Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // These classes wrap the information about a call or function
     11 // definition used to handle ABI compliancy.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "CGCall.h"
     16 #include "ABIInfo.h"
     17 #include "CGCXXABI.h"
     18 #include "CGCleanup.h"
     19 #include "CodeGenFunction.h"
     20 #include "CodeGenModule.h"
     21 #include "TargetInfo.h"
     22 #include "clang/AST/Decl.h"
     23 #include "clang/AST/DeclCXX.h"
     24 #include "clang/AST/DeclObjC.h"
     25 #include "clang/Basic/TargetBuiltins.h"
     26 #include "clang/Basic/TargetInfo.h"
     27 #include "clang/CodeGen/CGFunctionInfo.h"
     28 #include "clang/Frontend/CodeGenOptions.h"
     29 #include "llvm/ADT/StringExtras.h"
     30 #include "llvm/IR/Attributes.h"
     31 #include "llvm/IR/CallSite.h"
     32 #include "llvm/IR/DataLayout.h"
     33 #include "llvm/IR/InlineAsm.h"
     34 #include "llvm/IR/Intrinsics.h"
     35 #include "llvm/IR/IntrinsicInst.h"
     36 #include "llvm/Transforms/Utils/Local.h"
     37 using namespace clang;
     38 using namespace CodeGen;
     39 
     40 /***/
     41 
     42 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
     43   switch (CC) {
     44   default: return llvm::CallingConv::C;
     45   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
     46   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
     47   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
     48   case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
     49   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
     50   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
     51   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
     52   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
     53   // TODO: Add support for __pascal to LLVM.
     54   case CC_X86Pascal: return llvm::CallingConv::C;
     55   // TODO: Add support for __vectorcall to LLVM.
     56   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
     57   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
     58   case CC_SpirKernel: return llvm::CallingConv::SPIR_KERNEL;
     59   }
     60 }
     61 
     62 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
     63 /// qualification.
     64 /// FIXME: address space qualification?
     65 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
     66   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
     67   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
     68 }
     69 
     70 /// Returns the canonical formal type of the given C++ method.
     71 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
     72   return MD->getType()->getCanonicalTypeUnqualified()
     73            .getAs<FunctionProtoType>();
     74 }
     75 
     76 /// Returns the "extra-canonicalized" return type, which discards
     77 /// qualifiers on the return type.  Codegen doesn't care about them,
     78 /// and it makes ABI code a little easier to be able to assume that
     79 /// all parameter and return types are top-level unqualified.
     80 static CanQualType GetReturnType(QualType RetTy) {
     81   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
     82 }
     83 
     84 /// Arrange the argument and result information for a value of the given
     85 /// unprototyped freestanding function type.
     86 const CGFunctionInfo &
     87 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
     88   // When translating an unprototyped function type, always use a
     89   // variadic type.
     90   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
     91                                  /*instanceMethod=*/false,
     92                                  /*chainCall=*/false, None,
     93                                  FTNP->getExtInfo(), RequiredArgs(0));
     94 }
     95 
     96 /// Adds the formal paramaters in FPT to the given prefix. If any parameter in
     97 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
     98 static void appendParameterTypes(const CodeGenTypes &CGT,
     99                                  SmallVectorImpl<CanQualType> &prefix,
    100                                  const CanQual<FunctionProtoType> &FPT,
    101                                  const FunctionDecl *FD) {
    102   // Fast path: unknown target.
    103   if (FD == nullptr) {
    104     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
    105     return;
    106   }
    107 
    108   // In the vast majority cases, we'll have precisely FPT->getNumParams()
    109   // parameters; the only thing that can change this is the presence of
    110   // pass_object_size. So, we preallocate for the common case.
    111   prefix.reserve(prefix.size() + FPT->getNumParams());
    112 
    113   assert(FD->getNumParams() == FPT->getNumParams());
    114   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
    115     prefix.push_back(FPT->getParamType(I));
    116     if (FD->getParamDecl(I)->hasAttr<PassObjectSizeAttr>())
    117       prefix.push_back(CGT.getContext().getSizeType());
    118   }
    119 }
    120 
    121 /// Arrange the LLVM function layout for a value of the given function
    122 /// type, on top of any implicit parameters already stored.
    123 static const CGFunctionInfo &
    124 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
    125                         SmallVectorImpl<CanQualType> &prefix,
    126                         CanQual<FunctionProtoType> FTP,
    127                         const FunctionDecl *FD) {
    128   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
    129   // FIXME: Kill copy.
    130   appendParameterTypes(CGT, prefix, FTP, FD);
    131   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
    132   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
    133                                      /*chainCall=*/false, prefix,
    134                                      FTP->getExtInfo(), required);
    135 }
    136 
    137 /// Arrange the argument and result information for a value of the
    138 /// given freestanding function type.
    139 const CGFunctionInfo &
    140 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP,
    141                                       const FunctionDecl *FD) {
    142   SmallVector<CanQualType, 16> argTypes;
    143   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
    144                                    FTP, FD);
    145 }
    146 
    147 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
    148   // Set the appropriate calling convention for the Function.
    149   if (D->hasAttr<StdCallAttr>())
    150     return CC_X86StdCall;
    151 
    152   if (D->hasAttr<FastCallAttr>())
    153     return CC_X86FastCall;
    154 
    155   if (D->hasAttr<ThisCallAttr>())
    156     return CC_X86ThisCall;
    157 
    158   if (D->hasAttr<VectorCallAttr>())
    159     return CC_X86VectorCall;
    160 
    161   if (D->hasAttr<PascalAttr>())
    162     return CC_X86Pascal;
    163 
    164   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
    165     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
    166 
    167   if (D->hasAttr<IntelOclBiccAttr>())
    168     return CC_IntelOclBicc;
    169 
    170   if (D->hasAttr<MSABIAttr>())
    171     return IsWindows ? CC_C : CC_X86_64Win64;
    172 
    173   if (D->hasAttr<SysVABIAttr>())
    174     return IsWindows ? CC_X86_64SysV : CC_C;
    175 
    176   return CC_C;
    177 }
    178 
    179 /// Arrange the argument and result information for a call to an
    180 /// unknown C++ non-static member function of the given abstract type.
    181 /// (Zero value of RD means we don't have any meaningful "this" argument type,
    182 ///  so fall back to a generic pointer type).
    183 /// The member function must be an ordinary function, i.e. not a
    184 /// constructor or destructor.
    185 const CGFunctionInfo &
    186 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
    187                                    const FunctionProtoType *FTP,
    188                                    const CXXMethodDecl *MD) {
    189   SmallVector<CanQualType, 16> argTypes;
    190 
    191   // Add the 'this' pointer.
    192   if (RD)
    193     argTypes.push_back(GetThisType(Context, RD));
    194   else
    195     argTypes.push_back(Context.VoidPtrTy);
    196 
    197   return ::arrangeLLVMFunctionInfo(
    198       *this, true, argTypes,
    199       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD);
    200 }
    201 
    202 /// Arrange the argument and result information for a declaration or
    203 /// definition of the given C++ non-static member function.  The
    204 /// member function must be an ordinary function, i.e. not a
    205 /// constructor or destructor.
    206 const CGFunctionInfo &
    207 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
    208   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
    209   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
    210 
    211   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
    212 
    213   if (MD->isInstance()) {
    214     // The abstract case is perfectly fine.
    215     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
    216     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
    217   }
    218 
    219   return arrangeFreeFunctionType(prototype, MD);
    220 }
    221 
    222 const CGFunctionInfo &
    223 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
    224                                             StructorType Type) {
    225 
    226   SmallVector<CanQualType, 16> argTypes;
    227   argTypes.push_back(GetThisType(Context, MD->getParent()));
    228 
    229   GlobalDecl GD;
    230   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
    231     GD = GlobalDecl(CD, toCXXCtorType(Type));
    232   } else {
    233     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
    234     GD = GlobalDecl(DD, toCXXDtorType(Type));
    235   }
    236 
    237   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
    238 
    239   // Add the formal parameters.
    240   appendParameterTypes(*this, argTypes, FTP, MD);
    241 
    242   TheCXXABI.buildStructorSignature(MD, Type, argTypes);
    243 
    244   RequiredArgs required =
    245       (MD->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All);
    246 
    247   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
    248   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
    249                                ? argTypes.front()
    250                                : TheCXXABI.hasMostDerivedReturn(GD)
    251                                      ? CGM.getContext().VoidPtrTy
    252                                      : Context.VoidTy;
    253   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
    254                                  /*chainCall=*/false, argTypes, extInfo,
    255                                  required);
    256 }
    257 
    258 /// Arrange a call to a C++ method, passing the given arguments.
    259 const CGFunctionInfo &
    260 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
    261                                         const CXXConstructorDecl *D,
    262                                         CXXCtorType CtorKind,
    263                                         unsigned ExtraArgs) {
    264   // FIXME: Kill copy.
    265   SmallVector<CanQualType, 16> ArgTypes;
    266   for (const auto &Arg : args)
    267     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
    268 
    269   CanQual<FunctionProtoType> FPT = GetFormalType(D);
    270   RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs);
    271   GlobalDecl GD(D, CtorKind);
    272   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
    273                                ? ArgTypes.front()
    274                                : TheCXXABI.hasMostDerivedReturn(GD)
    275                                      ? CGM.getContext().VoidPtrTy
    276                                      : Context.VoidTy;
    277 
    278   FunctionType::ExtInfo Info = FPT->getExtInfo();
    279   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
    280                                  /*chainCall=*/false, ArgTypes, Info,
    281                                  Required);
    282 }
    283 
    284 /// Arrange the argument and result information for the declaration or
    285 /// definition of the given function.
    286 const CGFunctionInfo &
    287 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
    288   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
    289     if (MD->isInstance())
    290       return arrangeCXXMethodDeclaration(MD);
    291 
    292   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
    293 
    294   assert(isa<FunctionType>(FTy));
    295 
    296   // When declaring a function without a prototype, always use a
    297   // non-variadic type.
    298   if (isa<FunctionNoProtoType>(FTy)) {
    299     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
    300     return arrangeLLVMFunctionInfo(
    301         noProto->getReturnType(), /*instanceMethod=*/false,
    302         /*chainCall=*/false, None, noProto->getExtInfo(), RequiredArgs::All);
    303   }
    304 
    305   assert(isa<FunctionProtoType>(FTy));
    306   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>(), FD);
    307 }
    308 
    309 /// Arrange the argument and result information for the declaration or
    310 /// definition of an Objective-C method.
    311 const CGFunctionInfo &
    312 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
    313   // It happens that this is the same as a call with no optional
    314   // arguments, except also using the formal 'self' type.
    315   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
    316 }
    317 
    318 /// Arrange the argument and result information for the function type
    319 /// through which to perform a send to the given Objective-C method,
    320 /// using the given receiver type.  The receiver type is not always
    321 /// the 'self' type of the method or even an Objective-C pointer type.
    322 /// This is *not* the right method for actually performing such a
    323 /// message send, due to the possibility of optional arguments.
    324 const CGFunctionInfo &
    325 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
    326                                               QualType receiverType) {
    327   SmallVector<CanQualType, 16> argTys;
    328   argTys.push_back(Context.getCanonicalParamType(receiverType));
    329   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
    330   // FIXME: Kill copy?
    331   for (const auto *I : MD->params()) {
    332     argTys.push_back(Context.getCanonicalParamType(I->getType()));
    333   }
    334 
    335   FunctionType::ExtInfo einfo;
    336   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
    337   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
    338 
    339   if (getContext().getLangOpts().ObjCAutoRefCount &&
    340       MD->hasAttr<NSReturnsRetainedAttr>())
    341     einfo = einfo.withProducesResult(true);
    342 
    343   RequiredArgs required =
    344     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
    345 
    346   return arrangeLLVMFunctionInfo(
    347       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
    348       /*chainCall=*/false, argTys, einfo, required);
    349 }
    350 
    351 const CGFunctionInfo &
    352 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
    353   // FIXME: Do we need to handle ObjCMethodDecl?
    354   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
    355 
    356   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
    357     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
    358 
    359   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
    360     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
    361 
    362   return arrangeFunctionDeclaration(FD);
    363 }
    364 
    365 /// Arrange a thunk that takes 'this' as the first parameter followed by
    366 /// varargs.  Return a void pointer, regardless of the actual return type.
    367 /// The body of the thunk will end in a musttail call to a function of the
    368 /// correct type, and the caller will bitcast the function to the correct
    369 /// prototype.
    370 const CGFunctionInfo &
    371 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) {
    372   assert(MD->isVirtual() && "only virtual memptrs have thunks");
    373   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
    374   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
    375   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
    376                                  /*chainCall=*/false, ArgTys,
    377                                  FTP->getExtInfo(), RequiredArgs(1));
    378 }
    379 
    380 const CGFunctionInfo &
    381 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
    382                                    CXXCtorType CT) {
    383   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
    384 
    385   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
    386   SmallVector<CanQualType, 2> ArgTys;
    387   const CXXRecordDecl *RD = CD->getParent();
    388   ArgTys.push_back(GetThisType(Context, RD));
    389   if (CT == Ctor_CopyingClosure)
    390     ArgTys.push_back(*FTP->param_type_begin());
    391   if (RD->getNumVBases() > 0)
    392     ArgTys.push_back(Context.IntTy);
    393   CallingConv CC = Context.getDefaultCallingConvention(
    394       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
    395   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
    396                                  /*chainCall=*/false, ArgTys,
    397                                  FunctionType::ExtInfo(CC), RequiredArgs::All);
    398 }
    399 
    400 /// Arrange a call as unto a free function, except possibly with an
    401 /// additional number of formal parameters considered required.
    402 static const CGFunctionInfo &
    403 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
    404                             CodeGenModule &CGM,
    405                             const CallArgList &args,
    406                             const FunctionType *fnType,
    407                             unsigned numExtraRequiredArgs,
    408                             bool chainCall) {
    409   assert(args.size() >= numExtraRequiredArgs);
    410 
    411   // In most cases, there are no optional arguments.
    412   RequiredArgs required = RequiredArgs::All;
    413 
    414   // If we have a variadic prototype, the required arguments are the
    415   // extra prefix plus the arguments in the prototype.
    416   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
    417     if (proto->isVariadic())
    418       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
    419 
    420   // If we don't have a prototype at all, but we're supposed to
    421   // explicitly use the variadic convention for unprototyped calls,
    422   // treat all of the arguments as required but preserve the nominal
    423   // possibility of variadics.
    424   } else if (CGM.getTargetCodeGenInfo()
    425                 .isNoProtoCallVariadic(args,
    426                                        cast<FunctionNoProtoType>(fnType))) {
    427     required = RequiredArgs(args.size());
    428   }
    429 
    430   // FIXME: Kill copy.
    431   SmallVector<CanQualType, 16> argTypes;
    432   for (const auto &arg : args)
    433     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
    434   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
    435                                      /*instanceMethod=*/false, chainCall,
    436                                      argTypes, fnType->getExtInfo(), required);
    437 }
    438 
    439 /// Figure out the rules for calling a function with the given formal
    440 /// type using the given arguments.  The arguments are necessary
    441 /// because the function might be unprototyped, in which case it's
    442 /// target-dependent in crazy ways.
    443 const CGFunctionInfo &
    444 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
    445                                       const FunctionType *fnType,
    446                                       bool chainCall) {
    447   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
    448                                      chainCall ? 1 : 0, chainCall);
    449 }
    450 
    451 /// A block function call is essentially a free-function call with an
    452 /// extra implicit argument.
    453 const CGFunctionInfo &
    454 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
    455                                        const FunctionType *fnType) {
    456   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
    457                                      /*chainCall=*/false);
    458 }
    459 
    460 const CGFunctionInfo &
    461 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
    462                                       const CallArgList &args,
    463                                       FunctionType::ExtInfo info,
    464                                       RequiredArgs required) {
    465   // FIXME: Kill copy.
    466   SmallVector<CanQualType, 16> argTypes;
    467   for (const auto &Arg : args)
    468     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
    469   return arrangeLLVMFunctionInfo(
    470       GetReturnType(resultType), /*instanceMethod=*/false,
    471       /*chainCall=*/false, argTypes, info, required);
    472 }
    473 
    474 /// Arrange a call to a C++ method, passing the given arguments.
    475 const CGFunctionInfo &
    476 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
    477                                    const FunctionProtoType *FPT,
    478                                    RequiredArgs required) {
    479   // FIXME: Kill copy.
    480   SmallVector<CanQualType, 16> argTypes;
    481   for (const auto &Arg : args)
    482     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
    483 
    484   FunctionType::ExtInfo info = FPT->getExtInfo();
    485   return arrangeLLVMFunctionInfo(
    486       GetReturnType(FPT->getReturnType()), /*instanceMethod=*/true,
    487       /*chainCall=*/false, argTypes, info, required);
    488 }
    489 
    490 const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration(
    491     QualType resultType, const FunctionArgList &args,
    492     const FunctionType::ExtInfo &info, bool isVariadic) {
    493   // FIXME: Kill copy.
    494   SmallVector<CanQualType, 16> argTypes;
    495   for (auto Arg : args)
    496     argTypes.push_back(Context.getCanonicalParamType(Arg->getType()));
    497 
    498   RequiredArgs required =
    499     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
    500   return arrangeLLVMFunctionInfo(
    501       GetReturnType(resultType), /*instanceMethod=*/false,
    502       /*chainCall=*/false, argTypes, info, required);
    503 }
    504 
    505 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
    506   return arrangeLLVMFunctionInfo(
    507       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
    508       None, FunctionType::ExtInfo(), RequiredArgs::All);
    509 }
    510 
    511 /// Arrange the argument and result information for an abstract value
    512 /// of a given function type.  This is the method which all of the
    513 /// above functions ultimately defer to.
    514 const CGFunctionInfo &
    515 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
    516                                       bool instanceMethod,
    517                                       bool chainCall,
    518                                       ArrayRef<CanQualType> argTypes,
    519                                       FunctionType::ExtInfo info,
    520                                       RequiredArgs required) {
    521   assert(std::all_of(argTypes.begin(), argTypes.end(),
    522                      std::mem_fun_ref(&CanQualType::isCanonicalAsParam)));
    523 
    524   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
    525 
    526   // Lookup or create unique function info.
    527   llvm::FoldingSetNodeID ID;
    528   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, required,
    529                           resultType, argTypes);
    530 
    531   void *insertPos = nullptr;
    532   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
    533   if (FI)
    534     return *FI;
    535 
    536   // Construct the function info.  We co-allocate the ArgInfos.
    537   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
    538                               resultType, argTypes, required);
    539   FunctionInfos.InsertNode(FI, insertPos);
    540 
    541   bool inserted = FunctionsBeingProcessed.insert(FI).second;
    542   (void)inserted;
    543   assert(inserted && "Recursively being processed?");
    544 
    545   // Compute ABI information.
    546   getABIInfo().computeInfo(*FI);
    547 
    548   // Loop over all of the computed argument and return value info.  If any of
    549   // them are direct or extend without a specified coerce type, specify the
    550   // default now.
    551   ABIArgInfo &retInfo = FI->getReturnInfo();
    552   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
    553     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
    554 
    555   for (auto &I : FI->arguments())
    556     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
    557       I.info.setCoerceToType(ConvertType(I.type));
    558 
    559   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
    560   assert(erased && "Not in set?");
    561 
    562   return *FI;
    563 }
    564 
    565 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
    566                                        bool instanceMethod,
    567                                        bool chainCall,
    568                                        const FunctionType::ExtInfo &info,
    569                                        CanQualType resultType,
    570                                        ArrayRef<CanQualType> argTypes,
    571                                        RequiredArgs required) {
    572   void *buffer = operator new(sizeof(CGFunctionInfo) +
    573                               sizeof(ArgInfo) * (argTypes.size() + 1));
    574   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
    575   FI->CallingConvention = llvmCC;
    576   FI->EffectiveCallingConvention = llvmCC;
    577   FI->ASTCallingConvention = info.getCC();
    578   FI->InstanceMethod = instanceMethod;
    579   FI->ChainCall = chainCall;
    580   FI->NoReturn = info.getNoReturn();
    581   FI->ReturnsRetained = info.getProducesResult();
    582   FI->Required = required;
    583   FI->HasRegParm = info.getHasRegParm();
    584   FI->RegParm = info.getRegParm();
    585   FI->ArgStruct = nullptr;
    586   FI->ArgStructAlign = 0;
    587   FI->NumArgs = argTypes.size();
    588   FI->getArgsBuffer()[0].type = resultType;
    589   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
    590     FI->getArgsBuffer()[i + 1].type = argTypes[i];
    591   return FI;
    592 }
    593 
    594 /***/
    595 
    596 namespace {
    597 // ABIArgInfo::Expand implementation.
    598 
    599 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
    600 struct TypeExpansion {
    601   enum TypeExpansionKind {
    602     // Elements of constant arrays are expanded recursively.
    603     TEK_ConstantArray,
    604     // Record fields are expanded recursively (but if record is a union, only
    605     // the field with the largest size is expanded).
    606     TEK_Record,
    607     // For complex types, real and imaginary parts are expanded recursively.
    608     TEK_Complex,
    609     // All other types are not expandable.
    610     TEK_None
    611   };
    612 
    613   const TypeExpansionKind Kind;
    614 
    615   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
    616   virtual ~TypeExpansion() {}
    617 };
    618 
    619 struct ConstantArrayExpansion : TypeExpansion {
    620   QualType EltTy;
    621   uint64_t NumElts;
    622 
    623   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
    624       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
    625   static bool classof(const TypeExpansion *TE) {
    626     return TE->Kind == TEK_ConstantArray;
    627   }
    628 };
    629 
    630 struct RecordExpansion : TypeExpansion {
    631   SmallVector<const CXXBaseSpecifier *, 1> Bases;
    632 
    633   SmallVector<const FieldDecl *, 1> Fields;
    634 
    635   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
    636                   SmallVector<const FieldDecl *, 1> &&Fields)
    637       : TypeExpansion(TEK_Record), Bases(Bases), Fields(Fields) {}
    638   static bool classof(const TypeExpansion *TE) {
    639     return TE->Kind == TEK_Record;
    640   }
    641 };
    642 
    643 struct ComplexExpansion : TypeExpansion {
    644   QualType EltTy;
    645 
    646   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
    647   static bool classof(const TypeExpansion *TE) {
    648     return TE->Kind == TEK_Complex;
    649   }
    650 };
    651 
    652 struct NoExpansion : TypeExpansion {
    653   NoExpansion() : TypeExpansion(TEK_None) {}
    654   static bool classof(const TypeExpansion *TE) {
    655     return TE->Kind == TEK_None;
    656   }
    657 };
    658 }  // namespace
    659 
    660 static std::unique_ptr<TypeExpansion>
    661 getTypeExpansion(QualType Ty, const ASTContext &Context) {
    662   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
    663     return llvm::make_unique<ConstantArrayExpansion>(
    664         AT->getElementType(), AT->getSize().getZExtValue());
    665   }
    666   if (const RecordType *RT = Ty->getAs<RecordType>()) {
    667     SmallVector<const CXXBaseSpecifier *, 1> Bases;
    668     SmallVector<const FieldDecl *, 1> Fields;
    669     const RecordDecl *RD = RT->getDecl();
    670     assert(!RD->hasFlexibleArrayMember() &&
    671            "Cannot expand structure with flexible array.");
    672     if (RD->isUnion()) {
    673       // Unions can be here only in degenerative cases - all the fields are same
    674       // after flattening. Thus we have to use the "largest" field.
    675       const FieldDecl *LargestFD = nullptr;
    676       CharUnits UnionSize = CharUnits::Zero();
    677 
    678       for (const auto *FD : RD->fields()) {
    679         // Skip zero length bitfields.
    680         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
    681           continue;
    682         assert(!FD->isBitField() &&
    683                "Cannot expand structure with bit-field members.");
    684         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
    685         if (UnionSize < FieldSize) {
    686           UnionSize = FieldSize;
    687           LargestFD = FD;
    688         }
    689       }
    690       if (LargestFD)
    691         Fields.push_back(LargestFD);
    692     } else {
    693       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
    694         assert(!CXXRD->isDynamicClass() &&
    695                "cannot expand vtable pointers in dynamic classes");
    696         for (const CXXBaseSpecifier &BS : CXXRD->bases())
    697           Bases.push_back(&BS);
    698       }
    699 
    700       for (const auto *FD : RD->fields()) {
    701         // Skip zero length bitfields.
    702         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
    703           continue;
    704         assert(!FD->isBitField() &&
    705                "Cannot expand structure with bit-field members.");
    706         Fields.push_back(FD);
    707       }
    708     }
    709     return llvm::make_unique<RecordExpansion>(std::move(Bases),
    710                                               std::move(Fields));
    711   }
    712   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
    713     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
    714   }
    715   return llvm::make_unique<NoExpansion>();
    716 }
    717 
    718 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
    719   auto Exp = getTypeExpansion(Ty, Context);
    720   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
    721     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
    722   }
    723   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
    724     int Res = 0;
    725     for (auto BS : RExp->Bases)
    726       Res += getExpansionSize(BS->getType(), Context);
    727     for (auto FD : RExp->Fields)
    728       Res += getExpansionSize(FD->getType(), Context);
    729     return Res;
    730   }
    731   if (isa<ComplexExpansion>(Exp.get()))
    732     return 2;
    733   assert(isa<NoExpansion>(Exp.get()));
    734   return 1;
    735 }
    736 
    737 void
    738 CodeGenTypes::getExpandedTypes(QualType Ty,
    739                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
    740   auto Exp = getTypeExpansion(Ty, Context);
    741   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
    742     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
    743       getExpandedTypes(CAExp->EltTy, TI);
    744     }
    745   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
    746     for (auto BS : RExp->Bases)
    747       getExpandedTypes(BS->getType(), TI);
    748     for (auto FD : RExp->Fields)
    749       getExpandedTypes(FD->getType(), TI);
    750   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
    751     llvm::Type *EltTy = ConvertType(CExp->EltTy);
    752     *TI++ = EltTy;
    753     *TI++ = EltTy;
    754   } else {
    755     assert(isa<NoExpansion>(Exp.get()));
    756     *TI++ = ConvertType(Ty);
    757   }
    758 }
    759 
    760 static void forConstantArrayExpansion(CodeGenFunction &CGF,
    761                                       ConstantArrayExpansion *CAE,
    762                                       Address BaseAddr,
    763                                       llvm::function_ref<void(Address)> Fn) {
    764   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
    765   CharUnits EltAlign =
    766     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
    767 
    768   for (int i = 0, n = CAE->NumElts; i < n; i++) {
    769     llvm::Value *EltAddr =
    770       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
    771     Fn(Address(EltAddr, EltAlign));
    772   }
    773 }
    774 
    775 void CodeGenFunction::ExpandTypeFromArgs(
    776     QualType Ty, LValue LV, SmallVectorImpl<llvm::Argument *>::iterator &AI) {
    777   assert(LV.isSimple() &&
    778          "Unexpected non-simple lvalue during struct expansion.");
    779 
    780   auto Exp = getTypeExpansion(Ty, getContext());
    781   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
    782     forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
    783                               [&](Address EltAddr) {
    784       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
    785       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
    786     });
    787   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
    788     Address This = LV.getAddress();
    789     for (const CXXBaseSpecifier *BS : RExp->Bases) {
    790       // Perform a single step derived-to-base conversion.
    791       Address Base =
    792           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
    793                                 /*NullCheckValue=*/false, SourceLocation());
    794       LValue SubLV = MakeAddrLValue(Base, BS->getType());
    795 
    796       // Recurse onto bases.
    797       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
    798     }
    799     for (auto FD : RExp->Fields) {
    800       // FIXME: What are the right qualifiers here?
    801       LValue SubLV = EmitLValueForField(LV, FD);
    802       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
    803     }
    804   } else if (isa<ComplexExpansion>(Exp.get())) {
    805     auto realValue = *AI++;
    806     auto imagValue = *AI++;
    807     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
    808   } else {
    809     assert(isa<NoExpansion>(Exp.get()));
    810     EmitStoreThroughLValue(RValue::get(*AI++), LV);
    811   }
    812 }
    813 
    814 void CodeGenFunction::ExpandTypeToArgs(
    815     QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
    816     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
    817   auto Exp = getTypeExpansion(Ty, getContext());
    818   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
    819     forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(),
    820                               [&](Address EltAddr) {
    821       RValue EltRV =
    822           convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation());
    823       ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos);
    824     });
    825   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
    826     Address This = RV.getAggregateAddress();
    827     for (const CXXBaseSpecifier *BS : RExp->Bases) {
    828       // Perform a single step derived-to-base conversion.
    829       Address Base =
    830           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
    831                                 /*NullCheckValue=*/false, SourceLocation());
    832       RValue BaseRV = RValue::getAggregate(Base);
    833 
    834       // Recurse onto bases.
    835       ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs,
    836                        IRCallArgPos);
    837     }
    838 
    839     LValue LV = MakeAddrLValue(This, Ty);
    840     for (auto FD : RExp->Fields) {
    841       RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
    842       ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs,
    843                        IRCallArgPos);
    844     }
    845   } else if (isa<ComplexExpansion>(Exp.get())) {
    846     ComplexPairTy CV = RV.getComplexVal();
    847     IRCallArgs[IRCallArgPos++] = CV.first;
    848     IRCallArgs[IRCallArgPos++] = CV.second;
    849   } else {
    850     assert(isa<NoExpansion>(Exp.get()));
    851     assert(RV.isScalar() &&
    852            "Unexpected non-scalar rvalue during struct expansion.");
    853 
    854     // Insert a bitcast as needed.
    855     llvm::Value *V = RV.getScalarVal();
    856     if (IRCallArgPos < IRFuncTy->getNumParams() &&
    857         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
    858       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
    859 
    860     IRCallArgs[IRCallArgPos++] = V;
    861   }
    862 }
    863 
    864 /// Create a temporary allocation for the purposes of coercion.
    865 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
    866                                            CharUnits MinAlign) {
    867   // Don't use an alignment that's worse than what LLVM would prefer.
    868   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
    869   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
    870 
    871   return CGF.CreateTempAlloca(Ty, Align);
    872 }
    873 
    874 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
    875 /// accessing some number of bytes out of it, try to gep into the struct to get
    876 /// at its inner goodness.  Dive as deep as possible without entering an element
    877 /// with an in-memory size smaller than DstSize.
    878 static Address
    879 EnterStructPointerForCoercedAccess(Address SrcPtr,
    880                                    llvm::StructType *SrcSTy,
    881                                    uint64_t DstSize, CodeGenFunction &CGF) {
    882   // We can't dive into a zero-element struct.
    883   if (SrcSTy->getNumElements() == 0) return SrcPtr;
    884 
    885   llvm::Type *FirstElt = SrcSTy->getElementType(0);
    886 
    887   // If the first elt is at least as large as what we're looking for, or if the
    888   // first element is the same size as the whole struct, we can enter it. The
    889   // comparison must be made on the store size and not the alloca size. Using
    890   // the alloca size may overstate the size of the load.
    891   uint64_t FirstEltSize =
    892     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
    893   if (FirstEltSize < DstSize &&
    894       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
    895     return SrcPtr;
    896 
    897   // GEP into the first element.
    898   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive");
    899 
    900   // If the first element is a struct, recurse.
    901   llvm::Type *SrcTy = SrcPtr.getElementType();
    902   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
    903     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
    904 
    905   return SrcPtr;
    906 }
    907 
    908 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
    909 /// are either integers or pointers.  This does a truncation of the value if it
    910 /// is too large or a zero extension if it is too small.
    911 ///
    912 /// This behaves as if the value were coerced through memory, so on big-endian
    913 /// targets the high bits are preserved in a truncation, while little-endian
    914 /// targets preserve the low bits.
    915 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
    916                                              llvm::Type *Ty,
    917                                              CodeGenFunction &CGF) {
    918   if (Val->getType() == Ty)
    919     return Val;
    920 
    921   if (isa<llvm::PointerType>(Val->getType())) {
    922     // If this is Pointer->Pointer avoid conversion to and from int.
    923     if (isa<llvm::PointerType>(Ty))
    924       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
    925 
    926     // Convert the pointer to an integer so we can play with its width.
    927     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
    928   }
    929 
    930   llvm::Type *DestIntTy = Ty;
    931   if (isa<llvm::PointerType>(DestIntTy))
    932     DestIntTy = CGF.IntPtrTy;
    933 
    934   if (Val->getType() != DestIntTy) {
    935     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
    936     if (DL.isBigEndian()) {
    937       // Preserve the high bits on big-endian targets.
    938       // That is what memory coercion does.
    939       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
    940       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
    941 
    942       if (SrcSize > DstSize) {
    943         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
    944         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
    945       } else {
    946         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
    947         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
    948       }
    949     } else {
    950       // Little-endian targets preserve the low bits. No shifts required.
    951       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
    952     }
    953   }
    954 
    955   if (isa<llvm::PointerType>(Ty))
    956     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
    957   return Val;
    958 }
    959 
    960 
    961 
    962 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
    963 /// a pointer to an object of type \arg Ty, known to be aligned to
    964 /// \arg SrcAlign bytes.
    965 ///
    966 /// This safely handles the case when the src type is smaller than the
    967 /// destination type; in this situation the values of bits which not
    968 /// present in the src are undefined.
    969 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
    970                                       CodeGenFunction &CGF) {
    971   llvm::Type *SrcTy = Src.getElementType();
    972 
    973   // If SrcTy and Ty are the same, just do a load.
    974   if (SrcTy == Ty)
    975     return CGF.Builder.CreateLoad(Src);
    976 
    977   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
    978 
    979   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
    980     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
    981     SrcTy = Src.getType()->getElementType();
    982   }
    983 
    984   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
    985 
    986   // If the source and destination are integer or pointer types, just do an
    987   // extension or truncation to the desired type.
    988   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
    989       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
    990     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
    991     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
    992   }
    993 
    994   // If load is legal, just bitcast the src pointer.
    995   if (SrcSize >= DstSize) {
    996     // Generally SrcSize is never greater than DstSize, since this means we are
    997     // losing bits. However, this can happen in cases where the structure has
    998     // additional padding, for example due to a user specified alignment.
    999     //
   1000     // FIXME: Assert that we aren't truncating non-padding bits when have access
   1001     // to that information.
   1002     Src = CGF.Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(Ty));
   1003     return CGF.Builder.CreateLoad(Src);
   1004   }
   1005 
   1006   // Otherwise do coercion through memory. This is stupid, but simple.
   1007   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
   1008   Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
   1009   Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy);
   1010   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
   1011       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
   1012       false);
   1013   return CGF.Builder.CreateLoad(Tmp);
   1014 }
   1015 
   1016 // Function to store a first-class aggregate into memory.  We prefer to
   1017 // store the elements rather than the aggregate to be more friendly to
   1018 // fast-isel.
   1019 // FIXME: Do we need to recurse here?
   1020 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
   1021                           Address Dest, bool DestIsVolatile) {
   1022   // Prefer scalar stores to first-class aggregate stores.
   1023   if (llvm::StructType *STy =
   1024         dyn_cast<llvm::StructType>(Val->getType())) {
   1025     const llvm::StructLayout *Layout =
   1026       CGF.CGM.getDataLayout().getStructLayout(STy);
   1027 
   1028     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1029       auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i));
   1030       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset);
   1031       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
   1032       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
   1033     }
   1034   } else {
   1035     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
   1036   }
   1037 }
   1038 
   1039 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
   1040 /// where the source and destination may have different types.  The
   1041 /// destination is known to be aligned to \arg DstAlign bytes.
   1042 ///
   1043 /// This safely handles the case when the src type is larger than the
   1044 /// destination type; the upper bits of the src will be lost.
   1045 static void CreateCoercedStore(llvm::Value *Src,
   1046                                Address Dst,
   1047                                bool DstIsVolatile,
   1048                                CodeGenFunction &CGF) {
   1049   llvm::Type *SrcTy = Src->getType();
   1050   llvm::Type *DstTy = Dst.getType()->getElementType();
   1051   if (SrcTy == DstTy) {
   1052     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
   1053     return;
   1054   }
   1055 
   1056   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
   1057 
   1058   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
   1059     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
   1060     DstTy = Dst.getType()->getElementType();
   1061   }
   1062 
   1063   // If the source and destination are integer or pointer types, just do an
   1064   // extension or truncation to the desired type.
   1065   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
   1066       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
   1067     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
   1068     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
   1069     return;
   1070   }
   1071 
   1072   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
   1073 
   1074   // If store is legal, just bitcast the src pointer.
   1075   if (SrcSize <= DstSize) {
   1076     Dst = CGF.Builder.CreateBitCast(Dst, llvm::PointerType::getUnqual(SrcTy));
   1077     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
   1078   } else {
   1079     // Otherwise do coercion through memory. This is stupid, but
   1080     // simple.
   1081 
   1082     // Generally SrcSize is never greater than DstSize, since this means we are
   1083     // losing bits. However, this can happen in cases where the structure has
   1084     // additional padding, for example due to a user specified alignment.
   1085     //
   1086     // FIXME: Assert that we aren't truncating non-padding bits when have access
   1087     // to that information.
   1088     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
   1089     CGF.Builder.CreateStore(Src, Tmp);
   1090     Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
   1091     Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy);
   1092     CGF.Builder.CreateMemCpy(DstCasted, Casted,
   1093         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
   1094         false);
   1095   }
   1096 }
   1097 
   1098 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
   1099                                    const ABIArgInfo &info) {
   1100   if (unsigned offset = info.getDirectOffset()) {
   1101     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
   1102     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
   1103                                              CharUnits::fromQuantity(offset));
   1104     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
   1105   }
   1106   return addr;
   1107 }
   1108 
   1109 namespace {
   1110 
   1111 /// Encapsulates information about the way function arguments from
   1112 /// CGFunctionInfo should be passed to actual LLVM IR function.
   1113 class ClangToLLVMArgMapping {
   1114   static const unsigned InvalidIndex = ~0U;
   1115   unsigned InallocaArgNo;
   1116   unsigned SRetArgNo;
   1117   unsigned TotalIRArgs;
   1118 
   1119   /// Arguments of LLVM IR function corresponding to single Clang argument.
   1120   struct IRArgs {
   1121     unsigned PaddingArgIndex;
   1122     // Argument is expanded to IR arguments at positions
   1123     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
   1124     unsigned FirstArgIndex;
   1125     unsigned NumberOfArgs;
   1126 
   1127     IRArgs()
   1128         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
   1129           NumberOfArgs(0) {}
   1130   };
   1131 
   1132   SmallVector<IRArgs, 8> ArgInfo;
   1133 
   1134 public:
   1135   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
   1136                         bool OnlyRequiredArgs = false)
   1137       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
   1138         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
   1139     construct(Context, FI, OnlyRequiredArgs);
   1140   }
   1141 
   1142   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
   1143   unsigned getInallocaArgNo() const {
   1144     assert(hasInallocaArg());
   1145     return InallocaArgNo;
   1146   }
   1147 
   1148   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
   1149   unsigned getSRetArgNo() const {
   1150     assert(hasSRetArg());
   1151     return SRetArgNo;
   1152   }
   1153 
   1154   unsigned totalIRArgs() const { return TotalIRArgs; }
   1155 
   1156   bool hasPaddingArg(unsigned ArgNo) const {
   1157     assert(ArgNo < ArgInfo.size());
   1158     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
   1159   }
   1160   unsigned getPaddingArgNo(unsigned ArgNo) const {
   1161     assert(hasPaddingArg(ArgNo));
   1162     return ArgInfo[ArgNo].PaddingArgIndex;
   1163   }
   1164 
   1165   /// Returns index of first IR argument corresponding to ArgNo, and their
   1166   /// quantity.
   1167   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
   1168     assert(ArgNo < ArgInfo.size());
   1169     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
   1170                           ArgInfo[ArgNo].NumberOfArgs);
   1171   }
   1172 
   1173 private:
   1174   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
   1175                  bool OnlyRequiredArgs);
   1176 };
   1177 
   1178 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
   1179                                       const CGFunctionInfo &FI,
   1180                                       bool OnlyRequiredArgs) {
   1181   unsigned IRArgNo = 0;
   1182   bool SwapThisWithSRet = false;
   1183   const ABIArgInfo &RetAI = FI.getReturnInfo();
   1184 
   1185   if (RetAI.getKind() == ABIArgInfo::Indirect) {
   1186     SwapThisWithSRet = RetAI.isSRetAfterThis();
   1187     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
   1188   }
   1189 
   1190   unsigned ArgNo = 0;
   1191   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
   1192   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
   1193        ++I, ++ArgNo) {
   1194     assert(I != FI.arg_end());
   1195     QualType ArgType = I->type;
   1196     const ABIArgInfo &AI = I->info;
   1197     // Collect data about IR arguments corresponding to Clang argument ArgNo.
   1198     auto &IRArgs = ArgInfo[ArgNo];
   1199 
   1200     if (AI.getPaddingType())
   1201       IRArgs.PaddingArgIndex = IRArgNo++;
   1202 
   1203     switch (AI.getKind()) {
   1204     case ABIArgInfo::Extend:
   1205     case ABIArgInfo::Direct: {
   1206       // FIXME: handle sseregparm someday...
   1207       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
   1208       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
   1209         IRArgs.NumberOfArgs = STy->getNumElements();
   1210       } else {
   1211         IRArgs.NumberOfArgs = 1;
   1212       }
   1213       break;
   1214     }
   1215     case ABIArgInfo::Indirect:
   1216       IRArgs.NumberOfArgs = 1;
   1217       break;
   1218     case ABIArgInfo::Ignore:
   1219     case ABIArgInfo::InAlloca:
   1220       // ignore and inalloca doesn't have matching LLVM parameters.
   1221       IRArgs.NumberOfArgs = 0;
   1222       break;
   1223     case ABIArgInfo::Expand: {
   1224       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
   1225       break;
   1226     }
   1227     }
   1228 
   1229     if (IRArgs.NumberOfArgs > 0) {
   1230       IRArgs.FirstArgIndex = IRArgNo;
   1231       IRArgNo += IRArgs.NumberOfArgs;
   1232     }
   1233 
   1234     // Skip over the sret parameter when it comes second.  We already handled it
   1235     // above.
   1236     if (IRArgNo == 1 && SwapThisWithSRet)
   1237       IRArgNo++;
   1238   }
   1239   assert(ArgNo == ArgInfo.size());
   1240 
   1241   if (FI.usesInAlloca())
   1242     InallocaArgNo = IRArgNo++;
   1243 
   1244   TotalIRArgs = IRArgNo;
   1245 }
   1246 }  // namespace
   1247 
   1248 /***/
   1249 
   1250 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
   1251   return FI.getReturnInfo().isIndirect();
   1252 }
   1253 
   1254 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
   1255   return ReturnTypeUsesSRet(FI) &&
   1256          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
   1257 }
   1258 
   1259 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
   1260   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
   1261     switch (BT->getKind()) {
   1262     default:
   1263       return false;
   1264     case BuiltinType::Float:
   1265       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
   1266     case BuiltinType::Double:
   1267       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
   1268     case BuiltinType::LongDouble:
   1269       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
   1270     }
   1271   }
   1272 
   1273   return false;
   1274 }
   1275 
   1276 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
   1277   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
   1278     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
   1279       if (BT->getKind() == BuiltinType::LongDouble)
   1280         return getTarget().useObjCFP2RetForComplexLongDouble();
   1281     }
   1282   }
   1283 
   1284   return false;
   1285 }
   1286 
   1287 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
   1288   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
   1289   return GetFunctionType(FI);
   1290 }
   1291 
   1292 llvm::FunctionType *
   1293 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
   1294 
   1295   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
   1296   (void)Inserted;
   1297   assert(Inserted && "Recursively being processed?");
   1298 
   1299   llvm::Type *resultType = nullptr;
   1300   const ABIArgInfo &retAI = FI.getReturnInfo();
   1301   switch (retAI.getKind()) {
   1302   case ABIArgInfo::Expand:
   1303     llvm_unreachable("Invalid ABI kind for return argument");
   1304 
   1305   case ABIArgInfo::Extend:
   1306   case ABIArgInfo::Direct:
   1307     resultType = retAI.getCoerceToType();
   1308     break;
   1309 
   1310   case ABIArgInfo::InAlloca:
   1311     if (retAI.getInAllocaSRet()) {
   1312       // sret things on win32 aren't void, they return the sret pointer.
   1313       QualType ret = FI.getReturnType();
   1314       llvm::Type *ty = ConvertType(ret);
   1315       unsigned addressSpace = Context.getTargetAddressSpace(ret);
   1316       resultType = llvm::PointerType::get(ty, addressSpace);
   1317     } else {
   1318       resultType = llvm::Type::getVoidTy(getLLVMContext());
   1319     }
   1320     break;
   1321 
   1322   case ABIArgInfo::Indirect:
   1323   case ABIArgInfo::Ignore:
   1324     resultType = llvm::Type::getVoidTy(getLLVMContext());
   1325     break;
   1326   }
   1327 
   1328   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
   1329   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
   1330 
   1331   // Add type for sret argument.
   1332   if (IRFunctionArgs.hasSRetArg()) {
   1333     QualType Ret = FI.getReturnType();
   1334     llvm::Type *Ty = ConvertType(Ret);
   1335     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
   1336     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
   1337         llvm::PointerType::get(Ty, AddressSpace);
   1338   }
   1339 
   1340   // Add type for inalloca argument.
   1341   if (IRFunctionArgs.hasInallocaArg()) {
   1342     auto ArgStruct = FI.getArgStruct();
   1343     assert(ArgStruct);
   1344     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
   1345   }
   1346 
   1347   // Add in all of the required arguments.
   1348   unsigned ArgNo = 0;
   1349   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
   1350                                      ie = it + FI.getNumRequiredArgs();
   1351   for (; it != ie; ++it, ++ArgNo) {
   1352     const ABIArgInfo &ArgInfo = it->info;
   1353 
   1354     // Insert a padding type to ensure proper alignment.
   1355     if (IRFunctionArgs.hasPaddingArg(ArgNo))
   1356       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
   1357           ArgInfo.getPaddingType();
   1358 
   1359     unsigned FirstIRArg, NumIRArgs;
   1360     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
   1361 
   1362     switch (ArgInfo.getKind()) {
   1363     case ABIArgInfo::Ignore:
   1364     case ABIArgInfo::InAlloca:
   1365       assert(NumIRArgs == 0);
   1366       break;
   1367 
   1368     case ABIArgInfo::Indirect: {
   1369       assert(NumIRArgs == 1);
   1370       // indirect arguments are always on the stack, which is addr space #0.
   1371       llvm::Type *LTy = ConvertTypeForMem(it->type);
   1372       ArgTypes[FirstIRArg] = LTy->getPointerTo();
   1373       break;
   1374     }
   1375 
   1376     case ABIArgInfo::Extend:
   1377     case ABIArgInfo::Direct: {
   1378       // Fast-isel and the optimizer generally like scalar values better than
   1379       // FCAs, so we flatten them if this is safe to do for this argument.
   1380       llvm::Type *argType = ArgInfo.getCoerceToType();
   1381       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
   1382       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
   1383         assert(NumIRArgs == st->getNumElements());
   1384         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
   1385           ArgTypes[FirstIRArg + i] = st->getElementType(i);
   1386       } else {
   1387         assert(NumIRArgs == 1);
   1388         ArgTypes[FirstIRArg] = argType;
   1389       }
   1390       break;
   1391     }
   1392 
   1393     case ABIArgInfo::Expand:
   1394       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
   1395       getExpandedTypes(it->type, ArgTypesIter);
   1396       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
   1397       break;
   1398     }
   1399   }
   1400 
   1401   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
   1402   assert(Erased && "Not in set?");
   1403 
   1404   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
   1405 }
   1406 
   1407 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
   1408   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
   1409   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
   1410 
   1411   if (!isFuncTypeConvertible(FPT))
   1412     return llvm::StructType::get(getLLVMContext());
   1413 
   1414   const CGFunctionInfo *Info;
   1415   if (isa<CXXDestructorDecl>(MD))
   1416     Info =
   1417         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
   1418   else
   1419     Info = &arrangeCXXMethodDeclaration(MD);
   1420   return GetFunctionType(*Info);
   1421 }
   1422 
   1423 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
   1424                                                llvm::AttrBuilder &FuncAttrs,
   1425                                                const FunctionProtoType *FPT) {
   1426   if (!FPT)
   1427     return;
   1428 
   1429   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
   1430       FPT->isNothrow(Ctx))
   1431     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
   1432 }
   1433 
   1434 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
   1435                                            CGCalleeInfo CalleeInfo,
   1436                                            AttributeListType &PAL,
   1437                                            unsigned &CallingConv,
   1438                                            bool AttrOnCallSite) {
   1439   llvm::AttrBuilder FuncAttrs;
   1440   llvm::AttrBuilder RetAttrs;
   1441   bool HasOptnone = false;
   1442 
   1443   CallingConv = FI.getEffectiveCallingConvention();
   1444 
   1445   if (FI.isNoReturn())
   1446     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
   1447 
   1448   // If we have information about the function prototype, we can learn
   1449   // attributes form there.
   1450   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
   1451                                      CalleeInfo.getCalleeFunctionProtoType());
   1452 
   1453   const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
   1454 
   1455   // FIXME: handle sseregparm someday...
   1456   if (TargetDecl) {
   1457     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
   1458       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
   1459     if (TargetDecl->hasAttr<NoThrowAttr>())
   1460       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
   1461     if (TargetDecl->hasAttr<NoReturnAttr>())
   1462       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
   1463     if (TargetDecl->hasAttr<NoDuplicateAttr>())
   1464       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
   1465 
   1466     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
   1467       AddAttributesFromFunctionProtoType(
   1468           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
   1469       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
   1470       // These attributes are not inherited by overloads.
   1471       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
   1472       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
   1473         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
   1474     }
   1475 
   1476     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
   1477     if (TargetDecl->hasAttr<ConstAttr>()) {
   1478       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
   1479       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
   1480     } else if (TargetDecl->hasAttr<PureAttr>()) {
   1481       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
   1482       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
   1483     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
   1484       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
   1485       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
   1486     }
   1487     if (TargetDecl->hasAttr<RestrictAttr>())
   1488       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
   1489     if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
   1490       RetAttrs.addAttribute(llvm::Attribute::NonNull);
   1491 
   1492     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
   1493   }
   1494 
   1495   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
   1496   if (!HasOptnone) {
   1497     if (CodeGenOpts.OptimizeSize)
   1498       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
   1499     if (CodeGenOpts.OptimizeSize == 2)
   1500       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
   1501   }
   1502 
   1503   if (CodeGenOpts.DisableRedZone)
   1504     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
   1505   if (CodeGenOpts.NoImplicitFloat)
   1506     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
   1507   if (CodeGenOpts.EnableSegmentedStacks &&
   1508       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
   1509     FuncAttrs.addAttribute("split-stack");
   1510 
   1511   if (AttrOnCallSite) {
   1512     // Attributes that should go on the call site only.
   1513     if (!CodeGenOpts.SimplifyLibCalls)
   1514       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
   1515     if (!CodeGenOpts.TrapFuncName.empty())
   1516       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
   1517   } else {
   1518     // Attributes that should go on the function, but not the call site.
   1519     if (!CodeGenOpts.DisableFPElim) {
   1520       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
   1521     } else if (CodeGenOpts.OmitLeafFramePointer) {
   1522       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
   1523       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
   1524     } else {
   1525       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
   1526       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
   1527     }
   1528 
   1529     bool DisableTailCalls =
   1530         CodeGenOpts.DisableTailCalls ||
   1531         (TargetDecl && TargetDecl->hasAttr<DisableTailCallsAttr>());
   1532     FuncAttrs.addAttribute("disable-tail-calls",
   1533                            llvm::toStringRef(DisableTailCalls));
   1534 
   1535     FuncAttrs.addAttribute("less-precise-fpmad",
   1536                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
   1537     FuncAttrs.addAttribute("no-infs-fp-math",
   1538                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
   1539     FuncAttrs.addAttribute("no-nans-fp-math",
   1540                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
   1541     FuncAttrs.addAttribute("unsafe-fp-math",
   1542                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
   1543     FuncAttrs.addAttribute("use-soft-float",
   1544                            llvm::toStringRef(CodeGenOpts.SoftFloat));
   1545     FuncAttrs.addAttribute("stack-protector-buffer-size",
   1546                            llvm::utostr(CodeGenOpts.SSPBufferSize));
   1547 
   1548     if (CodeGenOpts.StackRealignment)
   1549       FuncAttrs.addAttribute("stackrealign");
   1550 
   1551     // Add target-cpu and target-features attributes to functions. If
   1552     // we have a decl for the function and it has a target attribute then
   1553     // parse that and add it to the feature set.
   1554     StringRef TargetCPU = getTarget().getTargetOpts().CPU;
   1555     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl);
   1556     if (FD && FD->hasAttr<TargetAttr>()) {
   1557       llvm::StringMap<bool> FeatureMap;
   1558       getFunctionFeatureMap(FeatureMap, FD);
   1559 
   1560       // Produce the canonical string for this set of features.
   1561       std::vector<std::string> Features;
   1562       for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(),
   1563                                                  ie = FeatureMap.end();
   1564            it != ie; ++it)
   1565         Features.push_back((it->second ? "+" : "-") + it->first().str());
   1566 
   1567       // Now add the target-cpu and target-features to the function.
   1568       // While we populated the feature map above, we still need to
   1569       // get and parse the target attribute so we can get the cpu for
   1570       // the function.
   1571       const auto *TD = FD->getAttr<TargetAttr>();
   1572       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
   1573       if (ParsedAttr.second != "")
   1574         TargetCPU = ParsedAttr.second;
   1575       if (TargetCPU != "")
   1576         FuncAttrs.addAttribute("target-cpu", TargetCPU);
   1577       if (!Features.empty()) {
   1578         std::sort(Features.begin(), Features.end());
   1579         FuncAttrs.addAttribute(
   1580             "target-features",
   1581             llvm::join(Features.begin(), Features.end(), ","));
   1582       }
   1583     } else {
   1584       // Otherwise just add the existing target cpu and target features to the
   1585       // function.
   1586       std::vector<std::string> &Features = getTarget().getTargetOpts().Features;
   1587       if (TargetCPU != "")
   1588         FuncAttrs.addAttribute("target-cpu", TargetCPU);
   1589       if (!Features.empty()) {
   1590         std::sort(Features.begin(), Features.end());
   1591         FuncAttrs.addAttribute(
   1592             "target-features",
   1593             llvm::join(Features.begin(), Features.end(), ","));
   1594       }
   1595     }
   1596   }
   1597 
   1598   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
   1599 
   1600   QualType RetTy = FI.getReturnType();
   1601   const ABIArgInfo &RetAI = FI.getReturnInfo();
   1602   switch (RetAI.getKind()) {
   1603   case ABIArgInfo::Extend:
   1604     if (RetTy->hasSignedIntegerRepresentation())
   1605       RetAttrs.addAttribute(llvm::Attribute::SExt);
   1606     else if (RetTy->hasUnsignedIntegerRepresentation())
   1607       RetAttrs.addAttribute(llvm::Attribute::ZExt);
   1608     // FALL THROUGH
   1609   case ABIArgInfo::Direct:
   1610     if (RetAI.getInReg())
   1611       RetAttrs.addAttribute(llvm::Attribute::InReg);
   1612     break;
   1613   case ABIArgInfo::Ignore:
   1614     break;
   1615 
   1616   case ABIArgInfo::InAlloca:
   1617   case ABIArgInfo::Indirect: {
   1618     // inalloca and sret disable readnone and readonly
   1619     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
   1620       .removeAttribute(llvm::Attribute::ReadNone);
   1621     break;
   1622   }
   1623 
   1624   case ABIArgInfo::Expand:
   1625     llvm_unreachable("Invalid ABI kind for return argument");
   1626   }
   1627 
   1628   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
   1629     QualType PTy = RefTy->getPointeeType();
   1630     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
   1631       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
   1632                                         .getQuantity());
   1633     else if (getContext().getTargetAddressSpace(PTy) == 0)
   1634       RetAttrs.addAttribute(llvm::Attribute::NonNull);
   1635   }
   1636 
   1637   // Attach return attributes.
   1638   if (RetAttrs.hasAttributes()) {
   1639     PAL.push_back(llvm::AttributeSet::get(
   1640         getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs));
   1641   }
   1642 
   1643   // Attach attributes to sret.
   1644   if (IRFunctionArgs.hasSRetArg()) {
   1645     llvm::AttrBuilder SRETAttrs;
   1646     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
   1647     if (RetAI.getInReg())
   1648       SRETAttrs.addAttribute(llvm::Attribute::InReg);
   1649     PAL.push_back(llvm::AttributeSet::get(
   1650         getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs));
   1651   }
   1652 
   1653   // Attach attributes to inalloca argument.
   1654   if (IRFunctionArgs.hasInallocaArg()) {
   1655     llvm::AttrBuilder Attrs;
   1656     Attrs.addAttribute(llvm::Attribute::InAlloca);
   1657     PAL.push_back(llvm::AttributeSet::get(
   1658         getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs));
   1659   }
   1660 
   1661   unsigned ArgNo = 0;
   1662   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
   1663                                           E = FI.arg_end();
   1664        I != E; ++I, ++ArgNo) {
   1665     QualType ParamType = I->type;
   1666     const ABIArgInfo &AI = I->info;
   1667     llvm::AttrBuilder Attrs;
   1668 
   1669     // Add attribute for padding argument, if necessary.
   1670     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
   1671       if (AI.getPaddingInReg())
   1672         PAL.push_back(llvm::AttributeSet::get(
   1673             getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1,
   1674             llvm::Attribute::InReg));
   1675     }
   1676 
   1677     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
   1678     // have the corresponding parameter variable.  It doesn't make
   1679     // sense to do it here because parameters are so messed up.
   1680     switch (AI.getKind()) {
   1681     case ABIArgInfo::Extend:
   1682       if (ParamType->isSignedIntegerOrEnumerationType())
   1683         Attrs.addAttribute(llvm::Attribute::SExt);
   1684       else if (ParamType->isUnsignedIntegerOrEnumerationType()) {
   1685         if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType))
   1686           Attrs.addAttribute(llvm::Attribute::SExt);
   1687         else
   1688           Attrs.addAttribute(llvm::Attribute::ZExt);
   1689       }
   1690       // FALL THROUGH
   1691     case ABIArgInfo::Direct:
   1692       if (ArgNo == 0 && FI.isChainCall())
   1693         Attrs.addAttribute(llvm::Attribute::Nest);
   1694       else if (AI.getInReg())
   1695         Attrs.addAttribute(llvm::Attribute::InReg);
   1696       break;
   1697 
   1698     case ABIArgInfo::Indirect: {
   1699       if (AI.getInReg())
   1700         Attrs.addAttribute(llvm::Attribute::InReg);
   1701 
   1702       if (AI.getIndirectByVal())
   1703         Attrs.addAttribute(llvm::Attribute::ByVal);
   1704 
   1705       CharUnits Align = AI.getIndirectAlign();
   1706 
   1707       // In a byval argument, it is important that the required
   1708       // alignment of the type is honored, as LLVM might be creating a
   1709       // *new* stack object, and needs to know what alignment to give
   1710       // it. (Sometimes it can deduce a sensible alignment on its own,
   1711       // but not if clang decides it must emit a packed struct, or the
   1712       // user specifies increased alignment requirements.)
   1713       //
   1714       // This is different from indirect *not* byval, where the object
   1715       // exists already, and the align attribute is purely
   1716       // informative.
   1717       assert(!Align.isZero());
   1718 
   1719       // For now, only add this when we have a byval argument.
   1720       // TODO: be less lazy about updating test cases.
   1721       if (AI.getIndirectByVal())
   1722         Attrs.addAlignmentAttr(Align.getQuantity());
   1723 
   1724       // byval disables readnone and readonly.
   1725       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
   1726         .removeAttribute(llvm::Attribute::ReadNone);
   1727       break;
   1728     }
   1729     case ABIArgInfo::Ignore:
   1730     case ABIArgInfo::Expand:
   1731       continue;
   1732 
   1733     case ABIArgInfo::InAlloca:
   1734       // inalloca disables readnone and readonly.
   1735       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
   1736           .removeAttribute(llvm::Attribute::ReadNone);
   1737       continue;
   1738     }
   1739 
   1740     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
   1741       QualType PTy = RefTy->getPointeeType();
   1742       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
   1743         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
   1744                                        .getQuantity());
   1745       else if (getContext().getTargetAddressSpace(PTy) == 0)
   1746         Attrs.addAttribute(llvm::Attribute::NonNull);
   1747     }
   1748 
   1749     if (Attrs.hasAttributes()) {
   1750       unsigned FirstIRArg, NumIRArgs;
   1751       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
   1752       for (unsigned i = 0; i < NumIRArgs; i++)
   1753         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(),
   1754                                               FirstIRArg + i + 1, Attrs));
   1755     }
   1756   }
   1757   assert(ArgNo == FI.arg_size());
   1758 
   1759   if (FuncAttrs.hasAttributes())
   1760     PAL.push_back(llvm::
   1761                   AttributeSet::get(getLLVMContext(),
   1762                                     llvm::AttributeSet::FunctionIndex,
   1763                                     FuncAttrs));
   1764 }
   1765 
   1766 /// An argument came in as a promoted argument; demote it back to its
   1767 /// declared type.
   1768 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
   1769                                          const VarDecl *var,
   1770                                          llvm::Value *value) {
   1771   llvm::Type *varType = CGF.ConvertType(var->getType());
   1772 
   1773   // This can happen with promotions that actually don't change the
   1774   // underlying type, like the enum promotions.
   1775   if (value->getType() == varType) return value;
   1776 
   1777   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
   1778          && "unexpected promotion type");
   1779 
   1780   if (isa<llvm::IntegerType>(varType))
   1781     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
   1782 
   1783   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
   1784 }
   1785 
   1786 /// Returns the attribute (either parameter attribute, or function
   1787 /// attribute), which declares argument ArgNo to be non-null.
   1788 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
   1789                                          QualType ArgType, unsigned ArgNo) {
   1790   // FIXME: __attribute__((nonnull)) can also be applied to:
   1791   //   - references to pointers, where the pointee is known to be
   1792   //     nonnull (apparently a Clang extension)
   1793   //   - transparent unions containing pointers
   1794   // In the former case, LLVM IR cannot represent the constraint. In
   1795   // the latter case, we have no guarantee that the transparent union
   1796   // is in fact passed as a pointer.
   1797   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
   1798     return nullptr;
   1799   // First, check attribute on parameter itself.
   1800   if (PVD) {
   1801     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
   1802       return ParmNNAttr;
   1803   }
   1804   // Check function attributes.
   1805   if (!FD)
   1806     return nullptr;
   1807   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
   1808     if (NNAttr->isNonNull(ArgNo))
   1809       return NNAttr;
   1810   }
   1811   return nullptr;
   1812 }
   1813 
   1814 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
   1815                                          llvm::Function *Fn,
   1816                                          const FunctionArgList &Args) {
   1817   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
   1818     // Naked functions don't have prologues.
   1819     return;
   1820 
   1821   // If this is an implicit-return-zero function, go ahead and
   1822   // initialize the return value.  TODO: it might be nice to have
   1823   // a more general mechanism for this that didn't require synthesized
   1824   // return statements.
   1825   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
   1826     if (FD->hasImplicitReturnZero()) {
   1827       QualType RetTy = FD->getReturnType().getUnqualifiedType();
   1828       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
   1829       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
   1830       Builder.CreateStore(Zero, ReturnValue);
   1831     }
   1832   }
   1833 
   1834   // FIXME: We no longer need the types from FunctionArgList; lift up and
   1835   // simplify.
   1836 
   1837   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
   1838   // Flattened function arguments.
   1839   SmallVector<llvm::Argument *, 16> FnArgs;
   1840   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
   1841   for (auto &Arg : Fn->args()) {
   1842     FnArgs.push_back(&Arg);
   1843   }
   1844   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
   1845 
   1846   // If we're using inalloca, all the memory arguments are GEPs off of the last
   1847   // parameter, which is a pointer to the complete memory area.
   1848   Address ArgStruct = Address::invalid();
   1849   const llvm::StructLayout *ArgStructLayout = nullptr;
   1850   if (IRFunctionArgs.hasInallocaArg()) {
   1851     ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct());
   1852     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
   1853                         FI.getArgStructAlignment());
   1854 
   1855     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
   1856   }
   1857 
   1858   // Name the struct return parameter.
   1859   if (IRFunctionArgs.hasSRetArg()) {
   1860     auto AI = FnArgs[IRFunctionArgs.getSRetArgNo()];
   1861     AI->setName("agg.result");
   1862     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1,
   1863                                         llvm::Attribute::NoAlias));
   1864   }
   1865 
   1866   // Track if we received the parameter as a pointer (indirect, byval, or
   1867   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
   1868   // into a local alloca for us.
   1869   SmallVector<ParamValue, 16> ArgVals;
   1870   ArgVals.reserve(Args.size());
   1871 
   1872   // Create a pointer value for every parameter declaration.  This usually
   1873   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
   1874   // any cleanups or do anything that might unwind.  We do that separately, so
   1875   // we can push the cleanups in the correct order for the ABI.
   1876   assert(FI.arg_size() == Args.size() &&
   1877          "Mismatch between function signature & arguments.");
   1878   unsigned ArgNo = 0;
   1879   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
   1880   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
   1881        i != e; ++i, ++info_it, ++ArgNo) {
   1882     const VarDecl *Arg = *i;
   1883     QualType Ty = info_it->type;
   1884     const ABIArgInfo &ArgI = info_it->info;
   1885 
   1886     bool isPromoted =
   1887       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
   1888 
   1889     unsigned FirstIRArg, NumIRArgs;
   1890     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
   1891 
   1892     switch (ArgI.getKind()) {
   1893     case ABIArgInfo::InAlloca: {
   1894       assert(NumIRArgs == 0);
   1895       auto FieldIndex = ArgI.getInAllocaFieldIndex();
   1896       CharUnits FieldOffset =
   1897         CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex));
   1898       Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset,
   1899                                           Arg->getName());
   1900       ArgVals.push_back(ParamValue::forIndirect(V));
   1901       break;
   1902     }
   1903 
   1904     case ABIArgInfo::Indirect: {
   1905       assert(NumIRArgs == 1);
   1906       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
   1907 
   1908       if (!hasScalarEvaluationKind(Ty)) {
   1909         // Aggregates and complex variables are accessed by reference.  All we
   1910         // need to do is realign the value, if requested.
   1911         Address V = ParamAddr;
   1912         if (ArgI.getIndirectRealign()) {
   1913           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
   1914 
   1915           // Copy from the incoming argument pointer to the temporary with the
   1916           // appropriate alignment.
   1917           //
   1918           // FIXME: We should have a common utility for generating an aggregate
   1919           // copy.
   1920           CharUnits Size = getContext().getTypeSizeInChars(Ty);
   1921           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
   1922           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
   1923           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
   1924           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
   1925           V = AlignedTemp;
   1926         }
   1927         ArgVals.push_back(ParamValue::forIndirect(V));
   1928       } else {
   1929         // Load scalar value from indirect argument.
   1930         llvm::Value *V =
   1931           EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart());
   1932 
   1933         if (isPromoted)
   1934           V = emitArgumentDemotion(*this, Arg, V);
   1935         ArgVals.push_back(ParamValue::forDirect(V));
   1936       }
   1937       break;
   1938     }
   1939 
   1940     case ABIArgInfo::Extend:
   1941     case ABIArgInfo::Direct: {
   1942 
   1943       // If we have the trivial case, handle it with no muss and fuss.
   1944       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
   1945           ArgI.getCoerceToType() == ConvertType(Ty) &&
   1946           ArgI.getDirectOffset() == 0) {
   1947         assert(NumIRArgs == 1);
   1948         auto AI = FnArgs[FirstIRArg];
   1949         llvm::Value *V = AI;
   1950 
   1951         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
   1952           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
   1953                              PVD->getFunctionScopeIndex()))
   1954             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
   1955                                                 AI->getArgNo() + 1,
   1956                                                 llvm::Attribute::NonNull));
   1957 
   1958           QualType OTy = PVD->getOriginalType();
   1959           if (const auto *ArrTy =
   1960               getContext().getAsConstantArrayType(OTy)) {
   1961             // A C99 array parameter declaration with the static keyword also
   1962             // indicates dereferenceability, and if the size is constant we can
   1963             // use the dereferenceable attribute (which requires the size in
   1964             // bytes).
   1965             if (ArrTy->getSizeModifier() == ArrayType::Static) {
   1966               QualType ETy = ArrTy->getElementType();
   1967               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
   1968               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
   1969                   ArrSize) {
   1970                 llvm::AttrBuilder Attrs;
   1971                 Attrs.addDereferenceableAttr(
   1972                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
   1973                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
   1974                                                     AI->getArgNo() + 1, Attrs));
   1975               } else if (getContext().getTargetAddressSpace(ETy) == 0) {
   1976                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
   1977                                                     AI->getArgNo() + 1,
   1978                                                     llvm::Attribute::NonNull));
   1979               }
   1980             }
   1981           } else if (const auto *ArrTy =
   1982                      getContext().getAsVariableArrayType(OTy)) {
   1983             // For C99 VLAs with the static keyword, we don't know the size so
   1984             // we can't use the dereferenceable attribute, but in addrspace(0)
   1985             // we know that it must be nonnull.
   1986             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
   1987                 !getContext().getTargetAddressSpace(ArrTy->getElementType()))
   1988               AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
   1989                                                   AI->getArgNo() + 1,
   1990                                                   llvm::Attribute::NonNull));
   1991           }
   1992 
   1993           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
   1994           if (!AVAttr)
   1995             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
   1996               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
   1997           if (AVAttr) {
   1998             llvm::Value *AlignmentValue =
   1999               EmitScalarExpr(AVAttr->getAlignment());
   2000             llvm::ConstantInt *AlignmentCI =
   2001               cast<llvm::ConstantInt>(AlignmentValue);
   2002             unsigned Alignment =
   2003               std::min((unsigned) AlignmentCI->getZExtValue(),
   2004                        +llvm::Value::MaximumAlignment);
   2005 
   2006             llvm::AttrBuilder Attrs;
   2007             Attrs.addAlignmentAttr(Alignment);
   2008             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
   2009                                                 AI->getArgNo() + 1, Attrs));
   2010           }
   2011         }
   2012 
   2013         if (Arg->getType().isRestrictQualified())
   2014           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
   2015                                               AI->getArgNo() + 1,
   2016                                               llvm::Attribute::NoAlias));
   2017 
   2018         // Ensure the argument is the correct type.
   2019         if (V->getType() != ArgI.getCoerceToType())
   2020           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
   2021 
   2022         if (isPromoted)
   2023           V = emitArgumentDemotion(*this, Arg, V);
   2024 
   2025         if (const CXXMethodDecl *MD =
   2026             dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
   2027           if (MD->isVirtual() && Arg == CXXABIThisDecl)
   2028             V = CGM.getCXXABI().
   2029                 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V);
   2030         }
   2031 
   2032         // Because of merging of function types from multiple decls it is
   2033         // possible for the type of an argument to not match the corresponding
   2034         // type in the function type. Since we are codegening the callee
   2035         // in here, add a cast to the argument type.
   2036         llvm::Type *LTy = ConvertType(Arg->getType());
   2037         if (V->getType() != LTy)
   2038           V = Builder.CreateBitCast(V, LTy);
   2039 
   2040         ArgVals.push_back(ParamValue::forDirect(V));
   2041         break;
   2042       }
   2043 
   2044       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
   2045                                      Arg->getName());
   2046 
   2047       // Pointer to store into.
   2048       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
   2049 
   2050       // Fast-isel and the optimizer generally like scalar values better than
   2051       // FCAs, so we flatten them if this is safe to do for this argument.
   2052       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
   2053       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
   2054           STy->getNumElements() > 1) {
   2055         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
   2056         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
   2057         llvm::Type *DstTy = Ptr.getElementType();
   2058         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
   2059 
   2060         Address AddrToStoreInto = Address::invalid();
   2061         if (SrcSize <= DstSize) {
   2062           AddrToStoreInto =
   2063             Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
   2064         } else {
   2065           AddrToStoreInto =
   2066             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
   2067         }
   2068 
   2069         assert(STy->getNumElements() == NumIRArgs);
   2070         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   2071           auto AI = FnArgs[FirstIRArg + i];
   2072           AI->setName(Arg->getName() + ".coerce" + Twine(i));
   2073           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
   2074           Address EltPtr =
   2075             Builder.CreateStructGEP(AddrToStoreInto, i, Offset);
   2076           Builder.CreateStore(AI, EltPtr);
   2077         }
   2078 
   2079         if (SrcSize > DstSize) {
   2080           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
   2081         }
   2082 
   2083       } else {
   2084         // Simple case, just do a coerced store of the argument into the alloca.
   2085         assert(NumIRArgs == 1);
   2086         auto AI = FnArgs[FirstIRArg];
   2087         AI->setName(Arg->getName() + ".coerce");
   2088         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
   2089       }
   2090 
   2091       // Match to what EmitParmDecl is expecting for this type.
   2092       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
   2093         llvm::Value *V =
   2094           EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart());
   2095         if (isPromoted)
   2096           V = emitArgumentDemotion(*this, Arg, V);
   2097         ArgVals.push_back(ParamValue::forDirect(V));
   2098       } else {
   2099         ArgVals.push_back(ParamValue::forIndirect(Alloca));
   2100       }
   2101       break;
   2102     }
   2103 
   2104     case ABIArgInfo::Expand: {
   2105       // If this structure was expanded into multiple arguments then
   2106       // we need to create a temporary and reconstruct it from the
   2107       // arguments.
   2108       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
   2109       LValue LV = MakeAddrLValue(Alloca, Ty);
   2110       ArgVals.push_back(ParamValue::forIndirect(Alloca));
   2111 
   2112       auto FnArgIter = FnArgs.begin() + FirstIRArg;
   2113       ExpandTypeFromArgs(Ty, LV, FnArgIter);
   2114       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
   2115       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
   2116         auto AI = FnArgs[FirstIRArg + i];
   2117         AI->setName(Arg->getName() + "." + Twine(i));
   2118       }
   2119       break;
   2120     }
   2121 
   2122     case ABIArgInfo::Ignore:
   2123       assert(NumIRArgs == 0);
   2124       // Initialize the local variable appropriately.
   2125       if (!hasScalarEvaluationKind(Ty)) {
   2126         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
   2127       } else {
   2128         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
   2129         ArgVals.push_back(ParamValue::forDirect(U));
   2130       }
   2131       break;
   2132     }
   2133   }
   2134 
   2135   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
   2136     for (int I = Args.size() - 1; I >= 0; --I)
   2137       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
   2138   } else {
   2139     for (unsigned I = 0, E = Args.size(); I != E; ++I)
   2140       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
   2141   }
   2142 }
   2143 
   2144 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
   2145   while (insn->use_empty()) {
   2146     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
   2147     if (!bitcast) return;
   2148 
   2149     // This is "safe" because we would have used a ConstantExpr otherwise.
   2150     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
   2151     bitcast->eraseFromParent();
   2152   }
   2153 }
   2154 
   2155 /// Try to emit a fused autorelease of a return result.
   2156 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
   2157                                                     llvm::Value *result) {
   2158   // We must be immediately followed the cast.
   2159   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
   2160   if (BB->empty()) return nullptr;
   2161   if (&BB->back() != result) return nullptr;
   2162 
   2163   llvm::Type *resultType = result->getType();
   2164 
   2165   // result is in a BasicBlock and is therefore an Instruction.
   2166   llvm::Instruction *generator = cast<llvm::Instruction>(result);
   2167 
   2168   SmallVector<llvm::Instruction*,4> insnsToKill;
   2169 
   2170   // Look for:
   2171   //  %generator = bitcast %type1* %generator2 to %type2*
   2172   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
   2173     // We would have emitted this as a constant if the operand weren't
   2174     // an Instruction.
   2175     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
   2176 
   2177     // Require the generator to be immediately followed by the cast.
   2178     if (generator->getNextNode() != bitcast)
   2179       return nullptr;
   2180 
   2181     insnsToKill.push_back(bitcast);
   2182   }
   2183 
   2184   // Look for:
   2185   //   %generator = call i8* @objc_retain(i8* %originalResult)
   2186   // or
   2187   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
   2188   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
   2189   if (!call) return nullptr;
   2190 
   2191   bool doRetainAutorelease;
   2192 
   2193   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
   2194     doRetainAutorelease = true;
   2195   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
   2196                                           .objc_retainAutoreleasedReturnValue) {
   2197     doRetainAutorelease = false;
   2198 
   2199     // If we emitted an assembly marker for this call (and the
   2200     // ARCEntrypoints field should have been set if so), go looking
   2201     // for that call.  If we can't find it, we can't do this
   2202     // optimization.  But it should always be the immediately previous
   2203     // instruction, unless we needed bitcasts around the call.
   2204     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
   2205       llvm::Instruction *prev = call->getPrevNode();
   2206       assert(prev);
   2207       if (isa<llvm::BitCastInst>(prev)) {
   2208         prev = prev->getPrevNode();
   2209         assert(prev);
   2210       }
   2211       assert(isa<llvm::CallInst>(prev));
   2212       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
   2213                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
   2214       insnsToKill.push_back(prev);
   2215     }
   2216   } else {
   2217     return nullptr;
   2218   }
   2219 
   2220   result = call->getArgOperand(0);
   2221   insnsToKill.push_back(call);
   2222 
   2223   // Keep killing bitcasts, for sanity.  Note that we no longer care
   2224   // about precise ordering as long as there's exactly one use.
   2225   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
   2226     if (!bitcast->hasOneUse()) break;
   2227     insnsToKill.push_back(bitcast);
   2228     result = bitcast->getOperand(0);
   2229   }
   2230 
   2231   // Delete all the unnecessary instructions, from latest to earliest.
   2232   for (SmallVectorImpl<llvm::Instruction*>::iterator
   2233          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
   2234     (*i)->eraseFromParent();
   2235 
   2236   // Do the fused retain/autorelease if we were asked to.
   2237   if (doRetainAutorelease)
   2238     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
   2239 
   2240   // Cast back to the result type.
   2241   return CGF.Builder.CreateBitCast(result, resultType);
   2242 }
   2243 
   2244 /// If this is a +1 of the value of an immutable 'self', remove it.
   2245 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
   2246                                           llvm::Value *result) {
   2247   // This is only applicable to a method with an immutable 'self'.
   2248   const ObjCMethodDecl *method =
   2249     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
   2250   if (!method) return nullptr;
   2251   const VarDecl *self = method->getSelfDecl();
   2252   if (!self->getType().isConstQualified()) return nullptr;
   2253 
   2254   // Look for a retain call.
   2255   llvm::CallInst *retainCall =
   2256     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
   2257   if (!retainCall ||
   2258       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
   2259     return nullptr;
   2260 
   2261   // Look for an ordinary load of 'self'.
   2262   llvm::Value *retainedValue = retainCall->getArgOperand(0);
   2263   llvm::LoadInst *load =
   2264     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
   2265   if (!load || load->isAtomic() || load->isVolatile() ||
   2266       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
   2267     return nullptr;
   2268 
   2269   // Okay!  Burn it all down.  This relies for correctness on the
   2270   // assumption that the retain is emitted as part of the return and
   2271   // that thereafter everything is used "linearly".
   2272   llvm::Type *resultType = result->getType();
   2273   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
   2274   assert(retainCall->use_empty());
   2275   retainCall->eraseFromParent();
   2276   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
   2277 
   2278   return CGF.Builder.CreateBitCast(load, resultType);
   2279 }
   2280 
   2281 /// Emit an ARC autorelease of the result of a function.
   2282 ///
   2283 /// \return the value to actually return from the function
   2284 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
   2285                                             llvm::Value *result) {
   2286   // If we're returning 'self', kill the initial retain.  This is a
   2287   // heuristic attempt to "encourage correctness" in the really unfortunate
   2288   // case where we have a return of self during a dealloc and we desperately
   2289   // need to avoid the possible autorelease.
   2290   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
   2291     return self;
   2292 
   2293   // At -O0, try to emit a fused retain/autorelease.
   2294   if (CGF.shouldUseFusedARCCalls())
   2295     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
   2296       return fused;
   2297 
   2298   return CGF.EmitARCAutoreleaseReturnValue(result);
   2299 }
   2300 
   2301 /// Heuristically search for a dominating store to the return-value slot.
   2302 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
   2303   // Check if a User is a store which pointerOperand is the ReturnValue.
   2304   // We are looking for stores to the ReturnValue, not for stores of the
   2305   // ReturnValue to some other location.
   2306   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
   2307     auto *SI = dyn_cast<llvm::StoreInst>(U);
   2308     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
   2309       return nullptr;
   2310     // These aren't actually possible for non-coerced returns, and we
   2311     // only care about non-coerced returns on this code path.
   2312     assert(!SI->isAtomic() && !SI->isVolatile());
   2313     return SI;
   2314   };
   2315   // If there are multiple uses of the return-value slot, just check
   2316   // for something immediately preceding the IP.  Sometimes this can
   2317   // happen with how we generate implicit-returns; it can also happen
   2318   // with noreturn cleanups.
   2319   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
   2320     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
   2321     if (IP->empty()) return nullptr;
   2322     llvm::Instruction *I = &IP->back();
   2323 
   2324     // Skip lifetime markers
   2325     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
   2326                                             IE = IP->rend();
   2327          II != IE; ++II) {
   2328       if (llvm::IntrinsicInst *Intrinsic =
   2329               dyn_cast<llvm::IntrinsicInst>(&*II)) {
   2330         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
   2331           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
   2332           ++II;
   2333           if (II == IE)
   2334             break;
   2335           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
   2336             continue;
   2337         }
   2338       }
   2339       I = &*II;
   2340       break;
   2341     }
   2342 
   2343     return GetStoreIfValid(I);
   2344   }
   2345 
   2346   llvm::StoreInst *store =
   2347       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
   2348   if (!store) return nullptr;
   2349 
   2350   // Now do a first-and-dirty dominance check: just walk up the
   2351   // single-predecessors chain from the current insertion point.
   2352   llvm::BasicBlock *StoreBB = store->getParent();
   2353   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
   2354   while (IP != StoreBB) {
   2355     if (!(IP = IP->getSinglePredecessor()))
   2356       return nullptr;
   2357   }
   2358 
   2359   // Okay, the store's basic block dominates the insertion point; we
   2360   // can do our thing.
   2361   return store;
   2362 }
   2363 
   2364 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
   2365                                          bool EmitRetDbgLoc,
   2366                                          SourceLocation EndLoc) {
   2367   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
   2368     // Naked functions don't have epilogues.
   2369     Builder.CreateUnreachable();
   2370     return;
   2371   }
   2372 
   2373   // Functions with no result always return void.
   2374   if (!ReturnValue.isValid()) {
   2375     Builder.CreateRetVoid();
   2376     return;
   2377   }
   2378 
   2379   llvm::DebugLoc RetDbgLoc;
   2380   llvm::Value *RV = nullptr;
   2381   QualType RetTy = FI.getReturnType();
   2382   const ABIArgInfo &RetAI = FI.getReturnInfo();
   2383 
   2384   switch (RetAI.getKind()) {
   2385   case ABIArgInfo::InAlloca:
   2386     // Aggregrates get evaluated directly into the destination.  Sometimes we
   2387     // need to return the sret value in a register, though.
   2388     assert(hasAggregateEvaluationKind(RetTy));
   2389     if (RetAI.getInAllocaSRet()) {
   2390       llvm::Function::arg_iterator EI = CurFn->arg_end();
   2391       --EI;
   2392       llvm::Value *ArgStruct = &*EI;
   2393       llvm::Value *SRet = Builder.CreateStructGEP(
   2394           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
   2395       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
   2396     }
   2397     break;
   2398 
   2399   case ABIArgInfo::Indirect: {
   2400     auto AI = CurFn->arg_begin();
   2401     if (RetAI.isSRetAfterThis())
   2402       ++AI;
   2403     switch (getEvaluationKind(RetTy)) {
   2404     case TEK_Complex: {
   2405       ComplexPairTy RT =
   2406         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
   2407       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
   2408                          /*isInit*/ true);
   2409       break;
   2410     }
   2411     case TEK_Aggregate:
   2412       // Do nothing; aggregrates get evaluated directly into the destination.
   2413       break;
   2414     case TEK_Scalar:
   2415       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
   2416                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
   2417                         /*isInit*/ true);
   2418       break;
   2419     }
   2420     break;
   2421   }
   2422 
   2423   case ABIArgInfo::Extend:
   2424   case ABIArgInfo::Direct:
   2425     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
   2426         RetAI.getDirectOffset() == 0) {
   2427       // The internal return value temp always will have pointer-to-return-type
   2428       // type, just do a load.
   2429 
   2430       // If there is a dominating store to ReturnValue, we can elide
   2431       // the load, zap the store, and usually zap the alloca.
   2432       if (llvm::StoreInst *SI =
   2433               findDominatingStoreToReturnValue(*this)) {
   2434         // Reuse the debug location from the store unless there is
   2435         // cleanup code to be emitted between the store and return
   2436         // instruction.
   2437         if (EmitRetDbgLoc && !AutoreleaseResult)
   2438           RetDbgLoc = SI->getDebugLoc();
   2439         // Get the stored value and nuke the now-dead store.
   2440         RV = SI->getValueOperand();
   2441         SI->eraseFromParent();
   2442 
   2443         // If that was the only use of the return value, nuke it as well now.
   2444         auto returnValueInst = ReturnValue.getPointer();
   2445         if (returnValueInst->use_empty()) {
   2446           if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) {
   2447             alloca->eraseFromParent();
   2448             ReturnValue = Address::invalid();
   2449           }
   2450         }
   2451 
   2452       // Otherwise, we have to do a simple load.
   2453       } else {
   2454         RV = Builder.CreateLoad(ReturnValue);
   2455       }
   2456     } else {
   2457       // If the value is offset in memory, apply the offset now.
   2458       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
   2459 
   2460       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
   2461     }
   2462 
   2463     // In ARC, end functions that return a retainable type with a call
   2464     // to objc_autoreleaseReturnValue.
   2465     if (AutoreleaseResult) {
   2466       assert(getLangOpts().ObjCAutoRefCount &&
   2467              !FI.isReturnsRetained() &&
   2468              RetTy->isObjCRetainableType());
   2469       RV = emitAutoreleaseOfResult(*this, RV);
   2470     }
   2471 
   2472     break;
   2473 
   2474   case ABIArgInfo::Ignore:
   2475     break;
   2476 
   2477   case ABIArgInfo::Expand:
   2478     llvm_unreachable("Invalid ABI kind for return argument");
   2479   }
   2480 
   2481   llvm::Instruction *Ret;
   2482   if (RV) {
   2483     if (CurCodeDecl && SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) {
   2484       if (auto RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>()) {
   2485         SanitizerScope SanScope(this);
   2486         llvm::Value *Cond = Builder.CreateICmpNE(
   2487             RV, llvm::Constant::getNullValue(RV->getType()));
   2488         llvm::Constant *StaticData[] = {
   2489             EmitCheckSourceLocation(EndLoc),
   2490             EmitCheckSourceLocation(RetNNAttr->getLocation()),
   2491         };
   2492         EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute),
   2493                   "nonnull_return", StaticData, None);
   2494       }
   2495     }
   2496     Ret = Builder.CreateRet(RV);
   2497   } else {
   2498     Ret = Builder.CreateRetVoid();
   2499   }
   2500 
   2501   if (RetDbgLoc)
   2502     Ret->setDebugLoc(std::move(RetDbgLoc));
   2503 }
   2504 
   2505 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
   2506   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
   2507   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
   2508 }
   2509 
   2510 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
   2511                                           QualType Ty) {
   2512   // FIXME: Generate IR in one pass, rather than going back and fixing up these
   2513   // placeholders.
   2514   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
   2515   llvm::Value *Placeholder =
   2516     llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo());
   2517   Placeholder = CGF.Builder.CreateDefaultAlignedLoad(Placeholder);
   2518 
   2519   // FIXME: When we generate this IR in one pass, we shouldn't need
   2520   // this win32-specific alignment hack.
   2521   CharUnits Align = CharUnits::fromQuantity(4);
   2522 
   2523   return AggValueSlot::forAddr(Address(Placeholder, Align),
   2524                                Ty.getQualifiers(),
   2525                                AggValueSlot::IsNotDestructed,
   2526                                AggValueSlot::DoesNotNeedGCBarriers,
   2527                                AggValueSlot::IsNotAliased);
   2528 }
   2529 
   2530 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
   2531                                           const VarDecl *param,
   2532                                           SourceLocation loc) {
   2533   // StartFunction converted the ABI-lowered parameter(s) into a
   2534   // local alloca.  We need to turn that into an r-value suitable
   2535   // for EmitCall.
   2536   Address local = GetAddrOfLocalVar(param);
   2537 
   2538   QualType type = param->getType();
   2539 
   2540   // For the most part, we just need to load the alloca, except:
   2541   // 1) aggregate r-values are actually pointers to temporaries, and
   2542   // 2) references to non-scalars are pointers directly to the aggregate.
   2543   // I don't know why references to scalars are different here.
   2544   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
   2545     if (!hasScalarEvaluationKind(ref->getPointeeType()))
   2546       return args.add(RValue::getAggregate(local), type);
   2547 
   2548     // Locals which are references to scalars are represented
   2549     // with allocas holding the pointer.
   2550     return args.add(RValue::get(Builder.CreateLoad(local)), type);
   2551   }
   2552 
   2553   assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
   2554          "cannot emit delegate call arguments for inalloca arguments!");
   2555 
   2556   args.add(convertTempToRValue(local, type, loc), type);
   2557 }
   2558 
   2559 static bool isProvablyNull(llvm::Value *addr) {
   2560   return isa<llvm::ConstantPointerNull>(addr);
   2561 }
   2562 
   2563 static bool isProvablyNonNull(llvm::Value *addr) {
   2564   return isa<llvm::AllocaInst>(addr);
   2565 }
   2566 
   2567 /// Emit the actual writing-back of a writeback.
   2568 static void emitWriteback(CodeGenFunction &CGF,
   2569                           const CallArgList::Writeback &writeback) {
   2570   const LValue &srcLV = writeback.Source;
   2571   Address srcAddr = srcLV.getAddress();
   2572   assert(!isProvablyNull(srcAddr.getPointer()) &&
   2573          "shouldn't have writeback for provably null argument");
   2574 
   2575   llvm::BasicBlock *contBB = nullptr;
   2576 
   2577   // If the argument wasn't provably non-null, we need to null check
   2578   // before doing the store.
   2579   bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer());
   2580   if (!provablyNonNull) {
   2581     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
   2582     contBB = CGF.createBasicBlock("icr.done");
   2583 
   2584     llvm::Value *isNull =
   2585       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
   2586     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
   2587     CGF.EmitBlock(writebackBB);
   2588   }
   2589 
   2590   // Load the value to writeback.
   2591   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
   2592 
   2593   // Cast it back, in case we're writing an id to a Foo* or something.
   2594   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
   2595                                     "icr.writeback-cast");
   2596 
   2597   // Perform the writeback.
   2598 
   2599   // If we have a "to use" value, it's something we need to emit a use
   2600   // of.  This has to be carefully threaded in: if it's done after the
   2601   // release it's potentially undefined behavior (and the optimizer
   2602   // will ignore it), and if it happens before the retain then the
   2603   // optimizer could move the release there.
   2604   if (writeback.ToUse) {
   2605     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
   2606 
   2607     // Retain the new value.  No need to block-copy here:  the block's
   2608     // being passed up the stack.
   2609     value = CGF.EmitARCRetainNonBlock(value);
   2610 
   2611     // Emit the intrinsic use here.
   2612     CGF.EmitARCIntrinsicUse(writeback.ToUse);
   2613 
   2614     // Load the old value (primitively).
   2615     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
   2616 
   2617     // Put the new value in place (primitively).
   2618     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
   2619 
   2620     // Release the old value.
   2621     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
   2622 
   2623   // Otherwise, we can just do a normal lvalue store.
   2624   } else {
   2625     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
   2626   }
   2627 
   2628   // Jump to the continuation block.
   2629   if (!provablyNonNull)
   2630     CGF.EmitBlock(contBB);
   2631 }
   2632 
   2633 static void emitWritebacks(CodeGenFunction &CGF,
   2634                            const CallArgList &args) {
   2635   for (const auto &I : args.writebacks())
   2636     emitWriteback(CGF, I);
   2637 }
   2638 
   2639 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
   2640                                             const CallArgList &CallArgs) {
   2641   assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
   2642   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
   2643     CallArgs.getCleanupsToDeactivate();
   2644   // Iterate in reverse to increase the likelihood of popping the cleanup.
   2645   for (const auto &I : llvm::reverse(Cleanups)) {
   2646     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
   2647     I.IsActiveIP->eraseFromParent();
   2648   }
   2649 }
   2650 
   2651 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
   2652   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
   2653     if (uop->getOpcode() == UO_AddrOf)
   2654       return uop->getSubExpr();
   2655   return nullptr;
   2656 }
   2657 
   2658 /// Emit an argument that's being passed call-by-writeback.  That is,
   2659 /// we are passing the address of an __autoreleased temporary; it
   2660 /// might be copy-initialized with the current value of the given
   2661 /// address, but it will definitely be copied out of after the call.
   2662 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
   2663                              const ObjCIndirectCopyRestoreExpr *CRE) {
   2664   LValue srcLV;
   2665 
   2666   // Make an optimistic effort to emit the address as an l-value.
   2667   // This can fail if the argument expression is more complicated.
   2668   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
   2669     srcLV = CGF.EmitLValue(lvExpr);
   2670 
   2671   // Otherwise, just emit it as a scalar.
   2672   } else {
   2673     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
   2674 
   2675     QualType srcAddrType =
   2676       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
   2677     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
   2678   }
   2679   Address srcAddr = srcLV.getAddress();
   2680 
   2681   // The dest and src types don't necessarily match in LLVM terms
   2682   // because of the crazy ObjC compatibility rules.
   2683 
   2684   llvm::PointerType *destType =
   2685     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
   2686 
   2687   // If the address is a constant null, just pass the appropriate null.
   2688   if (isProvablyNull(srcAddr.getPointer())) {
   2689     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
   2690              CRE->getType());
   2691     return;
   2692   }
   2693 
   2694   // Create the temporary.
   2695   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
   2696                                       CGF.getPointerAlign(),
   2697                                       "icr.temp");
   2698   // Loading an l-value can introduce a cleanup if the l-value is __weak,
   2699   // and that cleanup will be conditional if we can't prove that the l-value
   2700   // isn't null, so we need to register a dominating point so that the cleanups
   2701   // system will make valid IR.
   2702   CodeGenFunction::ConditionalEvaluation condEval(CGF);
   2703 
   2704   // Zero-initialize it if we're not doing a copy-initialization.
   2705   bool shouldCopy = CRE->shouldCopy();
   2706   if (!shouldCopy) {
   2707     llvm::Value *null =
   2708       llvm::ConstantPointerNull::get(
   2709         cast<llvm::PointerType>(destType->getElementType()));
   2710     CGF.Builder.CreateStore(null, temp);
   2711   }
   2712 
   2713   llvm::BasicBlock *contBB = nullptr;
   2714   llvm::BasicBlock *originBB = nullptr;
   2715 
   2716   // If the address is *not* known to be non-null, we need to switch.
   2717   llvm::Value *finalArgument;
   2718 
   2719   bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer());
   2720   if (provablyNonNull) {
   2721     finalArgument = temp.getPointer();
   2722   } else {
   2723     llvm::Value *isNull =
   2724       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
   2725 
   2726     finalArgument = CGF.Builder.CreateSelect(isNull,
   2727                                    llvm::ConstantPointerNull::get(destType),
   2728                                              temp.getPointer(), "icr.argument");
   2729 
   2730     // If we need to copy, then the load has to be conditional, which
   2731     // means we need control flow.
   2732     if (shouldCopy) {
   2733       originBB = CGF.Builder.GetInsertBlock();
   2734       contBB = CGF.createBasicBlock("icr.cont");
   2735       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
   2736       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
   2737       CGF.EmitBlock(copyBB);
   2738       condEval.begin(CGF);
   2739     }
   2740   }
   2741 
   2742   llvm::Value *valueToUse = nullptr;
   2743 
   2744   // Perform a copy if necessary.
   2745   if (shouldCopy) {
   2746     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
   2747     assert(srcRV.isScalar());
   2748 
   2749     llvm::Value *src = srcRV.getScalarVal();
   2750     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
   2751                                     "icr.cast");
   2752 
   2753     // Use an ordinary store, not a store-to-lvalue.
   2754     CGF.Builder.CreateStore(src, temp);
   2755 
   2756     // If optimization is enabled, and the value was held in a
   2757     // __strong variable, we need to tell the optimizer that this
   2758     // value has to stay alive until we're doing the store back.
   2759     // This is because the temporary is effectively unretained,
   2760     // and so otherwise we can violate the high-level semantics.
   2761     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
   2762         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
   2763       valueToUse = src;
   2764     }
   2765   }
   2766 
   2767   // Finish the control flow if we needed it.
   2768   if (shouldCopy && !provablyNonNull) {
   2769     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
   2770     CGF.EmitBlock(contBB);
   2771 
   2772     // Make a phi for the value to intrinsically use.
   2773     if (valueToUse) {
   2774       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
   2775                                                       "icr.to-use");
   2776       phiToUse->addIncoming(valueToUse, copyBB);
   2777       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
   2778                             originBB);
   2779       valueToUse = phiToUse;
   2780     }
   2781 
   2782     condEval.end(CGF);
   2783   }
   2784 
   2785   args.addWriteback(srcLV, temp, valueToUse);
   2786   args.add(RValue::get(finalArgument), CRE->getType());
   2787 }
   2788 
   2789 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
   2790   assert(!StackBase && !StackCleanup.isValid());
   2791 
   2792   // Save the stack.
   2793   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
   2794   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
   2795 }
   2796 
   2797 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
   2798   if (StackBase) {
   2799     // Restore the stack after the call.
   2800     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
   2801     CGF.Builder.CreateCall(F, StackBase);
   2802   }
   2803 }
   2804 
   2805 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
   2806                                           SourceLocation ArgLoc,
   2807                                           const FunctionDecl *FD,
   2808                                           unsigned ParmNum) {
   2809   if (!SanOpts.has(SanitizerKind::NonnullAttribute) || !FD)
   2810     return;
   2811   auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr;
   2812   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
   2813   auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo);
   2814   if (!NNAttr)
   2815     return;
   2816   SanitizerScope SanScope(this);
   2817   assert(RV.isScalar());
   2818   llvm::Value *V = RV.getScalarVal();
   2819   llvm::Value *Cond =
   2820       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
   2821   llvm::Constant *StaticData[] = {
   2822       EmitCheckSourceLocation(ArgLoc),
   2823       EmitCheckSourceLocation(NNAttr->getLocation()),
   2824       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
   2825   };
   2826   EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute),
   2827                 "nonnull_arg", StaticData, None);
   2828 }
   2829 
   2830 void CodeGenFunction::EmitCallArgs(
   2831     CallArgList &Args, ArrayRef<QualType> ArgTypes,
   2832     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
   2833     const FunctionDecl *CalleeDecl, unsigned ParamsToSkip) {
   2834   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
   2835 
   2836   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg) {
   2837     if (CalleeDecl == nullptr || I >= CalleeDecl->getNumParams())
   2838       return;
   2839     auto *PS = CalleeDecl->getParamDecl(I)->getAttr<PassObjectSizeAttr>();
   2840     if (PS == nullptr)
   2841       return;
   2842 
   2843     const auto &Context = getContext();
   2844     auto SizeTy = Context.getSizeType();
   2845     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
   2846     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T);
   2847     Args.add(RValue::get(V), SizeTy);
   2848   };
   2849 
   2850   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
   2851   // because arguments are destroyed left to right in the callee.
   2852   if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
   2853     // Insert a stack save if we're going to need any inalloca args.
   2854     bool HasInAllocaArgs = false;
   2855     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
   2856          I != E && !HasInAllocaArgs; ++I)
   2857       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
   2858     if (HasInAllocaArgs) {
   2859       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
   2860       Args.allocateArgumentMemory(*this);
   2861     }
   2862 
   2863     // Evaluate each argument.
   2864     size_t CallArgsStart = Args.size();
   2865     for (int I = ArgTypes.size() - 1; I >= 0; --I) {
   2866       CallExpr::const_arg_iterator Arg = ArgRange.begin() + I;
   2867       EmitCallArg(Args, *Arg, ArgTypes[I]);
   2868       EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(),
   2869                           CalleeDecl, ParamsToSkip + I);
   2870       MaybeEmitImplicitObjectSize(I, *Arg);
   2871     }
   2872 
   2873     // Un-reverse the arguments we just evaluated so they match up with the LLVM
   2874     // IR function.
   2875     std::reverse(Args.begin() + CallArgsStart, Args.end());
   2876     return;
   2877   }
   2878 
   2879   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
   2880     CallExpr::const_arg_iterator Arg = ArgRange.begin() + I;
   2881     assert(Arg != ArgRange.end());
   2882     EmitCallArg(Args, *Arg, ArgTypes[I]);
   2883     EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(),
   2884                         CalleeDecl, ParamsToSkip + I);
   2885     MaybeEmitImplicitObjectSize(I, *Arg);
   2886   }
   2887 }
   2888 
   2889 namespace {
   2890 
   2891 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
   2892   DestroyUnpassedArg(Address Addr, QualType Ty)
   2893       : Addr(Addr), Ty(Ty) {}
   2894 
   2895   Address Addr;
   2896   QualType Ty;
   2897 
   2898   void Emit(CodeGenFunction &CGF, Flags flags) override {
   2899     const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
   2900     assert(!Dtor->isTrivial());
   2901     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
   2902                               /*Delegating=*/false, Addr);
   2903   }
   2904 };
   2905 
   2906 struct DisableDebugLocationUpdates {
   2907   CodeGenFunction &CGF;
   2908   bool disabledDebugInfo;
   2909   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
   2910     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
   2911       CGF.disableDebugInfo();
   2912   }
   2913   ~DisableDebugLocationUpdates() {
   2914     if (disabledDebugInfo)
   2915       CGF.enableDebugInfo();
   2916   }
   2917 };
   2918 
   2919 } // end anonymous namespace
   2920 
   2921 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
   2922                                   QualType type) {
   2923   DisableDebugLocationUpdates Dis(*this, E);
   2924   if (const ObjCIndirectCopyRestoreExpr *CRE
   2925         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
   2926     assert(getLangOpts().ObjCAutoRefCount);
   2927     assert(getContext().hasSameType(E->getType(), type));
   2928     return emitWritebackArg(*this, args, CRE);
   2929   }
   2930 
   2931   assert(type->isReferenceType() == E->isGLValue() &&
   2932          "reference binding to unmaterialized r-value!");
   2933 
   2934   if (E->isGLValue()) {
   2935     assert(E->getObjectKind() == OK_Ordinary);
   2936     return args.add(EmitReferenceBindingToExpr(E), type);
   2937   }
   2938 
   2939   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
   2940 
   2941   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
   2942   // However, we still have to push an EH-only cleanup in case we unwind before
   2943   // we make it to the call.
   2944   if (HasAggregateEvalKind &&
   2945       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
   2946     // If we're using inalloca, use the argument memory.  Otherwise, use a
   2947     // temporary.
   2948     AggValueSlot Slot;
   2949     if (args.isUsingInAlloca())
   2950       Slot = createPlaceholderSlot(*this, type);
   2951     else
   2952       Slot = CreateAggTemp(type, "agg.tmp");
   2953 
   2954     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
   2955     bool DestroyedInCallee =
   2956         RD && RD->hasNonTrivialDestructor() &&
   2957         CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
   2958     if (DestroyedInCallee)
   2959       Slot.setExternallyDestructed();
   2960 
   2961     EmitAggExpr(E, Slot);
   2962     RValue RV = Slot.asRValue();
   2963     args.add(RV, type);
   2964 
   2965     if (DestroyedInCallee) {
   2966       // Create a no-op GEP between the placeholder and the cleanup so we can
   2967       // RAUW it successfully.  It also serves as a marker of the first
   2968       // instruction where the cleanup is active.
   2969       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
   2970                                               type);
   2971       // This unreachable is a temporary marker which will be removed later.
   2972       llvm::Instruction *IsActive = Builder.CreateUnreachable();
   2973       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
   2974     }
   2975     return;
   2976   }
   2977 
   2978   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
   2979       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
   2980     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
   2981     assert(L.isSimple());
   2982     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
   2983       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
   2984     } else {
   2985       // We can't represent a misaligned lvalue in the CallArgList, so copy
   2986       // to an aligned temporary now.
   2987       Address tmp = CreateMemTemp(type);
   2988       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile());
   2989       args.add(RValue::getAggregate(tmp), type);
   2990     }
   2991     return;
   2992   }
   2993 
   2994   args.add(EmitAnyExprToTemp(E), type);
   2995 }
   2996 
   2997 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
   2998   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
   2999   // implicitly widens null pointer constants that are arguments to varargs
   3000   // functions to pointer-sized ints.
   3001   if (!getTarget().getTriple().isOSWindows())
   3002     return Arg->getType();
   3003 
   3004   if (Arg->getType()->isIntegerType() &&
   3005       getContext().getTypeSize(Arg->getType()) <
   3006           getContext().getTargetInfo().getPointerWidth(0) &&
   3007       Arg->isNullPointerConstant(getContext(),
   3008                                  Expr::NPC_ValueDependentIsNotNull)) {
   3009     return getContext().getIntPtrType();
   3010   }
   3011 
   3012   return Arg->getType();
   3013 }
   3014 
   3015 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
   3016 // optimizer it can aggressively ignore unwind edges.
   3017 void
   3018 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
   3019   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
   3020       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
   3021     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
   3022                       CGM.getNoObjCARCExceptionsMetadata());
   3023 }
   3024 
   3025 /// Emits a call to the given no-arguments nounwind runtime function.
   3026 llvm::CallInst *
   3027 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
   3028                                          const llvm::Twine &name) {
   3029   return EmitNounwindRuntimeCall(callee, None, name);
   3030 }
   3031 
   3032 /// Emits a call to the given nounwind runtime function.
   3033 llvm::CallInst *
   3034 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
   3035                                          ArrayRef<llvm::Value*> args,
   3036                                          const llvm::Twine &name) {
   3037   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
   3038   call->setDoesNotThrow();
   3039   return call;
   3040 }
   3041 
   3042 /// Emits a simple call (never an invoke) to the given no-arguments
   3043 /// runtime function.
   3044 llvm::CallInst *
   3045 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
   3046                                  const llvm::Twine &name) {
   3047   return EmitRuntimeCall(callee, None, name);
   3048 }
   3049 
   3050 /// Emits a simple call (never an invoke) to the given runtime
   3051 /// function.
   3052 llvm::CallInst *
   3053 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
   3054                                  ArrayRef<llvm::Value*> args,
   3055                                  const llvm::Twine &name) {
   3056   llvm::CallInst *call = Builder.CreateCall(callee, args, name);
   3057   call->setCallingConv(getRuntimeCC());
   3058   return call;
   3059 }
   3060 
   3061 // Calls which may throw must have operand bundles indicating which funclet
   3062 // they are nested within.
   3063 static void
   3064 getBundlesForFunclet(llvm::Value *Callee,
   3065                      llvm::Instruction *CurrentFuncletPad,
   3066                      SmallVectorImpl<llvm::OperandBundleDef> &BundleList) {
   3067   // There is no need for a funclet operand bundle if we aren't inside a funclet.
   3068   if (!CurrentFuncletPad)
   3069     return;
   3070 
   3071   // Skip intrinsics which cannot throw.
   3072   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
   3073   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
   3074     return;
   3075 
   3076   BundleList.emplace_back("funclet", CurrentFuncletPad);
   3077 }
   3078 
   3079 /// Emits a call or invoke to the given noreturn runtime function.
   3080 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
   3081                                                ArrayRef<llvm::Value*> args) {
   3082   SmallVector<llvm::OperandBundleDef, 1> BundleList;
   3083   getBundlesForFunclet(callee, CurrentFuncletPad, BundleList);
   3084 
   3085   if (getInvokeDest()) {
   3086     llvm::InvokeInst *invoke =
   3087       Builder.CreateInvoke(callee,
   3088                            getUnreachableBlock(),
   3089                            getInvokeDest(),
   3090                            args,
   3091                            BundleList);
   3092     invoke->setDoesNotReturn();
   3093     invoke->setCallingConv(getRuntimeCC());
   3094   } else {
   3095     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
   3096     call->setDoesNotReturn();
   3097     call->setCallingConv(getRuntimeCC());
   3098     Builder.CreateUnreachable();
   3099   }
   3100 }
   3101 
   3102 /// Emits a call or invoke instruction to the given nullary runtime
   3103 /// function.
   3104 llvm::CallSite
   3105 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
   3106                                          const Twine &name) {
   3107   return EmitRuntimeCallOrInvoke(callee, None, name);
   3108 }
   3109 
   3110 /// Emits a call or invoke instruction to the given runtime function.
   3111 llvm::CallSite
   3112 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
   3113                                          ArrayRef<llvm::Value*> args,
   3114                                          const Twine &name) {
   3115   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
   3116   callSite.setCallingConv(getRuntimeCC());
   3117   return callSite;
   3118 }
   3119 
   3120 /// Emits a call or invoke instruction to the given function, depending
   3121 /// on the current state of the EH stack.
   3122 llvm::CallSite
   3123 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
   3124                                   ArrayRef<llvm::Value *> Args,
   3125                                   const Twine &Name) {
   3126   llvm::BasicBlock *InvokeDest = getInvokeDest();
   3127 
   3128   llvm::Instruction *Inst;
   3129   if (!InvokeDest)
   3130     Inst = Builder.CreateCall(Callee, Args, Name);
   3131   else {
   3132     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
   3133     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
   3134     EmitBlock(ContBB);
   3135   }
   3136 
   3137   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
   3138   // optimizer it can aggressively ignore unwind edges.
   3139   if (CGM.getLangOpts().ObjCAutoRefCount)
   3140     AddObjCARCExceptionMetadata(Inst);
   3141 
   3142   return llvm::CallSite(Inst);
   3143 }
   3144 
   3145 /// \brief Store a non-aggregate value to an address to initialize it.  For
   3146 /// initialization, a non-atomic store will be used.
   3147 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
   3148                                         LValue Dst) {
   3149   if (Src.isScalar())
   3150     CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
   3151   else
   3152     CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
   3153 }
   3154 
   3155 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
   3156                                                   llvm::Value *New) {
   3157   DeferredReplacements.push_back(std::make_pair(Old, New));
   3158 }
   3159 
   3160 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
   3161                                  llvm::Value *Callee,
   3162                                  ReturnValueSlot ReturnValue,
   3163                                  const CallArgList &CallArgs,
   3164                                  CGCalleeInfo CalleeInfo,
   3165                                  llvm::Instruction **callOrInvoke) {
   3166   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
   3167 
   3168   // Handle struct-return functions by passing a pointer to the
   3169   // location that we would like to return into.
   3170   QualType RetTy = CallInfo.getReturnType();
   3171   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
   3172 
   3173   llvm::FunctionType *IRFuncTy =
   3174     cast<llvm::FunctionType>(
   3175                   cast<llvm::PointerType>(Callee->getType())->getElementType());
   3176 
   3177   // If we're using inalloca, insert the allocation after the stack save.
   3178   // FIXME: Do this earlier rather than hacking it in here!
   3179   Address ArgMemory = Address::invalid();
   3180   const llvm::StructLayout *ArgMemoryLayout = nullptr;
   3181   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
   3182     ArgMemoryLayout = CGM.getDataLayout().getStructLayout(ArgStruct);
   3183     llvm::Instruction *IP = CallArgs.getStackBase();
   3184     llvm::AllocaInst *AI;
   3185     if (IP) {
   3186       IP = IP->getNextNode();
   3187       AI = new llvm::AllocaInst(ArgStruct, "argmem", IP);
   3188     } else {
   3189       AI = CreateTempAlloca(ArgStruct, "argmem");
   3190     }
   3191     auto Align = CallInfo.getArgStructAlignment();
   3192     AI->setAlignment(Align.getQuantity());
   3193     AI->setUsedWithInAlloca(true);
   3194     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
   3195     ArgMemory = Address(AI, Align);
   3196   }
   3197 
   3198   // Helper function to drill into the inalloca allocation.
   3199   auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address {
   3200     auto FieldOffset =
   3201       CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex));
   3202     return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset);
   3203   };
   3204 
   3205   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
   3206   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
   3207 
   3208   // If the call returns a temporary with struct return, create a temporary
   3209   // alloca to hold the result, unless one is given to us.
   3210   Address SRetPtr = Address::invalid();
   3211   size_t UnusedReturnSize = 0;
   3212   if (RetAI.isIndirect() || RetAI.isInAlloca()) {
   3213     if (!ReturnValue.isNull()) {
   3214       SRetPtr = ReturnValue.getValue();
   3215     } else {
   3216       SRetPtr = CreateMemTemp(RetTy);
   3217       if (HaveInsertPoint() && ReturnValue.isUnused()) {
   3218         uint64_t size =
   3219             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
   3220         if (EmitLifetimeStart(size, SRetPtr.getPointer()))
   3221           UnusedReturnSize = size;
   3222       }
   3223     }
   3224     if (IRFunctionArgs.hasSRetArg()) {
   3225       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
   3226     } else {
   3227       Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex());
   3228       Builder.CreateStore(SRetPtr.getPointer(), Addr);
   3229     }
   3230   }
   3231 
   3232   assert(CallInfo.arg_size() == CallArgs.size() &&
   3233          "Mismatch between function signature & arguments.");
   3234   unsigned ArgNo = 0;
   3235   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
   3236   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
   3237        I != E; ++I, ++info_it, ++ArgNo) {
   3238     const ABIArgInfo &ArgInfo = info_it->info;
   3239     RValue RV = I->RV;
   3240 
   3241     // Insert a padding argument to ensure proper alignment.
   3242     if (IRFunctionArgs.hasPaddingArg(ArgNo))
   3243       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
   3244           llvm::UndefValue::get(ArgInfo.getPaddingType());
   3245 
   3246     unsigned FirstIRArg, NumIRArgs;
   3247     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
   3248 
   3249     switch (ArgInfo.getKind()) {
   3250     case ABIArgInfo::InAlloca: {
   3251       assert(NumIRArgs == 0);
   3252       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
   3253       if (RV.isAggregate()) {
   3254         // Replace the placeholder with the appropriate argument slot GEP.
   3255         llvm::Instruction *Placeholder =
   3256             cast<llvm::Instruction>(RV.getAggregatePointer());
   3257         CGBuilderTy::InsertPoint IP = Builder.saveIP();
   3258         Builder.SetInsertPoint(Placeholder);
   3259         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
   3260         Builder.restoreIP(IP);
   3261         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
   3262       } else {
   3263         // Store the RValue into the argument struct.
   3264         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
   3265         unsigned AS = Addr.getType()->getPointerAddressSpace();
   3266         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
   3267         // There are some cases where a trivial bitcast is not avoidable.  The
   3268         // definition of a type later in a translation unit may change it's type
   3269         // from {}* to (%struct.foo*)*.
   3270         if (Addr.getType() != MemType)
   3271           Addr = Builder.CreateBitCast(Addr, MemType);
   3272         LValue argLV = MakeAddrLValue(Addr, I->Ty);
   3273         EmitInitStoreOfNonAggregate(*this, RV, argLV);
   3274       }
   3275       break;
   3276     }
   3277 
   3278     case ABIArgInfo::Indirect: {
   3279       assert(NumIRArgs == 1);
   3280       if (RV.isScalar() || RV.isComplex()) {
   3281         // Make a temporary alloca to pass the argument.
   3282         Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign());
   3283         IRCallArgs[FirstIRArg] = Addr.getPointer();
   3284 
   3285         LValue argLV = MakeAddrLValue(Addr, I->Ty);
   3286         EmitInitStoreOfNonAggregate(*this, RV, argLV);
   3287       } else {
   3288         // We want to avoid creating an unnecessary temporary+copy here;
   3289         // however, we need one in three cases:
   3290         // 1. If the argument is not byval, and we are required to copy the
   3291         //    source.  (This case doesn't occur on any common architecture.)
   3292         // 2. If the argument is byval, RV is not sufficiently aligned, and
   3293         //    we cannot force it to be sufficiently aligned.
   3294         // 3. If the argument is byval, but RV is located in an address space
   3295         //    different than that of the argument (0).
   3296         Address Addr = RV.getAggregateAddress();
   3297         CharUnits Align = ArgInfo.getIndirectAlign();
   3298         const llvm::DataLayout *TD = &CGM.getDataLayout();
   3299         const unsigned RVAddrSpace = Addr.getType()->getAddressSpace();
   3300         const unsigned ArgAddrSpace =
   3301             (FirstIRArg < IRFuncTy->getNumParams()
   3302                  ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace()
   3303                  : 0);
   3304         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
   3305             (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align &&
   3306              llvm::getOrEnforceKnownAlignment(Addr.getPointer(),
   3307                                               Align.getQuantity(), *TD)
   3308                < Align.getQuantity()) ||
   3309             (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
   3310           // Create an aligned temporary, and copy to it.
   3311           Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign());
   3312           IRCallArgs[FirstIRArg] = AI.getPointer();
   3313           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
   3314         } else {
   3315           // Skip the extra memcpy call.
   3316           IRCallArgs[FirstIRArg] = Addr.getPointer();
   3317         }
   3318       }
   3319       break;
   3320     }
   3321 
   3322     case ABIArgInfo::Ignore:
   3323       assert(NumIRArgs == 0);
   3324       break;
   3325 
   3326     case ABIArgInfo::Extend:
   3327     case ABIArgInfo::Direct: {
   3328       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
   3329           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
   3330           ArgInfo.getDirectOffset() == 0) {
   3331         assert(NumIRArgs == 1);
   3332         llvm::Value *V;
   3333         if (RV.isScalar())
   3334           V = RV.getScalarVal();
   3335         else
   3336           V = Builder.CreateLoad(RV.getAggregateAddress());
   3337 
   3338         // We might have to widen integers, but we should never truncate.
   3339         if (ArgInfo.getCoerceToType() != V->getType() &&
   3340             V->getType()->isIntegerTy())
   3341           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
   3342 
   3343         // If the argument doesn't match, perform a bitcast to coerce it.  This
   3344         // can happen due to trivial type mismatches.
   3345         if (FirstIRArg < IRFuncTy->getNumParams() &&
   3346             V->getType() != IRFuncTy->getParamType(FirstIRArg))
   3347           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
   3348         IRCallArgs[FirstIRArg] = V;
   3349         break;
   3350       }
   3351 
   3352       // FIXME: Avoid the conversion through memory if possible.
   3353       Address Src = Address::invalid();
   3354       if (RV.isScalar() || RV.isComplex()) {
   3355         Src = CreateMemTemp(I->Ty, "coerce");
   3356         LValue SrcLV = MakeAddrLValue(Src, I->Ty);
   3357         EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
   3358       } else {
   3359         Src = RV.getAggregateAddress();
   3360       }
   3361 
   3362       // If the value is offset in memory, apply the offset now.
   3363       Src = emitAddressAtOffset(*this, Src, ArgInfo);
   3364 
   3365       // Fast-isel and the optimizer generally like scalar values better than
   3366       // FCAs, so we flatten them if this is safe to do for this argument.
   3367       llvm::StructType *STy =
   3368             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
   3369       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
   3370         llvm::Type *SrcTy = Src.getType()->getElementType();
   3371         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
   3372         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
   3373 
   3374         // If the source type is smaller than the destination type of the
   3375         // coerce-to logic, copy the source value into a temp alloca the size
   3376         // of the destination type to allow loading all of it. The bits past
   3377         // the source value are left undef.
   3378         if (SrcSize < DstSize) {
   3379           Address TempAlloca
   3380             = CreateTempAlloca(STy, Src.getAlignment(),
   3381                                Src.getName() + ".coerce");
   3382           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
   3383           Src = TempAlloca;
   3384         } else {
   3385           Src = Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(STy));
   3386         }
   3387 
   3388         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
   3389         assert(NumIRArgs == STy->getNumElements());
   3390         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   3391           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
   3392           Address EltPtr = Builder.CreateStructGEP(Src, i, Offset);
   3393           llvm::Value *LI = Builder.CreateLoad(EltPtr);
   3394           IRCallArgs[FirstIRArg + i] = LI;
   3395         }
   3396       } else {
   3397         // In the simple case, just pass the coerced loaded value.
   3398         assert(NumIRArgs == 1);
   3399         IRCallArgs[FirstIRArg] =
   3400           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
   3401       }
   3402 
   3403       break;
   3404     }
   3405 
   3406     case ABIArgInfo::Expand:
   3407       unsigned IRArgPos = FirstIRArg;
   3408       ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos);
   3409       assert(IRArgPos == FirstIRArg + NumIRArgs);
   3410       break;
   3411     }
   3412   }
   3413 
   3414   if (ArgMemory.isValid()) {
   3415     llvm::Value *Arg = ArgMemory.getPointer();
   3416     if (CallInfo.isVariadic()) {
   3417       // When passing non-POD arguments by value to variadic functions, we will
   3418       // end up with a variadic prototype and an inalloca call site.  In such
   3419       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
   3420       // the callee.
   3421       unsigned CalleeAS =
   3422           cast<llvm::PointerType>(Callee->getType())->getAddressSpace();
   3423       Callee = Builder.CreateBitCast(
   3424           Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS));
   3425     } else {
   3426       llvm::Type *LastParamTy =
   3427           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
   3428       if (Arg->getType() != LastParamTy) {
   3429 #ifndef NDEBUG
   3430         // Assert that these structs have equivalent element types.
   3431         llvm::StructType *FullTy = CallInfo.getArgStruct();
   3432         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
   3433             cast<llvm::PointerType>(LastParamTy)->getElementType());
   3434         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
   3435         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
   3436                                                 DE = DeclaredTy->element_end(),
   3437                                                 FI = FullTy->element_begin();
   3438              DI != DE; ++DI, ++FI)
   3439           assert(*DI == *FI);
   3440 #endif
   3441         Arg = Builder.CreateBitCast(Arg, LastParamTy);
   3442       }
   3443     }
   3444     assert(IRFunctionArgs.hasInallocaArg());
   3445     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
   3446   }
   3447 
   3448   if (!CallArgs.getCleanupsToDeactivate().empty())
   3449     deactivateArgCleanupsBeforeCall(*this, CallArgs);
   3450 
   3451   // If the callee is a bitcast of a function to a varargs pointer to function
   3452   // type, check to see if we can remove the bitcast.  This handles some cases
   3453   // with unprototyped functions.
   3454   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
   3455     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
   3456       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
   3457       llvm::FunctionType *CurFT =
   3458         cast<llvm::FunctionType>(CurPT->getElementType());
   3459       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
   3460 
   3461       if (CE->getOpcode() == llvm::Instruction::BitCast &&
   3462           ActualFT->getReturnType() == CurFT->getReturnType() &&
   3463           ActualFT->getNumParams() == CurFT->getNumParams() &&
   3464           ActualFT->getNumParams() == IRCallArgs.size() &&
   3465           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
   3466         bool ArgsMatch = true;
   3467         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
   3468           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
   3469             ArgsMatch = false;
   3470             break;
   3471           }
   3472 
   3473         // Strip the cast if we can get away with it.  This is a nice cleanup,
   3474         // but also allows us to inline the function at -O0 if it is marked
   3475         // always_inline.
   3476         if (ArgsMatch)
   3477           Callee = CalleeF;
   3478       }
   3479     }
   3480 
   3481   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
   3482   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
   3483     // Inalloca argument can have different type.
   3484     if (IRFunctionArgs.hasInallocaArg() &&
   3485         i == IRFunctionArgs.getInallocaArgNo())
   3486       continue;
   3487     if (i < IRFuncTy->getNumParams())
   3488       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
   3489   }
   3490 
   3491   unsigned CallingConv;
   3492   CodeGen::AttributeListType AttributeList;
   3493   CGM.ConstructAttributeList(CallInfo, CalleeInfo, AttributeList, CallingConv,
   3494                              true);
   3495   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
   3496                                                      AttributeList);
   3497 
   3498   bool CannotThrow;
   3499   if (currentFunctionUsesSEHTry()) {
   3500     // SEH cares about asynchronous exceptions, everything can "throw."
   3501     CannotThrow = false;
   3502   } else if (isCleanupPadScope() &&
   3503              EHPersonality::get(*this).isMSVCXXPersonality()) {
   3504     // The MSVC++ personality will implicitly terminate the program if an
   3505     // exception is thrown.  An unwind edge cannot be reached.
   3506     CannotThrow = true;
   3507   } else {
   3508     // Otherwise, nowunind callsites will never throw.
   3509     CannotThrow = Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
   3510                                      llvm::Attribute::NoUnwind);
   3511   }
   3512   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
   3513 
   3514   SmallVector<llvm::OperandBundleDef, 1> BundleList;
   3515   getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList);
   3516 
   3517   llvm::CallSite CS;
   3518   if (!InvokeDest) {
   3519     CS = Builder.CreateCall(Callee, IRCallArgs, BundleList);
   3520   } else {
   3521     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
   3522     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs,
   3523                               BundleList);
   3524     EmitBlock(Cont);
   3525   }
   3526   if (callOrInvoke)
   3527     *callOrInvoke = CS.getInstruction();
   3528 
   3529   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
   3530       !CS.hasFnAttr(llvm::Attribute::NoInline))
   3531     Attrs =
   3532         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
   3533                            llvm::Attribute::AlwaysInline);
   3534 
   3535   // Disable inlining inside SEH __try blocks.
   3536   if (isSEHTryScope())
   3537     Attrs =
   3538         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
   3539                            llvm::Attribute::NoInline);
   3540 
   3541   CS.setAttributes(Attrs);
   3542   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
   3543 
   3544   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
   3545   // optimizer it can aggressively ignore unwind edges.
   3546   if (CGM.getLangOpts().ObjCAutoRefCount)
   3547     AddObjCARCExceptionMetadata(CS.getInstruction());
   3548 
   3549   // If the call doesn't return, finish the basic block and clear the
   3550   // insertion point; this allows the rest of IRgen to discard
   3551   // unreachable code.
   3552   if (CS.doesNotReturn()) {
   3553     if (UnusedReturnSize)
   3554       EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
   3555                       SRetPtr.getPointer());
   3556 
   3557     Builder.CreateUnreachable();
   3558     Builder.ClearInsertionPoint();
   3559 
   3560     // FIXME: For now, emit a dummy basic block because expr emitters in
   3561     // generally are not ready to handle emitting expressions at unreachable
   3562     // points.
   3563     EnsureInsertPoint();
   3564 
   3565     // Return a reasonable RValue.
   3566     return GetUndefRValue(RetTy);
   3567   }
   3568 
   3569   llvm::Instruction *CI = CS.getInstruction();
   3570   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
   3571     CI->setName("call");
   3572 
   3573   // Emit any writebacks immediately.  Arguably this should happen
   3574   // after any return-value munging.
   3575   if (CallArgs.hasWritebacks())
   3576     emitWritebacks(*this, CallArgs);
   3577 
   3578   // The stack cleanup for inalloca arguments has to run out of the normal
   3579   // lexical order, so deactivate it and run it manually here.
   3580   CallArgs.freeArgumentMemory(*this);
   3581 
   3582   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
   3583     const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
   3584     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
   3585       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
   3586   }
   3587 
   3588   RValue Ret = [&] {
   3589     switch (RetAI.getKind()) {
   3590     case ABIArgInfo::InAlloca:
   3591     case ABIArgInfo::Indirect: {
   3592       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
   3593       if (UnusedReturnSize)
   3594         EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
   3595                         SRetPtr.getPointer());
   3596       return ret;
   3597     }
   3598 
   3599     case ABIArgInfo::Ignore:
   3600       // If we are ignoring an argument that had a result, make sure to
   3601       // construct the appropriate return value for our caller.
   3602       return GetUndefRValue(RetTy);
   3603 
   3604     case ABIArgInfo::Extend:
   3605     case ABIArgInfo::Direct: {
   3606       llvm::Type *RetIRTy = ConvertType(RetTy);
   3607       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
   3608         switch (getEvaluationKind(RetTy)) {
   3609         case TEK_Complex: {
   3610           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
   3611           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
   3612           return RValue::getComplex(std::make_pair(Real, Imag));
   3613         }
   3614         case TEK_Aggregate: {
   3615           Address DestPtr = ReturnValue.getValue();
   3616           bool DestIsVolatile = ReturnValue.isVolatile();
   3617 
   3618           if (!DestPtr.isValid()) {
   3619             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
   3620             DestIsVolatile = false;
   3621           }
   3622           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
   3623           return RValue::getAggregate(DestPtr);
   3624         }
   3625         case TEK_Scalar: {
   3626           // If the argument doesn't match, perform a bitcast to coerce it.  This
   3627           // can happen due to trivial type mismatches.
   3628           llvm::Value *V = CI;
   3629           if (V->getType() != RetIRTy)
   3630             V = Builder.CreateBitCast(V, RetIRTy);
   3631           return RValue::get(V);
   3632         }
   3633         }
   3634         llvm_unreachable("bad evaluation kind");
   3635       }
   3636 
   3637       Address DestPtr = ReturnValue.getValue();
   3638       bool DestIsVolatile = ReturnValue.isVolatile();
   3639 
   3640       if (!DestPtr.isValid()) {
   3641         DestPtr = CreateMemTemp(RetTy, "coerce");
   3642         DestIsVolatile = false;
   3643       }
   3644 
   3645       // If the value is offset in memory, apply the offset now.
   3646       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
   3647       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
   3648 
   3649       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
   3650     }
   3651 
   3652     case ABIArgInfo::Expand:
   3653       llvm_unreachable("Invalid ABI kind for return argument");
   3654     }
   3655 
   3656     llvm_unreachable("Unhandled ABIArgInfo::Kind");
   3657   } ();
   3658 
   3659   const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
   3660 
   3661   if (Ret.isScalar() && TargetDecl) {
   3662     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
   3663       llvm::Value *OffsetValue = nullptr;
   3664       if (const auto *Offset = AA->getOffset())
   3665         OffsetValue = EmitScalarExpr(Offset);
   3666 
   3667       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
   3668       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
   3669       EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
   3670                               OffsetValue);
   3671     }
   3672   }
   3673 
   3674   return Ret;
   3675 }
   3676 
   3677 /* VarArg handling */
   3678 
   3679 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
   3680   VAListAddr = VE->isMicrosoftABI()
   3681                  ? EmitMSVAListRef(VE->getSubExpr())
   3682                  : EmitVAListRef(VE->getSubExpr());
   3683   QualType Ty = VE->getType();
   3684   if (VE->isMicrosoftABI())
   3685     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
   3686   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
   3687 }
   3688