Home | History | Annotate | Download | only in Scalar
      1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Rewrite an existing set of gc.statepoints such that they make potential
     11 // relocations performed by the garbage collector explicit in the IR.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Pass.h"
     16 #include "llvm/Analysis/CFG.h"
     17 #include "llvm/Analysis/InstructionSimplify.h"
     18 #include "llvm/Analysis/TargetTransformInfo.h"
     19 #include "llvm/ADT/SetOperations.h"
     20 #include "llvm/ADT/Statistic.h"
     21 #include "llvm/ADT/DenseSet.h"
     22 #include "llvm/ADT/SetVector.h"
     23 #include "llvm/ADT/StringRef.h"
     24 #include "llvm/ADT/MapVector.h"
     25 #include "llvm/IR/BasicBlock.h"
     26 #include "llvm/IR/CallSite.h"
     27 #include "llvm/IR/Dominators.h"
     28 #include "llvm/IR/Function.h"
     29 #include "llvm/IR/IRBuilder.h"
     30 #include "llvm/IR/InstIterator.h"
     31 #include "llvm/IR/Instructions.h"
     32 #include "llvm/IR/Intrinsics.h"
     33 #include "llvm/IR/IntrinsicInst.h"
     34 #include "llvm/IR/Module.h"
     35 #include "llvm/IR/MDBuilder.h"
     36 #include "llvm/IR/Statepoint.h"
     37 #include "llvm/IR/Value.h"
     38 #include "llvm/IR/Verifier.h"
     39 #include "llvm/Support/Debug.h"
     40 #include "llvm/Support/CommandLine.h"
     41 #include "llvm/Transforms/Scalar.h"
     42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     43 #include "llvm/Transforms/Utils/Cloning.h"
     44 #include "llvm/Transforms/Utils/Local.h"
     45 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
     46 
     47 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
     48 
     49 using namespace llvm;
     50 
     51 // Print the liveset found at the insert location
     52 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
     53                                   cl::init(false));
     54 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
     55                                       cl::init(false));
     56 // Print out the base pointers for debugging
     57 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
     58                                        cl::init(false));
     59 
     60 // Cost threshold measuring when it is profitable to rematerialize value instead
     61 // of relocating it
     62 static cl::opt<unsigned>
     63 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
     64                            cl::init(6));
     65 
     66 #ifdef XDEBUG
     67 static bool ClobberNonLive = true;
     68 #else
     69 static bool ClobberNonLive = false;
     70 #endif
     71 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
     72                                                   cl::location(ClobberNonLive),
     73                                                   cl::Hidden);
     74 
     75 static cl::opt<bool> UseDeoptBundles("rs4gc-use-deopt-bundles", cl::Hidden,
     76                                      cl::init(false));
     77 static cl::opt<bool>
     78     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
     79                                    cl::Hidden, cl::init(true));
     80 
     81 namespace {
     82 struct RewriteStatepointsForGC : public ModulePass {
     83   static char ID; // Pass identification, replacement for typeid
     84 
     85   RewriteStatepointsForGC() : ModulePass(ID) {
     86     initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
     87   }
     88   bool runOnFunction(Function &F);
     89   bool runOnModule(Module &M) override {
     90     bool Changed = false;
     91     for (Function &F : M)
     92       Changed |= runOnFunction(F);
     93 
     94     if (Changed) {
     95       // stripNonValidAttributes asserts that shouldRewriteStatepointsIn
     96       // returns true for at least one function in the module.  Since at least
     97       // one function changed, we know that the precondition is satisfied.
     98       stripNonValidAttributes(M);
     99     }
    100 
    101     return Changed;
    102   }
    103 
    104   void getAnalysisUsage(AnalysisUsage &AU) const override {
    105     // We add and rewrite a bunch of instructions, but don't really do much
    106     // else.  We could in theory preserve a lot more analyses here.
    107     AU.addRequired<DominatorTreeWrapperPass>();
    108     AU.addRequired<TargetTransformInfoWrapperPass>();
    109   }
    110 
    111   /// The IR fed into RewriteStatepointsForGC may have had attributes implying
    112   /// dereferenceability that are no longer valid/correct after
    113   /// RewriteStatepointsForGC has run.  This is because semantically, after
    114   /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
    115   /// heap.  stripNonValidAttributes (conservatively) restores correctness
    116   /// by erasing all attributes in the module that externally imply
    117   /// dereferenceability.
    118   /// Similar reasoning also applies to the noalias attributes. gc.statepoint
    119   /// can touch the entire heap including noalias objects.
    120   void stripNonValidAttributes(Module &M);
    121 
    122   // Helpers for stripNonValidAttributes
    123   void stripNonValidAttributesFromBody(Function &F);
    124   void stripNonValidAttributesFromPrototype(Function &F);
    125 };
    126 } // namespace
    127 
    128 char RewriteStatepointsForGC::ID = 0;
    129 
    130 ModulePass *llvm::createRewriteStatepointsForGCPass() {
    131   return new RewriteStatepointsForGC();
    132 }
    133 
    134 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
    135                       "Make relocations explicit at statepoints", false, false)
    136 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    137 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
    138                     "Make relocations explicit at statepoints", false, false)
    139 
    140 namespace {
    141 struct GCPtrLivenessData {
    142   /// Values defined in this block.
    143   DenseMap<BasicBlock *, DenseSet<Value *>> KillSet;
    144   /// Values used in this block (and thus live); does not included values
    145   /// killed within this block.
    146   DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet;
    147 
    148   /// Values live into this basic block (i.e. used by any
    149   /// instruction in this basic block or ones reachable from here)
    150   DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn;
    151 
    152   /// Values live out of this basic block (i.e. live into
    153   /// any successor block)
    154   DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut;
    155 };
    156 
    157 // The type of the internal cache used inside the findBasePointers family
    158 // of functions.  From the callers perspective, this is an opaque type and
    159 // should not be inspected.
    160 //
    161 // In the actual implementation this caches two relations:
    162 // - The base relation itself (i.e. this pointer is based on that one)
    163 // - The base defining value relation (i.e. before base_phi insertion)
    164 // Generally, after the execution of a full findBasePointer call, only the
    165 // base relation will remain.  Internally, we add a mixture of the two
    166 // types, then update all the second type to the first type
    167 typedef DenseMap<Value *, Value *> DefiningValueMapTy;
    168 typedef DenseSet<Value *> StatepointLiveSetTy;
    169 typedef DenseMap<AssertingVH<Instruction>, AssertingVH<Value>>
    170   RematerializedValueMapTy;
    171 
    172 struct PartiallyConstructedSafepointRecord {
    173   /// The set of values known to be live across this safepoint
    174   StatepointLiveSetTy LiveSet;
    175 
    176   /// Mapping from live pointers to a base-defining-value
    177   DenseMap<Value *, Value *> PointerToBase;
    178 
    179   /// The *new* gc.statepoint instruction itself.  This produces the token
    180   /// that normal path gc.relocates and the gc.result are tied to.
    181   Instruction *StatepointToken;
    182 
    183   /// Instruction to which exceptional gc relocates are attached
    184   /// Makes it easier to iterate through them during relocationViaAlloca.
    185   Instruction *UnwindToken;
    186 
    187   /// Record live values we are rematerialized instead of relocating.
    188   /// They are not included into 'LiveSet' field.
    189   /// Maps rematerialized copy to it's original value.
    190   RematerializedValueMapTy RematerializedValues;
    191 };
    192 }
    193 
    194 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
    195   assert(UseDeoptBundles && "Should not be called otherwise!");
    196 
    197   Optional<OperandBundleUse> DeoptBundle = CS.getOperandBundle("deopt");
    198 
    199   if (!DeoptBundle.hasValue()) {
    200     assert(AllowStatepointWithNoDeoptInfo &&
    201            "Found non-leaf call without deopt info!");
    202     return None;
    203   }
    204 
    205   return DeoptBundle.getValue().Inputs;
    206 }
    207 
    208 /// Compute the live-in set for every basic block in the function
    209 static void computeLiveInValues(DominatorTree &DT, Function &F,
    210                                 GCPtrLivenessData &Data);
    211 
    212 /// Given results from the dataflow liveness computation, find the set of live
    213 /// Values at a particular instruction.
    214 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
    215                               StatepointLiveSetTy &out);
    216 
    217 // TODO: Once we can get to the GCStrategy, this becomes
    218 // Optional<bool> isGCManagedPointer(const Value *V) const override {
    219 
    220 static bool isGCPointerType(Type *T) {
    221   if (auto *PT = dyn_cast<PointerType>(T))
    222     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
    223     // GC managed heap.  We know that a pointer into this heap needs to be
    224     // updated and that no other pointer does.
    225     return (1 == PT->getAddressSpace());
    226   return false;
    227 }
    228 
    229 // Return true if this type is one which a) is a gc pointer or contains a GC
    230 // pointer and b) is of a type this code expects to encounter as a live value.
    231 // (The insertion code will assert that a type which matches (a) and not (b)
    232 // is not encountered.)
    233 static bool isHandledGCPointerType(Type *T) {
    234   // We fully support gc pointers
    235   if (isGCPointerType(T))
    236     return true;
    237   // We partially support vectors of gc pointers. The code will assert if it
    238   // can't handle something.
    239   if (auto VT = dyn_cast<VectorType>(T))
    240     if (isGCPointerType(VT->getElementType()))
    241       return true;
    242   return false;
    243 }
    244 
    245 #ifndef NDEBUG
    246 /// Returns true if this type contains a gc pointer whether we know how to
    247 /// handle that type or not.
    248 static bool containsGCPtrType(Type *Ty) {
    249   if (isGCPointerType(Ty))
    250     return true;
    251   if (VectorType *VT = dyn_cast<VectorType>(Ty))
    252     return isGCPointerType(VT->getScalarType());
    253   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
    254     return containsGCPtrType(AT->getElementType());
    255   if (StructType *ST = dyn_cast<StructType>(Ty))
    256     return std::any_of(ST->subtypes().begin(), ST->subtypes().end(),
    257                        containsGCPtrType);
    258   return false;
    259 }
    260 
    261 // Returns true if this is a type which a) is a gc pointer or contains a GC
    262 // pointer and b) is of a type which the code doesn't expect (i.e. first class
    263 // aggregates).  Used to trip assertions.
    264 static bool isUnhandledGCPointerType(Type *Ty) {
    265   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
    266 }
    267 #endif
    268 
    269 static bool order_by_name(Value *a, Value *b) {
    270   if (a->hasName() && b->hasName()) {
    271     return -1 == a->getName().compare(b->getName());
    272   } else if (a->hasName() && !b->hasName()) {
    273     return true;
    274   } else if (!a->hasName() && b->hasName()) {
    275     return false;
    276   } else {
    277     // Better than nothing, but not stable
    278     return a < b;
    279   }
    280 }
    281 
    282 // Return the name of the value suffixed with the provided value, or if the
    283 // value didn't have a name, the default value specified.
    284 static std::string suffixed_name_or(Value *V, StringRef Suffix,
    285                                     StringRef DefaultName) {
    286   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
    287 }
    288 
    289 // Conservatively identifies any definitions which might be live at the
    290 // given instruction. The  analysis is performed immediately before the
    291 // given instruction. Values defined by that instruction are not considered
    292 // live.  Values used by that instruction are considered live.
    293 static void analyzeParsePointLiveness(
    294     DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData,
    295     const CallSite &CS, PartiallyConstructedSafepointRecord &result) {
    296   Instruction *inst = CS.getInstruction();
    297 
    298   StatepointLiveSetTy LiveSet;
    299   findLiveSetAtInst(inst, OriginalLivenessData, LiveSet);
    300 
    301   if (PrintLiveSet) {
    302     // Note: This output is used by several of the test cases
    303     // The order of elements in a set is not stable, put them in a vec and sort
    304     // by name
    305     SmallVector<Value *, 64> Temp;
    306     Temp.insert(Temp.end(), LiveSet.begin(), LiveSet.end());
    307     std::sort(Temp.begin(), Temp.end(), order_by_name);
    308     errs() << "Live Variables:\n";
    309     for (Value *V : Temp)
    310       dbgs() << " " << V->getName() << " " << *V << "\n";
    311   }
    312   if (PrintLiveSetSize) {
    313     errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
    314     errs() << "Number live values: " << LiveSet.size() << "\n";
    315   }
    316   result.LiveSet = LiveSet;
    317 }
    318 
    319 static bool isKnownBaseResult(Value *V);
    320 namespace {
    321 /// A single base defining value - An immediate base defining value for an
    322 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
    323 /// For instructions which have multiple pointer [vector] inputs or that
    324 /// transition between vector and scalar types, there is no immediate base
    325 /// defining value.  The 'base defining value' for 'Def' is the transitive
    326 /// closure of this relation stopping at the first instruction which has no
    327 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
    328 /// but it can also be an arbitrary derived pointer.
    329 struct BaseDefiningValueResult {
    330   /// Contains the value which is the base defining value.
    331   Value * const BDV;
    332   /// True if the base defining value is also known to be an actual base
    333   /// pointer.
    334   const bool IsKnownBase;
    335   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
    336     : BDV(BDV), IsKnownBase(IsKnownBase) {
    337 #ifndef NDEBUG
    338     // Check consistency between new and old means of checking whether a BDV is
    339     // a base.
    340     bool MustBeBase = isKnownBaseResult(BDV);
    341     assert(!MustBeBase || MustBeBase == IsKnownBase);
    342 #endif
    343   }
    344 };
    345 }
    346 
    347 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
    348 
    349 /// Return a base defining value for the 'Index' element of the given vector
    350 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
    351 /// 'I'.  As an optimization, this method will try to determine when the
    352 /// element is known to already be a base pointer.  If this can be established,
    353 /// the second value in the returned pair will be true.  Note that either a
    354 /// vector or a pointer typed value can be returned.  For the former, the
    355 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
    356 /// If the later, the return pointer is a BDV (or possibly a base) for the
    357 /// particular element in 'I'.
    358 static BaseDefiningValueResult
    359 findBaseDefiningValueOfVector(Value *I) {
    360   assert(I->getType()->isVectorTy() &&
    361          cast<VectorType>(I->getType())->getElementType()->isPointerTy() &&
    362          "Illegal to ask for the base pointer of a non-pointer type");
    363 
    364   // Each case parallels findBaseDefiningValue below, see that code for
    365   // detailed motivation.
    366 
    367   if (isa<Argument>(I))
    368     // An incoming argument to the function is a base pointer
    369     return BaseDefiningValueResult(I, true);
    370 
    371   // We shouldn't see the address of a global as a vector value?
    372   assert(!isa<GlobalVariable>(I) &&
    373          "unexpected global variable found in base of vector");
    374 
    375   // inlining could possibly introduce phi node that contains
    376   // undef if callee has multiple returns
    377   if (isa<UndefValue>(I))
    378     // utterly meaningless, but useful for dealing with partially optimized
    379     // code.
    380     return BaseDefiningValueResult(I, true);
    381 
    382   // Due to inheritance, this must be _after_ the global variable and undef
    383   // checks
    384   if (Constant *Con = dyn_cast<Constant>(I)) {
    385     assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
    386            "order of checks wrong!");
    387     assert(Con->isNullValue() && "null is the only case which makes sense");
    388     return BaseDefiningValueResult(Con, true);
    389   }
    390 
    391   if (isa<LoadInst>(I))
    392     return BaseDefiningValueResult(I, true);
    393 
    394   if (isa<InsertElementInst>(I))
    395     // We don't know whether this vector contains entirely base pointers or
    396     // not.  To be conservatively correct, we treat it as a BDV and will
    397     // duplicate code as needed to construct a parallel vector of bases.
    398     return BaseDefiningValueResult(I, false);
    399 
    400   if (isa<ShuffleVectorInst>(I))
    401     // We don't know whether this vector contains entirely base pointers or
    402     // not.  To be conservatively correct, we treat it as a BDV and will
    403     // duplicate code as needed to construct a parallel vector of bases.
    404     // TODO: There a number of local optimizations which could be applied here
    405     // for particular sufflevector patterns.
    406     return BaseDefiningValueResult(I, false);
    407 
    408   // A PHI or Select is a base defining value.  The outer findBasePointer
    409   // algorithm is responsible for constructing a base value for this BDV.
    410   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
    411          "unknown vector instruction - no base found for vector element");
    412   return BaseDefiningValueResult(I, false);
    413 }
    414 
    415 /// Helper function for findBasePointer - Will return a value which either a)
    416 /// defines the base pointer for the input, b) blocks the simple search
    417 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
    418 /// from pointer to vector type or back.
    419 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
    420   if (I->getType()->isVectorTy())
    421     return findBaseDefiningValueOfVector(I);
    422 
    423   assert(I->getType()->isPointerTy() &&
    424          "Illegal to ask for the base pointer of a non-pointer type");
    425 
    426   if (isa<Argument>(I))
    427     // An incoming argument to the function is a base pointer
    428     // We should have never reached here if this argument isn't an gc value
    429     return BaseDefiningValueResult(I, true);
    430 
    431   if (isa<GlobalVariable>(I))
    432     // base case
    433     return BaseDefiningValueResult(I, true);
    434 
    435   // inlining could possibly introduce phi node that contains
    436   // undef if callee has multiple returns
    437   if (isa<UndefValue>(I))
    438     // utterly meaningless, but useful for dealing with
    439     // partially optimized code.
    440     return BaseDefiningValueResult(I, true);
    441 
    442   // Due to inheritance, this must be _after_ the global variable and undef
    443   // checks
    444   if (isa<Constant>(I)) {
    445     assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
    446            "order of checks wrong!");
    447     // Note: Even for frontends which don't have constant references, we can
    448     // see constants appearing after optimizations.  A simple example is
    449     // specialization of an address computation on null feeding into a merge
    450     // point where the actual use of the now-constant input is protected by
    451     // another null check.  (e.g. test4 in constants.ll)
    452     return BaseDefiningValueResult(I, true);
    453   }
    454 
    455   if (CastInst *CI = dyn_cast<CastInst>(I)) {
    456     Value *Def = CI->stripPointerCasts();
    457     // If stripping pointer casts changes the address space there is an
    458     // addrspacecast in between.
    459     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
    460                cast<PointerType>(CI->getType())->getAddressSpace() &&
    461            "unsupported addrspacecast");
    462     // If we find a cast instruction here, it means we've found a cast which is
    463     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
    464     // handle int->ptr conversion.
    465     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
    466     return findBaseDefiningValue(Def);
    467   }
    468 
    469   if (isa<LoadInst>(I))
    470     // The value loaded is an gc base itself
    471     return BaseDefiningValueResult(I, true);
    472 
    473 
    474   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
    475     // The base of this GEP is the base
    476     return findBaseDefiningValue(GEP->getPointerOperand());
    477 
    478   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    479     switch (II->getIntrinsicID()) {
    480     case Intrinsic::experimental_gc_result_ptr:
    481     default:
    482       // fall through to general call handling
    483       break;
    484     case Intrinsic::experimental_gc_statepoint:
    485     case Intrinsic::experimental_gc_result_float:
    486     case Intrinsic::experimental_gc_result_int:
    487       llvm_unreachable("these don't produce pointers");
    488     case Intrinsic::experimental_gc_relocate: {
    489       // Rerunning safepoint insertion after safepoints are already
    490       // inserted is not supported.  It could probably be made to work,
    491       // but why are you doing this?  There's no good reason.
    492       llvm_unreachable("repeat safepoint insertion is not supported");
    493     }
    494     case Intrinsic::gcroot:
    495       // Currently, this mechanism hasn't been extended to work with gcroot.
    496       // There's no reason it couldn't be, but I haven't thought about the
    497       // implications much.
    498       llvm_unreachable(
    499           "interaction with the gcroot mechanism is not supported");
    500     }
    501   }
    502   // We assume that functions in the source language only return base
    503   // pointers.  This should probably be generalized via attributes to support
    504   // both source language and internal functions.
    505   if (isa<CallInst>(I) || isa<InvokeInst>(I))
    506     return BaseDefiningValueResult(I, true);
    507 
    508   // I have absolutely no idea how to implement this part yet.  It's not
    509   // necessarily hard, I just haven't really looked at it yet.
    510   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
    511 
    512   if (isa<AtomicCmpXchgInst>(I))
    513     // A CAS is effectively a atomic store and load combined under a
    514     // predicate.  From the perspective of base pointers, we just treat it
    515     // like a load.
    516     return BaseDefiningValueResult(I, true);
    517 
    518   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
    519                                    "binary ops which don't apply to pointers");
    520 
    521   // The aggregate ops.  Aggregates can either be in the heap or on the
    522   // stack, but in either case, this is simply a field load.  As a result,
    523   // this is a defining definition of the base just like a load is.
    524   if (isa<ExtractValueInst>(I))
    525     return BaseDefiningValueResult(I, true);
    526 
    527   // We should never see an insert vector since that would require we be
    528   // tracing back a struct value not a pointer value.
    529   assert(!isa<InsertValueInst>(I) &&
    530          "Base pointer for a struct is meaningless");
    531 
    532   // An extractelement produces a base result exactly when it's input does.
    533   // We may need to insert a parallel instruction to extract the appropriate
    534   // element out of the base vector corresponding to the input. Given this,
    535   // it's analogous to the phi and select case even though it's not a merge.
    536   if (isa<ExtractElementInst>(I))
    537     // Note: There a lot of obvious peephole cases here.  This are deliberately
    538     // handled after the main base pointer inference algorithm to make writing
    539     // test cases to exercise that code easier.
    540     return BaseDefiningValueResult(I, false);
    541 
    542   // The last two cases here don't return a base pointer.  Instead, they
    543   // return a value which dynamically selects from among several base
    544   // derived pointers (each with it's own base potentially).  It's the job of
    545   // the caller to resolve these.
    546   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
    547          "missing instruction case in findBaseDefiningValing");
    548   return BaseDefiningValueResult(I, false);
    549 }
    550 
    551 /// Returns the base defining value for this value.
    552 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
    553   Value *&Cached = Cache[I];
    554   if (!Cached) {
    555     Cached = findBaseDefiningValue(I).BDV;
    556     DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
    557                  << Cached->getName() << "\n");
    558   }
    559   assert(Cache[I] != nullptr);
    560   return Cached;
    561 }
    562 
    563 /// Return a base pointer for this value if known.  Otherwise, return it's
    564 /// base defining value.
    565 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
    566   Value *Def = findBaseDefiningValueCached(I, Cache);
    567   auto Found = Cache.find(Def);
    568   if (Found != Cache.end()) {
    569     // Either a base-of relation, or a self reference.  Caller must check.
    570     return Found->second;
    571   }
    572   // Only a BDV available
    573   return Def;
    574 }
    575 
    576 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
    577 /// is it known to be a base pointer?  Or do we need to continue searching.
    578 static bool isKnownBaseResult(Value *V) {
    579   if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
    580       !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
    581       !isa<ShuffleVectorInst>(V)) {
    582     // no recursion possible
    583     return true;
    584   }
    585   if (isa<Instruction>(V) &&
    586       cast<Instruction>(V)->getMetadata("is_base_value")) {
    587     // This is a previously inserted base phi or select.  We know
    588     // that this is a base value.
    589     return true;
    590   }
    591 
    592   // We need to keep searching
    593   return false;
    594 }
    595 
    596 namespace {
    597 /// Models the state of a single base defining value in the findBasePointer
    598 /// algorithm for determining where a new instruction is needed to propagate
    599 /// the base of this BDV.
    600 class BDVState {
    601 public:
    602   enum Status { Unknown, Base, Conflict };
    603 
    604   BDVState(Status s, Value *b = nullptr) : status(s), base(b) {
    605     assert(status != Base || b);
    606   }
    607   explicit BDVState(Value *b) : status(Base), base(b) {}
    608   BDVState() : status(Unknown), base(nullptr) {}
    609 
    610   Status getStatus() const { return status; }
    611   Value *getBase() const { return base; }
    612 
    613   bool isBase() const { return getStatus() == Base; }
    614   bool isUnknown() const { return getStatus() == Unknown; }
    615   bool isConflict() const { return getStatus() == Conflict; }
    616 
    617   bool operator==(const BDVState &other) const {
    618     return base == other.base && status == other.status;
    619   }
    620 
    621   bool operator!=(const BDVState &other) const { return !(*this == other); }
    622 
    623   LLVM_DUMP_METHOD
    624   void dump() const { print(dbgs()); dbgs() << '\n'; }
    625 
    626   void print(raw_ostream &OS) const {
    627     switch (status) {
    628     case Unknown:
    629       OS << "U";
    630       break;
    631     case Base:
    632       OS << "B";
    633       break;
    634     case Conflict:
    635       OS << "C";
    636       break;
    637     };
    638     OS << " (" << base << " - "
    639        << (base ? base->getName() : "nullptr") << "): ";
    640   }
    641 
    642 private:
    643   Status status;
    644   AssertingVH<Value> base; // non null only if status == base
    645 };
    646 }
    647 
    648 #ifndef NDEBUG
    649 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
    650   State.print(OS);
    651   return OS;
    652 }
    653 #endif
    654 
    655 namespace {
    656 // Values of type BDVState form a lattice, and this is a helper
    657 // class that implementes the meet operation.  The meat of the meet
    658 // operation is implemented in MeetBDVStates::pureMeet
    659 class MeetBDVStates {
    660 public:
    661   /// Initializes the currentResult to the TOP state so that if can be met with
    662   /// any other state to produce that state.
    663   MeetBDVStates() {}
    664 
    665   // Destructively meet the current result with the given BDVState
    666   void meetWith(BDVState otherState) {
    667     currentResult = meet(otherState, currentResult);
    668   }
    669 
    670   BDVState getResult() const { return currentResult; }
    671 
    672 private:
    673   BDVState currentResult;
    674 
    675   /// Perform a meet operation on two elements of the BDVState lattice.
    676   static BDVState meet(BDVState LHS, BDVState RHS) {
    677     assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) &&
    678            "math is wrong: meet does not commute!");
    679     BDVState Result = pureMeet(LHS, RHS);
    680     DEBUG(dbgs() << "meet of " << LHS << " with " << RHS
    681                  << " produced " << Result << "\n");
    682     return Result;
    683   }
    684 
    685   static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) {
    686     switch (stateA.getStatus()) {
    687     case BDVState::Unknown:
    688       return stateB;
    689 
    690     case BDVState::Base:
    691       assert(stateA.getBase() && "can't be null");
    692       if (stateB.isUnknown())
    693         return stateA;
    694 
    695       if (stateB.isBase()) {
    696         if (stateA.getBase() == stateB.getBase()) {
    697           assert(stateA == stateB && "equality broken!");
    698           return stateA;
    699         }
    700         return BDVState(BDVState::Conflict);
    701       }
    702       assert(stateB.isConflict() && "only three states!");
    703       return BDVState(BDVState::Conflict);
    704 
    705     case BDVState::Conflict:
    706       return stateA;
    707     }
    708     llvm_unreachable("only three states!");
    709   }
    710 };
    711 }
    712 
    713 
    714 /// For a given value or instruction, figure out what base ptr it's derived
    715 /// from.  For gc objects, this is simply itself.  On success, returns a value
    716 /// which is the base pointer.  (This is reliable and can be used for
    717 /// relocation.)  On failure, returns nullptr.
    718 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
    719   Value *def = findBaseOrBDV(I, cache);
    720 
    721   if (isKnownBaseResult(def)) {
    722     return def;
    723   }
    724 
    725   // Here's the rough algorithm:
    726   // - For every SSA value, construct a mapping to either an actual base
    727   //   pointer or a PHI which obscures the base pointer.
    728   // - Construct a mapping from PHI to unknown TOP state.  Use an
    729   //   optimistic algorithm to propagate base pointer information.  Lattice
    730   //   looks like:
    731   //   UNKNOWN
    732   //   b1 b2 b3 b4
    733   //   CONFLICT
    734   //   When algorithm terminates, all PHIs will either have a single concrete
    735   //   base or be in a conflict state.
    736   // - For every conflict, insert a dummy PHI node without arguments.  Add
    737   //   these to the base[Instruction] = BasePtr mapping.  For every
    738   //   non-conflict, add the actual base.
    739   //  - For every conflict, add arguments for the base[a] of each input
    740   //   arguments.
    741   //
    742   // Note: A simpler form of this would be to add the conflict form of all
    743   // PHIs without running the optimistic algorithm.  This would be
    744   // analogous to pessimistic data flow and would likely lead to an
    745   // overall worse solution.
    746 
    747 #ifndef NDEBUG
    748   auto isExpectedBDVType = [](Value *BDV) {
    749     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
    750            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV);
    751   };
    752 #endif
    753 
    754   // Once populated, will contain a mapping from each potentially non-base BDV
    755   // to a lattice value (described above) which corresponds to that BDV.
    756   // We use the order of insertion (DFS over the def/use graph) to provide a
    757   // stable deterministic ordering for visiting DenseMaps (which are unordered)
    758   // below.  This is important for deterministic compilation.
    759   MapVector<Value *, BDVState> States;
    760 
    761   // Recursively fill in all base defining values reachable from the initial
    762   // one for which we don't already know a definite base value for
    763   /* scope */ {
    764     SmallVector<Value*, 16> Worklist;
    765     Worklist.push_back(def);
    766     States.insert(std::make_pair(def, BDVState()));
    767     while (!Worklist.empty()) {
    768       Value *Current = Worklist.pop_back_val();
    769       assert(!isKnownBaseResult(Current) && "why did it get added?");
    770 
    771       auto visitIncomingValue = [&](Value *InVal) {
    772         Value *Base = findBaseOrBDV(InVal, cache);
    773         if (isKnownBaseResult(Base))
    774           // Known bases won't need new instructions introduced and can be
    775           // ignored safely
    776           return;
    777         assert(isExpectedBDVType(Base) && "the only non-base values "
    778                "we see should be base defining values");
    779         if (States.insert(std::make_pair(Base, BDVState())).second)
    780           Worklist.push_back(Base);
    781       };
    782       if (PHINode *Phi = dyn_cast<PHINode>(Current)) {
    783         for (Value *InVal : Phi->incoming_values())
    784           visitIncomingValue(InVal);
    785       } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) {
    786         visitIncomingValue(Sel->getTrueValue());
    787         visitIncomingValue(Sel->getFalseValue());
    788       } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
    789         visitIncomingValue(EE->getVectorOperand());
    790       } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
    791         visitIncomingValue(IE->getOperand(0)); // vector operand
    792         visitIncomingValue(IE->getOperand(1)); // scalar operand
    793       } else {
    794         // There is one known class of instructions we know we don't handle.
    795         assert(isa<ShuffleVectorInst>(Current));
    796         llvm_unreachable("unimplemented instruction case");
    797       }
    798     }
    799   }
    800 
    801 #ifndef NDEBUG
    802   DEBUG(dbgs() << "States after initialization:\n");
    803   for (auto Pair : States) {
    804     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
    805   }
    806 #endif
    807 
    808   // Return a phi state for a base defining value.  We'll generate a new
    809   // base state for known bases and expect to find a cached state otherwise.
    810   auto getStateForBDV = [&](Value *baseValue) {
    811     if (isKnownBaseResult(baseValue))
    812       return BDVState(baseValue);
    813     auto I = States.find(baseValue);
    814     assert(I != States.end() && "lookup failed!");
    815     return I->second;
    816   };
    817 
    818   bool progress = true;
    819   while (progress) {
    820 #ifndef NDEBUG
    821     const size_t oldSize = States.size();
    822 #endif
    823     progress = false;
    824     // We're only changing values in this loop, thus safe to keep iterators.
    825     // Since this is computing a fixed point, the order of visit does not
    826     // effect the result.  TODO: We could use a worklist here and make this run
    827     // much faster.
    828     for (auto Pair : States) {
    829       Value *BDV = Pair.first;
    830       assert(!isKnownBaseResult(BDV) && "why did it get added?");
    831 
    832       // Given an input value for the current instruction, return a BDVState
    833       // instance which represents the BDV of that value.
    834       auto getStateForInput = [&](Value *V) mutable {
    835         Value *BDV = findBaseOrBDV(V, cache);
    836         return getStateForBDV(BDV);
    837       };
    838 
    839       MeetBDVStates calculateMeet;
    840       if (SelectInst *select = dyn_cast<SelectInst>(BDV)) {
    841         calculateMeet.meetWith(getStateForInput(select->getTrueValue()));
    842         calculateMeet.meetWith(getStateForInput(select->getFalseValue()));
    843       } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) {
    844         for (Value *Val : Phi->incoming_values())
    845           calculateMeet.meetWith(getStateForInput(Val));
    846       } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
    847         // The 'meet' for an extractelement is slightly trivial, but it's still
    848         // useful in that it drives us to conflict if our input is.
    849         calculateMeet.meetWith(getStateForInput(EE->getVectorOperand()));
    850       } else {
    851         // Given there's a inherent type mismatch between the operands, will
    852         // *always* produce Conflict.
    853         auto *IE = cast<InsertElementInst>(BDV);
    854         calculateMeet.meetWith(getStateForInput(IE->getOperand(0)));
    855         calculateMeet.meetWith(getStateForInput(IE->getOperand(1)));
    856       }
    857 
    858       BDVState oldState = States[BDV];
    859       BDVState newState = calculateMeet.getResult();
    860       if (oldState != newState) {
    861         progress = true;
    862         States[BDV] = newState;
    863       }
    864     }
    865 
    866     assert(oldSize == States.size() &&
    867            "fixed point shouldn't be adding any new nodes to state");
    868   }
    869 
    870 #ifndef NDEBUG
    871   DEBUG(dbgs() << "States after meet iteration:\n");
    872   for (auto Pair : States) {
    873     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
    874   }
    875 #endif
    876 
    877   // Insert Phis for all conflicts
    878   // TODO: adjust naming patterns to avoid this order of iteration dependency
    879   for (auto Pair : States) {
    880     Instruction *I = cast<Instruction>(Pair.first);
    881     BDVState State = Pair.second;
    882     assert(!isKnownBaseResult(I) && "why did it get added?");
    883     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
    884 
    885     // extractelement instructions are a bit special in that we may need to
    886     // insert an extract even when we know an exact base for the instruction.
    887     // The problem is that we need to convert from a vector base to a scalar
    888     // base for the particular indice we're interested in.
    889     if (State.isBase() && isa<ExtractElementInst>(I) &&
    890         isa<VectorType>(State.getBase()->getType())) {
    891       auto *EE = cast<ExtractElementInst>(I);
    892       // TODO: In many cases, the new instruction is just EE itself.  We should
    893       // exploit this, but can't do it here since it would break the invariant
    894       // about the BDV not being known to be a base.
    895       auto *BaseInst = ExtractElementInst::Create(State.getBase(),
    896                                                   EE->getIndexOperand(),
    897                                                   "base_ee", EE);
    898       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
    899       States[I] = BDVState(BDVState::Base, BaseInst);
    900     }
    901 
    902     // Since we're joining a vector and scalar base, they can never be the
    903     // same.  As a result, we should always see insert element having reached
    904     // the conflict state.
    905     if (isa<InsertElementInst>(I)) {
    906       assert(State.isConflict());
    907     }
    908 
    909     if (!State.isConflict())
    910       continue;
    911 
    912     /// Create and insert a new instruction which will represent the base of
    913     /// the given instruction 'I'.
    914     auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
    915       if (isa<PHINode>(I)) {
    916         BasicBlock *BB = I->getParent();
    917         int NumPreds = std::distance(pred_begin(BB), pred_end(BB));
    918         assert(NumPreds > 0 && "how did we reach here");
    919         std::string Name = suffixed_name_or(I, ".base", "base_phi");
    920         return PHINode::Create(I->getType(), NumPreds, Name, I);
    921       } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) {
    922         // The undef will be replaced later
    923         UndefValue *Undef = UndefValue::get(Sel->getType());
    924         std::string Name = suffixed_name_or(I, ".base", "base_select");
    925         return SelectInst::Create(Sel->getCondition(), Undef,
    926                                   Undef, Name, Sel);
    927       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
    928         UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
    929         std::string Name = suffixed_name_or(I, ".base", "base_ee");
    930         return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
    931                                           EE);
    932       } else {
    933         auto *IE = cast<InsertElementInst>(I);
    934         UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
    935         UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
    936         std::string Name = suffixed_name_or(I, ".base", "base_ie");
    937         return InsertElementInst::Create(VecUndef, ScalarUndef,
    938                                          IE->getOperand(2), Name, IE);
    939       }
    940 
    941     };
    942     Instruction *BaseInst = MakeBaseInstPlaceholder(I);
    943     // Add metadata marking this as a base value
    944     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
    945     States[I] = BDVState(BDVState::Conflict, BaseInst);
    946   }
    947 
    948   // Returns a instruction which produces the base pointer for a given
    949   // instruction.  The instruction is assumed to be an input to one of the BDVs
    950   // seen in the inference algorithm above.  As such, we must either already
    951   // know it's base defining value is a base, or have inserted a new
    952   // instruction to propagate the base of it's BDV and have entered that newly
    953   // introduced instruction into the state table.  In either case, we are
    954   // assured to be able to determine an instruction which produces it's base
    955   // pointer.
    956   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
    957     Value *BDV = findBaseOrBDV(Input, cache);
    958     Value *Base = nullptr;
    959     if (isKnownBaseResult(BDV)) {
    960       Base = BDV;
    961     } else {
    962       // Either conflict or base.
    963       assert(States.count(BDV));
    964       Base = States[BDV].getBase();
    965     }
    966     assert(Base && "can't be null");
    967     // The cast is needed since base traversal may strip away bitcasts
    968     if (Base->getType() != Input->getType() &&
    969         InsertPt) {
    970       Base = new BitCastInst(Base, Input->getType(), "cast",
    971                              InsertPt);
    972     }
    973     return Base;
    974   };
    975 
    976   // Fixup all the inputs of the new PHIs.  Visit order needs to be
    977   // deterministic and predictable because we're naming newly created
    978   // instructions.
    979   for (auto Pair : States) {
    980     Instruction *BDV = cast<Instruction>(Pair.first);
    981     BDVState State = Pair.second;
    982 
    983     assert(!isKnownBaseResult(BDV) && "why did it get added?");
    984     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
    985     if (!State.isConflict())
    986       continue;
    987 
    988     if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) {
    989       PHINode *phi = cast<PHINode>(BDV);
    990       unsigned NumPHIValues = phi->getNumIncomingValues();
    991       for (unsigned i = 0; i < NumPHIValues; i++) {
    992         Value *InVal = phi->getIncomingValue(i);
    993         BasicBlock *InBB = phi->getIncomingBlock(i);
    994 
    995         // If we've already seen InBB, add the same incoming value
    996         // we added for it earlier.  The IR verifier requires phi
    997         // nodes with multiple entries from the same basic block
    998         // to have the same incoming value for each of those
    999         // entries.  If we don't do this check here and basephi
   1000         // has a different type than base, we'll end up adding two
   1001         // bitcasts (and hence two distinct values) as incoming
   1002         // values for the same basic block.
   1003 
   1004         int blockIndex = basephi->getBasicBlockIndex(InBB);
   1005         if (blockIndex != -1) {
   1006           Value *oldBase = basephi->getIncomingValue(blockIndex);
   1007           basephi->addIncoming(oldBase, InBB);
   1008 
   1009 #ifndef NDEBUG
   1010           Value *Base = getBaseForInput(InVal, nullptr);
   1011           // In essence this assert states: the only way two
   1012           // values incoming from the same basic block may be
   1013           // different is by being different bitcasts of the same
   1014           // value.  A cleanup that remains TODO is changing
   1015           // findBaseOrBDV to return an llvm::Value of the correct
   1016           // type (and still remain pure).  This will remove the
   1017           // need to add bitcasts.
   1018           assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() &&
   1019                  "sanity -- findBaseOrBDV should be pure!");
   1020 #endif
   1021           continue;
   1022         }
   1023 
   1024         // Find the instruction which produces the base for each input.  We may
   1025         // need to insert a bitcast in the incoming block.
   1026         // TODO: Need to split critical edges if insertion is needed
   1027         Value *Base = getBaseForInput(InVal, InBB->getTerminator());
   1028         basephi->addIncoming(Base, InBB);
   1029       }
   1030       assert(basephi->getNumIncomingValues() == NumPHIValues);
   1031     } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) {
   1032       SelectInst *Sel = cast<SelectInst>(BDV);
   1033       // Operand 1 & 2 are true, false path respectively. TODO: refactor to
   1034       // something more safe and less hacky.
   1035       for (int i = 1; i <= 2; i++) {
   1036         Value *InVal = Sel->getOperand(i);
   1037         // Find the instruction which produces the base for each input.  We may
   1038         // need to insert a bitcast.
   1039         Value *Base = getBaseForInput(InVal, BaseSel);
   1040         BaseSel->setOperand(i, Base);
   1041       }
   1042     } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) {
   1043       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
   1044       // Find the instruction which produces the base for each input.  We may
   1045       // need to insert a bitcast.
   1046       Value *Base = getBaseForInput(InVal, BaseEE);
   1047       BaseEE->setOperand(0, Base);
   1048     } else {
   1049       auto *BaseIE = cast<InsertElementInst>(State.getBase());
   1050       auto *BdvIE = cast<InsertElementInst>(BDV);
   1051       auto UpdateOperand = [&](int OperandIdx) {
   1052         Value *InVal = BdvIE->getOperand(OperandIdx);
   1053         Value *Base = getBaseForInput(InVal, BaseIE);
   1054         BaseIE->setOperand(OperandIdx, Base);
   1055       };
   1056       UpdateOperand(0); // vector operand
   1057       UpdateOperand(1); // scalar operand
   1058     }
   1059 
   1060   }
   1061 
   1062   // Now that we're done with the algorithm, see if we can optimize the
   1063   // results slightly by reducing the number of new instructions needed.
   1064   // Arguably, this should be integrated into the algorithm above, but
   1065   // doing as a post process step is easier to reason about for the moment.
   1066   DenseMap<Value *, Value *> ReverseMap;
   1067   SmallPtrSet<Instruction *, 16> NewInsts;
   1068   SmallSetVector<AssertingVH<Instruction>, 16> Worklist;
   1069   // Note: We need to visit the states in a deterministic order.  We uses the
   1070   // Keys we sorted above for this purpose.  Note that we are papering over a
   1071   // bigger problem with the algorithm above - it's visit order is not
   1072   // deterministic.  A larger change is needed to fix this.
   1073   for (auto Pair : States) {
   1074     auto *BDV = Pair.first;
   1075     auto State = Pair.second;
   1076     Value *Base = State.getBase();
   1077     assert(BDV && Base);
   1078     assert(!isKnownBaseResult(BDV) && "why did it get added?");
   1079     assert(isKnownBaseResult(Base) &&
   1080            "must be something we 'know' is a base pointer");
   1081     if (!State.isConflict())
   1082       continue;
   1083 
   1084     ReverseMap[Base] = BDV;
   1085     if (auto *BaseI = dyn_cast<Instruction>(Base)) {
   1086       NewInsts.insert(BaseI);
   1087       Worklist.insert(BaseI);
   1088     }
   1089   }
   1090   auto ReplaceBaseInstWith = [&](Value *BDV, Instruction *BaseI,
   1091                                  Value *Replacement) {
   1092     // Add users which are new instructions (excluding self references)
   1093     for (User *U : BaseI->users())
   1094       if (auto *UI = dyn_cast<Instruction>(U))
   1095         if (NewInsts.count(UI) && UI != BaseI)
   1096           Worklist.insert(UI);
   1097     // Then do the actual replacement
   1098     NewInsts.erase(BaseI);
   1099     ReverseMap.erase(BaseI);
   1100     BaseI->replaceAllUsesWith(Replacement);
   1101     assert(States.count(BDV));
   1102     assert(States[BDV].isConflict() && States[BDV].getBase() == BaseI);
   1103     States[BDV] = BDVState(BDVState::Conflict, Replacement);
   1104     BaseI->eraseFromParent();
   1105   };
   1106   const DataLayout &DL = cast<Instruction>(def)->getModule()->getDataLayout();
   1107   while (!Worklist.empty()) {
   1108     Instruction *BaseI = Worklist.pop_back_val();
   1109     assert(NewInsts.count(BaseI));
   1110     Value *Bdv = ReverseMap[BaseI];
   1111     if (auto *BdvI = dyn_cast<Instruction>(Bdv))
   1112       if (BaseI->isIdenticalTo(BdvI)) {
   1113         DEBUG(dbgs() << "Identical Base: " << *BaseI << "\n");
   1114         ReplaceBaseInstWith(Bdv, BaseI, Bdv);
   1115         continue;
   1116       }
   1117     if (Value *V = SimplifyInstruction(BaseI, DL)) {
   1118       DEBUG(dbgs() << "Base " << *BaseI << " simplified to " << *V << "\n");
   1119       ReplaceBaseInstWith(Bdv, BaseI, V);
   1120       continue;
   1121     }
   1122   }
   1123 
   1124   // Cache all of our results so we can cheaply reuse them
   1125   // NOTE: This is actually two caches: one of the base defining value
   1126   // relation and one of the base pointer relation!  FIXME
   1127   for (auto Pair : States) {
   1128     auto *BDV = Pair.first;
   1129     Value *base = Pair.second.getBase();
   1130     assert(BDV && base);
   1131 
   1132     std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none";
   1133     DEBUG(dbgs() << "Updating base value cache"
   1134           << " for: " << BDV->getName()
   1135           << " from: " << fromstr
   1136           << " to: " << base->getName() << "\n");
   1137 
   1138     if (cache.count(BDV)) {
   1139       // Once we transition from the BDV relation being store in the cache to
   1140       // the base relation being stored, it must be stable
   1141       assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) &&
   1142              "base relation should be stable");
   1143     }
   1144     cache[BDV] = base;
   1145   }
   1146   assert(cache.find(def) != cache.end());
   1147   return cache[def];
   1148 }
   1149 
   1150 // For a set of live pointers (base and/or derived), identify the base
   1151 // pointer of the object which they are derived from.  This routine will
   1152 // mutate the IR graph as needed to make the 'base' pointer live at the
   1153 // definition site of 'derived'.  This ensures that any use of 'derived' can
   1154 // also use 'base'.  This may involve the insertion of a number of
   1155 // additional PHI nodes.
   1156 //
   1157 // preconditions: live is a set of pointer type Values
   1158 //
   1159 // side effects: may insert PHI nodes into the existing CFG, will preserve
   1160 // CFG, will not remove or mutate any existing nodes
   1161 //
   1162 // post condition: PointerToBase contains one (derived, base) pair for every
   1163 // pointer in live.  Note that derived can be equal to base if the original
   1164 // pointer was a base pointer.
   1165 static void
   1166 findBasePointers(const StatepointLiveSetTy &live,
   1167                  DenseMap<Value *, Value *> &PointerToBase,
   1168                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
   1169   // For the naming of values inserted to be deterministic - which makes for
   1170   // much cleaner and more stable tests - we need to assign an order to the
   1171   // live values.  DenseSets do not provide a deterministic order across runs.
   1172   SmallVector<Value *, 64> Temp;
   1173   Temp.insert(Temp.end(), live.begin(), live.end());
   1174   std::sort(Temp.begin(), Temp.end(), order_by_name);
   1175   for (Value *ptr : Temp) {
   1176     Value *base = findBasePointer(ptr, DVCache);
   1177     assert(base && "failed to find base pointer");
   1178     PointerToBase[ptr] = base;
   1179     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
   1180             DT->dominates(cast<Instruction>(base)->getParent(),
   1181                           cast<Instruction>(ptr)->getParent())) &&
   1182            "The base we found better dominate the derived pointer");
   1183 
   1184     // If you see this trip and like to live really dangerously, the code should
   1185     // be correct, just with idioms the verifier can't handle.  You can try
   1186     // disabling the verifier at your own substantial risk.
   1187     assert(!isa<ConstantPointerNull>(base) &&
   1188            "the relocation code needs adjustment to handle the relocation of "
   1189            "a null pointer constant without causing false positives in the "
   1190            "safepoint ir verifier.");
   1191   }
   1192 }
   1193 
   1194 /// Find the required based pointers (and adjust the live set) for the given
   1195 /// parse point.
   1196 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
   1197                              const CallSite &CS,
   1198                              PartiallyConstructedSafepointRecord &result) {
   1199   DenseMap<Value *, Value *> PointerToBase;
   1200   findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
   1201 
   1202   if (PrintBasePointers) {
   1203     // Note: Need to print these in a stable order since this is checked in
   1204     // some tests.
   1205     errs() << "Base Pairs (w/o Relocation):\n";
   1206     SmallVector<Value *, 64> Temp;
   1207     Temp.reserve(PointerToBase.size());
   1208     for (auto Pair : PointerToBase) {
   1209       Temp.push_back(Pair.first);
   1210     }
   1211     std::sort(Temp.begin(), Temp.end(), order_by_name);
   1212     for (Value *Ptr : Temp) {
   1213       Value *Base = PointerToBase[Ptr];
   1214       errs() << " derived %" << Ptr->getName() << " base %" << Base->getName()
   1215              << "\n";
   1216     }
   1217   }
   1218 
   1219   result.PointerToBase = PointerToBase;
   1220 }
   1221 
   1222 /// Given an updated version of the dataflow liveness results, update the
   1223 /// liveset and base pointer maps for the call site CS.
   1224 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
   1225                                   const CallSite &CS,
   1226                                   PartiallyConstructedSafepointRecord &result);
   1227 
   1228 static void recomputeLiveInValues(
   1229     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
   1230     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
   1231   // TODO-PERF: reuse the original liveness, then simply run the dataflow
   1232   // again.  The old values are still live and will help it stabilize quickly.
   1233   GCPtrLivenessData RevisedLivenessData;
   1234   computeLiveInValues(DT, F, RevisedLivenessData);
   1235   for (size_t i = 0; i < records.size(); i++) {
   1236     struct PartiallyConstructedSafepointRecord &info = records[i];
   1237     const CallSite &CS = toUpdate[i];
   1238     recomputeLiveInValues(RevisedLivenessData, CS, info);
   1239   }
   1240 }
   1241 
   1242 // When inserting gc.relocate and gc.result calls, we need to ensure there are
   1243 // no uses of the original value / return value between the gc.statepoint and
   1244 // the gc.relocate / gc.result call.  One case which can arise is a phi node
   1245 // starting one of the successor blocks.  We also need to be able to insert the
   1246 // gc.relocates only on the path which goes through the statepoint.  We might
   1247 // need to split an edge to make this possible.
   1248 static BasicBlock *
   1249 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
   1250                             DominatorTree &DT) {
   1251   BasicBlock *Ret = BB;
   1252   if (!BB->getUniquePredecessor())
   1253     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
   1254 
   1255   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
   1256   // from it
   1257   FoldSingleEntryPHINodes(Ret);
   1258   assert(!isa<PHINode>(Ret->begin()) &&
   1259          "All PHI nodes should have been removed!");
   1260 
   1261   // At this point, we can safely insert a gc.relocate or gc.result as the first
   1262   // instruction in Ret if needed.
   1263   return Ret;
   1264 }
   1265 
   1266 // Create new attribute set containing only attributes which can be transferred
   1267 // from original call to the safepoint.
   1268 static AttributeSet legalizeCallAttributes(AttributeSet AS) {
   1269   AttributeSet Ret;
   1270 
   1271   for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
   1272     unsigned Index = AS.getSlotIndex(Slot);
   1273 
   1274     if (Index == AttributeSet::ReturnIndex ||
   1275         Index == AttributeSet::FunctionIndex) {
   1276 
   1277       for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) {
   1278 
   1279         // Do not allow certain attributes - just skip them
   1280         // Safepoint can not be read only or read none.
   1281         if (Attr.hasAttribute(Attribute::ReadNone) ||
   1282             Attr.hasAttribute(Attribute::ReadOnly))
   1283           continue;
   1284 
   1285         // These attributes control the generation of the gc.statepoint call /
   1286         // invoke itself; and once the gc.statepoint is in place, they're of no
   1287         // use.
   1288         if (Attr.hasAttribute("statepoint-num-patch-bytes") ||
   1289             Attr.hasAttribute("statepoint-id"))
   1290           continue;
   1291 
   1292         Ret = Ret.addAttributes(
   1293             AS.getContext(), Index,
   1294             AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr)));
   1295       }
   1296     }
   1297 
   1298     // Just skip parameter attributes for now
   1299   }
   1300 
   1301   return Ret;
   1302 }
   1303 
   1304 /// Helper function to place all gc relocates necessary for the given
   1305 /// statepoint.
   1306 /// Inputs:
   1307 ///   liveVariables - list of variables to be relocated.
   1308 ///   liveStart - index of the first live variable.
   1309 ///   basePtrs - base pointers.
   1310 ///   statepointToken - statepoint instruction to which relocates should be
   1311 ///   bound.
   1312 ///   Builder - Llvm IR builder to be used to construct new calls.
   1313 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
   1314                               const int LiveStart,
   1315                               ArrayRef<Value *> BasePtrs,
   1316                               Instruction *StatepointToken,
   1317                               IRBuilder<> Builder) {
   1318   if (LiveVariables.empty())
   1319     return;
   1320 
   1321   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
   1322     auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val);
   1323     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
   1324     size_t Index = std::distance(LiveVec.begin(), ValIt);
   1325     assert(Index < LiveVec.size() && "Bug in std::find?");
   1326     return Index;
   1327   };
   1328 
   1329   // All gc_relocate are set to i8 addrspace(1)* type. We originally generated
   1330   // unique declarations for each pointer type, but this proved problematic
   1331   // because the intrinsic mangling code is incomplete and fragile.  Since
   1332   // we're moving towards a single unified pointer type anyways, we can just
   1333   // cast everything to an i8* of the right address space.  A bitcast is added
   1334   // later to convert gc_relocate to the actual value's type.
   1335   Module *M = StatepointToken->getModule();
   1336   auto AS = cast<PointerType>(LiveVariables[0]->getType())->getAddressSpace();
   1337   Type *Types[] = {Type::getInt8PtrTy(M->getContext(), AS)};
   1338   Value *GCRelocateDecl =
   1339     Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types);
   1340 
   1341   for (unsigned i = 0; i < LiveVariables.size(); i++) {
   1342     // Generate the gc.relocate call and save the result
   1343     Value *BaseIdx =
   1344       Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
   1345     Value *LiveIdx = Builder.getInt32(LiveStart + i);
   1346 
   1347     // only specify a debug name if we can give a useful one
   1348     CallInst *Reloc = Builder.CreateCall(
   1349         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
   1350         suffixed_name_or(LiveVariables[i], ".relocated", ""));
   1351     // Trick CodeGen into thinking there are lots of free registers at this
   1352     // fake call.
   1353     Reloc->setCallingConv(CallingConv::Cold);
   1354   }
   1355 }
   1356 
   1357 namespace {
   1358 
   1359 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
   1360 /// avoids having to worry about keeping around dangling pointers to Values.
   1361 class DeferredReplacement {
   1362   AssertingVH<Instruction> Old;
   1363   AssertingVH<Instruction> New;
   1364 
   1365 public:
   1366   explicit DeferredReplacement(Instruction *Old, Instruction *New) :
   1367     Old(Old), New(New) {
   1368     assert(Old != New && "Not allowed!");
   1369   }
   1370 
   1371   /// Does the task represented by this instance.
   1372   void doReplacement() {
   1373     Instruction *OldI = Old;
   1374     Instruction *NewI = New;
   1375 
   1376     assert(OldI != NewI && "Disallowed at construction?!");
   1377 
   1378     Old = nullptr;
   1379     New = nullptr;
   1380 
   1381     if (NewI)
   1382       OldI->replaceAllUsesWith(NewI);
   1383     OldI->eraseFromParent();
   1384   }
   1385 };
   1386 }
   1387 
   1388 static void
   1389 makeStatepointExplicitImpl(const CallSite CS, /* to replace */
   1390                            const SmallVectorImpl<Value *> &BasePtrs,
   1391                            const SmallVectorImpl<Value *> &LiveVariables,
   1392                            PartiallyConstructedSafepointRecord &Result,
   1393                            std::vector<DeferredReplacement> &Replacements) {
   1394   assert(BasePtrs.size() == LiveVariables.size());
   1395   assert((UseDeoptBundles || isStatepoint(CS)) &&
   1396          "This method expects to be rewriting a statepoint");
   1397 
   1398   // Then go ahead and use the builder do actually do the inserts.  We insert
   1399   // immediately before the previous instruction under the assumption that all
   1400   // arguments will be available here.  We can't insert afterwards since we may
   1401   // be replacing a terminator.
   1402   Instruction *InsertBefore = CS.getInstruction();
   1403   IRBuilder<> Builder(InsertBefore);
   1404 
   1405   ArrayRef<Value *> GCArgs(LiveVariables);
   1406   uint64_t StatepointID = 0xABCDEF00;
   1407   uint32_t NumPatchBytes = 0;
   1408   uint32_t Flags = uint32_t(StatepointFlags::None);
   1409 
   1410   ArrayRef<Use> CallArgs;
   1411   ArrayRef<Use> DeoptArgs;
   1412   ArrayRef<Use> TransitionArgs;
   1413 
   1414   Value *CallTarget = nullptr;
   1415 
   1416   if (UseDeoptBundles) {
   1417     CallArgs = {CS.arg_begin(), CS.arg_end()};
   1418     DeoptArgs = GetDeoptBundleOperands(CS);
   1419     // TODO: we don't fill in TransitionArgs or Flags in this branch, but we
   1420     // could have an operand bundle for that too.
   1421     AttributeSet OriginalAttrs = CS.getAttributes();
   1422 
   1423     Attribute AttrID = OriginalAttrs.getAttribute(AttributeSet::FunctionIndex,
   1424                                                   "statepoint-id");
   1425     if (AttrID.isStringAttribute())
   1426       AttrID.getValueAsString().getAsInteger(10, StatepointID);
   1427 
   1428     Attribute AttrNumPatchBytes = OriginalAttrs.getAttribute(
   1429         AttributeSet::FunctionIndex, "statepoint-num-patch-bytes");
   1430     if (AttrNumPatchBytes.isStringAttribute())
   1431       AttrNumPatchBytes.getValueAsString().getAsInteger(10, NumPatchBytes);
   1432 
   1433     CallTarget = CS.getCalledValue();
   1434   } else {
   1435     // This branch will be gone soon, and we will soon only support the
   1436     // UseDeoptBundles == true configuration.
   1437     Statepoint OldSP(CS);
   1438     StatepointID = OldSP.getID();
   1439     NumPatchBytes = OldSP.getNumPatchBytes();
   1440     Flags = OldSP.getFlags();
   1441 
   1442     CallArgs = {OldSP.arg_begin(), OldSP.arg_end()};
   1443     DeoptArgs = {OldSP.vm_state_begin(), OldSP.vm_state_end()};
   1444     TransitionArgs = {OldSP.gc_transition_args_begin(),
   1445                       OldSP.gc_transition_args_end()};
   1446     CallTarget = OldSP.getCalledValue();
   1447   }
   1448 
   1449   // Create the statepoint given all the arguments
   1450   Instruction *Token = nullptr;
   1451   AttributeSet ReturnAttrs;
   1452   if (CS.isCall()) {
   1453     CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
   1454     CallInst *Call = Builder.CreateGCStatepointCall(
   1455         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
   1456         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
   1457 
   1458     Call->setTailCall(ToReplace->isTailCall());
   1459     Call->setCallingConv(ToReplace->getCallingConv());
   1460 
   1461     // Currently we will fail on parameter attributes and on certain
   1462     // function attributes.
   1463     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
   1464     // In case if we can handle this set of attributes - set up function attrs
   1465     // directly on statepoint and return attrs later for gc_result intrinsic.
   1466     Call->setAttributes(NewAttrs.getFnAttributes());
   1467     ReturnAttrs = NewAttrs.getRetAttributes();
   1468 
   1469     Token = Call;
   1470 
   1471     // Put the following gc_result and gc_relocate calls immediately after the
   1472     // the old call (which we're about to delete)
   1473     assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
   1474     Builder.SetInsertPoint(ToReplace->getNextNode());
   1475     Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
   1476   } else {
   1477     InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
   1478 
   1479     // Insert the new invoke into the old block.  We'll remove the old one in a
   1480     // moment at which point this will become the new terminator for the
   1481     // original block.
   1482     InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
   1483         StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
   1484         ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
   1485         GCArgs, "statepoint_token");
   1486 
   1487     Invoke->setCallingConv(ToReplace->getCallingConv());
   1488 
   1489     // Currently we will fail on parameter attributes and on certain
   1490     // function attributes.
   1491     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
   1492     // In case if we can handle this set of attributes - set up function attrs
   1493     // directly on statepoint and return attrs later for gc_result intrinsic.
   1494     Invoke->setAttributes(NewAttrs.getFnAttributes());
   1495     ReturnAttrs = NewAttrs.getRetAttributes();
   1496 
   1497     Token = Invoke;
   1498 
   1499     // Generate gc relocates in exceptional path
   1500     BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
   1501     assert(!isa<PHINode>(UnwindBlock->begin()) &&
   1502            UnwindBlock->getUniquePredecessor() &&
   1503            "can't safely insert in this block!");
   1504 
   1505     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
   1506     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
   1507 
   1508     // Extract second element from landingpad return value. We will attach
   1509     // exceptional gc relocates to it.
   1510     Instruction *ExceptionalToken =
   1511         cast<Instruction>(Builder.CreateExtractValue(
   1512             UnwindBlock->getLandingPadInst(), 1, "relocate_token"));
   1513     Result.UnwindToken = ExceptionalToken;
   1514 
   1515     const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
   1516     CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
   1517                       Builder);
   1518 
   1519     // Generate gc relocates and returns for normal block
   1520     BasicBlock *NormalDest = ToReplace->getNormalDest();
   1521     assert(!isa<PHINode>(NormalDest->begin()) &&
   1522            NormalDest->getUniquePredecessor() &&
   1523            "can't safely insert in this block!");
   1524 
   1525     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
   1526 
   1527     // gc relocates will be generated later as if it were regular call
   1528     // statepoint
   1529   }
   1530   assert(Token && "Should be set in one of the above branches!");
   1531 
   1532   if (UseDeoptBundles) {
   1533     Token->setName("statepoint_token");
   1534     if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
   1535       StringRef Name =
   1536           CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
   1537       CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
   1538       GCResult->setAttributes(CS.getAttributes().getRetAttributes());
   1539 
   1540       // We cannot RAUW or delete CS.getInstruction() because it could be in the
   1541       // live set of some other safepoint, in which case that safepoint's
   1542       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
   1543       // llvm::Instruction.  Instead, we defer the replacement and deletion to
   1544       // after the live sets have been made explicit in the IR, and we no longer
   1545       // have raw pointers to worry about.
   1546       Replacements.emplace_back(CS.getInstruction(), GCResult);
   1547     } else {
   1548       Replacements.emplace_back(CS.getInstruction(), nullptr);
   1549     }
   1550   } else {
   1551     assert(!CS.getInstruction()->hasNUsesOrMore(2) &&
   1552            "only valid use before rewrite is gc.result");
   1553     assert(!CS.getInstruction()->hasOneUse() ||
   1554            isGCResult(cast<Instruction>(*CS.getInstruction()->user_begin())));
   1555 
   1556     // Take the name of the original statepoint token if there was one.
   1557     Token->takeName(CS.getInstruction());
   1558 
   1559     // Update the gc.result of the original statepoint (if any) to use the newly
   1560     // inserted statepoint.  This is safe to do here since the token can't be
   1561     // considered a live reference.
   1562     CS.getInstruction()->replaceAllUsesWith(Token);
   1563     CS.getInstruction()->eraseFromParent();
   1564   }
   1565 
   1566   Result.StatepointToken = Token;
   1567 
   1568   // Second, create a gc.relocate for every live variable
   1569   const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
   1570   CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
   1571 }
   1572 
   1573 namespace {
   1574 struct NameOrdering {
   1575   Value *Base;
   1576   Value *Derived;
   1577 
   1578   bool operator()(NameOrdering const &a, NameOrdering const &b) {
   1579     return -1 == a.Derived->getName().compare(b.Derived->getName());
   1580   }
   1581 };
   1582 }
   1583 
   1584 static void StabilizeOrder(SmallVectorImpl<Value *> &BaseVec,
   1585                            SmallVectorImpl<Value *> &LiveVec) {
   1586   assert(BaseVec.size() == LiveVec.size());
   1587 
   1588   SmallVector<NameOrdering, 64> Temp;
   1589   for (size_t i = 0; i < BaseVec.size(); i++) {
   1590     NameOrdering v;
   1591     v.Base = BaseVec[i];
   1592     v.Derived = LiveVec[i];
   1593     Temp.push_back(v);
   1594   }
   1595 
   1596   std::sort(Temp.begin(), Temp.end(), NameOrdering());
   1597   for (size_t i = 0; i < BaseVec.size(); i++) {
   1598     BaseVec[i] = Temp[i].Base;
   1599     LiveVec[i] = Temp[i].Derived;
   1600   }
   1601 }
   1602 
   1603 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
   1604 // which make the relocations happening at this safepoint explicit.
   1605 //
   1606 // WARNING: Does not do any fixup to adjust users of the original live
   1607 // values.  That's the callers responsibility.
   1608 static void
   1609 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS,
   1610                        PartiallyConstructedSafepointRecord &Result,
   1611                        std::vector<DeferredReplacement> &Replacements) {
   1612   const auto &LiveSet = Result.LiveSet;
   1613   const auto &PointerToBase = Result.PointerToBase;
   1614 
   1615   // Convert to vector for efficient cross referencing.
   1616   SmallVector<Value *, 64> BaseVec, LiveVec;
   1617   LiveVec.reserve(LiveSet.size());
   1618   BaseVec.reserve(LiveSet.size());
   1619   for (Value *L : LiveSet) {
   1620     LiveVec.push_back(L);
   1621     assert(PointerToBase.count(L));
   1622     Value *Base = PointerToBase.find(L)->second;
   1623     BaseVec.push_back(Base);
   1624   }
   1625   assert(LiveVec.size() == BaseVec.size());
   1626 
   1627   // To make the output IR slightly more stable (for use in diffs), ensure a
   1628   // fixed order of the values in the safepoint (by sorting the value name).
   1629   // The order is otherwise meaningless.
   1630   StabilizeOrder(BaseVec, LiveVec);
   1631 
   1632   // Do the actual rewriting and delete the old statepoint
   1633   makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
   1634 }
   1635 
   1636 // Helper function for the relocationViaAlloca.
   1637 //
   1638 // It receives iterator to the statepoint gc relocates and emits a store to the
   1639 // assigned location (via allocaMap) for the each one of them.  It adds the
   1640 // visited values into the visitedLiveValues set, which we will later use them
   1641 // for sanity checking.
   1642 static void
   1643 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
   1644                        DenseMap<Value *, Value *> &AllocaMap,
   1645                        DenseSet<Value *> &VisitedLiveValues) {
   1646 
   1647   for (User *U : GCRelocs) {
   1648     if (!isa<IntrinsicInst>(U))
   1649       continue;
   1650 
   1651     IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U);
   1652 
   1653     // We only care about relocates
   1654     if (RelocatedValue->getIntrinsicID() !=
   1655         Intrinsic::experimental_gc_relocate) {
   1656       continue;
   1657     }
   1658 
   1659     GCRelocateOperands RelocateOperands(RelocatedValue);
   1660     Value *OriginalValue =
   1661         const_cast<Value *>(RelocateOperands.getDerivedPtr());
   1662     assert(AllocaMap.count(OriginalValue));
   1663     Value *Alloca = AllocaMap[OriginalValue];
   1664 
   1665     // Emit store into the related alloca
   1666     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
   1667     // the correct type according to alloca.
   1668     assert(RelocatedValue->getNextNode() &&
   1669            "Should always have one since it's not a terminator");
   1670     IRBuilder<> Builder(RelocatedValue->getNextNode());
   1671     Value *CastedRelocatedValue =
   1672       Builder.CreateBitCast(RelocatedValue,
   1673                             cast<AllocaInst>(Alloca)->getAllocatedType(),
   1674                             suffixed_name_or(RelocatedValue, ".casted", ""));
   1675 
   1676     StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
   1677     Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
   1678 
   1679 #ifndef NDEBUG
   1680     VisitedLiveValues.insert(OriginalValue);
   1681 #endif
   1682   }
   1683 }
   1684 
   1685 // Helper function for the "relocationViaAlloca". Similar to the
   1686 // "insertRelocationStores" but works for rematerialized values.
   1687 static void
   1688 insertRematerializationStores(
   1689   RematerializedValueMapTy RematerializedValues,
   1690   DenseMap<Value *, Value *> &AllocaMap,
   1691   DenseSet<Value *> &VisitedLiveValues) {
   1692 
   1693   for (auto RematerializedValuePair: RematerializedValues) {
   1694     Instruction *RematerializedValue = RematerializedValuePair.first;
   1695     Value *OriginalValue = RematerializedValuePair.second;
   1696 
   1697     assert(AllocaMap.count(OriginalValue) &&
   1698            "Can not find alloca for rematerialized value");
   1699     Value *Alloca = AllocaMap[OriginalValue];
   1700 
   1701     StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
   1702     Store->insertAfter(RematerializedValue);
   1703 
   1704 #ifndef NDEBUG
   1705     VisitedLiveValues.insert(OriginalValue);
   1706 #endif
   1707   }
   1708 }
   1709 
   1710 /// Do all the relocation update via allocas and mem2reg
   1711 static void relocationViaAlloca(
   1712     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
   1713     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
   1714 #ifndef NDEBUG
   1715   // record initial number of (static) allocas; we'll check we have the same
   1716   // number when we get done.
   1717   int InitialAllocaNum = 0;
   1718   for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
   1719        I++)
   1720     if (isa<AllocaInst>(*I))
   1721       InitialAllocaNum++;
   1722 #endif
   1723 
   1724   // TODO-PERF: change data structures, reserve
   1725   DenseMap<Value *, Value *> AllocaMap;
   1726   SmallVector<AllocaInst *, 200> PromotableAllocas;
   1727   // Used later to chack that we have enough allocas to store all values
   1728   std::size_t NumRematerializedValues = 0;
   1729   PromotableAllocas.reserve(Live.size());
   1730 
   1731   // Emit alloca for "LiveValue" and record it in "allocaMap" and
   1732   // "PromotableAllocas"
   1733   auto emitAllocaFor = [&](Value *LiveValue) {
   1734     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
   1735                                         F.getEntryBlock().getFirstNonPHI());
   1736     AllocaMap[LiveValue] = Alloca;
   1737     PromotableAllocas.push_back(Alloca);
   1738   };
   1739 
   1740   // Emit alloca for each live gc pointer
   1741   for (Value *V : Live)
   1742     emitAllocaFor(V);
   1743 
   1744   // Emit allocas for rematerialized values
   1745   for (const auto &Info : Records)
   1746     for (auto RematerializedValuePair : Info.RematerializedValues) {
   1747       Value *OriginalValue = RematerializedValuePair.second;
   1748       if (AllocaMap.count(OriginalValue) != 0)
   1749         continue;
   1750 
   1751       emitAllocaFor(OriginalValue);
   1752       ++NumRematerializedValues;
   1753     }
   1754 
   1755   // The next two loops are part of the same conceptual operation.  We need to
   1756   // insert a store to the alloca after the original def and at each
   1757   // redefinition.  We need to insert a load before each use.  These are split
   1758   // into distinct loops for performance reasons.
   1759 
   1760   // Update gc pointer after each statepoint: either store a relocated value or
   1761   // null (if no relocated value was found for this gc pointer and it is not a
   1762   // gc_result).  This must happen before we update the statepoint with load of
   1763   // alloca otherwise we lose the link between statepoint and old def.
   1764   for (const auto &Info : Records) {
   1765     Value *Statepoint = Info.StatepointToken;
   1766 
   1767     // This will be used for consistency check
   1768     DenseSet<Value *> VisitedLiveValues;
   1769 
   1770     // Insert stores for normal statepoint gc relocates
   1771     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
   1772 
   1773     // In case if it was invoke statepoint
   1774     // we will insert stores for exceptional path gc relocates.
   1775     if (isa<InvokeInst>(Statepoint)) {
   1776       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
   1777                              VisitedLiveValues);
   1778     }
   1779 
   1780     // Do similar thing with rematerialized values
   1781     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
   1782                                   VisitedLiveValues);
   1783 
   1784     if (ClobberNonLive) {
   1785       // As a debugging aid, pretend that an unrelocated pointer becomes null at
   1786       // the gc.statepoint.  This will turn some subtle GC problems into
   1787       // slightly easier to debug SEGVs.  Note that on large IR files with
   1788       // lots of gc.statepoints this is extremely costly both memory and time
   1789       // wise.
   1790       SmallVector<AllocaInst *, 64> ToClobber;
   1791       for (auto Pair : AllocaMap) {
   1792         Value *Def = Pair.first;
   1793         AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
   1794 
   1795         // This value was relocated
   1796         if (VisitedLiveValues.count(Def)) {
   1797           continue;
   1798         }
   1799         ToClobber.push_back(Alloca);
   1800       }
   1801 
   1802       auto InsertClobbersAt = [&](Instruction *IP) {
   1803         for (auto *AI : ToClobber) {
   1804           auto AIType = cast<PointerType>(AI->getType());
   1805           auto PT = cast<PointerType>(AIType->getElementType());
   1806           Constant *CPN = ConstantPointerNull::get(PT);
   1807           StoreInst *Store = new StoreInst(CPN, AI);
   1808           Store->insertBefore(IP);
   1809         }
   1810       };
   1811 
   1812       // Insert the clobbering stores.  These may get intermixed with the
   1813       // gc.results and gc.relocates, but that's fine.
   1814       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
   1815         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
   1816         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
   1817       } else {
   1818         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
   1819       }
   1820     }
   1821   }
   1822 
   1823   // Update use with load allocas and add store for gc_relocated.
   1824   for (auto Pair : AllocaMap) {
   1825     Value *Def = Pair.first;
   1826     Value *Alloca = Pair.second;
   1827 
   1828     // We pre-record the uses of allocas so that we dont have to worry about
   1829     // later update that changes the user information..
   1830 
   1831     SmallVector<Instruction *, 20> Uses;
   1832     // PERF: trade a linear scan for repeated reallocation
   1833     Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
   1834     for (User *U : Def->users()) {
   1835       if (!isa<ConstantExpr>(U)) {
   1836         // If the def has a ConstantExpr use, then the def is either a
   1837         // ConstantExpr use itself or null.  In either case
   1838         // (recursively in the first, directly in the second), the oop
   1839         // it is ultimately dependent on is null and this particular
   1840         // use does not need to be fixed up.
   1841         Uses.push_back(cast<Instruction>(U));
   1842       }
   1843     }
   1844 
   1845     std::sort(Uses.begin(), Uses.end());
   1846     auto Last = std::unique(Uses.begin(), Uses.end());
   1847     Uses.erase(Last, Uses.end());
   1848 
   1849     for (Instruction *Use : Uses) {
   1850       if (isa<PHINode>(Use)) {
   1851         PHINode *Phi = cast<PHINode>(Use);
   1852         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
   1853           if (Def == Phi->getIncomingValue(i)) {
   1854             LoadInst *Load = new LoadInst(
   1855                 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
   1856             Phi->setIncomingValue(i, Load);
   1857           }
   1858         }
   1859       } else {
   1860         LoadInst *Load = new LoadInst(Alloca, "", Use);
   1861         Use->replaceUsesOfWith(Def, Load);
   1862       }
   1863     }
   1864 
   1865     // Emit store for the initial gc value.  Store must be inserted after load,
   1866     // otherwise store will be in alloca's use list and an extra load will be
   1867     // inserted before it.
   1868     StoreInst *Store = new StoreInst(Def, Alloca);
   1869     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
   1870       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
   1871         // InvokeInst is a TerminatorInst so the store need to be inserted
   1872         // into its normal destination block.
   1873         BasicBlock *NormalDest = Invoke->getNormalDest();
   1874         Store->insertBefore(NormalDest->getFirstNonPHI());
   1875       } else {
   1876         assert(!Inst->isTerminator() &&
   1877                "The only TerminatorInst that can produce a value is "
   1878                "InvokeInst which is handled above.");
   1879         Store->insertAfter(Inst);
   1880       }
   1881     } else {
   1882       assert(isa<Argument>(Def));
   1883       Store->insertAfter(cast<Instruction>(Alloca));
   1884     }
   1885   }
   1886 
   1887   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
   1888          "we must have the same allocas with lives");
   1889   if (!PromotableAllocas.empty()) {
   1890     // Apply mem2reg to promote alloca to SSA
   1891     PromoteMemToReg(PromotableAllocas, DT);
   1892   }
   1893 
   1894 #ifndef NDEBUG
   1895   for (auto &I : F.getEntryBlock())
   1896     if (isa<AllocaInst>(I))
   1897       InitialAllocaNum--;
   1898   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
   1899 #endif
   1900 }
   1901 
   1902 /// Implement a unique function which doesn't require we sort the input
   1903 /// vector.  Doing so has the effect of changing the output of a couple of
   1904 /// tests in ways which make them less useful in testing fused safepoints.
   1905 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
   1906   SmallSet<T, 8> Seen;
   1907   Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) {
   1908               return !Seen.insert(V).second;
   1909             }), Vec.end());
   1910 }
   1911 
   1912 /// Insert holders so that each Value is obviously live through the entire
   1913 /// lifetime of the call.
   1914 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
   1915                                  SmallVectorImpl<CallInst *> &Holders) {
   1916   if (Values.empty())
   1917     // No values to hold live, might as well not insert the empty holder
   1918     return;
   1919 
   1920   Module *M = CS.getInstruction()->getModule();
   1921   // Use a dummy vararg function to actually hold the values live
   1922   Function *Func = cast<Function>(M->getOrInsertFunction(
   1923       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
   1924   if (CS.isCall()) {
   1925     // For call safepoints insert dummy calls right after safepoint
   1926     Holders.push_back(CallInst::Create(Func, Values, "",
   1927                                        &*++CS.getInstruction()->getIterator()));
   1928     return;
   1929   }
   1930   // For invoke safepooints insert dummy calls both in normal and
   1931   // exceptional destination blocks
   1932   auto *II = cast<InvokeInst>(CS.getInstruction());
   1933   Holders.push_back(CallInst::Create(
   1934       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
   1935   Holders.push_back(CallInst::Create(
   1936       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
   1937 }
   1938 
   1939 static void findLiveReferences(
   1940     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
   1941     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
   1942   GCPtrLivenessData OriginalLivenessData;
   1943   computeLiveInValues(DT, F, OriginalLivenessData);
   1944   for (size_t i = 0; i < records.size(); i++) {
   1945     struct PartiallyConstructedSafepointRecord &info = records[i];
   1946     const CallSite &CS = toUpdate[i];
   1947     analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info);
   1948   }
   1949 }
   1950 
   1951 /// Remove any vector of pointers from the live set by scalarizing them over the
   1952 /// statepoint instruction.  Adds the scalarized pieces to the live set.  It
   1953 /// would be preferable to include the vector in the statepoint itself, but
   1954 /// the lowering code currently does not handle that.  Extending it would be
   1955 /// slightly non-trivial since it requires a format change.  Given how rare
   1956 /// such cases are (for the moment?) scalarizing is an acceptable compromise.
   1957 static void splitVectorValues(Instruction *StatepointInst,
   1958                               StatepointLiveSetTy &LiveSet,
   1959                               DenseMap<Value *, Value *>& PointerToBase,
   1960                               DominatorTree &DT) {
   1961   SmallVector<Value *, 16> ToSplit;
   1962   for (Value *V : LiveSet)
   1963     if (isa<VectorType>(V->getType()))
   1964       ToSplit.push_back(V);
   1965 
   1966   if (ToSplit.empty())
   1967     return;
   1968 
   1969   DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping;
   1970 
   1971   Function &F = *(StatepointInst->getParent()->getParent());
   1972 
   1973   DenseMap<Value *, AllocaInst *> AllocaMap;
   1974   // First is normal return, second is exceptional return (invoke only)
   1975   DenseMap<Value *, std::pair<Value *, Value *>> Replacements;
   1976   for (Value *V : ToSplit) {
   1977     AllocaInst *Alloca =
   1978         new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI());
   1979     AllocaMap[V] = Alloca;
   1980 
   1981     VectorType *VT = cast<VectorType>(V->getType());
   1982     IRBuilder<> Builder(StatepointInst);
   1983     SmallVector<Value *, 16> Elements;
   1984     for (unsigned i = 0; i < VT->getNumElements(); i++)
   1985       Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i)));
   1986     ElementMapping[V] = Elements;
   1987 
   1988     auto InsertVectorReform = [&](Instruction *IP) {
   1989       Builder.SetInsertPoint(IP);
   1990       Builder.SetCurrentDebugLocation(IP->getDebugLoc());
   1991       Value *ResultVec = UndefValue::get(VT);
   1992       for (unsigned i = 0; i < VT->getNumElements(); i++)
   1993         ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i],
   1994                                                 Builder.getInt32(i));
   1995       return ResultVec;
   1996     };
   1997 
   1998     if (isa<CallInst>(StatepointInst)) {
   1999       BasicBlock::iterator Next(StatepointInst);
   2000       Next++;
   2001       Instruction *IP = &*(Next);
   2002       Replacements[V].first = InsertVectorReform(IP);
   2003       Replacements[V].second = nullptr;
   2004     } else {
   2005       InvokeInst *Invoke = cast<InvokeInst>(StatepointInst);
   2006       // We've already normalized - check that we don't have shared destination
   2007       // blocks
   2008       BasicBlock *NormalDest = Invoke->getNormalDest();
   2009       assert(!isa<PHINode>(NormalDest->begin()));
   2010       BasicBlock *UnwindDest = Invoke->getUnwindDest();
   2011       assert(!isa<PHINode>(UnwindDest->begin()));
   2012       // Insert insert element sequences in both successors
   2013       Instruction *IP = &*(NormalDest->getFirstInsertionPt());
   2014       Replacements[V].first = InsertVectorReform(IP);
   2015       IP = &*(UnwindDest->getFirstInsertionPt());
   2016       Replacements[V].second = InsertVectorReform(IP);
   2017     }
   2018   }
   2019 
   2020   for (Value *V : ToSplit) {
   2021     AllocaInst *Alloca = AllocaMap[V];
   2022 
   2023     // Capture all users before we start mutating use lists
   2024     SmallVector<Instruction *, 16> Users;
   2025     for (User *U : V->users())
   2026       Users.push_back(cast<Instruction>(U));
   2027 
   2028     for (Instruction *I : Users) {
   2029       if (auto Phi = dyn_cast<PHINode>(I)) {
   2030         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++)
   2031           if (V == Phi->getIncomingValue(i)) {
   2032             LoadInst *Load = new LoadInst(
   2033                 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
   2034             Phi->setIncomingValue(i, Load);
   2035           }
   2036       } else {
   2037         LoadInst *Load = new LoadInst(Alloca, "", I);
   2038         I->replaceUsesOfWith(V, Load);
   2039       }
   2040     }
   2041 
   2042     // Store the original value and the replacement value into the alloca
   2043     StoreInst *Store = new StoreInst(V, Alloca);
   2044     if (auto I = dyn_cast<Instruction>(V))
   2045       Store->insertAfter(I);
   2046     else
   2047       Store->insertAfter(Alloca);
   2048 
   2049     // Normal return for invoke, or call return
   2050     Instruction *Replacement = cast<Instruction>(Replacements[V].first);
   2051     (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
   2052     // Unwind return for invoke only
   2053     Replacement = cast_or_null<Instruction>(Replacements[V].second);
   2054     if (Replacement)
   2055       (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
   2056   }
   2057 
   2058   // apply mem2reg to promote alloca to SSA
   2059   SmallVector<AllocaInst *, 16> Allocas;
   2060   for (Value *V : ToSplit)
   2061     Allocas.push_back(AllocaMap[V]);
   2062   PromoteMemToReg(Allocas, DT);
   2063 
   2064   // Update our tracking of live pointers and base mappings to account for the
   2065   // changes we just made.
   2066   for (Value *V : ToSplit) {
   2067     auto &Elements = ElementMapping[V];
   2068 
   2069     LiveSet.erase(V);
   2070     LiveSet.insert(Elements.begin(), Elements.end());
   2071     // We need to update the base mapping as well.
   2072     assert(PointerToBase.count(V));
   2073     Value *OldBase = PointerToBase[V];
   2074     auto &BaseElements = ElementMapping[OldBase];
   2075     PointerToBase.erase(V);
   2076     assert(Elements.size() == BaseElements.size());
   2077     for (unsigned i = 0; i < Elements.size(); i++) {
   2078       Value *Elem = Elements[i];
   2079       PointerToBase[Elem] = BaseElements[i];
   2080     }
   2081   }
   2082 }
   2083 
   2084 // Helper function for the "rematerializeLiveValues". It walks use chain
   2085 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
   2086 // values are visited (currently it is GEP's and casts). Returns true if it
   2087 // successfully reached "BaseValue" and false otherwise.
   2088 // Fills "ChainToBase" array with all visited values. "BaseValue" is not
   2089 // recorded.
   2090 static bool findRematerializableChainToBasePointer(
   2091   SmallVectorImpl<Instruction*> &ChainToBase,
   2092   Value *CurrentValue, Value *BaseValue) {
   2093 
   2094   // We have found a base value
   2095   if (CurrentValue == BaseValue) {
   2096     return true;
   2097   }
   2098 
   2099   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
   2100     ChainToBase.push_back(GEP);
   2101     return findRematerializableChainToBasePointer(ChainToBase,
   2102                                                   GEP->getPointerOperand(),
   2103                                                   BaseValue);
   2104   }
   2105 
   2106   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
   2107     Value *Def = CI->stripPointerCasts();
   2108 
   2109     // This two checks are basically similar. First one is here for the
   2110     // consistency with findBasePointers logic.
   2111     assert(!isa<CastInst>(Def) && "not a pointer cast found");
   2112     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
   2113       return false;
   2114 
   2115     ChainToBase.push_back(CI);
   2116     return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue);
   2117   }
   2118 
   2119   // Not supported instruction in the chain
   2120   return false;
   2121 }
   2122 
   2123 // Helper function for the "rematerializeLiveValues". Compute cost of the use
   2124 // chain we are going to rematerialize.
   2125 static unsigned
   2126 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
   2127                        TargetTransformInfo &TTI) {
   2128   unsigned Cost = 0;
   2129 
   2130   for (Instruction *Instr : Chain) {
   2131     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
   2132       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
   2133              "non noop cast is found during rematerialization");
   2134 
   2135       Type *SrcTy = CI->getOperand(0)->getType();
   2136       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
   2137 
   2138     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
   2139       // Cost of the address calculation
   2140       Type *ValTy = GEP->getPointerOperandType()->getPointerElementType();
   2141       Cost += TTI.getAddressComputationCost(ValTy);
   2142 
   2143       // And cost of the GEP itself
   2144       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
   2145       //       allowed for the external usage)
   2146       if (!GEP->hasAllConstantIndices())
   2147         Cost += 2;
   2148 
   2149     } else {
   2150       llvm_unreachable("unsupported instruciton type during rematerialization");
   2151     }
   2152   }
   2153 
   2154   return Cost;
   2155 }
   2156 
   2157 // From the statepoint live set pick values that are cheaper to recompute then
   2158 // to relocate. Remove this values from the live set, rematerialize them after
   2159 // statepoint and record them in "Info" structure. Note that similar to
   2160 // relocated values we don't do any user adjustments here.
   2161 static void rematerializeLiveValues(CallSite CS,
   2162                                     PartiallyConstructedSafepointRecord &Info,
   2163                                     TargetTransformInfo &TTI) {
   2164   const unsigned int ChainLengthThreshold = 10;
   2165 
   2166   // Record values we are going to delete from this statepoint live set.
   2167   // We can not di this in following loop due to iterator invalidation.
   2168   SmallVector<Value *, 32> LiveValuesToBeDeleted;
   2169 
   2170   for (Value *LiveValue: Info.LiveSet) {
   2171     // For each live pointer find it's defining chain
   2172     SmallVector<Instruction *, 3> ChainToBase;
   2173     assert(Info.PointerToBase.count(LiveValue));
   2174     bool FoundChain =
   2175       findRematerializableChainToBasePointer(ChainToBase,
   2176                                              LiveValue,
   2177                                              Info.PointerToBase[LiveValue]);
   2178     // Nothing to do, or chain is too long
   2179     if (!FoundChain ||
   2180         ChainToBase.size() == 0 ||
   2181         ChainToBase.size() > ChainLengthThreshold)
   2182       continue;
   2183 
   2184     // Compute cost of this chain
   2185     unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
   2186     // TODO: We can also account for cases when we will be able to remove some
   2187     //       of the rematerialized values by later optimization passes. I.e if
   2188     //       we rematerialized several intersecting chains. Or if original values
   2189     //       don't have any uses besides this statepoint.
   2190 
   2191     // For invokes we need to rematerialize each chain twice - for normal and
   2192     // for unwind basic blocks. Model this by multiplying cost by two.
   2193     if (CS.isInvoke()) {
   2194       Cost *= 2;
   2195     }
   2196     // If it's too expensive - skip it
   2197     if (Cost >= RematerializationThreshold)
   2198       continue;
   2199 
   2200     // Remove value from the live set
   2201     LiveValuesToBeDeleted.push_back(LiveValue);
   2202 
   2203     // Clone instructions and record them inside "Info" structure
   2204 
   2205     // Walk backwards to visit top-most instructions first
   2206     std::reverse(ChainToBase.begin(), ChainToBase.end());
   2207 
   2208     // Utility function which clones all instructions from "ChainToBase"
   2209     // and inserts them before "InsertBefore". Returns rematerialized value
   2210     // which should be used after statepoint.
   2211     auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
   2212       Instruction *LastClonedValue = nullptr;
   2213       Instruction *LastValue = nullptr;
   2214       for (Instruction *Instr: ChainToBase) {
   2215         // Only GEP's and casts are suported as we need to be careful to not
   2216         // introduce any new uses of pointers not in the liveset.
   2217         // Note that it's fine to introduce new uses of pointers which were
   2218         // otherwise not used after this statepoint.
   2219         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
   2220 
   2221         Instruction *ClonedValue = Instr->clone();
   2222         ClonedValue->insertBefore(InsertBefore);
   2223         ClonedValue->setName(Instr->getName() + ".remat");
   2224 
   2225         // If it is not first instruction in the chain then it uses previously
   2226         // cloned value. We should update it to use cloned value.
   2227         if (LastClonedValue) {
   2228           assert(LastValue);
   2229           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
   2230 #ifndef NDEBUG
   2231           // Assert that cloned instruction does not use any instructions from
   2232           // this chain other than LastClonedValue
   2233           for (auto OpValue : ClonedValue->operand_values()) {
   2234             assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) ==
   2235                        ChainToBase.end() &&
   2236                    "incorrect use in rematerialization chain");
   2237           }
   2238 #endif
   2239         }
   2240 
   2241         LastClonedValue = ClonedValue;
   2242         LastValue = Instr;
   2243       }
   2244       assert(LastClonedValue);
   2245       return LastClonedValue;
   2246     };
   2247 
   2248     // Different cases for calls and invokes. For invokes we need to clone
   2249     // instructions both on normal and unwind path.
   2250     if (CS.isCall()) {
   2251       Instruction *InsertBefore = CS.getInstruction()->getNextNode();
   2252       assert(InsertBefore);
   2253       Instruction *RematerializedValue = rematerializeChain(InsertBefore);
   2254       Info.RematerializedValues[RematerializedValue] = LiveValue;
   2255     } else {
   2256       InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
   2257 
   2258       Instruction *NormalInsertBefore =
   2259           &*Invoke->getNormalDest()->getFirstInsertionPt();
   2260       Instruction *UnwindInsertBefore =
   2261           &*Invoke->getUnwindDest()->getFirstInsertionPt();
   2262 
   2263       Instruction *NormalRematerializedValue =
   2264           rematerializeChain(NormalInsertBefore);
   2265       Instruction *UnwindRematerializedValue =
   2266           rematerializeChain(UnwindInsertBefore);
   2267 
   2268       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
   2269       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
   2270     }
   2271   }
   2272 
   2273   // Remove rematerializaed values from the live set
   2274   for (auto LiveValue: LiveValuesToBeDeleted) {
   2275     Info.LiveSet.erase(LiveValue);
   2276   }
   2277 }
   2278 
   2279 static bool insertParsePoints(Function &F, DominatorTree &DT,
   2280                               TargetTransformInfo &TTI,
   2281                               SmallVectorImpl<CallSite> &ToUpdate) {
   2282 #ifndef NDEBUG
   2283   // sanity check the input
   2284   std::set<CallSite> Uniqued;
   2285   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
   2286   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
   2287 
   2288   for (CallSite CS : ToUpdate) {
   2289     assert(CS.getInstruction()->getParent()->getParent() == &F);
   2290     assert((UseDeoptBundles || isStatepoint(CS)) &&
   2291            "expected to already be a deopt statepoint");
   2292   }
   2293 #endif
   2294 
   2295   // When inserting gc.relocates for invokes, we need to be able to insert at
   2296   // the top of the successor blocks.  See the comment on
   2297   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
   2298   // may restructure the CFG.
   2299   for (CallSite CS : ToUpdate) {
   2300     if (!CS.isInvoke())
   2301       continue;
   2302     auto *II = cast<InvokeInst>(CS.getInstruction());
   2303     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
   2304     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
   2305   }
   2306 
   2307   // A list of dummy calls added to the IR to keep various values obviously
   2308   // live in the IR.  We'll remove all of these when done.
   2309   SmallVector<CallInst *, 64> Holders;
   2310 
   2311   // Insert a dummy call with all of the arguments to the vm_state we'll need
   2312   // for the actual safepoint insertion.  This ensures reference arguments in
   2313   // the deopt argument list are considered live through the safepoint (and
   2314   // thus makes sure they get relocated.)
   2315   for (CallSite CS : ToUpdate) {
   2316     SmallVector<Value *, 64> DeoptValues;
   2317 
   2318     iterator_range<const Use *> DeoptStateRange =
   2319         UseDeoptBundles
   2320             ? iterator_range<const Use *>(GetDeoptBundleOperands(CS))
   2321             : iterator_range<const Use *>(Statepoint(CS).vm_state_args());
   2322 
   2323     for (Value *Arg : DeoptStateRange) {
   2324       assert(!isUnhandledGCPointerType(Arg->getType()) &&
   2325              "support for FCA unimplemented");
   2326       if (isHandledGCPointerType(Arg->getType()))
   2327         DeoptValues.push_back(Arg);
   2328     }
   2329 
   2330     insertUseHolderAfter(CS, DeoptValues, Holders);
   2331   }
   2332 
   2333   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
   2334 
   2335   // A) Identify all gc pointers which are statically live at the given call
   2336   // site.
   2337   findLiveReferences(F, DT, ToUpdate, Records);
   2338 
   2339   // B) Find the base pointers for each live pointer
   2340   /* scope for caching */ {
   2341     // Cache the 'defining value' relation used in the computation and
   2342     // insertion of base phis and selects.  This ensures that we don't insert
   2343     // large numbers of duplicate base_phis.
   2344     DefiningValueMapTy DVCache;
   2345 
   2346     for (size_t i = 0; i < Records.size(); i++) {
   2347       PartiallyConstructedSafepointRecord &info = Records[i];
   2348       findBasePointers(DT, DVCache, ToUpdate[i], info);
   2349     }
   2350   } // end of cache scope
   2351 
   2352   // The base phi insertion logic (for any safepoint) may have inserted new
   2353   // instructions which are now live at some safepoint.  The simplest such
   2354   // example is:
   2355   // loop:
   2356   //   phi a  <-- will be a new base_phi here
   2357   //   safepoint 1 <-- that needs to be live here
   2358   //   gep a + 1
   2359   //   safepoint 2
   2360   //   br loop
   2361   // We insert some dummy calls after each safepoint to definitely hold live
   2362   // the base pointers which were identified for that safepoint.  We'll then
   2363   // ask liveness for _every_ base inserted to see what is now live.  Then we
   2364   // remove the dummy calls.
   2365   Holders.reserve(Holders.size() + Records.size());
   2366   for (size_t i = 0; i < Records.size(); i++) {
   2367     PartiallyConstructedSafepointRecord &Info = Records[i];
   2368 
   2369     SmallVector<Value *, 128> Bases;
   2370     for (auto Pair : Info.PointerToBase)
   2371       Bases.push_back(Pair.second);
   2372 
   2373     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
   2374   }
   2375 
   2376   // By selecting base pointers, we've effectively inserted new uses. Thus, we
   2377   // need to rerun liveness.  We may *also* have inserted new defs, but that's
   2378   // not the key issue.
   2379   recomputeLiveInValues(F, DT, ToUpdate, Records);
   2380 
   2381   if (PrintBasePointers) {
   2382     for (auto &Info : Records) {
   2383       errs() << "Base Pairs: (w/Relocation)\n";
   2384       for (auto Pair : Info.PointerToBase)
   2385         errs() << " derived %" << Pair.first->getName() << " base %"
   2386                << Pair.second->getName() << "\n";
   2387     }
   2388   }
   2389 
   2390   for (CallInst *CI : Holders)
   2391     CI->eraseFromParent();
   2392 
   2393   Holders.clear();
   2394 
   2395   // Do a limited scalarization of any live at safepoint vector values which
   2396   // contain pointers.  This enables this pass to run after vectorization at
   2397   // the cost of some possible performance loss.  TODO: it would be nice to
   2398   // natively support vectors all the way through the backend so we don't need
   2399   // to scalarize here.
   2400   for (size_t i = 0; i < Records.size(); i++) {
   2401     PartiallyConstructedSafepointRecord &Info = Records[i];
   2402     Instruction *Statepoint = ToUpdate[i].getInstruction();
   2403     splitVectorValues(cast<Instruction>(Statepoint), Info.LiveSet,
   2404                       Info.PointerToBase, DT);
   2405   }
   2406 
   2407   // In order to reduce live set of statepoint we might choose to rematerialize
   2408   // some values instead of relocating them. This is purely an optimization and
   2409   // does not influence correctness.
   2410   for (size_t i = 0; i < Records.size(); i++)
   2411     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
   2412 
   2413   // We need this to safely RAUW and delete call or invoke return values that
   2414   // may themselves be live over a statepoint.  For details, please see usage in
   2415   // makeStatepointExplicitImpl.
   2416   std::vector<DeferredReplacement> Replacements;
   2417 
   2418   // Now run through and replace the existing statepoints with new ones with
   2419   // the live variables listed.  We do not yet update uses of the values being
   2420   // relocated. We have references to live variables that need to
   2421   // survive to the last iteration of this loop.  (By construction, the
   2422   // previous statepoint can not be a live variable, thus we can and remove
   2423   // the old statepoint calls as we go.)
   2424   for (size_t i = 0; i < Records.size(); i++)
   2425     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
   2426 
   2427   ToUpdate.clear(); // prevent accident use of invalid CallSites
   2428 
   2429   for (auto &PR : Replacements)
   2430     PR.doReplacement();
   2431 
   2432   Replacements.clear();
   2433 
   2434   for (auto &Info : Records) {
   2435     // These live sets may contain state Value pointers, since we replaced calls
   2436     // with operand bundles with calls wrapped in gc.statepoint, and some of
   2437     // those calls may have been def'ing live gc pointers.  Clear these out to
   2438     // avoid accidentally using them.
   2439     //
   2440     // TODO: We should create a separate data structure that does not contain
   2441     // these live sets, and migrate to using that data structure from this point
   2442     // onward.
   2443     Info.LiveSet.clear();
   2444     Info.PointerToBase.clear();
   2445   }
   2446 
   2447   // Do all the fixups of the original live variables to their relocated selves
   2448   SmallVector<Value *, 128> Live;
   2449   for (size_t i = 0; i < Records.size(); i++) {
   2450     PartiallyConstructedSafepointRecord &Info = Records[i];
   2451 
   2452     // We can't simply save the live set from the original insertion.  One of
   2453     // the live values might be the result of a call which needs a safepoint.
   2454     // That Value* no longer exists and we need to use the new gc_result.
   2455     // Thankfully, the live set is embedded in the statepoint (and updated), so
   2456     // we just grab that.
   2457     Statepoint Statepoint(Info.StatepointToken);
   2458     Live.insert(Live.end(), Statepoint.gc_args_begin(),
   2459                 Statepoint.gc_args_end());
   2460 #ifndef NDEBUG
   2461     // Do some basic sanity checks on our liveness results before performing
   2462     // relocation.  Relocation can and will turn mistakes in liveness results
   2463     // into non-sensical code which is must harder to debug.
   2464     // TODO: It would be nice to test consistency as well
   2465     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
   2466            "statepoint must be reachable or liveness is meaningless");
   2467     for (Value *V : Statepoint.gc_args()) {
   2468       if (!isa<Instruction>(V))
   2469         // Non-instruction values trivial dominate all possible uses
   2470         continue;
   2471       auto *LiveInst = cast<Instruction>(V);
   2472       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
   2473              "unreachable values should never be live");
   2474       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
   2475              "basic SSA liveness expectation violated by liveness analysis");
   2476     }
   2477 #endif
   2478   }
   2479   unique_unsorted(Live);
   2480 
   2481 #ifndef NDEBUG
   2482   // sanity check
   2483   for (auto *Ptr : Live)
   2484     assert(isGCPointerType(Ptr->getType()) && "must be a gc pointer type");
   2485 #endif
   2486 
   2487   relocationViaAlloca(F, DT, Live, Records);
   2488   return !Records.empty();
   2489 }
   2490 
   2491 // Handles both return values and arguments for Functions and CallSites.
   2492 template <typename AttrHolder>
   2493 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
   2494                                       unsigned Index) {
   2495   AttrBuilder R;
   2496   if (AH.getDereferenceableBytes(Index))
   2497     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
   2498                                   AH.getDereferenceableBytes(Index)));
   2499   if (AH.getDereferenceableOrNullBytes(Index))
   2500     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
   2501                                   AH.getDereferenceableOrNullBytes(Index)));
   2502   if (AH.doesNotAlias(Index))
   2503     R.addAttribute(Attribute::NoAlias);
   2504 
   2505   if (!R.empty())
   2506     AH.setAttributes(AH.getAttributes().removeAttributes(
   2507         Ctx, Index, AttributeSet::get(Ctx, Index, R)));
   2508 }
   2509 
   2510 void
   2511 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) {
   2512   LLVMContext &Ctx = F.getContext();
   2513 
   2514   for (Argument &A : F.args())
   2515     if (isa<PointerType>(A.getType()))
   2516       RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1);
   2517 
   2518   if (isa<PointerType>(F.getReturnType()))
   2519     RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex);
   2520 }
   2521 
   2522 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) {
   2523   if (F.empty())
   2524     return;
   2525 
   2526   LLVMContext &Ctx = F.getContext();
   2527   MDBuilder Builder(Ctx);
   2528 
   2529   for (Instruction &I : instructions(F)) {
   2530     if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) {
   2531       assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!");
   2532       bool IsImmutableTBAA =
   2533           MD->getNumOperands() == 4 &&
   2534           mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1;
   2535 
   2536       if (!IsImmutableTBAA)
   2537         continue; // no work to do, MD_tbaa is already marked mutable
   2538 
   2539       MDNode *Base = cast<MDNode>(MD->getOperand(0));
   2540       MDNode *Access = cast<MDNode>(MD->getOperand(1));
   2541       uint64_t Offset =
   2542           mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue();
   2543 
   2544       MDNode *MutableTBAA =
   2545           Builder.createTBAAStructTagNode(Base, Access, Offset);
   2546       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
   2547     }
   2548 
   2549     if (CallSite CS = CallSite(&I)) {
   2550       for (int i = 0, e = CS.arg_size(); i != e; i++)
   2551         if (isa<PointerType>(CS.getArgument(i)->getType()))
   2552           RemoveNonValidAttrAtIndex(Ctx, CS, i + 1);
   2553       if (isa<PointerType>(CS.getType()))
   2554         RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex);
   2555     }
   2556   }
   2557 }
   2558 
   2559 /// Returns true if this function should be rewritten by this pass.  The main
   2560 /// point of this function is as an extension point for custom logic.
   2561 static bool shouldRewriteStatepointsIn(Function &F) {
   2562   // TODO: This should check the GCStrategy
   2563   if (F.hasGC()) {
   2564     const char *FunctionGCName = F.getGC();
   2565     const StringRef StatepointExampleName("statepoint-example");
   2566     const StringRef CoreCLRName("coreclr");
   2567     return (StatepointExampleName == FunctionGCName) ||
   2568            (CoreCLRName == FunctionGCName);
   2569   } else
   2570     return false;
   2571 }
   2572 
   2573 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) {
   2574 #ifndef NDEBUG
   2575   assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) &&
   2576          "precondition!");
   2577 #endif
   2578 
   2579   for (Function &F : M)
   2580     stripNonValidAttributesFromPrototype(F);
   2581 
   2582   for (Function &F : M)
   2583     stripNonValidAttributesFromBody(F);
   2584 }
   2585 
   2586 bool RewriteStatepointsForGC::runOnFunction(Function &F) {
   2587   // Nothing to do for declarations.
   2588   if (F.isDeclaration() || F.empty())
   2589     return false;
   2590 
   2591   // Policy choice says not to rewrite - the most common reason is that we're
   2592   // compiling code without a GCStrategy.
   2593   if (!shouldRewriteStatepointsIn(F))
   2594     return false;
   2595 
   2596   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
   2597   TargetTransformInfo &TTI =
   2598       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
   2599 
   2600   auto NeedsRewrite = [](Instruction &I) {
   2601     if (UseDeoptBundles) {
   2602       if (ImmutableCallSite CS = ImmutableCallSite(&I))
   2603         return !callsGCLeafFunction(CS);
   2604       return false;
   2605     }
   2606 
   2607     return isStatepoint(I);
   2608   };
   2609 
   2610   // Gather all the statepoints which need rewritten.  Be careful to only
   2611   // consider those in reachable code since we need to ask dominance queries
   2612   // when rewriting.  We'll delete the unreachable ones in a moment.
   2613   SmallVector<CallSite, 64> ParsePointNeeded;
   2614   bool HasUnreachableStatepoint = false;
   2615   for (Instruction &I : instructions(F)) {
   2616     // TODO: only the ones with the flag set!
   2617     if (NeedsRewrite(I)) {
   2618       if (DT.isReachableFromEntry(I.getParent()))
   2619         ParsePointNeeded.push_back(CallSite(&I));
   2620       else
   2621         HasUnreachableStatepoint = true;
   2622     }
   2623   }
   2624 
   2625   bool MadeChange = false;
   2626 
   2627   // Delete any unreachable statepoints so that we don't have unrewritten
   2628   // statepoints surviving this pass.  This makes testing easier and the
   2629   // resulting IR less confusing to human readers.  Rather than be fancy, we
   2630   // just reuse a utility function which removes the unreachable blocks.
   2631   if (HasUnreachableStatepoint)
   2632     MadeChange |= removeUnreachableBlocks(F);
   2633 
   2634   // Return early if no work to do.
   2635   if (ParsePointNeeded.empty())
   2636     return MadeChange;
   2637 
   2638   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
   2639   // These are created by LCSSA.  They have the effect of increasing the size
   2640   // of liveness sets for no good reason.  It may be harder to do this post
   2641   // insertion since relocations and base phis can confuse things.
   2642   for (BasicBlock &BB : F)
   2643     if (BB.getUniquePredecessor()) {
   2644       MadeChange = true;
   2645       FoldSingleEntryPHINodes(&BB);
   2646     }
   2647 
   2648   // Before we start introducing relocations, we want to tweak the IR a bit to
   2649   // avoid unfortunate code generation effects.  The main example is that we
   2650   // want to try to make sure the comparison feeding a branch is after any
   2651   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
   2652   // values feeding a branch after relocation.  This is semantically correct,
   2653   // but results in extra register pressure since both the pre-relocation and
   2654   // post-relocation copies must be available in registers.  For code without
   2655   // relocations this is handled elsewhere, but teaching the scheduler to
   2656   // reverse the transform we're about to do would be slightly complex.
   2657   // Note: This may extend the live range of the inputs to the icmp and thus
   2658   // increase the liveset of any statepoint we move over.  This is profitable
   2659   // as long as all statepoints are in rare blocks.  If we had in-register
   2660   // lowering for live values this would be a much safer transform.
   2661   auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
   2662     if (auto *BI = dyn_cast<BranchInst>(TI))
   2663       if (BI->isConditional())
   2664         return dyn_cast<Instruction>(BI->getCondition());
   2665     // TODO: Extend this to handle switches
   2666     return nullptr;
   2667   };
   2668   for (BasicBlock &BB : F) {
   2669     TerminatorInst *TI = BB.getTerminator();
   2670     if (auto *Cond = getConditionInst(TI))
   2671       // TODO: Handle more than just ICmps here.  We should be able to move
   2672       // most instructions without side effects or memory access.
   2673       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
   2674         MadeChange = true;
   2675         Cond->moveBefore(TI);
   2676       }
   2677   }
   2678 
   2679   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
   2680   return MadeChange;
   2681 }
   2682 
   2683 // liveness computation via standard dataflow
   2684 // -------------------------------------------------------------------
   2685 
   2686 // TODO: Consider using bitvectors for liveness, the set of potentially
   2687 // interesting values should be small and easy to pre-compute.
   2688 
   2689 /// Compute the live-in set for the location rbegin starting from
   2690 /// the live-out set of the basic block
   2691 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin,
   2692                                 BasicBlock::reverse_iterator rend,
   2693                                 DenseSet<Value *> &LiveTmp) {
   2694 
   2695   for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) {
   2696     Instruction *I = &*ritr;
   2697 
   2698     // KILL/Def - Remove this definition from LiveIn
   2699     LiveTmp.erase(I);
   2700 
   2701     // Don't consider *uses* in PHI nodes, we handle their contribution to
   2702     // predecessor blocks when we seed the LiveOut sets
   2703     if (isa<PHINode>(I))
   2704       continue;
   2705 
   2706     // USE - Add to the LiveIn set for this instruction
   2707     for (Value *V : I->operands()) {
   2708       assert(!isUnhandledGCPointerType(V->getType()) &&
   2709              "support for FCA unimplemented");
   2710       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
   2711         // The choice to exclude all things constant here is slightly subtle.
   2712         // There are two independent reasons:
   2713         // - We assume that things which are constant (from LLVM's definition)
   2714         // do not move at runtime.  For example, the address of a global
   2715         // variable is fixed, even though it's contents may not be.
   2716         // - Second, we can't disallow arbitrary inttoptr constants even
   2717         // if the language frontend does.  Optimization passes are free to
   2718         // locally exploit facts without respect to global reachability.  This
   2719         // can create sections of code which are dynamically unreachable and
   2720         // contain just about anything.  (see constants.ll in tests)
   2721         LiveTmp.insert(V);
   2722       }
   2723     }
   2724   }
   2725 }
   2726 
   2727 static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) {
   2728 
   2729   for (BasicBlock *Succ : successors(BB)) {
   2730     const BasicBlock::iterator E(Succ->getFirstNonPHI());
   2731     for (BasicBlock::iterator I = Succ->begin(); I != E; I++) {
   2732       PHINode *Phi = cast<PHINode>(&*I);
   2733       Value *V = Phi->getIncomingValueForBlock(BB);
   2734       assert(!isUnhandledGCPointerType(V->getType()) &&
   2735              "support for FCA unimplemented");
   2736       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
   2737         LiveTmp.insert(V);
   2738       }
   2739     }
   2740   }
   2741 }
   2742 
   2743 static DenseSet<Value *> computeKillSet(BasicBlock *BB) {
   2744   DenseSet<Value *> KillSet;
   2745   for (Instruction &I : *BB)
   2746     if (isHandledGCPointerType(I.getType()))
   2747       KillSet.insert(&I);
   2748   return KillSet;
   2749 }
   2750 
   2751 #ifndef NDEBUG
   2752 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
   2753 /// sanity check for the liveness computation.
   2754 static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live,
   2755                           TerminatorInst *TI, bool TermOkay = false) {
   2756   for (Value *V : Live) {
   2757     if (auto *I = dyn_cast<Instruction>(V)) {
   2758       // The terminator can be a member of the LiveOut set.  LLVM's definition
   2759       // of instruction dominance states that V does not dominate itself.  As
   2760       // such, we need to special case this to allow it.
   2761       if (TermOkay && TI == I)
   2762         continue;
   2763       assert(DT.dominates(I, TI) &&
   2764              "basic SSA liveness expectation violated by liveness analysis");
   2765     }
   2766   }
   2767 }
   2768 
   2769 /// Check that all the liveness sets used during the computation of liveness
   2770 /// obey basic SSA properties.  This is useful for finding cases where we miss
   2771 /// a def.
   2772 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
   2773                           BasicBlock &BB) {
   2774   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
   2775   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
   2776   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
   2777 }
   2778 #endif
   2779 
   2780 static void computeLiveInValues(DominatorTree &DT, Function &F,
   2781                                 GCPtrLivenessData &Data) {
   2782 
   2783   SmallSetVector<BasicBlock *, 200> Worklist;
   2784   auto AddPredsToWorklist = [&](BasicBlock *BB) {
   2785     // We use a SetVector so that we don't have duplicates in the worklist.
   2786     Worklist.insert(pred_begin(BB), pred_end(BB));
   2787   };
   2788   auto NextItem = [&]() {
   2789     BasicBlock *BB = Worklist.back();
   2790     Worklist.pop_back();
   2791     return BB;
   2792   };
   2793 
   2794   // Seed the liveness for each individual block
   2795   for (BasicBlock &BB : F) {
   2796     Data.KillSet[&BB] = computeKillSet(&BB);
   2797     Data.LiveSet[&BB].clear();
   2798     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
   2799 
   2800 #ifndef NDEBUG
   2801     for (Value *Kill : Data.KillSet[&BB])
   2802       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
   2803 #endif
   2804 
   2805     Data.LiveOut[&BB] = DenseSet<Value *>();
   2806     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
   2807     Data.LiveIn[&BB] = Data.LiveSet[&BB];
   2808     set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]);
   2809     set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]);
   2810     if (!Data.LiveIn[&BB].empty())
   2811       AddPredsToWorklist(&BB);
   2812   }
   2813 
   2814   // Propagate that liveness until stable
   2815   while (!Worklist.empty()) {
   2816     BasicBlock *BB = NextItem();
   2817 
   2818     // Compute our new liveout set, then exit early if it hasn't changed
   2819     // despite the contribution of our successor.
   2820     DenseSet<Value *> LiveOut = Data.LiveOut[BB];
   2821     const auto OldLiveOutSize = LiveOut.size();
   2822     for (BasicBlock *Succ : successors(BB)) {
   2823       assert(Data.LiveIn.count(Succ));
   2824       set_union(LiveOut, Data.LiveIn[Succ]);
   2825     }
   2826     // assert OutLiveOut is a subset of LiveOut
   2827     if (OldLiveOutSize == LiveOut.size()) {
   2828       // If the sets are the same size, then we didn't actually add anything
   2829       // when unioning our successors LiveIn  Thus, the LiveIn of this block
   2830       // hasn't changed.
   2831       continue;
   2832     }
   2833     Data.LiveOut[BB] = LiveOut;
   2834 
   2835     // Apply the effects of this basic block
   2836     DenseSet<Value *> LiveTmp = LiveOut;
   2837     set_union(LiveTmp, Data.LiveSet[BB]);
   2838     set_subtract(LiveTmp, Data.KillSet[BB]);
   2839 
   2840     assert(Data.LiveIn.count(BB));
   2841     const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB];
   2842     // assert: OldLiveIn is a subset of LiveTmp
   2843     if (OldLiveIn.size() != LiveTmp.size()) {
   2844       Data.LiveIn[BB] = LiveTmp;
   2845       AddPredsToWorklist(BB);
   2846     }
   2847   } // while( !worklist.empty() )
   2848 
   2849 #ifndef NDEBUG
   2850   // Sanity check our output against SSA properties.  This helps catch any
   2851   // missing kills during the above iteration.
   2852   for (BasicBlock &BB : F) {
   2853     checkBasicSSA(DT, Data, BB);
   2854   }
   2855 #endif
   2856 }
   2857 
   2858 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
   2859                               StatepointLiveSetTy &Out) {
   2860 
   2861   BasicBlock *BB = Inst->getParent();
   2862 
   2863   // Note: The copy is intentional and required
   2864   assert(Data.LiveOut.count(BB));
   2865   DenseSet<Value *> LiveOut = Data.LiveOut[BB];
   2866 
   2867   // We want to handle the statepoint itself oddly.  It's
   2868   // call result is not live (normal), nor are it's arguments
   2869   // (unless they're used again later).  This adjustment is
   2870   // specifically what we need to relocate
   2871   BasicBlock::reverse_iterator rend(Inst->getIterator());
   2872   computeLiveInValues(BB->rbegin(), rend, LiveOut);
   2873   LiveOut.erase(Inst);
   2874   Out.insert(LiveOut.begin(), LiveOut.end());
   2875 }
   2876 
   2877 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
   2878                                   const CallSite &CS,
   2879                                   PartiallyConstructedSafepointRecord &Info) {
   2880   Instruction *Inst = CS.getInstruction();
   2881   StatepointLiveSetTy Updated;
   2882   findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
   2883 
   2884 #ifndef NDEBUG
   2885   DenseSet<Value *> Bases;
   2886   for (auto KVPair : Info.PointerToBase) {
   2887     Bases.insert(KVPair.second);
   2888   }
   2889 #endif
   2890   // We may have base pointers which are now live that weren't before.  We need
   2891   // to update the PointerToBase structure to reflect this.
   2892   for (auto V : Updated)
   2893     if (!Info.PointerToBase.count(V)) {
   2894       assert(Bases.count(V) && "can't find base for unexpected live value");
   2895       Info.PointerToBase[V] = V;
   2896       continue;
   2897     }
   2898 
   2899 #ifndef NDEBUG
   2900   for (auto V : Updated) {
   2901     assert(Info.PointerToBase.count(V) &&
   2902            "must be able to find base for live value");
   2903   }
   2904 #endif
   2905 
   2906   // Remove any stale base mappings - this can happen since our liveness is
   2907   // more precise then the one inherent in the base pointer analysis
   2908   DenseSet<Value *> ToErase;
   2909   for (auto KVPair : Info.PointerToBase)
   2910     if (!Updated.count(KVPair.first))
   2911       ToErase.insert(KVPair.first);
   2912   for (auto V : ToErase)
   2913     Info.PointerToBase.erase(V);
   2914 
   2915 #ifndef NDEBUG
   2916   for (auto KVPair : Info.PointerToBase)
   2917     assert(Updated.count(KVPair.first) && "record for non-live value");
   2918 #endif
   2919 
   2920   Info.LiveSet = Updated;
   2921 }
   2922