Home | History | Annotate | Download | only in Sema
      1 //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements C++ semantic analysis for scope specifiers.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "TypeLocBuilder.h"
     16 #include "clang/AST/ASTContext.h"
     17 #include "clang/AST/DeclTemplate.h"
     18 #include "clang/AST/ExprCXX.h"
     19 #include "clang/AST/NestedNameSpecifier.h"
     20 #include "clang/Basic/PartialDiagnostic.h"
     21 #include "clang/Sema/DeclSpec.h"
     22 #include "clang/Sema/Lookup.h"
     23 #include "clang/Sema/Template.h"
     24 #include "llvm/ADT/STLExtras.h"
     25 #include "llvm/Support/raw_ostream.h"
     26 using namespace clang;
     27 
     28 /// \brief Find the current instantiation that associated with the given type.
     29 static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
     30                                                 DeclContext *CurContext) {
     31   if (T.isNull())
     32     return nullptr;
     33 
     34   const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
     35   if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
     36     CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
     37     if (!Record->isDependentContext() ||
     38         Record->isCurrentInstantiation(CurContext))
     39       return Record;
     40 
     41     return nullptr;
     42   } else if (isa<InjectedClassNameType>(Ty))
     43     return cast<InjectedClassNameType>(Ty)->getDecl();
     44   else
     45     return nullptr;
     46 }
     47 
     48 /// \brief Compute the DeclContext that is associated with the given type.
     49 ///
     50 /// \param T the type for which we are attempting to find a DeclContext.
     51 ///
     52 /// \returns the declaration context represented by the type T,
     53 /// or NULL if the declaration context cannot be computed (e.g., because it is
     54 /// dependent and not the current instantiation).
     55 DeclContext *Sema::computeDeclContext(QualType T) {
     56   if (!T->isDependentType())
     57     if (const TagType *Tag = T->getAs<TagType>())
     58       return Tag->getDecl();
     59 
     60   return ::getCurrentInstantiationOf(T, CurContext);
     61 }
     62 
     63 /// \brief Compute the DeclContext that is associated with the given
     64 /// scope specifier.
     65 ///
     66 /// \param SS the C++ scope specifier as it appears in the source
     67 ///
     68 /// \param EnteringContext when true, we will be entering the context of
     69 /// this scope specifier, so we can retrieve the declaration context of a
     70 /// class template or class template partial specialization even if it is
     71 /// not the current instantiation.
     72 ///
     73 /// \returns the declaration context represented by the scope specifier @p SS,
     74 /// or NULL if the declaration context cannot be computed (e.g., because it is
     75 /// dependent and not the current instantiation).
     76 DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
     77                                       bool EnteringContext) {
     78   if (!SS.isSet() || SS.isInvalid())
     79     return nullptr;
     80 
     81   NestedNameSpecifier *NNS = SS.getScopeRep();
     82   if (NNS->isDependent()) {
     83     // If this nested-name-specifier refers to the current
     84     // instantiation, return its DeclContext.
     85     if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
     86       return Record;
     87 
     88     if (EnteringContext) {
     89       const Type *NNSType = NNS->getAsType();
     90       if (!NNSType) {
     91         return nullptr;
     92       }
     93 
     94       // Look through type alias templates, per C++0x [temp.dep.type]p1.
     95       NNSType = Context.getCanonicalType(NNSType);
     96       if (const TemplateSpecializationType *SpecType
     97             = NNSType->getAs<TemplateSpecializationType>()) {
     98         // We are entering the context of the nested name specifier, so try to
     99         // match the nested name specifier to either a primary class template
    100         // or a class template partial specialization.
    101         if (ClassTemplateDecl *ClassTemplate
    102               = dyn_cast_or_null<ClassTemplateDecl>(
    103                             SpecType->getTemplateName().getAsTemplateDecl())) {
    104           QualType ContextType
    105             = Context.getCanonicalType(QualType(SpecType, 0));
    106 
    107           // If the type of the nested name specifier is the same as the
    108           // injected class name of the named class template, we're entering
    109           // into that class template definition.
    110           QualType Injected
    111             = ClassTemplate->getInjectedClassNameSpecialization();
    112           if (Context.hasSameType(Injected, ContextType))
    113             return ClassTemplate->getTemplatedDecl();
    114 
    115           // If the type of the nested name specifier is the same as the
    116           // type of one of the class template's class template partial
    117           // specializations, we're entering into the definition of that
    118           // class template partial specialization.
    119           if (ClassTemplatePartialSpecializationDecl *PartialSpec
    120                 = ClassTemplate->findPartialSpecialization(ContextType))
    121             return PartialSpec;
    122         }
    123       } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
    124         // The nested name specifier refers to a member of a class template.
    125         return RecordT->getDecl();
    126       }
    127     }
    128 
    129     return nullptr;
    130   }
    131 
    132   switch (NNS->getKind()) {
    133   case NestedNameSpecifier::Identifier:
    134     llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
    135 
    136   case NestedNameSpecifier::Namespace:
    137     return NNS->getAsNamespace();
    138 
    139   case NestedNameSpecifier::NamespaceAlias:
    140     return NNS->getAsNamespaceAlias()->getNamespace();
    141 
    142   case NestedNameSpecifier::TypeSpec:
    143   case NestedNameSpecifier::TypeSpecWithTemplate: {
    144     const TagType *Tag = NNS->getAsType()->getAs<TagType>();
    145     assert(Tag && "Non-tag type in nested-name-specifier");
    146     return Tag->getDecl();
    147   }
    148 
    149   case NestedNameSpecifier::Global:
    150     return Context.getTranslationUnitDecl();
    151 
    152   case NestedNameSpecifier::Super:
    153     return NNS->getAsRecordDecl();
    154   }
    155 
    156   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
    157 }
    158 
    159 bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
    160   if (!SS.isSet() || SS.isInvalid())
    161     return false;
    162 
    163   return SS.getScopeRep()->isDependent();
    164 }
    165 
    166 /// \brief If the given nested name specifier refers to the current
    167 /// instantiation, return the declaration that corresponds to that
    168 /// current instantiation (C++0x [temp.dep.type]p1).
    169 ///
    170 /// \param NNS a dependent nested name specifier.
    171 CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
    172   assert(getLangOpts().CPlusPlus && "Only callable in C++");
    173   assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
    174 
    175   if (!NNS->getAsType())
    176     return nullptr;
    177 
    178   QualType T = QualType(NNS->getAsType(), 0);
    179   return ::getCurrentInstantiationOf(T, CurContext);
    180 }
    181 
    182 /// \brief Require that the context specified by SS be complete.
    183 ///
    184 /// If SS refers to a type, this routine checks whether the type is
    185 /// complete enough (or can be made complete enough) for name lookup
    186 /// into the DeclContext. A type that is not yet completed can be
    187 /// considered "complete enough" if it is a class/struct/union/enum
    188 /// that is currently being defined. Or, if we have a type that names
    189 /// a class template specialization that is not a complete type, we
    190 /// will attempt to instantiate that class template.
    191 bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
    192                                       DeclContext *DC) {
    193   assert(DC && "given null context");
    194 
    195   TagDecl *tag = dyn_cast<TagDecl>(DC);
    196 
    197   // If this is a dependent type, then we consider it complete.
    198   if (!tag || tag->isDependentContext())
    199     return false;
    200 
    201   // If we're currently defining this type, then lookup into the
    202   // type is okay: don't complain that it isn't complete yet.
    203   QualType type = Context.getTypeDeclType(tag);
    204   const TagType *tagType = type->getAs<TagType>();
    205   if (tagType && tagType->isBeingDefined())
    206     return false;
    207 
    208   SourceLocation loc = SS.getLastQualifierNameLoc();
    209   if (loc.isInvalid()) loc = SS.getRange().getBegin();
    210 
    211   // The type must be complete.
    212   if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
    213                           SS.getRange())) {
    214     SS.SetInvalid(SS.getRange());
    215     return true;
    216   }
    217 
    218   // Fixed enum types are complete, but they aren't valid as scopes
    219   // until we see a definition, so awkwardly pull out this special
    220   // case.
    221   // FIXME: The definition might not be visible; complain if it is not.
    222   const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType);
    223   if (!enumType || enumType->getDecl()->isCompleteDefinition())
    224     return false;
    225 
    226   // Try to instantiate the definition, if this is a specialization of an
    227   // enumeration temploid.
    228   EnumDecl *ED = enumType->getDecl();
    229   if (EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
    230     MemberSpecializationInfo *MSI = ED->getMemberSpecializationInfo();
    231     if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
    232       if (InstantiateEnum(loc, ED, Pattern, getTemplateInstantiationArgs(ED),
    233                           TSK_ImplicitInstantiation)) {
    234         SS.SetInvalid(SS.getRange());
    235         return true;
    236       }
    237       return false;
    238     }
    239   }
    240 
    241   Diag(loc, diag::err_incomplete_nested_name_spec)
    242     << type << SS.getRange();
    243   SS.SetInvalid(SS.getRange());
    244   return true;
    245 }
    246 
    247 bool Sema::ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc,
    248                                         CXXScopeSpec &SS) {
    249   SS.MakeGlobal(Context, CCLoc);
    250   return false;
    251 }
    252 
    253 bool Sema::ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
    254                                     SourceLocation ColonColonLoc,
    255                                     CXXScopeSpec &SS) {
    256   CXXRecordDecl *RD = nullptr;
    257   for (Scope *S = getCurScope(); S; S = S->getParent()) {
    258     if (S->isFunctionScope()) {
    259       if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(S->getEntity()))
    260         RD = MD->getParent();
    261       break;
    262     }
    263     if (S->isClassScope()) {
    264       RD = cast<CXXRecordDecl>(S->getEntity());
    265       break;
    266     }
    267   }
    268 
    269   if (!RD) {
    270     Diag(SuperLoc, diag::err_invalid_super_scope);
    271     return true;
    272   } else if (RD->isLambda()) {
    273     Diag(SuperLoc, diag::err_super_in_lambda_unsupported);
    274     return true;
    275   } else if (RD->getNumBases() == 0) {
    276     Diag(SuperLoc, diag::err_no_base_classes) << RD->getName();
    277     return true;
    278   }
    279 
    280   SS.MakeSuper(Context, RD, SuperLoc, ColonColonLoc);
    281   return false;
    282 }
    283 
    284 /// \brief Determines whether the given declaration is an valid acceptable
    285 /// result for name lookup of a nested-name-specifier.
    286 /// \param SD Declaration checked for nested-name-specifier.
    287 /// \param IsExtension If not null and the declaration is accepted as an
    288 /// extension, the pointed variable is assigned true.
    289 bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD,
    290                                            bool *IsExtension) {
    291   if (!SD)
    292     return false;
    293 
    294   // Namespace and namespace aliases are fine.
    295   if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
    296     return true;
    297 
    298   if (!isa<TypeDecl>(SD))
    299     return false;
    300 
    301   // Determine whether we have a class (or, in C++11, an enum) or
    302   // a typedef thereof. If so, build the nested-name-specifier.
    303   QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
    304   if (T->isDependentType())
    305     return true;
    306   if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
    307     if (TD->getUnderlyingType()->isRecordType())
    308       return true;
    309     if (TD->getUnderlyingType()->isEnumeralType()) {
    310       if (Context.getLangOpts().CPlusPlus11)
    311         return true;
    312       if (IsExtension)
    313         *IsExtension = true;
    314     }
    315   } else if (isa<RecordDecl>(SD)) {
    316     return true;
    317   } else if (isa<EnumDecl>(SD)) {
    318     if (Context.getLangOpts().CPlusPlus11)
    319       return true;
    320     if (IsExtension)
    321       *IsExtension = true;
    322   }
    323 
    324   return false;
    325 }
    326 
    327 /// \brief If the given nested-name-specifier begins with a bare identifier
    328 /// (e.g., Base::), perform name lookup for that identifier as a
    329 /// nested-name-specifier within the given scope, and return the result of that
    330 /// name lookup.
    331 NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
    332   if (!S || !NNS)
    333     return nullptr;
    334 
    335   while (NNS->getPrefix())
    336     NNS = NNS->getPrefix();
    337 
    338   if (NNS->getKind() != NestedNameSpecifier::Identifier)
    339     return nullptr;
    340 
    341   LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
    342                      LookupNestedNameSpecifierName);
    343   LookupName(Found, S);
    344   assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
    345 
    346   if (!Found.isSingleResult())
    347     return nullptr;
    348 
    349   NamedDecl *Result = Found.getFoundDecl();
    350   if (isAcceptableNestedNameSpecifier(Result))
    351     return Result;
    352 
    353   return nullptr;
    354 }
    355 
    356 bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
    357                                         SourceLocation IdLoc,
    358                                         IdentifierInfo &II,
    359                                         ParsedType ObjectTypePtr) {
    360   QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
    361   LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
    362 
    363   // Determine where to perform name lookup
    364   DeclContext *LookupCtx = nullptr;
    365   bool isDependent = false;
    366   if (!ObjectType.isNull()) {
    367     // This nested-name-specifier occurs in a member access expression, e.g.,
    368     // x->B::f, and we are looking into the type of the object.
    369     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
    370     LookupCtx = computeDeclContext(ObjectType);
    371     isDependent = ObjectType->isDependentType();
    372   } else if (SS.isSet()) {
    373     // This nested-name-specifier occurs after another nested-name-specifier,
    374     // so long into the context associated with the prior nested-name-specifier.
    375     LookupCtx = computeDeclContext(SS, false);
    376     isDependent = isDependentScopeSpecifier(SS);
    377     Found.setContextRange(SS.getRange());
    378   }
    379 
    380   if (LookupCtx) {
    381     // Perform "qualified" name lookup into the declaration context we
    382     // computed, which is either the type of the base of a member access
    383     // expression or the declaration context associated with a prior
    384     // nested-name-specifier.
    385 
    386     // The declaration context must be complete.
    387     if (!LookupCtx->isDependentContext() &&
    388         RequireCompleteDeclContext(SS, LookupCtx))
    389       return false;
    390 
    391     LookupQualifiedName(Found, LookupCtx);
    392   } else if (isDependent) {
    393     return false;
    394   } else {
    395     LookupName(Found, S);
    396   }
    397   Found.suppressDiagnostics();
    398 
    399   if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
    400     return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
    401 
    402   return false;
    403 }
    404 
    405 namespace {
    406 
    407 // Callback to only accept typo corrections that can be a valid C++ member
    408 // intializer: either a non-static field member or a base class.
    409 class NestedNameSpecifierValidatorCCC : public CorrectionCandidateCallback {
    410  public:
    411   explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
    412       : SRef(SRef) {}
    413 
    414   bool ValidateCandidate(const TypoCorrection &candidate) override {
    415     return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
    416   }
    417 
    418  private:
    419   Sema &SRef;
    420 };
    421 
    422 }
    423 
    424 /// \brief Build a new nested-name-specifier for "identifier::", as described
    425 /// by ActOnCXXNestedNameSpecifier.
    426 ///
    427 /// \param S Scope in which the nested-name-specifier occurs.
    428 /// \param Identifier Identifier in the sequence "identifier" "::".
    429 /// \param IdentifierLoc Location of the \p Identifier.
    430 /// \param CCLoc Location of "::" following Identifier.
    431 /// \param ObjectType Type of postfix expression if the nested-name-specifier
    432 ///        occurs in construct like: <tt>ptr->nns::f</tt>.
    433 /// \param EnteringContext If true, enter the context specified by the
    434 ///        nested-name-specifier.
    435 /// \param SS Optional nested name specifier preceding the identifier.
    436 /// \param ScopeLookupResult Provides the result of name lookup within the
    437 ///        scope of the nested-name-specifier that was computed at template
    438 ///        definition time.
    439 /// \param ErrorRecoveryLookup Specifies if the method is called to improve
    440 ///        error recovery and what kind of recovery is performed.
    441 /// \param IsCorrectedToColon If not null, suggestion of replace '::' -> ':'
    442 ///        are allowed.  The bool value pointed by this parameter is set to
    443 ///       'true' if the identifier is treated as if it was followed by ':',
    444 ///        not '::'.
    445 ///
    446 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
    447 /// that it contains an extra parameter \p ScopeLookupResult, which provides
    448 /// the result of name lookup within the scope of the nested-name-specifier
    449 /// that was computed at template definition time.
    450 ///
    451 /// If ErrorRecoveryLookup is true, then this call is used to improve error
    452 /// recovery.  This means that it should not emit diagnostics, it should
    453 /// just return true on failure.  It also means it should only return a valid
    454 /// scope if it *knows* that the result is correct.  It should not return in a
    455 /// dependent context, for example. Nor will it extend \p SS with the scope
    456 /// specifier.
    457 bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
    458                                        IdentifierInfo &Identifier,
    459                                        SourceLocation IdentifierLoc,
    460                                        SourceLocation CCLoc,
    461                                        QualType ObjectType,
    462                                        bool EnteringContext,
    463                                        CXXScopeSpec &SS,
    464                                        NamedDecl *ScopeLookupResult,
    465                                        bool ErrorRecoveryLookup,
    466                                        bool *IsCorrectedToColon) {
    467   LookupResult Found(*this, &Identifier, IdentifierLoc,
    468                      LookupNestedNameSpecifierName);
    469 
    470   // Determine where to perform name lookup
    471   DeclContext *LookupCtx = nullptr;
    472   bool isDependent = false;
    473   if (IsCorrectedToColon)
    474     *IsCorrectedToColon = false;
    475   if (!ObjectType.isNull()) {
    476     // This nested-name-specifier occurs in a member access expression, e.g.,
    477     // x->B::f, and we are looking into the type of the object.
    478     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
    479     LookupCtx = computeDeclContext(ObjectType);
    480     isDependent = ObjectType->isDependentType();
    481   } else if (SS.isSet()) {
    482     // This nested-name-specifier occurs after another nested-name-specifier,
    483     // so look into the context associated with the prior nested-name-specifier.
    484     LookupCtx = computeDeclContext(SS, EnteringContext);
    485     isDependent = isDependentScopeSpecifier(SS);
    486     Found.setContextRange(SS.getRange());
    487   }
    488 
    489   bool ObjectTypeSearchedInScope = false;
    490   if (LookupCtx) {
    491     // Perform "qualified" name lookup into the declaration context we
    492     // computed, which is either the type of the base of a member access
    493     // expression or the declaration context associated with a prior
    494     // nested-name-specifier.
    495 
    496     // The declaration context must be complete.
    497     if (!LookupCtx->isDependentContext() &&
    498         RequireCompleteDeclContext(SS, LookupCtx))
    499       return true;
    500 
    501     LookupQualifiedName(Found, LookupCtx);
    502 
    503     if (!ObjectType.isNull() && Found.empty()) {
    504       // C++ [basic.lookup.classref]p4:
    505       //   If the id-expression in a class member access is a qualified-id of
    506       //   the form
    507       //
    508       //        class-name-or-namespace-name::...
    509       //
    510       //   the class-name-or-namespace-name following the . or -> operator is
    511       //   looked up both in the context of the entire postfix-expression and in
    512       //   the scope of the class of the object expression. If the name is found
    513       //   only in the scope of the class of the object expression, the name
    514       //   shall refer to a class-name. If the name is found only in the
    515       //   context of the entire postfix-expression, the name shall refer to a
    516       //   class-name or namespace-name. [...]
    517       //
    518       // Qualified name lookup into a class will not find a namespace-name,
    519       // so we do not need to diagnose that case specifically. However,
    520       // this qualified name lookup may find nothing. In that case, perform
    521       // unqualified name lookup in the given scope (if available) or
    522       // reconstruct the result from when name lookup was performed at template
    523       // definition time.
    524       if (S)
    525         LookupName(Found, S);
    526       else if (ScopeLookupResult)
    527         Found.addDecl(ScopeLookupResult);
    528 
    529       ObjectTypeSearchedInScope = true;
    530     }
    531   } else if (!isDependent) {
    532     // Perform unqualified name lookup in the current scope.
    533     LookupName(Found, S);
    534   }
    535 
    536   if (Found.isAmbiguous())
    537     return true;
    538 
    539   // If we performed lookup into a dependent context and did not find anything,
    540   // that's fine: just build a dependent nested-name-specifier.
    541   if (Found.empty() && isDependent &&
    542       !(LookupCtx && LookupCtx->isRecord() &&
    543         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
    544          !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
    545     // Don't speculate if we're just trying to improve error recovery.
    546     if (ErrorRecoveryLookup)
    547       return true;
    548 
    549     // We were not able to compute the declaration context for a dependent
    550     // base object type or prior nested-name-specifier, so this
    551     // nested-name-specifier refers to an unknown specialization. Just build
    552     // a dependent nested-name-specifier.
    553     SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
    554     return false;
    555   }
    556 
    557   if (Found.empty() && !ErrorRecoveryLookup) {
    558     // If identifier is not found as class-name-or-namespace-name, but is found
    559     // as other entity, don't look for typos.
    560     LookupResult R(*this, Found.getLookupNameInfo(), LookupOrdinaryName);
    561     if (LookupCtx)
    562       LookupQualifiedName(R, LookupCtx);
    563     else if (S && !isDependent)
    564       LookupName(R, S);
    565     if (!R.empty()) {
    566       // Don't diagnose problems with this speculative lookup.
    567       R.suppressDiagnostics();
    568       // The identifier is found in ordinary lookup. If correction to colon is
    569       // allowed, suggest replacement to ':'.
    570       if (IsCorrectedToColon) {
    571         *IsCorrectedToColon = true;
    572         Diag(CCLoc, diag::err_nested_name_spec_is_not_class)
    573             << &Identifier << getLangOpts().CPlusPlus
    574             << FixItHint::CreateReplacement(CCLoc, ":");
    575         if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
    576           Diag(ND->getLocation(), diag::note_declared_at);
    577         return true;
    578       }
    579       // Replacement '::' -> ':' is not allowed, just issue respective error.
    580       Diag(R.getNameLoc(), diag::err_expected_class_or_namespace)
    581           << &Identifier << getLangOpts().CPlusPlus;
    582       if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
    583         Diag(ND->getLocation(), diag::note_entity_declared_at) << &Identifier;
    584       return true;
    585     }
    586   }
    587 
    588   if (Found.empty() && !ErrorRecoveryLookup && !getLangOpts().MSVCCompat) {
    589     // We haven't found anything, and we're not recovering from a
    590     // different kind of error, so look for typos.
    591     DeclarationName Name = Found.getLookupName();
    592     Found.clear();
    593     if (TypoCorrection Corrected = CorrectTypo(
    594             Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS,
    595             llvm::make_unique<NestedNameSpecifierValidatorCCC>(*this),
    596             CTK_ErrorRecovery, LookupCtx, EnteringContext)) {
    597       if (LookupCtx) {
    598         bool DroppedSpecifier =
    599             Corrected.WillReplaceSpecifier() &&
    600             Name.getAsString() == Corrected.getAsString(getLangOpts());
    601         if (DroppedSpecifier)
    602           SS.clear();
    603         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
    604                                   << Name << LookupCtx << DroppedSpecifier
    605                                   << SS.getRange());
    606       } else
    607         diagnoseTypo(Corrected, PDiag(diag::err_undeclared_var_use_suggest)
    608                                   << Name);
    609 
    610       if (NamedDecl *ND = Corrected.getCorrectionDecl())
    611         Found.addDecl(ND);
    612       Found.setLookupName(Corrected.getCorrection());
    613     } else {
    614       Found.setLookupName(&Identifier);
    615     }
    616   }
    617 
    618   NamedDecl *SD = Found.getAsSingle<NamedDecl>();
    619   bool IsExtension = false;
    620   bool AcceptSpec = isAcceptableNestedNameSpecifier(SD, &IsExtension);
    621   if (!AcceptSpec && IsExtension) {
    622     AcceptSpec = true;
    623     Diag(IdentifierLoc, diag::ext_nested_name_spec_is_enum);
    624   }
    625   if (AcceptSpec) {
    626     if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
    627         !getLangOpts().CPlusPlus11) {
    628       // C++03 [basic.lookup.classref]p4:
    629       //   [...] If the name is found in both contexts, the
    630       //   class-name-or-namespace-name shall refer to the same entity.
    631       //
    632       // We already found the name in the scope of the object. Now, look
    633       // into the current scope (the scope of the postfix-expression) to
    634       // see if we can find the same name there. As above, if there is no
    635       // scope, reconstruct the result from the template instantiation itself.
    636       //
    637       // Note that C++11 does *not* perform this redundant lookup.
    638       NamedDecl *OuterDecl;
    639       if (S) {
    640         LookupResult FoundOuter(*this, &Identifier, IdentifierLoc,
    641                                 LookupNestedNameSpecifierName);
    642         LookupName(FoundOuter, S);
    643         OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
    644       } else
    645         OuterDecl = ScopeLookupResult;
    646 
    647       if (isAcceptableNestedNameSpecifier(OuterDecl) &&
    648           OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
    649           (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
    650            !Context.hasSameType(
    651                             Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
    652                                Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
    653         if (ErrorRecoveryLookup)
    654           return true;
    655 
    656          Diag(IdentifierLoc,
    657               diag::err_nested_name_member_ref_lookup_ambiguous)
    658            << &Identifier;
    659          Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
    660            << ObjectType;
    661          Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
    662 
    663          // Fall through so that we'll pick the name we found in the object
    664          // type, since that's probably what the user wanted anyway.
    665        }
    666     }
    667 
    668     if (auto *TD = dyn_cast_or_null<TypedefNameDecl>(SD))
    669       MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
    670 
    671     // If we're just performing this lookup for error-recovery purposes,
    672     // don't extend the nested-name-specifier. Just return now.
    673     if (ErrorRecoveryLookup)
    674       return false;
    675 
    676     // The use of a nested name specifier may trigger deprecation warnings.
    677     DiagnoseUseOfDecl(SD, CCLoc);
    678 
    679 
    680     if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
    681       SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
    682       return false;
    683     }
    684 
    685     if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
    686       SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
    687       return false;
    688     }
    689 
    690     QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
    691     TypeLocBuilder TLB;
    692     if (isa<InjectedClassNameType>(T)) {
    693       InjectedClassNameTypeLoc InjectedTL
    694         = TLB.push<InjectedClassNameTypeLoc>(T);
    695       InjectedTL.setNameLoc(IdentifierLoc);
    696     } else if (isa<RecordType>(T)) {
    697       RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
    698       RecordTL.setNameLoc(IdentifierLoc);
    699     } else if (isa<TypedefType>(T)) {
    700       TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
    701       TypedefTL.setNameLoc(IdentifierLoc);
    702     } else if (isa<EnumType>(T)) {
    703       EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
    704       EnumTL.setNameLoc(IdentifierLoc);
    705     } else if (isa<TemplateTypeParmType>(T)) {
    706       TemplateTypeParmTypeLoc TemplateTypeTL
    707         = TLB.push<TemplateTypeParmTypeLoc>(T);
    708       TemplateTypeTL.setNameLoc(IdentifierLoc);
    709     } else if (isa<UnresolvedUsingType>(T)) {
    710       UnresolvedUsingTypeLoc UnresolvedTL
    711         = TLB.push<UnresolvedUsingTypeLoc>(T);
    712       UnresolvedTL.setNameLoc(IdentifierLoc);
    713     } else if (isa<SubstTemplateTypeParmType>(T)) {
    714       SubstTemplateTypeParmTypeLoc TL
    715         = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
    716       TL.setNameLoc(IdentifierLoc);
    717     } else if (isa<SubstTemplateTypeParmPackType>(T)) {
    718       SubstTemplateTypeParmPackTypeLoc TL
    719         = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
    720       TL.setNameLoc(IdentifierLoc);
    721     } else {
    722       llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
    723     }
    724 
    725     if (T->isEnumeralType())
    726       Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
    727 
    728     SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
    729               CCLoc);
    730     return false;
    731   }
    732 
    733   // Otherwise, we have an error case.  If we don't want diagnostics, just
    734   // return an error now.
    735   if (ErrorRecoveryLookup)
    736     return true;
    737 
    738   // If we didn't find anything during our lookup, try again with
    739   // ordinary name lookup, which can help us produce better error
    740   // messages.
    741   if (Found.empty()) {
    742     Found.clear(LookupOrdinaryName);
    743     LookupName(Found, S);
    744   }
    745 
    746   // In Microsoft mode, if we are within a templated function and we can't
    747   // resolve Identifier, then extend the SS with Identifier. This will have
    748   // the effect of resolving Identifier during template instantiation.
    749   // The goal is to be able to resolve a function call whose
    750   // nested-name-specifier is located inside a dependent base class.
    751   // Example:
    752   //
    753   // class C {
    754   // public:
    755   //    static void foo2() {  }
    756   // };
    757   // template <class T> class A { public: typedef C D; };
    758   //
    759   // template <class T> class B : public A<T> {
    760   // public:
    761   //   void foo() { D::foo2(); }
    762   // };
    763   if (getLangOpts().MSVCCompat) {
    764     DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
    765     if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
    766       CXXRecordDecl *ContainingClass = dyn_cast<CXXRecordDecl>(DC->getParent());
    767       if (ContainingClass && ContainingClass->hasAnyDependentBases()) {
    768         Diag(IdentifierLoc, diag::ext_undeclared_unqual_id_with_dependent_base)
    769             << &Identifier << ContainingClass;
    770         SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
    771         return false;
    772       }
    773     }
    774   }
    775 
    776   if (!Found.empty()) {
    777     if (TypeDecl *TD = Found.getAsSingle<TypeDecl>())
    778       Diag(IdentifierLoc, diag::err_expected_class_or_namespace)
    779           << QualType(TD->getTypeForDecl(), 0) << getLangOpts().CPlusPlus;
    780     else {
    781       Diag(IdentifierLoc, diag::err_expected_class_or_namespace)
    782           << &Identifier << getLangOpts().CPlusPlus;
    783       if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
    784         Diag(ND->getLocation(), diag::note_entity_declared_at) << &Identifier;
    785     }
    786   } else if (SS.isSet())
    787     Diag(IdentifierLoc, diag::err_no_member) << &Identifier << LookupCtx
    788                                              << SS.getRange();
    789   else
    790     Diag(IdentifierLoc, diag::err_undeclared_var_use) << &Identifier;
    791 
    792   return true;
    793 }
    794 
    795 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
    796                                        IdentifierInfo &Identifier,
    797                                        SourceLocation IdentifierLoc,
    798                                        SourceLocation CCLoc,
    799                                        ParsedType ObjectType,
    800                                        bool EnteringContext,
    801                                        CXXScopeSpec &SS,
    802                                        bool ErrorRecoveryLookup,
    803                                        bool *IsCorrectedToColon) {
    804   if (SS.isInvalid())
    805     return true;
    806 
    807   return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
    808                                      GetTypeFromParser(ObjectType),
    809                                      EnteringContext, SS,
    810                                      /*ScopeLookupResult=*/nullptr, false,
    811                                      IsCorrectedToColon);
    812 }
    813 
    814 bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
    815                                                const DeclSpec &DS,
    816                                                SourceLocation ColonColonLoc) {
    817   if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
    818     return true;
    819 
    820   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
    821 
    822   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
    823   if (!T->isDependentType() && !T->getAs<TagType>()) {
    824     Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class_or_namespace)
    825       << T << getLangOpts().CPlusPlus;
    826     return true;
    827   }
    828 
    829   TypeLocBuilder TLB;
    830   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
    831   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
    832   SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
    833             ColonColonLoc);
    834   return false;
    835 }
    836 
    837 /// IsInvalidUnlessNestedName - This method is used for error recovery
    838 /// purposes to determine whether the specified identifier is only valid as
    839 /// a nested name specifier, for example a namespace name.  It is
    840 /// conservatively correct to always return false from this method.
    841 ///
    842 /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
    843 bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
    844                                      IdentifierInfo &Identifier,
    845                                      SourceLocation IdentifierLoc,
    846                                      SourceLocation ColonLoc,
    847                                      ParsedType ObjectType,
    848                                      bool EnteringContext) {
    849   if (SS.isInvalid())
    850     return false;
    851 
    852   return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
    853                                       GetTypeFromParser(ObjectType),
    854                                       EnteringContext, SS,
    855                                       /*ScopeLookupResult=*/nullptr, true);
    856 }
    857 
    858 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
    859                                        CXXScopeSpec &SS,
    860                                        SourceLocation TemplateKWLoc,
    861                                        TemplateTy Template,
    862                                        SourceLocation TemplateNameLoc,
    863                                        SourceLocation LAngleLoc,
    864                                        ASTTemplateArgsPtr TemplateArgsIn,
    865                                        SourceLocation RAngleLoc,
    866                                        SourceLocation CCLoc,
    867                                        bool EnteringContext) {
    868   if (SS.isInvalid())
    869     return true;
    870 
    871   // Translate the parser's template argument list in our AST format.
    872   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
    873   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
    874 
    875   DependentTemplateName *DTN = Template.get().getAsDependentTemplateName();
    876   if (DTN && DTN->isIdentifier()) {
    877     // Handle a dependent template specialization for which we cannot resolve
    878     // the template name.
    879     assert(DTN->getQualifier() == SS.getScopeRep());
    880     QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
    881                                                           DTN->getQualifier(),
    882                                                           DTN->getIdentifier(),
    883                                                                 TemplateArgs);
    884 
    885     // Create source-location information for this type.
    886     TypeLocBuilder Builder;
    887     DependentTemplateSpecializationTypeLoc SpecTL
    888       = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
    889     SpecTL.setElaboratedKeywordLoc(SourceLocation());
    890     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
    891     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
    892     SpecTL.setTemplateNameLoc(TemplateNameLoc);
    893     SpecTL.setLAngleLoc(LAngleLoc);
    894     SpecTL.setRAngleLoc(RAngleLoc);
    895     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
    896       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
    897 
    898     SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
    899               CCLoc);
    900     return false;
    901   }
    902 
    903   TemplateDecl *TD = Template.get().getAsTemplateDecl();
    904   if (Template.get().getAsOverloadedTemplate() || DTN ||
    905       isa<FunctionTemplateDecl>(TD) || isa<VarTemplateDecl>(TD)) {
    906     SourceRange R(TemplateNameLoc, RAngleLoc);
    907     if (SS.getRange().isValid())
    908       R.setBegin(SS.getRange().getBegin());
    909 
    910     Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
    911       << (TD && isa<VarTemplateDecl>(TD)) << Template.get() << R;
    912     NoteAllFoundTemplates(Template.get());
    913     return true;
    914   }
    915 
    916   // We were able to resolve the template name to an actual template.
    917   // Build an appropriate nested-name-specifier.
    918   QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc,
    919                                    TemplateArgs);
    920   if (T.isNull())
    921     return true;
    922 
    923   // Alias template specializations can produce types which are not valid
    924   // nested name specifiers.
    925   if (!T->isDependentType() && !T->getAs<TagType>()) {
    926     Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
    927     NoteAllFoundTemplates(Template.get());
    928     return true;
    929   }
    930 
    931   // Provide source-location information for the template specialization type.
    932   TypeLocBuilder Builder;
    933   TemplateSpecializationTypeLoc SpecTL
    934     = Builder.push<TemplateSpecializationTypeLoc>(T);
    935   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
    936   SpecTL.setTemplateNameLoc(TemplateNameLoc);
    937   SpecTL.setLAngleLoc(LAngleLoc);
    938   SpecTL.setRAngleLoc(RAngleLoc);
    939   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
    940     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
    941 
    942 
    943   SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
    944             CCLoc);
    945   return false;
    946 }
    947 
    948 namespace {
    949   /// \brief A structure that stores a nested-name-specifier annotation,
    950   /// including both the nested-name-specifier
    951   struct NestedNameSpecifierAnnotation {
    952     NestedNameSpecifier *NNS;
    953   };
    954 }
    955 
    956 void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
    957   if (SS.isEmpty() || SS.isInvalid())
    958     return nullptr;
    959 
    960   void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
    961                                                         SS.location_size()),
    962                                llvm::alignOf<NestedNameSpecifierAnnotation>());
    963   NestedNameSpecifierAnnotation *Annotation
    964     = new (Mem) NestedNameSpecifierAnnotation;
    965   Annotation->NNS = SS.getScopeRep();
    966   memcpy(Annotation + 1, SS.location_data(), SS.location_size());
    967   return Annotation;
    968 }
    969 
    970 void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
    971                                                 SourceRange AnnotationRange,
    972                                                 CXXScopeSpec &SS) {
    973   if (!AnnotationPtr) {
    974     SS.SetInvalid(AnnotationRange);
    975     return;
    976   }
    977 
    978   NestedNameSpecifierAnnotation *Annotation
    979     = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
    980   SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
    981 }
    982 
    983 bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
    984   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
    985 
    986   NestedNameSpecifier *Qualifier = SS.getScopeRep();
    987 
    988   // There are only two places a well-formed program may qualify a
    989   // declarator: first, when defining a namespace or class member
    990   // out-of-line, and second, when naming an explicitly-qualified
    991   // friend function.  The latter case is governed by
    992   // C++03 [basic.lookup.unqual]p10:
    993   //   In a friend declaration naming a member function, a name used
    994   //   in the function declarator and not part of a template-argument
    995   //   in a template-id is first looked up in the scope of the member
    996   //   function's class. If it is not found, or if the name is part of
    997   //   a template-argument in a template-id, the look up is as
    998   //   described for unqualified names in the definition of the class
    999   //   granting friendship.
   1000   // i.e. we don't push a scope unless it's a class member.
   1001 
   1002   switch (Qualifier->getKind()) {
   1003   case NestedNameSpecifier::Global:
   1004   case NestedNameSpecifier::Namespace:
   1005   case NestedNameSpecifier::NamespaceAlias:
   1006     // These are always namespace scopes.  We never want to enter a
   1007     // namespace scope from anything but a file context.
   1008     return CurContext->getRedeclContext()->isFileContext();
   1009 
   1010   case NestedNameSpecifier::Identifier:
   1011   case NestedNameSpecifier::TypeSpec:
   1012   case NestedNameSpecifier::TypeSpecWithTemplate:
   1013   case NestedNameSpecifier::Super:
   1014     // These are never namespace scopes.
   1015     return true;
   1016   }
   1017 
   1018   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
   1019 }
   1020 
   1021 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
   1022 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
   1023 /// After this method is called, according to [C++ 3.4.3p3], names should be
   1024 /// looked up in the declarator-id's scope, until the declarator is parsed and
   1025 /// ActOnCXXExitDeclaratorScope is called.
   1026 /// The 'SS' should be a non-empty valid CXXScopeSpec.
   1027 bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
   1028   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
   1029 
   1030   if (SS.isInvalid()) return true;
   1031 
   1032   DeclContext *DC = computeDeclContext(SS, true);
   1033   if (!DC) return true;
   1034 
   1035   // Before we enter a declarator's context, we need to make sure that
   1036   // it is a complete declaration context.
   1037   if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
   1038     return true;
   1039 
   1040   EnterDeclaratorContext(S, DC);
   1041 
   1042   // Rebuild the nested name specifier for the new scope.
   1043   if (DC->isDependentContext())
   1044     RebuildNestedNameSpecifierInCurrentInstantiation(SS);
   1045 
   1046   return false;
   1047 }
   1048 
   1049 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
   1050 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
   1051 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
   1052 /// Used to indicate that names should revert to being looked up in the
   1053 /// defining scope.
   1054 void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
   1055   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
   1056   if (SS.isInvalid())
   1057     return;
   1058   assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
   1059          "exiting declarator scope we never really entered");
   1060   ExitDeclaratorContext(S);
   1061 }
   1062