Home | History | Annotate | Download | only in Sema
      1 //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements type-related semantic analysis.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "TypeLocBuilder.h"
     16 #include "clang/AST/ASTConsumer.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/ASTMutationListener.h"
     19 #include "clang/AST/CXXInheritance.h"
     20 #include "clang/AST/DeclObjC.h"
     21 #include "clang/AST/DeclTemplate.h"
     22 #include "clang/AST/Expr.h"
     23 #include "clang/AST/TypeLoc.h"
     24 #include "clang/AST/TypeLocVisitor.h"
     25 #include "clang/Lex/Preprocessor.h"
     26 #include "clang/Basic/PartialDiagnostic.h"
     27 #include "clang/Basic/TargetInfo.h"
     28 #include "clang/Lex/Preprocessor.h"
     29 #include "clang/Sema/DeclSpec.h"
     30 #include "clang/Sema/DelayedDiagnostic.h"
     31 #include "clang/Sema/Lookup.h"
     32 #include "clang/Sema/ScopeInfo.h"
     33 #include "clang/Sema/Template.h"
     34 #include "llvm/ADT/SmallPtrSet.h"
     35 #include "llvm/ADT/SmallString.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 
     38 using namespace clang;
     39 
     40 enum TypeDiagSelector {
     41   TDS_Function,
     42   TDS_Pointer,
     43   TDS_ObjCObjOrBlock
     44 };
     45 
     46 /// isOmittedBlockReturnType - Return true if this declarator is missing a
     47 /// return type because this is a omitted return type on a block literal.
     48 static bool isOmittedBlockReturnType(const Declarator &D) {
     49   if (D.getContext() != Declarator::BlockLiteralContext ||
     50       D.getDeclSpec().hasTypeSpecifier())
     51     return false;
     52 
     53   if (D.getNumTypeObjects() == 0)
     54     return true;   // ^{ ... }
     55 
     56   if (D.getNumTypeObjects() == 1 &&
     57       D.getTypeObject(0).Kind == DeclaratorChunk::Function)
     58     return true;   // ^(int X, float Y) { ... }
     59 
     60   return false;
     61 }
     62 
     63 /// diagnoseBadTypeAttribute - Diagnoses a type attribute which
     64 /// doesn't apply to the given type.
     65 static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
     66                                      QualType type) {
     67   TypeDiagSelector WhichType;
     68   bool useExpansionLoc = true;
     69   switch (attr.getKind()) {
     70   case AttributeList::AT_ObjCGC:        WhichType = TDS_Pointer; break;
     71   case AttributeList::AT_ObjCOwnership: WhichType = TDS_ObjCObjOrBlock; break;
     72   default:
     73     // Assume everything else was a function attribute.
     74     WhichType = TDS_Function;
     75     useExpansionLoc = false;
     76     break;
     77   }
     78 
     79   SourceLocation loc = attr.getLoc();
     80   StringRef name = attr.getName()->getName();
     81 
     82   // The GC attributes are usually written with macros;  special-case them.
     83   IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
     84                                           : nullptr;
     85   if (useExpansionLoc && loc.isMacroID() && II) {
     86     if (II->isStr("strong")) {
     87       if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
     88     } else if (II->isStr("weak")) {
     89       if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
     90     }
     91   }
     92 
     93   S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
     94     << type;
     95 }
     96 
     97 // objc_gc applies to Objective-C pointers or, otherwise, to the
     98 // smallest available pointer type (i.e. 'void*' in 'void**').
     99 #define OBJC_POINTER_TYPE_ATTRS_CASELIST \
    100     case AttributeList::AT_ObjCGC: \
    101     case AttributeList::AT_ObjCOwnership
    102 
    103 // Function type attributes.
    104 #define FUNCTION_TYPE_ATTRS_CASELIST \
    105     case AttributeList::AT_NoReturn: \
    106     case AttributeList::AT_CDecl: \
    107     case AttributeList::AT_FastCall: \
    108     case AttributeList::AT_StdCall: \
    109     case AttributeList::AT_ThisCall: \
    110     case AttributeList::AT_Pascal: \
    111     case AttributeList::AT_VectorCall: \
    112     case AttributeList::AT_MSABI: \
    113     case AttributeList::AT_SysVABI: \
    114     case AttributeList::AT_Regparm: \
    115     case AttributeList::AT_Pcs: \
    116     case AttributeList::AT_IntelOclBicc
    117 
    118 // Microsoft-specific type qualifiers.
    119 #define MS_TYPE_ATTRS_CASELIST  \
    120     case AttributeList::AT_Ptr32: \
    121     case AttributeList::AT_Ptr64: \
    122     case AttributeList::AT_SPtr: \
    123     case AttributeList::AT_UPtr
    124 
    125 // Nullability qualifiers.
    126 #define NULLABILITY_TYPE_ATTRS_CASELIST         \
    127     case AttributeList::AT_TypeNonNull:         \
    128     case AttributeList::AT_TypeNullable:        \
    129     case AttributeList::AT_TypeNullUnspecified
    130 
    131 namespace {
    132   /// An object which stores processing state for the entire
    133   /// GetTypeForDeclarator process.
    134   class TypeProcessingState {
    135     Sema &sema;
    136 
    137     /// The declarator being processed.
    138     Declarator &declarator;
    139 
    140     /// The index of the declarator chunk we're currently processing.
    141     /// May be the total number of valid chunks, indicating the
    142     /// DeclSpec.
    143     unsigned chunkIndex;
    144 
    145     /// Whether there are non-trivial modifications to the decl spec.
    146     bool trivial;
    147 
    148     /// Whether we saved the attributes in the decl spec.
    149     bool hasSavedAttrs;
    150 
    151     /// The original set of attributes on the DeclSpec.
    152     SmallVector<AttributeList*, 2> savedAttrs;
    153 
    154     /// A list of attributes to diagnose the uselessness of when the
    155     /// processing is complete.
    156     SmallVector<AttributeList*, 2> ignoredTypeAttrs;
    157 
    158   public:
    159     TypeProcessingState(Sema &sema, Declarator &declarator)
    160       : sema(sema), declarator(declarator),
    161         chunkIndex(declarator.getNumTypeObjects()),
    162         trivial(true), hasSavedAttrs(false) {}
    163 
    164     Sema &getSema() const {
    165       return sema;
    166     }
    167 
    168     Declarator &getDeclarator() const {
    169       return declarator;
    170     }
    171 
    172     bool isProcessingDeclSpec() const {
    173       return chunkIndex == declarator.getNumTypeObjects();
    174     }
    175 
    176     unsigned getCurrentChunkIndex() const {
    177       return chunkIndex;
    178     }
    179 
    180     void setCurrentChunkIndex(unsigned idx) {
    181       assert(idx <= declarator.getNumTypeObjects());
    182       chunkIndex = idx;
    183     }
    184 
    185     AttributeList *&getCurrentAttrListRef() const {
    186       if (isProcessingDeclSpec())
    187         return getMutableDeclSpec().getAttributes().getListRef();
    188       return declarator.getTypeObject(chunkIndex).getAttrListRef();
    189     }
    190 
    191     /// Save the current set of attributes on the DeclSpec.
    192     void saveDeclSpecAttrs() {
    193       // Don't try to save them multiple times.
    194       if (hasSavedAttrs) return;
    195 
    196       DeclSpec &spec = getMutableDeclSpec();
    197       for (AttributeList *attr = spec.getAttributes().getList(); attr;
    198              attr = attr->getNext())
    199         savedAttrs.push_back(attr);
    200       trivial &= savedAttrs.empty();
    201       hasSavedAttrs = true;
    202     }
    203 
    204     /// Record that we had nowhere to put the given type attribute.
    205     /// We will diagnose such attributes later.
    206     void addIgnoredTypeAttr(AttributeList &attr) {
    207       ignoredTypeAttrs.push_back(&attr);
    208     }
    209 
    210     /// Diagnose all the ignored type attributes, given that the
    211     /// declarator worked out to the given type.
    212     void diagnoseIgnoredTypeAttrs(QualType type) const {
    213       for (auto *Attr : ignoredTypeAttrs)
    214         diagnoseBadTypeAttribute(getSema(), *Attr, type);
    215     }
    216 
    217     ~TypeProcessingState() {
    218       if (trivial) return;
    219 
    220       restoreDeclSpecAttrs();
    221     }
    222 
    223   private:
    224     DeclSpec &getMutableDeclSpec() const {
    225       return const_cast<DeclSpec&>(declarator.getDeclSpec());
    226     }
    227 
    228     void restoreDeclSpecAttrs() {
    229       assert(hasSavedAttrs);
    230 
    231       if (savedAttrs.empty()) {
    232         getMutableDeclSpec().getAttributes().set(nullptr);
    233         return;
    234       }
    235 
    236       getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
    237       for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
    238         savedAttrs[i]->setNext(savedAttrs[i+1]);
    239       savedAttrs.back()->setNext(nullptr);
    240     }
    241   };
    242 }
    243 
    244 static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
    245   attr.setNext(head);
    246   head = &attr;
    247 }
    248 
    249 static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
    250   if (head == &attr) {
    251     head = attr.getNext();
    252     return;
    253   }
    254 
    255   AttributeList *cur = head;
    256   while (true) {
    257     assert(cur && cur->getNext() && "ran out of attrs?");
    258     if (cur->getNext() == &attr) {
    259       cur->setNext(attr.getNext());
    260       return;
    261     }
    262     cur = cur->getNext();
    263   }
    264 }
    265 
    266 static void moveAttrFromListToList(AttributeList &attr,
    267                                    AttributeList *&fromList,
    268                                    AttributeList *&toList) {
    269   spliceAttrOutOfList(attr, fromList);
    270   spliceAttrIntoList(attr, toList);
    271 }
    272 
    273 /// The location of a type attribute.
    274 enum TypeAttrLocation {
    275   /// The attribute is in the decl-specifier-seq.
    276   TAL_DeclSpec,
    277   /// The attribute is part of a DeclaratorChunk.
    278   TAL_DeclChunk,
    279   /// The attribute is immediately after the declaration's name.
    280   TAL_DeclName
    281 };
    282 
    283 static void processTypeAttrs(TypeProcessingState &state,
    284                              QualType &type, TypeAttrLocation TAL,
    285                              AttributeList *attrs);
    286 
    287 static bool handleFunctionTypeAttr(TypeProcessingState &state,
    288                                    AttributeList &attr,
    289                                    QualType &type);
    290 
    291 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
    292                                              AttributeList &attr,
    293                                              QualType &type);
    294 
    295 static bool handleObjCGCTypeAttr(TypeProcessingState &state,
    296                                  AttributeList &attr, QualType &type);
    297 
    298 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
    299                                        AttributeList &attr, QualType &type);
    300 
    301 static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
    302                                       AttributeList &attr, QualType &type) {
    303   if (attr.getKind() == AttributeList::AT_ObjCGC)
    304     return handleObjCGCTypeAttr(state, attr, type);
    305   assert(attr.getKind() == AttributeList::AT_ObjCOwnership);
    306   return handleObjCOwnershipTypeAttr(state, attr, type);
    307 }
    308 
    309 /// Given the index of a declarator chunk, check whether that chunk
    310 /// directly specifies the return type of a function and, if so, find
    311 /// an appropriate place for it.
    312 ///
    313 /// \param i - a notional index which the search will start
    314 ///   immediately inside
    315 ///
    316 /// \param onlyBlockPointers Whether we should only look into block
    317 /// pointer types (vs. all pointer types).
    318 static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
    319                                                 unsigned i,
    320                                                 bool onlyBlockPointers) {
    321   assert(i <= declarator.getNumTypeObjects());
    322 
    323   DeclaratorChunk *result = nullptr;
    324 
    325   // First, look inwards past parens for a function declarator.
    326   for (; i != 0; --i) {
    327     DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
    328     switch (fnChunk.Kind) {
    329     case DeclaratorChunk::Paren:
    330       continue;
    331 
    332     // If we find anything except a function, bail out.
    333     case DeclaratorChunk::Pointer:
    334     case DeclaratorChunk::BlockPointer:
    335     case DeclaratorChunk::Array:
    336     case DeclaratorChunk::Reference:
    337     case DeclaratorChunk::MemberPointer:
    338       return result;
    339 
    340     // If we do find a function declarator, scan inwards from that,
    341     // looking for a (block-)pointer declarator.
    342     case DeclaratorChunk::Function:
    343       for (--i; i != 0; --i) {
    344         DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
    345         switch (ptrChunk.Kind) {
    346         case DeclaratorChunk::Paren:
    347         case DeclaratorChunk::Array:
    348         case DeclaratorChunk::Function:
    349         case DeclaratorChunk::Reference:
    350           continue;
    351 
    352         case DeclaratorChunk::MemberPointer:
    353         case DeclaratorChunk::Pointer:
    354           if (onlyBlockPointers)
    355             continue;
    356 
    357           // fallthrough
    358 
    359         case DeclaratorChunk::BlockPointer:
    360           result = &ptrChunk;
    361           goto continue_outer;
    362         }
    363         llvm_unreachable("bad declarator chunk kind");
    364       }
    365 
    366       // If we run out of declarators doing that, we're done.
    367       return result;
    368     }
    369     llvm_unreachable("bad declarator chunk kind");
    370 
    371     // Okay, reconsider from our new point.
    372   continue_outer: ;
    373   }
    374 
    375   // Ran out of chunks, bail out.
    376   return result;
    377 }
    378 
    379 /// Given that an objc_gc attribute was written somewhere on a
    380 /// declaration *other* than on the declarator itself (for which, use
    381 /// distributeObjCPointerTypeAttrFromDeclarator), and given that it
    382 /// didn't apply in whatever position it was written in, try to move
    383 /// it to a more appropriate position.
    384 static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
    385                                           AttributeList &attr,
    386                                           QualType type) {
    387   Declarator &declarator = state.getDeclarator();
    388 
    389   // Move it to the outermost normal or block pointer declarator.
    390   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
    391     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
    392     switch (chunk.Kind) {
    393     case DeclaratorChunk::Pointer:
    394     case DeclaratorChunk::BlockPointer: {
    395       // But don't move an ARC ownership attribute to the return type
    396       // of a block.
    397       DeclaratorChunk *destChunk = nullptr;
    398       if (state.isProcessingDeclSpec() &&
    399           attr.getKind() == AttributeList::AT_ObjCOwnership)
    400         destChunk = maybeMovePastReturnType(declarator, i - 1,
    401                                             /*onlyBlockPointers=*/true);
    402       if (!destChunk) destChunk = &chunk;
    403 
    404       moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
    405                              destChunk->getAttrListRef());
    406       return;
    407     }
    408 
    409     case DeclaratorChunk::Paren:
    410     case DeclaratorChunk::Array:
    411       continue;
    412 
    413     // We may be starting at the return type of a block.
    414     case DeclaratorChunk::Function:
    415       if (state.isProcessingDeclSpec() &&
    416           attr.getKind() == AttributeList::AT_ObjCOwnership) {
    417         if (DeclaratorChunk *dest = maybeMovePastReturnType(
    418                                       declarator, i,
    419                                       /*onlyBlockPointers=*/true)) {
    420           moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
    421                                  dest->getAttrListRef());
    422           return;
    423         }
    424       }
    425       goto error;
    426 
    427     // Don't walk through these.
    428     case DeclaratorChunk::Reference:
    429     case DeclaratorChunk::MemberPointer:
    430       goto error;
    431     }
    432   }
    433  error:
    434 
    435   diagnoseBadTypeAttribute(state.getSema(), attr, type);
    436 }
    437 
    438 /// Distribute an objc_gc type attribute that was written on the
    439 /// declarator.
    440 static void
    441 distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
    442                                             AttributeList &attr,
    443                                             QualType &declSpecType) {
    444   Declarator &declarator = state.getDeclarator();
    445 
    446   // objc_gc goes on the innermost pointer to something that's not a
    447   // pointer.
    448   unsigned innermost = -1U;
    449   bool considerDeclSpec = true;
    450   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
    451     DeclaratorChunk &chunk = declarator.getTypeObject(i);
    452     switch (chunk.Kind) {
    453     case DeclaratorChunk::Pointer:
    454     case DeclaratorChunk::BlockPointer:
    455       innermost = i;
    456       continue;
    457 
    458     case DeclaratorChunk::Reference:
    459     case DeclaratorChunk::MemberPointer:
    460     case DeclaratorChunk::Paren:
    461     case DeclaratorChunk::Array:
    462       continue;
    463 
    464     case DeclaratorChunk::Function:
    465       considerDeclSpec = false;
    466       goto done;
    467     }
    468   }
    469  done:
    470 
    471   // That might actually be the decl spec if we weren't blocked by
    472   // anything in the declarator.
    473   if (considerDeclSpec) {
    474     if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
    475       // Splice the attribute into the decl spec.  Prevents the
    476       // attribute from being applied multiple times and gives
    477       // the source-location-filler something to work with.
    478       state.saveDeclSpecAttrs();
    479       moveAttrFromListToList(attr, declarator.getAttrListRef(),
    480                declarator.getMutableDeclSpec().getAttributes().getListRef());
    481       return;
    482     }
    483   }
    484 
    485   // Otherwise, if we found an appropriate chunk, splice the attribute
    486   // into it.
    487   if (innermost != -1U) {
    488     moveAttrFromListToList(attr, declarator.getAttrListRef(),
    489                        declarator.getTypeObject(innermost).getAttrListRef());
    490     return;
    491   }
    492 
    493   // Otherwise, diagnose when we're done building the type.
    494   spliceAttrOutOfList(attr, declarator.getAttrListRef());
    495   state.addIgnoredTypeAttr(attr);
    496 }
    497 
    498 /// A function type attribute was written somewhere in a declaration
    499 /// *other* than on the declarator itself or in the decl spec.  Given
    500 /// that it didn't apply in whatever position it was written in, try
    501 /// to move it to a more appropriate position.
    502 static void distributeFunctionTypeAttr(TypeProcessingState &state,
    503                                        AttributeList &attr,
    504                                        QualType type) {
    505   Declarator &declarator = state.getDeclarator();
    506 
    507   // Try to push the attribute from the return type of a function to
    508   // the function itself.
    509   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
    510     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
    511     switch (chunk.Kind) {
    512     case DeclaratorChunk::Function:
    513       moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
    514                              chunk.getAttrListRef());
    515       return;
    516 
    517     case DeclaratorChunk::Paren:
    518     case DeclaratorChunk::Pointer:
    519     case DeclaratorChunk::BlockPointer:
    520     case DeclaratorChunk::Array:
    521     case DeclaratorChunk::Reference:
    522     case DeclaratorChunk::MemberPointer:
    523       continue;
    524     }
    525   }
    526 
    527   diagnoseBadTypeAttribute(state.getSema(), attr, type);
    528 }
    529 
    530 /// Try to distribute a function type attribute to the innermost
    531 /// function chunk or type.  Returns true if the attribute was
    532 /// distributed, false if no location was found.
    533 static bool
    534 distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
    535                                       AttributeList &attr,
    536                                       AttributeList *&attrList,
    537                                       QualType &declSpecType) {
    538   Declarator &declarator = state.getDeclarator();
    539 
    540   // Put it on the innermost function chunk, if there is one.
    541   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
    542     DeclaratorChunk &chunk = declarator.getTypeObject(i);
    543     if (chunk.Kind != DeclaratorChunk::Function) continue;
    544 
    545     moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
    546     return true;
    547   }
    548 
    549   return handleFunctionTypeAttr(state, attr, declSpecType);
    550 }
    551 
    552 /// A function type attribute was written in the decl spec.  Try to
    553 /// apply it somewhere.
    554 static void
    555 distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
    556                                        AttributeList &attr,
    557                                        QualType &declSpecType) {
    558   state.saveDeclSpecAttrs();
    559 
    560   // C++11 attributes before the decl specifiers actually appertain to
    561   // the declarators. Move them straight there. We don't support the
    562   // 'put them wherever you like' semantics we allow for GNU attributes.
    563   if (attr.isCXX11Attribute()) {
    564     moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
    565                            state.getDeclarator().getAttrListRef());
    566     return;
    567   }
    568 
    569   // Try to distribute to the innermost.
    570   if (distributeFunctionTypeAttrToInnermost(state, attr,
    571                                             state.getCurrentAttrListRef(),
    572                                             declSpecType))
    573     return;
    574 
    575   // If that failed, diagnose the bad attribute when the declarator is
    576   // fully built.
    577   state.addIgnoredTypeAttr(attr);
    578 }
    579 
    580 /// A function type attribute was written on the declarator.  Try to
    581 /// apply it somewhere.
    582 static void
    583 distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
    584                                          AttributeList &attr,
    585                                          QualType &declSpecType) {
    586   Declarator &declarator = state.getDeclarator();
    587 
    588   // Try to distribute to the innermost.
    589   if (distributeFunctionTypeAttrToInnermost(state, attr,
    590                                             declarator.getAttrListRef(),
    591                                             declSpecType))
    592     return;
    593 
    594   // If that failed, diagnose the bad attribute when the declarator is
    595   // fully built.
    596   spliceAttrOutOfList(attr, declarator.getAttrListRef());
    597   state.addIgnoredTypeAttr(attr);
    598 }
    599 
    600 /// \brief Given that there are attributes written on the declarator
    601 /// itself, try to distribute any type attributes to the appropriate
    602 /// declarator chunk.
    603 ///
    604 /// These are attributes like the following:
    605 ///   int f ATTR;
    606 ///   int (f ATTR)();
    607 /// but not necessarily this:
    608 ///   int f() ATTR;
    609 static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
    610                                               QualType &declSpecType) {
    611   // Collect all the type attributes from the declarator itself.
    612   assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
    613   AttributeList *attr = state.getDeclarator().getAttributes();
    614   AttributeList *next;
    615   do {
    616     next = attr->getNext();
    617 
    618     // Do not distribute C++11 attributes. They have strict rules for what
    619     // they appertain to.
    620     if (attr->isCXX11Attribute())
    621       continue;
    622 
    623     switch (attr->getKind()) {
    624     OBJC_POINTER_TYPE_ATTRS_CASELIST:
    625       distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
    626       break;
    627 
    628     case AttributeList::AT_NSReturnsRetained:
    629       if (!state.getSema().getLangOpts().ObjCAutoRefCount)
    630         break;
    631       // fallthrough
    632 
    633     FUNCTION_TYPE_ATTRS_CASELIST:
    634       distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
    635       break;
    636 
    637     MS_TYPE_ATTRS_CASELIST:
    638       // Microsoft type attributes cannot go after the declarator-id.
    639       continue;
    640 
    641     NULLABILITY_TYPE_ATTRS_CASELIST:
    642       // Nullability specifiers cannot go after the declarator-id.
    643 
    644     // Objective-C __kindof does not get distributed.
    645     case AttributeList::AT_ObjCKindOf:
    646       continue;
    647 
    648     default:
    649       break;
    650     }
    651   } while ((attr = next));
    652 }
    653 
    654 /// Add a synthetic '()' to a block-literal declarator if it is
    655 /// required, given the return type.
    656 static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
    657                                           QualType declSpecType) {
    658   Declarator &declarator = state.getDeclarator();
    659 
    660   // First, check whether the declarator would produce a function,
    661   // i.e. whether the innermost semantic chunk is a function.
    662   if (declarator.isFunctionDeclarator()) {
    663     // If so, make that declarator a prototyped declarator.
    664     declarator.getFunctionTypeInfo().hasPrototype = true;
    665     return;
    666   }
    667 
    668   // If there are any type objects, the type as written won't name a
    669   // function, regardless of the decl spec type.  This is because a
    670   // block signature declarator is always an abstract-declarator, and
    671   // abstract-declarators can't just be parentheses chunks.  Therefore
    672   // we need to build a function chunk unless there are no type
    673   // objects and the decl spec type is a function.
    674   if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
    675     return;
    676 
    677   // Note that there *are* cases with invalid declarators where
    678   // declarators consist solely of parentheses.  In general, these
    679   // occur only in failed efforts to make function declarators, so
    680   // faking up the function chunk is still the right thing to do.
    681 
    682   // Otherwise, we need to fake up a function declarator.
    683   SourceLocation loc = declarator.getLocStart();
    684 
    685   // ...and *prepend* it to the declarator.
    686   SourceLocation NoLoc;
    687   declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
    688       /*HasProto=*/true,
    689       /*IsAmbiguous=*/false,
    690       /*LParenLoc=*/NoLoc,
    691       /*ArgInfo=*/nullptr,
    692       /*NumArgs=*/0,
    693       /*EllipsisLoc=*/NoLoc,
    694       /*RParenLoc=*/NoLoc,
    695       /*TypeQuals=*/0,
    696       /*RefQualifierIsLvalueRef=*/true,
    697       /*RefQualifierLoc=*/NoLoc,
    698       /*ConstQualifierLoc=*/NoLoc,
    699       /*VolatileQualifierLoc=*/NoLoc,
    700       /*RestrictQualifierLoc=*/NoLoc,
    701       /*MutableLoc=*/NoLoc, EST_None,
    702       /*ESpecRange=*/SourceRange(),
    703       /*Exceptions=*/nullptr,
    704       /*ExceptionRanges=*/nullptr,
    705       /*NumExceptions=*/0,
    706       /*NoexceptExpr=*/nullptr,
    707       /*ExceptionSpecTokens=*/nullptr,
    708       loc, loc, declarator));
    709 
    710   // For consistency, make sure the state still has us as processing
    711   // the decl spec.
    712   assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
    713   state.setCurrentChunkIndex(declarator.getNumTypeObjects());
    714 }
    715 
    716 static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
    717                                             unsigned &TypeQuals,
    718                                             QualType TypeSoFar,
    719                                             unsigned RemoveTQs,
    720                                             unsigned DiagID) {
    721   // If this occurs outside a template instantiation, warn the user about
    722   // it; they probably didn't mean to specify a redundant qualifier.
    723   typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
    724   for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
    725                        QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
    726                        QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
    727     if (!(RemoveTQs & Qual.first))
    728       continue;
    729 
    730     if (S.ActiveTemplateInstantiations.empty()) {
    731       if (TypeQuals & Qual.first)
    732         S.Diag(Qual.second, DiagID)
    733           << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
    734           << FixItHint::CreateRemoval(Qual.second);
    735     }
    736 
    737     TypeQuals &= ~Qual.first;
    738   }
    739 }
    740 
    741 /// Apply Objective-C type arguments to the given type.
    742 static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type,
    743                                   ArrayRef<TypeSourceInfo *> typeArgs,
    744                                   SourceRange typeArgsRange,
    745                                   bool failOnError = false) {
    746   // We can only apply type arguments to an Objective-C class type.
    747   const auto *objcObjectType = type->getAs<ObjCObjectType>();
    748   if (!objcObjectType || !objcObjectType->getInterface()) {
    749     S.Diag(loc, diag::err_objc_type_args_non_class)
    750       << type
    751       << typeArgsRange;
    752 
    753     if (failOnError)
    754       return QualType();
    755     return type;
    756   }
    757 
    758   // The class type must be parameterized.
    759   ObjCInterfaceDecl *objcClass = objcObjectType->getInterface();
    760   ObjCTypeParamList *typeParams = objcClass->getTypeParamList();
    761   if (!typeParams) {
    762     S.Diag(loc, diag::err_objc_type_args_non_parameterized_class)
    763       << objcClass->getDeclName()
    764       << FixItHint::CreateRemoval(typeArgsRange);
    765 
    766     if (failOnError)
    767       return QualType();
    768 
    769     return type;
    770   }
    771 
    772   // The type must not already be specialized.
    773   if (objcObjectType->isSpecialized()) {
    774     S.Diag(loc, diag::err_objc_type_args_specialized_class)
    775       << type
    776       << FixItHint::CreateRemoval(typeArgsRange);
    777 
    778     if (failOnError)
    779       return QualType();
    780 
    781     return type;
    782   }
    783 
    784   // Check the type arguments.
    785   SmallVector<QualType, 4> finalTypeArgs;
    786   unsigned numTypeParams = typeParams->size();
    787   bool anyPackExpansions = false;
    788   for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) {
    789     TypeSourceInfo *typeArgInfo = typeArgs[i];
    790     QualType typeArg = typeArgInfo->getType();
    791 
    792     // Type arguments cannot have explicit qualifiers or nullability.
    793     // We ignore indirect sources of these, e.g. behind typedefs or
    794     // template arguments.
    795     if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) {
    796       bool diagnosed = false;
    797       SourceRange rangeToRemove;
    798       if (auto attr = qual.getAs<AttributedTypeLoc>()) {
    799         rangeToRemove = attr.getLocalSourceRange();
    800         if (attr.getTypePtr()->getImmediateNullability()) {
    801           typeArg = attr.getTypePtr()->getModifiedType();
    802           S.Diag(attr.getLocStart(),
    803                  diag::err_objc_type_arg_explicit_nullability)
    804             << typeArg << FixItHint::CreateRemoval(rangeToRemove);
    805           diagnosed = true;
    806         }
    807       }
    808 
    809       if (!diagnosed) {
    810         S.Diag(qual.getLocStart(), diag::err_objc_type_arg_qualified)
    811           << typeArg << typeArg.getQualifiers().getAsString()
    812           << FixItHint::CreateRemoval(rangeToRemove);
    813       }
    814     }
    815 
    816     // Remove qualifiers even if they're non-local.
    817     typeArg = typeArg.getUnqualifiedType();
    818 
    819     finalTypeArgs.push_back(typeArg);
    820 
    821     if (typeArg->getAs<PackExpansionType>())
    822       anyPackExpansions = true;
    823 
    824     // Find the corresponding type parameter, if there is one.
    825     ObjCTypeParamDecl *typeParam = nullptr;
    826     if (!anyPackExpansions) {
    827       if (i < numTypeParams) {
    828         typeParam = typeParams->begin()[i];
    829       } else {
    830         // Too many arguments.
    831         S.Diag(loc, diag::err_objc_type_args_wrong_arity)
    832           << false
    833           << objcClass->getDeclName()
    834           << (unsigned)typeArgs.size()
    835           << numTypeParams;
    836         S.Diag(objcClass->getLocation(), diag::note_previous_decl)
    837           << objcClass;
    838 
    839         if (failOnError)
    840           return QualType();
    841 
    842         return type;
    843       }
    844     }
    845 
    846     // Objective-C object pointer types must be substitutable for the bounds.
    847     if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) {
    848       // If we don't have a type parameter to match against, assume
    849       // everything is fine. There was a prior pack expansion that
    850       // means we won't be able to match anything.
    851       if (!typeParam) {
    852         assert(anyPackExpansions && "Too many arguments?");
    853         continue;
    854       }
    855 
    856       // Retrieve the bound.
    857       QualType bound = typeParam->getUnderlyingType();
    858       const auto *boundObjC = bound->getAs<ObjCObjectPointerType>();
    859 
    860       // Determine whether the type argument is substitutable for the bound.
    861       if (typeArgObjC->isObjCIdType()) {
    862         // When the type argument is 'id', the only acceptable type
    863         // parameter bound is 'id'.
    864         if (boundObjC->isObjCIdType())
    865           continue;
    866       } else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) {
    867         // Otherwise, we follow the assignability rules.
    868         continue;
    869       }
    870 
    871       // Diagnose the mismatch.
    872       S.Diag(typeArgInfo->getTypeLoc().getLocStart(),
    873              diag::err_objc_type_arg_does_not_match_bound)
    874         << typeArg << bound << typeParam->getDeclName();
    875       S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
    876         << typeParam->getDeclName();
    877 
    878       if (failOnError)
    879         return QualType();
    880 
    881       return type;
    882     }
    883 
    884     // Block pointer types are permitted for unqualified 'id' bounds.
    885     if (typeArg->isBlockPointerType()) {
    886       // If we don't have a type parameter to match against, assume
    887       // everything is fine. There was a prior pack expansion that
    888       // means we won't be able to match anything.
    889       if (!typeParam) {
    890         assert(anyPackExpansions && "Too many arguments?");
    891         continue;
    892       }
    893 
    894       // Retrieve the bound.
    895       QualType bound = typeParam->getUnderlyingType();
    896       if (bound->isBlockCompatibleObjCPointerType(S.Context))
    897         continue;
    898 
    899       // Diagnose the mismatch.
    900       S.Diag(typeArgInfo->getTypeLoc().getLocStart(),
    901              diag::err_objc_type_arg_does_not_match_bound)
    902         << typeArg << bound << typeParam->getDeclName();
    903       S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
    904         << typeParam->getDeclName();
    905 
    906       if (failOnError)
    907         return QualType();
    908 
    909       return type;
    910     }
    911 
    912     // Dependent types will be checked at instantiation time.
    913     if (typeArg->isDependentType()) {
    914       continue;
    915     }
    916 
    917     // Diagnose non-id-compatible type arguments.
    918     S.Diag(typeArgInfo->getTypeLoc().getLocStart(),
    919            diag::err_objc_type_arg_not_id_compatible)
    920       << typeArg
    921       << typeArgInfo->getTypeLoc().getSourceRange();
    922 
    923     if (failOnError)
    924       return QualType();
    925 
    926     return type;
    927   }
    928 
    929   // Make sure we didn't have the wrong number of arguments.
    930   if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) {
    931     S.Diag(loc, diag::err_objc_type_args_wrong_arity)
    932       << (typeArgs.size() < typeParams->size())
    933       << objcClass->getDeclName()
    934       << (unsigned)finalTypeArgs.size()
    935       << (unsigned)numTypeParams;
    936     S.Diag(objcClass->getLocation(), diag::note_previous_decl)
    937       << objcClass;
    938 
    939     if (failOnError)
    940       return QualType();
    941 
    942     return type;
    943   }
    944 
    945   // Success. Form the specialized type.
    946   return S.Context.getObjCObjectType(type, finalTypeArgs, { }, false);
    947 }
    948 
    949 /// Apply Objective-C protocol qualifiers to the given type.
    950 static QualType applyObjCProtocolQualifiers(
    951                   Sema &S, SourceLocation loc, SourceRange range, QualType type,
    952                   ArrayRef<ObjCProtocolDecl *> protocols,
    953                   const SourceLocation *protocolLocs,
    954                   bool failOnError = false) {
    955   ASTContext &ctx = S.Context;
    956   if (const ObjCObjectType *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
    957     // FIXME: Check for protocols to which the class type is already
    958     // known to conform.
    959 
    960     return ctx.getObjCObjectType(objT->getBaseType(),
    961                                  objT->getTypeArgsAsWritten(),
    962                                  protocols,
    963                                  objT->isKindOfTypeAsWritten());
    964   }
    965 
    966   if (type->isObjCObjectType()) {
    967     // Silently overwrite any existing protocol qualifiers.
    968     // TODO: determine whether that's the right thing to do.
    969 
    970     // FIXME: Check for protocols to which the class type is already
    971     // known to conform.
    972     return ctx.getObjCObjectType(type, { }, protocols, false);
    973   }
    974 
    975   // id<protocol-list>
    976   if (type->isObjCIdType()) {
    977     const ObjCObjectPointerType *objPtr = type->castAs<ObjCObjectPointerType>();
    978     type = ctx.getObjCObjectType(ctx.ObjCBuiltinIdTy, { }, protocols,
    979                                  objPtr->isKindOfType());
    980     return ctx.getObjCObjectPointerType(type);
    981   }
    982 
    983   // Class<protocol-list>
    984   if (type->isObjCClassType()) {
    985     const ObjCObjectPointerType *objPtr = type->castAs<ObjCObjectPointerType>();
    986     type = ctx.getObjCObjectType(ctx.ObjCBuiltinClassTy, { }, protocols,
    987                                  objPtr->isKindOfType());
    988     return ctx.getObjCObjectPointerType(type);
    989   }
    990 
    991   S.Diag(loc, diag::err_invalid_protocol_qualifiers)
    992     << range;
    993 
    994   if (failOnError)
    995     return QualType();
    996 
    997   return type;
    998 }
    999 
   1000 QualType Sema::BuildObjCObjectType(QualType BaseType,
   1001                                    SourceLocation Loc,
   1002                                    SourceLocation TypeArgsLAngleLoc,
   1003                                    ArrayRef<TypeSourceInfo *> TypeArgs,
   1004                                    SourceLocation TypeArgsRAngleLoc,
   1005                                    SourceLocation ProtocolLAngleLoc,
   1006                                    ArrayRef<ObjCProtocolDecl *> Protocols,
   1007                                    ArrayRef<SourceLocation> ProtocolLocs,
   1008                                    SourceLocation ProtocolRAngleLoc,
   1009                                    bool FailOnError) {
   1010   QualType Result = BaseType;
   1011   if (!TypeArgs.empty()) {
   1012     Result = applyObjCTypeArgs(*this, Loc, Result, TypeArgs,
   1013                                SourceRange(TypeArgsLAngleLoc,
   1014                                            TypeArgsRAngleLoc),
   1015                                FailOnError);
   1016     if (FailOnError && Result.isNull())
   1017       return QualType();
   1018   }
   1019 
   1020   if (!Protocols.empty()) {
   1021     Result = applyObjCProtocolQualifiers(*this, Loc,
   1022                                          SourceRange(ProtocolLAngleLoc,
   1023                                                      ProtocolRAngleLoc),
   1024                                          Result, Protocols,
   1025                                          ProtocolLocs.data(),
   1026                                          FailOnError);
   1027     if (FailOnError && Result.isNull())
   1028       return QualType();
   1029   }
   1030 
   1031   return Result;
   1032 }
   1033 
   1034 TypeResult Sema::actOnObjCProtocolQualifierType(
   1035              SourceLocation lAngleLoc,
   1036              ArrayRef<Decl *> protocols,
   1037              ArrayRef<SourceLocation> protocolLocs,
   1038              SourceLocation rAngleLoc) {
   1039   // Form id<protocol-list>.
   1040   QualType Result = Context.getObjCObjectType(
   1041                       Context.ObjCBuiltinIdTy, { },
   1042                       llvm::makeArrayRef(
   1043                         (ObjCProtocolDecl * const *)protocols.data(),
   1044                         protocols.size()),
   1045                       false);
   1046   Result = Context.getObjCObjectPointerType(Result);
   1047 
   1048   TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
   1049   TypeLoc ResultTL = ResultTInfo->getTypeLoc();
   1050 
   1051   auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>();
   1052   ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit
   1053 
   1054   auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc()
   1055                         .castAs<ObjCObjectTypeLoc>();
   1056   ObjCObjectTL.setHasBaseTypeAsWritten(false);
   1057   ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation());
   1058 
   1059   // No type arguments.
   1060   ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
   1061   ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
   1062 
   1063   // Fill in protocol qualifiers.
   1064   ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc);
   1065   ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc);
   1066   for (unsigned i = 0, n = protocols.size(); i != n; ++i)
   1067     ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]);
   1068 
   1069   // We're done. Return the completed type to the parser.
   1070   return CreateParsedType(Result, ResultTInfo);
   1071 }
   1072 
   1073 TypeResult Sema::actOnObjCTypeArgsAndProtocolQualifiers(
   1074              Scope *S,
   1075              SourceLocation Loc,
   1076              ParsedType BaseType,
   1077              SourceLocation TypeArgsLAngleLoc,
   1078              ArrayRef<ParsedType> TypeArgs,
   1079              SourceLocation TypeArgsRAngleLoc,
   1080              SourceLocation ProtocolLAngleLoc,
   1081              ArrayRef<Decl *> Protocols,
   1082              ArrayRef<SourceLocation> ProtocolLocs,
   1083              SourceLocation ProtocolRAngleLoc) {
   1084   TypeSourceInfo *BaseTypeInfo = nullptr;
   1085   QualType T = GetTypeFromParser(BaseType, &BaseTypeInfo);
   1086   if (T.isNull())
   1087     return true;
   1088 
   1089   // Handle missing type-source info.
   1090   if (!BaseTypeInfo)
   1091     BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc);
   1092 
   1093   // Extract type arguments.
   1094   SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos;
   1095   for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) {
   1096     TypeSourceInfo *TypeArgInfo = nullptr;
   1097     QualType TypeArg = GetTypeFromParser(TypeArgs[i], &TypeArgInfo);
   1098     if (TypeArg.isNull()) {
   1099       ActualTypeArgInfos.clear();
   1100       break;
   1101     }
   1102 
   1103     assert(TypeArgInfo && "No type source info?");
   1104     ActualTypeArgInfos.push_back(TypeArgInfo);
   1105   }
   1106 
   1107   // Build the object type.
   1108   QualType Result = BuildObjCObjectType(
   1109       T, BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(),
   1110       TypeArgsLAngleLoc, ActualTypeArgInfos, TypeArgsRAngleLoc,
   1111       ProtocolLAngleLoc,
   1112       llvm::makeArrayRef((ObjCProtocolDecl * const *)Protocols.data(),
   1113                          Protocols.size()),
   1114       ProtocolLocs, ProtocolRAngleLoc,
   1115       /*FailOnError=*/false);
   1116 
   1117   if (Result == T)
   1118     return BaseType;
   1119 
   1120   // Create source information for this type.
   1121   TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
   1122   TypeLoc ResultTL = ResultTInfo->getTypeLoc();
   1123 
   1124   // For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an
   1125   // object pointer type. Fill in source information for it.
   1126   if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) {
   1127     // The '*' is implicit.
   1128     ObjCObjectPointerTL.setStarLoc(SourceLocation());
   1129     ResultTL = ObjCObjectPointerTL.getPointeeLoc();
   1130   }
   1131 
   1132   auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>();
   1133 
   1134   // Type argument information.
   1135   if (ObjCObjectTL.getNumTypeArgs() > 0) {
   1136     assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size());
   1137     ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc);
   1138     ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc);
   1139     for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i)
   1140       ObjCObjectTL.setTypeArgTInfo(i, ActualTypeArgInfos[i]);
   1141   } else {
   1142     ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
   1143     ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
   1144   }
   1145 
   1146   // Protocol qualifier information.
   1147   if (ObjCObjectTL.getNumProtocols() > 0) {
   1148     assert(ObjCObjectTL.getNumProtocols() == Protocols.size());
   1149     ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
   1150     ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
   1151     for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
   1152       ObjCObjectTL.setProtocolLoc(i, ProtocolLocs[i]);
   1153   } else {
   1154     ObjCObjectTL.setProtocolLAngleLoc(SourceLocation());
   1155     ObjCObjectTL.setProtocolRAngleLoc(SourceLocation());
   1156   }
   1157 
   1158   // Base type.
   1159   ObjCObjectTL.setHasBaseTypeAsWritten(true);
   1160   if (ObjCObjectTL.getType() == T)
   1161     ObjCObjectTL.getBaseLoc().initializeFullCopy(BaseTypeInfo->getTypeLoc());
   1162   else
   1163     ObjCObjectTL.getBaseLoc().initialize(Context, Loc);
   1164 
   1165   // We're done. Return the completed type to the parser.
   1166   return CreateParsedType(Result, ResultTInfo);
   1167 }
   1168 
   1169 /// \brief Convert the specified declspec to the appropriate type
   1170 /// object.
   1171 /// \param state Specifies the declarator containing the declaration specifier
   1172 /// to be converted, along with other associated processing state.
   1173 /// \returns The type described by the declaration specifiers.  This function
   1174 /// never returns null.
   1175 static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
   1176   // FIXME: Should move the logic from DeclSpec::Finish to here for validity
   1177   // checking.
   1178 
   1179   Sema &S = state.getSema();
   1180   Declarator &declarator = state.getDeclarator();
   1181   const DeclSpec &DS = declarator.getDeclSpec();
   1182   SourceLocation DeclLoc = declarator.getIdentifierLoc();
   1183   if (DeclLoc.isInvalid())
   1184     DeclLoc = DS.getLocStart();
   1185 
   1186   ASTContext &Context = S.Context;
   1187 
   1188   QualType Result;
   1189   switch (DS.getTypeSpecType()) {
   1190   case DeclSpec::TST_void:
   1191     Result = Context.VoidTy;
   1192     break;
   1193   case DeclSpec::TST_char:
   1194     if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
   1195       Result = Context.CharTy;
   1196     else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
   1197       Result = Context.SignedCharTy;
   1198     else {
   1199       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
   1200              "Unknown TSS value");
   1201       Result = Context.UnsignedCharTy;
   1202     }
   1203     break;
   1204   case DeclSpec::TST_wchar:
   1205     if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
   1206       Result = Context.WCharTy;
   1207     else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
   1208       S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
   1209         << DS.getSpecifierName(DS.getTypeSpecType(),
   1210                                Context.getPrintingPolicy());
   1211       Result = Context.getSignedWCharType();
   1212     } else {
   1213       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
   1214         "Unknown TSS value");
   1215       S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
   1216         << DS.getSpecifierName(DS.getTypeSpecType(),
   1217                                Context.getPrintingPolicy());
   1218       Result = Context.getUnsignedWCharType();
   1219     }
   1220     break;
   1221   case DeclSpec::TST_char16:
   1222       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
   1223         "Unknown TSS value");
   1224       Result = Context.Char16Ty;
   1225     break;
   1226   case DeclSpec::TST_char32:
   1227       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
   1228         "Unknown TSS value");
   1229       Result = Context.Char32Ty;
   1230     break;
   1231   case DeclSpec::TST_unspecified:
   1232     // If this is a missing declspec in a block literal return context, then it
   1233     // is inferred from the return statements inside the block.
   1234     // The declspec is always missing in a lambda expr context; it is either
   1235     // specified with a trailing return type or inferred.
   1236     if (S.getLangOpts().CPlusPlus14 &&
   1237         declarator.getContext() == Declarator::LambdaExprContext) {
   1238       // In C++1y, a lambda's implicit return type is 'auto'.
   1239       Result = Context.getAutoDeductType();
   1240       break;
   1241     } else if (declarator.getContext() == Declarator::LambdaExprContext ||
   1242                isOmittedBlockReturnType(declarator)) {
   1243       Result = Context.DependentTy;
   1244       break;
   1245     }
   1246 
   1247     // Unspecified typespec defaults to int in C90.  However, the C90 grammar
   1248     // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
   1249     // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
   1250     // Note that the one exception to this is function definitions, which are
   1251     // allowed to be completely missing a declspec.  This is handled in the
   1252     // parser already though by it pretending to have seen an 'int' in this
   1253     // case.
   1254     if (S.getLangOpts().ImplicitInt) {
   1255       // In C89 mode, we only warn if there is a completely missing declspec
   1256       // when one is not allowed.
   1257       if (DS.isEmpty()) {
   1258         S.Diag(DeclLoc, diag::ext_missing_declspec)
   1259           << DS.getSourceRange()
   1260         << FixItHint::CreateInsertion(DS.getLocStart(), "int");
   1261       }
   1262     } else if (!DS.hasTypeSpecifier()) {
   1263       // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
   1264       // "At least one type specifier shall be given in the declaration
   1265       // specifiers in each declaration, and in the specifier-qualifier list in
   1266       // each struct declaration and type name."
   1267       if (S.getLangOpts().CPlusPlus) {
   1268         S.Diag(DeclLoc, diag::err_missing_type_specifier)
   1269           << DS.getSourceRange();
   1270 
   1271         // When this occurs in C++ code, often something is very broken with the
   1272         // value being declared, poison it as invalid so we don't get chains of
   1273         // errors.
   1274         declarator.setInvalidType(true);
   1275       } else {
   1276         S.Diag(DeclLoc, diag::ext_missing_type_specifier)
   1277           << DS.getSourceRange();
   1278       }
   1279     }
   1280 
   1281     // FALL THROUGH.
   1282   case DeclSpec::TST_int: {
   1283     if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
   1284       switch (DS.getTypeSpecWidth()) {
   1285       case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
   1286       case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
   1287       case DeclSpec::TSW_long:        Result = Context.LongTy; break;
   1288       case DeclSpec::TSW_longlong:
   1289         Result = Context.LongLongTy;
   1290 
   1291         // 'long long' is a C99 or C++11 feature.
   1292         if (!S.getLangOpts().C99) {
   1293           if (S.getLangOpts().CPlusPlus)
   1294             S.Diag(DS.getTypeSpecWidthLoc(),
   1295                    S.getLangOpts().CPlusPlus11 ?
   1296                    diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
   1297           else
   1298             S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
   1299         }
   1300         break;
   1301       }
   1302     } else {
   1303       switch (DS.getTypeSpecWidth()) {
   1304       case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
   1305       case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
   1306       case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
   1307       case DeclSpec::TSW_longlong:
   1308         Result = Context.UnsignedLongLongTy;
   1309 
   1310         // 'long long' is a C99 or C++11 feature.
   1311         if (!S.getLangOpts().C99) {
   1312           if (S.getLangOpts().CPlusPlus)
   1313             S.Diag(DS.getTypeSpecWidthLoc(),
   1314                    S.getLangOpts().CPlusPlus11 ?
   1315                    diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
   1316           else
   1317             S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
   1318         }
   1319         break;
   1320       }
   1321     }
   1322     break;
   1323   }
   1324   case DeclSpec::TST_int128:
   1325     if (!S.Context.getTargetInfo().hasInt128Type())
   1326       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_int128_unsupported);
   1327     if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
   1328       Result = Context.UnsignedInt128Ty;
   1329     else
   1330       Result = Context.Int128Ty;
   1331     break;
   1332   case DeclSpec::TST_half: Result = Context.HalfTy; break;
   1333   case DeclSpec::TST_float: Result = Context.FloatTy; break;
   1334   case DeclSpec::TST_double:
   1335     if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
   1336       Result = Context.LongDoubleTy;
   1337     else
   1338       Result = Context.DoubleTy;
   1339 
   1340     if (S.getLangOpts().OpenCL &&
   1341         !((S.getLangOpts().OpenCLVersion >= 120) ||
   1342           S.getOpenCLOptions().cl_khr_fp64)) {
   1343       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_requires_extension)
   1344           << Result << "cl_khr_fp64";
   1345       declarator.setInvalidType(true);
   1346     }
   1347     break;
   1348   case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
   1349   case DeclSpec::TST_decimal32:    // _Decimal32
   1350   case DeclSpec::TST_decimal64:    // _Decimal64
   1351   case DeclSpec::TST_decimal128:   // _Decimal128
   1352     S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
   1353     Result = Context.IntTy;
   1354     declarator.setInvalidType(true);
   1355     break;
   1356   case DeclSpec::TST_class:
   1357   case DeclSpec::TST_enum:
   1358   case DeclSpec::TST_union:
   1359   case DeclSpec::TST_struct:
   1360   case DeclSpec::TST_interface: {
   1361     TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
   1362     if (!D) {
   1363       // This can happen in C++ with ambiguous lookups.
   1364       Result = Context.IntTy;
   1365       declarator.setInvalidType(true);
   1366       break;
   1367     }
   1368 
   1369     // If the type is deprecated or unavailable, diagnose it.
   1370     S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
   1371 
   1372     assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
   1373            DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
   1374 
   1375     // TypeQuals handled by caller.
   1376     Result = Context.getTypeDeclType(D);
   1377 
   1378     // In both C and C++, make an ElaboratedType.
   1379     ElaboratedTypeKeyword Keyword
   1380       = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
   1381     Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
   1382     break;
   1383   }
   1384   case DeclSpec::TST_typename: {
   1385     assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
   1386            DS.getTypeSpecSign() == 0 &&
   1387            "Can't handle qualifiers on typedef names yet!");
   1388     Result = S.GetTypeFromParser(DS.getRepAsType());
   1389     if (Result.isNull()) {
   1390       declarator.setInvalidType(true);
   1391     } else if (S.getLangOpts().OpenCL) {
   1392       if (Result->getAs<AtomicType>()) {
   1393         StringRef TypeName = Result.getBaseTypeIdentifier()->getName();
   1394         bool NoExtTypes =
   1395             llvm::StringSwitch<bool>(TypeName)
   1396                 .Cases("atomic_int", "atomic_uint", "atomic_float",
   1397                        "atomic_flag", true)
   1398                 .Default(false);
   1399         if (!S.getOpenCLOptions().cl_khr_int64_base_atomics && !NoExtTypes) {
   1400           S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_requires_extension)
   1401               << Result << "cl_khr_int64_base_atomics";
   1402           declarator.setInvalidType(true);
   1403         }
   1404         if (!S.getOpenCLOptions().cl_khr_int64_extended_atomics &&
   1405             !NoExtTypes) {
   1406           S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_requires_extension)
   1407               << Result << "cl_khr_int64_extended_atomics";
   1408           declarator.setInvalidType(true);
   1409         }
   1410         if (!S.getOpenCLOptions().cl_khr_fp64 &&
   1411             !TypeName.compare("atomic_double")) {
   1412           S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_requires_extension)
   1413               << Result << "cl_khr_fp64";
   1414           declarator.setInvalidType(true);
   1415         }
   1416       } else if (!S.getOpenCLOptions().cl_khr_gl_msaa_sharing &&
   1417                  (Result->isImage2dMSAAT() || Result->isImage2dArrayMSAAT() ||
   1418                   Result->isImage2dArrayMSAATDepth() ||
   1419                   Result->isImage2dMSAATDepth())) {
   1420         S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_requires_extension)
   1421             << Result << "cl_khr_gl_msaa_sharing";
   1422         declarator.setInvalidType(true);
   1423       }
   1424     }
   1425 
   1426     // TypeQuals handled by caller.
   1427     break;
   1428   }
   1429   case DeclSpec::TST_typeofType:
   1430     // FIXME: Preserve type source info.
   1431     Result = S.GetTypeFromParser(DS.getRepAsType());
   1432     assert(!Result.isNull() && "Didn't get a type for typeof?");
   1433     if (!Result->isDependentType())
   1434       if (const TagType *TT = Result->getAs<TagType>())
   1435         S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
   1436     // TypeQuals handled by caller.
   1437     Result = Context.getTypeOfType(Result);
   1438     break;
   1439   case DeclSpec::TST_typeofExpr: {
   1440     Expr *E = DS.getRepAsExpr();
   1441     assert(E && "Didn't get an expression for typeof?");
   1442     // TypeQuals handled by caller.
   1443     Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
   1444     if (Result.isNull()) {
   1445       Result = Context.IntTy;
   1446       declarator.setInvalidType(true);
   1447     }
   1448     break;
   1449   }
   1450   case DeclSpec::TST_decltype: {
   1451     Expr *E = DS.getRepAsExpr();
   1452     assert(E && "Didn't get an expression for decltype?");
   1453     // TypeQuals handled by caller.
   1454     Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
   1455     if (Result.isNull()) {
   1456       Result = Context.IntTy;
   1457       declarator.setInvalidType(true);
   1458     }
   1459     break;
   1460   }
   1461   case DeclSpec::TST_underlyingType:
   1462     Result = S.GetTypeFromParser(DS.getRepAsType());
   1463     assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
   1464     Result = S.BuildUnaryTransformType(Result,
   1465                                        UnaryTransformType::EnumUnderlyingType,
   1466                                        DS.getTypeSpecTypeLoc());
   1467     if (Result.isNull()) {
   1468       Result = Context.IntTy;
   1469       declarator.setInvalidType(true);
   1470     }
   1471     break;
   1472 
   1473   case DeclSpec::TST_auto:
   1474     // TypeQuals handled by caller.
   1475     // If auto is mentioned in a lambda parameter context, convert it to a
   1476     // template parameter type immediately, with the appropriate depth and
   1477     // index, and update sema's state (LambdaScopeInfo) for the current lambda
   1478     // being analyzed (which tracks the invented type template parameter).
   1479     if (declarator.getContext() == Declarator::LambdaExprParameterContext) {
   1480       sema::LambdaScopeInfo *LSI = S.getCurLambda();
   1481       assert(LSI && "No LambdaScopeInfo on the stack!");
   1482       const unsigned TemplateParameterDepth = LSI->AutoTemplateParameterDepth;
   1483       const unsigned AutoParameterPosition = LSI->AutoTemplateParams.size();
   1484       const bool IsParameterPack = declarator.hasEllipsis();
   1485 
   1486       // Turns out we must create the TemplateTypeParmDecl here to
   1487       // retrieve the corresponding template parameter type.
   1488       TemplateTypeParmDecl *CorrespondingTemplateParam =
   1489         TemplateTypeParmDecl::Create(Context,
   1490         // Temporarily add to the TranslationUnit DeclContext.  When the
   1491         // associated TemplateParameterList is attached to a template
   1492         // declaration (such as FunctionTemplateDecl), the DeclContext
   1493         // for each template parameter gets updated appropriately via
   1494         // a call to AdoptTemplateParameterList.
   1495         Context.getTranslationUnitDecl(),
   1496         /*KeyLoc*/ SourceLocation(),
   1497         /*NameLoc*/ declarator.getLocStart(),
   1498         TemplateParameterDepth,
   1499         AutoParameterPosition,  // our template param index
   1500         /* Identifier*/ nullptr, false, IsParameterPack);
   1501       LSI->AutoTemplateParams.push_back(CorrespondingTemplateParam);
   1502       // Replace the 'auto' in the function parameter with this invented
   1503       // template type parameter.
   1504       Result = QualType(CorrespondingTemplateParam->getTypeForDecl(), 0);
   1505     } else {
   1506       Result = Context.getAutoType(QualType(), AutoTypeKeyword::Auto, false);
   1507     }
   1508     break;
   1509 
   1510   case DeclSpec::TST_auto_type:
   1511     Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
   1512     break;
   1513 
   1514   case DeclSpec::TST_decltype_auto:
   1515     Result = Context.getAutoType(QualType(), AutoTypeKeyword::DecltypeAuto,
   1516                                  /*IsDependent*/ false);
   1517     break;
   1518 
   1519   case DeclSpec::TST_unknown_anytype:
   1520     Result = Context.UnknownAnyTy;
   1521     break;
   1522 
   1523   case DeclSpec::TST_atomic:
   1524     Result = S.GetTypeFromParser(DS.getRepAsType());
   1525     assert(!Result.isNull() && "Didn't get a type for _Atomic?");
   1526     Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
   1527     if (Result.isNull()) {
   1528       Result = Context.IntTy;
   1529       declarator.setInvalidType(true);
   1530     }
   1531     break;
   1532 
   1533   case DeclSpec::TST_error:
   1534     Result = Context.IntTy;
   1535     declarator.setInvalidType(true);
   1536     break;
   1537   }
   1538 
   1539   // Handle complex types.
   1540   if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
   1541     if (S.getLangOpts().Freestanding)
   1542       S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
   1543     Result = Context.getComplexType(Result);
   1544   } else if (DS.isTypeAltiVecVector()) {
   1545     unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
   1546     assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
   1547     VectorType::VectorKind VecKind = VectorType::AltiVecVector;
   1548     if (DS.isTypeAltiVecPixel())
   1549       VecKind = VectorType::AltiVecPixel;
   1550     else if (DS.isTypeAltiVecBool())
   1551       VecKind = VectorType::AltiVecBool;
   1552     Result = Context.getVectorType(Result, 128/typeSize, VecKind);
   1553   }
   1554 
   1555   // FIXME: Imaginary.
   1556   if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
   1557     S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
   1558 
   1559   // Before we process any type attributes, synthesize a block literal
   1560   // function declarator if necessary.
   1561   if (declarator.getContext() == Declarator::BlockLiteralContext)
   1562     maybeSynthesizeBlockSignature(state, Result);
   1563 
   1564   // Apply any type attributes from the decl spec.  This may cause the
   1565   // list of type attributes to be temporarily saved while the type
   1566   // attributes are pushed around.
   1567   processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes().getList());
   1568 
   1569   // Apply const/volatile/restrict qualifiers to T.
   1570   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
   1571     // Warn about CV qualifiers on function types.
   1572     // C99 6.7.3p8:
   1573     //   If the specification of a function type includes any type qualifiers,
   1574     //   the behavior is undefined.
   1575     // C++11 [dcl.fct]p7:
   1576     //   The effect of a cv-qualifier-seq in a function declarator is not the
   1577     //   same as adding cv-qualification on top of the function type. In the
   1578     //   latter case, the cv-qualifiers are ignored.
   1579     if (TypeQuals && Result->isFunctionType()) {
   1580       diagnoseAndRemoveTypeQualifiers(
   1581           S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
   1582           S.getLangOpts().CPlusPlus
   1583               ? diag::warn_typecheck_function_qualifiers_ignored
   1584               : diag::warn_typecheck_function_qualifiers_unspecified);
   1585       // No diagnostic for 'restrict' or '_Atomic' applied to a
   1586       // function type; we'll diagnose those later, in BuildQualifiedType.
   1587     }
   1588 
   1589     // C++11 [dcl.ref]p1:
   1590     //   Cv-qualified references are ill-formed except when the
   1591     //   cv-qualifiers are introduced through the use of a typedef-name
   1592     //   or decltype-specifier, in which case the cv-qualifiers are ignored.
   1593     //
   1594     // There don't appear to be any other contexts in which a cv-qualified
   1595     // reference type could be formed, so the 'ill-formed' clause here appears
   1596     // to never happen.
   1597     if (TypeQuals && Result->isReferenceType()) {
   1598       diagnoseAndRemoveTypeQualifiers(
   1599           S, DS, TypeQuals, Result,
   1600           DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
   1601           diag::warn_typecheck_reference_qualifiers);
   1602     }
   1603 
   1604     // C90 6.5.3 constraints: "The same type qualifier shall not appear more
   1605     // than once in the same specifier-list or qualifier-list, either directly
   1606     // or via one or more typedefs."
   1607     if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
   1608         && TypeQuals & Result.getCVRQualifiers()) {
   1609       if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
   1610         S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
   1611           << "const";
   1612       }
   1613 
   1614       if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
   1615         S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
   1616           << "volatile";
   1617       }
   1618 
   1619       // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
   1620       // produce a warning in this case.
   1621     }
   1622 
   1623     QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
   1624 
   1625     // If adding qualifiers fails, just use the unqualified type.
   1626     if (Qualified.isNull())
   1627       declarator.setInvalidType(true);
   1628     else
   1629       Result = Qualified;
   1630   }
   1631 
   1632   assert(!Result.isNull() && "This function should not return a null type");
   1633   return Result;
   1634 }
   1635 
   1636 static std::string getPrintableNameForEntity(DeclarationName Entity) {
   1637   if (Entity)
   1638     return Entity.getAsString();
   1639 
   1640   return "type name";
   1641 }
   1642 
   1643 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
   1644                                   Qualifiers Qs, const DeclSpec *DS) {
   1645   if (T.isNull())
   1646     return QualType();
   1647 
   1648   // Enforce C99 6.7.3p2: "Types other than pointer types derived from
   1649   // object or incomplete types shall not be restrict-qualified."
   1650   if (Qs.hasRestrict()) {
   1651     unsigned DiagID = 0;
   1652     QualType ProblemTy;
   1653 
   1654     if (T->isAnyPointerType() || T->isReferenceType() ||
   1655         T->isMemberPointerType()) {
   1656       QualType EltTy;
   1657       if (T->isObjCObjectPointerType())
   1658         EltTy = T;
   1659       else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
   1660         EltTy = PTy->getPointeeType();
   1661       else
   1662         EltTy = T->getPointeeType();
   1663 
   1664       // If we have a pointer or reference, the pointee must have an object
   1665       // incomplete type.
   1666       if (!EltTy->isIncompleteOrObjectType()) {
   1667         DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
   1668         ProblemTy = EltTy;
   1669       }
   1670     } else if (!T->isDependentType()) {
   1671       DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
   1672       ProblemTy = T;
   1673     }
   1674 
   1675     if (DiagID) {
   1676       Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
   1677       Qs.removeRestrict();
   1678     }
   1679   }
   1680 
   1681   return Context.getQualifiedType(T, Qs);
   1682 }
   1683 
   1684 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
   1685                                   unsigned CVRA, const DeclSpec *DS) {
   1686   if (T.isNull())
   1687     return QualType();
   1688 
   1689   // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic.
   1690   unsigned CVR = CVRA & ~DeclSpec::TQ_atomic;
   1691 
   1692   // C11 6.7.3/5:
   1693   //   If the same qualifier appears more than once in the same
   1694   //   specifier-qualifier-list, either directly or via one or more typedefs,
   1695   //   the behavior is the same as if it appeared only once.
   1696   //
   1697   // It's not specified what happens when the _Atomic qualifier is applied to
   1698   // a type specified with the _Atomic specifier, but we assume that this
   1699   // should be treated as if the _Atomic qualifier appeared multiple times.
   1700   if (CVRA & DeclSpec::TQ_atomic && !T->isAtomicType()) {
   1701     // C11 6.7.3/5:
   1702     //   If other qualifiers appear along with the _Atomic qualifier in a
   1703     //   specifier-qualifier-list, the resulting type is the so-qualified
   1704     //   atomic type.
   1705     //
   1706     // Don't need to worry about array types here, since _Atomic can't be
   1707     // applied to such types.
   1708     SplitQualType Split = T.getSplitUnqualifiedType();
   1709     T = BuildAtomicType(QualType(Split.Ty, 0),
   1710                         DS ? DS->getAtomicSpecLoc() : Loc);
   1711     if (T.isNull())
   1712       return T;
   1713     Split.Quals.addCVRQualifiers(CVR);
   1714     return BuildQualifiedType(T, Loc, Split.Quals);
   1715   }
   1716 
   1717   return BuildQualifiedType(T, Loc, Qualifiers::fromCVRMask(CVR), DS);
   1718 }
   1719 
   1720 /// \brief Build a paren type including \p T.
   1721 QualType Sema::BuildParenType(QualType T) {
   1722   return Context.getParenType(T);
   1723 }
   1724 
   1725 /// Given that we're building a pointer or reference to the given
   1726 static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
   1727                                            SourceLocation loc,
   1728                                            bool isReference) {
   1729   // Bail out if retention is unrequired or already specified.
   1730   if (!type->isObjCLifetimeType() ||
   1731       type.getObjCLifetime() != Qualifiers::OCL_None)
   1732     return type;
   1733 
   1734   Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
   1735 
   1736   // If the object type is const-qualified, we can safely use
   1737   // __unsafe_unretained.  This is safe (because there are no read
   1738   // barriers), and it'll be safe to coerce anything but __weak* to
   1739   // the resulting type.
   1740   if (type.isConstQualified()) {
   1741     implicitLifetime = Qualifiers::OCL_ExplicitNone;
   1742 
   1743   // Otherwise, check whether the static type does not require
   1744   // retaining.  This currently only triggers for Class (possibly
   1745   // protocol-qualifed, and arrays thereof).
   1746   } else if (type->isObjCARCImplicitlyUnretainedType()) {
   1747     implicitLifetime = Qualifiers::OCL_ExplicitNone;
   1748 
   1749   // If we are in an unevaluated context, like sizeof, skip adding a
   1750   // qualification.
   1751   } else if (S.isUnevaluatedContext()) {
   1752     return type;
   1753 
   1754   // If that failed, give an error and recover using __strong.  __strong
   1755   // is the option most likely to prevent spurious second-order diagnostics,
   1756   // like when binding a reference to a field.
   1757   } else {
   1758     // These types can show up in private ivars in system headers, so
   1759     // we need this to not be an error in those cases.  Instead we
   1760     // want to delay.
   1761     if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
   1762       S.DelayedDiagnostics.add(
   1763           sema::DelayedDiagnostic::makeForbiddenType(loc,
   1764               diag::err_arc_indirect_no_ownership, type, isReference));
   1765     } else {
   1766       S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
   1767     }
   1768     implicitLifetime = Qualifiers::OCL_Strong;
   1769   }
   1770   assert(implicitLifetime && "didn't infer any lifetime!");
   1771 
   1772   Qualifiers qs;
   1773   qs.addObjCLifetime(implicitLifetime);
   1774   return S.Context.getQualifiedType(type, qs);
   1775 }
   1776 
   1777 static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
   1778   std::string Quals =
   1779     Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
   1780 
   1781   switch (FnTy->getRefQualifier()) {
   1782   case RQ_None:
   1783     break;
   1784 
   1785   case RQ_LValue:
   1786     if (!Quals.empty())
   1787       Quals += ' ';
   1788     Quals += '&';
   1789     break;
   1790 
   1791   case RQ_RValue:
   1792     if (!Quals.empty())
   1793       Quals += ' ';
   1794     Quals += "&&";
   1795     break;
   1796   }
   1797 
   1798   return Quals;
   1799 }
   1800 
   1801 namespace {
   1802 /// Kinds of declarator that cannot contain a qualified function type.
   1803 ///
   1804 /// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
   1805 ///     a function type with a cv-qualifier or a ref-qualifier can only appear
   1806 ///     at the topmost level of a type.
   1807 ///
   1808 /// Parens and member pointers are permitted. We don't diagnose array and
   1809 /// function declarators, because they don't allow function types at all.
   1810 ///
   1811 /// The values of this enum are used in diagnostics.
   1812 enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
   1813 }
   1814 
   1815 /// Check whether the type T is a qualified function type, and if it is,
   1816 /// diagnose that it cannot be contained within the given kind of declarator.
   1817 static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
   1818                                    QualifiedFunctionKind QFK) {
   1819   // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
   1820   const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
   1821   if (!FPT || (FPT->getTypeQuals() == 0 && FPT->getRefQualifier() == RQ_None))
   1822     return false;
   1823 
   1824   S.Diag(Loc, diag::err_compound_qualified_function_type)
   1825     << QFK << isa<FunctionType>(T.IgnoreParens()) << T
   1826     << getFunctionQualifiersAsString(FPT);
   1827   return true;
   1828 }
   1829 
   1830 /// \brief Build a pointer type.
   1831 ///
   1832 /// \param T The type to which we'll be building a pointer.
   1833 ///
   1834 /// \param Loc The location of the entity whose type involves this
   1835 /// pointer type or, if there is no such entity, the location of the
   1836 /// type that will have pointer type.
   1837 ///
   1838 /// \param Entity The name of the entity that involves the pointer
   1839 /// type, if known.
   1840 ///
   1841 /// \returns A suitable pointer type, if there are no
   1842 /// errors. Otherwise, returns a NULL type.
   1843 QualType Sema::BuildPointerType(QualType T,
   1844                                 SourceLocation Loc, DeclarationName Entity) {
   1845   if (T->isReferenceType()) {
   1846     // C++ 8.3.2p4: There shall be no ... pointers to references ...
   1847     Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
   1848       << getPrintableNameForEntity(Entity) << T;
   1849     return QualType();
   1850   }
   1851 
   1852   if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
   1853     return QualType();
   1854 
   1855   assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
   1856 
   1857   // In ARC, it is forbidden to build pointers to unqualified pointers.
   1858   if (getLangOpts().ObjCAutoRefCount)
   1859     T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
   1860 
   1861   // Build the pointer type.
   1862   return Context.getPointerType(T);
   1863 }
   1864 
   1865 /// \brief Build a reference type.
   1866 ///
   1867 /// \param T The type to which we'll be building a reference.
   1868 ///
   1869 /// \param Loc The location of the entity whose type involves this
   1870 /// reference type or, if there is no such entity, the location of the
   1871 /// type that will have reference type.
   1872 ///
   1873 /// \param Entity The name of the entity that involves the reference
   1874 /// type, if known.
   1875 ///
   1876 /// \returns A suitable reference type, if there are no
   1877 /// errors. Otherwise, returns a NULL type.
   1878 QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
   1879                                   SourceLocation Loc,
   1880                                   DeclarationName Entity) {
   1881   assert(Context.getCanonicalType(T) != Context.OverloadTy &&
   1882          "Unresolved overloaded function type");
   1883 
   1884   // C++0x [dcl.ref]p6:
   1885   //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
   1886   //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
   1887   //   type T, an attempt to create the type "lvalue reference to cv TR" creates
   1888   //   the type "lvalue reference to T", while an attempt to create the type
   1889   //   "rvalue reference to cv TR" creates the type TR.
   1890   bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
   1891 
   1892   // C++ [dcl.ref]p4: There shall be no references to references.
   1893   //
   1894   // According to C++ DR 106, references to references are only
   1895   // diagnosed when they are written directly (e.g., "int & &"),
   1896   // but not when they happen via a typedef:
   1897   //
   1898   //   typedef int& intref;
   1899   //   typedef intref& intref2;
   1900   //
   1901   // Parser::ParseDeclaratorInternal diagnoses the case where
   1902   // references are written directly; here, we handle the
   1903   // collapsing of references-to-references as described in C++0x.
   1904   // DR 106 and 540 introduce reference-collapsing into C++98/03.
   1905 
   1906   // C++ [dcl.ref]p1:
   1907   //   A declarator that specifies the type "reference to cv void"
   1908   //   is ill-formed.
   1909   if (T->isVoidType()) {
   1910     Diag(Loc, diag::err_reference_to_void);
   1911     return QualType();
   1912   }
   1913 
   1914   if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
   1915     return QualType();
   1916 
   1917   // In ARC, it is forbidden to build references to unqualified pointers.
   1918   if (getLangOpts().ObjCAutoRefCount)
   1919     T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
   1920 
   1921   // Handle restrict on references.
   1922   if (LValueRef)
   1923     return Context.getLValueReferenceType(T, SpelledAsLValue);
   1924   return Context.getRValueReferenceType(T);
   1925 }
   1926 
   1927 /// Check whether the specified array size makes the array type a VLA.  If so,
   1928 /// return true, if not, return the size of the array in SizeVal.
   1929 static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
   1930   // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
   1931   // (like gnu99, but not c99) accept any evaluatable value as an extension.
   1932   class VLADiagnoser : public Sema::VerifyICEDiagnoser {
   1933   public:
   1934     VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
   1935 
   1936     void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
   1937     }
   1938 
   1939     void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) override {
   1940       S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
   1941     }
   1942   } Diagnoser;
   1943 
   1944   return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
   1945                                            S.LangOpts.GNUMode).isInvalid();
   1946 }
   1947 
   1948 
   1949 /// \brief Build an array type.
   1950 ///
   1951 /// \param T The type of each element in the array.
   1952 ///
   1953 /// \param ASM C99 array size modifier (e.g., '*', 'static').
   1954 ///
   1955 /// \param ArraySize Expression describing the size of the array.
   1956 ///
   1957 /// \param Brackets The range from the opening '[' to the closing ']'.
   1958 ///
   1959 /// \param Entity The name of the entity that involves the array
   1960 /// type, if known.
   1961 ///
   1962 /// \returns A suitable array type, if there are no errors. Otherwise,
   1963 /// returns a NULL type.
   1964 QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
   1965                               Expr *ArraySize, unsigned Quals,
   1966                               SourceRange Brackets, DeclarationName Entity) {
   1967 
   1968   SourceLocation Loc = Brackets.getBegin();
   1969   if (getLangOpts().CPlusPlus) {
   1970     // C++ [dcl.array]p1:
   1971     //   T is called the array element type; this type shall not be a reference
   1972     //   type, the (possibly cv-qualified) type void, a function type or an
   1973     //   abstract class type.
   1974     //
   1975     // C++ [dcl.array]p3:
   1976     //   When several "array of" specifications are adjacent, [...] only the
   1977     //   first of the constant expressions that specify the bounds of the arrays
   1978     //   may be omitted.
   1979     //
   1980     // Note: function types are handled in the common path with C.
   1981     if (T->isReferenceType()) {
   1982       Diag(Loc, diag::err_illegal_decl_array_of_references)
   1983       << getPrintableNameForEntity(Entity) << T;
   1984       return QualType();
   1985     }
   1986 
   1987     if (T->isVoidType() || T->isIncompleteArrayType()) {
   1988       Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
   1989       return QualType();
   1990     }
   1991 
   1992     if (RequireNonAbstractType(Brackets.getBegin(), T,
   1993                                diag::err_array_of_abstract_type))
   1994       return QualType();
   1995 
   1996     // Mentioning a member pointer type for an array type causes us to lock in
   1997     // an inheritance model, even if it's inside an unused typedef.
   1998     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
   1999       if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
   2000         if (!MPTy->getClass()->isDependentType())
   2001           (void)isCompleteType(Loc, T);
   2002 
   2003   } else {
   2004     // C99 6.7.5.2p1: If the element type is an incomplete or function type,
   2005     // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
   2006     if (RequireCompleteType(Loc, T,
   2007                             diag::err_illegal_decl_array_incomplete_type))
   2008       return QualType();
   2009   }
   2010 
   2011   if (T->isFunctionType()) {
   2012     Diag(Loc, diag::err_illegal_decl_array_of_functions)
   2013       << getPrintableNameForEntity(Entity) << T;
   2014     return QualType();
   2015   }
   2016 
   2017   if (const RecordType *EltTy = T->getAs<RecordType>()) {
   2018     // If the element type is a struct or union that contains a variadic
   2019     // array, accept it as a GNU extension: C99 6.7.2.1p2.
   2020     if (EltTy->getDecl()->hasFlexibleArrayMember())
   2021       Diag(Loc, diag::ext_flexible_array_in_array) << T;
   2022   } else if (T->isObjCObjectType()) {
   2023     Diag(Loc, diag::err_objc_array_of_interfaces) << T;
   2024     return QualType();
   2025   }
   2026 
   2027   // Do placeholder conversions on the array size expression.
   2028   if (ArraySize && ArraySize->hasPlaceholderType()) {
   2029     ExprResult Result = CheckPlaceholderExpr(ArraySize);
   2030     if (Result.isInvalid()) return QualType();
   2031     ArraySize = Result.get();
   2032   }
   2033 
   2034   // Do lvalue-to-rvalue conversions on the array size expression.
   2035   if (ArraySize && !ArraySize->isRValue()) {
   2036     ExprResult Result = DefaultLvalueConversion(ArraySize);
   2037     if (Result.isInvalid())
   2038       return QualType();
   2039 
   2040     ArraySize = Result.get();
   2041   }
   2042 
   2043   // C99 6.7.5.2p1: The size expression shall have integer type.
   2044   // C++11 allows contextual conversions to such types.
   2045   if (!getLangOpts().CPlusPlus11 &&
   2046       ArraySize && !ArraySize->isTypeDependent() &&
   2047       !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
   2048     Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
   2049       << ArraySize->getType() << ArraySize->getSourceRange();
   2050     return QualType();
   2051   }
   2052 
   2053   llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
   2054   if (!ArraySize) {
   2055     if (ASM == ArrayType::Star)
   2056       T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
   2057     else
   2058       T = Context.getIncompleteArrayType(T, ASM, Quals);
   2059   } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
   2060     T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
   2061   } else if ((!T->isDependentType() && !T->isIncompleteType() &&
   2062               !T->isConstantSizeType()) ||
   2063              isArraySizeVLA(*this, ArraySize, ConstVal)) {
   2064     // Even in C++11, don't allow contextual conversions in the array bound
   2065     // of a VLA.
   2066     if (getLangOpts().CPlusPlus11 &&
   2067         !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
   2068       Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
   2069         << ArraySize->getType() << ArraySize->getSourceRange();
   2070       return QualType();
   2071     }
   2072 
   2073     // C99: an array with an element type that has a non-constant-size is a VLA.
   2074     // C99: an array with a non-ICE size is a VLA.  We accept any expression
   2075     // that we can fold to a non-zero positive value as an extension.
   2076     T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
   2077   } else {
   2078     // C99 6.7.5.2p1: If the expression is a constant expression, it shall
   2079     // have a value greater than zero.
   2080     if (ConstVal.isSigned() && ConstVal.isNegative()) {
   2081       if (Entity)
   2082         Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
   2083           << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
   2084       else
   2085         Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
   2086           << ArraySize->getSourceRange();
   2087       return QualType();
   2088     }
   2089     if (ConstVal == 0) {
   2090       // GCC accepts zero sized static arrays. We allow them when
   2091       // we're not in a SFINAE context.
   2092       Diag(ArraySize->getLocStart(),
   2093            isSFINAEContext()? diag::err_typecheck_zero_array_size
   2094                             : diag::ext_typecheck_zero_array_size)
   2095         << ArraySize->getSourceRange();
   2096 
   2097       if (ASM == ArrayType::Static) {
   2098         Diag(ArraySize->getLocStart(),
   2099              diag::warn_typecheck_zero_static_array_size)
   2100           << ArraySize->getSourceRange();
   2101         ASM = ArrayType::Normal;
   2102       }
   2103     } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
   2104                !T->isIncompleteType() && !T->isUndeducedType()) {
   2105       // Is the array too large?
   2106       unsigned ActiveSizeBits
   2107         = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
   2108       if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
   2109         Diag(ArraySize->getLocStart(), diag::err_array_too_large)
   2110           << ConstVal.toString(10)
   2111           << ArraySize->getSourceRange();
   2112         return QualType();
   2113       }
   2114     }
   2115 
   2116     T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
   2117   }
   2118 
   2119   // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
   2120   if (getLangOpts().OpenCL && T->isVariableArrayType()) {
   2121     Diag(Loc, diag::err_opencl_vla);
   2122     return QualType();
   2123   }
   2124   // If this is not C99, extwarn about VLA's and C99 array size modifiers.
   2125   if (!getLangOpts().C99) {
   2126     if (T->isVariableArrayType()) {
   2127       // Prohibit the use of non-POD types in VLAs.
   2128       QualType BaseT = Context.getBaseElementType(T);
   2129       if (!T->isDependentType() && isCompleteType(Loc, BaseT) &&
   2130           !BaseT.isPODType(Context) && !BaseT->isObjCLifetimeType()) {
   2131         Diag(Loc, diag::err_vla_non_pod) << BaseT;
   2132         return QualType();
   2133       }
   2134       // Prohibit the use of VLAs during template argument deduction.
   2135       else if (isSFINAEContext()) {
   2136         Diag(Loc, diag::err_vla_in_sfinae);
   2137         return QualType();
   2138       }
   2139       // Just extwarn about VLAs.
   2140       else
   2141         Diag(Loc, diag::ext_vla);
   2142     } else if (ASM != ArrayType::Normal || Quals != 0)
   2143       Diag(Loc,
   2144            getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
   2145                                   : diag::ext_c99_array_usage) << ASM;
   2146   }
   2147 
   2148   if (T->isVariableArrayType()) {
   2149     // Warn about VLAs for -Wvla.
   2150     Diag(Loc, diag::warn_vla_used);
   2151   }
   2152 
   2153   return T;
   2154 }
   2155 
   2156 /// \brief Build an ext-vector type.
   2157 ///
   2158 /// Run the required checks for the extended vector type.
   2159 QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
   2160                                   SourceLocation AttrLoc) {
   2161   // unlike gcc's vector_size attribute, we do not allow vectors to be defined
   2162   // in conjunction with complex types (pointers, arrays, functions, etc.).
   2163   if (!T->isDependentType() &&
   2164       !T->isIntegerType() && !T->isRealFloatingType()) {
   2165     Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
   2166     return QualType();
   2167   }
   2168 
   2169   if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
   2170     llvm::APSInt vecSize(32);
   2171     if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
   2172       Diag(AttrLoc, diag::err_attribute_argument_type)
   2173         << "ext_vector_type" << AANT_ArgumentIntegerConstant
   2174         << ArraySize->getSourceRange();
   2175       return QualType();
   2176     }
   2177 
   2178     // unlike gcc's vector_size attribute, the size is specified as the
   2179     // number of elements, not the number of bytes.
   2180     unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
   2181 
   2182     if (vectorSize == 0) {
   2183       Diag(AttrLoc, diag::err_attribute_zero_size)
   2184       << ArraySize->getSourceRange();
   2185       return QualType();
   2186     }
   2187 
   2188     if (VectorType::isVectorSizeTooLarge(vectorSize)) {
   2189       Diag(AttrLoc, diag::err_attribute_size_too_large)
   2190         << ArraySize->getSourceRange();
   2191       return QualType();
   2192     }
   2193 
   2194     return Context.getExtVectorType(T, vectorSize);
   2195   }
   2196 
   2197   return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
   2198 }
   2199 
   2200 bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
   2201   if (T->isArrayType() || T->isFunctionType()) {
   2202     Diag(Loc, diag::err_func_returning_array_function)
   2203       << T->isFunctionType() << T;
   2204     return true;
   2205   }
   2206 
   2207   // Functions cannot return half FP.
   2208   if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
   2209     Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
   2210       FixItHint::CreateInsertion(Loc, "*");
   2211     return true;
   2212   }
   2213 
   2214   // Methods cannot return interface types. All ObjC objects are
   2215   // passed by reference.
   2216   if (T->isObjCObjectType()) {
   2217     Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value) << 0 << T;
   2218     return 0;
   2219   }
   2220 
   2221   return false;
   2222 }
   2223 
   2224 QualType Sema::BuildFunctionType(QualType T,
   2225                                  MutableArrayRef<QualType> ParamTypes,
   2226                                  SourceLocation Loc, DeclarationName Entity,
   2227                                  const FunctionProtoType::ExtProtoInfo &EPI) {
   2228   bool Invalid = false;
   2229 
   2230   Invalid |= CheckFunctionReturnType(T, Loc);
   2231 
   2232   for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
   2233     // FIXME: Loc is too inprecise here, should use proper locations for args.
   2234     QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
   2235     if (ParamType->isVoidType()) {
   2236       Diag(Loc, diag::err_param_with_void_type);
   2237       Invalid = true;
   2238     } else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
   2239       // Disallow half FP arguments.
   2240       Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
   2241         FixItHint::CreateInsertion(Loc, "*");
   2242       Invalid = true;
   2243     }
   2244 
   2245     ParamTypes[Idx] = ParamType;
   2246   }
   2247 
   2248   if (Invalid)
   2249     return QualType();
   2250 
   2251   return Context.getFunctionType(T, ParamTypes, EPI);
   2252 }
   2253 
   2254 /// \brief Build a member pointer type \c T Class::*.
   2255 ///
   2256 /// \param T the type to which the member pointer refers.
   2257 /// \param Class the class type into which the member pointer points.
   2258 /// \param Loc the location where this type begins
   2259 /// \param Entity the name of the entity that will have this member pointer type
   2260 ///
   2261 /// \returns a member pointer type, if successful, or a NULL type if there was
   2262 /// an error.
   2263 QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
   2264                                       SourceLocation Loc,
   2265                                       DeclarationName Entity) {
   2266   // Verify that we're not building a pointer to pointer to function with
   2267   // exception specification.
   2268   if (CheckDistantExceptionSpec(T)) {
   2269     Diag(Loc, diag::err_distant_exception_spec);
   2270     return QualType();
   2271   }
   2272 
   2273   // C++ 8.3.3p3: A pointer to member shall not point to ... a member
   2274   //   with reference type, or "cv void."
   2275   if (T->isReferenceType()) {
   2276     Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
   2277       << getPrintableNameForEntity(Entity) << T;
   2278     return QualType();
   2279   }
   2280 
   2281   if (T->isVoidType()) {
   2282     Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
   2283       << getPrintableNameForEntity(Entity);
   2284     return QualType();
   2285   }
   2286 
   2287   if (!Class->isDependentType() && !Class->isRecordType()) {
   2288     Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
   2289     return QualType();
   2290   }
   2291 
   2292   // Adjust the default free function calling convention to the default method
   2293   // calling convention.
   2294   bool IsCtorOrDtor =
   2295       (Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
   2296       (Entity.getNameKind() == DeclarationName::CXXDestructorName);
   2297   if (T->isFunctionType())
   2298     adjustMemberFunctionCC(T, /*IsStatic=*/false, IsCtorOrDtor, Loc);
   2299 
   2300   return Context.getMemberPointerType(T, Class.getTypePtr());
   2301 }
   2302 
   2303 /// \brief Build a block pointer type.
   2304 ///
   2305 /// \param T The type to which we'll be building a block pointer.
   2306 ///
   2307 /// \param Loc The source location, used for diagnostics.
   2308 ///
   2309 /// \param Entity The name of the entity that involves the block pointer
   2310 /// type, if known.
   2311 ///
   2312 /// \returns A suitable block pointer type, if there are no
   2313 /// errors. Otherwise, returns a NULL type.
   2314 QualType Sema::BuildBlockPointerType(QualType T,
   2315                                      SourceLocation Loc,
   2316                                      DeclarationName Entity) {
   2317   if (!T->isFunctionType()) {
   2318     Diag(Loc, diag::err_nonfunction_block_type);
   2319     return QualType();
   2320   }
   2321 
   2322   if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
   2323     return QualType();
   2324 
   2325   return Context.getBlockPointerType(T);
   2326 }
   2327 
   2328 QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
   2329   QualType QT = Ty.get();
   2330   if (QT.isNull()) {
   2331     if (TInfo) *TInfo = nullptr;
   2332     return QualType();
   2333   }
   2334 
   2335   TypeSourceInfo *DI = nullptr;
   2336   if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
   2337     QT = LIT->getType();
   2338     DI = LIT->getTypeSourceInfo();
   2339   }
   2340 
   2341   if (TInfo) *TInfo = DI;
   2342   return QT;
   2343 }
   2344 
   2345 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
   2346                                             Qualifiers::ObjCLifetime ownership,
   2347                                             unsigned chunkIndex);
   2348 
   2349 /// Given that this is the declaration of a parameter under ARC,
   2350 /// attempt to infer attributes and such for pointer-to-whatever
   2351 /// types.
   2352 static void inferARCWriteback(TypeProcessingState &state,
   2353                               QualType &declSpecType) {
   2354   Sema &S = state.getSema();
   2355   Declarator &declarator = state.getDeclarator();
   2356 
   2357   // TODO: should we care about decl qualifiers?
   2358 
   2359   // Check whether the declarator has the expected form.  We walk
   2360   // from the inside out in order to make the block logic work.
   2361   unsigned outermostPointerIndex = 0;
   2362   bool isBlockPointer = false;
   2363   unsigned numPointers = 0;
   2364   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
   2365     unsigned chunkIndex = i;
   2366     DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
   2367     switch (chunk.Kind) {
   2368     case DeclaratorChunk::Paren:
   2369       // Ignore parens.
   2370       break;
   2371 
   2372     case DeclaratorChunk::Reference:
   2373     case DeclaratorChunk::Pointer:
   2374       // Count the number of pointers.  Treat references
   2375       // interchangeably as pointers; if they're mis-ordered, normal
   2376       // type building will discover that.
   2377       outermostPointerIndex = chunkIndex;
   2378       numPointers++;
   2379       break;
   2380 
   2381     case DeclaratorChunk::BlockPointer:
   2382       // If we have a pointer to block pointer, that's an acceptable
   2383       // indirect reference; anything else is not an application of
   2384       // the rules.
   2385       if (numPointers != 1) return;
   2386       numPointers++;
   2387       outermostPointerIndex = chunkIndex;
   2388       isBlockPointer = true;
   2389 
   2390       // We don't care about pointer structure in return values here.
   2391       goto done;
   2392 
   2393     case DeclaratorChunk::Array: // suppress if written (id[])?
   2394     case DeclaratorChunk::Function:
   2395     case DeclaratorChunk::MemberPointer:
   2396       return;
   2397     }
   2398   }
   2399  done:
   2400 
   2401   // If we have *one* pointer, then we want to throw the qualifier on
   2402   // the declaration-specifiers, which means that it needs to be a
   2403   // retainable object type.
   2404   if (numPointers == 1) {
   2405     // If it's not a retainable object type, the rule doesn't apply.
   2406     if (!declSpecType->isObjCRetainableType()) return;
   2407 
   2408     // If it already has lifetime, don't do anything.
   2409     if (declSpecType.getObjCLifetime()) return;
   2410 
   2411     // Otherwise, modify the type in-place.
   2412     Qualifiers qs;
   2413 
   2414     if (declSpecType->isObjCARCImplicitlyUnretainedType())
   2415       qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
   2416     else
   2417       qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
   2418     declSpecType = S.Context.getQualifiedType(declSpecType, qs);
   2419 
   2420   // If we have *two* pointers, then we want to throw the qualifier on
   2421   // the outermost pointer.
   2422   } else if (numPointers == 2) {
   2423     // If we don't have a block pointer, we need to check whether the
   2424     // declaration-specifiers gave us something that will turn into a
   2425     // retainable object pointer after we slap the first pointer on it.
   2426     if (!isBlockPointer && !declSpecType->isObjCObjectType())
   2427       return;
   2428 
   2429     // Look for an explicit lifetime attribute there.
   2430     DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
   2431     if (chunk.Kind != DeclaratorChunk::Pointer &&
   2432         chunk.Kind != DeclaratorChunk::BlockPointer)
   2433       return;
   2434     for (const AttributeList *attr = chunk.getAttrs(); attr;
   2435            attr = attr->getNext())
   2436       if (attr->getKind() == AttributeList::AT_ObjCOwnership)
   2437         return;
   2438 
   2439     transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
   2440                                           outermostPointerIndex);
   2441 
   2442   // Any other number of pointers/references does not trigger the rule.
   2443   } else return;
   2444 
   2445   // TODO: mark whether we did this inference?
   2446 }
   2447 
   2448 void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
   2449                                      SourceLocation FallbackLoc,
   2450                                      SourceLocation ConstQualLoc,
   2451                                      SourceLocation VolatileQualLoc,
   2452                                      SourceLocation RestrictQualLoc,
   2453                                      SourceLocation AtomicQualLoc) {
   2454   if (!Quals)
   2455     return;
   2456 
   2457   struct Qual {
   2458     const char *Name;
   2459     unsigned Mask;
   2460     SourceLocation Loc;
   2461   } const QualKinds[4] = {
   2462     { "const", DeclSpec::TQ_const, ConstQualLoc },
   2463     { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
   2464     { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
   2465     { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
   2466   };
   2467 
   2468   SmallString<32> QualStr;
   2469   unsigned NumQuals = 0;
   2470   SourceLocation Loc;
   2471   FixItHint FixIts[4];
   2472 
   2473   // Build a string naming the redundant qualifiers.
   2474   for (unsigned I = 0; I != 4; ++I) {
   2475     if (Quals & QualKinds[I].Mask) {
   2476       if (!QualStr.empty()) QualStr += ' ';
   2477       QualStr += QualKinds[I].Name;
   2478 
   2479       // If we have a location for the qualifier, offer a fixit.
   2480       SourceLocation QualLoc = QualKinds[I].Loc;
   2481       if (QualLoc.isValid()) {
   2482         FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
   2483         if (Loc.isInvalid() ||
   2484             getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
   2485           Loc = QualLoc;
   2486       }
   2487 
   2488       ++NumQuals;
   2489     }
   2490   }
   2491 
   2492   Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
   2493     << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
   2494 }
   2495 
   2496 // Diagnose pointless type qualifiers on the return type of a function.
   2497 static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
   2498                                                   Declarator &D,
   2499                                                   unsigned FunctionChunkIndex) {
   2500   if (D.getTypeObject(FunctionChunkIndex).Fun.hasTrailingReturnType()) {
   2501     // FIXME: TypeSourceInfo doesn't preserve location information for
   2502     // qualifiers.
   2503     S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
   2504                                 RetTy.getLocalCVRQualifiers(),
   2505                                 D.getIdentifierLoc());
   2506     return;
   2507   }
   2508 
   2509   for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
   2510                 End = D.getNumTypeObjects();
   2511        OuterChunkIndex != End; ++OuterChunkIndex) {
   2512     DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
   2513     switch (OuterChunk.Kind) {
   2514     case DeclaratorChunk::Paren:
   2515       continue;
   2516 
   2517     case DeclaratorChunk::Pointer: {
   2518       DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
   2519       S.diagnoseIgnoredQualifiers(
   2520           diag::warn_qual_return_type,
   2521           PTI.TypeQuals,
   2522           SourceLocation(),
   2523           SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
   2524           SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
   2525           SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
   2526           SourceLocation::getFromRawEncoding(PTI.AtomicQualLoc));
   2527       return;
   2528     }
   2529 
   2530     case DeclaratorChunk::Function:
   2531     case DeclaratorChunk::BlockPointer:
   2532     case DeclaratorChunk::Reference:
   2533     case DeclaratorChunk::Array:
   2534     case DeclaratorChunk::MemberPointer:
   2535       // FIXME: We can't currently provide an accurate source location and a
   2536       // fix-it hint for these.
   2537       unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
   2538       S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
   2539                                   RetTy.getCVRQualifiers() | AtomicQual,
   2540                                   D.getIdentifierLoc());
   2541       return;
   2542     }
   2543 
   2544     llvm_unreachable("unknown declarator chunk kind");
   2545   }
   2546 
   2547   // If the qualifiers come from a conversion function type, don't diagnose
   2548   // them -- they're not necessarily redundant, since such a conversion
   2549   // operator can be explicitly called as "x.operator const int()".
   2550   if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
   2551     return;
   2552 
   2553   // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
   2554   // which are present there.
   2555   S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
   2556                               D.getDeclSpec().getTypeQualifiers(),
   2557                               D.getIdentifierLoc(),
   2558                               D.getDeclSpec().getConstSpecLoc(),
   2559                               D.getDeclSpec().getVolatileSpecLoc(),
   2560                               D.getDeclSpec().getRestrictSpecLoc(),
   2561                               D.getDeclSpec().getAtomicSpecLoc());
   2562 }
   2563 
   2564 static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
   2565                                              TypeSourceInfo *&ReturnTypeInfo) {
   2566   Sema &SemaRef = state.getSema();
   2567   Declarator &D = state.getDeclarator();
   2568   QualType T;
   2569   ReturnTypeInfo = nullptr;
   2570 
   2571   // The TagDecl owned by the DeclSpec.
   2572   TagDecl *OwnedTagDecl = nullptr;
   2573 
   2574   switch (D.getName().getKind()) {
   2575   case UnqualifiedId::IK_ImplicitSelfParam:
   2576   case UnqualifiedId::IK_OperatorFunctionId:
   2577   case UnqualifiedId::IK_Identifier:
   2578   case UnqualifiedId::IK_LiteralOperatorId:
   2579   case UnqualifiedId::IK_TemplateId:
   2580     T = ConvertDeclSpecToType(state);
   2581 
   2582     if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
   2583       OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
   2584       // Owned declaration is embedded in declarator.
   2585       OwnedTagDecl->setEmbeddedInDeclarator(true);
   2586     }
   2587     break;
   2588 
   2589   case UnqualifiedId::IK_ConstructorName:
   2590   case UnqualifiedId::IK_ConstructorTemplateId:
   2591   case UnqualifiedId::IK_DestructorName:
   2592     // Constructors and destructors don't have return types. Use
   2593     // "void" instead.
   2594     T = SemaRef.Context.VoidTy;
   2595     processTypeAttrs(state, T, TAL_DeclSpec,
   2596                      D.getDeclSpec().getAttributes().getList());
   2597     break;
   2598 
   2599   case UnqualifiedId::IK_ConversionFunctionId:
   2600     // The result type of a conversion function is the type that it
   2601     // converts to.
   2602     T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
   2603                                   &ReturnTypeInfo);
   2604     break;
   2605   }
   2606 
   2607   if (D.getAttributes())
   2608     distributeTypeAttrsFromDeclarator(state, T);
   2609 
   2610   // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
   2611   if (D.getDeclSpec().containsPlaceholderType()) {
   2612     int Error = -1;
   2613 
   2614     switch (D.getContext()) {
   2615     case Declarator::LambdaExprContext:
   2616       llvm_unreachable("Can't specify a type specifier in lambda grammar");
   2617     case Declarator::ObjCParameterContext:
   2618     case Declarator::ObjCResultContext:
   2619     case Declarator::PrototypeContext:
   2620       Error = 0;
   2621       break;
   2622     case Declarator::LambdaExprParameterContext:
   2623       // In C++14, generic lambdas allow 'auto' in their parameters.
   2624       if (!(SemaRef.getLangOpts().CPlusPlus14
   2625               && D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto))
   2626         Error = 16;
   2627       break;
   2628     case Declarator::MemberContext: {
   2629       if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
   2630           D.isFunctionDeclarator())
   2631         break;
   2632       bool Cxx = SemaRef.getLangOpts().CPlusPlus;
   2633       switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
   2634       case TTK_Enum: llvm_unreachable("unhandled tag kind");
   2635       case TTK_Struct: Error = Cxx ? 1 : 2; /* Struct member */ break;
   2636       case TTK_Union:  Error = Cxx ? 3 : 4; /* Union member */ break;
   2637       case TTK_Class:  Error = 5; /* Class member */ break;
   2638       case TTK_Interface: Error = 6; /* Interface member */ break;
   2639       }
   2640       break;
   2641     }
   2642     case Declarator::CXXCatchContext:
   2643     case Declarator::ObjCCatchContext:
   2644       Error = 7; // Exception declaration
   2645       break;
   2646     case Declarator::TemplateParamContext:
   2647       Error = 8; // Template parameter
   2648       break;
   2649     case Declarator::BlockLiteralContext:
   2650       Error = 9; // Block literal
   2651       break;
   2652     case Declarator::TemplateTypeArgContext:
   2653       Error = 10; // Template type argument
   2654       break;
   2655     case Declarator::AliasDeclContext:
   2656     case Declarator::AliasTemplateContext:
   2657       Error = 12; // Type alias
   2658       break;
   2659     case Declarator::TrailingReturnContext:
   2660       if (!SemaRef.getLangOpts().CPlusPlus14 ||
   2661           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto_type)
   2662         Error = 13; // Function return type
   2663       break;
   2664     case Declarator::ConversionIdContext:
   2665       if (!SemaRef.getLangOpts().CPlusPlus14 ||
   2666           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto_type)
   2667         Error = 14; // conversion-type-id
   2668       break;
   2669     case Declarator::TypeNameContext:
   2670       Error = 15; // Generic
   2671       break;
   2672     case Declarator::FileContext:
   2673     case Declarator::BlockContext:
   2674     case Declarator::ForContext:
   2675     case Declarator::ConditionContext:
   2676       break;
   2677     case Declarator::CXXNewContext:
   2678       if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto_type)
   2679         Error = 17; // 'new' type
   2680       break;
   2681     case Declarator::KNRTypeListContext:
   2682       Error = 18; // K&R function parameter
   2683       break;
   2684     }
   2685 
   2686     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
   2687       Error = 11;
   2688 
   2689     // In Objective-C it is an error to use 'auto' on a function declarator
   2690     // (and everywhere for '__auto_type').
   2691     if (D.isFunctionDeclarator() &&
   2692         (!SemaRef.getLangOpts().CPlusPlus11 ||
   2693          D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto_type))
   2694       Error = 13;
   2695 
   2696     bool HaveTrailing = false;
   2697 
   2698     // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
   2699     // contains a trailing return type. That is only legal at the outermost
   2700     // level. Check all declarator chunks (outermost first) anyway, to give
   2701     // better diagnostics.
   2702     // We don't support '__auto_type' with trailing return types.
   2703     if (SemaRef.getLangOpts().CPlusPlus11 &&
   2704         D.getDeclSpec().getTypeSpecType() != DeclSpec::TST_auto_type) {
   2705       for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
   2706         unsigned chunkIndex = e - i - 1;
   2707         state.setCurrentChunkIndex(chunkIndex);
   2708         DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
   2709         if (DeclType.Kind == DeclaratorChunk::Function) {
   2710           const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
   2711           if (FTI.hasTrailingReturnType()) {
   2712             HaveTrailing = true;
   2713             Error = -1;
   2714             break;
   2715           }
   2716         }
   2717       }
   2718     }
   2719 
   2720     SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
   2721     if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
   2722       AutoRange = D.getName().getSourceRange();
   2723 
   2724     if (Error != -1) {
   2725       unsigned Keyword;
   2726       switch (D.getDeclSpec().getTypeSpecType()) {
   2727       case DeclSpec::TST_auto: Keyword = 0; break;
   2728       case DeclSpec::TST_decltype_auto: Keyword = 1; break;
   2729       case DeclSpec::TST_auto_type: Keyword = 2; break;
   2730       default: llvm_unreachable("unknown auto TypeSpecType");
   2731       }
   2732       SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
   2733         << Keyword << Error << AutoRange;
   2734       T = SemaRef.Context.IntTy;
   2735       D.setInvalidType(true);
   2736     } else if (!HaveTrailing) {
   2737       // If there was a trailing return type, we already got
   2738       // warn_cxx98_compat_trailing_return_type in the parser.
   2739       SemaRef.Diag(AutoRange.getBegin(),
   2740                    diag::warn_cxx98_compat_auto_type_specifier)
   2741         << AutoRange;
   2742     }
   2743   }
   2744 
   2745   if (SemaRef.getLangOpts().CPlusPlus &&
   2746       OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
   2747     // Check the contexts where C++ forbids the declaration of a new class
   2748     // or enumeration in a type-specifier-seq.
   2749     unsigned DiagID = 0;
   2750     switch (D.getContext()) {
   2751     case Declarator::TrailingReturnContext:
   2752       // Class and enumeration definitions are syntactically not allowed in
   2753       // trailing return types.
   2754       llvm_unreachable("parser should not have allowed this");
   2755       break;
   2756     case Declarator::FileContext:
   2757     case Declarator::MemberContext:
   2758     case Declarator::BlockContext:
   2759     case Declarator::ForContext:
   2760     case Declarator::BlockLiteralContext:
   2761     case Declarator::LambdaExprContext:
   2762       // C++11 [dcl.type]p3:
   2763       //   A type-specifier-seq shall not define a class or enumeration unless
   2764       //   it appears in the type-id of an alias-declaration (7.1.3) that is not
   2765       //   the declaration of a template-declaration.
   2766     case Declarator::AliasDeclContext:
   2767       break;
   2768     case Declarator::AliasTemplateContext:
   2769       DiagID = diag::err_type_defined_in_alias_template;
   2770       break;
   2771     case Declarator::TypeNameContext:
   2772     case Declarator::ConversionIdContext:
   2773     case Declarator::TemplateParamContext:
   2774     case Declarator::CXXNewContext:
   2775     case Declarator::CXXCatchContext:
   2776     case Declarator::ObjCCatchContext:
   2777     case Declarator::TemplateTypeArgContext:
   2778       DiagID = diag::err_type_defined_in_type_specifier;
   2779       break;
   2780     case Declarator::PrototypeContext:
   2781     case Declarator::LambdaExprParameterContext:
   2782     case Declarator::ObjCParameterContext:
   2783     case Declarator::ObjCResultContext:
   2784     case Declarator::KNRTypeListContext:
   2785       // C++ [dcl.fct]p6:
   2786       //   Types shall not be defined in return or parameter types.
   2787       DiagID = diag::err_type_defined_in_param_type;
   2788       break;
   2789     case Declarator::ConditionContext:
   2790       // C++ 6.4p2:
   2791       // The type-specifier-seq shall not contain typedef and shall not declare
   2792       // a new class or enumeration.
   2793       DiagID = diag::err_type_defined_in_condition;
   2794       break;
   2795     }
   2796 
   2797     if (DiagID != 0) {
   2798       SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
   2799           << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
   2800       D.setInvalidType(true);
   2801     }
   2802   }
   2803 
   2804   assert(!T.isNull() && "This function should not return a null type");
   2805   return T;
   2806 }
   2807 
   2808 /// Produce an appropriate diagnostic for an ambiguity between a function
   2809 /// declarator and a C++ direct-initializer.
   2810 static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
   2811                                        DeclaratorChunk &DeclType, QualType RT) {
   2812   const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
   2813   assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
   2814 
   2815   // If the return type is void there is no ambiguity.
   2816   if (RT->isVoidType())
   2817     return;
   2818 
   2819   // An initializer for a non-class type can have at most one argument.
   2820   if (!RT->isRecordType() && FTI.NumParams > 1)
   2821     return;
   2822 
   2823   // An initializer for a reference must have exactly one argument.
   2824   if (RT->isReferenceType() && FTI.NumParams != 1)
   2825     return;
   2826 
   2827   // Only warn if this declarator is declaring a function at block scope, and
   2828   // doesn't have a storage class (such as 'extern') specified.
   2829   if (!D.isFunctionDeclarator() ||
   2830       D.getFunctionDefinitionKind() != FDK_Declaration ||
   2831       !S.CurContext->isFunctionOrMethod() ||
   2832       D.getDeclSpec().getStorageClassSpec()
   2833         != DeclSpec::SCS_unspecified)
   2834     return;
   2835 
   2836   // Inside a condition, a direct initializer is not permitted. We allow one to
   2837   // be parsed in order to give better diagnostics in condition parsing.
   2838   if (D.getContext() == Declarator::ConditionContext)
   2839     return;
   2840 
   2841   SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
   2842 
   2843   S.Diag(DeclType.Loc,
   2844          FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
   2845                        : diag::warn_empty_parens_are_function_decl)
   2846       << ParenRange;
   2847 
   2848   // If the declaration looks like:
   2849   //   T var1,
   2850   //   f();
   2851   // and name lookup finds a function named 'f', then the ',' was
   2852   // probably intended to be a ';'.
   2853   if (!D.isFirstDeclarator() && D.getIdentifier()) {
   2854     FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
   2855     FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
   2856     if (Comma.getFileID() != Name.getFileID() ||
   2857         Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
   2858       LookupResult Result(S, D.getIdentifier(), SourceLocation(),
   2859                           Sema::LookupOrdinaryName);
   2860       if (S.LookupName(Result, S.getCurScope()))
   2861         S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
   2862           << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
   2863           << D.getIdentifier();
   2864     }
   2865   }
   2866 
   2867   if (FTI.NumParams > 0) {
   2868     // For a declaration with parameters, eg. "T var(T());", suggest adding
   2869     // parens around the first parameter to turn the declaration into a
   2870     // variable declaration.
   2871     SourceRange Range = FTI.Params[0].Param->getSourceRange();
   2872     SourceLocation B = Range.getBegin();
   2873     SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
   2874     // FIXME: Maybe we should suggest adding braces instead of parens
   2875     // in C++11 for classes that don't have an initializer_list constructor.
   2876     S.Diag(B, diag::note_additional_parens_for_variable_declaration)
   2877       << FixItHint::CreateInsertion(B, "(")
   2878       << FixItHint::CreateInsertion(E, ")");
   2879   } else {
   2880     // For a declaration without parameters, eg. "T var();", suggest replacing
   2881     // the parens with an initializer to turn the declaration into a variable
   2882     // declaration.
   2883     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
   2884 
   2885     // Empty parens mean value-initialization, and no parens mean
   2886     // default initialization. These are equivalent if the default
   2887     // constructor is user-provided or if zero-initialization is a
   2888     // no-op.
   2889     if (RD && RD->hasDefinition() &&
   2890         (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
   2891       S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
   2892         << FixItHint::CreateRemoval(ParenRange);
   2893     else {
   2894       std::string Init =
   2895           S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
   2896       if (Init.empty() && S.LangOpts.CPlusPlus11)
   2897         Init = "{}";
   2898       if (!Init.empty())
   2899         S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
   2900           << FixItHint::CreateReplacement(ParenRange, Init);
   2901     }
   2902   }
   2903 }
   2904 
   2905 /// Helper for figuring out the default CC for a function declarator type.  If
   2906 /// this is the outermost chunk, then we can determine the CC from the
   2907 /// declarator context.  If not, then this could be either a member function
   2908 /// type or normal function type.
   2909 static CallingConv
   2910 getCCForDeclaratorChunk(Sema &S, Declarator &D,
   2911                         const DeclaratorChunk::FunctionTypeInfo &FTI,
   2912                         unsigned ChunkIndex) {
   2913   assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
   2914 
   2915   bool IsCXXInstanceMethod = false;
   2916 
   2917   if (S.getLangOpts().CPlusPlus) {
   2918     // Look inwards through parentheses to see if this chunk will form a
   2919     // member pointer type or if we're the declarator.  Any type attributes
   2920     // between here and there will override the CC we choose here.
   2921     unsigned I = ChunkIndex;
   2922     bool FoundNonParen = false;
   2923     while (I && !FoundNonParen) {
   2924       --I;
   2925       if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
   2926         FoundNonParen = true;
   2927     }
   2928 
   2929     if (FoundNonParen) {
   2930       // If we're not the declarator, we're a regular function type unless we're
   2931       // in a member pointer.
   2932       IsCXXInstanceMethod =
   2933           D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
   2934     } else if (D.getContext() == Declarator::LambdaExprContext) {
   2935       // This can only be a call operator for a lambda, which is an instance
   2936       // method.
   2937       IsCXXInstanceMethod = true;
   2938     } else {
   2939       // We're the innermost decl chunk, so must be a function declarator.
   2940       assert(D.isFunctionDeclarator());
   2941 
   2942       // If we're inside a record, we're declaring a method, but it could be
   2943       // explicitly or implicitly static.
   2944       IsCXXInstanceMethod =
   2945           D.isFirstDeclarationOfMember() &&
   2946           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
   2947           !D.isStaticMember();
   2948     }
   2949   }
   2950 
   2951   CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
   2952                                                          IsCXXInstanceMethod);
   2953 
   2954   // Attribute AT_OpenCLKernel affects the calling convention only on
   2955   // the SPIR target, hence it cannot be treated as a calling
   2956   // convention attribute. This is the simplest place to infer
   2957   // "spir_kernel" for OpenCL kernels on SPIR.
   2958   if (CC == CC_SpirFunction) {
   2959     for (const AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
   2960          Attr; Attr = Attr->getNext()) {
   2961       if (Attr->getKind() == AttributeList::AT_OpenCLKernel) {
   2962         CC = CC_SpirKernel;
   2963         break;
   2964       }
   2965     }
   2966   }
   2967 
   2968   return CC;
   2969 }
   2970 
   2971 namespace {
   2972   /// A simple notion of pointer kinds, which matches up with the various
   2973   /// pointer declarators.
   2974   enum class SimplePointerKind {
   2975     Pointer,
   2976     BlockPointer,
   2977     MemberPointer,
   2978   };
   2979 }
   2980 
   2981 IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
   2982   switch (nullability) {
   2983   case NullabilityKind::NonNull:
   2984     if (!Ident__Nonnull)
   2985       Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
   2986     return Ident__Nonnull;
   2987 
   2988   case NullabilityKind::Nullable:
   2989     if (!Ident__Nullable)
   2990       Ident__Nullable = PP.getIdentifierInfo("_Nullable");
   2991     return Ident__Nullable;
   2992 
   2993   case NullabilityKind::Unspecified:
   2994     if (!Ident__Null_unspecified)
   2995       Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
   2996     return Ident__Null_unspecified;
   2997   }
   2998   llvm_unreachable("Unknown nullability kind.");
   2999 }
   3000 
   3001 /// Retrieve the identifier "NSError".
   3002 IdentifierInfo *Sema::getNSErrorIdent() {
   3003   if (!Ident_NSError)
   3004     Ident_NSError = PP.getIdentifierInfo("NSError");
   3005 
   3006   return Ident_NSError;
   3007 }
   3008 
   3009 /// Check whether there is a nullability attribute of any kind in the given
   3010 /// attribute list.
   3011 static bool hasNullabilityAttr(const AttributeList *attrs) {
   3012   for (const AttributeList *attr = attrs; attr;
   3013        attr = attr->getNext()) {
   3014     if (attr->getKind() == AttributeList::AT_TypeNonNull ||
   3015         attr->getKind() == AttributeList::AT_TypeNullable ||
   3016         attr->getKind() == AttributeList::AT_TypeNullUnspecified)
   3017       return true;
   3018   }
   3019 
   3020   return false;
   3021 }
   3022 
   3023 namespace {
   3024   /// Describes the kind of a pointer a declarator describes.
   3025   enum class PointerDeclaratorKind {
   3026     // Not a pointer.
   3027     NonPointer,
   3028     // Single-level pointer.
   3029     SingleLevelPointer,
   3030     // Multi-level pointer (of any pointer kind).
   3031     MultiLevelPointer,
   3032     // CFFooRef*
   3033     MaybePointerToCFRef,
   3034     // CFErrorRef*
   3035     CFErrorRefPointer,
   3036     // NSError**
   3037     NSErrorPointerPointer,
   3038   };
   3039 }
   3040 
   3041 /// Classify the given declarator, whose type-specified is \c type, based on
   3042 /// what kind of pointer it refers to.
   3043 ///
   3044 /// This is used to determine the default nullability.
   3045 static PointerDeclaratorKind classifyPointerDeclarator(Sema &S,
   3046                                                        QualType type,
   3047                                                        Declarator &declarator) {
   3048   unsigned numNormalPointers = 0;
   3049 
   3050   // For any dependent type, we consider it a non-pointer.
   3051   if (type->isDependentType())
   3052     return PointerDeclaratorKind::NonPointer;
   3053 
   3054   // Look through the declarator chunks to identify pointers.
   3055   for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
   3056     DeclaratorChunk &chunk = declarator.getTypeObject(i);
   3057     switch (chunk.Kind) {
   3058     case DeclaratorChunk::Array:
   3059     case DeclaratorChunk::Function:
   3060       break;
   3061 
   3062     case DeclaratorChunk::BlockPointer:
   3063     case DeclaratorChunk::MemberPointer:
   3064       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
   3065                                    : PointerDeclaratorKind::SingleLevelPointer;
   3066 
   3067     case DeclaratorChunk::Paren:
   3068     case DeclaratorChunk::Reference:
   3069       continue;
   3070 
   3071     case DeclaratorChunk::Pointer:
   3072       ++numNormalPointers;
   3073       if (numNormalPointers > 2)
   3074         return PointerDeclaratorKind::MultiLevelPointer;
   3075       continue;
   3076     }
   3077   }
   3078 
   3079   // Then, dig into the type specifier itself.
   3080   unsigned numTypeSpecifierPointers = 0;
   3081   do {
   3082     // Decompose normal pointers.
   3083     if (auto ptrType = type->getAs<PointerType>()) {
   3084       ++numNormalPointers;
   3085 
   3086       if (numNormalPointers > 2)
   3087         return PointerDeclaratorKind::MultiLevelPointer;
   3088 
   3089       type = ptrType->getPointeeType();
   3090       ++numTypeSpecifierPointers;
   3091       continue;
   3092     }
   3093 
   3094     // Decompose block pointers.
   3095     if (type->getAs<BlockPointerType>()) {
   3096       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
   3097                                    : PointerDeclaratorKind::SingleLevelPointer;
   3098     }
   3099 
   3100     // Decompose member pointers.
   3101     if (type->getAs<MemberPointerType>()) {
   3102       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
   3103                                    : PointerDeclaratorKind::SingleLevelPointer;
   3104     }
   3105 
   3106     // Look at Objective-C object pointers.
   3107     if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
   3108       ++numNormalPointers;
   3109       ++numTypeSpecifierPointers;
   3110 
   3111       // If this is NSError**, report that.
   3112       if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
   3113         if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() &&
   3114             numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
   3115           return PointerDeclaratorKind::NSErrorPointerPointer;
   3116         }
   3117       }
   3118 
   3119       break;
   3120     }
   3121 
   3122     // Look at Objective-C class types.
   3123     if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
   3124       if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) {
   3125         if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
   3126           return PointerDeclaratorKind::NSErrorPointerPointer;;
   3127       }
   3128 
   3129       break;
   3130     }
   3131 
   3132     // If at this point we haven't seen a pointer, we won't see one.
   3133     if (numNormalPointers == 0)
   3134       return PointerDeclaratorKind::NonPointer;
   3135 
   3136     if (auto recordType = type->getAs<RecordType>()) {
   3137       RecordDecl *recordDecl = recordType->getDecl();
   3138 
   3139       bool isCFError = false;
   3140       if (S.CFError) {
   3141         // If we already know about CFError, test it directly.
   3142         isCFError = (S.CFError == recordDecl);
   3143       } else {
   3144         // Check whether this is CFError, which we identify based on its bridge
   3145         // to NSError.
   3146         if (recordDecl->getTagKind() == TTK_Struct && numNormalPointers > 0) {
   3147           if (auto bridgeAttr = recordDecl->getAttr<ObjCBridgeAttr>()) {
   3148             if (bridgeAttr->getBridgedType() == S.getNSErrorIdent()) {
   3149               S.CFError = recordDecl;
   3150               isCFError = true;
   3151             }
   3152           }
   3153         }
   3154       }
   3155 
   3156       // If this is CFErrorRef*, report it as such.
   3157       if (isCFError && numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
   3158         return PointerDeclaratorKind::CFErrorRefPointer;
   3159       }
   3160       break;
   3161     }
   3162 
   3163     break;
   3164   } while (true);
   3165 
   3166 
   3167   switch (numNormalPointers) {
   3168   case 0:
   3169     return PointerDeclaratorKind::NonPointer;
   3170 
   3171   case 1:
   3172     return PointerDeclaratorKind::SingleLevelPointer;
   3173 
   3174   case 2:
   3175     return PointerDeclaratorKind::MaybePointerToCFRef;
   3176 
   3177   default:
   3178     return PointerDeclaratorKind::MultiLevelPointer;
   3179   }
   3180 }
   3181 
   3182 static FileID getNullabilityCompletenessCheckFileID(Sema &S,
   3183                                                     SourceLocation loc) {
   3184   // If we're anywhere in a function, method, or closure context, don't perform
   3185   // completeness checks.
   3186   for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
   3187     if (ctx->isFunctionOrMethod())
   3188       return FileID();
   3189 
   3190     if (ctx->isFileContext())
   3191       break;
   3192   }
   3193 
   3194   // We only care about the expansion location.
   3195   loc = S.SourceMgr.getExpansionLoc(loc);
   3196   FileID file = S.SourceMgr.getFileID(loc);
   3197   if (file.isInvalid())
   3198     return FileID();
   3199 
   3200   // Retrieve file information.
   3201   bool invalid = false;
   3202   const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
   3203   if (invalid || !sloc.isFile())
   3204     return FileID();
   3205 
   3206   // We don't want to perform completeness checks on the main file or in
   3207   // system headers.
   3208   const SrcMgr::FileInfo &fileInfo = sloc.getFile();
   3209   if (fileInfo.getIncludeLoc().isInvalid())
   3210     return FileID();
   3211   if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
   3212       S.Diags.getSuppressSystemWarnings()) {
   3213     return FileID();
   3214   }
   3215 
   3216   return file;
   3217 }
   3218 
   3219 /// Check for consistent use of nullability.
   3220 static void checkNullabilityConsistency(TypeProcessingState &state,
   3221                                         SimplePointerKind pointerKind,
   3222                                         SourceLocation pointerLoc) {
   3223   Sema &S = state.getSema();
   3224 
   3225   // Determine which file we're performing consistency checking for.
   3226   FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
   3227   if (file.isInvalid())
   3228     return;
   3229 
   3230   // If we haven't seen any type nullability in this file, we won't warn now
   3231   // about anything.
   3232   FileNullability &fileNullability = S.NullabilityMap[file];
   3233   if (!fileNullability.SawTypeNullability) {
   3234     // If this is the first pointer declarator in the file, record it.
   3235     if (fileNullability.PointerLoc.isInvalid() &&
   3236         !S.Context.getDiagnostics().isIgnored(diag::warn_nullability_missing,
   3237                                               pointerLoc)) {
   3238       fileNullability.PointerLoc = pointerLoc;
   3239       fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
   3240     }
   3241 
   3242     return;
   3243   }
   3244 
   3245   // Complain about missing nullability.
   3246   S.Diag(pointerLoc, diag::warn_nullability_missing)
   3247     << static_cast<unsigned>(pointerKind);
   3248 }
   3249 
   3250 static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
   3251                                                 QualType declSpecType,
   3252                                                 TypeSourceInfo *TInfo) {
   3253   // The TypeSourceInfo that this function returns will not be a null type.
   3254   // If there is an error, this function will fill in a dummy type as fallback.
   3255   QualType T = declSpecType;
   3256   Declarator &D = state.getDeclarator();
   3257   Sema &S = state.getSema();
   3258   ASTContext &Context = S.Context;
   3259   const LangOptions &LangOpts = S.getLangOpts();
   3260 
   3261   // The name we're declaring, if any.
   3262   DeclarationName Name;
   3263   if (D.getIdentifier())
   3264     Name = D.getIdentifier();
   3265 
   3266   // Does this declaration declare a typedef-name?
   3267   bool IsTypedefName =
   3268     D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
   3269     D.getContext() == Declarator::AliasDeclContext ||
   3270     D.getContext() == Declarator::AliasTemplateContext;
   3271 
   3272   // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
   3273   bool IsQualifiedFunction = T->isFunctionProtoType() &&
   3274       (T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
   3275        T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
   3276 
   3277   // If T is 'decltype(auto)', the only declarators we can have are parens
   3278   // and at most one function declarator if this is a function declaration.
   3279   if (const AutoType *AT = T->getAs<AutoType>()) {
   3280     if (AT->isDecltypeAuto()) {
   3281       for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
   3282         unsigned Index = E - I - 1;
   3283         DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
   3284         unsigned DiagId = diag::err_decltype_auto_compound_type;
   3285         unsigned DiagKind = 0;
   3286         switch (DeclChunk.Kind) {
   3287         case DeclaratorChunk::Paren:
   3288           continue;
   3289         case DeclaratorChunk::Function: {
   3290           unsigned FnIndex;
   3291           if (D.isFunctionDeclarationContext() &&
   3292               D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
   3293             continue;
   3294           DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
   3295           break;
   3296         }
   3297         case DeclaratorChunk::Pointer:
   3298         case DeclaratorChunk::BlockPointer:
   3299         case DeclaratorChunk::MemberPointer:
   3300           DiagKind = 0;
   3301           break;
   3302         case DeclaratorChunk::Reference:
   3303           DiagKind = 1;
   3304           break;
   3305         case DeclaratorChunk::Array:
   3306           DiagKind = 2;
   3307           break;
   3308         }
   3309 
   3310         S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
   3311         D.setInvalidType(true);
   3312         break;
   3313       }
   3314     }
   3315   }
   3316 
   3317   // Determine whether we should infer _Nonnull on pointer types.
   3318   Optional<NullabilityKind> inferNullability;
   3319   bool inferNullabilityCS = false;
   3320   bool inferNullabilityInnerOnly = false;
   3321   bool inferNullabilityInnerOnlyComplete = false;
   3322 
   3323   // Are we in an assume-nonnull region?
   3324   bool inAssumeNonNullRegion = false;
   3325   if (S.PP.getPragmaAssumeNonNullLoc().isValid()) {
   3326     inAssumeNonNullRegion = true;
   3327     // Determine which file we saw the assume-nonnull region in.
   3328     FileID file = getNullabilityCompletenessCheckFileID(
   3329                     S, S.PP.getPragmaAssumeNonNullLoc());
   3330     if (file.isValid()) {
   3331       FileNullability &fileNullability = S.NullabilityMap[file];
   3332 
   3333       // If we haven't seen any type nullability before, now we have.
   3334       if (!fileNullability.SawTypeNullability) {
   3335         if (fileNullability.PointerLoc.isValid()) {
   3336           S.Diag(fileNullability.PointerLoc, diag::warn_nullability_missing)
   3337             << static_cast<unsigned>(fileNullability.PointerKind);
   3338         }
   3339 
   3340         fileNullability.SawTypeNullability = true;
   3341       }
   3342     }
   3343   }
   3344 
   3345   // Whether to complain about missing nullability specifiers or not.
   3346   enum {
   3347     /// Never complain.
   3348     CAMN_No,
   3349     /// Complain on the inner pointers (but not the outermost
   3350     /// pointer).
   3351     CAMN_InnerPointers,
   3352     /// Complain about any pointers that don't have nullability
   3353     /// specified or inferred.
   3354     CAMN_Yes
   3355   } complainAboutMissingNullability = CAMN_No;
   3356   unsigned NumPointersRemaining = 0;
   3357 
   3358   if (IsTypedefName) {
   3359     // For typedefs, we do not infer any nullability (the default),
   3360     // and we only complain about missing nullability specifiers on
   3361     // inner pointers.
   3362     complainAboutMissingNullability = CAMN_InnerPointers;
   3363 
   3364     if (T->canHaveNullability() && !T->getNullability(S.Context)) {
   3365       ++NumPointersRemaining;
   3366     }
   3367 
   3368     for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
   3369       DeclaratorChunk &chunk = D.getTypeObject(i);
   3370       switch (chunk.Kind) {
   3371       case DeclaratorChunk::Array:
   3372       case DeclaratorChunk::Function:
   3373         break;
   3374 
   3375       case DeclaratorChunk::BlockPointer:
   3376       case DeclaratorChunk::MemberPointer:
   3377         ++NumPointersRemaining;
   3378         break;
   3379 
   3380       case DeclaratorChunk::Paren:
   3381       case DeclaratorChunk::Reference:
   3382         continue;
   3383 
   3384       case DeclaratorChunk::Pointer:
   3385         ++NumPointersRemaining;
   3386         continue;
   3387       }
   3388     }
   3389   } else {
   3390     bool isFunctionOrMethod = false;
   3391     switch (auto context = state.getDeclarator().getContext()) {
   3392     case Declarator::ObjCParameterContext:
   3393     case Declarator::ObjCResultContext:
   3394     case Declarator::PrototypeContext:
   3395     case Declarator::TrailingReturnContext:
   3396       isFunctionOrMethod = true;
   3397       // fallthrough
   3398 
   3399     case Declarator::MemberContext:
   3400       if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
   3401         complainAboutMissingNullability = CAMN_No;
   3402         break;
   3403       }
   3404 
   3405       // Weak properties are inferred to be nullable.
   3406       if (state.getDeclarator().isObjCWeakProperty() && inAssumeNonNullRegion) {
   3407         inferNullability = NullabilityKind::Nullable;
   3408         break;
   3409       }
   3410 
   3411       // fallthrough
   3412 
   3413     case Declarator::FileContext:
   3414     case Declarator::KNRTypeListContext:
   3415       complainAboutMissingNullability = CAMN_Yes;
   3416 
   3417       // Nullability inference depends on the type and declarator.
   3418       switch (classifyPointerDeclarator(S, T, D)) {
   3419       case PointerDeclaratorKind::NonPointer:
   3420       case PointerDeclaratorKind::MultiLevelPointer:
   3421         // Cannot infer nullability.
   3422         break;
   3423 
   3424       case PointerDeclaratorKind::SingleLevelPointer:
   3425         // Infer _Nonnull if we are in an assumes-nonnull region.
   3426         if (inAssumeNonNullRegion) {
   3427           inferNullability = NullabilityKind::NonNull;
   3428           inferNullabilityCS = (context == Declarator::ObjCParameterContext ||
   3429                                 context == Declarator::ObjCResultContext);
   3430         }
   3431         break;
   3432 
   3433       case PointerDeclaratorKind::CFErrorRefPointer:
   3434       case PointerDeclaratorKind::NSErrorPointerPointer:
   3435         // Within a function or method signature, infer _Nullable at both
   3436         // levels.
   3437         if (isFunctionOrMethod && inAssumeNonNullRegion)
   3438           inferNullability = NullabilityKind::Nullable;
   3439         break;
   3440 
   3441       case PointerDeclaratorKind::MaybePointerToCFRef:
   3442         if (isFunctionOrMethod) {
   3443           // On pointer-to-pointer parameters marked cf_returns_retained or
   3444           // cf_returns_not_retained, if the outer pointer is explicit then
   3445           // infer the inner pointer as _Nullable.
   3446           auto hasCFReturnsAttr = [](const AttributeList *NextAttr) -> bool {
   3447             while (NextAttr) {
   3448               if (NextAttr->getKind() == AttributeList::AT_CFReturnsRetained ||
   3449                   NextAttr->getKind() == AttributeList::AT_CFReturnsNotRetained)
   3450                 return true;
   3451               NextAttr = NextAttr->getNext();
   3452             }
   3453             return false;
   3454           };
   3455           if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
   3456             if (hasCFReturnsAttr(D.getAttributes()) ||
   3457                 hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
   3458                 hasCFReturnsAttr(D.getDeclSpec().getAttributes().getList())) {
   3459               inferNullability = NullabilityKind::Nullable;
   3460               inferNullabilityInnerOnly = true;
   3461             }
   3462           }
   3463         }
   3464         break;
   3465       }
   3466       break;
   3467 
   3468     case Declarator::ConversionIdContext:
   3469       complainAboutMissingNullability = CAMN_Yes;
   3470       break;
   3471 
   3472     case Declarator::AliasDeclContext:
   3473     case Declarator::AliasTemplateContext:
   3474     case Declarator::BlockContext:
   3475     case Declarator::BlockLiteralContext:
   3476     case Declarator::ConditionContext:
   3477     case Declarator::CXXCatchContext:
   3478     case Declarator::CXXNewContext:
   3479     case Declarator::ForContext:
   3480     case Declarator::LambdaExprContext:
   3481     case Declarator::LambdaExprParameterContext:
   3482     case Declarator::ObjCCatchContext:
   3483     case Declarator::TemplateParamContext:
   3484     case Declarator::TemplateTypeArgContext:
   3485     case Declarator::TypeNameContext:
   3486       // Don't infer in these contexts.
   3487       break;
   3488     }
   3489   }
   3490 
   3491   // Local function that checks the nullability for a given pointer declarator.
   3492   // Returns true if _Nonnull was inferred.
   3493   auto inferPointerNullability = [&](SimplePointerKind pointerKind,
   3494                                      SourceLocation pointerLoc,
   3495                                      AttributeList *&attrs) -> AttributeList * {
   3496     // We've seen a pointer.
   3497     if (NumPointersRemaining > 0)
   3498       --NumPointersRemaining;
   3499 
   3500     // If a nullability attribute is present, there's nothing to do.
   3501     if (hasNullabilityAttr(attrs))
   3502       return nullptr;
   3503 
   3504     // If we're supposed to infer nullability, do so now.
   3505     if (inferNullability && !inferNullabilityInnerOnlyComplete) {
   3506       AttributeList::Syntax syntax
   3507         = inferNullabilityCS ? AttributeList::AS_ContextSensitiveKeyword
   3508                              : AttributeList::AS_Keyword;
   3509       AttributeList *nullabilityAttr = state.getDeclarator().getAttributePool()
   3510                                          .create(
   3511                                            S.getNullabilityKeyword(
   3512                                              *inferNullability),
   3513                                            SourceRange(pointerLoc),
   3514                                            nullptr, SourceLocation(),
   3515                                            nullptr, 0, syntax);
   3516 
   3517       spliceAttrIntoList(*nullabilityAttr, attrs);
   3518 
   3519       if (inferNullabilityCS) {
   3520         state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
   3521           ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
   3522       }
   3523 
   3524       if (inferNullabilityInnerOnly)
   3525         inferNullabilityInnerOnlyComplete = true;
   3526       return nullabilityAttr;
   3527     }
   3528 
   3529     // If we're supposed to complain about missing nullability, do so
   3530     // now if it's truly missing.
   3531     switch (complainAboutMissingNullability) {
   3532     case CAMN_No:
   3533       break;
   3534 
   3535     case CAMN_InnerPointers:
   3536       if (NumPointersRemaining == 0)
   3537         break;
   3538       // Fallthrough.
   3539 
   3540     case CAMN_Yes:
   3541       checkNullabilityConsistency(state, pointerKind, pointerLoc);
   3542     }
   3543     return nullptr;
   3544   };
   3545 
   3546   // If the type itself could have nullability but does not, infer pointer
   3547   // nullability and perform consistency checking.
   3548   if (T->canHaveNullability() && S.ActiveTemplateInstantiations.empty() &&
   3549       !T->getNullability(S.Context)) {
   3550     SimplePointerKind pointerKind = SimplePointerKind::Pointer;
   3551     if (T->isBlockPointerType())
   3552       pointerKind = SimplePointerKind::BlockPointer;
   3553     else if (T->isMemberPointerType())
   3554       pointerKind = SimplePointerKind::MemberPointer;
   3555 
   3556     if (auto *attr = inferPointerNullability(
   3557                        pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
   3558                        D.getMutableDeclSpec().getAttributes().getListRef())) {
   3559       T = Context.getAttributedType(
   3560             AttributedType::getNullabilityAttrKind(*inferNullability), T, T);
   3561       attr->setUsedAsTypeAttr();
   3562     }
   3563   }
   3564 
   3565   // Walk the DeclTypeInfo, building the recursive type as we go.
   3566   // DeclTypeInfos are ordered from the identifier out, which is
   3567   // opposite of what we want :).
   3568   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
   3569     unsigned chunkIndex = e - i - 1;
   3570     state.setCurrentChunkIndex(chunkIndex);
   3571     DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
   3572     IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
   3573     switch (DeclType.Kind) {
   3574     case DeclaratorChunk::Paren:
   3575       T = S.BuildParenType(T);
   3576       break;
   3577     case DeclaratorChunk::BlockPointer:
   3578       // If blocks are disabled, emit an error.
   3579       if (!LangOpts.Blocks)
   3580         S.Diag(DeclType.Loc, diag::err_blocks_disable);
   3581 
   3582       // Handle pointer nullability.
   3583       inferPointerNullability(SimplePointerKind::BlockPointer,
   3584                               DeclType.Loc, DeclType.getAttrListRef());
   3585 
   3586       T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
   3587       if (DeclType.Cls.TypeQuals)
   3588         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
   3589       break;
   3590     case DeclaratorChunk::Pointer:
   3591       // Verify that we're not building a pointer to pointer to function with
   3592       // exception specification.
   3593       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
   3594         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
   3595         D.setInvalidType(true);
   3596         // Build the type anyway.
   3597       }
   3598 
   3599       // Handle pointer nullability
   3600       inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
   3601                               DeclType.getAttrListRef());
   3602 
   3603       if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
   3604         T = Context.getObjCObjectPointerType(T);
   3605         if (DeclType.Ptr.TypeQuals)
   3606           T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
   3607         break;
   3608       }
   3609       T = S.BuildPointerType(T, DeclType.Loc, Name);
   3610       if (DeclType.Ptr.TypeQuals)
   3611         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
   3612 
   3613       break;
   3614     case DeclaratorChunk::Reference: {
   3615       // Verify that we're not building a reference to pointer to function with
   3616       // exception specification.
   3617       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
   3618         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
   3619         D.setInvalidType(true);
   3620         // Build the type anyway.
   3621       }
   3622       T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
   3623 
   3624       if (DeclType.Ref.HasRestrict)
   3625         T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
   3626       break;
   3627     }
   3628     case DeclaratorChunk::Array: {
   3629       // Verify that we're not building an array of pointers to function with
   3630       // exception specification.
   3631       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
   3632         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
   3633         D.setInvalidType(true);
   3634         // Build the type anyway.
   3635       }
   3636       DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
   3637       Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
   3638       ArrayType::ArraySizeModifier ASM;
   3639       if (ATI.isStar)
   3640         ASM = ArrayType::Star;
   3641       else if (ATI.hasStatic)
   3642         ASM = ArrayType::Static;
   3643       else
   3644         ASM = ArrayType::Normal;
   3645       if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
   3646         // FIXME: This check isn't quite right: it allows star in prototypes
   3647         // for function definitions, and disallows some edge cases detailed
   3648         // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
   3649         S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
   3650         ASM = ArrayType::Normal;
   3651         D.setInvalidType(true);
   3652       }
   3653 
   3654       // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
   3655       // shall appear only in a declaration of a function parameter with an
   3656       // array type, ...
   3657       if (ASM == ArrayType::Static || ATI.TypeQuals) {
   3658         if (!(D.isPrototypeContext() ||
   3659               D.getContext() == Declarator::KNRTypeListContext)) {
   3660           S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
   3661               (ASM == ArrayType::Static ? "'static'" : "type qualifier");
   3662           // Remove the 'static' and the type qualifiers.
   3663           if (ASM == ArrayType::Static)
   3664             ASM = ArrayType::Normal;
   3665           ATI.TypeQuals = 0;
   3666           D.setInvalidType(true);
   3667         }
   3668 
   3669         // C99 6.7.5.2p1: ... and then only in the outermost array type
   3670         // derivation.
   3671         unsigned x = chunkIndex;
   3672         while (x != 0) {
   3673           // Walk outwards along the declarator chunks.
   3674           x--;
   3675           const DeclaratorChunk &DC = D.getTypeObject(x);
   3676           switch (DC.Kind) {
   3677           case DeclaratorChunk::Paren:
   3678             continue;
   3679           case DeclaratorChunk::Array:
   3680           case DeclaratorChunk::Pointer:
   3681           case DeclaratorChunk::Reference:
   3682           case DeclaratorChunk::MemberPointer:
   3683             S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
   3684               (ASM == ArrayType::Static ? "'static'" : "type qualifier");
   3685             if (ASM == ArrayType::Static)
   3686               ASM = ArrayType::Normal;
   3687             ATI.TypeQuals = 0;
   3688             D.setInvalidType(true);
   3689             break;
   3690           case DeclaratorChunk::Function:
   3691           case DeclaratorChunk::BlockPointer:
   3692             // These are invalid anyway, so just ignore.
   3693             break;
   3694           }
   3695         }
   3696       }
   3697       const AutoType *AT = T->getContainedAutoType();
   3698       // Allow arrays of auto if we are a generic lambda parameter.
   3699       // i.e. [](auto (&array)[5]) { return array[0]; }; OK
   3700       if (AT && D.getContext() != Declarator::LambdaExprParameterContext) {
   3701         // We've already diagnosed this for decltype(auto).
   3702         if (!AT->isDecltypeAuto())
   3703           S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
   3704             << getPrintableNameForEntity(Name) << T;
   3705         T = QualType();
   3706         break;
   3707       }
   3708 
   3709       T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
   3710                            SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
   3711       break;
   3712     }
   3713     case DeclaratorChunk::Function: {
   3714       // If the function declarator has a prototype (i.e. it is not () and
   3715       // does not have a K&R-style identifier list), then the arguments are part
   3716       // of the type, otherwise the argument list is ().
   3717       const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
   3718       IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
   3719 
   3720       // Check for auto functions and trailing return type and adjust the
   3721       // return type accordingly.
   3722       if (!D.isInvalidType()) {
   3723         // trailing-return-type is only required if we're declaring a function,
   3724         // and not, for instance, a pointer to a function.
   3725         if (D.getDeclSpec().containsPlaceholderType() &&
   3726             !FTI.hasTrailingReturnType() && chunkIndex == 0 &&
   3727             !S.getLangOpts().CPlusPlus14) {
   3728           S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
   3729                  D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
   3730                      ? diag::err_auto_missing_trailing_return
   3731                      : diag::err_deduced_return_type);
   3732           T = Context.IntTy;
   3733           D.setInvalidType(true);
   3734         } else if (FTI.hasTrailingReturnType()) {
   3735           // T must be exactly 'auto' at this point. See CWG issue 681.
   3736           if (isa<ParenType>(T)) {
   3737             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
   3738                  diag::err_trailing_return_in_parens)
   3739               << T << D.getDeclSpec().getSourceRange();
   3740             D.setInvalidType(true);
   3741           } else if (D.getContext() != Declarator::LambdaExprContext &&
   3742                      (T.hasQualifiers() || !isa<AutoType>(T) ||
   3743                       cast<AutoType>(T)->getKeyword() != AutoTypeKeyword::Auto)) {
   3744             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
   3745                  diag::err_trailing_return_without_auto)
   3746               << T << D.getDeclSpec().getSourceRange();
   3747             D.setInvalidType(true);
   3748           }
   3749           T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
   3750           if (T.isNull()) {
   3751             // An error occurred parsing the trailing return type.
   3752             T = Context.IntTy;
   3753             D.setInvalidType(true);
   3754           }
   3755         }
   3756       }
   3757 
   3758       // C99 6.7.5.3p1: The return type may not be a function or array type.
   3759       // For conversion functions, we'll diagnose this particular error later.
   3760       if ((T->isArrayType() || T->isFunctionType()) &&
   3761           (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
   3762         unsigned diagID = diag::err_func_returning_array_function;
   3763         // Last processing chunk in block context means this function chunk
   3764         // represents the block.
   3765         if (chunkIndex == 0 &&
   3766             D.getContext() == Declarator::BlockLiteralContext)
   3767           diagID = diag::err_block_returning_array_function;
   3768         S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
   3769         T = Context.IntTy;
   3770         D.setInvalidType(true);
   3771       }
   3772 
   3773       // Do not allow returning half FP value.
   3774       // FIXME: This really should be in BuildFunctionType.
   3775       if (T->isHalfType()) {
   3776         if (S.getLangOpts().OpenCL) {
   3777           if (!S.getOpenCLOptions().cl_khr_fp16) {
   3778             S.Diag(D.getIdentifierLoc(), diag::err_opencl_half_return) << T;
   3779             D.setInvalidType(true);
   3780           }
   3781         } else if (!S.getLangOpts().HalfArgsAndReturns) {
   3782           S.Diag(D.getIdentifierLoc(),
   3783             diag::err_parameters_retval_cannot_have_fp16_type) << 1;
   3784           D.setInvalidType(true);
   3785         }
   3786       }
   3787 
   3788       // Methods cannot return interface types. All ObjC objects are
   3789       // passed by reference.
   3790       if (T->isObjCObjectType()) {
   3791         SourceLocation DiagLoc, FixitLoc;
   3792         if (TInfo) {
   3793           DiagLoc = TInfo->getTypeLoc().getLocStart();
   3794           FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getLocEnd());
   3795         } else {
   3796           DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
   3797           FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getLocEnd());
   3798         }
   3799         S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
   3800           << 0 << T
   3801           << FixItHint::CreateInsertion(FixitLoc, "*");
   3802 
   3803         T = Context.getObjCObjectPointerType(T);
   3804         if (TInfo) {
   3805           TypeLocBuilder TLB;
   3806           TLB.pushFullCopy(TInfo->getTypeLoc());
   3807           ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
   3808           TLoc.setStarLoc(FixitLoc);
   3809           TInfo = TLB.getTypeSourceInfo(Context, T);
   3810         }
   3811 
   3812         D.setInvalidType(true);
   3813       }
   3814 
   3815       // cv-qualifiers on return types are pointless except when the type is a
   3816       // class type in C++.
   3817       if ((T.getCVRQualifiers() || T->isAtomicType()) &&
   3818           !(S.getLangOpts().CPlusPlus &&
   3819             (T->isDependentType() || T->isRecordType()))) {
   3820         if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
   3821             D.getFunctionDefinitionKind() == FDK_Definition) {
   3822           // [6.9.1/3] qualified void return is invalid on a C
   3823           // function definition.  Apparently ok on declarations and
   3824           // in C++ though (!)
   3825           S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
   3826         } else
   3827           diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
   3828       }
   3829 
   3830       // Objective-C ARC ownership qualifiers are ignored on the function
   3831       // return type (by type canonicalization). Complain if this attribute
   3832       // was written here.
   3833       if (T.getQualifiers().hasObjCLifetime()) {
   3834         SourceLocation AttrLoc;
   3835         if (chunkIndex + 1 < D.getNumTypeObjects()) {
   3836           DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
   3837           for (const AttributeList *Attr = ReturnTypeChunk.getAttrs();
   3838                Attr; Attr = Attr->getNext()) {
   3839             if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
   3840               AttrLoc = Attr->getLoc();
   3841               break;
   3842             }
   3843           }
   3844         }
   3845         if (AttrLoc.isInvalid()) {
   3846           for (const AttributeList *Attr
   3847                  = D.getDeclSpec().getAttributes().getList();
   3848                Attr; Attr = Attr->getNext()) {
   3849             if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
   3850               AttrLoc = Attr->getLoc();
   3851               break;
   3852             }
   3853           }
   3854         }
   3855 
   3856         if (AttrLoc.isValid()) {
   3857           // The ownership attributes are almost always written via
   3858           // the predefined
   3859           // __strong/__weak/__autoreleasing/__unsafe_unretained.
   3860           if (AttrLoc.isMacroID())
   3861             AttrLoc = S.SourceMgr.getImmediateExpansionRange(AttrLoc).first;
   3862 
   3863           S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
   3864             << T.getQualifiers().getObjCLifetime();
   3865         }
   3866       }
   3867 
   3868       if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
   3869         // C++ [dcl.fct]p6:
   3870         //   Types shall not be defined in return or parameter types.
   3871         TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
   3872         S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
   3873           << Context.getTypeDeclType(Tag);
   3874       }
   3875 
   3876       // Exception specs are not allowed in typedefs. Complain, but add it
   3877       // anyway.
   3878       if (IsTypedefName && FTI.getExceptionSpecType())
   3879         S.Diag(FTI.getExceptionSpecLocBeg(),
   3880                diag::err_exception_spec_in_typedef)
   3881             << (D.getContext() == Declarator::AliasDeclContext ||
   3882                 D.getContext() == Declarator::AliasTemplateContext);
   3883 
   3884       // If we see "T var();" or "T var(T());" at block scope, it is probably
   3885       // an attempt to initialize a variable, not a function declaration.
   3886       if (FTI.isAmbiguous)
   3887         warnAboutAmbiguousFunction(S, D, DeclType, T);
   3888 
   3889       FunctionType::ExtInfo EI(getCCForDeclaratorChunk(S, D, FTI, chunkIndex));
   3890 
   3891       if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus) {
   3892         // Simple void foo(), where the incoming T is the result type.
   3893         T = Context.getFunctionNoProtoType(T, EI);
   3894       } else {
   3895         // We allow a zero-parameter variadic function in C if the
   3896         // function is marked with the "overloadable" attribute. Scan
   3897         // for this attribute now.
   3898         if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus) {
   3899           bool Overloadable = false;
   3900           for (const AttributeList *Attrs = D.getAttributes();
   3901                Attrs; Attrs = Attrs->getNext()) {
   3902             if (Attrs->getKind() == AttributeList::AT_Overloadable) {
   3903               Overloadable = true;
   3904               break;
   3905             }
   3906           }
   3907 
   3908           if (!Overloadable)
   3909             S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
   3910         }
   3911 
   3912         if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
   3913           // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
   3914           // definition.
   3915           S.Diag(FTI.Params[0].IdentLoc,
   3916                  diag::err_ident_list_in_fn_declaration);
   3917           D.setInvalidType(true);
   3918           // Recover by creating a K&R-style function type.
   3919           T = Context.getFunctionNoProtoType(T, EI);
   3920           break;
   3921         }
   3922 
   3923         FunctionProtoType::ExtProtoInfo EPI;
   3924         EPI.ExtInfo = EI;
   3925         EPI.Variadic = FTI.isVariadic;
   3926         EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
   3927         EPI.TypeQuals = FTI.TypeQuals;
   3928         EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
   3929                     : FTI.RefQualifierIsLValueRef? RQ_LValue
   3930                     : RQ_RValue;
   3931 
   3932         // Otherwise, we have a function with a parameter list that is
   3933         // potentially variadic.
   3934         SmallVector<QualType, 16> ParamTys;
   3935         ParamTys.reserve(FTI.NumParams);
   3936 
   3937         SmallVector<bool, 16> ConsumedParameters;
   3938         ConsumedParameters.reserve(FTI.NumParams);
   3939         bool HasAnyConsumedParameters = false;
   3940 
   3941         for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
   3942           ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
   3943           QualType ParamTy = Param->getType();
   3944           assert(!ParamTy.isNull() && "Couldn't parse type?");
   3945 
   3946           // Look for 'void'.  void is allowed only as a single parameter to a
   3947           // function with no other parameters (C99 6.7.5.3p10).  We record
   3948           // int(void) as a FunctionProtoType with an empty parameter list.
   3949           if (ParamTy->isVoidType()) {
   3950             // If this is something like 'float(int, void)', reject it.  'void'
   3951             // is an incomplete type (C99 6.2.5p19) and function decls cannot
   3952             // have parameters of incomplete type.
   3953             if (FTI.NumParams != 1 || FTI.isVariadic) {
   3954               S.Diag(DeclType.Loc, diag::err_void_only_param);
   3955               ParamTy = Context.IntTy;
   3956               Param->setType(ParamTy);
   3957             } else if (FTI.Params[i].Ident) {
   3958               // Reject, but continue to parse 'int(void abc)'.
   3959               S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
   3960               ParamTy = Context.IntTy;
   3961               Param->setType(ParamTy);
   3962             } else {
   3963               // Reject, but continue to parse 'float(const void)'.
   3964               if (ParamTy.hasQualifiers())
   3965                 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
   3966 
   3967               // Do not add 'void' to the list.
   3968               break;
   3969             }
   3970           } else if (ParamTy->isHalfType()) {
   3971             // Disallow half FP parameters.
   3972             // FIXME: This really should be in BuildFunctionType.
   3973             if (S.getLangOpts().OpenCL) {
   3974               if (!S.getOpenCLOptions().cl_khr_fp16) {
   3975                 S.Diag(Param->getLocation(),
   3976                   diag::err_opencl_half_param) << ParamTy;
   3977                 D.setInvalidType();
   3978                 Param->setInvalidDecl();
   3979               }
   3980             } else if (!S.getLangOpts().HalfArgsAndReturns) {
   3981               S.Diag(Param->getLocation(),
   3982                 diag::err_parameters_retval_cannot_have_fp16_type) << 0;
   3983               D.setInvalidType();
   3984             }
   3985           } else if (!FTI.hasPrototype) {
   3986             if (ParamTy->isPromotableIntegerType()) {
   3987               ParamTy = Context.getPromotedIntegerType(ParamTy);
   3988               Param->setKNRPromoted(true);
   3989             } else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) {
   3990               if (BTy->getKind() == BuiltinType::Float) {
   3991                 ParamTy = Context.DoubleTy;
   3992                 Param->setKNRPromoted(true);
   3993               }
   3994             }
   3995           }
   3996 
   3997           if (LangOpts.ObjCAutoRefCount) {
   3998             bool Consumed = Param->hasAttr<NSConsumedAttr>();
   3999             ConsumedParameters.push_back(Consumed);
   4000             HasAnyConsumedParameters |= Consumed;
   4001           }
   4002 
   4003           ParamTys.push_back(ParamTy);
   4004         }
   4005 
   4006         if (HasAnyConsumedParameters)
   4007           EPI.ConsumedParameters = ConsumedParameters.data();
   4008 
   4009         SmallVector<QualType, 4> Exceptions;
   4010         SmallVector<ParsedType, 2> DynamicExceptions;
   4011         SmallVector<SourceRange, 2> DynamicExceptionRanges;
   4012         Expr *NoexceptExpr = nullptr;
   4013 
   4014         if (FTI.getExceptionSpecType() == EST_Dynamic) {
   4015           // FIXME: It's rather inefficient to have to split into two vectors
   4016           // here.
   4017           unsigned N = FTI.NumExceptions;
   4018           DynamicExceptions.reserve(N);
   4019           DynamicExceptionRanges.reserve(N);
   4020           for (unsigned I = 0; I != N; ++I) {
   4021             DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
   4022             DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
   4023           }
   4024         } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
   4025           NoexceptExpr = FTI.NoexceptExpr;
   4026         }
   4027 
   4028         S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
   4029                                       FTI.getExceptionSpecType(),
   4030                                       DynamicExceptions,
   4031                                       DynamicExceptionRanges,
   4032                                       NoexceptExpr,
   4033                                       Exceptions,
   4034                                       EPI.ExceptionSpec);
   4035 
   4036         T = Context.getFunctionType(T, ParamTys, EPI);
   4037       }
   4038 
   4039       break;
   4040     }
   4041     case DeclaratorChunk::MemberPointer:
   4042       // The scope spec must refer to a class, or be dependent.
   4043       CXXScopeSpec &SS = DeclType.Mem.Scope();
   4044       QualType ClsType;
   4045 
   4046       // Handle pointer nullability.
   4047       inferPointerNullability(SimplePointerKind::MemberPointer,
   4048                               DeclType.Loc, DeclType.getAttrListRef());
   4049 
   4050       if (SS.isInvalid()) {
   4051         // Avoid emitting extra errors if we already errored on the scope.
   4052         D.setInvalidType(true);
   4053       } else if (S.isDependentScopeSpecifier(SS) ||
   4054                  dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
   4055         NestedNameSpecifier *NNS = SS.getScopeRep();
   4056         NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
   4057         switch (NNS->getKind()) {
   4058         case NestedNameSpecifier::Identifier:
   4059           ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
   4060                                                  NNS->getAsIdentifier());
   4061           break;
   4062 
   4063         case NestedNameSpecifier::Namespace:
   4064         case NestedNameSpecifier::NamespaceAlias:
   4065         case NestedNameSpecifier::Global:
   4066         case NestedNameSpecifier::Super:
   4067           llvm_unreachable("Nested-name-specifier must name a type");
   4068 
   4069         case NestedNameSpecifier::TypeSpec:
   4070         case NestedNameSpecifier::TypeSpecWithTemplate:
   4071           ClsType = QualType(NNS->getAsType(), 0);
   4072           // Note: if the NNS has a prefix and ClsType is a nondependent
   4073           // TemplateSpecializationType, then the NNS prefix is NOT included
   4074           // in ClsType; hence we wrap ClsType into an ElaboratedType.
   4075           // NOTE: in particular, no wrap occurs if ClsType already is an
   4076           // Elaborated, DependentName, or DependentTemplateSpecialization.
   4077           if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
   4078             ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
   4079           break;
   4080         }
   4081       } else {
   4082         S.Diag(DeclType.Mem.Scope().getBeginLoc(),
   4083              diag::err_illegal_decl_mempointer_in_nonclass)
   4084           << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
   4085           << DeclType.Mem.Scope().getRange();
   4086         D.setInvalidType(true);
   4087       }
   4088 
   4089       if (!ClsType.isNull())
   4090         T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
   4091                                      D.getIdentifier());
   4092       if (T.isNull()) {
   4093         T = Context.IntTy;
   4094         D.setInvalidType(true);
   4095       } else if (DeclType.Mem.TypeQuals) {
   4096         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
   4097       }
   4098       break;
   4099     }
   4100 
   4101     if (T.isNull()) {
   4102       D.setInvalidType(true);
   4103       T = Context.IntTy;
   4104     }
   4105 
   4106     // See if there are any attributes on this declarator chunk.
   4107     processTypeAttrs(state, T, TAL_DeclChunk,
   4108                      const_cast<AttributeList *>(DeclType.getAttrs()));
   4109   }
   4110 
   4111   assert(!T.isNull() && "T must not be null after this point");
   4112 
   4113   if (LangOpts.CPlusPlus && T->isFunctionType()) {
   4114     const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
   4115     assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
   4116 
   4117     // C++ 8.3.5p4:
   4118     //   A cv-qualifier-seq shall only be part of the function type
   4119     //   for a nonstatic member function, the function type to which a pointer
   4120     //   to member refers, or the top-level function type of a function typedef
   4121     //   declaration.
   4122     //
   4123     // Core issue 547 also allows cv-qualifiers on function types that are
   4124     // top-level template type arguments.
   4125     bool FreeFunction;
   4126     if (!D.getCXXScopeSpec().isSet()) {
   4127       FreeFunction = ((D.getContext() != Declarator::MemberContext &&
   4128                        D.getContext() != Declarator::LambdaExprContext) ||
   4129                       D.getDeclSpec().isFriendSpecified());
   4130     } else {
   4131       DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
   4132       FreeFunction = (DC && !DC->isRecord());
   4133     }
   4134 
   4135     // C++11 [dcl.fct]p6 (w/DR1417):
   4136     // An attempt to specify a function type with a cv-qualifier-seq or a
   4137     // ref-qualifier (including by typedef-name) is ill-formed unless it is:
   4138     //  - the function type for a non-static member function,
   4139     //  - the function type to which a pointer to member refers,
   4140     //  - the top-level function type of a function typedef declaration or
   4141     //    alias-declaration,
   4142     //  - the type-id in the default argument of a type-parameter, or
   4143     //  - the type-id of a template-argument for a type-parameter
   4144     //
   4145     // FIXME: Checking this here is insufficient. We accept-invalid on:
   4146     //
   4147     //   template<typename T> struct S { void f(T); };
   4148     //   S<int() const> s;
   4149     //
   4150     // ... for instance.
   4151     if (IsQualifiedFunction &&
   4152         !(!FreeFunction &&
   4153           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
   4154         !IsTypedefName &&
   4155         D.getContext() != Declarator::TemplateTypeArgContext) {
   4156       SourceLocation Loc = D.getLocStart();
   4157       SourceRange RemovalRange;
   4158       unsigned I;
   4159       if (D.isFunctionDeclarator(I)) {
   4160         SmallVector<SourceLocation, 4> RemovalLocs;
   4161         const DeclaratorChunk &Chunk = D.getTypeObject(I);
   4162         assert(Chunk.Kind == DeclaratorChunk::Function);
   4163         if (Chunk.Fun.hasRefQualifier())
   4164           RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
   4165         if (Chunk.Fun.TypeQuals & Qualifiers::Const)
   4166           RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
   4167         if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
   4168           RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
   4169         if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
   4170           RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
   4171         if (!RemovalLocs.empty()) {
   4172           std::sort(RemovalLocs.begin(), RemovalLocs.end(),
   4173                     BeforeThanCompare<SourceLocation>(S.getSourceManager()));
   4174           RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
   4175           Loc = RemovalLocs.front();
   4176         }
   4177       }
   4178 
   4179       S.Diag(Loc, diag::err_invalid_qualified_function_type)
   4180         << FreeFunction << D.isFunctionDeclarator() << T
   4181         << getFunctionQualifiersAsString(FnTy)
   4182         << FixItHint::CreateRemoval(RemovalRange);
   4183 
   4184       // Strip the cv-qualifiers and ref-qualifiers from the type.
   4185       FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
   4186       EPI.TypeQuals = 0;
   4187       EPI.RefQualifier = RQ_None;
   4188 
   4189       T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
   4190                                   EPI);
   4191       // Rebuild any parens around the identifier in the function type.
   4192       for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
   4193         if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
   4194           break;
   4195         T = S.BuildParenType(T);
   4196       }
   4197     }
   4198   }
   4199 
   4200   // Apply any undistributed attributes from the declarator.
   4201   processTypeAttrs(state, T, TAL_DeclName, D.getAttributes());
   4202 
   4203   // Diagnose any ignored type attributes.
   4204   state.diagnoseIgnoredTypeAttrs(T);
   4205 
   4206   // C++0x [dcl.constexpr]p9:
   4207   //  A constexpr specifier used in an object declaration declares the object
   4208   //  as const.
   4209   if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
   4210     T.addConst();
   4211   }
   4212 
   4213   // If there was an ellipsis in the declarator, the declaration declares a
   4214   // parameter pack whose type may be a pack expansion type.
   4215   if (D.hasEllipsis()) {
   4216     // C++0x [dcl.fct]p13:
   4217     //   A declarator-id or abstract-declarator containing an ellipsis shall
   4218     //   only be used in a parameter-declaration. Such a parameter-declaration
   4219     //   is a parameter pack (14.5.3). [...]
   4220     switch (D.getContext()) {
   4221     case Declarator::PrototypeContext:
   4222     case Declarator::LambdaExprParameterContext:
   4223       // C++0x [dcl.fct]p13:
   4224       //   [...] When it is part of a parameter-declaration-clause, the
   4225       //   parameter pack is a function parameter pack (14.5.3). The type T
   4226       //   of the declarator-id of the function parameter pack shall contain
   4227       //   a template parameter pack; each template parameter pack in T is
   4228       //   expanded by the function parameter pack.
   4229       //
   4230       // We represent function parameter packs as function parameters whose
   4231       // type is a pack expansion.
   4232       if (!T->containsUnexpandedParameterPack()) {
   4233         S.Diag(D.getEllipsisLoc(),
   4234              diag::err_function_parameter_pack_without_parameter_packs)
   4235           << T <<  D.getSourceRange();
   4236         D.setEllipsisLoc(SourceLocation());
   4237       } else {
   4238         T = Context.getPackExpansionType(T, None);
   4239       }
   4240       break;
   4241     case Declarator::TemplateParamContext:
   4242       // C++0x [temp.param]p15:
   4243       //   If a template-parameter is a [...] is a parameter-declaration that
   4244       //   declares a parameter pack (8.3.5), then the template-parameter is a
   4245       //   template parameter pack (14.5.3).
   4246       //
   4247       // Note: core issue 778 clarifies that, if there are any unexpanded
   4248       // parameter packs in the type of the non-type template parameter, then
   4249       // it expands those parameter packs.
   4250       if (T->containsUnexpandedParameterPack())
   4251         T = Context.getPackExpansionType(T, None);
   4252       else
   4253         S.Diag(D.getEllipsisLoc(),
   4254                LangOpts.CPlusPlus11
   4255                  ? diag::warn_cxx98_compat_variadic_templates
   4256                  : diag::ext_variadic_templates);
   4257       break;
   4258 
   4259     case Declarator::FileContext:
   4260     case Declarator::KNRTypeListContext:
   4261     case Declarator::ObjCParameterContext:  // FIXME: special diagnostic here?
   4262     case Declarator::ObjCResultContext:     // FIXME: special diagnostic here?
   4263     case Declarator::TypeNameContext:
   4264     case Declarator::CXXNewContext:
   4265     case Declarator::AliasDeclContext:
   4266     case Declarator::AliasTemplateContext:
   4267     case Declarator::MemberContext:
   4268     case Declarator::BlockContext:
   4269     case Declarator::ForContext:
   4270     case Declarator::ConditionContext:
   4271     case Declarator::CXXCatchContext:
   4272     case Declarator::ObjCCatchContext:
   4273     case Declarator::BlockLiteralContext:
   4274     case Declarator::LambdaExprContext:
   4275     case Declarator::ConversionIdContext:
   4276     case Declarator::TrailingReturnContext:
   4277     case Declarator::TemplateTypeArgContext:
   4278       // FIXME: We may want to allow parameter packs in block-literal contexts
   4279       // in the future.
   4280       S.Diag(D.getEllipsisLoc(),
   4281              diag::err_ellipsis_in_declarator_not_parameter);
   4282       D.setEllipsisLoc(SourceLocation());
   4283       break;
   4284     }
   4285   }
   4286 
   4287   assert(!T.isNull() && "T must not be null at the end of this function");
   4288   if (D.isInvalidType())
   4289     return Context.getTrivialTypeSourceInfo(T);
   4290 
   4291   return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
   4292 }
   4293 
   4294 /// GetTypeForDeclarator - Convert the type for the specified
   4295 /// declarator to Type instances.
   4296 ///
   4297 /// The result of this call will never be null, but the associated
   4298 /// type may be a null type if there's an unrecoverable error.
   4299 TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
   4300   // Determine the type of the declarator. Not all forms of declarator
   4301   // have a type.
   4302 
   4303   TypeProcessingState state(*this, D);
   4304 
   4305   TypeSourceInfo *ReturnTypeInfo = nullptr;
   4306   QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
   4307 
   4308   if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
   4309     inferARCWriteback(state, T);
   4310 
   4311   return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
   4312 }
   4313 
   4314 static void transferARCOwnershipToDeclSpec(Sema &S,
   4315                                            QualType &declSpecTy,
   4316                                            Qualifiers::ObjCLifetime ownership) {
   4317   if (declSpecTy->isObjCRetainableType() &&
   4318       declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
   4319     Qualifiers qs;
   4320     qs.addObjCLifetime(ownership);
   4321     declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
   4322   }
   4323 }
   4324 
   4325 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
   4326                                             Qualifiers::ObjCLifetime ownership,
   4327                                             unsigned chunkIndex) {
   4328   Sema &S = state.getSema();
   4329   Declarator &D = state.getDeclarator();
   4330 
   4331   // Look for an explicit lifetime attribute.
   4332   DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
   4333   for (const AttributeList *attr = chunk.getAttrs(); attr;
   4334          attr = attr->getNext())
   4335     if (attr->getKind() == AttributeList::AT_ObjCOwnership)
   4336       return;
   4337 
   4338   const char *attrStr = nullptr;
   4339   switch (ownership) {
   4340   case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
   4341   case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
   4342   case Qualifiers::OCL_Strong: attrStr = "strong"; break;
   4343   case Qualifiers::OCL_Weak: attrStr = "weak"; break;
   4344   case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
   4345   }
   4346 
   4347   IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
   4348   Arg->Ident = &S.Context.Idents.get(attrStr);
   4349   Arg->Loc = SourceLocation();
   4350 
   4351   ArgsUnion Args(Arg);
   4352 
   4353   // If there wasn't one, add one (with an invalid source location
   4354   // so that we don't make an AttributedType for it).
   4355   AttributeList *attr = D.getAttributePool()
   4356     .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
   4357             /*scope*/ nullptr, SourceLocation(),
   4358             /*args*/ &Args, 1, AttributeList::AS_GNU);
   4359   spliceAttrIntoList(*attr, chunk.getAttrListRef());
   4360 
   4361   // TODO: mark whether we did this inference?
   4362 }
   4363 
   4364 /// \brief Used for transferring ownership in casts resulting in l-values.
   4365 static void transferARCOwnership(TypeProcessingState &state,
   4366                                  QualType &declSpecTy,
   4367                                  Qualifiers::ObjCLifetime ownership) {
   4368   Sema &S = state.getSema();
   4369   Declarator &D = state.getDeclarator();
   4370 
   4371   int inner = -1;
   4372   bool hasIndirection = false;
   4373   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
   4374     DeclaratorChunk &chunk = D.getTypeObject(i);
   4375     switch (chunk.Kind) {
   4376     case DeclaratorChunk::Paren:
   4377       // Ignore parens.
   4378       break;
   4379 
   4380     case DeclaratorChunk::Array:
   4381     case DeclaratorChunk::Reference:
   4382     case DeclaratorChunk::Pointer:
   4383       if (inner != -1)
   4384         hasIndirection = true;
   4385       inner = i;
   4386       break;
   4387 
   4388     case DeclaratorChunk::BlockPointer:
   4389       if (inner != -1)
   4390         transferARCOwnershipToDeclaratorChunk(state, ownership, i);
   4391       return;
   4392 
   4393     case DeclaratorChunk::Function:
   4394     case DeclaratorChunk::MemberPointer:
   4395       return;
   4396     }
   4397   }
   4398 
   4399   if (inner == -1)
   4400     return;
   4401 
   4402   DeclaratorChunk &chunk = D.getTypeObject(inner);
   4403   if (chunk.Kind == DeclaratorChunk::Pointer) {
   4404     if (declSpecTy->isObjCRetainableType())
   4405       return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
   4406     if (declSpecTy->isObjCObjectType() && hasIndirection)
   4407       return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
   4408   } else {
   4409     assert(chunk.Kind == DeclaratorChunk::Array ||
   4410            chunk.Kind == DeclaratorChunk::Reference);
   4411     return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
   4412   }
   4413 }
   4414 
   4415 TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
   4416   TypeProcessingState state(*this, D);
   4417 
   4418   TypeSourceInfo *ReturnTypeInfo = nullptr;
   4419   QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
   4420 
   4421   if (getLangOpts().ObjC1) {
   4422     Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
   4423     if (ownership != Qualifiers::OCL_None)
   4424       transferARCOwnership(state, declSpecTy, ownership);
   4425   }
   4426 
   4427   return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
   4428 }
   4429 
   4430 /// Map an AttributedType::Kind to an AttributeList::Kind.
   4431 static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
   4432   switch (kind) {
   4433   case AttributedType::attr_address_space:
   4434     return AttributeList::AT_AddressSpace;
   4435   case AttributedType::attr_regparm:
   4436     return AttributeList::AT_Regparm;
   4437   case AttributedType::attr_vector_size:
   4438     return AttributeList::AT_VectorSize;
   4439   case AttributedType::attr_neon_vector_type:
   4440     return AttributeList::AT_NeonVectorType;
   4441   case AttributedType::attr_neon_polyvector_type:
   4442     return AttributeList::AT_NeonPolyVectorType;
   4443   case AttributedType::attr_objc_gc:
   4444     return AttributeList::AT_ObjCGC;
   4445   case AttributedType::attr_objc_ownership:
   4446   case AttributedType::attr_objc_inert_unsafe_unretained:
   4447     return AttributeList::AT_ObjCOwnership;
   4448   case AttributedType::attr_noreturn:
   4449     return AttributeList::AT_NoReturn;
   4450   case AttributedType::attr_cdecl:
   4451     return AttributeList::AT_CDecl;
   4452   case AttributedType::attr_fastcall:
   4453     return AttributeList::AT_FastCall;
   4454   case AttributedType::attr_stdcall:
   4455     return AttributeList::AT_StdCall;
   4456   case AttributedType::attr_thiscall:
   4457     return AttributeList::AT_ThisCall;
   4458   case AttributedType::attr_pascal:
   4459     return AttributeList::AT_Pascal;
   4460   case AttributedType::attr_vectorcall:
   4461     return AttributeList::AT_VectorCall;
   4462   case AttributedType::attr_pcs:
   4463   case AttributedType::attr_pcs_vfp:
   4464     return AttributeList::AT_Pcs;
   4465   case AttributedType::attr_inteloclbicc:
   4466     return AttributeList::AT_IntelOclBicc;
   4467   case AttributedType::attr_ms_abi:
   4468     return AttributeList::AT_MSABI;
   4469   case AttributedType::attr_sysv_abi:
   4470     return AttributeList::AT_SysVABI;
   4471   case AttributedType::attr_ptr32:
   4472     return AttributeList::AT_Ptr32;
   4473   case AttributedType::attr_ptr64:
   4474     return AttributeList::AT_Ptr64;
   4475   case AttributedType::attr_sptr:
   4476     return AttributeList::AT_SPtr;
   4477   case AttributedType::attr_uptr:
   4478     return AttributeList::AT_UPtr;
   4479   case AttributedType::attr_nonnull:
   4480     return AttributeList::AT_TypeNonNull;
   4481   case AttributedType::attr_nullable:
   4482     return AttributeList::AT_TypeNullable;
   4483   case AttributedType::attr_null_unspecified:
   4484     return AttributeList::AT_TypeNullUnspecified;
   4485   case AttributedType::attr_objc_kindof:
   4486     return AttributeList::AT_ObjCKindOf;
   4487   }
   4488   llvm_unreachable("unexpected attribute kind!");
   4489 }
   4490 
   4491 static void fillAttributedTypeLoc(AttributedTypeLoc TL,
   4492                                   const AttributeList *attrs,
   4493                                   const AttributeList *DeclAttrs = nullptr) {
   4494   // DeclAttrs and attrs cannot be both empty.
   4495   assert((attrs || DeclAttrs) &&
   4496          "no type attributes in the expected location!");
   4497 
   4498   AttributeList::Kind parsedKind = getAttrListKind(TL.getAttrKind());
   4499   // Try to search for an attribute of matching kind in attrs list.
   4500   while (attrs && attrs->getKind() != parsedKind)
   4501     attrs = attrs->getNext();
   4502   if (!attrs) {
   4503     // No matching type attribute in attrs list found.
   4504     // Try searching through C++11 attributes in the declarator attribute list.
   4505     while (DeclAttrs && (!DeclAttrs->isCXX11Attribute() ||
   4506                          DeclAttrs->getKind() != parsedKind))
   4507       DeclAttrs = DeclAttrs->getNext();
   4508     attrs = DeclAttrs;
   4509   }
   4510 
   4511   assert(attrs && "no matching type attribute in expected location!");
   4512 
   4513   TL.setAttrNameLoc(attrs->getLoc());
   4514   if (TL.hasAttrExprOperand()) {
   4515     assert(attrs->isArgExpr(0) && "mismatched attribute operand kind");
   4516     TL.setAttrExprOperand(attrs->getArgAsExpr(0));
   4517   } else if (TL.hasAttrEnumOperand()) {
   4518     assert((attrs->isArgIdent(0) || attrs->isArgExpr(0)) &&
   4519            "unexpected attribute operand kind");
   4520     if (attrs->isArgIdent(0))
   4521       TL.setAttrEnumOperandLoc(attrs->getArgAsIdent(0)->Loc);
   4522     else
   4523       TL.setAttrEnumOperandLoc(attrs->getArgAsExpr(0)->getExprLoc());
   4524   }
   4525 
   4526   // FIXME: preserve this information to here.
   4527   if (TL.hasAttrOperand())
   4528     TL.setAttrOperandParensRange(SourceRange());
   4529 }
   4530 
   4531 namespace {
   4532   class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
   4533     ASTContext &Context;
   4534     const DeclSpec &DS;
   4535 
   4536   public:
   4537     TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
   4538       : Context(Context), DS(DS) {}
   4539 
   4540     void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
   4541       fillAttributedTypeLoc(TL, DS.getAttributes().getList());
   4542       Visit(TL.getModifiedLoc());
   4543     }
   4544     void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
   4545       Visit(TL.getUnqualifiedLoc());
   4546     }
   4547     void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
   4548       TL.setNameLoc(DS.getTypeSpecTypeLoc());
   4549     }
   4550     void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
   4551       TL.setNameLoc(DS.getTypeSpecTypeLoc());
   4552       // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
   4553       // addition field. What we have is good enough for dispay of location
   4554       // of 'fixit' on interface name.
   4555       TL.setNameEndLoc(DS.getLocEnd());
   4556     }
   4557     void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
   4558       TypeSourceInfo *RepTInfo = nullptr;
   4559       Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
   4560       TL.copy(RepTInfo->getTypeLoc());
   4561     }
   4562     void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
   4563       TypeSourceInfo *RepTInfo = nullptr;
   4564       Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
   4565       TL.copy(RepTInfo->getTypeLoc());
   4566     }
   4567     void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
   4568       TypeSourceInfo *TInfo = nullptr;
   4569       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
   4570 
   4571       // If we got no declarator info from previous Sema routines,
   4572       // just fill with the typespec loc.
   4573       if (!TInfo) {
   4574         TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
   4575         return;
   4576       }
   4577 
   4578       TypeLoc OldTL = TInfo->getTypeLoc();
   4579       if (TInfo->getType()->getAs<ElaboratedType>()) {
   4580         ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
   4581         TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
   4582             .castAs<TemplateSpecializationTypeLoc>();
   4583         TL.copy(NamedTL);
   4584       } else {
   4585         TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
   4586         assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
   4587       }
   4588 
   4589     }
   4590     void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
   4591       assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
   4592       TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
   4593       TL.setParensRange(DS.getTypeofParensRange());
   4594     }
   4595     void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
   4596       assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
   4597       TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
   4598       TL.setParensRange(DS.getTypeofParensRange());
   4599       assert(DS.getRepAsType());
   4600       TypeSourceInfo *TInfo = nullptr;
   4601       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
   4602       TL.setUnderlyingTInfo(TInfo);
   4603     }
   4604     void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
   4605       // FIXME: This holds only because we only have one unary transform.
   4606       assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
   4607       TL.setKWLoc(DS.getTypeSpecTypeLoc());
   4608       TL.setParensRange(DS.getTypeofParensRange());
   4609       assert(DS.getRepAsType());
   4610       TypeSourceInfo *TInfo = nullptr;
   4611       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
   4612       TL.setUnderlyingTInfo(TInfo);
   4613     }
   4614     void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
   4615       // By default, use the source location of the type specifier.
   4616       TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
   4617       if (TL.needsExtraLocalData()) {
   4618         // Set info for the written builtin specifiers.
   4619         TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
   4620         // Try to have a meaningful source location.
   4621         if (TL.getWrittenSignSpec() != TSS_unspecified)
   4622           // Sign spec loc overrides the others (e.g., 'unsigned long').
   4623           TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
   4624         else if (TL.getWrittenWidthSpec() != TSW_unspecified)
   4625           // Width spec loc overrides type spec loc (e.g., 'short int').
   4626           TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
   4627       }
   4628     }
   4629     void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
   4630       ElaboratedTypeKeyword Keyword
   4631         = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
   4632       if (DS.getTypeSpecType() == TST_typename) {
   4633         TypeSourceInfo *TInfo = nullptr;
   4634         Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
   4635         if (TInfo) {
   4636           TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
   4637           return;
   4638         }
   4639       }
   4640       TL.setElaboratedKeywordLoc(Keyword != ETK_None
   4641                                  ? DS.getTypeSpecTypeLoc()
   4642                                  : SourceLocation());
   4643       const CXXScopeSpec& SS = DS.getTypeSpecScope();
   4644       TL.setQualifierLoc(SS.getWithLocInContext(Context));
   4645       Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
   4646     }
   4647     void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
   4648       assert(DS.getTypeSpecType() == TST_typename);
   4649       TypeSourceInfo *TInfo = nullptr;
   4650       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
   4651       assert(TInfo);
   4652       TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
   4653     }
   4654     void VisitDependentTemplateSpecializationTypeLoc(
   4655                                  DependentTemplateSpecializationTypeLoc TL) {
   4656       assert(DS.getTypeSpecType() == TST_typename);
   4657       TypeSourceInfo *TInfo = nullptr;
   4658       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
   4659       assert(TInfo);
   4660       TL.copy(
   4661           TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
   4662     }
   4663     void VisitTagTypeLoc(TagTypeLoc TL) {
   4664       TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
   4665     }
   4666     void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
   4667       // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
   4668       // or an _Atomic qualifier.
   4669       if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
   4670         TL.setKWLoc(DS.getTypeSpecTypeLoc());
   4671         TL.setParensRange(DS.getTypeofParensRange());
   4672 
   4673         TypeSourceInfo *TInfo = nullptr;
   4674         Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
   4675         assert(TInfo);
   4676         TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
   4677       } else {
   4678         TL.setKWLoc(DS.getAtomicSpecLoc());
   4679         // No parens, to indicate this was spelled as an _Atomic qualifier.
   4680         TL.setParensRange(SourceRange());
   4681         Visit(TL.getValueLoc());
   4682       }
   4683     }
   4684 
   4685     void VisitTypeLoc(TypeLoc TL) {
   4686       // FIXME: add other typespec types and change this to an assert.
   4687       TL.initialize(Context, DS.getTypeSpecTypeLoc());
   4688     }
   4689   };
   4690 
   4691   class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
   4692     ASTContext &Context;
   4693     const DeclaratorChunk &Chunk;
   4694 
   4695   public:
   4696     DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
   4697       : Context(Context), Chunk(Chunk) {}
   4698 
   4699     void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
   4700       llvm_unreachable("qualified type locs not expected here!");
   4701     }
   4702     void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
   4703       llvm_unreachable("decayed type locs not expected here!");
   4704     }
   4705 
   4706     void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
   4707       fillAttributedTypeLoc(TL, Chunk.getAttrs());
   4708     }
   4709     void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
   4710       // nothing
   4711     }
   4712     void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
   4713       assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
   4714       TL.setCaretLoc(Chunk.Loc);
   4715     }
   4716     void VisitPointerTypeLoc(PointerTypeLoc TL) {
   4717       assert(Chunk.Kind == DeclaratorChunk::Pointer);
   4718       TL.setStarLoc(Chunk.Loc);
   4719     }
   4720     void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
   4721       assert(Chunk.Kind == DeclaratorChunk::Pointer);
   4722       TL.setStarLoc(Chunk.Loc);
   4723     }
   4724     void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
   4725       assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
   4726       const CXXScopeSpec& SS = Chunk.Mem.Scope();
   4727       NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
   4728 
   4729       const Type* ClsTy = TL.getClass();
   4730       QualType ClsQT = QualType(ClsTy, 0);
   4731       TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
   4732       // Now copy source location info into the type loc component.
   4733       TypeLoc ClsTL = ClsTInfo->getTypeLoc();
   4734       switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
   4735       case NestedNameSpecifier::Identifier:
   4736         assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
   4737         {
   4738           DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
   4739           DNTLoc.setElaboratedKeywordLoc(SourceLocation());
   4740           DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
   4741           DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
   4742         }
   4743         break;
   4744 
   4745       case NestedNameSpecifier::TypeSpec:
   4746       case NestedNameSpecifier::TypeSpecWithTemplate:
   4747         if (isa<ElaboratedType>(ClsTy)) {
   4748           ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
   4749           ETLoc.setElaboratedKeywordLoc(SourceLocation());
   4750           ETLoc.setQualifierLoc(NNSLoc.getPrefix());
   4751           TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
   4752           NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
   4753         } else {
   4754           ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
   4755         }
   4756         break;
   4757 
   4758       case NestedNameSpecifier::Namespace:
   4759       case NestedNameSpecifier::NamespaceAlias:
   4760       case NestedNameSpecifier::Global:
   4761       case NestedNameSpecifier::Super:
   4762         llvm_unreachable("Nested-name-specifier must name a type");
   4763       }
   4764 
   4765       // Finally fill in MemberPointerLocInfo fields.
   4766       TL.setStarLoc(Chunk.Loc);
   4767       TL.setClassTInfo(ClsTInfo);
   4768     }
   4769     void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
   4770       assert(Chunk.Kind == DeclaratorChunk::Reference);
   4771       // 'Amp' is misleading: this might have been originally
   4772       /// spelled with AmpAmp.
   4773       TL.setAmpLoc(Chunk.Loc);
   4774     }
   4775     void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
   4776       assert(Chunk.Kind == DeclaratorChunk::Reference);
   4777       assert(!Chunk.Ref.LValueRef);
   4778       TL.setAmpAmpLoc(Chunk.Loc);
   4779     }
   4780     void VisitArrayTypeLoc(ArrayTypeLoc TL) {
   4781       assert(Chunk.Kind == DeclaratorChunk::Array);
   4782       TL.setLBracketLoc(Chunk.Loc);
   4783       TL.setRBracketLoc(Chunk.EndLoc);
   4784       TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
   4785     }
   4786     void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
   4787       assert(Chunk.Kind == DeclaratorChunk::Function);
   4788       TL.setLocalRangeBegin(Chunk.Loc);
   4789       TL.setLocalRangeEnd(Chunk.EndLoc);
   4790 
   4791       const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
   4792       TL.setLParenLoc(FTI.getLParenLoc());
   4793       TL.setRParenLoc(FTI.getRParenLoc());
   4794       for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
   4795         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
   4796         TL.setParam(tpi++, Param);
   4797       }
   4798       // FIXME: exception specs
   4799     }
   4800     void VisitParenTypeLoc(ParenTypeLoc TL) {
   4801       assert(Chunk.Kind == DeclaratorChunk::Paren);
   4802       TL.setLParenLoc(Chunk.Loc);
   4803       TL.setRParenLoc(Chunk.EndLoc);
   4804     }
   4805 
   4806     void VisitTypeLoc(TypeLoc TL) {
   4807       llvm_unreachable("unsupported TypeLoc kind in declarator!");
   4808     }
   4809   };
   4810 }
   4811 
   4812 static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
   4813   SourceLocation Loc;
   4814   switch (Chunk.Kind) {
   4815   case DeclaratorChunk::Function:
   4816   case DeclaratorChunk::Array:
   4817   case DeclaratorChunk::Paren:
   4818     llvm_unreachable("cannot be _Atomic qualified");
   4819 
   4820   case DeclaratorChunk::Pointer:
   4821     Loc = SourceLocation::getFromRawEncoding(Chunk.Ptr.AtomicQualLoc);
   4822     break;
   4823 
   4824   case DeclaratorChunk::BlockPointer:
   4825   case DeclaratorChunk::Reference:
   4826   case DeclaratorChunk::MemberPointer:
   4827     // FIXME: Provide a source location for the _Atomic keyword.
   4828     break;
   4829   }
   4830 
   4831   ATL.setKWLoc(Loc);
   4832   ATL.setParensRange(SourceRange());
   4833 }
   4834 
   4835 /// \brief Create and instantiate a TypeSourceInfo with type source information.
   4836 ///
   4837 /// \param T QualType referring to the type as written in source code.
   4838 ///
   4839 /// \param ReturnTypeInfo For declarators whose return type does not show
   4840 /// up in the normal place in the declaration specifiers (such as a C++
   4841 /// conversion function), this pointer will refer to a type source information
   4842 /// for that return type.
   4843 TypeSourceInfo *
   4844 Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
   4845                                      TypeSourceInfo *ReturnTypeInfo) {
   4846   TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
   4847   UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
   4848   const AttributeList *DeclAttrs = D.getAttributes();
   4849 
   4850   // Handle parameter packs whose type is a pack expansion.
   4851   if (isa<PackExpansionType>(T)) {
   4852     CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
   4853     CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
   4854   }
   4855 
   4856   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
   4857     // An AtomicTypeLoc might be produced by an atomic qualifier in this
   4858     // declarator chunk.
   4859     if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
   4860       fillAtomicQualLoc(ATL, D.getTypeObject(i));
   4861       CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
   4862     }
   4863 
   4864     while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
   4865       fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs(), DeclAttrs);
   4866       CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
   4867     }
   4868 
   4869     // FIXME: Ordering here?
   4870     while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>())
   4871       CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
   4872 
   4873     DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
   4874     CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
   4875   }
   4876 
   4877   // If we have different source information for the return type, use
   4878   // that.  This really only applies to C++ conversion functions.
   4879   if (ReturnTypeInfo) {
   4880     TypeLoc TL = ReturnTypeInfo->getTypeLoc();
   4881     assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
   4882     memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
   4883   } else {
   4884     TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
   4885   }
   4886 
   4887   return TInfo;
   4888 }
   4889 
   4890 /// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
   4891 ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
   4892   // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
   4893   // and Sema during declaration parsing. Try deallocating/caching them when
   4894   // it's appropriate, instead of allocating them and keeping them around.
   4895   LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
   4896                                                        TypeAlignment);
   4897   new (LocT) LocInfoType(T, TInfo);
   4898   assert(LocT->getTypeClass() != T->getTypeClass() &&
   4899          "LocInfoType's TypeClass conflicts with an existing Type class");
   4900   return ParsedType::make(QualType(LocT, 0));
   4901 }
   4902 
   4903 void LocInfoType::getAsStringInternal(std::string &Str,
   4904                                       const PrintingPolicy &Policy) const {
   4905   llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
   4906          " was used directly instead of getting the QualType through"
   4907          " GetTypeFromParser");
   4908 }
   4909 
   4910 TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
   4911   // C99 6.7.6: Type names have no identifier.  This is already validated by
   4912   // the parser.
   4913   assert(D.getIdentifier() == nullptr &&
   4914          "Type name should have no identifier!");
   4915 
   4916   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   4917   QualType T = TInfo->getType();
   4918   if (D.isInvalidType())
   4919     return true;
   4920 
   4921   // Make sure there are no unused decl attributes on the declarator.
   4922   // We don't want to do this for ObjC parameters because we're going
   4923   // to apply them to the actual parameter declaration.
   4924   // Likewise, we don't want to do this for alias declarations, because
   4925   // we are actually going to build a declaration from this eventually.
   4926   if (D.getContext() != Declarator::ObjCParameterContext &&
   4927       D.getContext() != Declarator::AliasDeclContext &&
   4928       D.getContext() != Declarator::AliasTemplateContext)
   4929     checkUnusedDeclAttributes(D);
   4930 
   4931   if (getLangOpts().CPlusPlus) {
   4932     // Check that there are no default arguments (C++ only).
   4933     CheckExtraCXXDefaultArguments(D);
   4934   }
   4935 
   4936   return CreateParsedType(T, TInfo);
   4937 }
   4938 
   4939 ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
   4940   QualType T = Context.getObjCInstanceType();
   4941   TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
   4942   return CreateParsedType(T, TInfo);
   4943 }
   4944 
   4945 
   4946 //===----------------------------------------------------------------------===//
   4947 // Type Attribute Processing
   4948 //===----------------------------------------------------------------------===//
   4949 
   4950 /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
   4951 /// specified type.  The attribute contains 1 argument, the id of the address
   4952 /// space for the type.
   4953 static void HandleAddressSpaceTypeAttribute(QualType &Type,
   4954                                             const AttributeList &Attr, Sema &S){
   4955 
   4956   // If this type is already address space qualified, reject it.
   4957   // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
   4958   // qualifiers for two or more different address spaces."
   4959   if (Type.getAddressSpace()) {
   4960     S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
   4961     Attr.setInvalid();
   4962     return;
   4963   }
   4964 
   4965   // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
   4966   // qualified by an address-space qualifier."
   4967   if (Type->isFunctionType()) {
   4968     S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
   4969     Attr.setInvalid();
   4970     return;
   4971   }
   4972 
   4973   unsigned ASIdx;
   4974   if (Attr.getKind() == AttributeList::AT_AddressSpace) {
   4975     // Check the attribute arguments.
   4976     if (Attr.getNumArgs() != 1) {
   4977       S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
   4978         << Attr.getName() << 1;
   4979       Attr.setInvalid();
   4980       return;
   4981     }
   4982     Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
   4983     llvm::APSInt addrSpace(32);
   4984     if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
   4985         !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
   4986       S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
   4987         << Attr.getName() << AANT_ArgumentIntegerConstant
   4988         << ASArgExpr->getSourceRange();
   4989       Attr.setInvalid();
   4990       return;
   4991     }
   4992 
   4993     // Bounds checking.
   4994     if (addrSpace.isSigned()) {
   4995       if (addrSpace.isNegative()) {
   4996         S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
   4997           << ASArgExpr->getSourceRange();
   4998         Attr.setInvalid();
   4999         return;
   5000       }
   5001       addrSpace.setIsSigned(false);
   5002     }
   5003     llvm::APSInt max(addrSpace.getBitWidth());
   5004     max = Qualifiers::MaxAddressSpace;
   5005     if (addrSpace > max) {
   5006       S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
   5007         << int(Qualifiers::MaxAddressSpace) << ASArgExpr->getSourceRange();
   5008       Attr.setInvalid();
   5009       return;
   5010     }
   5011     ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
   5012   } else {
   5013     // The keyword-based type attributes imply which address space to use.
   5014     switch (Attr.getKind()) {
   5015     case AttributeList::AT_OpenCLGlobalAddressSpace:
   5016       ASIdx = LangAS::opencl_global; break;
   5017     case AttributeList::AT_OpenCLLocalAddressSpace:
   5018       ASIdx = LangAS::opencl_local; break;
   5019     case AttributeList::AT_OpenCLConstantAddressSpace:
   5020       ASIdx = LangAS::opencl_constant; break;
   5021     case AttributeList::AT_OpenCLGenericAddressSpace:
   5022       ASIdx = LangAS::opencl_generic; break;
   5023     default:
   5024       assert(Attr.getKind() == AttributeList::AT_OpenCLPrivateAddressSpace);
   5025       ASIdx = 0; break;
   5026     }
   5027   }
   5028 
   5029   Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
   5030 }
   5031 
   5032 /// Does this type have a "direct" ownership qualifier?  That is,
   5033 /// is it written like "__strong id", as opposed to something like
   5034 /// "typeof(foo)", where that happens to be strong?
   5035 static bool hasDirectOwnershipQualifier(QualType type) {
   5036   // Fast path: no qualifier at all.
   5037   assert(type.getQualifiers().hasObjCLifetime());
   5038 
   5039   while (true) {
   5040     // __strong id
   5041     if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
   5042       if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
   5043         return true;
   5044 
   5045       type = attr->getModifiedType();
   5046 
   5047     // X *__strong (...)
   5048     } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
   5049       type = paren->getInnerType();
   5050 
   5051     // That's it for things we want to complain about.  In particular,
   5052     // we do not want to look through typedefs, typeof(expr),
   5053     // typeof(type), or any other way that the type is somehow
   5054     // abstracted.
   5055     } else {
   5056 
   5057       return false;
   5058     }
   5059   }
   5060 }
   5061 
   5062 /// handleObjCOwnershipTypeAttr - Process an objc_ownership
   5063 /// attribute on the specified type.
   5064 ///
   5065 /// Returns 'true' if the attribute was handled.
   5066 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
   5067                                        AttributeList &attr,
   5068                                        QualType &type) {
   5069   bool NonObjCPointer = false;
   5070 
   5071   if (!type->isDependentType() && !type->isUndeducedType()) {
   5072     if (const PointerType *ptr = type->getAs<PointerType>()) {
   5073       QualType pointee = ptr->getPointeeType();
   5074       if (pointee->isObjCRetainableType() || pointee->isPointerType())
   5075         return false;
   5076       // It is important not to lose the source info that there was an attribute
   5077       // applied to non-objc pointer. We will create an attributed type but
   5078       // its type will be the same as the original type.
   5079       NonObjCPointer = true;
   5080     } else if (!type->isObjCRetainableType()) {
   5081       return false;
   5082     }
   5083 
   5084     // Don't accept an ownership attribute in the declspec if it would
   5085     // just be the return type of a block pointer.
   5086     if (state.isProcessingDeclSpec()) {
   5087       Declarator &D = state.getDeclarator();
   5088       if (maybeMovePastReturnType(D, D.getNumTypeObjects(),
   5089                                   /*onlyBlockPointers=*/true))
   5090         return false;
   5091     }
   5092   }
   5093 
   5094   Sema &S = state.getSema();
   5095   SourceLocation AttrLoc = attr.getLoc();
   5096   if (AttrLoc.isMacroID())
   5097     AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
   5098 
   5099   if (!attr.isArgIdent(0)) {
   5100     S.Diag(AttrLoc, diag::err_attribute_argument_type)
   5101       << attr.getName() << AANT_ArgumentString;
   5102     attr.setInvalid();
   5103     return true;
   5104   }
   5105 
   5106   IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
   5107   Qualifiers::ObjCLifetime lifetime;
   5108   if (II->isStr("none"))
   5109     lifetime = Qualifiers::OCL_ExplicitNone;
   5110   else if (II->isStr("strong"))
   5111     lifetime = Qualifiers::OCL_Strong;
   5112   else if (II->isStr("weak"))
   5113     lifetime = Qualifiers::OCL_Weak;
   5114   else if (II->isStr("autoreleasing"))
   5115     lifetime = Qualifiers::OCL_Autoreleasing;
   5116   else {
   5117     S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
   5118       << attr.getName() << II;
   5119     attr.setInvalid();
   5120     return true;
   5121   }
   5122 
   5123   // Just ignore lifetime attributes other than __weak and __unsafe_unretained
   5124   // outside of ARC mode.
   5125   if (!S.getLangOpts().ObjCAutoRefCount &&
   5126       lifetime != Qualifiers::OCL_Weak &&
   5127       lifetime != Qualifiers::OCL_ExplicitNone) {
   5128     return true;
   5129   }
   5130 
   5131   SplitQualType underlyingType = type.split();
   5132 
   5133   // Check for redundant/conflicting ownership qualifiers.
   5134   if (Qualifiers::ObjCLifetime previousLifetime
   5135         = type.getQualifiers().getObjCLifetime()) {
   5136     // If it's written directly, that's an error.
   5137     if (hasDirectOwnershipQualifier(type)) {
   5138       S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
   5139         << type;
   5140       return true;
   5141     }
   5142 
   5143     // Otherwise, if the qualifiers actually conflict, pull sugar off
   5144     // until we reach a type that is directly qualified.
   5145     if (previousLifetime != lifetime) {
   5146       // This should always terminate: the canonical type is
   5147       // qualified, so some bit of sugar must be hiding it.
   5148       while (!underlyingType.Quals.hasObjCLifetime()) {
   5149         underlyingType = underlyingType.getSingleStepDesugaredType();
   5150       }
   5151       underlyingType.Quals.removeObjCLifetime();
   5152     }
   5153   }
   5154 
   5155   underlyingType.Quals.addObjCLifetime(lifetime);
   5156 
   5157   if (NonObjCPointer) {
   5158     StringRef name = attr.getName()->getName();
   5159     switch (lifetime) {
   5160     case Qualifiers::OCL_None:
   5161     case Qualifiers::OCL_ExplicitNone:
   5162       break;
   5163     case Qualifiers::OCL_Strong: name = "__strong"; break;
   5164     case Qualifiers::OCL_Weak: name = "__weak"; break;
   5165     case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
   5166     }
   5167     S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
   5168       << TDS_ObjCObjOrBlock << type;
   5169   }
   5170 
   5171   // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
   5172   // because having both 'T' and '__unsafe_unretained T' exist in the type
   5173   // system causes unfortunate widespread consistency problems.  (For example,
   5174   // they're not considered compatible types, and we mangle them identicially
   5175   // as template arguments.)  These problems are all individually fixable,
   5176   // but it's easier to just not add the qualifier and instead sniff it out
   5177   // in specific places using isObjCInertUnsafeUnretainedType().
   5178   //
   5179   // Doing this does means we miss some trivial consistency checks that
   5180   // would've triggered in ARC, but that's better than trying to solve all
   5181   // the coexistence problems with __unsafe_unretained.
   5182   if (!S.getLangOpts().ObjCAutoRefCount &&
   5183       lifetime == Qualifiers::OCL_ExplicitNone) {
   5184     type = S.Context.getAttributedType(
   5185                              AttributedType::attr_objc_inert_unsafe_unretained,
   5186                                        type, type);
   5187     return true;
   5188   }
   5189 
   5190   QualType origType = type;
   5191   if (!NonObjCPointer)
   5192     type = S.Context.getQualifiedType(underlyingType);
   5193 
   5194   // If we have a valid source location for the attribute, use an
   5195   // AttributedType instead.
   5196   if (AttrLoc.isValid())
   5197     type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
   5198                                        origType, type);
   5199 
   5200   auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
   5201                             unsigned diagnostic, QualType type) {
   5202     if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
   5203       S.DelayedDiagnostics.add(
   5204           sema::DelayedDiagnostic::makeForbiddenType(
   5205               S.getSourceManager().getExpansionLoc(loc),
   5206               diagnostic, type, /*ignored*/ 0));
   5207     } else {
   5208       S.Diag(loc, diagnostic);
   5209     }
   5210   };
   5211 
   5212   // Sometimes, __weak isn't allowed.
   5213   if (lifetime == Qualifiers::OCL_Weak &&
   5214       !S.getLangOpts().ObjCWeak && !NonObjCPointer) {
   5215 
   5216     // Use a specialized diagnostic if the runtime just doesn't support them.
   5217     unsigned diagnostic =
   5218       (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
   5219                                        : diag::err_arc_weak_no_runtime);
   5220 
   5221     // In any case, delay the diagnostic until we know what we're parsing.
   5222     diagnoseOrDelay(S, AttrLoc, diagnostic, type);
   5223 
   5224     attr.setInvalid();
   5225     return true;
   5226   }
   5227 
   5228   // Forbid __weak for class objects marked as
   5229   // objc_arc_weak_reference_unavailable
   5230   if (lifetime == Qualifiers::OCL_Weak) {
   5231     if (const ObjCObjectPointerType *ObjT =
   5232           type->getAs<ObjCObjectPointerType>()) {
   5233       if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
   5234         if (Class->isArcWeakrefUnavailable()) {
   5235           S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
   5236           S.Diag(ObjT->getInterfaceDecl()->getLocation(),
   5237                   diag::note_class_declared);
   5238         }
   5239       }
   5240     }
   5241   }
   5242 
   5243   return true;
   5244 }
   5245 
   5246 /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
   5247 /// attribute on the specified type.  Returns true to indicate that
   5248 /// the attribute was handled, false to indicate that the type does
   5249 /// not permit the attribute.
   5250 static bool handleObjCGCTypeAttr(TypeProcessingState &state,
   5251                                  AttributeList &attr,
   5252                                  QualType &type) {
   5253   Sema &S = state.getSema();
   5254 
   5255   // Delay if this isn't some kind of pointer.
   5256   if (!type->isPointerType() &&
   5257       !type->isObjCObjectPointerType() &&
   5258       !type->isBlockPointerType())
   5259     return false;
   5260 
   5261   if (type.getObjCGCAttr() != Qualifiers::GCNone) {
   5262     S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
   5263     attr.setInvalid();
   5264     return true;
   5265   }
   5266 
   5267   // Check the attribute arguments.
   5268   if (!attr.isArgIdent(0)) {
   5269     S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
   5270       << attr.getName() << AANT_ArgumentString;
   5271     attr.setInvalid();
   5272     return true;
   5273   }
   5274   Qualifiers::GC GCAttr;
   5275   if (attr.getNumArgs() > 1) {
   5276     S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments)
   5277       << attr.getName() << 1;
   5278     attr.setInvalid();
   5279     return true;
   5280   }
   5281 
   5282   IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
   5283   if (II->isStr("weak"))
   5284     GCAttr = Qualifiers::Weak;
   5285   else if (II->isStr("strong"))
   5286     GCAttr = Qualifiers::Strong;
   5287   else {
   5288     S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
   5289       << attr.getName() << II;
   5290     attr.setInvalid();
   5291     return true;
   5292   }
   5293 
   5294   QualType origType = type;
   5295   type = S.Context.getObjCGCQualType(origType, GCAttr);
   5296 
   5297   // Make an attributed type to preserve the source information.
   5298   if (attr.getLoc().isValid())
   5299     type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
   5300                                        origType, type);
   5301 
   5302   return true;
   5303 }
   5304 
   5305 namespace {
   5306   /// A helper class to unwrap a type down to a function for the
   5307   /// purposes of applying attributes there.
   5308   ///
   5309   /// Use:
   5310   ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
   5311   ///   if (unwrapped.isFunctionType()) {
   5312   ///     const FunctionType *fn = unwrapped.get();
   5313   ///     // change fn somehow
   5314   ///     T = unwrapped.wrap(fn);
   5315   ///   }
   5316   struct FunctionTypeUnwrapper {
   5317     enum WrapKind {
   5318       Desugar,
   5319       Parens,
   5320       Pointer,
   5321       BlockPointer,
   5322       Reference,
   5323       MemberPointer
   5324     };
   5325 
   5326     QualType Original;
   5327     const FunctionType *Fn;
   5328     SmallVector<unsigned char /*WrapKind*/, 8> Stack;
   5329 
   5330     FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
   5331       while (true) {
   5332         const Type *Ty = T.getTypePtr();
   5333         if (isa<FunctionType>(Ty)) {
   5334           Fn = cast<FunctionType>(Ty);
   5335           return;
   5336         } else if (isa<ParenType>(Ty)) {
   5337           T = cast<ParenType>(Ty)->getInnerType();
   5338           Stack.push_back(Parens);
   5339         } else if (isa<PointerType>(Ty)) {
   5340           T = cast<PointerType>(Ty)->getPointeeType();
   5341           Stack.push_back(Pointer);
   5342         } else if (isa<BlockPointerType>(Ty)) {
   5343           T = cast<BlockPointerType>(Ty)->getPointeeType();
   5344           Stack.push_back(BlockPointer);
   5345         } else if (isa<MemberPointerType>(Ty)) {
   5346           T = cast<MemberPointerType>(Ty)->getPointeeType();
   5347           Stack.push_back(MemberPointer);
   5348         } else if (isa<ReferenceType>(Ty)) {
   5349           T = cast<ReferenceType>(Ty)->getPointeeType();
   5350           Stack.push_back(Reference);
   5351         } else {
   5352           const Type *DTy = Ty->getUnqualifiedDesugaredType();
   5353           if (Ty == DTy) {
   5354             Fn = nullptr;
   5355             return;
   5356           }
   5357 
   5358           T = QualType(DTy, 0);
   5359           Stack.push_back(Desugar);
   5360         }
   5361       }
   5362     }
   5363 
   5364     bool isFunctionType() const { return (Fn != nullptr); }
   5365     const FunctionType *get() const { return Fn; }
   5366 
   5367     QualType wrap(Sema &S, const FunctionType *New) {
   5368       // If T wasn't modified from the unwrapped type, do nothing.
   5369       if (New == get()) return Original;
   5370 
   5371       Fn = New;
   5372       return wrap(S.Context, Original, 0);
   5373     }
   5374 
   5375   private:
   5376     QualType wrap(ASTContext &C, QualType Old, unsigned I) {
   5377       if (I == Stack.size())
   5378         return C.getQualifiedType(Fn, Old.getQualifiers());
   5379 
   5380       // Build up the inner type, applying the qualifiers from the old
   5381       // type to the new type.
   5382       SplitQualType SplitOld = Old.split();
   5383 
   5384       // As a special case, tail-recurse if there are no qualifiers.
   5385       if (SplitOld.Quals.empty())
   5386         return wrap(C, SplitOld.Ty, I);
   5387       return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
   5388     }
   5389 
   5390     QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
   5391       if (I == Stack.size()) return QualType(Fn, 0);
   5392 
   5393       switch (static_cast<WrapKind>(Stack[I++])) {
   5394       case Desugar:
   5395         // This is the point at which we potentially lose source
   5396         // information.
   5397         return wrap(C, Old->getUnqualifiedDesugaredType(), I);
   5398 
   5399       case Parens: {
   5400         QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
   5401         return C.getParenType(New);
   5402       }
   5403 
   5404       case Pointer: {
   5405         QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
   5406         return C.getPointerType(New);
   5407       }
   5408 
   5409       case BlockPointer: {
   5410         QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
   5411         return C.getBlockPointerType(New);
   5412       }
   5413 
   5414       case MemberPointer: {
   5415         const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
   5416         QualType New = wrap(C, OldMPT->getPointeeType(), I);
   5417         return C.getMemberPointerType(New, OldMPT->getClass());
   5418       }
   5419 
   5420       case Reference: {
   5421         const ReferenceType *OldRef = cast<ReferenceType>(Old);
   5422         QualType New = wrap(C, OldRef->getPointeeType(), I);
   5423         if (isa<LValueReferenceType>(OldRef))
   5424           return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
   5425         else
   5426           return C.getRValueReferenceType(New);
   5427       }
   5428       }
   5429 
   5430       llvm_unreachable("unknown wrapping kind");
   5431     }
   5432   };
   5433 }
   5434 
   5435 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
   5436                                              AttributeList &Attr,
   5437                                              QualType &Type) {
   5438   Sema &S = State.getSema();
   5439 
   5440   AttributeList::Kind Kind = Attr.getKind();
   5441   QualType Desugared = Type;
   5442   const AttributedType *AT = dyn_cast<AttributedType>(Type);
   5443   while (AT) {
   5444     AttributedType::Kind CurAttrKind = AT->getAttrKind();
   5445 
   5446     // You cannot specify duplicate type attributes, so if the attribute has
   5447     // already been applied, flag it.
   5448     if (getAttrListKind(CurAttrKind) == Kind) {
   5449       S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute_exact)
   5450         << Attr.getName();
   5451       return true;
   5452     }
   5453 
   5454     // You cannot have both __sptr and __uptr on the same type, nor can you
   5455     // have __ptr32 and __ptr64.
   5456     if ((CurAttrKind == AttributedType::attr_ptr32 &&
   5457          Kind == AttributeList::AT_Ptr64) ||
   5458         (CurAttrKind == AttributedType::attr_ptr64 &&
   5459          Kind == AttributeList::AT_Ptr32)) {
   5460       S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
   5461         << "'__ptr32'" << "'__ptr64'";
   5462       return true;
   5463     } else if ((CurAttrKind == AttributedType::attr_sptr &&
   5464                 Kind == AttributeList::AT_UPtr) ||
   5465                (CurAttrKind == AttributedType::attr_uptr &&
   5466                 Kind == AttributeList::AT_SPtr)) {
   5467       S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
   5468         << "'__sptr'" << "'__uptr'";
   5469       return true;
   5470     }
   5471 
   5472     Desugared = AT->getEquivalentType();
   5473     AT = dyn_cast<AttributedType>(Desugared);
   5474   }
   5475 
   5476   // Pointer type qualifiers can only operate on pointer types, but not
   5477   // pointer-to-member types.
   5478   if (!isa<PointerType>(Desugared)) {
   5479     if (Type->isMemberPointerType())
   5480       S.Diag(Attr.getLoc(), diag::err_attribute_no_member_pointers)
   5481           << Attr.getName();
   5482     else
   5483       S.Diag(Attr.getLoc(), diag::err_attribute_pointers_only)
   5484           << Attr.getName() << 0;
   5485     return true;
   5486   }
   5487 
   5488   AttributedType::Kind TAK;
   5489   switch (Kind) {
   5490   default: llvm_unreachable("Unknown attribute kind");
   5491   case AttributeList::AT_Ptr32: TAK = AttributedType::attr_ptr32; break;
   5492   case AttributeList::AT_Ptr64: TAK = AttributedType::attr_ptr64; break;
   5493   case AttributeList::AT_SPtr: TAK = AttributedType::attr_sptr; break;
   5494   case AttributeList::AT_UPtr: TAK = AttributedType::attr_uptr; break;
   5495   }
   5496 
   5497   Type = S.Context.getAttributedType(TAK, Type, Type);
   5498   return false;
   5499 }
   5500 
   5501 bool Sema::checkNullabilityTypeSpecifier(QualType &type,
   5502                                          NullabilityKind nullability,
   5503                                          SourceLocation nullabilityLoc,
   5504                                          bool isContextSensitive) {
   5505   // We saw a nullability type specifier. If this is the first one for
   5506   // this file, note that.
   5507   FileID file = getNullabilityCompletenessCheckFileID(*this, nullabilityLoc);
   5508   if (!file.isInvalid()) {
   5509     FileNullability &fileNullability = NullabilityMap[file];
   5510     if (!fileNullability.SawTypeNullability) {
   5511       // If we have already seen a pointer declarator without a nullability
   5512       // annotation, complain about it.
   5513       if (fileNullability.PointerLoc.isValid()) {
   5514         Diag(fileNullability.PointerLoc, diag::warn_nullability_missing)
   5515           << static_cast<unsigned>(fileNullability.PointerKind);
   5516       }
   5517 
   5518       fileNullability.SawTypeNullability = true;
   5519     }
   5520   }
   5521 
   5522   // Check for existing nullability attributes on the type.
   5523   QualType desugared = type;
   5524   while (auto attributed = dyn_cast<AttributedType>(desugared.getTypePtr())) {
   5525     // Check whether there is already a null
   5526     if (auto existingNullability = attributed->getImmediateNullability()) {
   5527       // Duplicated nullability.
   5528       if (nullability == *existingNullability) {
   5529         Diag(nullabilityLoc, diag::warn_nullability_duplicate)
   5530           << DiagNullabilityKind(nullability, isContextSensitive)
   5531           << FixItHint::CreateRemoval(nullabilityLoc);
   5532 
   5533         break;
   5534       }
   5535 
   5536       // Conflicting nullability.
   5537       Diag(nullabilityLoc, diag::err_nullability_conflicting)
   5538         << DiagNullabilityKind(nullability, isContextSensitive)
   5539         << DiagNullabilityKind(*existingNullability, false);
   5540       return true;
   5541     }
   5542 
   5543     desugared = attributed->getModifiedType();
   5544   }
   5545 
   5546   // If there is already a different nullability specifier, complain.
   5547   // This (unlike the code above) looks through typedefs that might
   5548   // have nullability specifiers on them, which means we cannot
   5549   // provide a useful Fix-It.
   5550   if (auto existingNullability = desugared->getNullability(Context)) {
   5551     if (nullability != *existingNullability) {
   5552       Diag(nullabilityLoc, diag::err_nullability_conflicting)
   5553         << DiagNullabilityKind(nullability, isContextSensitive)
   5554         << DiagNullabilityKind(*existingNullability, false);
   5555 
   5556       // Try to find the typedef with the existing nullability specifier.
   5557       if (auto typedefType = desugared->getAs<TypedefType>()) {
   5558         TypedefNameDecl *typedefDecl = typedefType->getDecl();
   5559         QualType underlyingType = typedefDecl->getUnderlyingType();
   5560         if (auto typedefNullability
   5561               = AttributedType::stripOuterNullability(underlyingType)) {
   5562           if (*typedefNullability == *existingNullability) {
   5563             Diag(typedefDecl->getLocation(), diag::note_nullability_here)
   5564               << DiagNullabilityKind(*existingNullability, false);
   5565           }
   5566         }
   5567       }
   5568 
   5569       return true;
   5570     }
   5571   }
   5572 
   5573   // If this definitely isn't a pointer type, reject the specifier.
   5574   if (!desugared->canHaveNullability()) {
   5575     Diag(nullabilityLoc, diag::err_nullability_nonpointer)
   5576       << DiagNullabilityKind(nullability, isContextSensitive) << type;
   5577     return true;
   5578   }
   5579 
   5580   // For the context-sensitive keywords/Objective-C property
   5581   // attributes, require that the type be a single-level pointer.
   5582   if (isContextSensitive) {
   5583     // Make sure that the pointee isn't itself a pointer type.
   5584     QualType pointeeType = desugared->getPointeeType();
   5585     if (pointeeType->isAnyPointerType() ||
   5586         pointeeType->isObjCObjectPointerType() ||
   5587         pointeeType->isMemberPointerType()) {
   5588       Diag(nullabilityLoc, diag::err_nullability_cs_multilevel)
   5589         << DiagNullabilityKind(nullability, true)
   5590         << type;
   5591       Diag(nullabilityLoc, diag::note_nullability_type_specifier)
   5592         << DiagNullabilityKind(nullability, false)
   5593         << type
   5594         << FixItHint::CreateReplacement(nullabilityLoc,
   5595                                         getNullabilitySpelling(nullability));
   5596       return true;
   5597     }
   5598   }
   5599 
   5600   // Form the attributed type.
   5601   type = Context.getAttributedType(
   5602            AttributedType::getNullabilityAttrKind(nullability), type, type);
   5603   return false;
   5604 }
   5605 
   5606 bool Sema::checkObjCKindOfType(QualType &type, SourceLocation loc) {
   5607   // Find out if it's an Objective-C object or object pointer type;
   5608   const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
   5609   const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
   5610                                           : type->getAs<ObjCObjectType>();
   5611 
   5612   // If not, we can't apply __kindof.
   5613   if (!objType) {
   5614     // FIXME: Handle dependent types that aren't yet object types.
   5615     Diag(loc, diag::err_objc_kindof_nonobject)
   5616       << type;
   5617     return true;
   5618   }
   5619 
   5620   // Rebuild the "equivalent" type, which pushes __kindof down into
   5621   // the object type.
   5622   QualType equivType = Context.getObjCObjectType(objType->getBaseType(),
   5623                                                  objType->getTypeArgsAsWritten(),
   5624                                                  objType->getProtocols(),
   5625                                                  /*isKindOf=*/true);
   5626 
   5627   // If we started with an object pointer type, rebuild it.
   5628   if (ptrType) {
   5629     equivType = Context.getObjCObjectPointerType(equivType);
   5630     if (auto nullability = type->getNullability(Context)) {
   5631       auto attrKind = AttributedType::getNullabilityAttrKind(*nullability);
   5632       equivType = Context.getAttributedType(attrKind, equivType, equivType);
   5633     }
   5634   }
   5635 
   5636   // Build the attributed type to record where __kindof occurred.
   5637   type = Context.getAttributedType(AttributedType::attr_objc_kindof,
   5638                                    type,
   5639                                    equivType);
   5640 
   5641   return false;
   5642 }
   5643 
   5644 /// Map a nullability attribute kind to a nullability kind.
   5645 static NullabilityKind mapNullabilityAttrKind(AttributeList::Kind kind) {
   5646   switch (kind) {
   5647   case AttributeList::AT_TypeNonNull:
   5648     return NullabilityKind::NonNull;
   5649 
   5650   case AttributeList::AT_TypeNullable:
   5651     return NullabilityKind::Nullable;
   5652 
   5653   case AttributeList::AT_TypeNullUnspecified:
   5654     return NullabilityKind::Unspecified;
   5655 
   5656   default:
   5657     llvm_unreachable("not a nullability attribute kind");
   5658   }
   5659 }
   5660 
   5661 /// Distribute a nullability type attribute that cannot be applied to
   5662 /// the type specifier to a pointer, block pointer, or member pointer
   5663 /// declarator, complaining if necessary.
   5664 ///
   5665 /// \returns true if the nullability annotation was distributed, false
   5666 /// otherwise.
   5667 static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
   5668                                           QualType type,
   5669                                           AttributeList &attr) {
   5670   Declarator &declarator = state.getDeclarator();
   5671 
   5672   /// Attempt to move the attribute to the specified chunk.
   5673   auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
   5674     // If there is already a nullability attribute there, don't add
   5675     // one.
   5676     if (hasNullabilityAttr(chunk.getAttrListRef()))
   5677       return false;
   5678 
   5679     // Complain about the nullability qualifier being in the wrong
   5680     // place.
   5681     enum {
   5682       PK_Pointer,
   5683       PK_BlockPointer,
   5684       PK_MemberPointer,
   5685       PK_FunctionPointer,
   5686       PK_MemberFunctionPointer,
   5687     } pointerKind
   5688       = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
   5689                                                              : PK_Pointer)
   5690         : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
   5691         : inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
   5692 
   5693     auto diag = state.getSema().Diag(attr.getLoc(),
   5694                                      diag::warn_nullability_declspec)
   5695       << DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()),
   5696                              attr.isContextSensitiveKeywordAttribute())
   5697       << type
   5698       << static_cast<unsigned>(pointerKind);
   5699 
   5700     // FIXME: MemberPointer chunks don't carry the location of the *.
   5701     if (chunk.Kind != DeclaratorChunk::MemberPointer) {
   5702       diag << FixItHint::CreateRemoval(attr.getLoc())
   5703            << FixItHint::CreateInsertion(
   5704                 state.getSema().getPreprocessor()
   5705                   .getLocForEndOfToken(chunk.Loc),
   5706                 " " + attr.getName()->getName().str() + " ");
   5707     }
   5708 
   5709     moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
   5710                            chunk.getAttrListRef());
   5711     return true;
   5712   };
   5713 
   5714   // Move it to the outermost pointer, member pointer, or block
   5715   // pointer declarator.
   5716   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
   5717     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
   5718     switch (chunk.Kind) {
   5719     case DeclaratorChunk::Pointer:
   5720     case DeclaratorChunk::BlockPointer:
   5721     case DeclaratorChunk::MemberPointer:
   5722       return moveToChunk(chunk, false);
   5723 
   5724     case DeclaratorChunk::Paren:
   5725     case DeclaratorChunk::Array:
   5726       continue;
   5727 
   5728     case DeclaratorChunk::Function:
   5729       // Try to move past the return type to a function/block/member
   5730       // function pointer.
   5731       if (DeclaratorChunk *dest = maybeMovePastReturnType(
   5732                                     declarator, i,
   5733                                     /*onlyBlockPointers=*/false)) {
   5734         return moveToChunk(*dest, true);
   5735       }
   5736 
   5737       return false;
   5738 
   5739     // Don't walk through these.
   5740     case DeclaratorChunk::Reference:
   5741       return false;
   5742     }
   5743   }
   5744 
   5745   return false;
   5746 }
   5747 
   5748 static AttributedType::Kind getCCTypeAttrKind(AttributeList &Attr) {
   5749   assert(!Attr.isInvalid());
   5750   switch (Attr.getKind()) {
   5751   default:
   5752     llvm_unreachable("not a calling convention attribute");
   5753   case AttributeList::AT_CDecl:
   5754     return AttributedType::attr_cdecl;
   5755   case AttributeList::AT_FastCall:
   5756     return AttributedType::attr_fastcall;
   5757   case AttributeList::AT_StdCall:
   5758     return AttributedType::attr_stdcall;
   5759   case AttributeList::AT_ThisCall:
   5760     return AttributedType::attr_thiscall;
   5761   case AttributeList::AT_Pascal:
   5762     return AttributedType::attr_pascal;
   5763   case AttributeList::AT_VectorCall:
   5764     return AttributedType::attr_vectorcall;
   5765   case AttributeList::AT_Pcs: {
   5766     // The attribute may have had a fixit applied where we treated an
   5767     // identifier as a string literal.  The contents of the string are valid,
   5768     // but the form may not be.
   5769     StringRef Str;
   5770     if (Attr.isArgExpr(0))
   5771       Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
   5772     else
   5773       Str = Attr.getArgAsIdent(0)->Ident->getName();
   5774     return llvm::StringSwitch<AttributedType::Kind>(Str)
   5775         .Case("aapcs", AttributedType::attr_pcs)
   5776         .Case("aapcs-vfp", AttributedType::attr_pcs_vfp);
   5777   }
   5778   case AttributeList::AT_IntelOclBicc:
   5779     return AttributedType::attr_inteloclbicc;
   5780   case AttributeList::AT_MSABI:
   5781     return AttributedType::attr_ms_abi;
   5782   case AttributeList::AT_SysVABI:
   5783     return AttributedType::attr_sysv_abi;
   5784   }
   5785   llvm_unreachable("unexpected attribute kind!");
   5786 }
   5787 
   5788 /// Process an individual function attribute.  Returns true to
   5789 /// indicate that the attribute was handled, false if it wasn't.
   5790 static bool handleFunctionTypeAttr(TypeProcessingState &state,
   5791                                    AttributeList &attr,
   5792                                    QualType &type) {
   5793   Sema &S = state.getSema();
   5794 
   5795   FunctionTypeUnwrapper unwrapped(S, type);
   5796 
   5797   if (attr.getKind() == AttributeList::AT_NoReturn) {
   5798     if (S.CheckNoReturnAttr(attr))
   5799       return true;
   5800 
   5801     // Delay if this is not a function type.
   5802     if (!unwrapped.isFunctionType())
   5803       return false;
   5804 
   5805     // Otherwise we can process right away.
   5806     FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
   5807     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
   5808     return true;
   5809   }
   5810 
   5811   // ns_returns_retained is not always a type attribute, but if we got
   5812   // here, we're treating it as one right now.
   5813   if (attr.getKind() == AttributeList::AT_NSReturnsRetained) {
   5814     assert(S.getLangOpts().ObjCAutoRefCount &&
   5815            "ns_returns_retained treated as type attribute in non-ARC");
   5816     if (attr.getNumArgs()) return true;
   5817 
   5818     // Delay if this is not a function type.
   5819     if (!unwrapped.isFunctionType())
   5820       return false;
   5821 
   5822     FunctionType::ExtInfo EI
   5823       = unwrapped.get()->getExtInfo().withProducesResult(true);
   5824     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
   5825     return true;
   5826   }
   5827 
   5828   if (attr.getKind() == AttributeList::AT_Regparm) {
   5829     unsigned value;
   5830     if (S.CheckRegparmAttr(attr, value))
   5831       return true;
   5832 
   5833     // Delay if this is not a function type.
   5834     if (!unwrapped.isFunctionType())
   5835       return false;
   5836 
   5837     // Diagnose regparm with fastcall.
   5838     const FunctionType *fn = unwrapped.get();
   5839     CallingConv CC = fn->getCallConv();
   5840     if (CC == CC_X86FastCall) {
   5841       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
   5842         << FunctionType::getNameForCallConv(CC)
   5843         << "regparm";
   5844       attr.setInvalid();
   5845       return true;
   5846     }
   5847 
   5848     FunctionType::ExtInfo EI =
   5849       unwrapped.get()->getExtInfo().withRegParm(value);
   5850     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
   5851     return true;
   5852   }
   5853 
   5854   // Delay if the type didn't work out to a function.
   5855   if (!unwrapped.isFunctionType()) return false;
   5856 
   5857   // Otherwise, a calling convention.
   5858   CallingConv CC;
   5859   if (S.CheckCallingConvAttr(attr, CC))
   5860     return true;
   5861 
   5862   const FunctionType *fn = unwrapped.get();
   5863   CallingConv CCOld = fn->getCallConv();
   5864   AttributedType::Kind CCAttrKind = getCCTypeAttrKind(attr);
   5865 
   5866   if (CCOld != CC) {
   5867     // Error out on when there's already an attribute on the type
   5868     // and the CCs don't match.
   5869     const AttributedType *AT = S.getCallingConvAttributedType(type);
   5870     if (AT && AT->getAttrKind() != CCAttrKind) {
   5871       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
   5872         << FunctionType::getNameForCallConv(CC)
   5873         << FunctionType::getNameForCallConv(CCOld);
   5874       attr.setInvalid();
   5875       return true;
   5876     }
   5877   }
   5878 
   5879   // Diagnose use of callee-cleanup calling convention on variadic functions.
   5880   if (!supportsVariadicCall(CC)) {
   5881     const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
   5882     if (FnP && FnP->isVariadic()) {
   5883       unsigned DiagID = diag::err_cconv_varargs;
   5884       // stdcall and fastcall are ignored with a warning for GCC and MS
   5885       // compatibility.
   5886       if (CC == CC_X86StdCall || CC == CC_X86FastCall)
   5887         DiagID = diag::warn_cconv_varargs;
   5888 
   5889       S.Diag(attr.getLoc(), DiagID) << FunctionType::getNameForCallConv(CC);
   5890       attr.setInvalid();
   5891       return true;
   5892     }
   5893   }
   5894 
   5895   // Also diagnose fastcall with regparm.
   5896   if (CC == CC_X86FastCall && fn->getHasRegParm()) {
   5897     S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
   5898         << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall);
   5899     attr.setInvalid();
   5900     return true;
   5901   }
   5902 
   5903   // Modify the CC from the wrapped function type, wrap it all back, and then
   5904   // wrap the whole thing in an AttributedType as written.  The modified type
   5905   // might have a different CC if we ignored the attribute.
   5906   FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
   5907   QualType Equivalent =
   5908       unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
   5909   type = S.Context.getAttributedType(CCAttrKind, type, Equivalent);
   5910   return true;
   5911 }
   5912 
   5913 bool Sema::hasExplicitCallingConv(QualType &T) {
   5914   QualType R = T.IgnoreParens();
   5915   while (const AttributedType *AT = dyn_cast<AttributedType>(R)) {
   5916     if (AT->isCallingConv())
   5917       return true;
   5918     R = AT->getModifiedType().IgnoreParens();
   5919   }
   5920   return false;
   5921 }
   5922 
   5923 void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
   5924                                   SourceLocation Loc) {
   5925   FunctionTypeUnwrapper Unwrapped(*this, T);
   5926   const FunctionType *FT = Unwrapped.get();
   5927   bool IsVariadic = (isa<FunctionProtoType>(FT) &&
   5928                      cast<FunctionProtoType>(FT)->isVariadic());
   5929   CallingConv CurCC = FT->getCallConv();
   5930   CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic);
   5931 
   5932   if (CurCC == ToCC)
   5933     return;
   5934 
   5935   // MS compiler ignores explicit calling convention attributes on structors. We
   5936   // should do the same.
   5937   if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
   5938     // Issue a warning on ignored calling convention -- except of __stdcall.
   5939     // Again, this is what MS compiler does.
   5940     if (CurCC != CC_X86StdCall)
   5941       Diag(Loc, diag::warn_cconv_structors)
   5942           << FunctionType::getNameForCallConv(CurCC);
   5943   // Default adjustment.
   5944   } else {
   5945     // Only adjust types with the default convention.  For example, on Windows
   5946     // we should adjust a __cdecl type to __thiscall for instance methods, and a
   5947     // __thiscall type to __cdecl for static methods.
   5948     CallingConv DefaultCC =
   5949         Context.getDefaultCallingConvention(IsVariadic, IsStatic);
   5950 
   5951     if (CurCC != DefaultCC || DefaultCC == ToCC)
   5952       return;
   5953 
   5954     if (hasExplicitCallingConv(T))
   5955       return;
   5956   }
   5957 
   5958   FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
   5959   QualType Wrapped = Unwrapped.wrap(*this, FT);
   5960   T = Context.getAdjustedType(T, Wrapped);
   5961 }
   5962 
   5963 /// HandleVectorSizeAttribute - this attribute is only applicable to integral
   5964 /// and float scalars, although arrays, pointers, and function return values are
   5965 /// allowed in conjunction with this construct. Aggregates with this attribute
   5966 /// are invalid, even if they are of the same size as a corresponding scalar.
   5967 /// The raw attribute should contain precisely 1 argument, the vector size for
   5968 /// the variable, measured in bytes. If curType and rawAttr are well formed,
   5969 /// this routine will return a new vector type.
   5970 static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
   5971                                  Sema &S) {
   5972   // Check the attribute arguments.
   5973   if (Attr.getNumArgs() != 1) {
   5974     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
   5975       << Attr.getName() << 1;
   5976     Attr.setInvalid();
   5977     return;
   5978   }
   5979   Expr *sizeExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
   5980   llvm::APSInt vecSize(32);
   5981   if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
   5982       !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
   5983     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
   5984       << Attr.getName() << AANT_ArgumentIntegerConstant
   5985       << sizeExpr->getSourceRange();
   5986     Attr.setInvalid();
   5987     return;
   5988   }
   5989   // The base type must be integer (not Boolean or enumeration) or float, and
   5990   // can't already be a vector.
   5991   if (!CurType->isBuiltinType() || CurType->isBooleanType() ||
   5992       (!CurType->isIntegerType() && !CurType->isRealFloatingType())) {
   5993     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
   5994     Attr.setInvalid();
   5995     return;
   5996   }
   5997   unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
   5998   // vecSize is specified in bytes - convert to bits.
   5999   unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
   6000 
   6001   // the vector size needs to be an integral multiple of the type size.
   6002   if (vectorSize % typeSize) {
   6003     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
   6004       << sizeExpr->getSourceRange();
   6005     Attr.setInvalid();
   6006     return;
   6007   }
   6008   if (VectorType::isVectorSizeTooLarge(vectorSize / typeSize)) {
   6009     S.Diag(Attr.getLoc(), diag::err_attribute_size_too_large)
   6010       << sizeExpr->getSourceRange();
   6011     Attr.setInvalid();
   6012     return;
   6013   }
   6014   if (vectorSize == 0) {
   6015     S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
   6016       << sizeExpr->getSourceRange();
   6017     Attr.setInvalid();
   6018     return;
   6019   }
   6020 
   6021   // Success! Instantiate the vector type, the number of elements is > 0, and
   6022   // not required to be a power of 2, unlike GCC.
   6023   CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
   6024                                     VectorType::GenericVector);
   6025 }
   6026 
   6027 /// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
   6028 /// a type.
   6029 static void HandleExtVectorTypeAttr(QualType &CurType,
   6030                                     const AttributeList &Attr,
   6031                                     Sema &S) {
   6032   // check the attribute arguments.
   6033   if (Attr.getNumArgs() != 1) {
   6034     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
   6035       << Attr.getName() << 1;
   6036     return;
   6037   }
   6038 
   6039   Expr *sizeExpr;
   6040 
   6041   // Special case where the argument is a template id.
   6042   if (Attr.isArgIdent(0)) {
   6043     CXXScopeSpec SS;
   6044     SourceLocation TemplateKWLoc;
   6045     UnqualifiedId id;
   6046     id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
   6047 
   6048     ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
   6049                                           id, false, false);
   6050     if (Size.isInvalid())
   6051       return;
   6052 
   6053     sizeExpr = Size.get();
   6054   } else {
   6055     sizeExpr = Attr.getArgAsExpr(0);
   6056   }
   6057 
   6058   // Create the vector type.
   6059   QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
   6060   if (!T.isNull())
   6061     CurType = T;
   6062 }
   6063 
   6064 static bool isPermittedNeonBaseType(QualType &Ty,
   6065                                     VectorType::VectorKind VecKind, Sema &S) {
   6066   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
   6067   if (!BTy)
   6068     return false;
   6069 
   6070   llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
   6071 
   6072   // Signed poly is mathematically wrong, but has been baked into some ABIs by
   6073   // now.
   6074   bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
   6075                         Triple.getArch() == llvm::Triple::aarch64_be;
   6076   if (VecKind == VectorType::NeonPolyVector) {
   6077     if (IsPolyUnsigned) {
   6078       // AArch64 polynomial vectors are unsigned and support poly64.
   6079       return BTy->getKind() == BuiltinType::UChar ||
   6080              BTy->getKind() == BuiltinType::UShort ||
   6081              BTy->getKind() == BuiltinType::ULong ||
   6082              BTy->getKind() == BuiltinType::ULongLong;
   6083     } else {
   6084       // AArch32 polynomial vector are signed.
   6085       return BTy->getKind() == BuiltinType::SChar ||
   6086              BTy->getKind() == BuiltinType::Short;
   6087     }
   6088   }
   6089 
   6090   // Non-polynomial vector types: the usual suspects are allowed, as well as
   6091   // float64_t on AArch64.
   6092   bool Is64Bit = Triple.getArch() == llvm::Triple::aarch64 ||
   6093                  Triple.getArch() == llvm::Triple::aarch64_be;
   6094 
   6095   if (Is64Bit && BTy->getKind() == BuiltinType::Double)
   6096     return true;
   6097 
   6098   return BTy->getKind() == BuiltinType::SChar ||
   6099          BTy->getKind() == BuiltinType::UChar ||
   6100          BTy->getKind() == BuiltinType::Short ||
   6101          BTy->getKind() == BuiltinType::UShort ||
   6102          BTy->getKind() == BuiltinType::Int ||
   6103          BTy->getKind() == BuiltinType::UInt ||
   6104          BTy->getKind() == BuiltinType::Long ||
   6105          BTy->getKind() == BuiltinType::ULong ||
   6106          BTy->getKind() == BuiltinType::LongLong ||
   6107          BTy->getKind() == BuiltinType::ULongLong ||
   6108          BTy->getKind() == BuiltinType::Float ||
   6109          BTy->getKind() == BuiltinType::Half;
   6110 }
   6111 
   6112 /// HandleNeonVectorTypeAttr - The "neon_vector_type" and
   6113 /// "neon_polyvector_type" attributes are used to create vector types that
   6114 /// are mangled according to ARM's ABI.  Otherwise, these types are identical
   6115 /// to those created with the "vector_size" attribute.  Unlike "vector_size"
   6116 /// the argument to these Neon attributes is the number of vector elements,
   6117 /// not the vector size in bytes.  The vector width and element type must
   6118 /// match one of the standard Neon vector types.
   6119 static void HandleNeonVectorTypeAttr(QualType& CurType,
   6120                                      const AttributeList &Attr, Sema &S,
   6121                                      VectorType::VectorKind VecKind) {
   6122   // Target must have NEON
   6123   if (!S.Context.getTargetInfo().hasFeature("neon")) {
   6124     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr.getName();
   6125     Attr.setInvalid();
   6126     return;
   6127   }
   6128   // Check the attribute arguments.
   6129   if (Attr.getNumArgs() != 1) {
   6130     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
   6131       << Attr.getName() << 1;
   6132     Attr.setInvalid();
   6133     return;
   6134   }
   6135   // The number of elements must be an ICE.
   6136   Expr *numEltsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
   6137   llvm::APSInt numEltsInt(32);
   6138   if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
   6139       !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
   6140     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
   6141       << Attr.getName() << AANT_ArgumentIntegerConstant
   6142       << numEltsExpr->getSourceRange();
   6143     Attr.setInvalid();
   6144     return;
   6145   }
   6146   // Only certain element types are supported for Neon vectors.
   6147   if (!isPermittedNeonBaseType(CurType, VecKind, S)) {
   6148     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
   6149     Attr.setInvalid();
   6150     return;
   6151   }
   6152 
   6153   // The total size of the vector must be 64 or 128 bits.
   6154   unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
   6155   unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
   6156   unsigned vecSize = typeSize * numElts;
   6157   if (vecSize != 64 && vecSize != 128) {
   6158     S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
   6159     Attr.setInvalid();
   6160     return;
   6161   }
   6162 
   6163   CurType = S.Context.getVectorType(CurType, numElts, VecKind);
   6164 }
   6165 
   6166 static void processTypeAttrs(TypeProcessingState &state, QualType &type,
   6167                              TypeAttrLocation TAL, AttributeList *attrs) {
   6168   // Scan through and apply attributes to this type where it makes sense.  Some
   6169   // attributes (such as __address_space__, __vector_size__, etc) apply to the
   6170   // type, but others can be present in the type specifiers even though they
   6171   // apply to the decl.  Here we apply type attributes and ignore the rest.
   6172 
   6173   bool hasOpenCLAddressSpace = false;
   6174   while (attrs) {
   6175     AttributeList &attr = *attrs;
   6176     attrs = attr.getNext(); // reset to the next here due to early loop continue
   6177                             // stmts
   6178 
   6179     // Skip attributes that were marked to be invalid.
   6180     if (attr.isInvalid())
   6181       continue;
   6182 
   6183     if (attr.isCXX11Attribute()) {
   6184       // [[gnu::...]] attributes are treated as declaration attributes, so may
   6185       // not appertain to a DeclaratorChunk, even if we handle them as type
   6186       // attributes.
   6187       if (attr.getScopeName() && attr.getScopeName()->isStr("gnu")) {
   6188         if (TAL == TAL_DeclChunk) {
   6189           state.getSema().Diag(attr.getLoc(),
   6190                                diag::warn_cxx11_gnu_attribute_on_type)
   6191               << attr.getName();
   6192           continue;
   6193         }
   6194       } else if (TAL != TAL_DeclChunk) {
   6195         // Otherwise, only consider type processing for a C++11 attribute if
   6196         // it's actually been applied to a type.
   6197         continue;
   6198       }
   6199     }
   6200 
   6201     // If this is an attribute we can handle, do so now,
   6202     // otherwise, add it to the FnAttrs list for rechaining.
   6203     switch (attr.getKind()) {
   6204     default:
   6205       // A C++11 attribute on a declarator chunk must appertain to a type.
   6206       if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
   6207         state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
   6208           << attr.getName();
   6209         attr.setUsedAsTypeAttr();
   6210       }
   6211       break;
   6212 
   6213     case AttributeList::UnknownAttribute:
   6214       if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
   6215         state.getSema().Diag(attr.getLoc(),
   6216                              diag::warn_unknown_attribute_ignored)
   6217           << attr.getName();
   6218       break;
   6219 
   6220     case AttributeList::IgnoredAttribute:
   6221       break;
   6222 
   6223     case AttributeList::AT_MayAlias:
   6224       // FIXME: This attribute needs to actually be handled, but if we ignore
   6225       // it it breaks large amounts of Linux software.
   6226       attr.setUsedAsTypeAttr();
   6227       break;
   6228     case AttributeList::AT_OpenCLPrivateAddressSpace:
   6229     case AttributeList::AT_OpenCLGlobalAddressSpace:
   6230     case AttributeList::AT_OpenCLLocalAddressSpace:
   6231     case AttributeList::AT_OpenCLConstantAddressSpace:
   6232     case AttributeList::AT_OpenCLGenericAddressSpace:
   6233     case AttributeList::AT_AddressSpace:
   6234       HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
   6235       attr.setUsedAsTypeAttr();
   6236       hasOpenCLAddressSpace = true;
   6237       break;
   6238     OBJC_POINTER_TYPE_ATTRS_CASELIST:
   6239       if (!handleObjCPointerTypeAttr(state, attr, type))
   6240         distributeObjCPointerTypeAttr(state, attr, type);
   6241       attr.setUsedAsTypeAttr();
   6242       break;
   6243     case AttributeList::AT_VectorSize:
   6244       HandleVectorSizeAttr(type, attr, state.getSema());
   6245       attr.setUsedAsTypeAttr();
   6246       break;
   6247     case AttributeList::AT_ExtVectorType:
   6248       HandleExtVectorTypeAttr(type, attr, state.getSema());
   6249       attr.setUsedAsTypeAttr();
   6250       break;
   6251     case AttributeList::AT_NeonVectorType:
   6252       HandleNeonVectorTypeAttr(type, attr, state.getSema(),
   6253                                VectorType::NeonVector);
   6254       attr.setUsedAsTypeAttr();
   6255       break;
   6256     case AttributeList::AT_NeonPolyVectorType:
   6257       HandleNeonVectorTypeAttr(type, attr, state.getSema(),
   6258                                VectorType::NeonPolyVector);
   6259       attr.setUsedAsTypeAttr();
   6260       break;
   6261     case AttributeList::AT_OpenCLImageAccess:
   6262       // FIXME: there should be some type checking happening here, I would
   6263       // imagine, but the original handler's checking was entirely superfluous.
   6264       attr.setUsedAsTypeAttr();
   6265       break;
   6266 
   6267     MS_TYPE_ATTRS_CASELIST:
   6268       if (!handleMSPointerTypeQualifierAttr(state, attr, type))
   6269         attr.setUsedAsTypeAttr();
   6270       break;
   6271 
   6272 
   6273     NULLABILITY_TYPE_ATTRS_CASELIST:
   6274       // Either add nullability here or try to distribute it.  We
   6275       // don't want to distribute the nullability specifier past any
   6276       // dependent type, because that complicates the user model.
   6277       if (type->canHaveNullability() || type->isDependentType() ||
   6278           !distributeNullabilityTypeAttr(state, type, attr)) {
   6279         if (state.getSema().checkNullabilityTypeSpecifier(
   6280               type,
   6281               mapNullabilityAttrKind(attr.getKind()),
   6282               attr.getLoc(),
   6283               attr.isContextSensitiveKeywordAttribute())) {
   6284           attr.setInvalid();
   6285         }
   6286 
   6287         attr.setUsedAsTypeAttr();
   6288       }
   6289       break;
   6290 
   6291     case AttributeList::AT_ObjCKindOf:
   6292       // '__kindof' must be part of the decl-specifiers.
   6293       switch (TAL) {
   6294       case TAL_DeclSpec:
   6295         break;
   6296 
   6297       case TAL_DeclChunk:
   6298       case TAL_DeclName:
   6299         state.getSema().Diag(attr.getLoc(),
   6300                              diag::err_objc_kindof_wrong_position)
   6301           << FixItHint::CreateRemoval(attr.getLoc())
   6302           << FixItHint::CreateInsertion(
   6303                state.getDeclarator().getDeclSpec().getLocStart(), "__kindof ");
   6304         break;
   6305       }
   6306 
   6307       // Apply it regardless.
   6308       if (state.getSema().checkObjCKindOfType(type, attr.getLoc()))
   6309         attr.setInvalid();
   6310       attr.setUsedAsTypeAttr();
   6311       break;
   6312 
   6313     case AttributeList::AT_NSReturnsRetained:
   6314       if (!state.getSema().getLangOpts().ObjCAutoRefCount)
   6315         break;
   6316       // fallthrough into the function attrs
   6317 
   6318     FUNCTION_TYPE_ATTRS_CASELIST:
   6319       attr.setUsedAsTypeAttr();
   6320 
   6321       // Never process function type attributes as part of the
   6322       // declaration-specifiers.
   6323       if (TAL == TAL_DeclSpec)
   6324         distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
   6325 
   6326       // Otherwise, handle the possible delays.
   6327       else if (!handleFunctionTypeAttr(state, attr, type))
   6328         distributeFunctionTypeAttr(state, attr, type);
   6329       break;
   6330     }
   6331   }
   6332 
   6333   // If address space is not set, OpenCL 2.0 defines non private default
   6334   // address spaces for some cases:
   6335   // OpenCL 2.0, section 6.5:
   6336   // The address space for a variable at program scope or a static variable
   6337   // inside a function can either be __global or __constant, but defaults to
   6338   // __global if not specified.
   6339   // (...)
   6340   // Pointers that are declared without pointing to a named address space point
   6341   // to the generic address space.
   6342   if (state.getSema().getLangOpts().OpenCLVersion >= 200 &&
   6343       !hasOpenCLAddressSpace && type.getAddressSpace() == 0 &&
   6344       (TAL == TAL_DeclSpec || TAL == TAL_DeclChunk)) {
   6345     Declarator &D = state.getDeclarator();
   6346     if (state.getCurrentChunkIndex() > 0 &&
   6347         D.getTypeObject(state.getCurrentChunkIndex() - 1).Kind ==
   6348             DeclaratorChunk::Pointer) {
   6349       type = state.getSema().Context.getAddrSpaceQualType(
   6350           type, LangAS::opencl_generic);
   6351     } else if (state.getCurrentChunkIndex() == 0 &&
   6352                D.getContext() == Declarator::FileContext &&
   6353                !D.isFunctionDeclarator() && !D.isFunctionDefinition() &&
   6354                D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
   6355                !type->isSamplerT())
   6356       type = state.getSema().Context.getAddrSpaceQualType(
   6357           type, LangAS::opencl_global);
   6358     else if (state.getCurrentChunkIndex() == 0 &&
   6359              D.getContext() == Declarator::BlockContext &&
   6360              D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
   6361       type = state.getSema().Context.getAddrSpaceQualType(
   6362           type, LangAS::opencl_global);
   6363   }
   6364 }
   6365 
   6366 void Sema::completeExprArrayBound(Expr *E) {
   6367   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
   6368     if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
   6369       if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
   6370         SourceLocation PointOfInstantiation = E->getExprLoc();
   6371 
   6372         if (MemberSpecializationInfo *MSInfo =
   6373                 Var->getMemberSpecializationInfo()) {
   6374           // If we don't already have a point of instantiation, this is it.
   6375           if (MSInfo->getPointOfInstantiation().isInvalid()) {
   6376             MSInfo->setPointOfInstantiation(PointOfInstantiation);
   6377 
   6378             // This is a modification of an existing AST node. Notify
   6379             // listeners.
   6380             if (ASTMutationListener *L = getASTMutationListener())
   6381               L->StaticDataMemberInstantiated(Var);
   6382           }
   6383         } else {
   6384           VarTemplateSpecializationDecl *VarSpec =
   6385               cast<VarTemplateSpecializationDecl>(Var);
   6386           if (VarSpec->getPointOfInstantiation().isInvalid())
   6387             VarSpec->setPointOfInstantiation(PointOfInstantiation);
   6388         }
   6389 
   6390         InstantiateVariableDefinition(PointOfInstantiation, Var);
   6391 
   6392         // Update the type to the newly instantiated definition's type both
   6393         // here and within the expression.
   6394         if (VarDecl *Def = Var->getDefinition()) {
   6395           DRE->setDecl(Def);
   6396           QualType T = Def->getType();
   6397           DRE->setType(T);
   6398           // FIXME: Update the type on all intervening expressions.
   6399           E->setType(T);
   6400         }
   6401 
   6402         // We still go on to try to complete the type independently, as it
   6403         // may also require instantiations or diagnostics if it remains
   6404         // incomplete.
   6405       }
   6406     }
   6407   }
   6408 }
   6409 
   6410 /// \brief Ensure that the type of the given expression is complete.
   6411 ///
   6412 /// This routine checks whether the expression \p E has a complete type. If the
   6413 /// expression refers to an instantiable construct, that instantiation is
   6414 /// performed as needed to complete its type. Furthermore
   6415 /// Sema::RequireCompleteType is called for the expression's type (or in the
   6416 /// case of a reference type, the referred-to type).
   6417 ///
   6418 /// \param E The expression whose type is required to be complete.
   6419 /// \param Diagnoser The object that will emit a diagnostic if the type is
   6420 /// incomplete.
   6421 ///
   6422 /// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
   6423 /// otherwise.
   6424 bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser) {
   6425   QualType T = E->getType();
   6426 
   6427   // Incomplete array types may be completed by the initializer attached to
   6428   // their definitions. For static data members of class templates and for
   6429   // variable templates, we need to instantiate the definition to get this
   6430   // initializer and complete the type.
   6431   if (T->isIncompleteArrayType()) {
   6432     completeExprArrayBound(E);
   6433     T = E->getType();
   6434   }
   6435 
   6436   // FIXME: Are there other cases which require instantiating something other
   6437   // than the type to complete the type of an expression?
   6438 
   6439   return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
   6440 }
   6441 
   6442 bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
   6443   BoundTypeDiagnoser<> Diagnoser(DiagID);
   6444   return RequireCompleteExprType(E, Diagnoser);
   6445 }
   6446 
   6447 /// @brief Ensure that the type T is a complete type.
   6448 ///
   6449 /// This routine checks whether the type @p T is complete in any
   6450 /// context where a complete type is required. If @p T is a complete
   6451 /// type, returns false. If @p T is a class template specialization,
   6452 /// this routine then attempts to perform class template
   6453 /// instantiation. If instantiation fails, or if @p T is incomplete
   6454 /// and cannot be completed, issues the diagnostic @p diag (giving it
   6455 /// the type @p T) and returns true.
   6456 ///
   6457 /// @param Loc  The location in the source that the incomplete type
   6458 /// diagnostic should refer to.
   6459 ///
   6460 /// @param T  The type that this routine is examining for completeness.
   6461 ///
   6462 /// @returns @c true if @p T is incomplete and a diagnostic was emitted,
   6463 /// @c false otherwise.
   6464 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
   6465                                TypeDiagnoser &Diagnoser) {
   6466   if (RequireCompleteTypeImpl(Loc, T, &Diagnoser))
   6467     return true;
   6468   if (const TagType *Tag = T->getAs<TagType>()) {
   6469     if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
   6470       Tag->getDecl()->setCompleteDefinitionRequired();
   6471       Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
   6472     }
   6473   }
   6474   return false;
   6475 }
   6476 
   6477 /// \brief Determine whether there is any declaration of \p D that was ever a
   6478 ///        definition (perhaps before module merging) and is currently visible.
   6479 /// \param D The definition of the entity.
   6480 /// \param Suggested Filled in with the declaration that should be made visible
   6481 ///        in order to provide a definition of this entity.
   6482 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
   6483 ///        not defined. This only matters for enums with a fixed underlying
   6484 ///        type, since in all other cases, a type is complete if and only if it
   6485 ///        is defined.
   6486 bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
   6487                                 bool OnlyNeedComplete) {
   6488   // Easy case: if we don't have modules, all declarations are visible.
   6489   if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
   6490     return true;
   6491 
   6492   // If this definition was instantiated from a template, map back to the
   6493   // pattern from which it was instantiated.
   6494   if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
   6495     // We're in the middle of defining it; this definition should be treated
   6496     // as visible.
   6497     return true;
   6498   } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
   6499     if (auto *Pattern = RD->getTemplateInstantiationPattern())
   6500       RD = Pattern;
   6501     D = RD->getDefinition();
   6502   } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
   6503     while (auto *NewED = ED->getInstantiatedFromMemberEnum())
   6504       ED = NewED;
   6505     if (OnlyNeedComplete && ED->isFixed()) {
   6506       // If the enum has a fixed underlying type, and we're only looking for a
   6507       // complete type (not a definition), any visible declaration of it will
   6508       // do.
   6509       *Suggested = nullptr;
   6510       for (auto *Redecl : ED->redecls()) {
   6511         if (isVisible(Redecl))
   6512           return true;
   6513         if (Redecl->isThisDeclarationADefinition() ||
   6514             (Redecl->isCanonicalDecl() && !*Suggested))
   6515           *Suggested = Redecl;
   6516       }
   6517       return false;
   6518     }
   6519     D = ED->getDefinition();
   6520   }
   6521   assert(D && "missing definition for pattern of instantiated definition");
   6522 
   6523   *Suggested = D;
   6524   if (isVisible(D))
   6525     return true;
   6526 
   6527   // The external source may have additional definitions of this type that are
   6528   // visible, so complete the redeclaration chain now and ask again.
   6529   if (auto *Source = Context.getExternalSource()) {
   6530     Source->CompleteRedeclChain(D);
   6531     return isVisible(D);
   6532   }
   6533 
   6534   return false;
   6535 }
   6536 
   6537 /// Locks in the inheritance model for the given class and all of its bases.
   6538 static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
   6539   RD = RD->getMostRecentDecl();
   6540   if (!RD->hasAttr<MSInheritanceAttr>()) {
   6541     MSInheritanceAttr::Spelling IM;
   6542 
   6543     switch (S.MSPointerToMemberRepresentationMethod) {
   6544     case LangOptions::PPTMK_BestCase:
   6545       IM = RD->calculateInheritanceModel();
   6546       break;
   6547     case LangOptions::PPTMK_FullGeneralitySingleInheritance:
   6548       IM = MSInheritanceAttr::Keyword_single_inheritance;
   6549       break;
   6550     case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
   6551       IM = MSInheritanceAttr::Keyword_multiple_inheritance;
   6552       break;
   6553     case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
   6554       IM = MSInheritanceAttr::Keyword_unspecified_inheritance;
   6555       break;
   6556     }
   6557 
   6558     RD->addAttr(MSInheritanceAttr::CreateImplicit(
   6559         S.getASTContext(), IM,
   6560         /*BestCase=*/S.MSPointerToMemberRepresentationMethod ==
   6561             LangOptions::PPTMK_BestCase,
   6562         S.ImplicitMSInheritanceAttrLoc.isValid()
   6563             ? S.ImplicitMSInheritanceAttrLoc
   6564             : RD->getSourceRange()));
   6565   }
   6566 }
   6567 
   6568 /// \brief The implementation of RequireCompleteType
   6569 bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
   6570                                    TypeDiagnoser *Diagnoser) {
   6571   // FIXME: Add this assertion to make sure we always get instantiation points.
   6572   //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
   6573   // FIXME: Add this assertion to help us flush out problems with
   6574   // checking for dependent types and type-dependent expressions.
   6575   //
   6576   //  assert(!T->isDependentType() &&
   6577   //         "Can't ask whether a dependent type is complete");
   6578 
   6579   // We lock in the inheritance model once somebody has asked us to ensure
   6580   // that a pointer-to-member type is complete.
   6581   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
   6582     if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
   6583       if (!MPTy->getClass()->isDependentType()) {
   6584         (void)isCompleteType(Loc, QualType(MPTy->getClass(), 0));
   6585         assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
   6586       }
   6587     }
   6588   }
   6589 
   6590   // If we have a complete type, we're done.
   6591   NamedDecl *Def = nullptr;
   6592   if (!T->isIncompleteType(&Def)) {
   6593     // If we know about the definition but it is not visible, complain.
   6594     NamedDecl *SuggestedDef = nullptr;
   6595     if (Def &&
   6596         !hasVisibleDefinition(Def, &SuggestedDef, /*OnlyNeedComplete*/true)) {
   6597       // If the user is going to see an error here, recover by making the
   6598       // definition visible.
   6599       bool TreatAsComplete = Diagnoser && !isSFINAEContext();
   6600       if (Diagnoser)
   6601         diagnoseMissingImport(Loc, SuggestedDef, /*NeedDefinition*/true,
   6602                               /*Recover*/TreatAsComplete);
   6603       return !TreatAsComplete;
   6604     }
   6605 
   6606     return false;
   6607   }
   6608 
   6609   const TagType *Tag = T->getAs<TagType>();
   6610   const ObjCInterfaceType *IFace = T->getAs<ObjCInterfaceType>();
   6611 
   6612   // If there's an unimported definition of this type in a module (for
   6613   // instance, because we forward declared it, then imported the definition),
   6614   // import that definition now.
   6615   //
   6616   // FIXME: What about other cases where an import extends a redeclaration
   6617   // chain for a declaration that can be accessed through a mechanism other
   6618   // than name lookup (eg, referenced in a template, or a variable whose type
   6619   // could be completed by the module)?
   6620   //
   6621   // FIXME: Should we map through to the base array element type before
   6622   // checking for a tag type?
   6623   if (Tag || IFace) {
   6624     NamedDecl *D =
   6625         Tag ? static_cast<NamedDecl *>(Tag->getDecl()) : IFace->getDecl();
   6626 
   6627     // Avoid diagnosing invalid decls as incomplete.
   6628     if (D->isInvalidDecl())
   6629       return true;
   6630 
   6631     // Give the external AST source a chance to complete the type.
   6632     if (auto *Source = Context.getExternalSource()) {
   6633       if (Tag)
   6634         Source->CompleteType(Tag->getDecl());
   6635       else
   6636         Source->CompleteType(IFace->getDecl());
   6637 
   6638       // If the external source completed the type, go through the motions
   6639       // again to ensure we're allowed to use the completed type.
   6640       if (!T->isIncompleteType())
   6641         return RequireCompleteTypeImpl(Loc, T, Diagnoser);
   6642     }
   6643   }
   6644 
   6645   // If we have a class template specialization or a class member of a
   6646   // class template specialization, or an array with known size of such,
   6647   // try to instantiate it.
   6648   QualType MaybeTemplate = T;
   6649   while (const ConstantArrayType *Array
   6650            = Context.getAsConstantArrayType(MaybeTemplate))
   6651     MaybeTemplate = Array->getElementType();
   6652   if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
   6653     bool Instantiated = false;
   6654     bool Diagnosed = false;
   6655     if (ClassTemplateSpecializationDecl *ClassTemplateSpec
   6656           = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
   6657       if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
   6658         Diagnosed = InstantiateClassTemplateSpecialization(
   6659             Loc, ClassTemplateSpec, TSK_ImplicitInstantiation,
   6660             /*Complain=*/Diagnoser);
   6661         Instantiated = true;
   6662       }
   6663     } else if (CXXRecordDecl *Rec
   6664                  = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
   6665       CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass();
   6666       if (!Rec->isBeingDefined() && Pattern) {
   6667         MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
   6668         assert(MSI && "Missing member specialization information?");
   6669         // This record was instantiated from a class within a template.
   6670         if (MSI->getTemplateSpecializationKind() !=
   6671             TSK_ExplicitSpecialization) {
   6672           Diagnosed = InstantiateClass(Loc, Rec, Pattern,
   6673                                        getTemplateInstantiationArgs(Rec),
   6674                                        TSK_ImplicitInstantiation,
   6675                                        /*Complain=*/Diagnoser);
   6676           Instantiated = true;
   6677         }
   6678       }
   6679     }
   6680 
   6681     if (Instantiated) {
   6682       // Instantiate* might have already complained that the template is not
   6683       // defined, if we asked it to.
   6684       if (Diagnoser && Diagnosed)
   6685         return true;
   6686       // If we instantiated a definition, check that it's usable, even if
   6687       // instantiation produced an error, so that repeated calls to this
   6688       // function give consistent answers.
   6689       if (!T->isIncompleteType())
   6690         return RequireCompleteTypeImpl(Loc, T, Diagnoser);
   6691     }
   6692   }
   6693 
   6694   if (!Diagnoser)
   6695     return true;
   6696 
   6697   // We have an incomplete type. Produce a diagnostic.
   6698   if (Ident___float128 &&
   6699       T == Context.getTypeDeclType(Context.getFloat128StubType())) {
   6700     Diag(Loc, diag::err_typecheck_decl_incomplete_type___float128);
   6701     return true;
   6702   }
   6703 
   6704   Diagnoser->diagnose(*this, Loc, T);
   6705 
   6706   // If the type was a forward declaration of a class/struct/union
   6707   // type, produce a note.
   6708   if (Tag && !Tag->getDecl()->isInvalidDecl())
   6709     Diag(Tag->getDecl()->getLocation(),
   6710          Tag->isBeingDefined() ? diag::note_type_being_defined
   6711                                : diag::note_forward_declaration)
   6712       << QualType(Tag, 0);
   6713 
   6714   // If the Objective-C class was a forward declaration, produce a note.
   6715   if (IFace && !IFace->getDecl()->isInvalidDecl())
   6716     Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
   6717 
   6718   // If we have external information that we can use to suggest a fix,
   6719   // produce a note.
   6720   if (ExternalSource)
   6721     ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
   6722 
   6723   return true;
   6724 }
   6725 
   6726 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
   6727                                unsigned DiagID) {
   6728   BoundTypeDiagnoser<> Diagnoser(DiagID);
   6729   return RequireCompleteType(Loc, T, Diagnoser);
   6730 }
   6731 
   6732 /// \brief Get diagnostic %select index for tag kind for
   6733 /// literal type diagnostic message.
   6734 /// WARNING: Indexes apply to particular diagnostics only!
   6735 ///
   6736 /// \returns diagnostic %select index.
   6737 static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
   6738   switch (Tag) {
   6739   case TTK_Struct: return 0;
   6740   case TTK_Interface: return 1;
   6741   case TTK_Class:  return 2;
   6742   default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
   6743   }
   6744 }
   6745 
   6746 /// @brief Ensure that the type T is a literal type.
   6747 ///
   6748 /// This routine checks whether the type @p T is a literal type. If @p T is an
   6749 /// incomplete type, an attempt is made to complete it. If @p T is a literal
   6750 /// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
   6751 /// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
   6752 /// it the type @p T), along with notes explaining why the type is not a
   6753 /// literal type, and returns true.
   6754 ///
   6755 /// @param Loc  The location in the source that the non-literal type
   6756 /// diagnostic should refer to.
   6757 ///
   6758 /// @param T  The type that this routine is examining for literalness.
   6759 ///
   6760 /// @param Diagnoser Emits a diagnostic if T is not a literal type.
   6761 ///
   6762 /// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
   6763 /// @c false otherwise.
   6764 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
   6765                               TypeDiagnoser &Diagnoser) {
   6766   assert(!T->isDependentType() && "type should not be dependent");
   6767 
   6768   QualType ElemType = Context.getBaseElementType(T);
   6769   if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) &&
   6770       T->isLiteralType(Context))
   6771     return false;
   6772 
   6773   Diagnoser.diagnose(*this, Loc, T);
   6774 
   6775   if (T->isVariableArrayType())
   6776     return true;
   6777 
   6778   const RecordType *RT = ElemType->getAs<RecordType>();
   6779   if (!RT)
   6780     return true;
   6781 
   6782   const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   6783 
   6784   // A partially-defined class type can't be a literal type, because a literal
   6785   // class type must have a trivial destructor (which can't be checked until
   6786   // the class definition is complete).
   6787   if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
   6788     return true;
   6789 
   6790   // If the class has virtual base classes, then it's not an aggregate, and
   6791   // cannot have any constexpr constructors or a trivial default constructor,
   6792   // so is non-literal. This is better to diagnose than the resulting absence
   6793   // of constexpr constructors.
   6794   if (RD->getNumVBases()) {
   6795     Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
   6796       << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
   6797     for (const auto &I : RD->vbases())
   6798       Diag(I.getLocStart(), diag::note_constexpr_virtual_base_here)
   6799           << I.getSourceRange();
   6800   } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
   6801              !RD->hasTrivialDefaultConstructor()) {
   6802     Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
   6803   } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
   6804     for (const auto &I : RD->bases()) {
   6805       if (!I.getType()->isLiteralType(Context)) {
   6806         Diag(I.getLocStart(),
   6807              diag::note_non_literal_base_class)
   6808           << RD << I.getType() << I.getSourceRange();
   6809         return true;
   6810       }
   6811     }
   6812     for (const auto *I : RD->fields()) {
   6813       if (!I->getType()->isLiteralType(Context) ||
   6814           I->getType().isVolatileQualified()) {
   6815         Diag(I->getLocation(), diag::note_non_literal_field)
   6816           << RD << I << I->getType()
   6817           << I->getType().isVolatileQualified();
   6818         return true;
   6819       }
   6820     }
   6821   } else if (!RD->hasTrivialDestructor()) {
   6822     // All fields and bases are of literal types, so have trivial destructors.
   6823     // If this class's destructor is non-trivial it must be user-declared.
   6824     CXXDestructorDecl *Dtor = RD->getDestructor();
   6825     assert(Dtor && "class has literal fields and bases but no dtor?");
   6826     if (!Dtor)
   6827       return true;
   6828 
   6829     Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
   6830          diag::note_non_literal_user_provided_dtor :
   6831          diag::note_non_literal_nontrivial_dtor) << RD;
   6832     if (!Dtor->isUserProvided())
   6833       SpecialMemberIsTrivial(Dtor, CXXDestructor, /*Diagnose*/true);
   6834   }
   6835 
   6836   return true;
   6837 }
   6838 
   6839 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
   6840   BoundTypeDiagnoser<> Diagnoser(DiagID);
   6841   return RequireLiteralType(Loc, T, Diagnoser);
   6842 }
   6843 
   6844 /// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
   6845 /// and qualified by the nested-name-specifier contained in SS.
   6846 QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
   6847                                  const CXXScopeSpec &SS, QualType T) {
   6848   if (T.isNull())
   6849     return T;
   6850   NestedNameSpecifier *NNS;
   6851   if (SS.isValid())
   6852     NNS = SS.getScopeRep();
   6853   else {
   6854     if (Keyword == ETK_None)
   6855       return T;
   6856     NNS = nullptr;
   6857   }
   6858   return Context.getElaboratedType(Keyword, NNS, T);
   6859 }
   6860 
   6861 QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
   6862   ExprResult ER = CheckPlaceholderExpr(E);
   6863   if (ER.isInvalid()) return QualType();
   6864   E = ER.get();
   6865 
   6866   if (!getLangOpts().CPlusPlus && E->refersToBitField())
   6867     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 2;
   6868 
   6869   if (!E->isTypeDependent()) {
   6870     QualType T = E->getType();
   6871     if (const TagType *TT = T->getAs<TagType>())
   6872       DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
   6873   }
   6874   return Context.getTypeOfExprType(E);
   6875 }
   6876 
   6877 /// getDecltypeForExpr - Given an expr, will return the decltype for
   6878 /// that expression, according to the rules in C++11
   6879 /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
   6880 static QualType getDecltypeForExpr(Sema &S, Expr *E) {
   6881   if (E->isTypeDependent())
   6882     return S.Context.DependentTy;
   6883 
   6884   // C++11 [dcl.type.simple]p4:
   6885   //   The type denoted by decltype(e) is defined as follows:
   6886   //
   6887   //     - if e is an unparenthesized id-expression or an unparenthesized class
   6888   //       member access (5.2.5), decltype(e) is the type of the entity named
   6889   //       by e. If there is no such entity, or if e names a set of overloaded
   6890   //       functions, the program is ill-formed;
   6891   //
   6892   // We apply the same rules for Objective-C ivar and property references.
   6893   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
   6894     if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
   6895       return VD->getType();
   6896   } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
   6897     if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
   6898       return FD->getType();
   6899   } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
   6900     return IR->getDecl()->getType();
   6901   } else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
   6902     if (PR->isExplicitProperty())
   6903       return PR->getExplicitProperty()->getType();
   6904   } else if (auto *PE = dyn_cast<PredefinedExpr>(E)) {
   6905     return PE->getType();
   6906   }
   6907 
   6908   // C++11 [expr.lambda.prim]p18:
   6909   //   Every occurrence of decltype((x)) where x is a possibly
   6910   //   parenthesized id-expression that names an entity of automatic
   6911   //   storage duration is treated as if x were transformed into an
   6912   //   access to a corresponding data member of the closure type that
   6913   //   would have been declared if x were an odr-use of the denoted
   6914   //   entity.
   6915   using namespace sema;
   6916   if (S.getCurLambda()) {
   6917     if (isa<ParenExpr>(E)) {
   6918       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
   6919         if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
   6920           QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
   6921           if (!T.isNull())
   6922             return S.Context.getLValueReferenceType(T);
   6923         }
   6924       }
   6925     }
   6926   }
   6927 
   6928 
   6929   // C++11 [dcl.type.simple]p4:
   6930   //   [...]
   6931   QualType T = E->getType();
   6932   switch (E->getValueKind()) {
   6933   //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
   6934   //       type of e;
   6935   case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
   6936   //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
   6937   //       type of e;
   6938   case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
   6939   //  - otherwise, decltype(e) is the type of e.
   6940   case VK_RValue: break;
   6941   }
   6942 
   6943   return T;
   6944 }
   6945 
   6946 QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc,
   6947                                  bool AsUnevaluated) {
   6948   ExprResult ER = CheckPlaceholderExpr(E);
   6949   if (ER.isInvalid()) return QualType();
   6950   E = ER.get();
   6951 
   6952   if (AsUnevaluated && ActiveTemplateInstantiations.empty() &&
   6953       E->HasSideEffects(Context, false)) {
   6954     // The expression operand for decltype is in an unevaluated expression
   6955     // context, so side effects could result in unintended consequences.
   6956     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
   6957   }
   6958 
   6959   return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
   6960 }
   6961 
   6962 QualType Sema::BuildUnaryTransformType(QualType BaseType,
   6963                                        UnaryTransformType::UTTKind UKind,
   6964                                        SourceLocation Loc) {
   6965   switch (UKind) {
   6966   case UnaryTransformType::EnumUnderlyingType:
   6967     if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
   6968       Diag(Loc, diag::err_only_enums_have_underlying_types);
   6969       return QualType();
   6970     } else {
   6971       QualType Underlying = BaseType;
   6972       if (!BaseType->isDependentType()) {
   6973         // The enum could be incomplete if we're parsing its definition or
   6974         // recovering from an error.
   6975         NamedDecl *FwdDecl = nullptr;
   6976         if (BaseType->isIncompleteType(&FwdDecl)) {
   6977           Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
   6978           Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
   6979           return QualType();
   6980         }
   6981 
   6982         EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
   6983         assert(ED && "EnumType has no EnumDecl");
   6984 
   6985         DiagnoseUseOfDecl(ED, Loc);
   6986 
   6987         Underlying = ED->getIntegerType();
   6988         assert(!Underlying.isNull());
   6989       }
   6990       return Context.getUnaryTransformType(BaseType, Underlying,
   6991                                         UnaryTransformType::EnumUnderlyingType);
   6992     }
   6993   }
   6994   llvm_unreachable("unknown unary transform type");
   6995 }
   6996 
   6997 QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
   6998   if (!T->isDependentType()) {
   6999     // FIXME: It isn't entirely clear whether incomplete atomic types
   7000     // are allowed or not; for simplicity, ban them for the moment.
   7001     if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
   7002       return QualType();
   7003 
   7004     int DisallowedKind = -1;
   7005     if (T->isArrayType())
   7006       DisallowedKind = 1;
   7007     else if (T->isFunctionType())
   7008       DisallowedKind = 2;
   7009     else if (T->isReferenceType())
   7010       DisallowedKind = 3;
   7011     else if (T->isAtomicType())
   7012       DisallowedKind = 4;
   7013     else if (T.hasQualifiers())
   7014       DisallowedKind = 5;
   7015     else if (!T.isTriviallyCopyableType(Context))
   7016       // Some other non-trivially-copyable type (probably a C++ class)
   7017       DisallowedKind = 6;
   7018 
   7019     if (DisallowedKind != -1) {
   7020       Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
   7021       return QualType();
   7022     }
   7023 
   7024     // FIXME: Do we need any handling for ARC here?
   7025   }
   7026 
   7027   // Build the pointer type.
   7028   return Context.getAtomicType(T);
   7029 }
   7030