Home | History | Annotate | Download | only in Utils
      1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the SSAUpdater class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Transforms/Utils/SSAUpdater.h"
     15 #include "llvm/ADT/DenseMap.h"
     16 #include "llvm/ADT/TinyPtrVector.h"
     17 #include "llvm/Analysis/InstructionSimplify.h"
     18 #include "llvm/IR/CFG.h"
     19 #include "llvm/IR/Constants.h"
     20 #include "llvm/IR/Instructions.h"
     21 #include "llvm/IR/IntrinsicInst.h"
     22 #include "llvm/IR/Module.h"
     23 #include "llvm/Support/Debug.h"
     24 #include "llvm/Support/raw_ostream.h"
     25 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     26 #include "llvm/Transforms/Utils/Local.h"
     27 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
     28 
     29 using namespace llvm;
     30 
     31 #define DEBUG_TYPE "ssaupdater"
     32 
     33 typedef DenseMap<BasicBlock*, Value*> AvailableValsTy;
     34 static AvailableValsTy &getAvailableVals(void *AV) {
     35   return *static_cast<AvailableValsTy*>(AV);
     36 }
     37 
     38 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
     39   : AV(nullptr), ProtoType(nullptr), ProtoName(), InsertedPHIs(NewPHI) {}
     40 
     41 SSAUpdater::~SSAUpdater() {
     42   delete static_cast<AvailableValsTy*>(AV);
     43 }
     44 
     45 void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
     46   if (!AV)
     47     AV = new AvailableValsTy();
     48   else
     49     getAvailableVals(AV).clear();
     50   ProtoType = Ty;
     51   ProtoName = Name;
     52 }
     53 
     54 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
     55   return getAvailableVals(AV).count(BB);
     56 }
     57 
     58 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
     59   assert(ProtoType && "Need to initialize SSAUpdater");
     60   assert(ProtoType == V->getType() &&
     61          "All rewritten values must have the same type");
     62   getAvailableVals(AV)[BB] = V;
     63 }
     64 
     65 static bool IsEquivalentPHI(PHINode *PHI,
     66                           SmallDenseMap<BasicBlock*, Value*, 8> &ValueMapping) {
     67   unsigned PHINumValues = PHI->getNumIncomingValues();
     68   if (PHINumValues != ValueMapping.size())
     69     return false;
     70 
     71   // Scan the phi to see if it matches.
     72   for (unsigned i = 0, e = PHINumValues; i != e; ++i)
     73     if (ValueMapping[PHI->getIncomingBlock(i)] !=
     74         PHI->getIncomingValue(i)) {
     75       return false;
     76     }
     77 
     78   return true;
     79 }
     80 
     81 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
     82   Value *Res = GetValueAtEndOfBlockInternal(BB);
     83   return Res;
     84 }
     85 
     86 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
     87   // If there is no definition of the renamed variable in this block, just use
     88   // GetValueAtEndOfBlock to do our work.
     89   if (!HasValueForBlock(BB))
     90     return GetValueAtEndOfBlock(BB);
     91 
     92   // Otherwise, we have the hard case.  Get the live-in values for each
     93   // predecessor.
     94   SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues;
     95   Value *SingularValue = nullptr;
     96 
     97   // We can get our predecessor info by walking the pred_iterator list, but it
     98   // is relatively slow.  If we already have PHI nodes in this block, walk one
     99   // of them to get the predecessor list instead.
    100   if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
    101     for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
    102       BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
    103       Value *PredVal = GetValueAtEndOfBlock(PredBB);
    104       PredValues.push_back(std::make_pair(PredBB, PredVal));
    105 
    106       // Compute SingularValue.
    107       if (i == 0)
    108         SingularValue = PredVal;
    109       else if (PredVal != SingularValue)
    110         SingularValue = nullptr;
    111     }
    112   } else {
    113     bool isFirstPred = true;
    114     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    115       BasicBlock *PredBB = *PI;
    116       Value *PredVal = GetValueAtEndOfBlock(PredBB);
    117       PredValues.push_back(std::make_pair(PredBB, PredVal));
    118 
    119       // Compute SingularValue.
    120       if (isFirstPred) {
    121         SingularValue = PredVal;
    122         isFirstPred = false;
    123       } else if (PredVal != SingularValue)
    124         SingularValue = nullptr;
    125     }
    126   }
    127 
    128   // If there are no predecessors, just return undef.
    129   if (PredValues.empty())
    130     return UndefValue::get(ProtoType);
    131 
    132   // Otherwise, if all the merged values are the same, just use it.
    133   if (SingularValue)
    134     return SingularValue;
    135 
    136   // Otherwise, we do need a PHI: check to see if we already have one available
    137   // in this block that produces the right value.
    138   if (isa<PHINode>(BB->begin())) {
    139     SmallDenseMap<BasicBlock*, Value*, 8> ValueMapping(PredValues.begin(),
    140                                                        PredValues.end());
    141     PHINode *SomePHI;
    142     for (BasicBlock::iterator It = BB->begin();
    143          (SomePHI = dyn_cast<PHINode>(It)); ++It) {
    144       if (IsEquivalentPHI(SomePHI, ValueMapping))
    145         return SomePHI;
    146     }
    147   }
    148 
    149   // Ok, we have no way out, insert a new one now.
    150   PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(),
    151                                          ProtoName, &BB->front());
    152 
    153   // Fill in all the predecessors of the PHI.
    154   for (const auto &PredValue : PredValues)
    155     InsertedPHI->addIncoming(PredValue.second, PredValue.first);
    156 
    157   // See if the PHI node can be merged to a single value.  This can happen in
    158   // loop cases when we get a PHI of itself and one other value.
    159   if (Value *V =
    160           SimplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) {
    161     InsertedPHI->eraseFromParent();
    162     return V;
    163   }
    164 
    165   // Set the DebugLoc of the inserted PHI, if available.
    166   DebugLoc DL;
    167   if (const Instruction *I = BB->getFirstNonPHI())
    168       DL = I->getDebugLoc();
    169   InsertedPHI->setDebugLoc(DL);
    170 
    171   // If the client wants to know about all new instructions, tell it.
    172   if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
    173 
    174   DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
    175   return InsertedPHI;
    176 }
    177 
    178 void SSAUpdater::RewriteUse(Use &U) {
    179   Instruction *User = cast<Instruction>(U.getUser());
    180 
    181   Value *V;
    182   if (PHINode *UserPN = dyn_cast<PHINode>(User))
    183     V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
    184   else
    185     V = GetValueInMiddleOfBlock(User->getParent());
    186 
    187   // Notify that users of the existing value that it is being replaced.
    188   Value *OldVal = U.get();
    189   if (OldVal != V && OldVal->hasValueHandle())
    190     ValueHandleBase::ValueIsRAUWd(OldVal, V);
    191 
    192   U.set(V);
    193 }
    194 
    195 void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
    196   Instruction *User = cast<Instruction>(U.getUser());
    197 
    198   Value *V;
    199   if (PHINode *UserPN = dyn_cast<PHINode>(User))
    200     V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
    201   else
    202     V = GetValueAtEndOfBlock(User->getParent());
    203 
    204   U.set(V);
    205 }
    206 
    207 namespace llvm {
    208 template<>
    209 class SSAUpdaterTraits<SSAUpdater> {
    210 public:
    211   typedef BasicBlock BlkT;
    212   typedef Value *ValT;
    213   typedef PHINode PhiT;
    214 
    215   typedef succ_iterator BlkSucc_iterator;
    216   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
    217   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
    218 
    219   class PHI_iterator {
    220   private:
    221     PHINode *PHI;
    222     unsigned idx;
    223 
    224   public:
    225     explicit PHI_iterator(PHINode *P) // begin iterator
    226       : PHI(P), idx(0) {}
    227     PHI_iterator(PHINode *P, bool) // end iterator
    228       : PHI(P), idx(PHI->getNumIncomingValues()) {}
    229 
    230     PHI_iterator &operator++() { ++idx; return *this; }
    231     bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
    232     bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
    233     Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
    234     BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
    235   };
    236 
    237   static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
    238   static PHI_iterator PHI_end(PhiT *PHI) {
    239     return PHI_iterator(PHI, true);
    240   }
    241 
    242   /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
    243   /// vector, set Info->NumPreds, and allocate space in Info->Preds.
    244   static void FindPredecessorBlocks(BasicBlock *BB,
    245                                     SmallVectorImpl<BasicBlock*> *Preds) {
    246     // We can get our predecessor info by walking the pred_iterator list,
    247     // but it is relatively slow.  If we already have PHI nodes in this
    248     // block, walk one of them to get the predecessor list instead.
    249     if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
    250       Preds->append(SomePhi->block_begin(), SomePhi->block_end());
    251     } else {
    252       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
    253         Preds->push_back(*PI);
    254     }
    255   }
    256 
    257   /// GetUndefVal - Get an undefined value of the same type as the value
    258   /// being handled.
    259   static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
    260     return UndefValue::get(Updater->ProtoType);
    261   }
    262 
    263   /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
    264   /// Reserve space for the operands but do not fill them in yet.
    265   static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
    266                                SSAUpdater *Updater) {
    267     PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds,
    268                                    Updater->ProtoName, &BB->front());
    269     return PHI;
    270   }
    271 
    272   /// AddPHIOperand - Add the specified value as an operand of the PHI for
    273   /// the specified predecessor block.
    274   static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
    275     PHI->addIncoming(Val, Pred);
    276   }
    277 
    278   /// InstrIsPHI - Check if an instruction is a PHI.
    279   ///
    280   static PHINode *InstrIsPHI(Instruction *I) {
    281     return dyn_cast<PHINode>(I);
    282   }
    283 
    284   /// ValueIsPHI - Check if a value is a PHI.
    285   ///
    286   static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
    287     return dyn_cast<PHINode>(Val);
    288   }
    289 
    290   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
    291   /// operands, i.e., it was just added.
    292   static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
    293     PHINode *PHI = ValueIsPHI(Val, Updater);
    294     if (PHI && PHI->getNumIncomingValues() == 0)
    295       return PHI;
    296     return nullptr;
    297   }
    298 
    299   /// GetPHIValue - For the specified PHI instruction, return the value
    300   /// that it defines.
    301   static Value *GetPHIValue(PHINode *PHI) {
    302     return PHI;
    303   }
    304 };
    305 
    306 } // End llvm namespace
    307 
    308 /// Check to see if AvailableVals has an entry for the specified BB and if so,
    309 /// return it.  If not, construct SSA form by first calculating the required
    310 /// placement of PHIs and then inserting new PHIs where needed.
    311 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
    312   AvailableValsTy &AvailableVals = getAvailableVals(AV);
    313   if (Value *V = AvailableVals[BB])
    314     return V;
    315 
    316   SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
    317   return Impl.GetValue(BB);
    318 }
    319 
    320 //===----------------------------------------------------------------------===//
    321 // LoadAndStorePromoter Implementation
    322 //===----------------------------------------------------------------------===//
    323 
    324 LoadAndStorePromoter::
    325 LoadAndStorePromoter(ArrayRef<const Instruction*> Insts,
    326                      SSAUpdater &S, StringRef BaseName) : SSA(S) {
    327   if (Insts.empty()) return;
    328 
    329   const Value *SomeVal;
    330   if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
    331     SomeVal = LI;
    332   else
    333     SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
    334 
    335   if (BaseName.empty())
    336     BaseName = SomeVal->getName();
    337   SSA.Initialize(SomeVal->getType(), BaseName);
    338 }
    339 
    340 
    341 void LoadAndStorePromoter::
    342 run(const SmallVectorImpl<Instruction*> &Insts) const {
    343 
    344   // First step: bucket up uses of the alloca by the block they occur in.
    345   // This is important because we have to handle multiple defs/uses in a block
    346   // ourselves: SSAUpdater is purely for cross-block references.
    347   DenseMap<BasicBlock*, TinyPtrVector<Instruction*> > UsesByBlock;
    348 
    349   for (Instruction *User : Insts)
    350     UsesByBlock[User->getParent()].push_back(User);
    351 
    352   // Okay, now we can iterate over all the blocks in the function with uses,
    353   // processing them.  Keep track of which loads are loading a live-in value.
    354   // Walk the uses in the use-list order to be determinstic.
    355   SmallVector<LoadInst*, 32> LiveInLoads;
    356   DenseMap<Value*, Value*> ReplacedLoads;
    357 
    358   for (Instruction *User : Insts) {
    359     BasicBlock *BB = User->getParent();
    360     TinyPtrVector<Instruction*> &BlockUses = UsesByBlock[BB];
    361 
    362     // If this block has already been processed, ignore this repeat use.
    363     if (BlockUses.empty()) continue;
    364 
    365     // Okay, this is the first use in the block.  If this block just has a
    366     // single user in it, we can rewrite it trivially.
    367     if (BlockUses.size() == 1) {
    368       // If it is a store, it is a trivial def of the value in the block.
    369       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
    370         updateDebugInfo(SI);
    371         SSA.AddAvailableValue(BB, SI->getOperand(0));
    372       } else
    373         // Otherwise it is a load, queue it to rewrite as a live-in load.
    374         LiveInLoads.push_back(cast<LoadInst>(User));
    375       BlockUses.clear();
    376       continue;
    377     }
    378 
    379     // Otherwise, check to see if this block is all loads.
    380     bool HasStore = false;
    381     for (Instruction *I : BlockUses) {
    382       if (isa<StoreInst>(I)) {
    383         HasStore = true;
    384         break;
    385       }
    386     }
    387 
    388     // If so, we can queue them all as live in loads.  We don't have an
    389     // efficient way to tell which on is first in the block and don't want to
    390     // scan large blocks, so just add all loads as live ins.
    391     if (!HasStore) {
    392       for (Instruction *I : BlockUses)
    393         LiveInLoads.push_back(cast<LoadInst>(I));
    394       BlockUses.clear();
    395       continue;
    396     }
    397 
    398     // Otherwise, we have mixed loads and stores (or just a bunch of stores).
    399     // Since SSAUpdater is purely for cross-block values, we need to determine
    400     // the order of these instructions in the block.  If the first use in the
    401     // block is a load, then it uses the live in value.  The last store defines
    402     // the live out value.  We handle this by doing a linear scan of the block.
    403     Value *StoredValue = nullptr;
    404     for (Instruction &I : *BB) {
    405       if (LoadInst *L = dyn_cast<LoadInst>(&I)) {
    406         // If this is a load from an unrelated pointer, ignore it.
    407         if (!isInstInList(L, Insts)) continue;
    408 
    409         // If we haven't seen a store yet, this is a live in use, otherwise
    410         // use the stored value.
    411         if (StoredValue) {
    412           replaceLoadWithValue(L, StoredValue);
    413           L->replaceAllUsesWith(StoredValue);
    414           ReplacedLoads[L] = StoredValue;
    415         } else {
    416           LiveInLoads.push_back(L);
    417         }
    418         continue;
    419       }
    420 
    421       if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
    422         // If this is a store to an unrelated pointer, ignore it.
    423         if (!isInstInList(SI, Insts)) continue;
    424         updateDebugInfo(SI);
    425 
    426         // Remember that this is the active value in the block.
    427         StoredValue = SI->getOperand(0);
    428       }
    429     }
    430 
    431     // The last stored value that happened is the live-out for the block.
    432     assert(StoredValue && "Already checked that there is a store in block");
    433     SSA.AddAvailableValue(BB, StoredValue);
    434     BlockUses.clear();
    435   }
    436 
    437   // Okay, now we rewrite all loads that use live-in values in the loop,
    438   // inserting PHI nodes as necessary.
    439   for (LoadInst *ALoad : LiveInLoads) {
    440     Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
    441     replaceLoadWithValue(ALoad, NewVal);
    442 
    443     // Avoid assertions in unreachable code.
    444     if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType());
    445     ALoad->replaceAllUsesWith(NewVal);
    446     ReplacedLoads[ALoad] = NewVal;
    447   }
    448 
    449   // Allow the client to do stuff before we start nuking things.
    450   doExtraRewritesBeforeFinalDeletion();
    451 
    452   // Now that everything is rewritten, delete the old instructions from the
    453   // function.  They should all be dead now.
    454   for (Instruction *User : Insts) {
    455     // If this is a load that still has uses, then the load must have been added
    456     // as a live value in the SSAUpdate data structure for a block (e.g. because
    457     // the loaded value was stored later).  In this case, we need to recursively
    458     // propagate the updates until we get to the real value.
    459     if (!User->use_empty()) {
    460       Value *NewVal = ReplacedLoads[User];
    461       assert(NewVal && "not a replaced load?");
    462 
    463       // Propagate down to the ultimate replacee.  The intermediately loads
    464       // could theoretically already have been deleted, so we don't want to
    465       // dereference the Value*'s.
    466       DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
    467       while (RLI != ReplacedLoads.end()) {
    468         NewVal = RLI->second;
    469         RLI = ReplacedLoads.find(NewVal);
    470       }
    471 
    472       replaceLoadWithValue(cast<LoadInst>(User), NewVal);
    473       User->replaceAllUsesWith(NewVal);
    474     }
    475 
    476     instructionDeleted(User);
    477     User->eraseFromParent();
    478   }
    479 }
    480 
    481 bool
    482 LoadAndStorePromoter::isInstInList(Instruction *I,
    483                                    const SmallVectorImpl<Instruction*> &Insts)
    484                                    const {
    485   return std::find(Insts.begin(), Insts.end(), I) != Insts.end();
    486 }
    487