Home | History | Annotate | Download | only in CodeGen
      1 //===-- LiveInterval.cpp - Live Interval Representation -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the LiveRange and LiveInterval classes.  Given some
     11 // numbering of each the machine instructions an interval [i, j) is said to be a
     12 // live range for register v if there is no instruction with number j' >= j
     13 // such that v is live at j' and there is no instruction with number i' < i such
     14 // that v is live at i'. In this implementation ranges can have holes,
     15 // i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
     16 // individual segment is represented as an instance of LiveRange::Segment,
     17 // and the whole range is represented as an instance of LiveRange.
     18 //
     19 //===----------------------------------------------------------------------===//
     20 
     21 #include "llvm/CodeGen/LiveInterval.h"
     22 #include "RegisterCoalescer.h"
     23 #include "llvm/ADT/DenseMap.h"
     24 #include "llvm/ADT/STLExtras.h"
     25 #include "llvm/ADT/SmallSet.h"
     26 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     27 #include "llvm/CodeGen/MachineRegisterInfo.h"
     28 #include "llvm/Support/Debug.h"
     29 #include "llvm/Support/raw_ostream.h"
     30 #include "llvm/Target/TargetRegisterInfo.h"
     31 #include <algorithm>
     32 using namespace llvm;
     33 
     34 namespace {
     35 //===----------------------------------------------------------------------===//
     36 // Implementation of various methods necessary for calculation of live ranges.
     37 // The implementation of the methods abstracts from the concrete type of the
     38 // segment collection.
     39 //
     40 // Implementation of the class follows the Template design pattern. The base
     41 // class contains generic algorithms that call collection-specific methods,
     42 // which are provided in concrete subclasses. In order to avoid virtual calls
     43 // these methods are provided by means of C++ template instantiation.
     44 // The base class calls the methods of the subclass through method impl(),
     45 // which casts 'this' pointer to the type of the subclass.
     46 //
     47 //===----------------------------------------------------------------------===//
     48 
     49 template <typename ImplT, typename IteratorT, typename CollectionT>
     50 class CalcLiveRangeUtilBase {
     51 protected:
     52   LiveRange *LR;
     53 
     54 protected:
     55   CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {}
     56 
     57 public:
     58   typedef LiveRange::Segment Segment;
     59   typedef IteratorT iterator;
     60 
     61   VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator) {
     62     assert(!Def.isDead() && "Cannot define a value at the dead slot");
     63 
     64     iterator I = impl().find(Def);
     65     if (I == segments().end()) {
     66       VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator);
     67       impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI));
     68       return VNI;
     69     }
     70 
     71     Segment *S = segmentAt(I);
     72     if (SlotIndex::isSameInstr(Def, S->start)) {
     73       assert(S->valno->def == S->start && "Inconsistent existing value def");
     74 
     75       // It is possible to have both normal and early-clobber defs of the same
     76       // register on an instruction. It doesn't make a lot of sense, but it is
     77       // possible to specify in inline assembly.
     78       //
     79       // Just convert everything to early-clobber.
     80       Def = std::min(Def, S->start);
     81       if (Def != S->start)
     82         S->start = S->valno->def = Def;
     83       return S->valno;
     84     }
     85     assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def");
     86     VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator);
     87     segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI));
     88     return VNI;
     89   }
     90 
     91   VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) {
     92     if (segments().empty())
     93       return nullptr;
     94     iterator I =
     95         impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr));
     96     if (I == segments().begin())
     97       return nullptr;
     98     --I;
     99     if (I->end <= StartIdx)
    100       return nullptr;
    101     if (I->end < Use)
    102       extendSegmentEndTo(I, Use);
    103     return I->valno;
    104   }
    105 
    106   /// This method is used when we want to extend the segment specified
    107   /// by I to end at the specified endpoint. To do this, we should
    108   /// merge and eliminate all segments that this will overlap
    109   /// with. The iterator is not invalidated.
    110   void extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
    111     assert(I != segments().end() && "Not a valid segment!");
    112     Segment *S = segmentAt(I);
    113     VNInfo *ValNo = I->valno;
    114 
    115     // Search for the first segment that we can't merge with.
    116     iterator MergeTo = std::next(I);
    117     for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo)
    118       assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
    119 
    120     // If NewEnd was in the middle of a segment, make sure to get its endpoint.
    121     S->end = std::max(NewEnd, std::prev(MergeTo)->end);
    122 
    123     // If the newly formed segment now touches the segment after it and if they
    124     // have the same value number, merge the two segments into one segment.
    125     if (MergeTo != segments().end() && MergeTo->start <= I->end &&
    126         MergeTo->valno == ValNo) {
    127       S->end = MergeTo->end;
    128       ++MergeTo;
    129     }
    130 
    131     // Erase any dead segments.
    132     segments().erase(std::next(I), MergeTo);
    133   }
    134 
    135   /// This method is used when we want to extend the segment specified
    136   /// by I to start at the specified endpoint.  To do this, we should
    137   /// merge and eliminate all segments that this will overlap with.
    138   iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) {
    139     assert(I != segments().end() && "Not a valid segment!");
    140     Segment *S = segmentAt(I);
    141     VNInfo *ValNo = I->valno;
    142 
    143     // Search for the first segment that we can't merge with.
    144     iterator MergeTo = I;
    145     do {
    146       if (MergeTo == segments().begin()) {
    147         S->start = NewStart;
    148         segments().erase(MergeTo, I);
    149         return I;
    150       }
    151       assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
    152       --MergeTo;
    153     } while (NewStart <= MergeTo->start);
    154 
    155     // If we start in the middle of another segment, just delete a range and
    156     // extend that segment.
    157     if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
    158       segmentAt(MergeTo)->end = S->end;
    159     } else {
    160       // Otherwise, extend the segment right after.
    161       ++MergeTo;
    162       Segment *MergeToSeg = segmentAt(MergeTo);
    163       MergeToSeg->start = NewStart;
    164       MergeToSeg->end = S->end;
    165     }
    166 
    167     segments().erase(std::next(MergeTo), std::next(I));
    168     return MergeTo;
    169   }
    170 
    171   iterator addSegment(Segment S) {
    172     SlotIndex Start = S.start, End = S.end;
    173     iterator I = impl().findInsertPos(S);
    174 
    175     // If the inserted segment starts in the middle or right at the end of
    176     // another segment, just extend that segment to contain the segment of S.
    177     if (I != segments().begin()) {
    178       iterator B = std::prev(I);
    179       if (S.valno == B->valno) {
    180         if (B->start <= Start && B->end >= Start) {
    181           extendSegmentEndTo(B, End);
    182           return B;
    183         }
    184       } else {
    185         // Check to make sure that we are not overlapping two live segments with
    186         // different valno's.
    187         assert(B->end <= Start &&
    188                "Cannot overlap two segments with differing ValID's"
    189                " (did you def the same reg twice in a MachineInstr?)");
    190       }
    191     }
    192 
    193     // Otherwise, if this segment ends in the middle of, or right next
    194     // to, another segment, merge it into that segment.
    195     if (I != segments().end()) {
    196       if (S.valno == I->valno) {
    197         if (I->start <= End) {
    198           I = extendSegmentStartTo(I, Start);
    199 
    200           // If S is a complete superset of a segment, we may need to grow its
    201           // endpoint as well.
    202           if (End > I->end)
    203             extendSegmentEndTo(I, End);
    204           return I;
    205         }
    206       } else {
    207         // Check to make sure that we are not overlapping two live segments with
    208         // different valno's.
    209         assert(I->start >= End &&
    210                "Cannot overlap two segments with differing ValID's");
    211       }
    212     }
    213 
    214     // Otherwise, this is just a new segment that doesn't interact with
    215     // anything.
    216     // Insert it.
    217     return segments().insert(I, S);
    218   }
    219 
    220 private:
    221   ImplT &impl() { return *static_cast<ImplT *>(this); }
    222 
    223   CollectionT &segments() { return impl().segmentsColl(); }
    224 
    225   Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); }
    226 };
    227 
    228 //===----------------------------------------------------------------------===//
    229 //   Instantiation of the methods for calculation of live ranges
    230 //   based on a segment vector.
    231 //===----------------------------------------------------------------------===//
    232 
    233 class CalcLiveRangeUtilVector;
    234 typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator,
    235                               LiveRange::Segments> CalcLiveRangeUtilVectorBase;
    236 
    237 class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase {
    238 public:
    239   CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {}
    240 
    241 private:
    242   friend CalcLiveRangeUtilVectorBase;
    243 
    244   LiveRange::Segments &segmentsColl() { return LR->segments; }
    245 
    246   void insertAtEnd(const Segment &S) { LR->segments.push_back(S); }
    247 
    248   iterator find(SlotIndex Pos) { return LR->find(Pos); }
    249 
    250   iterator findInsertPos(Segment S) {
    251     return std::upper_bound(LR->begin(), LR->end(), S.start);
    252   }
    253 };
    254 
    255 //===----------------------------------------------------------------------===//
    256 //   Instantiation of the methods for calculation of live ranges
    257 //   based on a segment set.
    258 //===----------------------------------------------------------------------===//
    259 
    260 class CalcLiveRangeUtilSet;
    261 typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilSet,
    262                               LiveRange::SegmentSet::iterator,
    263                               LiveRange::SegmentSet> CalcLiveRangeUtilSetBase;
    264 
    265 class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase {
    266 public:
    267   CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {}
    268 
    269 private:
    270   friend CalcLiveRangeUtilSetBase;
    271 
    272   LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; }
    273 
    274   void insertAtEnd(const Segment &S) {
    275     LR->segmentSet->insert(LR->segmentSet->end(), S);
    276   }
    277 
    278   iterator find(SlotIndex Pos) {
    279     iterator I =
    280         LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr));
    281     if (I == LR->segmentSet->begin())
    282       return I;
    283     iterator PrevI = std::prev(I);
    284     if (Pos < (*PrevI).end)
    285       return PrevI;
    286     return I;
    287   }
    288 
    289   iterator findInsertPos(Segment S) {
    290     iterator I = LR->segmentSet->upper_bound(S);
    291     if (I != LR->segmentSet->end() && !(S.start < *I))
    292       ++I;
    293     return I;
    294   }
    295 };
    296 } // namespace
    297 
    298 //===----------------------------------------------------------------------===//
    299 //   LiveRange methods
    300 //===----------------------------------------------------------------------===//
    301 
    302 LiveRange::iterator LiveRange::find(SlotIndex Pos) {
    303   // This algorithm is basically std::upper_bound.
    304   // Unfortunately, std::upper_bound cannot be used with mixed types until we
    305   // adopt C++0x. Many libraries can do it, but not all.
    306   if (empty() || Pos >= endIndex())
    307     return end();
    308   iterator I = begin();
    309   size_t Len = size();
    310   do {
    311     size_t Mid = Len >> 1;
    312     if (Pos < I[Mid].end)
    313       Len = Mid;
    314     else
    315       I += Mid + 1, Len -= Mid + 1;
    316   } while (Len);
    317   return I;
    318 }
    319 
    320 VNInfo *LiveRange::createDeadDef(SlotIndex Def,
    321                                   VNInfo::Allocator &VNInfoAllocator) {
    322   // Use the segment set, if it is available.
    323   if (segmentSet != nullptr)
    324     return CalcLiveRangeUtilSet(this).createDeadDef(Def, VNInfoAllocator);
    325   // Otherwise use the segment vector.
    326   return CalcLiveRangeUtilVector(this).createDeadDef(Def, VNInfoAllocator);
    327 }
    328 
    329 // overlaps - Return true if the intersection of the two live ranges is
    330 // not empty.
    331 //
    332 // An example for overlaps():
    333 //
    334 // 0: A = ...
    335 // 4: B = ...
    336 // 8: C = A + B ;; last use of A
    337 //
    338 // The live ranges should look like:
    339 //
    340 // A = [3, 11)
    341 // B = [7, x)
    342 // C = [11, y)
    343 //
    344 // A->overlaps(C) should return false since we want to be able to join
    345 // A and C.
    346 //
    347 bool LiveRange::overlapsFrom(const LiveRange& other,
    348                              const_iterator StartPos) const {
    349   assert(!empty() && "empty range");
    350   const_iterator i = begin();
    351   const_iterator ie = end();
    352   const_iterator j = StartPos;
    353   const_iterator je = other.end();
    354 
    355   assert((StartPos->start <= i->start || StartPos == other.begin()) &&
    356          StartPos != other.end() && "Bogus start position hint!");
    357 
    358   if (i->start < j->start) {
    359     i = std::upper_bound(i, ie, j->start);
    360     if (i != begin()) --i;
    361   } else if (j->start < i->start) {
    362     ++StartPos;
    363     if (StartPos != other.end() && StartPos->start <= i->start) {
    364       assert(StartPos < other.end() && i < end());
    365       j = std::upper_bound(j, je, i->start);
    366       if (j != other.begin()) --j;
    367     }
    368   } else {
    369     return true;
    370   }
    371 
    372   if (j == je) return false;
    373 
    374   while (i != ie) {
    375     if (i->start > j->start) {
    376       std::swap(i, j);
    377       std::swap(ie, je);
    378     }
    379 
    380     if (i->end > j->start)
    381       return true;
    382     ++i;
    383   }
    384 
    385   return false;
    386 }
    387 
    388 bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
    389                          const SlotIndexes &Indexes) const {
    390   assert(!empty() && "empty range");
    391   if (Other.empty())
    392     return false;
    393 
    394   // Use binary searches to find initial positions.
    395   const_iterator I = find(Other.beginIndex());
    396   const_iterator IE = end();
    397   if (I == IE)
    398     return false;
    399   const_iterator J = Other.find(I->start);
    400   const_iterator JE = Other.end();
    401   if (J == JE)
    402     return false;
    403 
    404   for (;;) {
    405     // J has just been advanced to satisfy:
    406     assert(J->end >= I->start);
    407     // Check for an overlap.
    408     if (J->start < I->end) {
    409       // I and J are overlapping. Find the later start.
    410       SlotIndex Def = std::max(I->start, J->start);
    411       // Allow the overlap if Def is a coalescable copy.
    412       if (Def.isBlock() ||
    413           !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
    414         return true;
    415     }
    416     // Advance the iterator that ends first to check for more overlaps.
    417     if (J->end > I->end) {
    418       std::swap(I, J);
    419       std::swap(IE, JE);
    420     }
    421     // Advance J until J->end >= I->start.
    422     do
    423       if (++J == JE)
    424         return false;
    425     while (J->end < I->start);
    426   }
    427 }
    428 
    429 /// overlaps - Return true if the live range overlaps an interval specified
    430 /// by [Start, End).
    431 bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
    432   assert(Start < End && "Invalid range");
    433   const_iterator I = std::lower_bound(begin(), end(), End);
    434   return I != begin() && (--I)->end > Start;
    435 }
    436 
    437 bool LiveRange::covers(const LiveRange &Other) const {
    438   if (empty())
    439     return Other.empty();
    440 
    441   const_iterator I = begin();
    442   for (const Segment &O : Other.segments) {
    443     I = advanceTo(I, O.start);
    444     if (I == end() || I->start > O.start)
    445       return false;
    446 
    447     // Check adjacent live segments and see if we can get behind O.end.
    448     while (I->end < O.end) {
    449       const_iterator Last = I;
    450       // Get next segment and abort if it was not adjacent.
    451       ++I;
    452       if (I == end() || Last->end != I->start)
    453         return false;
    454     }
    455   }
    456   return true;
    457 }
    458 
    459 /// ValNo is dead, remove it.  If it is the largest value number, just nuke it
    460 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so
    461 /// it can be nuked later.
    462 void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
    463   if (ValNo->id == getNumValNums()-1) {
    464     do {
    465       valnos.pop_back();
    466     } while (!valnos.empty() && valnos.back()->isUnused());
    467   } else {
    468     ValNo->markUnused();
    469   }
    470 }
    471 
    472 /// RenumberValues - Renumber all values in order of appearance and delete the
    473 /// remaining unused values.
    474 void LiveRange::RenumberValues() {
    475   SmallPtrSet<VNInfo*, 8> Seen;
    476   valnos.clear();
    477   for (const Segment &S : segments) {
    478     VNInfo *VNI = S.valno;
    479     if (!Seen.insert(VNI).second)
    480       continue;
    481     assert(!VNI->isUnused() && "Unused valno used by live segment");
    482     VNI->id = (unsigned)valnos.size();
    483     valnos.push_back(VNI);
    484   }
    485 }
    486 
    487 void LiveRange::addSegmentToSet(Segment S) {
    488   CalcLiveRangeUtilSet(this).addSegment(S);
    489 }
    490 
    491 LiveRange::iterator LiveRange::addSegment(Segment S) {
    492   // Use the segment set, if it is available.
    493   if (segmentSet != nullptr) {
    494     addSegmentToSet(S);
    495     return end();
    496   }
    497   // Otherwise use the segment vector.
    498   return CalcLiveRangeUtilVector(this).addSegment(S);
    499 }
    500 
    501 void LiveRange::append(const Segment S) {
    502   // Check that the segment belongs to the back of the list.
    503   assert(segments.empty() || segments.back().end <= S.start);
    504   segments.push_back(S);
    505 }
    506 
    507 /// extendInBlock - If this range is live before Kill in the basic
    508 /// block that starts at StartIdx, extend it to be live up to Kill and return
    509 /// the value. If there is no live range before Kill, return NULL.
    510 VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
    511   // Use the segment set, if it is available.
    512   if (segmentSet != nullptr)
    513     return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill);
    514   // Otherwise use the segment vector.
    515   return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill);
    516 }
    517 
    518 /// Remove the specified segment from this range.  Note that the segment must
    519 /// be in a single Segment in its entirety.
    520 void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
    521                               bool RemoveDeadValNo) {
    522   // Find the Segment containing this span.
    523   iterator I = find(Start);
    524   assert(I != end() && "Segment is not in range!");
    525   assert(I->containsInterval(Start, End)
    526          && "Segment is not entirely in range!");
    527 
    528   // If the span we are removing is at the start of the Segment, adjust it.
    529   VNInfo *ValNo = I->valno;
    530   if (I->start == Start) {
    531     if (I->end == End) {
    532       if (RemoveDeadValNo) {
    533         // Check if val# is dead.
    534         bool isDead = true;
    535         for (const_iterator II = begin(), EE = end(); II != EE; ++II)
    536           if (II != I && II->valno == ValNo) {
    537             isDead = false;
    538             break;
    539           }
    540         if (isDead) {
    541           // Now that ValNo is dead, remove it.
    542           markValNoForDeletion(ValNo);
    543         }
    544       }
    545 
    546       segments.erase(I);  // Removed the whole Segment.
    547     } else
    548       I->start = End;
    549     return;
    550   }
    551 
    552   // Otherwise if the span we are removing is at the end of the Segment,
    553   // adjust the other way.
    554   if (I->end == End) {
    555     I->end = Start;
    556     return;
    557   }
    558 
    559   // Otherwise, we are splitting the Segment into two pieces.
    560   SlotIndex OldEnd = I->end;
    561   I->end = Start;   // Trim the old segment.
    562 
    563   // Insert the new one.
    564   segments.insert(std::next(I), Segment(End, OldEnd, ValNo));
    565 }
    566 
    567 /// removeValNo - Remove all the segments defined by the specified value#.
    568 /// Also remove the value# from value# list.
    569 void LiveRange::removeValNo(VNInfo *ValNo) {
    570   if (empty()) return;
    571   segments.erase(std::remove_if(begin(), end(), [ValNo](const Segment &S) {
    572     return S.valno == ValNo;
    573   }), end());
    574   // Now that ValNo is dead, remove it.
    575   markValNoForDeletion(ValNo);
    576 }
    577 
    578 void LiveRange::join(LiveRange &Other,
    579                      const int *LHSValNoAssignments,
    580                      const int *RHSValNoAssignments,
    581                      SmallVectorImpl<VNInfo *> &NewVNInfo) {
    582   verify();
    583 
    584   // Determine if any of our values are mapped.  This is uncommon, so we want
    585   // to avoid the range scan if not.
    586   bool MustMapCurValNos = false;
    587   unsigned NumVals = getNumValNums();
    588   unsigned NumNewVals = NewVNInfo.size();
    589   for (unsigned i = 0; i != NumVals; ++i) {
    590     unsigned LHSValID = LHSValNoAssignments[i];
    591     if (i != LHSValID ||
    592         (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
    593       MustMapCurValNos = true;
    594       break;
    595     }
    596   }
    597 
    598   // If we have to apply a mapping to our base range assignment, rewrite it now.
    599   if (MustMapCurValNos && !empty()) {
    600     // Map the first live range.
    601 
    602     iterator OutIt = begin();
    603     OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
    604     for (iterator I = std::next(OutIt), E = end(); I != E; ++I) {
    605       VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
    606       assert(nextValNo && "Huh?");
    607 
    608       // If this live range has the same value # as its immediate predecessor,
    609       // and if they are neighbors, remove one Segment.  This happens when we
    610       // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
    611       if (OutIt->valno == nextValNo && OutIt->end == I->start) {
    612         OutIt->end = I->end;
    613       } else {
    614         // Didn't merge. Move OutIt to the next segment,
    615         ++OutIt;
    616         OutIt->valno = nextValNo;
    617         if (OutIt != I) {
    618           OutIt->start = I->start;
    619           OutIt->end = I->end;
    620         }
    621       }
    622     }
    623     // If we merge some segments, chop off the end.
    624     ++OutIt;
    625     segments.erase(OutIt, end());
    626   }
    627 
    628   // Rewrite Other values before changing the VNInfo ids.
    629   // This can leave Other in an invalid state because we're not coalescing
    630   // touching segments that now have identical values. That's OK since Other is
    631   // not supposed to be valid after calling join();
    632   for (Segment &S : Other.segments)
    633     S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]];
    634 
    635   // Update val# info. Renumber them and make sure they all belong to this
    636   // LiveRange now. Also remove dead val#'s.
    637   unsigned NumValNos = 0;
    638   for (unsigned i = 0; i < NumNewVals; ++i) {
    639     VNInfo *VNI = NewVNInfo[i];
    640     if (VNI) {
    641       if (NumValNos >= NumVals)
    642         valnos.push_back(VNI);
    643       else
    644         valnos[NumValNos] = VNI;
    645       VNI->id = NumValNos++;  // Renumber val#.
    646     }
    647   }
    648   if (NumNewVals < NumVals)
    649     valnos.resize(NumNewVals);  // shrinkify
    650 
    651   // Okay, now insert the RHS live segments into the LHS.
    652   LiveRangeUpdater Updater(this);
    653   for (Segment &S : Other.segments)
    654     Updater.add(S);
    655 }
    656 
    657 /// Merge all of the segments in RHS into this live range as the specified
    658 /// value number.  The segments in RHS are allowed to overlap with segments in
    659 /// the current range, but only if the overlapping segments have the
    660 /// specified value number.
    661 void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
    662                                        VNInfo *LHSValNo) {
    663   LiveRangeUpdater Updater(this);
    664   for (const Segment &S : RHS.segments)
    665     Updater.add(S.start, S.end, LHSValNo);
    666 }
    667 
    668 /// MergeValueInAsValue - Merge all of the live segments of a specific val#
    669 /// in RHS into this live range as the specified value number.
    670 /// The segments in RHS are allowed to overlap with segments in the
    671 /// current range, it will replace the value numbers of the overlaped
    672 /// segments with the specified value number.
    673 void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
    674                                     const VNInfo *RHSValNo,
    675                                     VNInfo *LHSValNo) {
    676   LiveRangeUpdater Updater(this);
    677   for (const Segment &S : RHS.segments)
    678     if (S.valno == RHSValNo)
    679       Updater.add(S.start, S.end, LHSValNo);
    680 }
    681 
    682 /// MergeValueNumberInto - This method is called when two value nubmers
    683 /// are found to be equivalent.  This eliminates V1, replacing all
    684 /// segments with the V1 value number with the V2 value number.  This can
    685 /// cause merging of V1/V2 values numbers and compaction of the value space.
    686 VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
    687   assert(V1 != V2 && "Identical value#'s are always equivalent!");
    688 
    689   // This code actually merges the (numerically) larger value number into the
    690   // smaller value number, which is likely to allow us to compactify the value
    691   // space.  The only thing we have to be careful of is to preserve the
    692   // instruction that defines the result value.
    693 
    694   // Make sure V2 is smaller than V1.
    695   if (V1->id < V2->id) {
    696     V1->copyFrom(*V2);
    697     std::swap(V1, V2);
    698   }
    699 
    700   // Merge V1 segments into V2.
    701   for (iterator I = begin(); I != end(); ) {
    702     iterator S = I++;
    703     if (S->valno != V1) continue;  // Not a V1 Segment.
    704 
    705     // Okay, we found a V1 live range.  If it had a previous, touching, V2 live
    706     // range, extend it.
    707     if (S != begin()) {
    708       iterator Prev = S-1;
    709       if (Prev->valno == V2 && Prev->end == S->start) {
    710         Prev->end = S->end;
    711 
    712         // Erase this live-range.
    713         segments.erase(S);
    714         I = Prev+1;
    715         S = Prev;
    716       }
    717     }
    718 
    719     // Okay, now we have a V1 or V2 live range that is maximally merged forward.
    720     // Ensure that it is a V2 live-range.
    721     S->valno = V2;
    722 
    723     // If we can merge it into later V2 segments, do so now.  We ignore any
    724     // following V1 segments, as they will be merged in subsequent iterations
    725     // of the loop.
    726     if (I != end()) {
    727       if (I->start == S->end && I->valno == V2) {
    728         S->end = I->end;
    729         segments.erase(I);
    730         I = S+1;
    731       }
    732     }
    733   }
    734 
    735   // Now that V1 is dead, remove it.
    736   markValNoForDeletion(V1);
    737 
    738   return V2;
    739 }
    740 
    741 void LiveRange::flushSegmentSet() {
    742   assert(segmentSet != nullptr && "segment set must have been created");
    743   assert(
    744       segments.empty() &&
    745       "segment set can be used only initially before switching to the array");
    746   segments.append(segmentSet->begin(), segmentSet->end());
    747   segmentSet = nullptr;
    748   verify();
    749 }
    750 
    751 void LiveInterval::freeSubRange(SubRange *S) {
    752   S->~SubRange();
    753   // Memory was allocated with BumpPtr allocator and is not freed here.
    754 }
    755 
    756 void LiveInterval::removeEmptySubRanges() {
    757   SubRange **NextPtr = &SubRanges;
    758   SubRange *I = *NextPtr;
    759   while (I != nullptr) {
    760     if (!I->empty()) {
    761       NextPtr = &I->Next;
    762       I = *NextPtr;
    763       continue;
    764     }
    765     // Skip empty subranges until we find the first nonempty one.
    766     do {
    767       SubRange *Next = I->Next;
    768       freeSubRange(I);
    769       I = Next;
    770     } while (I != nullptr && I->empty());
    771     *NextPtr = I;
    772   }
    773 }
    774 
    775 void LiveInterval::clearSubRanges() {
    776   for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) {
    777     Next = I->Next;
    778     freeSubRange(I);
    779   }
    780   SubRanges = nullptr;
    781 }
    782 
    783 /// Helper function for constructMainRangeFromSubranges(): Search the CFG
    784 /// backwards until we find a place covered by a LiveRange segment that actually
    785 /// has a valno set.
    786 static VNInfo *searchForVNI(const SlotIndexes &Indexes, LiveRange &LR,
    787     const MachineBasicBlock *MBB,
    788     SmallPtrSetImpl<const MachineBasicBlock*> &Visited) {
    789   // We start the search at the end of MBB.
    790   SlotIndex EndIdx = Indexes.getMBBEndIdx(MBB);
    791   // In our use case we can't live the area covered by the live segments without
    792   // finding an actual VNI def.
    793   LiveRange::iterator I = LR.find(EndIdx.getPrevSlot());
    794   assert(I != LR.end());
    795   LiveRange::Segment &S = *I;
    796   if (S.valno != nullptr)
    797     return S.valno;
    798 
    799   VNInfo *VNI = nullptr;
    800   // Continue at predecessors (we could even go to idom with domtree available).
    801   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
    802     // Avoid going in circles.
    803     if (!Visited.insert(Pred).second)
    804       continue;
    805 
    806     VNI = searchForVNI(Indexes, LR, Pred, Visited);
    807     if (VNI != nullptr) {
    808       S.valno = VNI;
    809       break;
    810     }
    811   }
    812 
    813   return VNI;
    814 }
    815 
    816 static void determineMissingVNIs(const SlotIndexes &Indexes, LiveInterval &LI) {
    817   SmallPtrSet<const MachineBasicBlock*, 5> Visited;
    818 
    819   LiveRange::iterator OutIt;
    820   VNInfo *PrevValNo = nullptr;
    821   for (LiveRange::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
    822     LiveRange::Segment &S = *I;
    823     // Determine final VNI if necessary.
    824     if (S.valno == nullptr) {
    825       // This can only happen at the begin of a basic block.
    826       assert(S.start.isBlock() && "valno should only be missing at block begin");
    827 
    828       Visited.clear();
    829       const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(S.start);
    830       for (const MachineBasicBlock *Pred : MBB->predecessors()) {
    831         VNInfo *VNI = searchForVNI(Indexes, LI, Pred, Visited);
    832         if (VNI != nullptr) {
    833           S.valno = VNI;
    834           break;
    835         }
    836       }
    837       assert(S.valno != nullptr && "could not determine valno");
    838     }
    839     // Merge with previous segment if it has the same VNI.
    840     if (PrevValNo == S.valno && OutIt->end == S.start) {
    841       OutIt->end = S.end;
    842     } else {
    843       // Didn't merge. Move OutIt to next segment.
    844       if (PrevValNo == nullptr)
    845         OutIt = LI.begin();
    846       else
    847         ++OutIt;
    848 
    849       if (OutIt != I)
    850         *OutIt = *I;
    851       PrevValNo = S.valno;
    852     }
    853   }
    854   // If we merged some segments chop off the end.
    855   ++OutIt;
    856   LI.segments.erase(OutIt, LI.end());
    857 }
    858 
    859 void LiveInterval::constructMainRangeFromSubranges(
    860     const SlotIndexes &Indexes, VNInfo::Allocator &VNIAllocator) {
    861   // The basic observations on which this algorithm is based:
    862   // - Each Def/ValNo in a subrange must have a corresponding def on the main
    863   //   range, but not further defs/valnos are necessary.
    864   // - If any of the subranges is live at a point the main liverange has to be
    865   //   live too, conversily if no subrange is live the main range mustn't be
    866   //   live either.
    867   // We do this by scanning through all the subranges simultaneously creating new
    868   // segments in the main range as segments start/ends come up in the subranges.
    869   assert(hasSubRanges() && "expected subranges to be present");
    870   assert(segments.empty() && valnos.empty() && "expected empty main range");
    871 
    872   // Collect subrange, iterator pairs for the walk and determine first and last
    873   // SlotIndex involved.
    874   SmallVector<std::pair<const SubRange*, const_iterator>, 4> SRs;
    875   SlotIndex First;
    876   SlotIndex Last;
    877   for (const SubRange &SR : subranges()) {
    878     if (SR.empty())
    879       continue;
    880     SRs.push_back(std::make_pair(&SR, SR.begin()));
    881     if (!First.isValid() || SR.segments.front().start < First)
    882       First = SR.segments.front().start;
    883     if (!Last.isValid() || SR.segments.back().end > Last)
    884       Last = SR.segments.back().end;
    885   }
    886 
    887   // Walk over all subranges simultaneously.
    888   Segment CurrentSegment;
    889   bool ConstructingSegment = false;
    890   bool NeedVNIFixup = false;
    891   LaneBitmask ActiveMask = 0;
    892   SlotIndex Pos = First;
    893   while (true) {
    894     SlotIndex NextPos = Last;
    895     enum {
    896       NOTHING,
    897       BEGIN_SEGMENT,
    898       END_SEGMENT,
    899     } Event = NOTHING;
    900     // Which subregister lanes are affected by the current event.
    901     LaneBitmask EventMask = 0;
    902     // Whether a BEGIN_SEGMENT is also a valno definition point.
    903     bool IsDef = false;
    904     // Find the next begin or end of a subrange segment. Combine masks if we
    905     // have multiple begins/ends at the same position. Ends take precedence over
    906     // Begins.
    907     for (auto &SRP : SRs) {
    908       const SubRange &SR = *SRP.first;
    909       const_iterator &I = SRP.second;
    910       // Advance iterator of subrange to a segment involving Pos; the earlier
    911       // segments are already merged at this point.
    912       while (I != SR.end() &&
    913              (I->end < Pos ||
    914               (I->end == Pos && (ActiveMask & SR.LaneMask) == 0)))
    915         ++I;
    916       if (I == SR.end())
    917         continue;
    918       if ((ActiveMask & SR.LaneMask) == 0 &&
    919           Pos <= I->start && I->start <= NextPos) {
    920         // Merge multiple begins at the same position.
    921         if (I->start == NextPos && Event == BEGIN_SEGMENT) {
    922           EventMask |= SR.LaneMask;
    923           IsDef |= I->valno->def == I->start;
    924         } else if (I->start < NextPos || Event != END_SEGMENT) {
    925           Event = BEGIN_SEGMENT;
    926           NextPos = I->start;
    927           EventMask = SR.LaneMask;
    928           IsDef = I->valno->def == I->start;
    929         }
    930       }
    931       if ((ActiveMask & SR.LaneMask) != 0 &&
    932           Pos <= I->end && I->end <= NextPos) {
    933         // Merge multiple ends at the same position.
    934         if (I->end == NextPos && Event == END_SEGMENT)
    935           EventMask |= SR.LaneMask;
    936         else {
    937           Event = END_SEGMENT;
    938           NextPos = I->end;
    939           EventMask = SR.LaneMask;
    940         }
    941       }
    942     }
    943 
    944     // Advance scan position.
    945     Pos = NextPos;
    946     if (Event == BEGIN_SEGMENT) {
    947       if (ConstructingSegment && IsDef) {
    948         // Finish previous segment because we have to start a new one.
    949         CurrentSegment.end = Pos;
    950         append(CurrentSegment);
    951         ConstructingSegment = false;
    952       }
    953 
    954       // Start a new segment if necessary.
    955       if (!ConstructingSegment) {
    956         // Determine value number for the segment.
    957         VNInfo *VNI;
    958         if (IsDef) {
    959           VNI = getNextValue(Pos, VNIAllocator);
    960         } else {
    961           // We have to reuse an existing value number, if we are lucky
    962           // then we already passed one of the predecessor blocks and determined
    963           // its value number (with blocks in reverse postorder this would be
    964           // always true but we have no such guarantee).
    965           assert(Pos.isBlock());
    966           const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Pos);
    967           // See if any of the predecessor blocks has a lower number and a VNI
    968           for (const MachineBasicBlock *Pred : MBB->predecessors()) {
    969             SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
    970             VNI = getVNInfoBefore(PredEnd);
    971             if (VNI != nullptr)
    972               break;
    973           }
    974           // Def will come later: We have to do an extra fixup pass.
    975           if (VNI == nullptr)
    976             NeedVNIFixup = true;
    977         }
    978 
    979         // In rare cases we can produce adjacent segments with the same value
    980         // number (if they come from different subranges, but happen to have
    981         // the same defining instruction). VNIFixup will fix those cases.
    982         if (!empty() && segments.back().end == Pos &&
    983             segments.back().valno == VNI)
    984           NeedVNIFixup = true;
    985         CurrentSegment.start = Pos;
    986         CurrentSegment.valno = VNI;
    987         ConstructingSegment = true;
    988       }
    989       ActiveMask |= EventMask;
    990     } else if (Event == END_SEGMENT) {
    991       assert(ConstructingSegment);
    992       // Finish segment if no lane is active anymore.
    993       ActiveMask &= ~EventMask;
    994       if (ActiveMask == 0) {
    995         CurrentSegment.end = Pos;
    996         append(CurrentSegment);
    997         ConstructingSegment = false;
    998       }
    999     } else {
   1000       // We reached the end of the last subranges and can stop.
   1001       assert(Event == NOTHING);
   1002       break;
   1003     }
   1004   }
   1005 
   1006   // We might not be able to assign new valnos for all segments if the basic
   1007   // block containing the definition comes after a segment using the valno.
   1008   // Do a fixup pass for this uncommon case.
   1009   if (NeedVNIFixup)
   1010     determineMissingVNIs(Indexes, *this);
   1011 
   1012   assert(ActiveMask == 0 && !ConstructingSegment && "all segments ended");
   1013   verify();
   1014 }
   1015 
   1016 unsigned LiveInterval::getSize() const {
   1017   unsigned Sum = 0;
   1018   for (const Segment &S : segments)
   1019     Sum += S.start.distance(S.end);
   1020   return Sum;
   1021 }
   1022 
   1023 raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) {
   1024   return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ")";
   1025 }
   1026 
   1027 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1028 void LiveRange::Segment::dump() const {
   1029   dbgs() << *this << "\n";
   1030 }
   1031 #endif
   1032 
   1033 void LiveRange::print(raw_ostream &OS) const {
   1034   if (empty())
   1035     OS << "EMPTY";
   1036   else {
   1037     for (const Segment &S : segments) {
   1038       OS << S;
   1039       assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo");
   1040     }
   1041   }
   1042 
   1043   // Print value number info.
   1044   if (getNumValNums()) {
   1045     OS << "  ";
   1046     unsigned vnum = 0;
   1047     for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
   1048          ++i, ++vnum) {
   1049       const VNInfo *vni = *i;
   1050       if (vnum) OS << " ";
   1051       OS << vnum << "@";
   1052       if (vni->isUnused()) {
   1053         OS << "x";
   1054       } else {
   1055         OS << vni->def;
   1056         if (vni->isPHIDef())
   1057           OS << "-phi";
   1058       }
   1059     }
   1060   }
   1061 }
   1062 
   1063 void LiveInterval::print(raw_ostream &OS) const {
   1064   OS << PrintReg(reg) << ' ';
   1065   super::print(OS);
   1066   // Print subranges
   1067   for (const SubRange &SR : subranges()) {
   1068     OS << " L" << PrintLaneMask(SR.LaneMask) << ' ' << SR;
   1069   }
   1070 }
   1071 
   1072 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1073 void LiveRange::dump() const {
   1074   dbgs() << *this << "\n";
   1075 }
   1076 
   1077 void LiveInterval::dump() const {
   1078   dbgs() << *this << "\n";
   1079 }
   1080 #endif
   1081 
   1082 #ifndef NDEBUG
   1083 void LiveRange::verify() const {
   1084   for (const_iterator I = begin(), E = end(); I != E; ++I) {
   1085     assert(I->start.isValid());
   1086     assert(I->end.isValid());
   1087     assert(I->start < I->end);
   1088     assert(I->valno != nullptr);
   1089     assert(I->valno->id < valnos.size());
   1090     assert(I->valno == valnos[I->valno->id]);
   1091     if (std::next(I) != E) {
   1092       assert(I->end <= std::next(I)->start);
   1093       if (I->end == std::next(I)->start)
   1094         assert(I->valno != std::next(I)->valno);
   1095     }
   1096   }
   1097 }
   1098 
   1099 void LiveInterval::verify(const MachineRegisterInfo *MRI) const {
   1100   super::verify();
   1101 
   1102   // Make sure SubRanges are fine and LaneMasks are disjunct.
   1103   LaneBitmask Mask = 0;
   1104   LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg) : ~0u;
   1105   for (const SubRange &SR : subranges()) {
   1106     // Subrange lanemask should be disjunct to any previous subrange masks.
   1107     assert((Mask & SR.LaneMask) == 0);
   1108     Mask |= SR.LaneMask;
   1109 
   1110     // subrange mask should not contained in maximum lane mask for the vreg.
   1111     assert((Mask & ~MaxMask) == 0);
   1112     // empty subranges must be removed.
   1113     assert(!SR.empty());
   1114 
   1115     SR.verify();
   1116     // Main liverange should cover subrange.
   1117     assert(covers(SR));
   1118   }
   1119 }
   1120 #endif
   1121 
   1122 
   1123 //===----------------------------------------------------------------------===//
   1124 //                           LiveRangeUpdater class
   1125 //===----------------------------------------------------------------------===//
   1126 //
   1127 // The LiveRangeUpdater class always maintains these invariants:
   1128 //
   1129 // - When LastStart is invalid, Spills is empty and the iterators are invalid.
   1130 //   This is the initial state, and the state created by flush().
   1131 //   In this state, isDirty() returns false.
   1132 //
   1133 // Otherwise, segments are kept in three separate areas:
   1134 //
   1135 // 1. [begin; WriteI) at the front of LR.
   1136 // 2. [ReadI; end) at the back of LR.
   1137 // 3. Spills.
   1138 //
   1139 // - LR.begin() <= WriteI <= ReadI <= LR.end().
   1140 // - Segments in all three areas are fully ordered and coalesced.
   1141 // - Segments in area 1 precede and can't coalesce with segments in area 2.
   1142 // - Segments in Spills precede and can't coalesce with segments in area 2.
   1143 // - No coalescing is possible between segments in Spills and segments in area
   1144 //   1, and there are no overlapping segments.
   1145 //
   1146 // The segments in Spills are not ordered with respect to the segments in area
   1147 // 1. They need to be merged.
   1148 //
   1149 // When they exist, Spills.back().start <= LastStart,
   1150 //                 and WriteI[-1].start <= LastStart.
   1151 
   1152 void LiveRangeUpdater::print(raw_ostream &OS) const {
   1153   if (!isDirty()) {
   1154     if (LR)
   1155       OS << "Clean updater: " << *LR << '\n';
   1156     else
   1157       OS << "Null updater.\n";
   1158     return;
   1159   }
   1160   assert(LR && "Can't have null LR in dirty updater.");
   1161   OS << " updater with gap = " << (ReadI - WriteI)
   1162      << ", last start = " << LastStart
   1163      << ":\n  Area 1:";
   1164   for (const auto &S : make_range(LR->begin(), WriteI))
   1165     OS << ' ' << S;
   1166   OS << "\n  Spills:";
   1167   for (unsigned I = 0, E = Spills.size(); I != E; ++I)
   1168     OS << ' ' << Spills[I];
   1169   OS << "\n  Area 2:";
   1170   for (const auto &S : make_range(ReadI, LR->end()))
   1171     OS << ' ' << S;
   1172   OS << '\n';
   1173 }
   1174 
   1175 void LiveRangeUpdater::dump() const
   1176 {
   1177   print(errs());
   1178 }
   1179 
   1180 // Determine if A and B should be coalesced.
   1181 static inline bool coalescable(const LiveRange::Segment &A,
   1182                                const LiveRange::Segment &B) {
   1183   assert(A.start <= B.start && "Unordered live segments.");
   1184   if (A.end == B.start)
   1185     return A.valno == B.valno;
   1186   if (A.end < B.start)
   1187     return false;
   1188   assert(A.valno == B.valno && "Cannot overlap different values");
   1189   return true;
   1190 }
   1191 
   1192 void LiveRangeUpdater::add(LiveRange::Segment Seg) {
   1193   assert(LR && "Cannot add to a null destination");
   1194 
   1195   // Fall back to the regular add method if the live range
   1196   // is using the segment set instead of the segment vector.
   1197   if (LR->segmentSet != nullptr) {
   1198     LR->addSegmentToSet(Seg);
   1199     return;
   1200   }
   1201 
   1202   // Flush the state if Start moves backwards.
   1203   if (!LastStart.isValid() || LastStart > Seg.start) {
   1204     if (isDirty())
   1205       flush();
   1206     // This brings us to an uninitialized state. Reinitialize.
   1207     assert(Spills.empty() && "Leftover spilled segments");
   1208     WriteI = ReadI = LR->begin();
   1209   }
   1210 
   1211   // Remember start for next time.
   1212   LastStart = Seg.start;
   1213 
   1214   // Advance ReadI until it ends after Seg.start.
   1215   LiveRange::iterator E = LR->end();
   1216   if (ReadI != E && ReadI->end <= Seg.start) {
   1217     // First try to close the gap between WriteI and ReadI with spills.
   1218     if (ReadI != WriteI)
   1219       mergeSpills();
   1220     // Then advance ReadI.
   1221     if (ReadI == WriteI)
   1222       ReadI = WriteI = LR->find(Seg.start);
   1223     else
   1224       while (ReadI != E && ReadI->end <= Seg.start)
   1225         *WriteI++ = *ReadI++;
   1226   }
   1227 
   1228   assert(ReadI == E || ReadI->end > Seg.start);
   1229 
   1230   // Check if the ReadI segment begins early.
   1231   if (ReadI != E && ReadI->start <= Seg.start) {
   1232     assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
   1233     // Bail if Seg is completely contained in ReadI.
   1234     if (ReadI->end >= Seg.end)
   1235       return;
   1236     // Coalesce into Seg.
   1237     Seg.start = ReadI->start;
   1238     ++ReadI;
   1239   }
   1240 
   1241   // Coalesce as much as possible from ReadI into Seg.
   1242   while (ReadI != E && coalescable(Seg, *ReadI)) {
   1243     Seg.end = std::max(Seg.end, ReadI->end);
   1244     ++ReadI;
   1245   }
   1246 
   1247   // Try coalescing Spills.back() into Seg.
   1248   if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
   1249     Seg.start = Spills.back().start;
   1250     Seg.end = std::max(Spills.back().end, Seg.end);
   1251     Spills.pop_back();
   1252   }
   1253 
   1254   // Try coalescing Seg into WriteI[-1].
   1255   if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
   1256     WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
   1257     return;
   1258   }
   1259 
   1260   // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
   1261   if (WriteI != ReadI) {
   1262     *WriteI++ = Seg;
   1263     return;
   1264   }
   1265 
   1266   // Finally, append to LR or Spills.
   1267   if (WriteI == E) {
   1268     LR->segments.push_back(Seg);
   1269     WriteI = ReadI = LR->end();
   1270   } else
   1271     Spills.push_back(Seg);
   1272 }
   1273 
   1274 // Merge as many spilled segments as possible into the gap between WriteI
   1275 // and ReadI. Advance WriteI to reflect the inserted instructions.
   1276 void LiveRangeUpdater::mergeSpills() {
   1277   // Perform a backwards merge of Spills and [SpillI;WriteI).
   1278   size_t GapSize = ReadI - WriteI;
   1279   size_t NumMoved = std::min(Spills.size(), GapSize);
   1280   LiveRange::iterator Src = WriteI;
   1281   LiveRange::iterator Dst = Src + NumMoved;
   1282   LiveRange::iterator SpillSrc = Spills.end();
   1283   LiveRange::iterator B = LR->begin();
   1284 
   1285   // This is the new WriteI position after merging spills.
   1286   WriteI = Dst;
   1287 
   1288   // Now merge Src and Spills backwards.
   1289   while (Src != Dst) {
   1290     if (Src != B && Src[-1].start > SpillSrc[-1].start)
   1291       *--Dst = *--Src;
   1292     else
   1293       *--Dst = *--SpillSrc;
   1294   }
   1295   assert(NumMoved == size_t(Spills.end() - SpillSrc));
   1296   Spills.erase(SpillSrc, Spills.end());
   1297 }
   1298 
   1299 void LiveRangeUpdater::flush() {
   1300   if (!isDirty())
   1301     return;
   1302   // Clear the dirty state.
   1303   LastStart = SlotIndex();
   1304 
   1305   assert(LR && "Cannot add to a null destination");
   1306 
   1307   // Nothing to merge?
   1308   if (Spills.empty()) {
   1309     LR->segments.erase(WriteI, ReadI);
   1310     LR->verify();
   1311     return;
   1312   }
   1313 
   1314   // Resize the WriteI - ReadI gap to match Spills.
   1315   size_t GapSize = ReadI - WriteI;
   1316   if (GapSize < Spills.size()) {
   1317     // The gap is too small. Make some room.
   1318     size_t WritePos = WriteI - LR->begin();
   1319     LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
   1320     // This also invalidated ReadI, but it is recomputed below.
   1321     WriteI = LR->begin() + WritePos;
   1322   } else {
   1323     // Shrink the gap if necessary.
   1324     LR->segments.erase(WriteI + Spills.size(), ReadI);
   1325   }
   1326   ReadI = WriteI + Spills.size();
   1327   mergeSpills();
   1328   LR->verify();
   1329 }
   1330 
   1331 unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) {
   1332   // Create initial equivalence classes.
   1333   EqClass.clear();
   1334   EqClass.grow(LI->getNumValNums());
   1335 
   1336   const VNInfo *used = nullptr, *unused = nullptr;
   1337 
   1338   // Determine connections.
   1339   for (const VNInfo *VNI : LI->valnos) {
   1340     // Group all unused values into one class.
   1341     if (VNI->isUnused()) {
   1342       if (unused)
   1343         EqClass.join(unused->id, VNI->id);
   1344       unused = VNI;
   1345       continue;
   1346     }
   1347     used = VNI;
   1348     if (VNI->isPHIDef()) {
   1349       const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
   1350       assert(MBB && "Phi-def has no defining MBB");
   1351       // Connect to values live out of predecessors.
   1352       for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
   1353            PE = MBB->pred_end(); PI != PE; ++PI)
   1354         if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
   1355           EqClass.join(VNI->id, PVNI->id);
   1356     } else {
   1357       // Normal value defined by an instruction. Check for two-addr redef.
   1358       // FIXME: This could be coincidental. Should we really check for a tied
   1359       // operand constraint?
   1360       // Note that VNI->def may be a use slot for an early clobber def.
   1361       if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def))
   1362         EqClass.join(VNI->id, UVNI->id);
   1363     }
   1364   }
   1365 
   1366   // Lump all the unused values in with the last used value.
   1367   if (used && unused)
   1368     EqClass.join(used->id, unused->id);
   1369 
   1370   EqClass.compress();
   1371   return EqClass.getNumClasses();
   1372 }
   1373 
   1374 template<typename LiveRangeT, typename EqClassesT>
   1375 static void DistributeRange(LiveRangeT &LR, LiveRangeT *SplitLRs[],
   1376                             EqClassesT VNIClasses) {
   1377   // Move segments to new intervals.
   1378   LiveRange::iterator J = LR.begin(), E = LR.end();
   1379   while (J != E && VNIClasses[J->valno->id] == 0)
   1380     ++J;
   1381   for (LiveRange::iterator I = J; I != E; ++I) {
   1382     if (unsigned eq = VNIClasses[I->valno->id]) {
   1383       assert((SplitLRs[eq-1]->empty() || SplitLRs[eq-1]->expiredAt(I->start)) &&
   1384              "New intervals should be empty");
   1385       SplitLRs[eq-1]->segments.push_back(*I);
   1386     } else
   1387       *J++ = *I;
   1388   }
   1389   LR.segments.erase(J, E);
   1390 
   1391   // Transfer VNInfos to their new owners and renumber them.
   1392   unsigned j = 0, e = LR.getNumValNums();
   1393   while (j != e && VNIClasses[j] == 0)
   1394     ++j;
   1395   for (unsigned i = j; i != e; ++i) {
   1396     VNInfo *VNI = LR.getValNumInfo(i);
   1397     if (unsigned eq = VNIClasses[i]) {
   1398       VNI->id = SplitLRs[eq-1]->getNumValNums();
   1399       SplitLRs[eq-1]->valnos.push_back(VNI);
   1400     } else {
   1401       VNI->id = j;
   1402       LR.valnos[j++] = VNI;
   1403     }
   1404   }
   1405   LR.valnos.resize(j);
   1406 }
   1407 
   1408 void ConnectedVNInfoEqClasses::Distribute(LiveInterval &LI, LiveInterval *LIV[],
   1409                                           MachineRegisterInfo &MRI) {
   1410   // Rewrite instructions.
   1411   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
   1412        RE = MRI.reg_end(); RI != RE;) {
   1413     MachineOperand &MO = *RI;
   1414     MachineInstr *MI = RI->getParent();
   1415     ++RI;
   1416     // DBG_VALUE instructions don't have slot indexes, so get the index of the
   1417     // instruction before them.
   1418     // Normally, DBG_VALUE instructions are removed before this function is
   1419     // called, but it is not a requirement.
   1420     SlotIndex Idx;
   1421     if (MI->isDebugValue())
   1422       Idx = LIS.getSlotIndexes()->getIndexBefore(MI);
   1423     else
   1424       Idx = LIS.getInstructionIndex(MI);
   1425     LiveQueryResult LRQ = LI.Query(Idx);
   1426     const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
   1427     // In the case of an <undef> use that isn't tied to any def, VNI will be
   1428     // NULL. If the use is tied to a def, VNI will be the defined value.
   1429     if (!VNI)
   1430       continue;
   1431     if (unsigned EqClass = getEqClass(VNI))
   1432       MO.setReg(LIV[EqClass-1]->reg);
   1433   }
   1434 
   1435   // Distribute subregister liveranges.
   1436   if (LI.hasSubRanges()) {
   1437     unsigned NumComponents = EqClass.getNumClasses();
   1438     SmallVector<unsigned, 8> VNIMapping;
   1439     SmallVector<LiveInterval::SubRange*, 8> SubRanges;
   1440     BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
   1441     for (LiveInterval::SubRange &SR : LI.subranges()) {
   1442       // Create new subranges in the split intervals and construct a mapping
   1443       // for the VNInfos in the subrange.
   1444       unsigned NumValNos = SR.valnos.size();
   1445       VNIMapping.clear();
   1446       VNIMapping.reserve(NumValNos);
   1447       SubRanges.clear();
   1448       SubRanges.resize(NumComponents-1, nullptr);
   1449       for (unsigned I = 0; I < NumValNos; ++I) {
   1450         const VNInfo &VNI = *SR.valnos[I];
   1451         const VNInfo *MainRangeVNI = LI.getVNInfoAt(VNI.def);
   1452         assert(MainRangeVNI != nullptr
   1453                && "SubRange def must have corresponding main range def");
   1454         unsigned ComponentNum = getEqClass(MainRangeVNI);
   1455         VNIMapping.push_back(ComponentNum);
   1456         if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) {
   1457           SubRanges[ComponentNum-1]
   1458             = LIV[ComponentNum-1]->createSubRange(Allocator, SR.LaneMask);
   1459         }
   1460       }
   1461       DistributeRange(SR, SubRanges.data(), VNIMapping);
   1462     }
   1463     LI.removeEmptySubRanges();
   1464   }
   1465 
   1466   // Distribute main liverange.
   1467   DistributeRange(LI, LIV, EqClass);
   1468 }
   1469