix:
    386     OS << '$';
    387     break;
    388   case LabelPrefix:
    389     break;
    390   case LocalPrefix:
    391     OS << '%';
    392     break;
    393   }
    394   printLLVMNameWithoutPrefix(OS, Name);
    395 }
    396 
    397 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
    398 /// (if the string only contains simple characters) or is surrounded with ""'s
    399 /// (if it has special chars in it). Print it out.
    400 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
    401   PrintLLVMName(OS, V->getName(),
    402                 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
    403 }
    404 
    405 
    406 namespace {
    407 class TypePrinting {
    408   TypePrinting(const TypePrinting &) = delete;
    409   void operator=(const TypePrinting&) = delete;
    410 public:
    411 
    412   /// NamedTypes - The named types that are used by the current module.
    413   TypeFinder NamedTypes;
    414 
    415   /// NumberedTypes - The numbered types, along with their value.
    416   DenseMap<StructType*, unsigned> NumberedTypes;
    417 
    418   TypePrinting() = default;
    419 
    420   void incorporateTypes(const Module &M);
    421 
    422   void print(Type *Ty, raw_ostream &OS);
    423 
    424   void printStructBody(StructType *Ty, raw_ostream &OS);
    425 };
    426 } // namespace
    427 
    428 void TypePrinting::incorporateTypes(const Module &M) {
    429   NamedTypes.run(M, false);
    430 
    431   // The list of struct types we got back includes all the struct types, split
    432   // the unnamed ones out to a numbering and remove the anonymous structs.
    433   unsigned NextNumber = 0;
    434 
    435   std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
    436   for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
    437     StructType *STy = *I;
    438 
    439     // Ignore anonymous types.
    440     if (STy->isLiteral())
    441       continue;
    442 
    443     if (STy->getName().empty())
    444       NumberedTypes[STy] = NextNumber++;
    445     else
    446       *NextToUse++ = STy;
    447   }
    448 
    449   NamedTypes.erase(NextToUse, NamedTypes.end());
    450 }
    451 
    452 
    453 /// CalcTypeName - Write the specified type to the specified raw_ostream, making
    454 /// use of type names or up references to shorten the type name where possible.
    455 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
    456   switch (Ty->getTypeID()) {
    457   case Type::VoidTyID:      OS << "void"; return;
    458   case Type::HalfTyID:      OS << "half"; return;
    459   case Type::FloatTyID:     OS << "float"; return;
    460   case Type::DoubleTyID:    OS << "double"; return;
    461   case Type::X86_FP80TyID:  OS << "x86_fp80"; return;
    462   case Type::FP128TyID:     OS << "fp128"; return;
    463   case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
    464   case Type::LabelTyID:     OS << "label"; return;
    465   case Type::MetadataTyID:  OS << "metadata"; return;
    466   case Type::X86_MMXTyID:   OS << "x86_mmx"; return;
    467   case Type::TokenTyID:     OS << "token"; return;
    468   case Type::IntegerTyID:
    469     OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
    470     return;
    471 
    472   case Type::FunctionTyID: {
    473     FunctionType *FTy = cast<FunctionType>(Ty);
    474     print(FTy->getReturnType(), OS);
    475     OS << " (";
    476     for (FunctionType::param_iterator I = FTy->param_begin(),
    477          E = FTy->param_end(); I != E; ++I) {
    478       if (I != FTy->param_begin())
    479         OS << ", ";
    480       print(*I, OS);
    481     }
    482     if (FTy->isVarArg()) {
    483       if (FTy->getNumParams()) OS << ", ";
    484       OS << "...";
    485     }
    486     OS << ')';
    487     return;
    488   }
    489   case Type::StructTyID: {
    490     StructType *STy = cast<StructType>(Ty);
    491 
    492     if (STy->isLiteral())
    493       return printStructBody(STy, OS);
    494 
    495     if (!STy->getName().empty())
    496       return PrintLLVMName(OS, STy->getName(), LocalPrefix);
    497 
    498     DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
    499     if (I != NumberedTypes.end())
    500       OS << '%' << I->second;
    501     else  // Not enumerated, print the hex address.
    502       OS << "%\"type " << STy << '\"';
    503     return;
    504   }
    505   case Type::PointerTyID: {
    506     PointerType *PTy = cast<PointerType>(Ty);
    507     print(PTy->getElementType(), OS);
    508     if (unsigned AddressSpace = PTy->getAddressSpace())
    509       OS << " addrspace(" << AddressSpace << ')';
    510     OS << '*';
    511     return;
    512   }
    513   case Type::ArrayTyID: {
    514     ArrayType *ATy = cast<ArrayType>(Ty);
    515     OS << '[' << ATy->getNumElements() << " x ";
    516     print(ATy->getElementType(), OS);
    517     OS << ']';
    518     return;
    519   }
    520   case Type::VectorTyID: {
    521     VectorType *PTy = cast<VectorType>(Ty);
    522     OS << "<" << PTy->getNumElements() << " x ";
    523     print(PTy->getElementType(), OS);
    524     OS << '>';
    525     return;
    526   }
    527   }
    528   llvm_unreachable("Invalid TypeID");
    529 }
    530 
    531 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
    532   if (STy->isOpaque()) {
    533     OS << "opaque";
    534     return;
    535   }
    536 
    537   if (STy->isPacked())
    538     OS << '<';
    539 
    540   if (STy->getNumElements() == 0) {
    541     OS << "{}";
    542   } else {
    543     StructType::element_iterator I = STy->element_begin();
    544     OS << "{ ";
    545     print(*I++, OS);
    546     for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
    547       OS << ", ";
    548       print(*I, OS);
    549     }
    550 
    551     OS << " }";
    552   }
    553   if (STy->isPacked())
    554     OS << '>';
    555 }
    556 
    557 namespace llvm {
    558 //===----------------------------------------------------------------------===//
    559 // SlotTracker Class: Enumerate slot numbers for unnamed values
    560 //===----------------------------------------------------------------------===//
    561 /// This class provides computation of slot numbers for LLVM Assembly writing.
    562 ///
    563 class SlotTracker {
    564 public:
    565   /// ValueMap - A mapping of Values to slot numbers.
    566   typedef DenseMap<const Value*, unsigned> ValueMap;
    567 
    568 private:
    569   /// TheModule - The module for which we are holding slot numbers.
    570   const Module* TheModule;
    571 
    572   /// TheFunction - The function for which we are holding slot numbers.
    573   const Function* TheFunction;
    574   bool FunctionProcessed;
    575   bool ShouldInitializeAllMetadata;
    576 
    577   /// mMap - The slot map for the module level data.
    578   ValueMap mMap;
    579   unsigned mNext;
    580 
    581   /// fMap - The slot map for the function level data.
    582   ValueMap fMap;
    583   unsigned fNext;
    584 
    585   /// mdnMap - Map for MDNodes.
    586   DenseMap<const MDNode*, unsigned> mdnMap;
    587   unsigned mdnNext;
    588 
    589   /// asMap - The slot map for attribute sets.
    590   DenseMap<AttributeSet, unsigned> asMap;
    591   unsigned asNext;
    592 public:
    593   /// Construct from a module.
    594   ///
    595   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
    596   /// functions, giving correct numbering for metadata referenced only from
    597   /// within a function (even if no functions have been initialized).
    598   explicit SlotTracker(const Module *M,
    599                        bool ShouldInitializeAllMetadata = false);
    600   /// Construct from a function, starting out in incorp state.
    601   ///
    602   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
    603   /// functions, giving correct numbering for metadata referenced only from
    604   /// within a function (even if no functions have been initialized).
    605   explicit SlotTracker(const Function *F,
    606                        bool ShouldInitializeAllMetadata = false);
    607 
    608   /// Return the slot number of the specified value in it's type
    609   /// plane.  If something is not in the SlotTracker, return -1.
    610   int getLocalSlot(const Value *V);
    611   int getGlobalSlot(const GlobalValue *V);
    612   int getMetadataSlot(const MDNode *N);
    613   int getAttributeGroupSlot(AttributeSet AS);
    614 
    615   /// If you'd like to deal with a function instead of just a module, use
    616   /// this method to get its data into the SlotTracker.
    617   void incorporateFunction(const Function *F) {
    618     TheFunction = F;
    619     FunctionProcessed = false;
    620   }
    621 
    622   const Function *getFunction() const { return TheFunction; }
    623 
    624   /// After calling incorporateFunction, use this method to remove the
    625   /// most recently incorporated function from the SlotTracker. This
    626   /// will reset the state of the machine back to just the module contents.
    627   void purgeFunction();
    628 
    629   /// MDNode map iterators.
    630   typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
    631   mdn_iterator mdn_begin() { return mdnMap.begin(); }
    632   mdn_iterator mdn_end() { return mdnMap.end(); }
    633   unsigned mdn_size() const { return mdnMap.size(); }
    634   bool mdn_empty() const { return mdnMap.empty(); }
    635 
    636   /// AttributeSet map iterators.
    637   typedef DenseMap<AttributeSet, unsigned>::iterator as_iterator;
    638   as_iterator as_begin()   { return asMap.begin(); }
    639   as_iterator as_end()     { return asMap.end(); }
    640   unsigned as_size() const { return asMap.size(); }
    641   bool as_empty() const    { return asMap.empty(); }
    642 
    643   /// This function does the actual initialization.
    644   inline void initialize();
    645 
    646   // Implementation Details
    647 private:
    648   /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
    649   void CreateModuleSlot(const GlobalValue *V);
    650 
    651   /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
    652   void CreateMetadataSlot(const MDNode *N);
    653 
    654   /// CreateFunctionSlot - Insert the specified Value* into the slot table.
    655   void CreateFunctionSlot(const Value *V);
    656 
    657   /// \brief Insert the specified AttributeSet into the slot table.
    658   void CreateAttributeSetSlot(AttributeSet AS);
    659 
    660   /// Add all of the module level global variables (and their initializers)
    661   /// and function declarations, but not the contents of those functions.
    662   void processModule();
    663 
    664   /// Add all of the functions arguments, basic blocks, and instructions.
    665   void processFunction();
    666 
    667   /// Add all of the metadata from a function.
    668   void processFunctionMetadata(const Function &F);
    669 
    670   /// Add all of the metadata from an instruction.
    671   void processInstructionMetadata(const Instruction &I);
    672 
    673   SlotTracker(const SlotTracker &) = delete;
    674   void operator=(const SlotTracker &) = delete;
    675 };
    676 } // namespace llvm
    677 
    678 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
    679                                      const Function *F)
    680     : M(M), F(F), Machine(&Machine) {}
    681 
    682 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
    683                                      bool ShouldInitializeAllMetadata)
    684     : MachineStorage(M ? new SlotTracker(M, ShouldInitializeAllMetadata)
    685                        : nullptr),
    686       M(M), Machine(MachineStorage.get()) {}
    687 
    688 ModuleSlotTracker::~ModuleSlotTracker() {}
    689 
    690 void ModuleSlotTracker::incorporateFunction(const Function &F) {
    691   if (!Machine)
    692     return;
    693 
    694   // Nothing to do if this is the right function already.
    695   if (this->F == &F)
    696     return;
    697   if (this->F)
    698     Machine->purgeFunction();
    699   Machine->incorporateFunction(&F);
    700   this->F = &F;
    701 }
    702 
    703 int ModuleSlotTracker::getLocalSlot(const Value *V) {
    704   assert(F && "No function incorporated");
    705   return Machine->getLocalSlot(V);
    706 }
    707 
    708 static SlotTracker *createSlotTracker(const Value *V) {
    709   if (const Argument *FA = dyn_cast<Argument>(V))
    710     return new SlotTracker(FA->getParent());
    711 
    712   if (const Instruction *I = dyn_cast<Instruction>(V))
    713     if (I->getParent())
    714       return new SlotTracker(I->getParent()->getParent());
    715 
    716   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
    717     return new SlotTracker(BB->getParent());
    718 
    719   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
    720     return new SlotTracker(GV->getParent());
    721 
    722   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
    723     return new SlotTracker(GA->getParent());
    724 
    725   if (const Function *Func = dyn_cast<Function>(V))
    726     return new SlotTracker(Func);
    727 
    728   return nullptr;
    729 }
    730 
    731 #if 0
    732 #define ST_DEBUG(X) dbgs() << X
    733 #else
    734 #define ST_DEBUG(X)
    735 #endif
    736 
    737 // Module level constructor. Causes the contents of the Module (sans functions)
    738 // to be added to the slot table.
    739 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
    740     : TheModule(M), TheFunction(nullptr), FunctionProcessed(false),
    741       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), mNext(0),
    742       fNext(0), mdnNext(0), asNext(0) {}
    743 
    744 // Function level constructor. Causes the contents of the Module and the one
    745 // function provided to be added to the slot table.
    746 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
    747     : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
    748       FunctionProcessed(false),
    749       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), mNext(0),
    750       fNext(0), mdnNext(0), asNext(0) {}
    751 
    752 inline void SlotTracker::initialize() {
    753   if (TheModule) {
    754     processModule();
    755     TheModule = nullptr; ///< Prevent re-processing next time we're called.
    756   }
    757 
    758   if (TheFunction && !FunctionProcessed)
    759     processFunction();
    760 }
    761 
    762 // Iterate through all the global variables, functions, and global
    763 // variable initializers and create slots for them.
    764 void SlotTracker::processModule() {
    765   ST_DEBUG("begin processModule!\n");
    766 
    767   // Add all of the unnamed global variables to the value table.
    768   for (const GlobalVariable &Var : TheModule->globals()) {
    769     if (!Var.hasName())
    770       CreateModuleSlot(&Var);
    771   }
    772 
    773   for (const GlobalAlias &A : TheModule->aliases()) {
    774     if (!A.hasName())
    775       CreateModuleSlot(&A);
    776   }
    777 
    778   // Add metadata used by named metadata.
    779   for (const NamedMDNode &NMD : TheModule->named_metadata()) {
    780     for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
    781       CreateMetadataSlot(NMD.getOperand(i));
    782   }
    783 
    784   for (const Function &F : *TheModule) {
    785     if (!F.hasName())
    786       // Add all the unnamed functions to the table.
    787       CreateModuleSlot(&F);
    788 
    789     if (ShouldInitializeAllMetadata)
    790       processFunctionMetadata(F);
    791 
    792     // Add all the function attributes to the table.
    793     // FIXME: Add attributes of other objects?
    794     AttributeSet FnAttrs = F.getAttributes().getFnAttributes();
    795     if (FnAttrs.hasAttributes(AttributeSet::FunctionIndex))
    796       CreateAttributeSetSlot(FnAttrs);
    797   }
    798 
    799   ST_DEBUG("end processModule!\n");
    800 }
    801 
    802 // Process the arguments, basic blocks, and instructions  of a function.
    803 void SlotTracker::processFunction() {
    804   ST_DEBUG("begin processFunction!\n");
    805   fNext = 0;
    806 
    807   // Process function metadata if it wasn't hit at the module-level.
    808   if (!ShouldInitializeAllMetadata)
    809     processFunctionMetadata(*TheFunction);
    810 
    811   // Add all the function arguments with no names.
    812   for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
    813       AE = TheFunction->arg_end(); AI != AE; ++AI)
    814     if (!AI->hasName())
    815       CreateFunctionSlot(&*AI);
    816 
    817   ST_DEBUG("Inserting Instructions:\n");
    818 
    819   // Add all of the basic blocks and instructions with no names.
    820   for (auto &BB : *TheFunction) {
    821     if (!BB.hasName())
    822       CreateFunctionSlot(&BB);
    823 
    824     for (auto &I : BB) {
    825       if (!I.getType()->isVoidTy() && !I.hasName())
    826         CreateFunctionSlot(&I);
    827 
    828       // We allow direct calls to any llvm.foo function here, because the
    829       // target may not be linked into the optimizer.
    830       if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
    831         // Add all the call attributes to the table.
    832         AttributeSet Attrs = CI->getAttributes().getFnAttributes();
    833         if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
    834           CreateAttributeSetSlot(Attrs);
    835       } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
    836         // Add all the call attributes to the table.
    837         AttributeSet Attrs = II->getAttributes().getFnAttributes();
    838         if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
    839           CreateAttributeSetSlot(Attrs);
    840       }
    841     }
    842   }
    843 
    844   FunctionProcessed = true;
    845 
    846   ST_DEBUG("end processFunction!\n");
    847 }
    848 
    849 void SlotTracker::processFunctionMetadata(const Function &F) {
    850   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
    851   F.getAllMetadata(MDs);
    852   for (auto &MD : MDs)
    853     CreateMetadataSlot(MD.second);
    854 
    855   for (auto &BB : F) {
    856     for (auto &I : BB)
    857       processInstructionMetadata(I);
    858   }
    859 }
    860 
    861 void SlotTracker::processInstructionMetadata(const Instruction &I) {
    862   // Process metadata used directly by intrinsics.
    863   if (const CallInst *CI = dyn_cast<CallInst>(&I))
    864     if (Function *F = CI->getCalledFunction())
    865       if (F->isIntrinsic())
    866         for (auto &Op : I.operands())
    867           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
    868             if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
    869               CreateMetadataSlot(N);
    870 
    871   // Process metadata attached to this instruction.
    872   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
    873   I.getAllMetadata(MDs);
    874   for (auto &MD : MDs)
    875     CreateMetadataSlot(MD.second);
    876 }
    877 
    878 /// Clean up after incorporating a function. This is the only way to get out of
    879 /// the function incorporation state that affects get*Slot/Create*Slot. Function
    880 /// incorporation state is indicated by TheFunction != 0.
    881 void SlotTracker::purgeFunction() {
    882   ST_DEBUG("begin purgeFunction!\n");
    883   fMap.clear(); // Simply discard the function level map
    884   TheFunction = nullptr;
    885   FunctionProcessed = false;
    886   ST_DEBUG("end purgeFunction!\n");
    887 }
    888 
    889 /// getGlobalSlot - Get the slot number of a global value.
    890 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
    891   // Check for uninitialized state and do lazy initialization.
    892   initialize();
    893 
    894   // Find the value in the module map
    895   ValueMap::iterator MI = mMap.find(V);
    896   return MI == mMap.end() ? -1 : (int)MI->second;
    897 }
    898 
    899 /// getMetadataSlot - Get the slot number of a MDNode.
    900 int SlotTracker::getMetadataSlot(const MDNode *N) {
    901   // Check for uninitialized state and do lazy initialization.
    902   initialize();
    903 
    904   // Find the MDNode in the module map
    905   mdn_iterator MI = mdnMap.find(N);
    906   return MI == mdnMap.end() ? -1 : (int)MI->second;
    907 }
    908 
    909 
    910 /// getLocalSlot - Get the slot number for a value that is local to a function.
    911 int SlotTracker::getLocalSlot(const Value *V) {
    912   assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
    913 
    914   // Check for uninitialized state and do lazy initialization.
    915   initialize();
    916 
    917   ValueMap::iterator FI = fMap.find(V);
    918   return FI == fMap.end() ? -1 : (int)FI->second;
    919 }
    920 
    921 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
    922   // Check for uninitialized state and do lazy initialization.
    923   initialize();
    924 
    925   // Find the AttributeSet in the module map.
    926   as_iterator AI = asMap.find(AS);
    927   return AI == asMap.end() ? -1 : (int)AI->second;
    928 }
    929 
    930 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
    931 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
    932   assert(V && "Can't insert a null Value into SlotTracker!");
    933   assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
    934   assert(!V->hasName() && "Doesn't need a slot!");
    935 
    936   unsigned DestSlot = mNext++;
    937   mMap[V] = DestSlot;
    938 
    939   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
    940            DestSlot << " [");
    941   // G = Global, F = Function, A = Alias, o = other
    942   ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
    943             (isa<Function>(V) ? 'F' :
    944              (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
    945 }
    946 
    947 /// CreateSlot - Create a new slot for the specified value if it has no name.
    948 void SlotTracker::CreateFunctionSlot(const Value *V) {
    949   assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
    950 
    951   unsigned DestSlot = fNext++;
    952   fMap[V] = DestSlot;
    953 
    954   // G = Global, F = Function, o = other
    955   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
    956            DestSlot << " [o]\n");
    957 }
    958 
    959 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
    960 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
    961   assert(N && "Can't insert a null Value into SlotTracker!");
    962 
    963   unsigned DestSlot = mdnNext;
    964   if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
    965     return;
    966   ++mdnNext;
    967 
    968   // Recursively add any MDNodes referenced by operands.
    969   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
    970     if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
    971       CreateMetadataSlot(Op);
    972 }
    973 
    974 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
    975   assert(AS.hasAttributes(AttributeSet::FunctionIndex) &&
    976          "Doesn't need a slot!");
    977 
    978   as_iterator I = asMap.find(AS);
    979   if (I != asMap.end())
    980     return;
    981 
    982   unsigned DestSlot = asNext++;
    983   asMap[AS] = DestSlot;
    984 }
    985 
    986 //===----------------------------------------------------------------------===//
    987 // AsmWriter Implementation
    988 //===----------------------------------------------------------------------===//
    989 
    990 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
    991                                    TypePrinting *TypePrinter,
    992                                    SlotTracker *Machine,
    993                                    const Module *Context);
    994 
    995 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
    996                                    TypePrinting *TypePrinter,
    997                                    SlotTracker *Machine, const Module *Context,
    998                                    bool FromValue = false);
    999 
   1000 static const char *getPredicateText(unsigned predicate) {
   1001   const char * pred = "unknown";
   1002   switch (predicate) {
   1003   case FCmpInst::FCMP_FALSE: pred = "false"; break;
   1004   case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
   1005   case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
   1006   case FCmpInst::FCMP_OGE:   pred = "oge"; break;
   1007   case FCmpInst::FCMP_OLT:   pred = "olt"; break;
   1008   case FCmpInst::FCMP_OLE:   pred = "ole"; break;
   1009   case FCmpInst::FCMP_ONE:   pred = "one"; break;
   1010   case FCmpInst::FCMP_ORD:   pred = "ord"; break;
   1011   case FCmpInst::FCMP_UNO:   pred = "uno"; break;
   1012   case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
   1013   case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
   1014   case FCmpInst::FCMP_UGE:   pred = "uge"; break;
   1015   case FCmpInst::FCMP_ULT:   pred = "ult"; break;
   1016   case FCmpInst::FCMP_ULE:   pred = "ule"; break;
   1017   case FCmpInst::FCMP_UNE:   pred = "une"; break;
   1018   case FCmpInst::FCMP_TRUE:  pred = "true"; break;
   1019   case ICmpInst::ICMP_EQ:    pred = "eq"; break;
   1020   case ICmpInst::ICMP_NE:    pred = "ne"; break;
   1021   case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
   1022   case ICmpInst::ICMP_SGE:   pred = "sge"; break;
   1023   case ICmpInst::ICMP_SLT:   pred = "slt"; break;
   1024   case ICmpInst::ICMP_SLE:   pred = "sle"; break;
   1025   case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
   1026   case ICmpInst::ICMP_UGE:   pred = "uge"; break;
   1027   case ICmpInst::ICMP_ULT:   pred = "ult"; break;
   1028   case ICmpInst::ICMP_ULE:   pred = "ule"; break;
   1029   }
   1030   return pred;
   1031 }
   1032 
   1033 static void writeAtomicRMWOperation(raw_ostream &Out,
   1034                                     AtomicRMWInst::BinOp Op) {
   1035   switch (Op) {
   1036   default: Out << " <unknown operation " << Op << ">"; break;
   1037   case AtomicRMWInst::Xchg: Out << " xchg"; break;
   1038   case AtomicRMWInst::Add:  Out << " add"; break;
   1039   case AtomicRMWInst::Sub:  Out << " sub"; break;
   1040   case AtomicRMWInst::And:  Out << " and"; break;
   1041   case AtomicRMWInst::Nand: Out << " nand"; break;
   1042   case AtomicRMWInst::Or:   Out << " or"; break;
   1043   case AtomicRMWInst::Xor:  Out << " xor"; break;
   1044   case AtomicRMWInst::Max:  Out << " max"; break;
   1045   case AtomicRMWInst::Min:  Out << " min"; break;
   1046   case AtomicRMWInst::UMax: Out << " umax"; break;
   1047   case AtomicRMWInst::UMin: Out << " umin"; break;
   1048   }
   1049 }
   1050 
   1051 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
   1052   if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
   1053     // Unsafe algebra implies all the others, no need to write them all out
   1054     if (FPO->hasUnsafeAlgebra())
   1055       Out << " fast";
   1056     else {
   1057       if (FPO->hasNoNaNs())
   1058         Out << " nnan";
   1059       if (FPO->hasNoInfs())
   1060         Out << " ninf";
   1061       if (FPO->hasNoSignedZeros())
   1062         Out << " nsz";
   1063       if (FPO->hasAllowReciprocal())
   1064         Out << " arcp";
   1065     }
   1066   }
   1067 
   1068   if (const OverflowingBinaryOperator *OBO =
   1069         dyn_cast<OverflowingBinaryOperator>(U)) {
   1070     if (OBO->hasNoUnsignedWrap())
   1071       Out << " nuw";
   1072     if (OBO->hasNoSignedWrap())
   1073       Out << " nsw";
   1074   } else if (const PossiblyExactOperator *Div =
   1075                dyn_cast<PossiblyExactOperator>(U)) {
   1076     if (Div->isExact())
   1077       Out << " exact";
   1078   } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
   1079     if (GEP->isInBounds())
   1080       Out << " inbounds";
   1081   }
   1082 }
   1083 
   1084 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
   1085                                   TypePrinting &TypePrinter,
   1086                                   SlotTracker *Machine,
   1087                                   const Module *Context) {
   1088   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
   1089     if (CI->getType()->isIntegerTy(1)) {
   1090       Out << (CI->getZExtValue() ? "true" : "false");
   1091       return;
   1092     }
   1093     Out << CI->getValue();
   1094     return;
   1095   }
   1096 
   1097   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
   1098     if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle ||
   1099         &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) {
   1100       // We would like to output the FP constant value in exponential notation,
   1101       // but we cannot do this if doing so will lose precision.  Check here to
   1102       // make sure that we only output it in exponential format if we can parse
   1103       // the value back and get the same value.
   1104       //
   1105       bool ignored;
   1106       bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
   1107       bool isInf = CFP->getValueAPF().isInfinity();
   1108       bool isNaN = CFP->getValueAPF().isNaN();
   1109       if (!isInf && !isNaN) {
   1110         double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
   1111                                 CFP->getValueAPF().convertToFloat();
   1112         SmallString<128> StrVal;
   1113         raw_svector_ostream(StrVal) << Val;
   1114 
   1115         // Check to make sure that the stringized number is not some string like
   1116         // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
   1117         // that the string matches the "[-+]?[0-9]" regex.
   1118         //
   1119         if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
   1120             ((StrVal[0] == '-' || StrVal[0] == '+') &&
   1121              (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
   1122           // Reparse stringized version!
   1123           if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) {
   1124             Out << StrVal;
   1125             return;
   1126           }
   1127         }
   1128       }
   1129       // Otherwise we could not reparse it to exactly the same value, so we must
   1130       // output the string in hexadecimal format!  Note that loading and storing
   1131       // floating point types changes the bits of NaNs on some hosts, notably
   1132       // x86, so we must not use these types.
   1133       static_assert(sizeof(double) == sizeof(uint64_t),
   1134                     "assuming that double is 64 bits!");
   1135       APFloat apf = CFP->getValueAPF();
   1136       // Floats are represented in ASCII IR as double, convert.
   1137       if (!isDouble)
   1138         apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
   1139                           &ignored);
   1140       Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
   1141       return;
   1142     }
   1143 
   1144     // Either half, or some form of long double.
   1145     // These appear as a magic letter identifying the type, then a
   1146     // fixed number of hex digits.
   1147     Out << "0x";
   1148     APInt API = CFP->getValueAPF().bitcastToAPInt();
   1149     if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
   1150       Out << 'K';
   1151       Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
   1152                                   /*Upper=*/true);
   1153       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
   1154                                   /*Upper=*/true);
   1155       return;
   1156     } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) {
   1157       Out << 'L';
   1158       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
   1159                                   /*Upper=*/true);
   1160       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
   1161                                   /*Upper=*/true);
   1162     } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) {
   1163       Out << 'M';
   1164       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
   1165                                   /*Upper=*/true);
   1166       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
   1167                                   /*Upper=*/true);
   1168     } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) {
   1169       Out << 'H';
   1170       Out << format_hex_no_prefix(API.getZExtValue(), 4,
   1171                                   /*Upper=*/true);
   1172     } else
   1173       llvm_unreachable("Unsupported floating point type");
   1174     return;
   1175   }
   1176 
   1177   if (isa<ConstantAggregateZero>(CV)) {
   1178     Out << "zeroinitializer";
   1179     return;
   1180   }
   1181 
   1182   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
   1183     Out << "blockaddress(";
   1184     WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
   1185                            Context);
   1186     Out << ", ";
   1187     WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
   1188                            Context);
   1189     Out << ")";
   1190     return;
   1191   }
   1192 
   1193   if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
   1194     Type *ETy = CA->getType()->getElementType();
   1195     Out << '[';
   1196     TypePrinter.print(ETy, Out);
   1197     Out << ' ';
   1198     WriteAsOperandInternal(Out, CA->getOperand(0),
   1199                            &TypePrinter, Machine,
   1200                            Context);
   1201     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
   1202       Out << ", ";
   1203       TypePrinter.print(ETy, Out);
   1204       Out << ' ';
   1205       WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
   1206                              Context);
   1207     }
   1208     Out << ']';
   1209     return;
   1210   }
   1211 
   1212   if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
   1213     // As a special case, print the array as a string if it is an array of
   1214     // i8 with ConstantInt values.
   1215     if (CA->isString()) {
   1216       Out << "c\"";
   1217       PrintEscapedString(CA->getAsString(), Out);
   1218       Out << '"';
   1219       return;
   1220     }
   1221 
   1222     Type *ETy = CA->getType()->getElementType();
   1223     Out << '[';
   1224     TypePrinter.print(ETy, Out);
   1225     Out << ' ';
   1226     WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
   1227                            &TypePrinter, Machine,
   1228                            Context);
   1229     for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
   1230       Out << ", ";
   1231       TypePrinter.print(ETy, Out);
   1232       Out << ' ';
   1233       WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
   1234                              Machine, Context);
   1235     }
   1236     Out << ']';
   1237     return;
   1238   }
   1239 
   1240 
   1241   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
   1242     if (CS->getType()->isPacked())
   1243       Out << '<';
   1244     Out << '{';
   1245     unsigned N = CS->getNumOperands();
   1246     if (N) {
   1247       Out << ' ';
   1248       TypePrinter.print(CS->getOperand(0)->getType(), Out);
   1249       Out << ' ';
   1250 
   1251       WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
   1252                              Context);
   1253 
   1254       for (unsigned i = 1; i < N; i++) {
   1255         Out << ", ";
   1256         TypePrinter.print(CS->getOperand(i)->getType(), Out);
   1257         Out << ' ';
   1258 
   1259         WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
   1260                                Context);
   1261       }
   1262       Out << ' ';
   1263     }
   1264 
   1265     Out << '}';
   1266     if (CS->getType()->isPacked())
   1267       Out << '>';
   1268     return;
   1269   }
   1270 
   1271   if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
   1272     Type *ETy = CV->getType()->getVectorElementType();
   1273     Out << '<';
   1274     TypePrinter.print(ETy, Out);
   1275     Out << ' ';
   1276     WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
   1277                            Machine, Context);
   1278     for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
   1279       Out << ", ";
   1280       TypePrinter.print(ETy, Out);
   1281       Out << ' ';
   1282       WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
   1283                              Machine, Context);
   1284     }
   1285     Out << '>';
   1286     return;
   1287   }
   1288 
   1289   if (isa<ConstantPointerNull>(CV)) {
   1290     Out << "null";
   1291     return;
   1292   }
   1293 
   1294   if (isa<ConstantTokenNone>(CV)) {
   1295     Out << "none";
   1296     return;
   1297   }
   1298 
   1299   if (isa<UndefValue>(CV)) {
   1300     Out << "undef";
   1301     return;
   1302   }
   1303 
   1304   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
   1305     Out << CE->getOpcodeName();
   1306     WriteOptimizationInfo(Out, CE);
   1307     if (CE->isCompare())
   1308       Out << ' ' << getPredicateText(CE->getPredicate());
   1309     Out << " (";
   1310 
   1311     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
   1312       TypePrinter.print(GEP->getSourceElementType(), Out);
   1313       Out << ", ";
   1314     }
   1315 
   1316     for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
   1317       TypePrinter.print((*OI)->getType(), Out);
   1318       Out << ' ';
   1319       WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
   1320       if (OI+1 != CE->op_end())
   1321         Out << ", ";
   1322     }
   1323 
   1324     if (CE->hasIndices()) {
   1325       ArrayRef<unsigned> Indices = CE->getIndices();
   1326       for (unsigned i = 0, e = Indices.size(); i != e; ++i)
   1327         Out << ", " << Indices[i];
   1328     }
   1329 
   1330     if (CE->isCast()) {
   1331       Out << " to ";
   1332       TypePrinter.print(CE->getType(), Out);
   1333     }
   1334 
   1335     Out << ')';
   1336     return;
   1337   }
   1338 
   1339   Out << "<placeholder or erroneous Constant>";
   1340 }
   1341 
   1342 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
   1343                          TypePrinting *TypePrinter, SlotTracker *Machine,
   1344                          const Module *Context) {
   1345   Out << "!{";
   1346   for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
   1347     const Metadata *MD = Node->getOperand(mi);
   1348     if (!MD)
   1349       Out << "null";
   1350     else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
   1351       Value *V = MDV->getValue();
   1352       TypePrinter->print(V->getType(), Out);
   1353       Out << ' ';
   1354       WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
   1355     } else {
   1356       WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
   1357     }
   1358     if (mi + 1 != me)
   1359       Out << ", ";
   1360   }
   1361 
   1362   Out << "}";
   1363 }
   1364 
   1365 namespace {
   1366 struct FieldSeparator {
   1367   bool Skip;
   1368   const char *Sep;
   1369   FieldSeparator(const char *Sep = ", ") : Skip(true), Sep(Sep) {}
   1370 };
   1371 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
   1372   if (FS.Skip) {
   1373     FS.Skip = false;
   1374     return OS;
   1375   }
   1376   return OS << FS.Sep;
   1377 }
   1378 struct MDFieldPrinter {
   1379   raw_ostream &Out;
   1380   FieldSeparator FS;
   1381   TypePrinting *TypePrinter;
   1382   SlotTracker *Machine;
   1383   const Module *Context;
   1384 
   1385   explicit MDFieldPrinter(raw_ostream &Out)
   1386       : Out(Out), TypePrinter(nullptr), Machine(nullptr), Context(nullptr) {}
   1387   MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
   1388                  SlotTracker *Machine, const Module *Context)
   1389       : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
   1390   }
   1391   void printTag(const DINode *N);
   1392   void printMacinfoType(const DIMacroNode *N);
   1393   void printString(StringRef Name, StringRef Value,
   1394                    bool ShouldSkipEmpty = true);
   1395   void printMetadata(StringRef Name, const Metadata *MD,
   1396                      bool ShouldSkipNull = true);
   1397   template <class IntTy>
   1398   void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
   1399   void printBool(StringRef Name, bool Value);
   1400   void printDIFlags(StringRef Name, unsigned Flags);
   1401   template <class IntTy, class Stringifier>
   1402   void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
   1403                       bool ShouldSkipZero = true);
   1404 };
   1405 } // end namespace
   1406 
   1407 void MDFieldPrinter::printTag(const DINode *N) {
   1408   Out << FS << "tag: ";
   1409   if (const char *Tag = dwarf::TagString(N->getTag()))
   1410     Out << Tag;
   1411   else
   1412     Out << N->getTag();
   1413 }
   1414 
   1415 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
   1416   Out << FS << "type: ";
   1417   if (const char *Type = dwarf::MacinfoString(N->getMacinfoType()))
   1418     Out << Type;
   1419   else
   1420     Out << N->getMacinfoType();
   1421 }
   1422 
   1423 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
   1424                                  bool ShouldSkipEmpty) {
   1425   if (ShouldSkipEmpty && Value.empty())
   1426     return;
   1427 
   1428   Out << FS << Name << ": \"";
   1429   PrintEscapedString(Value, Out);
   1430   Out << "\"";
   1431 }
   1432 
   1433 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
   1434                                    TypePrinting *TypePrinter,
   1435                                    SlotTracker *Machine,
   1436                                    const Module *Context) {
   1437   if (!MD) {
   1438     Out << "null";
   1439     return;
   1440   }
   1441   WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
   1442 }
   1443 
   1444 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
   1445                                    bool ShouldSkipNull) {
   1446   if (ShouldSkipNull && !MD)
   1447     return;
   1448 
   1449   Out << FS << Name << ": ";
   1450   writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
   1451 }
   1452 
   1453 template <class IntTy>
   1454 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
   1455   if (ShouldSkipZero && !Int)
   1456     return;
   1457 
   1458   Out << FS << Name << ": " << Int;
   1459 }
   1460 
   1461 void MDFieldPrinter::printBool(StringRef Name, bool Value) {
   1462   Out << FS << Name << ": " << (Value ? "true" : "false");
   1463 }
   1464 
   1465 void MDFieldPrinter::printDIFlags(StringRef Name, unsigned Flags) {
   1466   if (!Flags)
   1467     return;
   1468 
   1469   Out << FS << Name << ": ";
   1470 
   1471   SmallVector<unsigned, 8> SplitFlags;
   1472   unsigned Extra = DINode::splitFlags(Flags, SplitFlags);
   1473 
   1474   FieldSeparator FlagsFS(" | ");
   1475   for (unsigned F : SplitFlags) {
   1476     const char *StringF = DINode::getFlagString(F);
   1477     assert(StringF && "Expected valid flag");
   1478     Out << FlagsFS << StringF;
   1479   }
   1480   if (Extra || SplitFlags.empty())
   1481     Out << FlagsFS << Extra;
   1482 }
   1483 
   1484 template <class IntTy, class Stringifier>
   1485 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
   1486                                     Stringifier toString, bool ShouldSkipZero) {
   1487   if (!Value)
   1488     return;
   1489 
   1490   Out << FS << Name << ": ";
   1491   if (const char *S = toString(Value))
   1492     Out << S;
   1493   else
   1494     Out << Value;
   1495 }
   1496 
   1497 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
   1498                                TypePrinting *TypePrinter, SlotTracker *Machine,
   1499                                const Module *Context) {
   1500   Out << "!GenericDINode(";
   1501   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
   1502   Printer.printTag(N);
   1503   Printer.printString("header", N->getHeader());
   1504   if (N->getNumDwarfOperands()) {
   1505     Out << Printer.FS << "operands: {";
   1506     FieldSeparator IFS;
   1507     for (auto &I : N->dwarf_operands()) {
   1508       Out << IFS;
   1509       writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
   1510     }
   1511     Out << "}";
   1512   }
   1513   Out << ")";
   1514 }
   1515 
   1516 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
   1517                             TypePrinting *TypePrinter, SlotTracker *Machine,
   1518                             const Module *Context) {
   1519   Out << "!DILocation(";
   1520   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
   1521   // Always output the line, since 0 is a relevant and important value for it.
   1522   Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
   1523   Printer.printInt("column", DL->getColumn());
   1524   Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
   1525   Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
   1526   Out << ")";
   1527 }
   1528 
   1529 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
   1530                             TypePrinting *, SlotTracker *, const Module *) {
   1531   Out << "!DISubrange(";
   1532   MDFieldPrinter Printer(Out);
   1533   Printer.printInt("count", N->getCount(), /* ShouldSkipZero */ false);
   1534   Printer.printInt("lowerBound", N->getLowerBound());
   1535   Out << ")";
   1536 }
   1537 
   1538 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
   1539                               TypePrinting *, SlotTracker *, const Module *) {
   1540   Out << "!DIEnumerator(";
   1541   MDFieldPrinter Printer(Out);
   1542   Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
   1543   Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false);
   1544   Out << ")";
   1545 }
   1546 
   1547 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
   1548                              TypePrinting *, SlotTracker *, const Module *) {
   1549   Out << "!DIBasicType(";
   1550   MDFieldPrinter Printer(Out);
   1551   if (N->getTag() != dwarf::DW_TAG_base_type)
   1552     Printer.printTag(N);
   1553   Printer.printString("name", N->getName());
   1554   Printer.printInt("size", N->getSizeInBits());
   1555   Printer.printInt("align", N->getAlignInBits());
   1556   Printer.printDwarfEnum("encoding", N->getEncoding(),
   1557                          dwarf::AttributeEncodingString);
   1558   Out << ")";
   1559 }
   1560 
   1561 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
   1562                                TypePrinting *TypePrinter, SlotTracker *Machine,
   1563                                const Module *Context) {
   1564   Out << "!DIDerivedType(";
   1565   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
   1566   Printer.printTag(N);
   1567   Printer.printString("name", N->getName());
   1568   Printer.printMetadata("scope", N->getRawScope());
   1569   Printer.printMetadata("file", N->getRawFile());
   1570   Printer.printInt("line", N->getLine());
   1571   Printer.printMetadata("baseType", N->getRawBaseType(),
   1572                         /* ShouldSkipNull */ false);
   1573   Printer.printInt("size", N->getSizeInBits());
   1574   Printer.printInt("align", N->getAlignInBits());
   1575   Printer.printInt("offset", N->getOffsetInBits());
   1576   Printer.printDIFlags("flags", N->getFlags());
   1577   Printer.printMetadata("extraData", N->getRawExtraData());
   1578   Out << ")";
   1579 }
   1580 
   1581 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
   1582                                  TypePrinting *TypePrinter,
   1583                                  SlotTracker *Machine, const Module *Context) {
   1584   Out << "!DICompositeType(";
   1585   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
   1586   Printer.printTag(N);
   1587   Printer.printString("name", N->getName());
   1588   Printer.printMetadata("scope", N->getRawScope());
   1589   Printer.printMetadata("file", N->getRawFile());
   1590   Printer.printInt("line", N->getLine());
   1591   Printer.printMetadata("baseType", N->getRawBaseType());
   1592   Printer.printInt("size", N->getSizeInBits());
   1593   Printer.printInt("align", N->getAlignInBits());
   1594   Printer.printInt("offset", N->getOffsetInBits());
   1595   Printer.printDIFlags("flags", N->getFlags());
   1596   Printer.printMetadata("elements", N->getRawElements());
   1597   Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
   1598                          dwarf::LanguageString);
   1599   Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
   1600   Printer.printMetadata("templateParams", N->getRawTemplateParams());
   1601   Printer.printString("identifier", N->getIdentifier());
   1602   Out << ")";
   1603 }
   1604 
   1605 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
   1606                                   TypePrinting *TypePrinter,
   1607                                   SlotTracker *Machine, const Module *Context) {
   1608   Out << "!DISubroutineType(";
   1609   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
   1610   Printer.printDIFlags("flags", N->getFlags());
   1611   Printer.printMetadata("types", N->getRawTypeArray(),
   1612                         /* ShouldSkipNull */ false);
   1613   Out << ")";
   1614 }
   1615 
   1616 static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
   1617                         SlotTracker *, const Module *) {
   1618   Out << "!DIFile(";
   1619   MDFieldPrinter Printer(Out);
   1620   Printer.printString("filename", N->getFilename(),
   1621                       /* ShouldSkipEmpty */ false);
   1622   Printer.printString("directory", N->getDirectory(),
   1623                       /* ShouldSkipEmpty */ false);
   1624   Out << ")";
   1625 }
   1626 
   1627 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
   1628                                TypePrinting *TypePrinter, SlotTracker *Machine,
   1629                                const Module *Context) {
   1630   Out << "!DICompileUnit(";
   1631   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
   1632   Printer.printDwarfEnum("language", N->getSourceLanguage(),
   1633                          dwarf::LanguageString, /* ShouldSkipZero */ false);
   1634   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
   1635   Printer.printString("producer", N->getProducer());
   1636   Printer.printBool("isOptimized", N->isOptimized());
   1637   Printer.printString("flags", N->getFlags());
   1638   Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
   1639                    /* ShouldSkipZero */ false);
   1640   Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
   1641   Printer.printInt("emissionKind", N->getEmissionKind(),
   1642                    /* ShouldSkipZero */ false);
   1643   Printer.printMetadata("enums", N->getRawEnumTypes());
   1644   Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
   1645   Printer.printMetadata("subprograms", N->getRawSubprograms());
   1646   Printer.printMetadata("globals", N->getRawGlobalVariables());
   1647   Printer.printMetadata("imports", N->getRawImportedEntities());
   1648   Printer.printMetadata("macros", N->getRawMacros());
   1649   Printer.printInt("dwoId", N->getDWOId());
   1650   Out << ")";
   1651 }
   1652 
   1653 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
   1654                               TypePrinting *TypePrinter, SlotTracker *Machine,
   1655                               const Module *Context) {
   1656   Out << "!DISubprogram(";
   1657   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
   1658   Printer.printString("name", N->getName());
   1659   Printer.printString("linkageName", N->getLinkageName());
   1660   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
   1661   Printer.printMetadata("file", N->getRawFile());
   1662   Printer.printInt("line", N->getLine());
   1663   Printer.printMetadata("type", N->getRawType());
   1664   Printer.printBool("isLocal", N->isLocalToUnit());
   1665   Printer.printBool("isDefinition", N->isDefinition());
   1666   Printer.printInt("scopeLine", N->getScopeLine());
   1667   Printer.printMetadata("containingType", N->getRawContainingType());
   1668   Printer.printDwarfEnum("virtuality", N->getVirtuality(),
   1669                          dwarf::VirtualityString);
   1670   Printer.printInt("virtualIndex", N->getVirtualIndex());
   1671   Printer.printDIFlags("flags", N->getFlags());
   1672   Printer.printBool("isOptimized", N->isOptimized());
   1673   Printer.printMetadata("templateParams", N->getRawTemplateParams());
   1674   Printer.printMetadata("declaration", N->getRawDeclaration());
   1675   Printer.printMetadata("variables", N->getRawVariables());
   1676   Out << ")";
   1677 }
   1678 
   1679 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
   1680                                 TypePrinting *TypePrinter, SlotTracker *Machine,
   1681                                 const Module *Context) {
   1682   Out << "!DILexicalBlock(";
   1683   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
   1684   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
   1685   Printer.printMetadata("file", N->getRawFile());
   1686   Printer.printInt("line", N->getLine());
   1687   Printer.printInt("column", N->getColumn());
   1688   Out << ")";
   1689 }
   1690 
   1691 static void writeDILexicalBlockFile(raw_ostream &Out,
   1692                                     const DILexicalBlockFile *N,
   1693                                     TypePrinting *TypePrinter,
   1694                                     SlotTracker *Machine,
   1695                                     const Module *Context) {
   1696   Out << "!DILexicalBlockFile(";
   1697   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
   1698   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
   1699   Printer.printMetadata("file", N->getRawFile());
   1700   Printer.printInt("discriminator", N->getDiscriminator(),
   1701                    /* ShouldSkipZero */ false);
   1702   Out << ")";
   1703 }
   1704 
   1705 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
   1706                              TypePrinting *TypePrinter, SlotTracker *Machine,
   1707                              const Module *Context) {
   1708   Out << "!DINamespace(";
   1709   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
   1710   Printer.printString("name", N->getName());
   1711   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
   1712   Printer.printMetadata("file", N->getRawFile());
   1713   Printer.printInt("line", N->getLine());
   1714   Out << ")";
   1715 }
   1716 
   1717 static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
   1718                          TypePrinting *TypePrinter, SlotTracker *Machine,
   1719                          const Module *Context) {
   1720   Out << "!DIMacro(";
   1721   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
   1722   Printer.printMacinfoType(N);
   1723   Printer.printInt("line", N->getLine());
   1724   Printer.printString("name", N->getName());
   1725   Printer.printString("value", N->getValue());
   1726   Out << ")";
   1727 }
   1728 
   1729 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
   1730                              TypePrinting *TypePrinter, SlotTracker *Machine,
   1731                              const Module *Context) {
   1732   Out << "!DIMacroFile(";
   1733   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
   1734   Printer.printInt("line", N->getLine());
   1735   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
   1736   Printer.printMetadata("nodes", N->getRawElements());
   1737   Out << ")";
   1738 }
   1739 
   1740 static void writeDIModule(raw_ostream &Out, const DIModule *N,
   1741                           TypePrinting *TypePrinter, SlotTracker *Machine,
   1742                           const Module *Context) {
   1743   Out << "!DIModule(";
   1744   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
   1745   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
   1746   Printer.printString("name", N->getName());
   1747   Printer.printString("configMacros", N->getConfigurationMacros());
   1748   Printer.printString("includePath", N->getIncludePath());
   1749   Printer.printString("isysroot", N->getISysRoot());
   1750   Out << ")";
   1751 }
   1752 
   1753 
   1754 static void writeDITemplateTypeParameter(raw_ostream &Out,
   1755                                          const DITemplateTypeParameter *N,
   1756                                          TypePrinting *TypePrinter,
   1757                                          SlotTracker *Machine,
   1758                                          const Module *Context) {
   1759   Out << "!DITemplateTypeParameter(";
   1760   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
   1761   Printer.printString("name", N->getName());
   1762   Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
   1763   Out << ")";
   1764 }
   1765 
   1766 static void writeDITemplateValueParameter(raw_ostream &Out,
   1767                                           const DITemplateValueParameter *N,
   1768                                           TypePrinting *TypePrinter,
   1769                                           SlotTracker *Machine,
   1770                                           const Module *Context) {
   1771   Out << "!DITemplateValueParameter(";
   1772   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
   1773   if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
   1774     Printer.printTag(N);
   1775   Printer.printString("name", N->getName());
   1776   Printer.printMetadata("type", N->getRawType());
   1777   Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
   1778   Out << ")";
   1779 }
   1780 
   1781 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
   1782                                   TypePrinting *TypePrinter,
   1783                                   SlotTracker *Machine, const Module *Context) {
   1784   Out << "!DIGlobalVariable(";
   1785   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
   1786   Printer.printString("name", N->getName());
   1787   Printer.printString("linkageName", N->getLinkageName());
   1788   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
   1789   Printer.printMetadata("file", N->getRawFile());
   1790   Printer.printInt("line", N->getLine());
   1791   Printer.printMetadata("type", N->getRawType());
   1792   Printer.printBool("isLocal", N->isLocalToUnit());
   1793   Printer.printBool("isDefinition", N->isDefinition());
   1794   Printer.printMetadata("variable", N->getRawVariable());
   1795   Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
   1796   Out << ")";
   1797 }
   1798 
   1799 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
   1800                                  TypePrinting *TypePrinter,
   1801                                  SlotTracker *Machine, const Module *Context) {
   1802   Out << "!DILocalVariable(";
   1803   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
   1804   Printer.printString("name", N->getName());
   1805   Printer.printInt("arg", N->getArg());
   1806   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
   1807   Printer.printMetadata("file", N->getRawFile());
   1808   Printer.printInt("line", N->getLine());
   1809   Printer.printMetadata("type", N->getRawType());
   1810   Printer.printDIFlags("flags", N->getFlags());
   1811   Out << ")";
   1812 }
   1813 
   1814 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
   1815                               TypePrinting *TypePrinter, SlotTracker *Machine,
   1816                               const Module *Context) {
   1817   Out << "!DIExpression(";
   1818   FieldSeparator FS;
   1819   if (N->isValid()) {
   1820     for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) {
   1821       const char *OpStr = dwarf::OperationEncodingString(I->getOp());
   1822       assert(OpStr && "Expected valid opcode");
   1823 
   1824       Out << FS << OpStr;
   1825       for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A)
   1826         Out << FS << I->getArg(A);
   1827     }
   1828   } else {
   1829     for (const auto &I : N->getElements())
   1830       Out << FS << I;
   1831   }
   1832   Out << ")";
   1833 }
   1834 
   1835 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
   1836                                 TypePrinting *TypePrinter, SlotTracker *Machine,
   1837                                 const Module *Context) {
   1838   Out << "!DIObjCProperty(";
   1839   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
   1840   Printer.printString("name", N->getName());
   1841   Printer.printMetadata("file", N->getRawFile());
   1842   Printer.printInt("line", N->getLine());
   1843   Printer.printString("setter", N->getSetterName());
   1844   Printer.printString("getter", N->getGetterName());
   1845   Printer.printInt("attributes", N->getAttributes());
   1846   Printer.printMetadata("type", N->getRawType());
   1847   Out << ")";
   1848 }
   1849 
   1850 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
   1851                                   TypePrinting *TypePrinter,
   1852                                   SlotTracker *Machine, const Module *Context) {
   1853   Out << "!DIImportedEntity(";
   1854   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
   1855   Printer.printTag(N);
   1856   Printer.printString("name", N->getName());
   1857   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
   1858   Printer.printMetadata("entity", N->getRawEntity());
   1859   Printer.printInt("line", N->getLine());
   1860   Out << ")";
   1861 }
   1862 
   1863 
   1864 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
   1865                                     TypePrinting *TypePrinter,
   1866                                     SlotTracker *Machine,
   1867                                     const Module *Context) {
   1868   if (Node->isDistinct())
   1869     Out << "distinct ";
   1870   else if (Node->isTemporary())
   1871     Out << "<temporary!> "; // Handle broken code.
   1872 
   1873   switch (Node->getMetadataID()) {
   1874   default:
   1875     llvm_unreachable("Expected uniquable MDNode");
   1876 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
   1877   case Metadata::CLASS##Kind:                                                  \
   1878     write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context);       \
   1879     break;
   1880 #include "llvm/IR/Metadata.def"
   1881   }
   1882 }
   1883 
   1884 // Full implementation of printing a Value as an operand with support for
   1885 // TypePrinting, etc.
   1886 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
   1887                                    TypePrinting *TypePrinter,
   1888                                    SlotTracker *Machine,
   1889                                    const Module *Context) {
   1890   if (V->hasName()) {
   1891     PrintLLVMName(Out, V);
   1892     return;
   1893   }
   1894 
   1895   const Constant *CV = dyn_cast<Constant>(V);
   1896   if (CV && !isa<GlobalValue>(CV)) {
   1897     assert(TypePrinter && "Constants require TypePrinting!");
   1898     WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
   1899     return;
   1900   }
   1901 
   1902   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
   1903     Out << "asm ";
   1904     if (IA->hasSideEffects())
   1905       Out << "sideeffect ";
   1906     if (IA->isAlignStack())
   1907       Out << "alignstack ";
   1908     // We don't emit the AD_ATT dialect as it's the assumed default.
   1909     if (IA->getDialect() == InlineAsm::AD_Intel)
   1910       Out << "inteldialect ";
   1911     Out << '"';
   1912     PrintEscapedString(IA->getAsmString(), Out);
   1913     Out << "\", \"";
   1914     PrintEscapedString(IA->getConstraintString(), Out);
   1915     Out << '"';
   1916     return;
   1917   }
   1918 
   1919   if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
   1920     WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
   1921                            Context, /* FromValue */ true);
   1922     return;
   1923   }
   1924 
   1925   char Prefix = '%';
   1926   int Slot;
   1927   // If we have a SlotTracker, use it.
   1928   if (Machine) {
   1929     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
   1930       Slot = Machine->getGlobalSlot(GV);
   1931       Prefix = '@';
   1932     } else {
   1933       Slot = Machine->getLocalSlot(V);
   1934 
   1935       // If the local value didn't succeed, then we may be referring to a value
   1936       // from a different function.  Translate it, as this can happen when using
   1937       // address of blocks.
   1938       if (Slot == -1)
   1939         if ((Machine = createSlotTracker(V))) {
   1940           Slot = Machine->getLocalSlot(V);
   1941           delete Machine;
   1942         }
   1943     }
   1944   } else if ((Machine = createSlotTracker(V))) {
   1945     // Otherwise, create one to get the # and then destroy it.
   1946     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
   1947       Slot = Machine->getGlobalSlot(GV);
   1948       Prefix = '@';
   1949     } else {
   1950       Slot = Machine->getLocalSlot(V);
   1951     }
   1952     delete Machine;
   1953     Machine = nullptr;
   1954   } else {
   1955     Slot = -1;
   1956   }
   1957 
   1958   if (Slot != -1)
   1959     Out << Prefix << Slot;
   1960   else
   1961     Out << "<badref>";
   1962 }
   1963 
   1964 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
   1965                                    TypePrinting *TypePrinter,
   1966                                    SlotTracker *Machine, const Module *Context,
   1967                                    bool FromValue) {
   1968   if (const MDNode *N = dyn_cast<MDNode>(MD)) {
   1969     std::unique_ptr<SlotTracker> MachineStorage;
   1970     if (!Machine) {
   1971       MachineStorage = make_unique<SlotTracker>(Context);
   1972       Machine = MachineStorage.get();
   1973     }
   1974     int Slot = Machine->getMetadataSlot(N);
   1975     if (Slot == -1)
   1976       // Give the pointer value instead of "badref", since this comes up all
   1977       // the time when debugging.
   1978       Out << "<" << N << ">";
   1979     else
   1980       Out << '!' << Slot;
   1981     return;
   1982   }
   1983 
   1984   if (const MDString *MDS = dyn_cast<MDString>(MD)) {
   1985     Out << "!\"";
   1986     PrintEscapedString(MDS->getString(), Out);
   1987     Out << '"';
   1988     return;
   1989   }
   1990 
   1991   auto *V = cast<ValueAsMetadata>(MD);
   1992   assert(TypePrinter && "TypePrinter required for metadata values");
   1993   assert((FromValue || !isa<LocalAsMetadata>(V)) &&
   1994          "Unexpected function-local metadata outside of value argument");
   1995 
   1996   TypePrinter->print(V->getValue()->getType(), Out);
   1997   Out << ' ';
   1998   WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
   1999 }
   2000 
   2001 namespace {
   2002 class AssemblyWriter {
   2003   formatted_raw_ostream &Out;
   2004   const Module *TheModule;
   2005   std::unique_ptr<SlotTracker> SlotTrackerStorage;
   2006   SlotTracker &Machine;
   2007   TypePrinting TypePrinter;
   2008   AssemblyAnnotationWriter *AnnotationWriter;
   2009   SetVector<const Comdat *> Comdats;
   2010   bool IsForDebug;
   2011   bool ShouldPreserveUseListOrder;
   2012   UseListOrderStack UseListOrders;
   2013   SmallVector<StringRef, 8> MDNames;
   2014 
   2015 public:
   2016   /// Construct an AssemblyWriter with an external SlotTracker
   2017   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
   2018                  AssemblyAnnotationWriter *AAW, bool IsForDebug,
   2019                  bool ShouldPreserveUseListOrder = false);
   2020 
   2021   void printMDNodeBody(const MDNode *MD);
   2022   void printNamedMDNode(const NamedMDNode *NMD);
   2023 
   2024   void printModule(const Module *M);
   2025 
   2026   void writeOperand(const Value *Op, bool PrintType);
   2027   void writeParamOperand(const Value *Operand, AttributeSet Attrs,unsigned Idx);
   2028   void writeOperandBundles(ImmutableCallSite CS);
   2029   void writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope);
   2030   void writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
   2031                           AtomicOrdering FailureOrdering,
   2032                           SynchronizationScope SynchScope);
   2033 
   2034   void writeAllMDNodes();
   2035   void writeMDNode(unsigned Slot, const MDNode *Node);
   2036   void writeAllAttributeGroups();
   2037 
   2038   void printTypeIdentities();
   2039   void printGlobal(const GlobalVariable *GV);
   2040   void printAlias(const GlobalAlias *GV);
   2041   void printComdat(const Comdat *C);
   2042   void printFunction(const Function *F);
   2043   void printArgument(const Argument *FA, AttributeSet Attrs, unsigned Idx);
   2044   void printBasicBlock(const BasicBlock *BB);
   2045   void printInstructionLine(const Instruction &I);
   2046   void printInstruction(const Instruction &I);
   2047 
   2048   void printUseListOrder(const UseListOrder &Order);
   2049   void printUseLists(const Function *F);
   2050 
   2051 private:
   2052   /// \brief Print out metadata attachments.
   2053   void printMetadataAttachments(
   2054       const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
   2055       StringRef Separator);
   2056 
   2057   // printInfoComment - Print a little comment after the instruction indicating
   2058   // which slot it occupies.
   2059   void printInfoComment(const Value &V);
   2060 
   2061   // printGCRelocateComment - print comment after call to the gc.relocate
   2062   // intrinsic indicating base and derived pointer names.
   2063   void printGCRelocateComment(const Value &V);
   2064 };
   2065 } // namespace
   2066 
   2067 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
   2068                                const Module *M, AssemblyAnnotationWriter *AAW,
   2069                                bool IsForDebug, bool ShouldPreserveUseListOrder)
   2070     : Out(o), TheModule(M), Machine(Mac), AnnotationWriter(AAW),
   2071       IsForDebug(IsForDebug),
   2072       ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
   2073   if (!TheModule)
   2074     return;
   2075   TypePrinter.incorporateTypes(*TheModule);
   2076   for (const Function &F : *TheModule)
   2077     if (const Comdat *C = F.getComdat())
   2078       Comdats.insert(C);
   2079   for (const GlobalVariable &GV : TheModule->globals())
   2080     if (const Comdat *C = GV.getComdat())
   2081       Comdats.insert(C);
   2082 }
   2083 
   2084 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
   2085   if (!Operand) {
   2086     Out << "<null operand!>";
   2087     return;
   2088   }
   2089   if (PrintType) {
   2090     TypePrinter.print(Operand->getType(), Out);
   2091     Out << ' ';
   2092   }
   2093   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
   2094 }
   2095 
   2096 void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
   2097                                  SynchronizationScope SynchScope) {
   2098   if (Ordering == NotAtomic)
   2099     return;
   2100 
   2101   switch (SynchScope) {
   2102   case SingleThread: Out << " singlethread"; break;
   2103   case CrossThread: break;
   2104   }
   2105 
   2106   switch (Ordering) {
   2107   default: Out << " <bad ordering " << int(Ordering) << ">"; break;
   2108   case Unordered: Out << " unordered"; break;
   2109   case Monotonic: Out << " monotonic"; break;
   2110   case Acquire: Out << " acquire"; break;
   2111   case Release: Out << " release"; break;
   2112   case AcquireRelease: Out << " acq_rel"; break;
   2113   case SequentiallyConsistent: Out << " seq_cst"; break;
   2114   }
   2115 }
   2116 
   2117 void AssemblyWriter::writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
   2118                                         AtomicOrdering FailureOrdering,
   2119                                         SynchronizationScope SynchScope) {
   2120   assert(SuccessOrdering != NotAtomic && FailureOrdering != NotAtomic);
   2121 
   2122   switch (SynchScope) {
   2123   case SingleThread: Out << " singlethread"; break;
   2124   case CrossThread: break;
   2125   }
   2126 
   2127   switch (SuccessOrdering) {
   2128   default: Out << " <bad ordering " << int(SuccessOrdering) << ">"; break;
   2129   case Unordered: Out << " unordered"; break;
   2130   case Monotonic: Out << " monotonic"; break;
   2131   case Acquire: Out << " acquire"; break;
   2132   case Release: Out << " release"; break;
   2133   case AcquireRelease: Out << " acq_rel"; break;
   2134   case SequentiallyConsistent: Out << " seq_cst"; break;
   2135   }
   2136 
   2137   switch (FailureOrdering) {
   2138   default: Out << " <bad ordering " << int(FailureOrdering) << ">"; break;
   2139   case Unordered: Out << " unordered"; break;
   2140   case Monotonic: Out << " monotonic"; break;
   2141   case Acquire: Out << " acquire"; break;
   2142   case Release: Out << " release"; break;
   2143   case AcquireRelease: Out << " acq_rel"; break;
   2144   case SequentiallyConsistent: Out << " seq_cst"; break;
   2145   }
   2146 }
   2147 
   2148 void AssemblyWriter::writeParamOperand(const Value *Operand,
   2149                                        AttributeSet Attrs, unsigned Idx) {
   2150   if (!Operand) {
   2151     Out << "<null operand!>";
   2152     return;
   2153   }
   2154 
   2155   // Print the type
   2156   TypePrinter.print(Operand->getType(), Out);
   2157   // Print parameter attributes list
   2158   if (Attrs.hasAttributes(Idx))
   2159     Out << ' ' << Attrs.getAsString(Idx);
   2160   Out << ' ';
   2161   // Print the operand
   2162   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
   2163 }
   2164 
   2165 void AssemblyWriter::writeOperandBundles(ImmutableCallSite CS) {
   2166   if (!CS.hasOperandBundles())
   2167     return;
   2168 
   2169   Out << " [ ";
   2170 
   2171   bool FirstBundle = true;
   2172   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
   2173     OperandBundleUse BU = CS.getOperandBundleAt(i);
   2174 
   2175     if (!FirstBundle)
   2176       Out << ", ";
   2177     FirstBundle = false;
   2178 
   2179     Out << '"';
   2180     PrintEscapedString(BU.getTagName(), Out);
   2181     Out << '"';
   2182 
   2183     Out << '(';
   2184 
   2185     bool FirstInput = true;
   2186     for (const auto &Input : BU.Inputs) {
   2187       if (!FirstInput)
   2188         Out << ", ";
   2189       FirstInput = false;
   2190 
   2191       TypePrinter.print(Input->getType(), Out);
   2192       Out << " ";
   2193       WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule);
   2194     }
   2195 
   2196     Out << ')';
   2197   }
   2198 
   2199   Out << " ]";
   2200 }
   2201 
   2202 void AssemblyWriter::printModule(const Module *M) {
   2203   Machine.initialize();
   2204 
   2205   if (ShouldPreserveUseListOrder)
   2206     UseListOrders = predictUseListOrder(M);
   2207 
   2208   if (!M->getModuleIdentifier().empty() &&
   2209       // Don't print the ID if it will start a new line (which would
   2210       // require a comment char before it).
   2211       M->getModuleIdentifier().find('\n') == std::string::npos)
   2212     Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
   2213 
   2214   const std::string &DL = M->getDataLayoutStr();
   2215   if (!DL.empty())
   2216     Out << "target datalayout = \"" << DL << "\"\n";
   2217   if (!M->getTargetTriple().empty())
   2218     Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
   2219 
   2220   if (!M->getModuleInlineAsm().empty()) {
   2221     Out << '\n';
   2222 
   2223     // Split the string into lines, to make it easier to read the .ll file.
   2224     StringRef Asm = M->getModuleInlineAsm();
   2225     do {
   2226       StringRef Front;
   2227       std::tie(Front, Asm) = Asm.split('\n');
   2228 
   2229       // We found a newline, print the portion of the asm string from the
   2230       // last newline up to this newline.
   2231       Out << "module asm \"";
   2232       PrintEscapedString(Front, Out);
   2233       Out << "\"\n";
   2234     } while (!Asm.empty());
   2235   }
   2236 
   2237   printTypeIdentities();
   2238 
   2239   // Output all comdats.
   2240   if (!Comdats.empty())
   2241     Out << '\n';
   2242   for (const Comdat *C : Comdats) {
   2243     printComdat(C);
   2244     if (C != Comdats.back())
   2245       Out << '\n';
   2246   }
   2247 
   2248   // Output all globals.
   2249   if (!M->global_empty()) Out << '\n';
   2250   for (const GlobalVariable &GV : M->globals()) {
   2251     printGlobal(&GV); Out << '\n';
   2252   }
   2253 
   2254   // Output all aliases.
   2255   if (!M->alias_empty()) Out << "\n";
   2256   for (const GlobalAlias &GA : M->aliases())
   2257     printAlias(&GA);
   2258 
   2259   // Output global use-lists.
   2260   printUseLists(nullptr);
   2261 
   2262   // Output all of the functions.
   2263   for (const Function &F : *M)
   2264     printFunction(&F);
   2265   assert(UseListOrders.empty() && "All use-lists should have been consumed");
   2266 
   2267   // Output all attribute groups.
   2268   if (!Machine.as_empty()) {
   2269     Out << '\n';
   2270     writeAllAttributeGroups();
   2271   }
   2272 
   2273   // Output named metadata.
   2274   if (!M->named_metadata_empty()) Out << '\n';
   2275 
   2276   for (const NamedMDNode &Node : M->named_metadata())
   2277     printNamedMDNode(&Node);
   2278 
   2279   // Output metadata.
   2280   if (!Machine.mdn_empty()) {
   2281     Out << '\n';
   2282     writeAllMDNodes();
   2283   }
   2284 }
   2285 
   2286 static void printMetadataIdentifier(StringRef Name,
   2287                                     formatted_raw_ostream &Out) {
   2288   if (Name.empty()) {
   2289     Out << "<empty name> ";
   2290   } else {
   2291     if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
   2292         Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
   2293       Out << Name[0];
   2294     else
   2295       Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
   2296     for (unsigned i = 1, e = Name.size(); i != e; ++i) {
   2297       unsigned char C = Name[i];
   2298       if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
   2299           C == '.' || C == '_')
   2300         Out << C;
   2301       else
   2302         Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
   2303     }
   2304   }
   2305 }
   2306 
   2307 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
   2308   Out << '!';
   2309   printMetadataIdentifier(NMD->getName(), Out);
   2310   Out << " = !{";
   2311   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
   2312     if (i)
   2313       Out << ", ";
   2314     int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
   2315     if (Slot == -1)
   2316       Out << "<badref>";
   2317     else
   2318       Out << '!' << Slot;
   2319   }
   2320   Out << "}\n";
   2321 }
   2322 
   2323 static void PrintLinkage(GlobalValue::LinkageTypes LT,
   2324                          formatted_raw_ostream &Out) {
   2325   switch (LT) {
   2326   case GlobalValue::ExternalLinkage: break;
   2327   case GlobalValue::PrivateLinkage:       Out << "private ";        break;
   2328   case GlobalValue::InternalLinkage:      Out << "internal ";       break;
   2329   case GlobalValue::LinkOnceAnyLinkage:   Out << "linkonce ";       break;
   2330   case GlobalValue::LinkOnceODRLinkage:   Out << "linkonce_odr ";   break;
   2331   case GlobalValue::WeakAnyLinkage:       Out << "weak ";           break;
   2332   case GlobalValue::WeakODRLinkage:       Out << "weak_odr ";       break;
   2333   case GlobalValue::CommonLinkage:        Out << "common ";         break;
   2334   case GlobalValue::AppendingLinkage:     Out << "appending ";      break;
   2335   case GlobalValue::ExternalWeakLinkage:  Out << "extern_weak ";    break;
   2336   case GlobalValue::AvailableExternallyLinkage:
   2337     Out << "available_externally ";
   2338     break;
   2339   }
   2340 }
   2341 
   2342 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
   2343                             formatted_raw_ostream &Out) {
   2344   switch (Vis) {
   2345   case GlobalValue::DefaultVisibility: break;
   2346   case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
   2347   case GlobalValue::ProtectedVisibility: Out << "protected "; break;
   2348   }
   2349 }
   2350 
   2351 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
   2352                                  formatted_raw_ostream &Out) {
   2353   switch (SCT) {
   2354   case GlobalValue::DefaultStorageClass: break;
   2355   case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
   2356   case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
   2357   }
   2358 }
   2359 
   2360 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
   2361                                   formatted_raw_ostream &Out) {
   2362   switch (TLM) {
   2363     case GlobalVariable::NotThreadLocal:
   2364       break;
   2365     case GlobalVariable::GeneralDynamicTLSModel:
   2366       Out << "thread_local ";
   2367       break;
   2368     case GlobalVariable::LocalDynamicTLSModel:
   2369       Out << "thread_local(localdynamic) ";
   2370       break;
   2371     case GlobalVariable::InitialExecTLSModel:
   2372       Out << "thread_local(initialexec) ";
   2373       break;
   2374     case GlobalVariable::LocalExecTLSModel:
   2375       Out << "thread_local(localexec) ";
   2376       break;
   2377   }
   2378 }
   2379 
   2380 static void maybePrintComdat(formatted_raw_ostream &Out,
   2381                              const GlobalObject &GO) {
   2382   const Comdat *C = GO.getComdat();
   2383   if (!C)
   2384     return;
   2385 
   2386   if (isa<GlobalVariable>(GO))
   2387     Out << ',';
   2388   Out << " comdat";
   2389 
   2390   if (GO.getName() == C->getName())
   2391     return;
   2392 
   2393   Out << '(';
   2394   PrintLLVMName(Out, C->getName(), ComdatPrefix);
   2395   Out << ')';
   2396 }
   2397 
   2398 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
   2399   if (GV->isMaterializable())
   2400     Out << "; Materializable\n";
   2401 
   2402   WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
   2403   Out << " = ";
   2404 
   2405   if (!GV->hasInitializer() && GV->hasExternalLinkage())
   2406     Out << "external ";
   2407 
   2408   PrintLinkage(GV->getLinkage(), Out);
   2409   PrintVisibility(GV->getVisibility(), Out);
   2410   PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
   2411   PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
   2412   if (GV->hasUnnamedAddr())
   2413     Out << "unnamed_addr ";
   2414 
   2415   if (unsigned AddressSpace = GV->getType()->getAddressSpace())
   2416     Out << "addrspace(" << AddressSpace << ") ";
   2417   if (GV->isExternallyInitialized()) Out << "externally_initialized ";
   2418   Out << (GV->isConstant() ? "constant " : "global ");
   2419   TypePrinter.print(GV->getType()->getElementType(), Out);
   2420 
   2421   if (GV->hasInitializer()) {
   2422     Out << ' ';
   2423     writeOperand(GV->getInitializer(), false);
   2424   }
   2425 
   2426   if (GV->hasSection()) {
   2427     Out << ", section \"";
   2428     PrintEscapedString(GV->getSection(), Out);
   2429     Out << '"';
   2430   }
   2431   maybePrintComdat(Out, *GV);
   2432   if (GV->getAlignment())
   2433     Out << ", align " << GV->getAlignment();
   2434 
   2435   printInfoComment(*GV);
   2436 }
   2437 
   2438 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
   2439   if (GA->isMaterializable())
   2440     Out << "; Materializable\n";
   2441 
   2442   WriteAsOperandInternal(Out, GA, &TypePrinter, &Machine, GA->getParent());
   2443   Out << " = ";
   2444 
   2445   PrintLinkage(GA->getLinkage(), Out);
   2446   PrintVisibility(GA->getVisibility(), Out);
   2447   PrintDLLStorageClass(GA->getDLLStorageClass(), Out);
   2448   PrintThreadLocalModel(GA->getThreadLocalMode(), Out);
   2449   if (GA->hasUnnamedAddr())
   2450     Out << "unnamed_addr ";
   2451 
   2452   Out << "alias ";
   2453 
   2454   TypePrinter.print(GA->getValueType(), Out);
   2455 
   2456   Out << ", ";
   2457 
   2458   const Constant *Aliasee = GA->getAliasee();
   2459 
   2460   if (!Aliasee) {
   2461     TypePrinter.print(GA->getType(), Out);
   2462     Out << " <<NULL ALIASEE>>";
   2463   } else {
   2464     writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
   2465   }
   2466 
   2467   printInfoComment(*GA);
   2468   Out << '\n';
   2469 }
   2470 
   2471 void AssemblyWriter::printComdat(const Comdat *C) {
   2472   C->print(Out);
   2473 }
   2474 
   2475 void AssemblyWriter::printTypeIdentities() {
   2476   if (TypePrinter.NumberedTypes.empty() &&
   2477       TypePrinter.NamedTypes.empty())
   2478     return;
   2479 
   2480   Out << '\n';
   2481 
   2482   // We know all the numbers that each type is used and we know that it is a
   2483   // dense assignment.  Convert the map to an index table.
   2484   std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
   2485   for (DenseMap<StructType*, unsigned>::iterator I =
   2486        TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
   2487        I != E; ++I) {
   2488     assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
   2489     NumberedTypes[I->second] = I->first;
   2490   }
   2491 
   2492   // Emit all numbered types.
   2493   for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
   2494     Out << '%' << i << " = type ";
   2495 
   2496     // Make sure we print out at least one level of the type structure, so
   2497     // that we do not get %2 = type %2
   2498     TypePrinter.printStructBody(NumberedTypes[i], Out);
   2499     Out << '\n';
   2500   }
   2501 
   2502   for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
   2503     PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
   2504     Out << " = type ";
   2505 
   2506     // Make sure we print out at least one level of the type structure, so
   2507     // that we do not get %FILE = type %FILE
   2508     TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
   2509     Out << '\n';
   2510   }
   2511 }
   2512 
   2513 /// printFunction - Print all aspects of a function.
   2514 ///
   2515 void AssemblyWriter::printFunction(const Function *F) {
   2516   // Print out the return type and name.
   2517   Out << '\n';
   2518 
   2519   if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
   2520 
   2521   if (F->isMaterializable())
   2522     Out << "; Materializable\n";
   2523 
   2524   const AttributeSet &Attrs = F->getAttributes();
   2525   if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) {
   2526     AttributeSet AS = Attrs.getFnAttributes();
   2527     std::string AttrStr;
   2528 
   2529     unsigned Idx = 0;
   2530     for (unsigned E = AS.getNumSlots(); Idx != E; ++Idx)
   2531       if (AS.getSlotIndex(Idx) == AttributeSet::FunctionIndex)
   2532         break;
   2533 
   2534     for (AttributeSet::iterator I = AS.begin(Idx), E = AS.end(Idx);
   2535          I != E; ++I) {
   2536       Attribute Attr = *I;
   2537       if (!Attr.isStringAttribute()) {
   2538         if (!AttrStr.empty()) AttrStr += ' ';
   2539         AttrStr += Attr.getAsString();
   2540       }
   2541     }
   2542 
   2543     if (!AttrStr.empty())
   2544       Out << "; Function Attrs: " << AttrStr << '\n';
   2545   }
   2546 
   2547   if (F->isDeclaration())
   2548     Out << "declare ";
   2549   else
   2550     Out << "define ";
   2551 
   2552   PrintLinkage(F->getLinkage(), Out);
   2553   PrintVisibility(F->getVisibility(), Out);
   2554   PrintDLLStorageClass(F->getDLLStorageClass(), Out);
   2555 
   2556   // Print the calling convention.
   2557   if (F->getCallingConv() != CallingConv::C) {
   2558     PrintCallingConv(F->getCallingConv(), Out);
   2559     Out << " ";
   2560   }
   2561 
   2562   FunctionType *FT = F->getFunctionType();
   2563   if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
   2564     Out <<  Attrs.getAsString(AttributeSet::ReturnIndex) << ' ';
   2565   TypePrinter.print(F->getReturnType(), Out);
   2566   Out << ' ';
   2567   WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
   2568   Out << '(';
   2569   Machine.incorporateFunction(F);
   2570 
   2571   // Loop over the arguments, printing them...
   2572   if (F->isDeclaration() && !IsForDebug) {
   2573     // We're only interested in the type here - don't print argument names.
   2574     for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
   2575       // Insert commas as we go... the first arg doesn't get a comma
   2576       if (I)
   2577         Out << ", ";
   2578       // Output type...
   2579       TypePrinter.print(FT->getParamType(I), Out);
   2580 
   2581       if (Attrs.hasAttributes(I + 1))
   2582         Out << ' ' << Attrs.getAsString(I + 1);
   2583     }
   2584   } else {
   2585     // The arguments are meaningful here, print them in detail.
   2586     unsigned Idx = 1;
   2587     for (const Argument &Arg : F->args()) {
   2588       // Insert commas as we go... the first arg doesn't get a comma
   2589       if (Idx != 1)
   2590         Out << ", ";
   2591       printArgument(&Arg, Attrs, Idx++);
   2592     }
   2593   }
   2594 
   2595   // Finish printing arguments...
   2596   if (FT->isVarArg()) {
   2597     if (FT->getNumParams()) Out << ", ";
   2598     Out << "...";  // Output varargs portion of signature!
   2599   }
   2600   Out << ')';
   2601   if (F->hasUnnamedAddr())
   2602     Out << " unnamed_addr";
   2603   if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
   2604     Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
   2605   if (F->hasSection()) {
   2606     Out << " section \"";
   2607     PrintEscapedString(F->getSection(), Out);
   2608     Out << '"';
   2609   }
   2610   maybePrintComdat(Out, *F);
   2611   if (F->getAlignment())
   2612     Out << " align " << F->getAlignment();
   2613   if (F->hasGC())
   2614     Out << " gc \"" << F->getGC() << '"';
   2615   if (F->hasPrefixData()) {
   2616     Out << " prefix ";
   2617     writeOperand(F->getPrefixData(), true);
   2618   }
   2619   if (F->hasPrologueData()) {
   2620     Out << " prologue ";
   2621     writeOperand(F->getPrologueData(), true);
   2622   }
   2623   if (F->hasPersonalityFn()) {
   2624     Out << " personality ";
   2625     writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
   2626   }
   2627 
   2628   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
   2629   F->getAllMetadata(MDs);
   2630   printMetadataAttachments(MDs, " ");
   2631 
   2632   if (F->isDeclaration()) {
   2633     Out << '\n';
   2634   } else {
   2635     Out << " {";
   2636     // Output all of the function's basic blocks.
   2637     for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
   2638       printBasicBlock(&*I);
   2639 
   2640     // Output the function's use-lists.
   2641     printUseLists(F);
   2642 
   2643     Out << "}\n";
   2644   }
   2645 
   2646   Machine.purgeFunction();
   2647 }
   2648 
   2649 /// printArgument - This member is called for every argument that is passed into
   2650 /// the function.  Simply print it out
   2651 ///
   2652 void AssemblyWriter::printArgument(const Argument *Arg,
   2653                                    AttributeSet Attrs, unsigned Idx) {
   2654   // Output type...
   2655   TypePrinter.print(Arg->getType(), Out);
   2656 
   2657   // Output parameter attributes list
   2658   if (Attrs.hasAttributes(Idx))
   2659     Out << ' ' << Attrs.getAsString(Idx);
   2660 
   2661   // Output name, if available...
   2662   if (Arg->hasName()) {
   2663     Out << ' ';
   2664     PrintLLVMName(Out, Arg);
   2665   }
   2666 }
   2667 
   2668 /// printBasicBlock - This member is called for each basic block in a method.
   2669 ///
   2670 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
   2671   if (BB->hasName()) {              // Print out the label if it exists...
   2672     Out << "\n";
   2673     PrintLLVMName(Out, BB->getName(), LabelPrefix);
   2674     Out << ':';
   2675   } else if (!BB->use_empty()) {      // Don't print block # of no uses...
   2676     Out << "\n; <label>:";
   2677     int Slot = Machine.getLocalSlot(BB);
   2678     if (Slot != -1)
   2679       Out << Slot;
   2680     else
   2681       Out << "<badref>";
   2682   }
   2683 
   2684   if (!BB->getParent()) {
   2685     Out.PadToColumn(50);
   2686     Out << "; Error: Block without parent!";
   2687   } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
   2688     // Output predecessors for the block.
   2689     Out.PadToColumn(50);
   2690     Out << ";";
   2691     const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
   2692 
   2693     if (PI == PE) {
   2694       Out << " No predecessors!";
   2695     } else {
   2696       Out << " preds = ";
   2697       writeOperand(*PI, false);
   2698       for (++PI; PI != PE; ++PI) {
   2699         Out << ", ";
   2700         writeOperand(*PI, false);
   2701       }
   2702     }
   2703   }
   2704 
   2705   Out << "\n";
   2706 
   2707   if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
   2708 
   2709   // Output all of the instructions in the basic block...
   2710   for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
   2711     printInstructionLine(*I);
   2712   }
   2713 
   2714   if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
   2715 }
   2716 
   2717 /// printInstructionLine - Print an instruction and a newline character.
   2718 void AssemblyWriter::printInstructionLine(const Instruction &I) {
   2719   printInstruction(I);
   2720   Out << '\n';
   2721 }
   2722 
   2723 /// printGCRelocateComment - print comment after call to the gc.relocate
   2724 /// intrinsic indicating base and derived pointer names.
   2725 void AssemblyWriter::printGCRelocateComment(const Value &V) {
   2726   assert(isGCRelocate(&V));
   2727   GCRelocateOperands GCOps(cast<Instruction>(&V));
   2728 
   2729   Out << " ; (";
   2730   writeOperand(GCOps.getBasePtr(), false);
   2731   Out << ", ";
   2732   writeOperand(GCOps.getDerivedPtr(), false);
   2733   Out << ")";
   2734 }
   2735 
   2736 /// printInfoComment - Print a little comment after the instruction indicating
   2737 /// which slot it occupies.
   2738 ///
   2739 void AssemblyWriter::printInfoComment(const Value &V) {
   2740   if (isGCRelocate(&V))
   2741     printGCRelocateComment(V);
   2742 
   2743   if (AnnotationWriter)
   2744     AnnotationWriter->printInfoComment(V, Out);
   2745 }
   2746 
   2747 // This member is called for each Instruction in a function..
   2748 void AssemblyWriter::printInstruction(const Instruction &I) {
   2749   if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
   2750 
   2751   // Print out indentation for an instruction.
   2752   Out << "  ";
   2753 
   2754   // Print out name if it exists...
   2755   if (I.hasName()) {
   2756     PrintLLVMName(Out, &I);
   2757     Out << " = ";
   2758   } else if (!I.getType()->isVoidTy()) {
   2759     // Print out the def slot taken.
   2760     int SlotNum = Machine.getLocalSlot(&I);
   2761     if (SlotNum == -1)
   2762       Out << "<badref> = ";
   2763     else
   2764       Out << '%' << SlotNum << " = ";
   2765   }
   2766 
   2767   if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
   2768     if (CI->isMustTailCall())
   2769       Out << "musttail ";
   2770     else if (CI->isTailCall())
   2771       Out << "tail ";
   2772     else if (CI->isNoTailCall())
   2773       Out << "notail ";
   2774   }
   2775 
   2776   // Print out the opcode...
   2777   Out << I.getOpcodeName();
   2778 
   2779   // If this is an atomic load or store, print out the atomic marker.
   2780   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
   2781       (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
   2782     Out << " atomic";
   2783 
   2784   if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
   2785     Out << " weak";
   2786 
   2787   // If this is a volatile operation, print out the volatile marker.
   2788   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
   2789       (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
   2790       (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
   2791       (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
   2792     Out << " volatile";
   2793 
   2794   // Print out optimization information.
   2795   WriteOptimizationInfo(Out, &I);
   2796 
   2797   // Print out the compare instruction predicates
   2798   if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
   2799     Out << ' ' << getPredicateText(CI->getPredicate());
   2800 
   2801   // Print out the atomicrmw operation
   2802   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
   2803     writeAtomicRMWOperation(Out, RMWI->getOperation());
   2804 
   2805   // Print out the type of the operands...
   2806   const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
   2807 
   2808   // Special case conditional branches to swizzle the condition out to the front
   2809   if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
   2810     const BranchInst &BI(cast<BranchInst>(I));
   2811     Out << ' ';
   2812     writeOperand(BI.getCondition(), true);
   2813     Out << ", ";
   2814     writeOperand(BI.getSuccessor(0), true);
   2815     Out << ", ";
   2816     writeOperand(BI.getSuccessor(1), true);
   2817 
   2818   } else if (isa<SwitchInst>(I)) {
   2819     const SwitchInst& SI(cast<SwitchInst>(I));
   2820     // Special case switch instruction to get formatting nice and correct.
   2821     Out << ' ';
   2822     writeOperand(SI.getCondition(), true);
   2823     Out << ", ";
   2824     writeOperand(SI.getDefaultDest(), true);
   2825     Out << " [";
   2826     for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
   2827          i != e; ++i) {
   2828       Out << "\n    ";
   2829       writeOperand(i.getCaseValue(), true);
   2830       Out << ", ";
   2831       writeOperand(i.getCaseSuccessor(), true);
   2832     }
   2833     Out << "\n  ]";
   2834   } else if (isa<IndirectBrInst>(I)) {
   2835     // Special case indirectbr instruction to get formatting nice and correct.
   2836     Out << ' ';
   2837     writeOperand(Operand, true);
   2838     Out << ", [";
   2839 
   2840     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
   2841       if (i != 1)
   2842         Out << ", ";
   2843       writeOperand(I.getOperand(i), true);
   2844     }
   2845     Out << ']';
   2846   } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
   2847     Out << ' ';
   2848     TypePrinter.print(I.getType(), Out);
   2849     Out << ' ';
   2850 
   2851     for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
   2852       if (op) Out << ", ";
   2853       Out << "[ ";
   2854       writeOperand(PN->getIncomingValue(op), false); Out << ", ";
   2855       writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
   2856     }
   2857   } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
   2858     Out << ' ';
   2859     writeOperand(I.getOperand(0), true);
   2860     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
   2861       Out << ", " << *i;
   2862   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
   2863     Out << ' ';
   2864     writeOperand(I.getOperand(0), true); Out << ", ";
   2865     writeOperand(I.getOperand(1), true);
   2866     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
   2867       Out << ", " << *i;
   2868   } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
   2869     Out << ' ';
   2870     TypePrinter.print(I.getType(), Out);
   2871     if (LPI->isCleanup() || LPI->getNumClauses() != 0)
   2872       Out << '\n';
   2873 
   2874     if (LPI->isCleanup())
   2875       Out << "          cleanup";
   2876 
   2877     for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
   2878       if (i != 0 || LPI->isCleanup()) Out << "\n";
   2879       if (LPI->isCatch(i))
   2880         Out << "          catch ";
   2881       else
   2882         Out << "          filter ";
   2883 
   2884       writeOperand(LPI->getClause(i), true);
   2885     }
   2886   } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
   2887     Out << " within ";
   2888     writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
   2889     Out << " [";
   2890     unsigned Op = 0;
   2891     for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
   2892       if (Op > 0)
   2893         Out << ", ";
   2894       writeOperand(PadBB, /*PrintType=*/true);
   2895       ++Op;
   2896     }
   2897     Out << "] unwind ";
   2898     if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
   2899       writeOperand(UnwindDest, /*PrintType=*/true);
   2900     else
   2901       Out << "to caller";
   2902   } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
   2903     Out << " within ";
   2904     writeOperand(FPI->getParentPad(), /*PrintType=*/false);
   2905     Out << " [";
   2906     for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
   2907          ++Op) {
   2908       if (Op > 0)
   2909         Out << ", ";
   2910       writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
   2911     }
   2912     Out << ']';
   2913   } else if (isa<ReturnInst>(I) && !Operand) {
   2914     Out << " void";
   2915   } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
   2916     Out << " from ";
   2917     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
   2918 
   2919     Out << " to ";
   2920     writeOperand(CRI->getOperand(1), /*PrintType=*/true);
   2921   } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
   2922     Out << " from ";
   2923     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
   2924 
   2925     Out << " unwind ";
   2926     if (CRI->hasUnwindDest())
   2927       writeOperand(CRI->getOperand(1), /*PrintType=*/true);
   2928     else
   2929       Out << "to caller";
   2930   } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
   2931     // Print the calling convention being used.
   2932     if (CI->getCallingConv() != CallingConv::C) {
   2933       Out << " ";
   2934       PrintCallingConv(CI->getCallingConv(), Out);
   2935     }
   2936 
   2937     Operand = CI->getCalledValue();
   2938     FunctionType *FTy = cast<FunctionType>(CI->getFunctionType());
   2939     Type *RetTy = FTy->getReturnType();
   2940     const AttributeSet &PAL = CI->getAttributes();
   2941 
   2942     if (PAL.hasAttributes(AttributeSet::ReturnIndex))
   2943       Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
   2944 
   2945     // If possible, print out the short form of the call instruction.  We can
   2946     // only do this if the first argument is a pointer to a nonvararg function,
   2947     // and if the return type is not a pointer to a function.
   2948     //
   2949     Out << ' ';
   2950     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
   2951     Out << ' ';
   2952     writeOperand(Operand, false);
   2953     Out << '(';
   2954     for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
   2955       if (op > 0)
   2956         Out << ", ";
   2957       writeParamOperand(CI->getArgOperand(op), PAL, op + 1);
   2958     }
   2959 
   2960     // Emit an ellipsis if this is a musttail call in a vararg function.  This
   2961     // is only to aid readability, musttail calls forward varargs by default.
   2962     if (CI->isMustTailCall() && CI->getParent() &&
   2963         CI->getParent()->getParent() &&
   2964         CI->getParent()->getParent()->isVarArg())
   2965       Out << ", ...";
   2966 
   2967     Out << ')';
   2968     if (PAL.hasAttributes(AttributeSet::FunctionIndex))
   2969       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
   2970 
   2971     writeOperandBundles(CI);
   2972 
   2973   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
   2974     Operand = II->getCalledValue();
   2975     FunctionType *FTy = cast<FunctionType>(II->getFunctionType());
   2976     Type *RetTy = FTy->getReturnType();
   2977     const AttributeSet &PAL = II->getAttributes();
   2978 
   2979     // Print the calling convention being used.
   2980     if (II->getCallingConv() != CallingConv::C) {
   2981       Out << " ";
   2982       PrintCallingConv(II->getCallingConv(), Out);
   2983     }
   2984 
   2985     if (PAL.hasAttributes(AttributeSet::ReturnIndex))
   2986       Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
   2987 
   2988     // If possible, print out the short form of the invoke instruction. We can
   2989     // only do this if the first argument is a pointer to a nonvararg function,
   2990     // and if the return type is not a pointer to a function.
   2991     //
   2992     Out << ' ';
   2993     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
   2994     Out << ' ';
   2995     writeOperand(Operand, false);
   2996     Out << '(';
   2997     for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
   2998       if (op)
   2999         Out << ", ";
   3000       writeParamOperand(II->getArgOperand(op), PAL, op + 1);
   3001     }
   3002 
   3003     Out << ')';
   3004     if (PAL.hasAttributes(AttributeSet::FunctionIndex))
   3005       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
   3006 
   3007     writeOperandBundles(II);
   3008 
   3009     Out << "\n          to ";
   3010     writeOperand(II->getNormalDest(), true);
   3011     Out << " unwind ";
   3012     writeOperand(II->getUnwindDest(), true);
   3013 
   3014   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
   3015     Out << ' ';
   3016     if (AI->isUsedWithInAlloca())
   3017       Out << "inalloca ";
   3018     TypePrinter.print(AI->getAllocatedType(), Out);
   3019 
   3020     // Explicitly write the array size if the code is broken, if it's an array
   3021     // allocation, or if the type is not canonical for scalar allocations.  The
   3022     // latter case prevents the type from mutating when round-tripping through
   3023     // assembly.
   3024     if (!AI->getArraySize() || AI->isArrayAllocation() ||
   3025         !AI->getArraySize()->getType()->isIntegerTy(32)) {
   3026       Out << ", ";
   3027       writeOperand(AI->getArraySize(), true);
   3028     }
   3029     if (AI->getAlignment()) {
   3030       Out << ", align " << AI->getAlignment();
   3031     }
   3032   } else if (isa<CastInst>(I)) {
   3033     if (Operand) {
   3034       Out << ' ';
   3035       writeOperand(Operand, true);   // Work with broken code
   3036     }
   3037     Out << " to ";
   3038     TypePrinter.print(I.getType(), Out);
   3039   } else if (isa<VAArgInst>(I)) {
   3040     if (Operand) {
   3041       Out << ' ';
   3042       writeOperand(Operand, true);   // Work with broken code
   3043     }
   3044     Out << ", ";
   3045     TypePrinter.print(I.getType(), Out);
   3046   } else if (Operand) {   // Print the normal way.
   3047     if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
   3048       Out << ' ';
   3049       TypePrinter.print(GEP->getSourceElementType(), Out);
   3050       Out << ',';
   3051     } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
   3052       Out << ' ';
   3053       TypePrinter.print(LI->getType(), Out);
   3054       Out << ',';
   3055     }
   3056 
   3057     // PrintAllTypes - Instructions who have operands of all the same type
   3058     // omit the type from all but the first operand.  If the instruction has
   3059     // different type operands (for example br), then they are all printed.
   3060     bool PrintAllTypes = false;
   3061     Type *TheType = Operand->getType();
   3062 
   3063     // Select, Store and ShuffleVector always print all types.
   3064     if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
   3065         || isa<ReturnInst>(I)) {
   3066       PrintAllTypes = true;
   3067     } else {
   3068       for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
   3069         Operand = I.getOperand(i);
   3070         // note that Operand shouldn't be null, but the test helps make dump()
   3071         // more tolerant of malformed IR
   3072         if (Operand && Operand->getType() != TheType) {
   3073           PrintAllTypes = true;    // We have differing types!  Print them all!
   3074           break;
   3075         }
   3076       }
   3077     }
   3078 
   3079     if (!PrintAllTypes) {
   3080       Out << ' ';
   3081       TypePrinter.print(TheType, Out);
   3082     }
   3083 
   3084     Out << ' ';
   3085     for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
   3086       if (i) Out << ", ";
   3087       writeOperand(I.getOperand(i), PrintAllTypes);
   3088     }
   3089   }
   3090 
   3091   // Print atomic ordering/alignment for memory operations
   3092   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
   3093     if (LI->isAtomic())
   3094       writeAtomic(LI->getOrdering(), LI->getSynchScope());
   3095     if (LI->getAlignment())
   3096       Out << ", align " << LI->getAlignment();
   3097   } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
   3098     if (SI->isAtomic())
   3099       writeAtomic(SI->getOrdering(), SI->getSynchScope());
   3100     if (SI->getAlignment())
   3101       Out << ", align " << SI->getAlignment();
   3102   } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
   3103     writeAtomicCmpXchg(CXI->getSuccessOrdering(), CXI->getFailureOrdering(),
   3104                        CXI->getSynchScope());
   3105   } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
   3106     writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
   3107   } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
   3108     writeAtomic(FI->getOrdering(), FI->getSynchScope());
   3109   }
   3110 
   3111   // Print Metadata info.
   3112   SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
   3113   I.getAllMetadata(InstMD);
   3114   printMetadataAttachments(InstMD, ", ");
   3115 
   3116   // Print a nice comment.
   3117   printInfoComment(I);
   3118 }
   3119 
   3120 void AssemblyWriter::printMetadataAttachments(
   3121     const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
   3122     StringRef Separator) {
   3123   if (MDs.empty())
   3124     return;
   3125 
   3126   if (MDNames.empty())
   3127     TheModule->getMDKindNames(MDNames);
   3128 
   3129   for (const auto &I : MDs) {
   3130     unsigned Kind = I.first;
   3131     Out << Separator;
   3132     if (Kind < MDNames.size()) {
   3133       Out << "!";
   3134       printMetadataIdentifier(MDNames[Kind], Out);
   3135     } else
   3136       Out << "!<unknown kind #" << Kind << ">";
   3137     Out << ' ';
   3138     WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
   3139   }
   3140 }
   3141 
   3142 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
   3143   Out << '!' << Slot << " = ";
   3144   printMDNodeBody(Node);
   3145   Out << "\n";
   3146 }
   3147 
   3148 void AssemblyWriter::writeAllMDNodes() {
   3149   SmallVector<const MDNode *, 16> Nodes;
   3150   Nodes.resize(Machine.mdn_size());
   3151   for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
   3152        I != E; ++I)
   3153     Nodes[I->second] = cast<MDNode>(I->first);
   3154 
   3155   for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
   3156     writeMDNode(i, Nodes[i]);
   3157   }
   3158 }
   3159 
   3160 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
   3161   WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
   3162 }
   3163 
   3164 void AssemblyWriter::writeAllAttributeGroups() {
   3165   std::vector<std::pair<AttributeSet, unsigned> > asVec;
   3166   asVec.resize(Machine.as_size());
   3167 
   3168   for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
   3169        I != E; ++I)
   3170     asVec[I->second] = *I;
   3171 
   3172   for (std::vector<std::pair<AttributeSet, unsigned> >::iterator
   3173          I = asVec.begin(), E = asVec.end(); I != E; ++I)
   3174     Out << "attributes #" << I->second << " = { "
   3175         << I->first.getAsString(AttributeSet::FunctionIndex, true) << " }\n";
   3176 }
   3177 
   3178 void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
   3179   bool IsInFunction = Machine.getFunction();
   3180   if (IsInFunction)
   3181     Out << "  ";
   3182 
   3183   Out << "uselistorder";
   3184   if (const BasicBlock *BB =
   3185           IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
   3186     Out << "_bb ";
   3187     writeOperand(BB->getParent(), false);
   3188     Out << ", ";
   3189     writeOperand(BB, false);
   3190   } else {
   3191     Out << " ";
   3192     writeOperand(Order.V, true);
   3193   }
   3194   Out << ", { ";
   3195 
   3196   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
   3197   Out << Order.Shuffle[0];
   3198   for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
   3199     Out << ", " << Order.Shuffle[I];
   3200   Out << " }\n";
   3201 }
   3202 
   3203 void AssemblyWriter::printUseLists(const Function *F) {
   3204   auto hasMore =
   3205       [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
   3206   if (!hasMore())
   3207     // Nothing to do.
   3208     return;
   3209 
   3210   Out << "\n; uselistorder directives\n";
   3211   while (hasMore()) {
   3212     printUseListOrder(UseListOrders.back());
   3213     UseListOrders.pop_back();
   3214   }
   3215 }
   3216 
   3217 //===----------------------------------------------------------------------===//
   3218 //                       External Interface declarations
   3219 //===----------------------------------------------------------------------===//
   3220 
   3221 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
   3222                    bool ShouldPreserveUseListOrder, bool IsForDebug) const {
   3223   SlotTracker SlotTable(this);
   3224   formatted_raw_ostream OS(ROS);
   3225   AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
   3226                    ShouldPreserveUseListOrder);
   3227   W.printModule(this);
   3228 }
   3229 
   3230 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
   3231   SlotTracker SlotTable(getParent());
   3232   formatted_raw_ostream OS(ROS);
   3233   AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
   3234   W.printNamedMDNode(this);
   3235 }
   3236 
   3237 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
   3238   PrintLLVMName(ROS, getName(), ComdatPrefix);
   3239   ROS << " = comdat ";
   3240 
   3241   switch (getSelectionKind()) {
   3242   case Comdat::Any:
   3243     ROS << "any";
   3244     break;
   3245   case Comdat::ExactMatch:
   3246     ROS << "exactmatch";
   3247     break;
   3248   case Comdat::Largest:
   3249     ROS << "largest";
   3250     break;
   3251   case Comdat::NoDuplicates:
   3252     ROS << "noduplicates";
   3253     break;
   3254   case Comdat::SameSize:
   3255     ROS << "samesize";
   3256     break;
   3257   }
   3258 
   3259   ROS << '\n';
   3260 }
   3261 
   3262 void Type::print(raw_ostream &OS, bool /*IsForDebug*/) const {
   3263   TypePrinting TP;
   3264   TP.print(const_cast<Type*>(this), OS);
   3265 
   3266   // If the type is a named struct type, print the body as well.
   3267   if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
   3268     if (!STy->isLiteral()) {
   3269       OS << " = type ";
   3270       TP.printStructBody(STy, OS);
   3271     }
   3272 }
   3273 
   3274 static bool isReferencingMDNode(const Instruction &I) {
   3275   if (const auto *CI = dyn_cast<CallInst>(&I))
   3276     if (Function *F = CI->getCalledFunction())
   3277       if (F->isIntrinsic())
   3278         for (auto &Op : I.operands())
   3279           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
   3280             if (isa<MDNode>(V->getMetadata()))
   3281               return true;
   3282   return false;
   3283 }
   3284 
   3285 void Value::print(raw_ostream &ROS, bool IsForDebug) const {
   3286   bool ShouldInitializeAllMetadata = false;
   3287   if (auto *I = dyn_cast<Instruction>(this))
   3288     ShouldInitializeAllMetadata = isReferencingMDNode(*I);
   3289   else if (isa<Function>(this) || isa<MetadataAsValue>(this))
   3290     ShouldInitializeAllMetadata = true;
   3291 
   3292   ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
   3293   print(ROS, MST, IsForDebug);
   3294 }
   3295 
   3296 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
   3297                   bool IsForDebug) const {
   3298   formatted_raw_ostream OS(ROS);
   3299   SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
   3300   SlotTracker &SlotTable =
   3301       MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
   3302   auto incorporateFunction = [&](const Function *F) {
   3303     if (F)
   3304       MST.incorporateFunction(*F);
   3305   };
   3306 
   3307   if (const Instruction *I = dyn_cast<Instruction>(this)) {
   3308     incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
   3309     AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
   3310     W.printInstruction(*I);
   3311   } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
   3312     incorporateFunction(BB->getParent());
   3313     AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
   3314     W.printBasicBlock(BB);
   3315   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
   3316     AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
   3317     if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
   3318       W.printGlobal(V);
   3319     else if (const Function *F = dyn_cast<Function>(GV))
   3320       W.printFunction(F);
   3321     else
   3322       W.printAlias(cast<GlobalAlias>(GV));
   3323   } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
   3324     V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
   3325   } else if (const Constant *C = dyn_cast<Constant>(this)) {
   3326     TypePrinting TypePrinter;
   3327     TypePrinter.print(C->getType(), OS);
   3328     OS << ' ';
   3329     WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
   3330   } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
   3331     this->printAsOperand(OS, /* PrintType */ true, MST);
   3332   } else {
   3333     llvm_unreachable("Unknown value to print out!");
   3334   }
   3335 }
   3336 
   3337 /// Print without a type, skipping the TypePrinting object.
   3338 ///
   3339 /// \return \c true iff printing was successful.
   3340 static bool printWithoutType(const Value &V, raw_ostream &O,
   3341                              SlotTracker *Machine, const Module *M) {
   3342   if (V.hasName() || isa<GlobalValue>(V) ||
   3343       (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
   3344     WriteAsOperandInternal(O, &V, nullptr, Machine, M);
   3345     return true;
   3346   }
   3347   return false;
   3348 }
   3349 
   3350 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
   3351                                ModuleSlotTracker &MST) {
   3352   TypePrinting TypePrinter;
   3353   if (const Module *M = MST.getModule())
   3354     TypePrinter.incorporateTypes(*M);
   3355   if (PrintType) {
   3356     TypePrinter.print(V.getType(), O);
   3357     O << ' ';
   3358   }
   3359 
   3360   WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
   3361                          MST.getModule());
   3362 }
   3363 
   3364 void Value::printAsOperand(raw_ostream &O, bool PrintType,
   3365                            const Module *M) const {
   3366   if (!M)
   3367     M = getModuleFromVal(this);
   3368 
   3369   if (!PrintType)
   3370     if (printWithoutType(*this, O, nullptr, M))
   3371       return;
   3372 
   3373   SlotTracker Machine(
   3374       M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
   3375   ModuleSlotTracker MST(Machine, M);
   3376   printAsOperandImpl(*this, O, PrintType, MST);
   3377 }
   3378 
   3379 void Value::printAsOperand(raw_ostream &O, bool PrintType,
   3380                            ModuleSlotTracker &MST) const {
   3381   if (!PrintType)
   3382     if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
   3383       return;
   3384 
   3385   printAsOperandImpl(*this, O, PrintType, MST);
   3386 }
   3387 
   3388 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
   3389                               ModuleSlotTracker &MST, const Module *M,
   3390                               bool OnlyAsOperand) {
   3391   formatted_raw_ostream OS(ROS);
   3392 
   3393   TypePrinting TypePrinter;
   3394   if (M)
   3395     TypePrinter.incorporateTypes(*M);
   3396 
   3397   WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
   3398                          /* FromValue */ true);
   3399 
   3400   auto *N = dyn_cast<MDNode>(&MD);
   3401   if (OnlyAsOperand || !N)
   3402     return;
   3403 
   3404   OS << " = ";
   3405   WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
   3406 }
   3407 
   3408 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
   3409   ModuleSlotTracker MST(M, isa<MDNode>(this));
   3410   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
   3411 }
   3412 
   3413 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
   3414                               const Module *M) const {
   3415   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
   3416 }
   3417 
   3418 void Metadata::print(raw_ostream &OS, const Module *M,
   3419                      bool /*IsForDebug*/) const {
   3420   ModuleSlotTracker MST(M, isa<MDNode>(this));
   3421   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
   3422 }
   3423 
   3424 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
   3425                      const Module *M, bool /*IsForDebug*/) const {
   3426   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
   3427 }
   3428 
   3429 // Value::dump - allow easy printing of Values from the debugger.
   3430 LLVM_DUMP_METHOD
   3431 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
   3432 
   3433 // Type::dump - allow easy printing of Types from the debugger.
   3434 LLVM_DUMP_METHOD
   3435 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
   3436 
   3437 // Module::dump() - Allow printing of Modules from the debugger.
   3438 LLVM_DUMP_METHOD
   3439 void Module::dump() const {
   3440   print(dbgs(), nullptr,
   3441         /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
   3442 }
   3443 
   3444 // \brief Allow printing of Comdats from the debugger.
   3445 LLVM_DUMP_METHOD
   3446 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
   3447 
   3448 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
   3449 LLVM_DUMP_METHOD
   3450 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
   3451 
   3452 LLVM_DUMP_METHOD
   3453 void Metadata::dump() const { dump(nullptr); }
   3454 
   3455 LLVM_DUMP_METHOD
   3456 void Metadata::dump(const Module *M) const {
   3457   print(dbgs(), M, /*IsForDebug=*/true);
   3458   dbgs() << '\n';
   3459 }
   3460